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Abstract

This thesis deals with the attitude estimation for a micro satellite in a polar, low earth
orbit (LEO, 600km). The satellite is to be used for optical and radar measurements,
which gives stringent demands on the attitude accuracy. The attitude is estimated with
a continuous extended Kalman �lter utilizing measurements from a magnetometer, sun
sensor and star sensors.

This thesis gives a mathematical model of the magnetometer, the sun sensor and the
star sensor, and describes how to implement each of them into a Kalman �lter and how
to combine the measurements from the magnetometer and star sensor into an attitude
estimation with a Gauss-Newton method. Di�erent ways to combine the sensors will
be presented and simulated. A fault detection scheme, detecting and removing faulty
measurement are also given.

By combining two star sensors in the Kalman �lter, the �lter will be able to estimate
the attitude within 1.8 arcseconds in all 3-axis and it is able to estimate the attitude
regardless of the of the initial estimation error. Combining the star sensors with the
magnetometer and sun sensor adds redundancy to the system, and makes it possible to
detect and remove faulty sensors from the system, making the attitude estimator more
robust.
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Chapter 1

Introduction

Kongsberg Defence and Aerospace (KDA) is part of a international study on cluster
satellites. Their main responsibility is the attitude determination, control and position
system of the satellite. The satellites are micro-satellites with a circular, low earth
orbit(LEO) of 600km, passing above the poles.

The satellites mission is to conduct optical and radar measurements. This gives
stringent demands on the attitude control and estimation. The attitude estimator have
to be able to estimate the attitude within en error of 0.001◦ and the attitude control
has to be within an error of 0.1◦.

This thesis aims to develop an attitude estimator for a the satellite, using an ex-
tended Kalman �lter with measurement from a magnetometer, star sensor and sun
sensor. It will also describe the mathematical model for the sun sensor and magne-
tometer used in the Kalman �lter. An algorithm for detecting and removing faulty
sensors from the attitude estimator will also be presented.

Outline of this report
• Chapter 2, describes theory and background material used in the rest of the thesis.

• Chapter 3, describes the mathematical satellite model.

• Chapter 4, describes the environment surrounding the satellite, such as the earth's
magnetic �eld, the satellite's orbit and the earths gravitational pull ont the satel-
lite.

• Chapter 5, gives a detailed description of the sensors used.

• Chapter 6, gives a short description of actuators used in space.

• Chapter 7, deals with the Kalman �lter. It describes the discreet and continuous
Kalman �lter, how to implement the measurements in the Kalman �lter, and how
to use a unit quaternion in a Kalman �lter.

• Chapter 8, simulates and describes di�erent Kalman �lters with di�erent mea-
surements This chapter also describes and simulates the faulty sensor detection
algorithm.

• Chapter 9 is the Conclusion.



2 Introduction

Tools
The simulation, and calculations has been done in Matlab 7.0(R14), Simulink 6.0(R14)
and the GNC toolbox1.

1NTNU-MSS, Marine Systems Simulator (2005). Norwegian University of Science and Technology,
Trondheim, Norway. Available at <www.cesos.ntnu.no/mss>



Chapter 2

Background

2.1 Reference frames
To be able to orient the satellite, the satellite's orientation must be described within a
reference frame.

BODY frame
The body frame is �xed to the vessel, with :

• xb-axis pointing from the back to the front (a.k.a. forward).

• zb-axis pointing from the top to the bottom (a.k.a. down, nadir).

• yb-axis completing the right hand system.

The origin of the frame is located in the mass center of the vessel. The orientation of
the satellite is described relative to the orbit frame.(Fossen 2002) (Ose 2004)

ORBIT frame
The orbit is de�ned by the motion of the satellite's mass center. The orbit frame is
described with:

• xo-axis pointing in the direction of motion, tangential to the orbit

• zo-axis pointing to the center of the Earth (nadir).

• yo-axis completing the right hand system.

The orbit frame rotates relatively to the ECI frame. If the orbit of the satellite is elliptic,
with the Earth in one of the foci, the axis will not be aligned with the velocity vector
of the satellite.(Ose 2004) (Fauske 2002)

ECI frame
The ECI frame, is a nonaccelerating reference frame in which Newtons laws of motion
apply. The frame is described by :

• xi-axis pointing in the vernal equinox direction (the line from Earths origin through
the Sun on the �rst day of spring).
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• zi-axis pointing upwards from the origin through the geographical north pole

• yi-axis completing the right hand system.

The origin of the frame is located at the center of the Earth. (Fossen 2002) (Sellers 2000)

ECEF
The ECEF frame is �xed to the Earth. The frame is described by :

• xe-axis points form Earth center towards the point were Greenwich intersects with
the equator.

• ze-axis pointing upwards from the origin through the geographical north pole

• ye-axis completing the right hand system.

The origin of the frame is located at the center of the Earth. Since the ECEF is �xed
to the Earth, it rotates with an angular speed of ωe = 7.2921 · 10−5rad/sek around the
zi axis of the ECI frame. (Ose 2004) (Fossen 2002)

2.2 Vector mathematics and transformations
This section contains some mathematics necessary to calculate the orientation of the
satellite.

2.2.1 Skew symmetric matrixes
A skew symmetric matrix is de�ned as:

S(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (2.1)

and has the following properties :

• ST (x) = −ST (x)

• (S2(x))T = S2(x)

• ST (x)y = x× y

• S(x)y = −S(y)x

2.3 Euler parameter
2.3.1 Euler angles
Euler angels are usually used to describe the rotations of a rigid body system. Since
the satellite is a rigid body system it is possible to describe the rotation and attitude
of the satellite with the Euler angels :
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Θ =




φ
θ
ψ


 (2.2)

For the satellite:

• φ is roll, the rotation around the xo-axis.

• θ is pitch, the rotation around the yo-axis.

• ψ is yaw angle, the rotation around the zo-axis.

Pros and cons of the Euler parameters
• The Euler angel represent an intuitive representation for the attitude of a object

in a 3D space. It is therefore easy to relate to.

• Using Euler parameters to describe the attitude, may result in singularities.

2.3.2 Unit quaternions
One way to avoid the singularity problems of the Euler angels are to use the Unit
quaternions. The quaternion q has four parameters, one real η and three imaginary
ε =

[
ε1 ε2 ε3

]
. A unit quaternion has to satisfy qT q = 1, and therefore must be

in a set Q, de�ned by:

Q = {q | qT q = 1, q =
[

η, ε
]T

, ε ∈ <3 and η ∈ <} (2.3)

The restriction qT q = 1 also implies that :

η2 + ε2
1 + ε2

2 + ε2
3 = 1 (2.4)

where η is de�ned as :
η = cos

θ

2
(2.5)

and ε is de�ned as
ε =

[
ε1 ε2 ε3

]T = λ sin
θ

2
(2.6)

where λ =
[

λ1 λ2 λ3

]
is a unit eigenvector satisfying:

λ = ± ε√
εT ε

(2.7)
√

εT ε 6= 0 (2.8)

The algorithm to transform a set of parameters from euler angels to unit quaternions,
or from unit quaternions to euler angels can be found in both in Fossen (2002) and
Egeland & Gravdahl (2002) where they use that the fact that R(θ) = R(q), where R
are the rotation matrices de�ned below, to derive the conversion logarithms.
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2.4 Rotation matrices
A rotation matrix R is either used to move from one coordinate frame to another or to
rotate within one frame. The rotation matrix is an element in a special orthogonal group
of order 3, SO(3), de�ned in equation (2.9). In more mathematical terms R ∈ SO(3).

SO(3) = {R | R ∈ <3×3,R is ortogonal and det(R) = 1} (2.9)
This means that RRT = RTR = I and R−1 = RT .

The simplest rotation matrix is a matrix representing a rotation (β) around one axis
(λ) and is given by:

Rλ,β = I3×3 + sin βS(λ) + (1− cosβ)S2(λ) (2.10)
This gives the following rotation matrixes for euler angels:

Rx,φ =




1 0 0
0 cosφ − sinφ
0 sin φ cosφ


 (2.11)

Ry,θ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 (2.12)

Rz,ψ =




cosψ − sinψ 0
0 cosψ 0

sinψ 0 1


 (2.13)

In the rest of this paper the following notation will be used when moving from one
coordinate frame to another using the rotation matrix:

rto = Rto
fromrfrom (2.14)

One rotation matrix that will be used quite a lot in this paper is the rotation matrix
from body to orbit , Ro

b(q), and the rotation matrix from orbit to body Rb
o(q). Fossen

(2002) derives the rotation matrix Ro
b(q) as:

Ro
b(q) := Rη,ε = I3×3 + 2ηS(ε) + 2S2(ε) (2.15)

since
Rb

o(q) = (Ro
b(q))

T (2.16)
this gives that

Rb
o(q) = I3×3 − 2ηS(ε) + 2S2(ε) (2.17)

2.5 Time
Time is an important parameter when calculating the position of an object in orbit.
The standard SI1 unit(International System of Units) for time is a second(sec). The
second is then used to de�ne minutes[min], hours[h], days, months and years. There are
a �xed ratio between seconds, minutes, hour, day and week, but no �xed ratio between
days, months and years. This is due to the use of leap-days, it is therefore inconvenient
to use for computer computations. A solution to this is to use the Julian Day.

1abbreviated from the French: Système International d'Unités
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2.5.1 International atomic time(TAI)
International atomic time, is a very accurate and stable reference time. It uses the
radiation period of a cesium nuclide, 133 Ce, where 9,192,631,770 periods constitute 1
second in the SI system.

2.5.2 Universal Time(UT)
Universal Time, also called Greenwich mean time(GMT), is the mean solar time at
the Royal Greenwich Observatory near London in England, which coincide with the 0◦

longitude.

2.5.3 Coordinated Universal Time(UTC)
Coordinated Universal Time, also called Zulu time (Z), was introduced and broadcasted
in January 1972 (Kristiansen 2000). A second in UTC is equal to a second in TAI, but
it is kept within 0.90 seconds of the actual rotation of the Earth, by correcting it with
1 second steps, usually at the end of June an December ( This gives rise to the leap
year).

2.5.4 Civil Time
Di�erent time zones, give rise to the Civil time (Tcivil), which is the time observed by
people on their clocks. Civil time di�ers from the UT, by a an integer number of hours,
and can be roughly calculated by :

Tcivil ≈ UT ± (L + 7.5)/15 (2.18)

where L is the longitude, given in degrees (with positive sign in eastern direction), and
Ut and Tcivil given in integer numbers, and Tcivil is irrespective of daylight-saving time.

2.5.5 Julian day
The Julian calender is a continnous time count from the number of days since Greenwich
noon on January 1, 4713BC(Wertz & Larson 1999). This is the solution adopted for
astronomical use, and was proposed by the Italian scholar Joshep Scaliger in 1582 AD.
The Julian Day can be calculated with:

JD = day +
153−m

5
+ 365y + y/4− 32083 (2.19)

where:
m = month + 12a− 3 (2.20)

y = year + 4800− a (2.21)

and
a =

14−month

12
(2.22)



8 Background

2.5.6 Modi�ed Julian day(MJD)
The Julian Date is, as mentioned above, adopted for astronomical use, but for space
application it present a minor problem, because it starts at 12:00 UT,instead of 00:00
UT, as the civil calender does. To remedy this the Modi�ed Julian Date is used. The
MJD is given by:

MJD = JD − 2, 400, 000.5 (2.23)

and starts at midnight.

2.6 The Orbit
The mathematical equations used to describe the motion of a satellite and planets to day,
was described by Johannes Kepler [1571-1630]. They were founded on the observation
of Tycho Brahe [1546-1601], and deduced from Newton's equation of motion. Kepler
described the following three laws for the motion of a satellite (Sellers 2000) :

Kepler's First Law The orbit of the planets are ellipses with the sun at one focus.

Kepler's Second Law The line joining a planet to the sun sweeps out equal areas in
equal times.

Kepler's Third Law The square of the orbital period, the time it takes to complete
one orbit, is directly proportional to the cube of the mean or average distance
between the Sun and the planet.

2.6.1 Orbit elements
To de�ne and describe a satellites orbit, one need six parameters or elements (Wertz
& Larson 1999). The classical orbit elements are, described for a satellite in Earth
orbit(Vallado 2001, Sellers 2000):

Semimajor axis a : is the axis running from the center of the orbit (ellipse), through
a focus, and to the edge of the orbit. It is used to describe the size of the orbit.

Eccentricity e : is used to describe the shape of the orbit. If e = 0 the orbit is
circular, if 0 < e =< 1 it is a ellipse if e = 1 it is a parabola and if e > 1 the orbit
is a hyperbola.

Inclination i is the tilt of the orbit plane in respect to the plane of reference (for a
satellite orbiting Earth this is the equatorial plane).

Right ascension of the ascending node Ω is the angle from the vernal equinox to
the ascending node (the point where the satellite crosses the equatorial plane from
north to south).

Argument of perigee ω is the angle along the orbital plane from the ascending node
to the point (called perigee) in the orbit (ellipse) closest to Earth (Earth lies in a
focus point) .
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True anomaly ν : is the angle along the orbital path from perigee to the satellites
position.

Other elements that often is used are the :

Mean motion n which is used to describe the satellite's average angular motion over
one orbit.

Mean Anomaly M which is the uniform angular motion of a circle.

The ascension of the zero meridian θ is the angle from the vernal equinox to the
zero meridian.
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Chapter 3

Satellite model

3.1 The inertia matrix
The inertia matrix of the satellite is given by:

I :=




Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izy −Izy Iz


 (3.1)

If the physical model is symmetric, or is assumed to be symmetric, the inertia matrix
becomes :

I :=




Ix 0 0
0 Iy 0
0 0 Iz


 (3.2)

Where Ix-, Iy- and Iz-axes are the moment of inertia about xb, yb and zb, and they are
calculated like this :

Ix =
∫

V
(y2 + z2)ρmdV (3.3)

Iy =
∫

V
(x2 + z2)ρmdV (3.4)

Iz =
∫

V
(y2 + x2)ρmdV (3.5)

3.2 Dynamics
The dynamics of the satellite can be derived by using a Newton-Euler formulation,
where the equation of motion is derived from the de�nition of angular moment. This
leads to the following models, according to Øverby (2004) :

Iω̇b
ib + ωb

ib × (Iωb
ib) = τ b, τ b = τ b

grav + τ b
m (3.6)

Iω̇b
ib + S(ωb

ib)Iωb
ib = τ b (3.7)

ωb
ib = ωb

io + ωb
ob = Rb

oω
o
io + ωb

ob (3.8)

where ωb
ib, ωb

io and ωo
io are the angular velocity of the satellite from body to inertia

decomposed in the body frame, from orbit to inertia decomposed in the body frame
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and from orbit to inertia decomposed in the orbit frame. τ b is the angular momentum
decomposed in body frame.

Di�erentiating the last equation (3.8) gives

ω̇b
ib = ω̇b

ob − S(ωb
ob)R

b
oω

o
io (3.9)

and
ω̇b

ob = ω̇b
ib + S(ωb

ob)R
b
oω

o
io (3.10)

3.3 Kinematics
The kinematics of the satellite is derived by integrating the angular velocity of the
satellite. It is used to describe the orientation of the satellite. In unit quaternions
it will, according to Øverby (2004) and Egeland & Gravdahl (2002), be described by
(3.11);

q̇ =
[

η̇
ε̇

]
=

1
2

[ −εT

ηI3×3 + S(ε)

]
ωb

ob (3.11)

and the angular velocity of the body frame relative to the orbit frame will be given by :

ωb
ob = ωb

ib − ωoc
b
1 = ωb

ib −Rb
oω

o
ib (3.12)

or by integrating equation (3.10)



Chapter 4

Satellite Environment

4.1 Simple orbit estimator
The orbit of the satellite considered in this thesis, is polar and it is assumed to be
circular. It is therefore su�cient to use a simple orbit estimator. Svartveit (2003)
proposed a simple orbit estimator, which will be used in this thesis. It will be repeated
her for convenience.

The mean anomaly of a kepalerian orbit element is uniform in time. The prediction
is therefore:

M(t0 + t) = M(to) + n · t (4.1)

To solve Kepler's equation, the relation between the eccentric anomaly and the mean
anomaly has to be known. This relation is given by (4.2).

E(t) = M(t) + e sinE(t) (4.2)

where e is the orbit eccentricity and t is the time. Given the eccentric anomaly, the
vector from the center of the earth to the satellite is given by the following equation:

rOC = a




cosE − e√
1− e2 sinE

0


 (4.3)

rOC can be transformed into the ECEF frame with :

rE = Rz(−Ω + Θ)Rx(−i)Rz(−ω)rOC (4.4)

and into the ECI frame with:

rI = Rz(−Ω)Rx(−i)Rz(−ω)rOC (4.5)

where Θ is the ascension of the zero meridian, Rz and Rx are rotation matrixes.

4.2 Earth's magnetic �eld
To be able to control a satellite, with coils as actuators and magnetometer sensors, one
needs a model of the Earths magnetic �eld. The complexity of the models can range
from simple models to models which have a huge complexity.
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4.2.1 Magnetic dipole
One of the simplest models represent the Earths magnetic �eld as a tilted magnetic
dipole. The magnetic �eld is tilted with about 10◦, as shown in �gure (4.2). Because
the magnetic �eld and the electric �eld is connected, it is natural to take a look at the
electric dipole �rst.

Electric dipole
An electric �eld is produced by an electric charge that exerts a force on charged objects
in its vicinity. In Sadiku (2001) an electric dipole is de�ned as:

De�nition 1. An electric dipole is formed when two points of charges of equal magnitude
but opposite signs are separated by a small distance.

The electric �eld generated by the dipole is:

E =
p

4πε0r3
(2 cos θar + sin θaθ) (4.6)

Where:

• ε0 is the permittivity of free space (F/m) ≈ 10−9

36π

• r is the distance away from the center of the dipole

• θ is the angle from the dipole, to where the electric �eld is measured, se �gure 4.1

• ar and aθ are unit vectors

• p = |p|=Qd where Q is the charge and d is the length of the dipole.

Further Sadiku (2001) de�nes the �ux lines as :

De�nition 2. An electric �ux line is an imaginary path or line drawn in such a way
that its direction at any point is the direction of the electric �eld at that point.

and the electric �ux density is given by:

D = ε0E (4.7)

Magnetic dipole
A magnetic �eld is produced by a constant current �ow (moving electric charges) that
exerts a force on other moving charges. The connection between the magnetic �eld and
the electric �eld is the moving charge Q, which is given by the lorentz force equation:

F = Q(E + u×B) (4.8)

where u is the velocity and Ampère-Maxwell's law:

∇×B = µ0J + µ0ε0
∂E

∂t
(4.9)
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Figure 4.1: Explanation of the θ angle

Figure 4.2: Earth represented as a tilted dipole.
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The magnetic �eld due to a magnetic dipole is given by

B =
µ0m

4πr3
(2 cos θar + sinθar) (4.10)

where :

• µo is the permeability

• J is the current density

• ε0 is the permittivity of free space (F/m) ≈ 10−9

36π

• r is the distance away from the center of the dipole

• θ is the angle from the dipole, to where the magnetic �eld is measured, se �gure
4.1

• ar and aθ are unit vectors

• m is the mass of the particle.

4.2.2 International Geomagnetic Reference Field (IGRF)
The magnetic �eld of the Earth di�ers from the simplistic magnetic dipole. In fact the
magnetic �eld is composite of several magnetic �elds generated by a variety of sources,
where the most important ones are the Earths �uid core, its crust and the upper man-
tel, the ionosphere and the magnetosphere. (www.esri.com 9.9.2004) To simulate this
magnetic �eld The International Association of Geomagnetism and Aeronomy (IAGA)
has provided the IGRF model. The IGRF model is a spherical harmonic equation, with
Gauss coe�cients,gm

n , hm
n

V = a
N∑

n=1

n∑

m=1

(a

r

)n+1
(gm

n cosmφ + hm
n cosmφ)Pm

n (cos θ) (4.11)

where V is the magnetic �eld given in the ECEF frame, a is the mean radius of the
Earth, r is the distance form the center of the Earth, φ is the longitude east of Greenwich
and θ is the colatitude (90◦−latitude). The IGRF model is updated every 5 year. The
newest IGRF model is IGRF2000, which have a order of 10. The IGRF2000 is illustrated
in �gure 4.3 and 4.4.

4.2.3 The magnetic �eld vector
To get the magnetic �eld from the ECEF to body frame it �rst has to be rotated to the
Earth center orbit frame(Svartveit 2003):

Boc = Rz(ω)Rx(i)Rz(Ω− θ)V (4.12)

where Ω is the right ascension of the ascending node, ω is the Argument of perigee, i is
the inclination and θ is the ascension of the zero meridian. In orbit frame the magnetic
�eld can be calculated by :

Bo = Rx(
π

2
)Rz(ν +

π

2
)Boc (4.13)
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Figure 4.3: IGRF for the north pole

Figure 4.4: IGRF for the whole world



18 Satellite Environment

where ν is the true anomaly. It can further be calculated into the body frame of the
satellite with :

Bb = Rb
o(q)Bo (4.14)

all of this can be done with one rotation matrix:

Bb = Rb
eV (4.15)

where
Rb

e = Rb
o(q)Rx(

π

2
)Rz(ν +

π

2
)Rz(ω)Rx(i)Rz(Ω− θ) (4.16)

4.3 Sun model
If the direction to the sun is known, it would provide a well de�ned reference vector,
which can be utilized in the satellites attitude estimation. To be able to estimate the
sun vector, the relationship between the Earth and the sun has to be known. It is well
known that the Earth revolves around the sun, but it is more convenient to describe the
relationship from the Earths point of view, as illustrated in �gure 4.5. The elevation,
εS , of the sun from the Earths equator varies with ±23◦. Kristiansen (2000) proposed
the following to calculate the elevation :

εS =
23π

180
sin

(
2πTs

365

)
(4.17)

where Ts is the time elapsed since the �rst day of spring. It has been assumed that
orbit time is 365 days (a year) and that the Earth's orbit is circular. This leads to an
error of (Svartveit 2003):

e = arctan
(

Ro

Re

)
(4.18)

which is approximately 4.65 · 10−5 [rad], where Ro is the radius of the satellite orbit,
and Re is the Earth orbit radius. The suns position, λs, in this imaginary orbit around
the sun, is given by :

λS =
2πTs

365
(4.19)

4.3.1 The sun vector
When we know the elevation(εS given by (4.17)), and the suns poisson in relations to
the Earth(λS given by (4.19)) it is possible to calculate a vector pointing ro the sun.
The calculation, starts with the initial position

vI
S0 =




1
0
0


 (4.20)

given on the �rst day of spring (vernal equinox) (Svartveit 2003). Both the sun's
elevation and the sun position describes the sun's imaginary rotation around the Earth.
The position vector can be calculated as rotations:

vi
S = Ry(εS)Rx(λS)vi

S0 (4.21)
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Figure 4.5: The suns elevation in an imaginary orbit around the Earth

Figure 4.6: The suns position in an imaginary orbit around the Earth
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which is equal to (substituting for the rotation matrixes, given by (2.11) and (2.12) ):

vi
S =




cosλS cos εS

sinλS

cosλS sin εS


 (4.22)

and, by placing the cosλS on the outside yields:

vi
S =




cos εS

tanλS

sin εS


 cosλS (4.23)

Since it is the vector direction that is important, the cosλS can be omitted, which gives:

vi
S =




cos εS

tanλS

sin εS


 (4.24)

The sun vector can easily be transformed into the orbit frame:

vo
S = Ro

i (q)vi
S (4.25)

and body frame:
vb

S = Rb
o(q)vo

S (4.26)

4.4 Star
Stars are self-luminous celestial bodies in space. All stars, except from the sun, are so
far away1 from the Earth that they appear as shining points �xed to speci�c locations
in space. This makes it possible to utilize stars as �xed reference points in space.

4.5 The Earth albedo
The earth's re�ection of the sun, the Earth albedo, is a signi�cant source of light in a
satellite's orbit. It would therefore contribute to deteriorate the measurement signals
given from sun sensors or star tracers. To avoid this deterioration, the sensors either
has to be shielded from the re�ection or it has to be modeled and estimated.

4.6 Gravity torque
A satellite orbiting the earth will be subjected to the forces from the earth gravity �eld.
If the mass of the satellite is distributed unevenly, the force from the earth gravity
will poll unevenly on the satellite. This gived rise to the gravitational force. The
gravitational force can, according to Kyrkjebø (2000), be modeled as :

τ b
g = 3ω2

oc3 × Ic3 (4.27)
1The star closest to the Earth is Proxima Centauri, 4.2 light years away



4.7 Ignored sources 21

where c3 is directional cosine from the the rotational matrix Rb
o and ωo is the angular

velocity of the satellites orbit, and is calculated with:

ωo ≈
√

GM

R3
(4.28)

where R is the orbit radius, G is Newton's speci�c gravity constant and M is the earth
mass.

4.7 Ignored sources
In addition to the environmental condition listed earlier, there are some sources that,
due to their small disturbance are ignored. These are the same as listed in Svartveit
(2003), and are the following:

Atmospheric drag Due to the low amount of particles in the orbit, the atmospheric
drag is assumed to be zero.

The gravity of the moon Because the gravity of the earth is dominant (it is closer
and larger), the gravity of the moon, and the tidal force created by the earth-moon
system is ignored.

Solar winds and pressure The sun's radiation of particles causes solar winds and
pressure. Both the solar winds and pressure generates a torque on the satellite.

Satellite generated torques The satellite generated torques are generated by di�er-
ent sources, such as the deployment of the antenna and instruments onboard can
generate magnetic �elds that interact with the earth's magnetic �eld. These are
either short lived, or have a low magnitude, and can therefore be ignored.
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Chapter 5

Sensors

There are many types of sensors available for observing the attitude of a satellite. In
this thesis the sensors used are two star trackers, a sun sensor and a magnetometer.

5.1 Star tracker
A star tracker is a lightsensitive precision instrument, that determines the attitude of
a satellite by observing stars with high precision. The two major elements in a star
tracker are a digital camera and processing unit.

The star tracker observes the stars with the camera, and compares this observations
with an onboard star catalog. This gives the angles between the observed star an a
reference frame in the satellite. If only one star (or clusters of stars) is observed, this
will only give an accurate information about the attitude in 2 dimensions (Sellers 2000).
By observing at least two di�erent remote stars (or cluster of stars) the star tracker can
determine the attitude in 3 dimensions(Chiang, Chang, Wang, Jan & Ting 2001).

How accurate the star tracker is, depends on the number of stars observed, the
star catalog used, the quality of the optic and the resolution in the digital camera. A
typically star sensor used in space application has a precision of a few arcseconds.

5.2 Sun sensor
A sun sensor is an instrument which measures the direction from the satellite to the sun.
The direction to the sun can be measured in two di�erent ways, both of them relying
on photocells. The �rst one, the analog sun sensor, measures the intensity of the sun,
and the second one, the digital sun sensor, uses a pattern where di�erent photocells is
exposed depending on the direction of the sun.

5.2.1 Analog sun sensor
As mentioned above the analog sun sensor, also called cosine sensor, measures the
sun's intensity. More precisely it measures the energy �ux through the surface area of
photocell. The energy �ux through a photocell is given by :

E = P · ndA (5.1)

where P is the pointing vector against the sun, n is a vector perpendicular to the cell,
dA is the surface area of the cell and E is the energy �ux. Equation (5.1) can be
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rewritten into :
E = ‖P ‖‖n‖ cosΘdA (5.2)

where Θ is the angle of the pointing vector P , and therefore is the angle from the
perpendicular vector n towards the sun. The energy �ux, E, is proportional to the
electric current generated in the photocell. Therefore the easiest way to measure the
angle of the pointing vector is to measure the current with :

Ic = Imax cosΘ (5.3)

where Ic is the measured current, and Imax is the maximum current generated in the
photocell.

Figure 5.1: The analog photocell

5.2.2 Digital sun sensor
A digital sun sensor is built up of a pattern of photocells. The photocells are placed
inside an installation that restricts which photocells that are illuminated and make this
depended on the direction of the sun. This is illustrated in �gure 5.2.

The photocells can be put into many di�erent patterns. One example of this is a
binary pattern, illustrated in �g 5.3, but it is more usual to use a Gray-coded pattern.
From both of these patterns the angle of the sun can be found in the output of the
sensors, since the photocells that is illuminated generate a higher energy level, either
higher voltage or higher current, than the sensors that is in the shadow. This can in
turn be converted into digital ones and zeros, which gives the angle of the sun either in
binary or Gray scale.

5.2.3 The measured sun vector
The sun sensor measures the sun vector in body frame. Without noise the sun vector
will be given by (4.26). With noise the measured sun vector can be given as

vb
S = Rb

ov
o
S + w (5.4)
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Figure 5.2: The digital photocell

Sun beam


Binary Bit Pattern


Figure 5.3: The binary bit pattern of a digital sun sensor
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where w is an additive noise term, or it can be given by
vb

S = Rb
o(qw/noise)v

o
S (5.5)

where qw/noise is the quaternion with noise. The rotation Rb
o(qw/noise) can be replaced

with Rb
o(Θw/noise) if the attitude is given in Euler angels. Whether to use equation

(5.4) or (5.5), depends on how the noise is given.

5.3 The magnetometer
A magnetometer is an instrument which measurers the �ux density of the magnetic
�eld it is placed in. A three axis magnetometer placed inside a satellite, will measures
the geomagnetic intensity and direction surrounding the satellite. In a low orbiting
satellite this can be used as a low cost, low weight, and reliable attitude sensors, with
an accuracy of 0.5 to 3 degrees and a weight of 0.3 to 1.2 kg, according to (Wertz &
Larson 1999). It can also be used to calculate the control input when using coils as
actuator, and to estimate the orbit, as proposed by Zhao, Peng, Zeng, Shi, Huang & Li
(2004)

The most common magnetometer used in space is the �ux-gate magnetometer, where
each axis has a sensor. Each sensor consists of a transformer wound around a core of
high-permeability material, illustrated in �gure 5.4 . By exciting the primary winding
with a high frequency , this will induce a frequency on the secondary winding, where
the amplitude and phase of the even harmonics are linearly proportional to the ambient
magnetic �eld. For one axis this can give:

b ∝ Ûseco (5.6)
where Ûseco is the voltage amplitude generated on the secondary winding. This can be
rewritten into

b = KpropÛseco (5.7)
where Kprop is the proportionality constant, and b is the ambient magnetic �eld. Kprop

is determined by the material in the core, and the number of windings on the primary
and secondary winding. When the three sensors are mounted perpendicular to each
other, it will be possible to use (5.7), to calculate the magnetic �eld vector:

Bb
meas =




bb
1

bb
2

bb
3


 =




KpropÛseco1

KpropÛseco2

KpropÛseco3


 (5.8)

where bb
1 is the ambient magnetic �eld of sensor nr 1 measured in body frame (it has

been assumed that the sensor are aligned whit the body of the satellite), and Ûseco1

is the voltage amplitude on the secondary winding of the �rst sensor. Mathematically
Bb

meas will, in a noise free environment, be equal to
Bb

meas = Rb
o(q)Bo (5.9)

where Bo is the magnetic �eld given in orbit frame. With noise Bo will be equal to
Bb

meas = Rb
o(q)Bo + w (5.10)

where w is the noise vector.
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U primary


U secondary


Figure 5.4: Flux-gate magnetometer
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Chapter 6

Actuator

There are basically three categories of actuators available to control a satellite. These
are thrusters, reaction wheels and magnetic coils.

6.1 Thruster
A thruster is basically a small rocket engine placed on the body of the satellite to adjust
either the attitude or orbit parameters. The thruster is precise but it has to carry the
fuel with itself when launched.

6.2 Reaction wheel
A reaction wheel is a rotor with high inertia that is accelerated. This acceleration will
produce a torque on the reaction wheel:

τr = Irω̇r (6.1)

where Ir is the wheel's moment of inertia and ω̇r is the angular acceleration. The torque
on the wheel will generate a torque with opposite sign on the satellite (6.2), that can
be used to control the angular velocity of the satellite.

τb = −τr = Ibω̇b (6.2)

The torque is the same as the time derivative of the moment(hr):

τr =
dhr

dt
(6.3)

which, according to (Kaplan 1976), is equal to :

τr =
(

dhr

dt

)b

+ ωb
ib × hr (6.4)

By adding friction this becomes :

τr =
(

dhr

dt

)b

+ ωb
ib × hr − τ b

friction (6.5)
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6.3 The coils
To generate the force needed to rotate the satellite, one can use coils as actuators. A
coil will generate a moment, and the moment will induce a torque which can be used
to control the rotation of the satellite, and hence the attitude.

More precis, Sadiku (2001) de�nes the the dipole moment as:

De�nition 3. The magnetic dipole moment is the product of current and area of the
loop; its direction is normal to the loop.

The magnetic dipole moment for one rectangular planar loop in a uniform magnetic
�eld:

m = iAan (6.6)
and for n loops:

m = niAan (6.7)
In a �eld with uniform magnetic �eld, the torque generated by the dipole will be :

τ = m×B (6.8)

This gives the following torque:

τ = niAan ×m (6.9)

Equation (6.8) can be rewritten, using a skew symmetric matrix, to :

τ = S(m)B (6.10)

and
τ = −S(B)m (6.11)

By placing a coil in all three axis it is possible to control the satellite by controlling
the electric current in the coils. It is important to notice that it is only possible to
control the rotation of the satellite in an approximately homogenous magnetic �eld.



Chapter 7

Kalman filter

The Kalman �lter was proposed by R. E. Kalman[1930-] for discrete systems in 19601
and for continuous system in 19612.A Kalman �lter is a way of formulating the mini-
mum mean-square error(MMSE) �ltering problem. This makes the Kalman �lter into
a optimal state estimator, with minimum variance, making it possible to estimate the
state of a dynamical system.

7.1 Discrete Kalman Filter
The discrete Kalman �lter described in this section is based on a discrete and linear
system given by:

xk+1 = Φxk + ∆uk + Γwk (7.1)
yk = Hxk + vk (7.2)

where Φ is the discrete state transition matrix given by

Φ = eAh (7.3)

∆ is the discrete control transition matrix given by

∆ = A−1(Φ− I)B (7.4)

Γ is the discrete noise transition matrix given by

Γ = A−1(Φ− I)E (7.5)

and h is the sampling time of the system given by h = tk+1− tk. Both the process noise
wk and the measurement noise vk is assumed to be uncorrelated Gaussian with noise
with covariance

Q = E(wkw
T
k ) (7.6)

R = E(vkv
T
k ) (7.7)

1The paper "A New Approach to Linear Filtering and Prediction Problems" was published in ASME
Journal of Basic Engineering, series D, 82

2The paper, coauthor with R.S Bucy, "A New Approach to Linear Filtering and Prediction Theory"
was published in ASME Journal of Basic Engineering, series D, 83
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The discrete Kalman �lter can be divided into to �lter equations (the estimation) and
predictions (Henriksen 1998). The �lter part consist of the state estimation

x̂k = x̄k + Kk[yk −Hkx̄k] (7.8)
the estimation of the Riccati equation

P̂k = [I −KkHk]P̄k[I −KkHk]T + KkRkK
T
k (7.9)

and the calculation of the Kalman gain
Kk = P̄kH

T
k [HP̄kH

T
k + Rk]−1 (7.10)

The prediction part consist of the state prediction
x̄k+1 = Φx̂k + ∆uk (7.11)

and the prediction of the Riccati equation
P̄k+1 = ΦkP̂kΦT

k + ΓkQkΓT
k (7.12)

7.1.1 Discrete Extended Kalman �lter
For a nonlinear discrete system the ordinary discrete Kalman �lter will not be su�cient.
The system equation for the nonlinear discrete system is given by:

xk+1 = fk(xk, uk) + gk(wk) (7.13)
yk = hk(xk) + vk (7.14)

where fk(xk, uk), gk(xk) and hk(xk) are nonlinear functions. The �lter equations for
the discrete Extended Kalman �lter(DEKF) is given by the state estimation:

x̂k = x̄k + Kk[yk − hk(x̄k)] (7.15)
the estimation of the Riccati equation

P̂k = (I −KkHk)P̄ (7.16)
and the Kalman gain is given by

Kk = P̄kH
T
k (HkP̄kH

T
k + R)−1 (7.17)

where H is the linearized discrete measurement matrix, given by:

Hk =
∂hk

∂xT
k

(x̄k) (7.18)

The predictions are given by state prediction
x̄k+1 = fk(x̂k, uk) (7.19)

and the prediction or the Riccati equation
P̄k+1 = ΦkP̂kΦT

k + ΓkQkΓT
k (7.20)

where Φk is the linearized discrete state transfer matrix, given by :

Φk =
∂fk

∂xT
k

(x̂k, uk) (7.21)
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7.2 Continuous Kalman Filter
The continuous Kalman �lter is based on a continuous and linear system. The linear
equations are given by :

ẋ = Ax + Bu + Ew (7.22)
y = Hx + v (7.23)

where A is the state transition matrix, B is the measurement transition E is the noise
transition matrix and H is the measurement matrix. w and v are assumed to be
uncorrelated Gaussian with noise process with covariance

R = E(vvT ) (7.24)
Q = E(wwT ) (7.25)

The �lter equation consist of the state estimation :

˙̂x = Ax̂ + Bu + Kν (7.26)

where ν is the innovation process given by :

ν = y −Hx̂ (7.27)

The Kalman gain is calculated from

K = PHT R−1 (7.28)

The continuous Riccati equation is given by

Ṗ = AP + PAT + EQET − PHT R−1HP (7.29)

which means that P =
∫

Ṗ

7.2.1 Continuous Extended Kalman �lter
For a nonlinear system the ordinary continuous Kalman �lter will not be su�cient.
Instead the continuous Extended Kalman(CEKF) �lter will be used. The nonlinear
continuous system is given by:

ẋ = f(x,u) + g(x)w (7.30)
y = h(x) + v (7.31)

where f(x, u), g(x) and h(x) are nonlinear functions. Filter equation for the CEKF
consist of the state estimation :

˙̂x = f(x̂, u) + Kν (7.32)

where the innovation is given by

ν = y − h(x̂) (7.33)
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and the Kalman gain is calculated with

K = PHT R−1 (7.34)

The continuous Riccati equation is given by

Ṗ = AP + PAT + EQET − PHT R−1HP (7.35)

which means that P =
∫

Ṗ . A is the linearized state transfer matrix, given by :

A =
∂f

∂xT
(x̂, u) (7.36)

and H is the linearized measurement matrix, given by:

H =
∂h

∂xT
(x̂) (7.37)

7.3 Unit Quaternions in Kalman Filter
The de�nition of the quaternion (2.3) gives rise to some di�culties when they are used in
a Kalman �lter. This di�culties was addressed by Le�erts, Markley & Shuster (1982),
and most of this section will be based on this article.

7.3.1 Covariance singularity
The �rst problem is the fact that the unit quaternion parameter is dependent on each
other, this is because the norm constrained to 1 (‖q‖ = 1). This constraint result in
a singularity in the covariance matrix of the quaternion. According to Le�erts et al.
(1982)the norm constrain gives :

4qT q̂ ' 0 (7.38)

where q̂ is the estimated of q and 4q = q − q̂. This then leads to the following null
vector of P : [

q̂
0

]
(7.39)

This singularity is di�cult to maintain numerically, and is therefore a source of errors
in computer computations. Le�erts et al. (1982) proposes three ways to avoid this nu-
merically errors, all of which are based on reducing the covariance matrix from a 7× 7
to a 6× 6 matrix. The three di�erent ways are the Truncated Covariance Representa-
tion, Reduced Representation of the Covariance Matrix and the body-Fixed Covariance
Representation. This thesis will use the Truncated Covariance Representation which
therefore will be described below. For the other two reading the article is recommend.

The Truncated Covariance Representation. The idea with the truncated covari-
ance representation, is to truncate the quaternion vector used in the calculation
of the variance matrix. The most obvious state to remove is the η element, but
in principal, any component is as good.
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7.3.2 Maintaining the unity of the quaternion
The second problem is maintaining the unity of the unit quaternion. In theory a unit
quaternion should remain as a unit quaternion. As the following shows(Egeland &
Gravdahl 2002) :

d

dt
(qT q) = qT

[
η −εT

ε ηI3×3 + S(ε)

] [
0
ω

]
= 0 (7.40)

where the norm of a unit quaternion will stay identical. But this property is hard to
maintain in numerical calculation. It is also di�cult to maintain in an ordinary Kalman
�lter, both discrete and continuous. There are many ways to remedy this problem. The
most intuitive way is to normalize the output directly:

q =
q

‖q‖ (7.41)

An other way, described by Egeland & Gravdahl (2002), is to insert a normalizing term

λ

2
(1− qT q)qT q (7.42)

into the kinematic equation (3.11). This will give :

q̇ =
1
2

[ −εT

ηI3×3 + S(ε)

]
ωb

ob +
λ

2
(1− qT q)qT q (7.43)

where λ is a positive integer, which controls how fast the normalizing will converge3.

7.4 Star sensor in Kalman �lter
The star sensor gives out measurements in either Euler parameters or in quaternions.
This means that it is easy to incorporate in to the Kalman �lter. Since the Kalman
�lter in this thesis uses quaternions, it is assumed that sensor data from the star sensor
is given in quaternions. The innovation process will be

ν = qmeas − q̂ (7.44)

where qmeas is the measured quaternion vector and q̂ is the estimated quaternion vec-
tor. Since the star sensor measure the quaternion directly, the measurement matrix is
straight forward. For a truncated system, without η the measurement matrix will be :

H =
[

I3×3 0
]

(7.45)

and the innovation process will reduced to

νε = εmeas − ε̂ (7.46)
3λ = 100 will give a convergence time of 0.01 sec.
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7.5 Magnetometer in Kalman �lter
The measurements from the magnetometer(Bb

meas) is given by (5.10). This measure-
ment can be compared with the predicted magnetic �eld

B̄b = Rb
o(q̂)Bo (7.47)

where q̂ is the estimated quaternion.
The standard innovation process would be:

ν = Bb
meas − B̄b (7.48)

but since it is a pointing vector, and the interesting di�erence is in the vector part, it
is more practical to normalize both the measured and the estimated signal, which gives
the following innovation

ν =
Bb

meas

‖Bb
meas‖

− B̄b

‖B̄b‖ (7.49)

which according to Kyrkjebø (2000) ensures a more proper �lter behavior, regardless of
the unit of the magnetic �eld.

Since the prediction of the magnetic �eld (7.47) is nonlinear, the measurement
matrix(H) must be linearized according to (7.37). By linearizing it around q̂, as pro-
posed by Steyn (1994), the measurement matrix for a truncated system without η , will
become:

H =
[

∂Rb
o(q̄)

∂ε1
Borbit

∂Rb
o(q̄)

∂ε2
Borbit

∂Rb
o(q̄)

∂ε3
Borbit 0

]
(7.50)

An easier measurement matrix proposed by Bak (1999) is :

H =
[

2S(B̄) 0
]

(7.51)

This is also based on linearizing equation (7.47) around q̂, but to get this result one has
to assume that η is close to 1 and ε is close to 0. It is worth noticing that H given by
(7.51) only has the rank of 2, which indicates that at any particular time it will only be
possible to estimate 2 directions with the magnetometer.

7.6 Sun sensor in Kalman �lter
Because both the sun sensor and magnetometer are pointing vectors they can be treated
similarly. Doing the same for the sun sensor as for the magnetometer will give the
following prediction of the sun vector:

v̂b
S = Rb

o(q̂)vo
S (7.52)

where vb
meas is the sun vector measured by the sun sensors. The sun sensor can use the

same form of innovation process as the magnetometer, where both the measurement
and the estimated signals are normalized:

ν =
vb

meas

‖vb
meas‖

− v̄b
S

‖v̄b
S‖

(7.53)
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This yield the following measurement matrixes for a truncated system without η

H =
[

2S(v̄b
S) 0

]
(7.54)

H =
[

∂Rb
o(q̄)

∂ε1
vo

S
∂Rb

o(q̄)
∂ε2

vo
S

∂Rb
o(q̄)

∂ε3
vo

S 0
]

(7.55)

where vo
S is given by (4.25). It is also worth noticing that H given by (7.54) only has

the rank 2, which indicates that it only will be possible to estimate 2 directions with
the sun at any particular time.

7.7 The Gauss-Newton Method
Instead of using the vector measurements directly in the Kalman �lter, one can make
use of the Gauss-Newton method described by Marins, Yun, Bachmann, McGhee &
Zyda (2001). This method �nds the quaternion best relating to the measured vectors
by minimizing a nonlinear objective function given by:

Q = εT ε (7.56)
ε = yo −M(q̂GN)yb

meas (7.57)

where ε is the vector error given in body frame, yo the reference vector given in orbit
frame, yb

meas is the measured vector �eld given in body frame, and M(q̂GN) is a matrix
that transforms the measured vector from the body frame to the orbit frame. Since the
measurement is given in the body frame and the error is given in orbit frame M(q̂GN)
will be given by:

M =




Ro
b(q̂

GN) 0 0

0
. . . 0

0 0 Ro
b(q̂

GN)


 (7.58)

where Ro
b(q̂

GN) is given by (2.15), and q̂GN is the quaternion calculated by the Gauss-
Newton equation. Since the the nonlinear objective function(Q) depends on the esti-
mated quaternion vector q̂GN , the Gauss-Newton method will yield the quaternion with
the least minimum error, corresponding to the vector measurements.

The iterative Gauss-Newton method given by Marins et al. (2001) is :

q̂GN
k+1 = q̂GN

k − [JT (q̂GN
k )J(q̂GN

k )]−1JT (q̂GN
k )ε(q̂GN

k ) (7.59)

where J is the Jacobian matrix de�ned as:

J = −
[ (

δM
δη̂GN y0

) (
δM

δε̂1
GN y0

) (
δM

δε̂2
GN y0

) (
δM

δε̂3
GN y0

) ]
(7.60)

The continuous form of the Gauss-Newton method can be deduced from the iterative
method(A), and is given by :

˙̂qGN = −[JT (q̂GN)J(q̂GN)]−1JT (q̂GN)ε(q̂GN) (7.61)

The matrix , JT (q̂GN)J(q̂GN), will be badly conditioned if only one measurement is
available (or a set of measurements with the same directional information). This will
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make it problematic to take the inverse of the matrix. This can be avoided by taking
the pseudoinverse. It will also result in problems with the estimation in one direction.

Using the Gauss-Newton method to estimate a quaternion from the vector and
using this estimation in the Kalman �lter, will make the measurement equation of
the Kalman �lter linear. This reduces the computational requirements. For the Gauss-
Newton method to be used in the Kalman �lter it has to converge rapidly. The iterative
Gauss-Newton method was shown by Marins et al. (2001) to converge in 3-4 iterations,
even when the initial estimate had a large error. Marins et al. (2001) do not show
that the Gauss-Newton method converge theoretically, but this can be found textbooks
about numerical optimization technics, such as Nocedal & Wright (1999).

7.8 Continuous Extended Kalman Filter for a Satellite
The Kalman �lter for a Satellite starts with the dynamic and kinematic equations of
the satellite, given in chapter 3 equation (3.7) and (3.11). The Kalman equation copies
the dynamic and kinematic equations and adds a correction term. This will give :

˙̂q =
1
2

[ −ε̂T

ηI3×3 + S(ε̂)

]
ω̂b

ob + Kqν (7.62)

˙̂ωb
ib = I−1[τ b − S(ω̂b

ib)Iω̂b
ib)] + Kων (7.63)

where ω̂b
ob can be calculated with :

ω̂b
ob = ω̂b

ib −Rb
o(q̂)ωo

ib (7.64)

or by integrating :
˙̂ωb
ob = ˙̂ωb

ib + S(ω̂b
ob)R

b
oω

o
io (7.65)

Kq and Kω are Kalman gains for the kinematic equation and for the dynamic and ν is
the innovation process.

The calculation of the Kalman gain K =
[

Kq Kω

]T , calculated with equation
(7.34), and the innovations depend on which measurements used. The measurement
matrix and the innovation used will be given in each case. Since the quaternion have
to maintain the unity (described in section 7.3.2) it will not work to only integrate ˙̂q,
it has to be normalized. The easiest will be to integrate equation (7.63) and normalize
it like this:

q̂ =
∫ ˙̂q

‖ ∫ ˙̂q‖ (7.66)

But doing only this, will give no control with the value of ‖ ∫ ˙̂q‖, which may be a source
of error. A way to avoid this is to include the normalizing term given in (7.42) in to
the dynamic equation before integrating and normalizing it. This will lead to :

˙̄q =
1
2

[ −ε̂T

ηI3×3 + S(ε̂)

]
ω̂b

ob +
λ

2
(1− q̄T q̄)q̄T q̄ + Kqν (7.67)

q̄ =
∫

˙̄q (7.68)

q̂ =
q̄

‖q̄‖ (7.69)
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Since the dynamic equations depends on ωb
ob instead of ωb

ib the equation (3.10) can be
used directly in the Kalman �lter, this gives the following estimation of the angular
velocity :

˙̂ωb
ob = ˙̂ωb

ib + S(ω̂b
ob)R

b
oω

o
io + Kων (7.70)

This gives the following Kalman estimation for the satellite for a full state estimation:

˙̄q =
1
2

[ −ε̂T

ηI3×3 + S(ε̂)

]
ω̂b

ob +
λ

2
(1− q̄T q̄)q̄T q̄ + Kqν (7.71)

q̄ =
∫

˙̄q (7.72)

q̂ =
q̄

‖q̄‖ (7.73)

˙̂ωb
ib = I−1[τ b − S(ω̂b

ib)Iω̂b
ib)] + Kων (7.74)

˙̂ωb
ob = ˙̂ωb

ib + S(ω̂b
ob)R

b
oω

o
io (7.75)

When the quaternion in the state vector are truncated to avoid the covariance singu-
larities (7.3.1) the dimension of the Riccati equation will result in a reduction of the
Kalman gain where Kq will be reduced from a 4×n to a 3×n matrix, where n depends
on the number of measurements used in the Kalman �lter. The dimension of the inno-
vation ν will also be reduced . If the truncation removes the η from the state vector
the Kalman �lter will become :

˙̄q =
1
2

[ −ε̂T

ηI3×3 + S(ε̂)

]
ω̂b

ob +
λ

2
(1− q̄T q̄)q̄T q̄ +

[
0

Kqν

]
(7.76)

q̄ =
∫

˙̄q (7.77)

q̂ =
q̄

‖q̄‖ (7.78)

˙̂ωb
ib = I−1[τ b − S(ω̂b

ib)Iω̂b
ib)] + Kων (7.79)

˙̂ωb
ob = ˙̂ωb

ib + S(ω̂b
ob)R

b
oω

o
io (7.80)
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Chapter 8

Implementation and Simulation
results

There are many ways of combining magnetometer, sun-sensor and star tracker data in a
Kalman �lter. In this chapter di�erent Kalman �lters, using one or more of this sensors,
will be presented and simulated.

8.1 System overview and general assumptions
Before the di�erent �lters are presented, a short system overview and the assumptions
made for all the di�erent �lters will be given. The most important assumption is that
the satellite has been detumbled before the attitude estimation begins. This means
that the initial angular velocity is limited. It has also been assumed that all the sensors
works independent of each other, and that none of them have problems coping with the
angular velocity of the satellite after it has been detumbled.

The system overview will use the simulink diagram of the system as basis. The top
level of the simulink diagram is shown in �gure B.1 and consist of the following sections:

Environmental Model The Environmental model calculates the environment around
the satellite. It calculates the gravity torque on the system, the magnetic �eld
surrounding the satellite and the suns position.

Controller The Controller block contains the system controller. The controller used
is a purely mathematical PD controller, with out physical limitations. It is only
used to keep the system at rest during simulations, or to check how the �lter and
system behaves with feedback from the estimated stats.

Sensors The sensors block contains the sensor models and calculates the sensor output.

Satellite Nonlinear Dynamics The Satellite Nonlinear Dynamics block contains the
satellites system equation, and calculates the real attitude and angular velocity
of the satellite.

Kalman �lter The Kalman �lter block contains the di�erent Kalman �lters used dur-
ing simulation. It contain the Gauss-Newton algorithm, calculating an attitude
estimation from the vector measurements, the innovation section, the Kalman up-
date section which calculates the Kalman gain, and the dynamic and Kinematic
equations used in the Kalman �lter.
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8.1.1 Implementing the satellite model.
The satellite model implements the dynamic and kinematic equation given i chapter 3
with additive withe noise. The process noise represent unmodelled noise and errors in
the model. This gives the following process model:

ω̇b
ib = I−1[τ b − S(ωb

ib)Iωb
ib] + wd−noise (8.1)[

η̇
ε̇

]
=

1
2

[ −εT

ηI3×3 + S(ε)

]
ωb

ob +
[

0
1

]
wk−noise (8.2)

where wd−noise and wk−noise is assumed to be white noise with standard deviation of
σd−noise = 10−8 and σk−noise = 10−12. This gives makes the real process covariance:

Q =
[

σd−noiseI3×3 0
0 σk−noiseI3×3

]
(8.3)

8.1.2 Sensor implementation
The sensors are described in chapter 5, and they are implemented accordingly, except
that the sensors are sampled with sample and hold. The sample frequency is given in
each case, but what the noise is and how it is implemented in the di�erent sensors is
described in this section. The star sensor, and magnetometer data used in this thesis is
given in the assignment, and the data for the sun sensor is from (Sunde 2005).

8.1.3 Sensor noise
The sensor noise represent errors in the sensors, due to inaccurate measurements, errors
in reference models and digitalization errors. The noise will be implemented di�erently
for the di�erent sensors, this section will describe how the noise is implemented and
what the noise is assumed to be.

8.1.4 Sun sensor
The error in the sun sensor is assumed to be white noise with a standard deviation of
0.2◦. Since the noise is given in degrees and the true attitude is given i quaternions,
the quaternion with noise has to be calculated. This is done by converting the true
quaternion to Euler angels, adding the noise term, and converting it back to quaternions.
This will make it possible to calculate a sun vector measurement with equation (5.5).

8.1.5 Magnetometer
The error in the magnetometer is calculated with equation (5.10) where the noise vector
ωmag is assumed to be white noise. The magnetometer is assumed to have a error of
0.01◦1, but the ωmag is given in nT . Since the error is given in degrees, it is necessary
to calculate the corresponding error in nT . In the assignment it is given that 1nT =
4arcseconds which, since 0.01◦ = 0.01 · 3600arcsec., gives an error of 9nT .

1given in the assignment
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8.1.6 Star sensor

The error of the star sensor is assumed to be white noise, with an accuracy of 1 arc-
seconds in two directions, and 5 arcseconds in the third. The measurement signal from
the star sensor is calculated by converting the true attitude into Euler angels, adding
the noise and converting it back to quaternions. The star sensors used in the simula-
tion will be star sensor 1 and star sensor 2. Star sensor 1 will have have the accuracy
of

[
5 1 1

]T arcseconds and star sensor 2 will have an accuracy of
[

1 5 1
]T

arcseconds.

8.2 Estimation with vector measurement
Many of the measurements available in a spacecraft are vector measurements, such
as the sun sensor, earth sensor and magnetometer. This section will present and show
simulation for continuous Kalman �lters, where magnetometer and sun sensors are used.

Estimation with sun sensor

A single vector measurement can only be used to determine the attitude in 2 directions at
any given time, because the rotation around the measurement vector is undetermined.
This makes it di�cult, if not impossible, to estimate the attitude, using only a sun
sensor. To be able to use the sun sensor to estimate the attitude it has to be possible to
measure all the angles in a given time span, for instance during one orbit. This might
be possible for a speci�c orbit, but not for the satellite parameters used in this thesis.
This can be shown by using the Gauss-Newton method, given in section 7.7, to convert
the sun measurement into a measured attitude. By compering the measured attitude,
given in �gure 8.1(a), with the real attitude, given in �gure 8.1(b), it is easy to se that
the measurement error is constant during one orbit.
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Figure 8.1: Measured attitude vs real attitude
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Estimation with magnetometer

Using a magnetometer to estimate the attitude of the satellite, gives rise to a lot of the
same problems as for the sun sensor. It is also a vector measurement, an can only be
used to determine two directions of the attitude at any given time. It is possible, how
ever, to determine all directions of the attitude during one orbit using historical data.
This makes it possible to make an observer that can estimate the attitude using only
a magnetometer. This was proven and demonstrated for a discrete system in Psiaki,
Martel & Pal (1989), but this proved di�cult to adapt and do for a continuous Kalman
�lter. There may be many reasons for this, one of which is that the dynamics of the
continuous Kalman �lter is di�erent from the dynamics of the discrete �lter, and that
the continuous �lter therefore does not make the same use of old measurements as the
discrete �lter.

8.2.1 Estimation, combining sun senor and magnetometer
Combing two di�erent vector measurements with di�erent attitude information makes
it possible to determine all three directions without the use of historical data. The
magnetometer and the sun sensor will give di�erent attitude information and this makes
them suitable for use in a Kalman �lter. Using the magnetometer and sun senor in a
Kalman �lter can be done in two di�erent ways, either by using the measurements
directly, as described in section 7.5 and section 7.6, or the quaternion that best relates
to the measurement, can be calculated with Gauss-Newton method (given in section
7.7).

Filter description

Since the Gauss-Newton method makes the measurements equations linear this will
simplify the �lter equation, and will therefore be used in the �lter.

The �lter equation is given by (7.76)-(7.80) where the innovation ν is truncated and
given by:

νG−N = εG−N − ε̄ (8.4)

The di�erent parameters used during simulation are given in table 8.1 and the covariance
used in the Kalman �lter (not the real covariance) are given in table 8.2:

Initial attitude Θ
[

20◦ 30◦ 40◦
]T

Initial angular velocity ωb
ob

[
0.005 0.003 0

]T

Initial attitude estimation Θ̂
[

0◦ 0◦ 0◦
]T

Proportional controller gain Kp 0.001
Derivative controller gain Kd 1

Sample frequency, sun sensor fsample−sun 100Hz
Sample frequency, magnetometer fsample−mag 100Hz

Table 8.1: The parameter used in the Kalman �lter with sun and magnetometer measurements
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Measurement covariance 1 R 1e−5·



9 0 0
0 9 0
0 0 9




Process covariance Q

[
1e−18I3×3 0

0 1e−10I3×3

]

Table 8.2: The covariance used in the Kalman �lter

Performance with constant angular velocity

This section looks into the Kalman �lters estimate, whiteout using the estimate state
to control the satellite. The angular velocity is instead kept constant with feedback
control from the true angular velocity. The initial values used when simulating is given
in table 8.1 and table 8.2, except for Kp, which is set to zero. From the estimation
errors, given in �gure 8.2, it is easy to see that the estimated attitude converges to the
real attitude, and has a an estimation error of ±2◦ after it has converged.

Performance with control feedback

In this section the �lter estimation is used to control the attitude to a desired attitude
of

[
0◦ 0◦ 0◦

]
. The controller used is the one described in 8.1. Since the controller

used is nonphysical the control error is of less interest and will not be shown. What
is of interest is the estimation error and stability of the complete system, when the
estimated states is used to control the system. From �gure 8.3 one can see that both
the estimated and real attitude, and the estimated and real angular velocity converges
to zero and �gure 8.4 shows that the estimation error stabilizes beneath 0.1◦.

Filter comment

As seen from the simulations above, combing the magnetometer and sun sensor mea-
surements with the Gauss-Newton method, and utilizing this in the continuous Kalman
�lter, gives an estimation error of ±0.1◦ for the feedback controlled system. This is not
within the required estimation error of 0.001◦, and the sun sensor and magnetometer
can therefore not be the only attitude sensors used in the Kalman �lter.

8.3 Estimation using star sensor

The star senors are the most accurate sensors used in this thesis, and they have an
accuracy of 1 arcseconds in two directions, and 5 arcseconds in the third. To achieve
an accuracy of 1 arcseconds in every directions, two stars senors, mounted in di�erent
bearings, will be used. Using two star sensors also gives measurement redundancy.
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Figure 8.2: Estimation error with sun and magnetometer measurement without feedback.
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Figure 8.3: Real and estimated attitude and angular velocity using measurement from mag-
netometer and sun sensor.
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Figure 8.4: Estimation error with sun and magnetometer measurement with feedback from
the estimated states.
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8.3.1 Filter description
The �lter equations is given by (7.76)-(7.80) where the innovation ν is truncated and
given by:

νstar =
[

εstar1

εstar2

]
−

[
ε̂
ε̂

]
(8.5)

and the di�erent paraments used when simulating this Kalman �lter is given in table
8.3 and the covariance used in the Kalman �lter is (not the real covariance) is given in
table 8.4.

Initial attitude Θ
[

20◦ 30◦ 40◦
]T

Initial angular velocity ωb
ob

[
0.005 0.003 0

]T

Initial attitude estimation Θ̂
[

0◦ 0◦ 0◦
]T

Proportional controller gain Kp 0.001
Derivative controller gain Kd 1

Sample frequency, star sensors fstar 0.5Hz

Table 8.3: The parameter used in the Kalman �lter with star sensor measurements

Measurement covariance R

[
Rstar1 0

0 Rstar2

]

Measurement covariance Star sensor 1 Rstar1 1e−9·



3.858 0 0
0 0.772 0
0 0 0.772




Measurement covariance Star sensor 2 Rstar2 1e−9·



0.772 0 0
0 3.858 0
0 0 0.772




Process covariance Q

[
1e−18I3×3 0

0 1e−10I3×3

]

Table 8.4: The covariance used in the Kalman �lter

8.3.2 Performance without control feedback
The performance of the Kalman �lter, without using the estimated states to control the
satellite is found by keeping the angular velocity constant with feedback control from
the true states. The initial values used during simulations is given in table 8.3. From
the estimation error, given in �gure 8.5, it can be seen that the �lter stabilizes with an
oscillating error of 0.15◦.

8.3.3 Performance with control feedback
In this section the �lter estimation is used to control the attitude to a desired attitude
of

[
0◦ 0◦ 0◦

]
. The controller used is the one described in 8.1. Since the controller
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Figure 8.5: Estimation error with star measurement, without feedback.
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used is nonphysical the control error is of less interest. What is of interest is the
estimation error and stability of the complete system, when the estimated stat is used
to control the system. From �gure 8.6 one can se that both the estimated and real
attitude and angular velocity converges to zero and �gure 8.7 shows that the estimation
error stabilizes beneath 0.0005◦.
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Figure 8.6: Real and estimated attitude and angular velocity using measurement from star
sensors.

Filter comment
Combing two star sensors in a continuous extended Kalman �lter, gives an estimation
error of ±0.0005◦ for the feedback controlled system, and below 0.15◦ for the system
with constant angular velocity. The estimation error is within the required limit when
the attitude is controlled, and is limited if the attitude control fails.

8.4 Estimation with sun sensor, magnetometer and star
sensor.

While the star sensors give the accuracy asked for, there is a problem with the low
sampling frequency, since low sampling frequency gives the estimator low bandwidth and
therefore makes it di�cult to estimate the attitude with acceptable error if the angular
velocity is high. On way to remedy this are to combine the slow star sensor with faster
measurements such as the sun sensor and magnetometer. Since both the sun sensor and
magnetometer are pointing vectors and only can be used to determine 2 directions each,
the �lter will use the Gauss-Newton method to convert the magnetometer and sun senor
measurements into a quaternion that best relates to the measurements. This makes the
measurement equations linear and therefore simpli�es the Kalman �lter. The Kalman
�lter used is given by equations (7.76)-(7.80) where the innovation ν is truncated and
given by:

νall =




εstar1

εstar2

εG−N


−




ε̂
ε̂
ε̂


 (8.6)
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Figure 8.7: Estimation error with star measurements, with feedback from the estimated
states.
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and the Kalman �lter parameter is given by table 8.5 and the covariance used in the
Kalman �lter (not the real covariance) is given in table 8.2.

Initial attitude Θ
[

20◦ 30◦ 40◦
]T

Initial angular velocity ωb
ob

[
0.005 0.003 0

]T

Initial attitude estimation Θ̂
[

0◦ 0◦ 0◦
]T

Proportional controller gain Kp 0.001
Derivative controller gain Kd 1

Sample frequency, star sensors fstar 0.5Hz
Sample frequency, sun sensor fsample−sun 100Hz

Sample frequency, magnetometer fsample−mag 100Hz

Table 8.5: The parameter used in the Kalman �lter with star sensor, magnetometer and sun
sensor.

Measurement covariance R




Rstar1 0 0
0 Rstar2 0
0 0 RG−N




Measurement covariance Star sensor 1 Rstar1 1e−9·



3.858 0 0
0 0.772 0
0 0 0.772




Measurement covariance Star sensor 2 Rstar2 1e−9·



0.772 0 0
0 3.858 0
0 0 0.772




Measurement covariance Gauss-Newton 1 RG−N 1e−9·



9 0 0
0 9 0
0 0 9




Process covariance Q

[
1e−18I3×3 0

0 1e−10I3×3

]

Table 8.6: The covariance used in the Kalman �lter

8.4.1 Performance without control feedback
This section will look at the preforming of the estimator with a constant angular speed.
To do this the angular velocity of the satellite is controlled with feedback form the real
velocity. The initial values used in the simulation are given in table 8.5. From the
estimation error, given in �gure 8.8, it can be seen that the �lter stabilizes with an
oscillating error of 0.15◦.

8.4.2 Performance with control feedback
This section will analyze how the system behaves and what the estimation error be-
comes when the estimated signal is used inn feedback control of the satellite. The
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Figure 8.8: Estimation error with measurement from 2 star sensors, one magnetometer and
sun sensor, without feedback.
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controller described in section 8.1 is used to control the attitude to a desired attitude
of

[
0◦ 0◦ 0◦

]T . The �lter and simulation parameters is given in table 8.5 and 8.2.
From �gure 8.9 one can set that both the estimated and real attitude converges to zero,
and �gure 8.10 shows that the attitude error stabilizing beneath 0.0005◦.
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Figure 8.9: Real and estimated attitude and angular velocity using two star sensors, one
magnetometer and one sun sensor, with feedback from the estimated states..

8.4.3 Detecting and removing faulty measurements in the Kalman
�lter

Detecting and removing faulty measurements is important to make the estimation more
robust. To detect if a measurement gives out wrong attitude it can be compered with
the estimated attitude and other measurement if available. After it has been detected
it can easily be removed from the Kalman �lter by setting the measurement matrix of
the defect sensor to 0.

The Kalman �lter used here will be the same as the one used in section 8.4, except
that the measurements matrix, H, will be replaced by a:

Hfault =




astar1Hstar1 0 0
astar2Hstar2 0 0
aG−NHG−N 0 0


 (8.7)

where a is put to zero if the sensor is faulty, and 1 if the sensor is operating.

8.4.4 Detecting a faulty sensor
To determine if a is one or zero, the faulty sensor must be detected. This can be done
by compering the attitude given by the measurements with each other and with the
estimated measurement. If one assumes that the initial error of the estimation has
disappeared, and that the standard deviation of the estimation and measurement error
is known, the easiest way to do this will be to compare the measured attitude(Θmeas) of
the sensor with the estimated attitude(Θ̂), and conclude that the measurement has to
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Figure 8.10: Estimation error with two star sensors, one magnetometer and one sun sensor,
with feedback from the estimated states.
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be wrong if it diverges to much from the estimation. This can be achieved by calculating
a in the following manner:

a =

{
1 if ‖Θmeas − Θ̂‖inf < p

0 if ‖Θmeas − Θ̂‖inf ≥ p
(8.8)

where p is a function between 0 and 360, that can depend on the angular velocity, the
sample frequency of the measurement and the noise in the model and in the measure-
ment. Since the attitude angel is forced to be between −180◦ and 180◦, there will be a
problem when the attitude is close to ±180◦, but this can be factored in by changing
equation (8.8) into:

a =





1 if ‖Θmeas − Θ̂‖inf < p

1 if 360− ‖Θmeas − Θ̂‖inf < p

0 if else
(8.9)

This only works if the initial error of the estimation has disappeared, and do not work
right after the estimation has started. To remedy this, the fault detection can be turned
on after the initial estimation error has had time to settle. An other way to remedy
this, is to make use of the redundancy of the system. Since there is four di�erent
sensors giving three di�erent attitude measurement (star1, star2 and Gauss-Newton),
it is unlikely that more than one of this is faulty at the same time and if they are, that
they will give the same attitude. And the criteria for the sensor to be omitted can be
that it has to diverge from the estimation and at least on other measurement. This can
be done in the same manner as (8.9), and will be:

ameas1 =





1 if ‖Θmeas1 − Θ̂‖inf < p1

1 if ‖Θmeas1 −Θmeas2‖inf < p2

1 if ‖Θmeas1 −Θmeas3‖inf < p3

1 if 360− ‖Θmeas1 − Θ̂‖inf < p1

1 if 360− ‖Θmeas1 −Θmeas2‖inf < p2

1 if 360− ‖Θmeas1 −Θmeas3‖inf < p3

0 if else

(8.10)

where Θmeas1 is the attitude of the the sensor tested and Θmeas2 and Θmeas3 is the
attitude of the two other attitude measurements. p1, p2 and p3 are the criteria for
removing the sensor, and will depend on the same factor as p in equation (8.8).

The fault detection system is simulated with �lter and system parameters given in
table 8.5. Equation (8.10) is used to calculate astar1, astar2 and aG−N inn Hfault (8.7),
where p1, p2 and p3 is set to a constant value of 5. Figure 8.11 shows the estimation
error when star sensor 1 is faulty, and �gurer 8.12 when the magnetometer is faulty.
From the �gures it can be sen that the estimation error is below 0.001◦ when the star
sensor is faulty and below 0.0005◦ when the magnetometer is faulty, and thus complying
to the stringent estimation demands for the system.
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Figure 8.11: Estimation error with star sensor 1 faulty, without feedback.
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Figure 8.12: Estimation error with faulty magnetometer, without feedback.
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Filter comment
As seen from the simulations above, combing the two star sensors with the sun sensor
and magnetometer gives the accuracy of ±0.005◦. This is below the demanded accuracy,
and it is the same as for the �lter with measurements from two star sensors. Combing the
star sensors with the magnetometer and sun sensor, do not give an improved estimate
accuracy, but the added redundancy of the magnetometer and sun sensor, makes it
possible to use the simple fault detections scheme given below, and makes the system
more robust.

8.5 Reducing the sampling frequency
The sun sensor, magnetometer and star sensor all gives out sampled measurement date.
It is of interest to �nd out what the lowest sampling rate the Kalman �lter needs from
the di�erent sensors and still be below the demanded estimation error of 0.001◦. In
the previous simulation it was shown that the magnetometer and sun sensor only adds
redundancy and do not increase the accuracy of the feedback controlled system, this
section will therefore only look at the result of reducing the frequency of the star sensor.

8.5.1 The �lter
The �lter used in this section will be the same as the one given in section 8.4. The �lter
equation is given by (7.76)-(7.80), and the innovation given by (8.4) and the initial
values of the �lter and simulation parameters is given by table 8.5 and 8.4. Since all the
sensors will work during the simulation, the fault detection scheme described in section
8.4.4 is unnecessary, and will therefore be omitted.

8.5.2 Reducing the sampling frequency of the star sensors
The star sensors have the lowest samplings rate, and highest accuracy. Because the
sampling rate of the star sensors is low to begin with, reducing their sampling frequency
further will have a high impact on the estimation error. The aim is to �nd out how low
the sampling frequency of the star sensor can be, before the estimation error become
larger then 0.001◦ with feedback control from the estimated states. The controller used
is described in section 8.1, and the desired attitude is

[
0◦ 0◦ 0◦

]T . The �lter and
simulation parameters are given in table 8.5. Figure 8.13 shows the estimation error
with a star sampling frequency of 0.27Hz. The estimation error of the system with
this frequency is right below the demanded error of 0.001◦, and reducing the frequency
further will deteriorate the estimation further.

8.5.3 Filter comment
This section showed that Kalman �lter is able to estimate the sensor with an error
beneath 0.01◦ with the star sensors sampling frequency reduced from 0.5 to 0.27HZ.
This result is achieved with a PD regulator, using feedback from the estimated states and
the simulation and �lter parameters given in table 8.5 and table 8.6. This reduction
is therefore not necessarily achievable with a controller with limitations. It will also
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Figure 8.13: Estimation error with reduced sampling frequency on the star sensors.
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be possible to achieve better results by using di�erent control parameters and tuning
parameters.
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Chapter 9

Conclusion

In this thesis a continuous extended Kalman �lter has been used to estimate the attitude
of a low polar earth orbiting satellite. The satellite is intended to conduct optical and
radar observations of the earths surface, which gave a demanded attitude accuracy
of 0.001◦. The Kalman �lter used quaternions to represent the attitude, and utilized
measurements from star sensors, a sun sensor and a 3-axis magnetometer to correct the
estimations.

This thesis has given a mathematical model for the magnetometer and sun sensor. It
has described how to implement the di�erent sensor measurements in the Kalman �lter
and how to combine the magnetometer and sun sensor measurement into one attitude
measurement, using a Gauss-Newton optimization algorithm.

Di�erent Kalman �lters, combining the di�erent sensor measurements, have been
presented and simulated. It was shown that a Kalman �lter using two star sensor, with
a sampling frequency of 0.5Hz, is able to measure the attitude with an accuracy of
1.8 arcseconds (0.0005◦), and therefore complies to the stringent attitude demands. An
algorithm, using all the sensors, which detects an removes faulty measurements from
the Kalman �lter has also been presented.
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Appendix A

Deductions

This chapter contains deductions refereed to in the thesis

Deduction of the continuous Gauss-Newton method
Starting with the iterative equation (7.59) and using the assumptions :

˙̂qGN ≈ q̂GN
k+1 − q̂GN

k

h
(A.1)

and that h is the normalized step size, gives :

˙̂qGN ≈ −[JT (q̂GN)J(q̂GN)]−1JT (q̂GN)ε(q̂GN) (A.2)
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Appendix B

The simulink model of the
system

This appendix will display the main simulink blocks. The �rst section will be the top
level of the simulink diagram, and it will have one section for all of the blocks in the
top level.

Simulink diagram, top level
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Figure B.1: Top level simulink diagram
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The Satellites nonlinear dynamic
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The Kalman �lter block
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Appendix C

The attached compact disc.

The cd contains the �les used in this thesis. The name of the �les and a description is
given in the table on the next page.
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