
Telemanipulation of NAO Robot Using
Sixense STEM
Joint Control by External Analytic IK-Solver

Linn Danielsen Evjemo

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK

Department of Engineering Cybernetics

Submission date: June 2016

Norwegian University of Science and Technology

i

Preface

This thesis is written as the concluding part of mymaster’s degree in engineering cybernetics at

the Department of Engineering Cybernetics at the Norwegian University of Science and Tech-

nology. The project was carried out in collaboration with SINTEF Fisheries and Aquaculture

from January to June 2016.

Many thanks to my supervisor at NTNU, Jan Tommy Gravdahl, for his help, guidance, and en-

couraging words throughout this project. I would like to thank SINTEF Fisheries and Aquacul-

ture for the opportunity to do this project, and Elling Ruud Øye and John-Reidar Mathiasen for

their help and guidance. Thank you to Nikolaos Kofinas who took time to answer some of my

questions about the functionality of his IK-solver, and thank you to Åsmund Pederson Hugo,

who let me test his own IK-solver for the NAO-robot.

A special thanks to my family for all their patience, love and support, and for the hours spent

giving me feedback on this thesis. And lastly, I would like to thank my friends at NTNU and

Samfundet, whomade these past five years unforgettable.

L.D.E.

ii

iii

Abstract

If it was possible to train robots to do new tasks instead of programming them directly, robots

would be able to perform a greater variety of tasks that are usually carried out manually, both

in industry and in society in general. This could for example be achieved by demonstrating the

motion or task repeatedly through robot telemanipulation. In such a system, minimal latency

is crucial in order for the robot control to feel natural. The focus of this project has been to find

an effective way of performing telemanipulation of the arms of a NAO robot from Aldebaran

Robotics using themotion-tracker system Sixense STEM. Themotivation was tomake the robot

follow the movements of a hand-held motion tracker in as close to real-time as possible.

This Master thesis is a continuation of the work done in a summer project during the summer

of 2015, and a project thesis written in the fall of 2015. This project has attempted using joint

control methods to control the robot, as previous work has shown that Cartesian control meth-

ods for the NAO robot are very slow. An analytic inverse kinematics (IK) solver for the NAO robot

developed byNikolaos Kofinas at theUniversity of Crete has been tested to transform the STEM-

tracker’s trajectory to the necessary joint angles. In the end it was unfortunately not possible to

create a functioning system. An analytic IK-solver will only return solutions for feasible combi-

nations of position and orientation. Because the robot’s arm has fewer degrees of freedom than

a human arm, it is impossible for the robot arm to follow the exact motions of a human arm.

This meant that most of the tracker data sent to the IK-solver from the hand-held STEM-tracker

was infeasible, and hence the IK-solver was not able to return valid solutions.

Some of the focus in this project has also been on determining whether or not the Sixense STEM

system is suitable for this kind of work. The system used in this project is a BETA-version, and

the commercial version of the system has not been released yet. When the system is fully de-

veloped, it will probably be a good choice of hardware, as it is very accurate when it works as it

should. However, the system currently has many bugs and problems that are both limiting and

time-consuming. The conclusion is therefore that the STEM-system is not suitable for this kind

of project work at this stage.

iv

v

Sammendrag

Dersom det var mulig å trene roboter til å utføre oppgaver framfor å programmere dem direkte,

ville det vært mulig for roboter å utføre flere typer oppgaver enn de gjør i dag, både i industrien

og i samfunnet generelt. Denne treningen kunne for eksempel vært gjort ved å demonstrere

bevegelsen eller oppgaven for roboten ved hjelp av fjernstyring av robotens bevegelser. I et slik

system er det avgjørendemedminimal tidsforsinkelse dersom fjernstyringen skal føles naturlig.

Målet i dette prosjektet har vært å finne en effektiv måte å fjernstyre armene til en NAO-robot

fra Aldebaran Robotics ved hjelp av motion tracking-systemet Sixense STEM. Tanken var å få

roboten til å følge bevegelsene til en håndholdt motion tracker i så nær sanntid sommulig.

Dennemasteroppgaven er fortsettelsen på arbeid gjort i et studentprosjekt sommeren 2015, og i

en prosjektoppgave gjennomført høsten 2015. Imasterprosjektet er det forsøkt å brukemetoder

for vinkelkontroll av NAO-roboten, da tidligere arbeid har vist at kartesisk posisjonskontroll er

veldig treigt. En analytisk inverskinematikk-solver (IK) for NAO-roboten utviklet avNikolaos Ko-

finas ved Universitetet på Kreta har blitt brukt for å forsøkte å transformere motion-trackerens

bevegelser til de nødvendige vinkelverdiene. Til slutt viste det seg dessverre at det ikke varmulig

å komme fram til et fungerende system. En analytisk IK-solver vil kun returnere løsninger for

realiserbare kombinasjoner av posisjon og rotasjon. Fordi robotarmen har færre frihetsgrader

enn en menneskearm, er det umulig for den å følge de nøyaktige bevegelsene til en håndholdt

tracker. Dette betyr at de fleste bevegelsene som ble sendt fra motion trackeren til IK-solveren

ikke var realiserbare, og det kunne dermed heller ikke bli returnert noen gyldig løsning.

Et delmål i dette prosjektet har også vært å evaluere hvorvidt STEM-systemet er egnet for bruk

i denne typen prosjekt. Systemet som er brukt her er en BETA-versjon av STEM-systemet, som

per i dag ikke har blitt sluppet for kommersiell bruk. Når systemet er ferdig utviklet, er det grunn

til å tro at det vil være et godt valg for tracking-hardware i denne typen prosjekter, fordi det er

veldig nøyaktig når det fungerer som det skal. Dessverre har systemet for øyeblikket mange

problemer som er både tidkrevende og begrensende. Konklusjonen er derfor at STEM-systemet

ikke er egnet for bruk i denne typen prosjekter på det nåværende tidspunkt.

vi

vii

Acronyms

API Application Programming Interface

DCM Device Communication Manager

DLL Dynamic Link Library

DOF Degrees of Freedom

DSP Digital Signal Processing

FK Forward Kinematics

HRR2030 Humanoid Robotics Roadmap 2030

IK Inverse Kinematics

MCU Micro Controller Unit

OS Operating System

SDK Software Development Kit

TCP Transmission Control Protocol

viii

Contents

Preface . i

Abstract . iii

Sammendrag . v

Acronyms . vii

1 Introduction and background 1

1.1 Introduction . 1

1.2 Background . 2

1.3 Problem description . 3

1.4 Equipment . 5

1.4.1 Sixense STEMmotion tracking system . 5

1.4.2 NAO - humanoid robot . 8

1.4.3 Kofinas’ IK-solver . 10

1.5 Structure of the report . 11

2 Method 13

2.1 Software and system structure . 13

2.1.1 Choosing programming languages . 13

2.1.2 Structural changes in the system . 17

2.2 Controlling the robot . 19

2.2.1 Choosing control methods . 20

2.2.2 Movement frame . 21

2.2.3 Initial position . 22

2.2.4 A closer look at the arm effector . 25

ix

x CONTENTS

2.3 Simulating the robot . 27

2.3.1 LabVIEWmodel . 28

2.3.2 Virtual NAO robot in Choreographe . 30

2.4 Communicating with STEM . 31

2.4.1 Old solutions using DLL-files . 32

2.4.2 New potential solution using text-files . 32

2.4.3 Specifications for the new system . 32

2.5 Theory . 33

2.5.1 Forward and inverse kinematics . 33

2.5.2 Describing rotation and Cartesian position . 35

2.5.3 Calculating partial movements . 40

2.5.4 Frame transformations . 41

2.5.5 Polar decomposition . 43

3 Results 45

3.1 Joint control methods for NAO . 45

3.1.1 Animation methods - why they were not used 45

3.1.2 Reactive methods . 46

3.2 Receiving tracker data from STEM . 49

3.2.1 Old approaches . 50

3.2.2 Øye’s tracker-data program . 51

3.2.3 Advantages and limitations . 54

3.3 The inverse kinematics solver . 55

3.3.1 A brief introduction to how Kofinas’ system works 55

3.3.2 Testing the existing scripts . 56

3.3.3 Using original scripts or not . 59

3.3.4 Early correspondence with N. Kofinas . 60

3.4 Processing the tracked data . 61

3.4.1 Getting initial position and orientation of robot arm 61

3.4.2 Some necessary transformations . 63

CONTENTS xi

3.4.3 Compensating for differences in coordinate systems 67

3.4.4 Real movement for robot . 70

3.5 Trying to get valid output from the IK-solver . 71

3.5.1 Initial testing: movement between two points 71

3.5.2 Checking for type errors . 72

3.5.3 General troubleshooting . 73

3.5.4 Reducing accuracy . 77

3.5.5 Continuous update of movement . 79

3.5.6 Normalizations and orthogonality . 82

3.5.7 Alternative approach: Domost calculations in MatLab 85

3.6 Testing an alternative IK-solver . 86

3.7 Achieving valid output - a revelation . 87

3.7.1 Changing NAO’s initial position . 88

3.7.2 Simplifying the approach for rotation tracking 89

3.7.3 Focus only on rotation . 91

3.8 Problems with STEM . 93

3.8.1 WiFi sensitivity . 94

3.8.2 Metal sensitivity . 95

3.8.3 Lifeless trackers . 96

3.8.4 Issues that have been fixed or improved by firmware updates 97

4 Discussion 99

4.1 Combining STEM-control with analytic IK-solver . 99

4.2 Cartesian vs. joint control . 101

4.3 Evaluating the STEM system’s practical use . 102

4.4 More general system structure decisions . 104

4.4.1 The decision to use the original C++-files . 104

4.4.2 Collecting data from the STEM-system . 104

5 Conclusion and further work 107

5.1 Conclusion . 107

xii CONTENTS

5.2 Suggestions for further work . 108

5.2.1 Modifying joint control with analytic IK-solver 108

5.2.2 Tracking the joint angles directly . 110

5.2.3 DCM-programming . 111

5.2.4 Global frame and scaling of movements . 111

A E-mail correspondence with Halit Bener Suay i

B E-mail correspondence with Nikolaos Kofinas v

C E-mail correspondence with STEM-developer ix

Bibliography xii

Chapter 1

Introduction and background

1.1 Introduction

The introduction is largely based on the introduction to my project thesis (Evjemo, 2016).

An increasing number of tasks at fish processing facilities and other parts of the aquaculture in-

dustry are performed automatically by industrial robots and machines. We see the same trend

for most other industries. But many small and seemingly easy tasks still have to be performed

manually. This can be because the task is too difficult or complex for today’s technology, like

doing the final sorting of fish that do not fit the standardmeasurements. But it can also be tasks

that are simply so specific or isolated that it is not financially beneficial for the company to buy

a machine or robot to do only this single task. These tasks are often repetitive and boring, and

may lead to repetitive strain injuries for the human workers, as well as not being very inspiring

or rewarding.

If it was possible to develop humanoid robots that could be shown and taught how to perform

new tasks, instead of having to program them manually, the situation would change dramati-

cally. This would make it possible for one single robot to perform a variety of tasks within the

same factory. If one robot could learn through demonstration, it would also be a lot more eco-

nomical for businesses to buy one. It would make it possible to teach the robot new tasks as the

industry changed, and new challenges arose. And of course, this would make it unnecessary for

1

2 Chapter 1. Introduction and background

human workers to do tedious and repetitive tasks all day.

Big ideas have to start small. There is still a long way ahead until we get to a society where

robots can do all the menial work for us. But we can start working with these self-taught robots

in mind. The goal for this master’s thesis it to try to create a highly effective way of performing

telemanipulation of a humanoid NAO robot. If this can be achieved withminimal latency, it can

be a starting point for training the robot to repeat tasks, and eventually learn how to perform

them by itself. Minimal latency is important in order to obtain anthropomorphism: The ability

to execute a specific function in a way that makes it appear close to human. This is necessary if

we want the robot to follow our movements in a way that feels natural for us.

1.2 Background

This section is partially taken from the Background-section in my project thesis (Evjemo, 2016).

I was one of four students who during the summer of 2015 worked on creating basic telema-

nipulation of the arms of a NAO robot for SINTEF Fisheries and Aquaculture. This was part of

a larger project at SINTEF called Humanoid Robotics Roadmap 2030 (HRR2030). By combin-

ing motion tracking with picture recognition, we were able to train the robot to pick up objects

that were placed in front of it. We were also able to implement basic telemanipulation of the

robot’s arms, which was eventually intended to become part of the training process. The sum-

mer project did not get that far, so the actual training was performed in a different way, which is

not relevant to this thesis.

However, the initial system was quite slow, which meant that the telemanipulation did not feel

natural for the person controlling the robot. As a result, I continued working on the project

during my project thesis in the fall of 2015. The focus of the project thesis was to identify the

bottlenecks in the initial system when it comes to data flow and communication, and to map

what limitations we face when trying to achieve minimal latency.

1.3 Problem description 3

The conclusion of the project thesis was that the main reason for the system’s latency was the

methods used to control the arms of the robot. More specifically, the robot’s internal inverse

kinematics (IK) solver was too slow. As a result, the system from project thesis was still so slow

that the control of the robot’s arms did not feel natural. The robot was not able to execute the

commands in anything close to real-time as long as the inverse kinematics computations were

done simultaneously by the robot’s controller. In this master’s thesis, I will try to improve this by

using alternative methods for robot control.

1.3 Problem description

The main goal for this project is to create a system for effective telemanipulation of the arm ef-

fectors of an Aldebaran NAO robot, using themotion tracker system Sixense STEM. Tomake the

telemanipulation feel natural for the person controlling the robot, it is important to have a sys-

tem with low latency. Many methods for controlling the NAO robot’s actuators are included in

the software development kit (SDK) from Aldebaran Robotics. Cartesian control methods from

the SDK were tested in earlier work, but they turned out to be much too slow. These methods

depend on the robot’s controller to do the necessary calculations to get the robot arm’s end ef-

fector to the desired position and orientation. The conclusion was therefore that the robot’s

internal IK-solver was the main delay.

In this master’s thesis, the telemanipulation will be attempted using an external IK-solver, and

joint controlmethods from the SDK. The systemwill use the analytic IK-solver for theNAO robot

developed in the diploma thesis of Nikolaos Kofinas at the Technical University of Crete (Kofi-

nas, 2012). The goal is to use the external IK-solver to compute the joint angles, and then send

these directly to the robot. The IK-solver has to be tested tomake sure that it works as expected.

A system combining the tracker data from STEM, the analytic IK-solver, and the robot, must

then be implemented. Part of the focus of the thesis will be to re-evaluate if the STEM-system

is a suitable tool for telemanipulation of the robot, and to document any current problems with

the system.

4 Chapter 1. Introduction and background

The final system will first be tested on a controllable 3D-model of the robot arm, before test-

ing it on the physical robot. Lastly, the final system should be evaluated, before suggesting ways

the system can be improved in further work.

Similar projects

This section is largely based on the Similar projects-section in my project thesis (Evjemo, 2016).

When doing research for both the project and master’s thesis based on the work done during

the summer of 2015, I found two similar projects. Both projects used NAO robots, and tried to

make them follow humanmotions as closely as possible.

The first was a video showing the results of the bachelor’s thesis of Jonas Koenemann at the

University of Freiburg (Whole-body Imitation of Human Motions with a Nao Humanoid: Real-

time teleoperation, 2011). His thesis focused on making a NAO robot imitate the whole-body

motions of a human. He did this using amotion tracking suit which registered themovement of

the major joints on his body. The joint angles were then sent directly to the robot. The system

compensated for the differences in joint-length etc. by mapping each of the person’s joints to

the robot’s joints. Koenemann’s system seems to work well, but is very slow. In the film we can

see that the robot is always a couple of seconds behind the movements of the person it is trying

to imitate.

The second project was created by engineer andmaster’s graduate Halit Bener Suay. His system

only used a Kinect-camera in order to control the robot (Humanoid Robot Control and Interac-

tion, 2010). He had also tried to make the control feel as natural as possible. From the video it

looked like his system had less latency than that of Koenemann, even if there was clearly a small

delay. I contacted Suay to ask about his project, and he gaveme access to all the code for his sys-

tem (Nao_rail, 2010). He told me that even though there seems to be very little delay between

the human motions and the robot motions in the video, he considered his system to be quite

slow. He said that there was a considerable delay, and that he therefore kept his movements as

slow as possible when making the video, to try to minimize this. Suay had also used joint con-

1.4 Equipment 5

trol methods in order to control the robot’s effectors. The e-mail correspondence is included in

appendix A.

Limitations

Even though the goal is to control both of the robot arms, the system created in this thesis only

focuses on controlling the left arm effector. This choice was made partially in order to make

testing easier, but also based on the fact that the STEM-system can be quite problematic to work

with, so that it would be beneficial to only need one tracker at a time. The problems related to

the STEM-system will be explained in section 1.4.1.

The system created in this thesis has not been tested on the physical NAO robot. This is be-

cause it was important to make sure that the robot control worked properly first, and not risk

damaging the actual robot. Based on the work done during the summer and fall of 2015, I have

learnt the hard way that the robot effectors canmove unexpectedly if the control input is invalid

in some way. Instead, the system is tested on a 3D-model created in LabVIEW and on a virtual

NAO robot in Choreographe, see section 2.3.

1.4 Equipment

This section is largely based on section 1.5 of my project thesis (Evjemo, 2016).

1.4.1 Sixense STEM motion tracking system

In this project, a new, highly accurate motion tracker system called Sixense STEM is used to

track the desired movement. The STEM-system is wireless, and consists of five motion trackers

and a base station, shown in figure 1.1. Themodel used is a BETA version of the system, because

the final version of the system has yet to be released.

The STEM-system is very accurate, and seemed like a good tool for performing telemanipulation

of the arms of the NAO robot. This equipment was therefore acquired by SINTEF Fisheries and

6 Chapter 1. Introduction and background

Figure 1.1: Sixense STEM: Here we see the STEM-system used in this project. The system has
two hand-held controllers, and three packs. Picture from (Sixense STEM, 2014).

Aquaculture in the spring of 2015 in preparations for the student summer project the same year.

Figure 1.2: STEM-controller: The controller’s electromagnetic tracker is placed as shown in red.
Image from (Kickstarter: Sixense STEM, 2014).

According to the developers, Sixense STEM has the lowest latency of any wireless consumer

1.4 Equipment 7

motion control system (STEM System, 2014). The version of the system used in this project has

hand-held controllers with additional functionality like joysticks and buttons, and three packs,

which are only for motion tracking. Because controllers and packs are mainly being used for

basic motion tracking in this project, they will all from hereon out mostly be referred to just as

trackers. When using the trackers, it is important to keep in mind where actual electromagnetic

tracker is placed in the different trackers, as shown in figure 1.2 and 1.3. This is where the centre

of rotation will be, as well as where the Cartesian position is registered.

Figure 1.3: STEM-pack: The pack’s electromagnetic tracker is placed as shown in red. Image
from (08/01/2014 - STEM Pack Details, 2014).

When turning on the STEM-system, the base station has to be connected to the computer, and

a Sixense application of some kind has to be running on the computer. This will be explained

further in section 3.2.2.

During the work on my project thesis during the fall of 2015, I experienced a lot of problems

with the STEM-trackers. They would sometimes disconnect, or refuse to connect to the base

station at all. The systemwas sensitive tometal andWiFi, and would sometimes register tracker

data that was obviously wrong. Because of these weaknesses, the conclusion in the project the-

sis was that the STEM-system in its current state was unsuited for use in any project where it

had to be combined with different hardware.

However, several new firmware updates came in the two months between the end of the lab

8 Chapter 1. Introduction and background

work on my project thesis and the beginning of my Master thesis. The system seemed to have

become a lot more stable, and the controllers would no longer disconnect as frequently as be-

fore. One ofmy advisers at SINTEFhad also tested the system’s accuracy after the latest firmware

updates, and the conclusion was that the trackers would give out very accurate tracker data as

long as they were used withing a radius of 1.5 meters from the system’s base station. This did

not seem like it should be a problem, at least not for a small scale system like the one I wanted

to create.

SINTEF still looked for alternative tracking hardware to be used for the continuing work on

this project. PlayStation Move was one alternative, with its thoroughly tested and stable mo-

tion tracker controllers. But it was discarded because PlayStationMove does not yet have stable

compatibility with PC (Framework for PlayStation Move on PC, 2015), and might therefore cre-

ate more problems than it would solve due to challenges with the implementation. They were

also in contact with the project Advanced Realtime Tracking, which has developed a motion

tracking system that can collect joint data for the entire human body through trackers placed

directly on the joints of the human controller (Advanced Realtime Tracking, 2016). But this sys-

tem was also discarded, because the price tag was a bit stiff, especially when considering that

there was an alternative, and already familiar, system in place.

So it was decided that the STEM-system would be used for this project as well, and that one

of the objectives of the project would be to evaluate whether or not the latest firmware updates

hadmade it amore suitable tracking tool for this kind of work. This was based on a combination

of the fact that there did not seem to be any obvious choices for alternative tracking hardware,

the system’s improved functionality, and my own familiarity with the system.

1.4.2 NAO - humanoid robot

In this project the goal is to control the arms of a 58 cm tall humanoid NAO robot from Alde-

baran Robotics. The robot is designed to be interactive and social, and can be used both as an

educational tool, and as a toy for both developers and kids.

1.4 Equipment 9

Figure 1.4: NAO: The small, humanoid robot is developed by Aldebaran Robotics.

The NAO robot used in this system is of the model H25, which is an upgrade from the original

full-body H21-model. The difference between the two is that the H25-model has implemented

more functionality in the arms: both a rotation wrist, and the ability to close the hand (Effector

Chain Definitions, 2012).

The thesis this project is based on, written by N. Kofinas, works with a robot of the H21-model.

This means that the developed inverse and forwards kinematics do not take into account that

the robot has a rotation wrist. Kofinas has later finished the code to account for the additional

10 Chapter 1. Introduction and background

four degrees of freedom (DOFs) so the script is up to date and suited for use on the robot model

that is used in this thesis.

The robot has 25 DOFs altogether (How does NAO work, 2012). It has two cameras which en-

ables it to register its surroundings, and touch sensors to register obstacles or touches from

people around it. Directional microphones enable the robot to hear voices and sounds in its

surroundings, and to identify which direction the sound is coming from. In this project, all of

these functionalities will pretty much be disregarded. The focus will be on the robot’s ability to

move its effectors to a given position in space.

The robot was acquired by SINTEF Fisheries and Aquaculture for use in the student summer

project in 2015. The goal of the summer project was to combine robot control and machine

learning in order to teach the robot how to perform a simple task, like picking up an object from

a table. NAO seemed like a good tool for this kind of test-project, as it quite functional and not

too expensive. For more extensive work in the same area it will be necessary to invest in a more

robust robot.

1.4.3 Kofinas’ IK-solver

As explained in theBackground section, theworkwith telemanipulation of NAO robot so far had

shown that the robot’s internal, numerical IK-solver was very slow. In order to perform effective

telemanipulation with low latency, it was necessary to control the robot using angular methods.

In order to do so, an external IK-solver was needed. In the early stages of the work on the project

thesis, the idea was that I would create such an IK-solver myself. However, after some research

it became clear that somebody else had saved me the work.

In 2012, Nikolaos Kofinas created the full, analytic IK-solver for a NAO H21-robot while he was

a student at the University of Crete, Greece (Kofinas, 2012). In addition to his own thesis, Ko-

finas and some of his professors published a scientific article on the same subject (Kofinas,

Orfanoudakis, Lagoudakis, 2013). The IK-solver itself was implemented in C++, and all the files

made available to the public through GitHub (Team Kouretes, 2014). Later, the code was ex-

1.5 Structure of the report 11

panded to include functionality for the NAO H25-model as well. The functionality of Kofinas’

IK-solver will be explained further in section 3.3.1.

1.5 Structure of the report

The rest of this report is structured as follows. Chapter 2 will start by introducing the choice of

programming languages and software for this project, as well as the system structure. Some of

the choices regardingmovement frames and controlmethods for the robotwill be explained, be-

fore taking a closer look at the alternatives for simulating the control system on a virtual robot.

The different alternatives for communication with the STEM-system will also be introduced.

Chapter 2 ends with some necessary theory related to forward and inverse kinematics, different

ways of describing rotations, and frame transformations.

In the beginning of chapter 3, the most relevant control methods for the NAO robot will be in-

troduced. It will be explained how the tracker data was collected from Sixense STEM, and there

will be a brief look into how the IK-solver works, as well as how it was tested. Some of the tracker

data collected from the STEM-system had to be processed before it could be used with the rest

of the system, and how this was done will be explained here. A large part of chapter 3 is devoted

to presenting the work and testing done while trying to get the IK-solver to work with data from

the STEM-tracker in the complete system. There were some technical problems with the STEM-

system, which will be presented at the end of chapter 3. These problems are not given much

attention in other parts of this thesis. This is partly because the problems were less prominent

in this project compared to previous work, and partly because focusing on these issues contin-

uously would draw attention away from the general progress of the project.

In chapter 4 it will be discussed why the final system did not work as expected. The difference

in joint control methods compared to Cartesian control will also be evaluated. The suitability

for the STEM-system for use in this kind of project will be discussed, and some of the system’s

improvements and new weaknesses will be highlighted. Some of the more general choices re-

garding the system structure will also be discussed.

12 Chapter 1. Introduction and background

In chapter 5, the conclusion of this project is presented. Even though I did not get the analytic

IK-solver to work with the rest of the system, there aremanymodifications that should be tested

at a later point that might help create a functional system. The recommendations and sugges-

tions for further work is therefore included. Suggestions for alternative tracking approaches are

presented, and DCM-programming is re-introduced as an alternative approach.

Chapter 2

Method

2.1 Software and system structure

Just like for the project thesis leading up to this master’s thesis, many of the choices made for

the system structure depended on each other. One example is that the kind of data that had to

be extracted from the STEM-trackers, depended on themethods that were chosen to control the

robot. However, it was easier to make decisions this time around, because it was already clear

which methods that would be best suited for controlling the robot, as explained in the intro-

duction. This meant that almost all other decisions could be done based on what was needed

for controlling the robot in the way that I wanted, as will be explained more thoroughly in this

section.

2.1.1 Choosing programming languages

Decidingwhich programming languages to use ended up being quite easy. Some decisions were

madebased on experiences from the summer project andproject thesis, while othersweremade

based onmy own level of programming skills in the different languages.

Python

This section is based on section 2.1.1 of my project thesis (Evjemo, 2016).

13

14 Chapter 2. Method

During the work on the project thesis in the fall of 2015, it became clear that it was more benefi-

cial to control the robot by writing scripts in a standard programming language than to use the

Choreographe-programwhich camewith the robot. I will not discuss why in this report, but the

main issue was that the block-based control methods in Choreographe were thought not to be

flexible enough. For more details, see my project report (Evjemo, 2016).

When wanting to write scripts in a standard programming language, it was necessary to find

the language most suitable for the desired functionality of the system. The operating system

that runs on the NAO robot is called NAOqi. Aldebaran Robotics has also released a Software

Development Kit (SDK) to all users’ disposal, which allows the developers to control NAO on a

more basic level than the included Choreographe program (Cool Tools, 2016). The SDK is com-

patible with several programming languages, as shown in figure 2.1.

Figure 2.1: Programming languages: The NAO robot has the following compatibility with some
of the most common programming languages. Python seems to have the best compatibility.
Table from (Programming, 2015).

As will be explained later in this section, some of the programming on the IK-solver in this sys-

tem would have to be done using C++. Still, I had far more experience using Python, both in

general work and directly for controlling the NAO robot. Python therefore seemed like a safe

choice for this project as well. Even though Choreographe was not used for implementing robot

control methods in this project, it was useful that Choreographe and Python were compatible.

2.1 Software and system structure 15

This left the possibility for combining the Python-scripts with block-diagram control in Chore-

ographe if that were to become necessary later. In section 2.3.2 it will be explained how the

virtual robot in Choreographe proved useful for testing, even if the plan was to steer clear of

Choreographe all-together.

LabVIEW

During the student project in the summer of 2015, we were introduced to the programming

language LabVIEW. This program has a very user-friendly GUI, as well as block diagrams and

compatibility with MatLab-scripts. When starting out with the project thesis in the fall of 2015,

the hypothesis was that this program might be the reason why the system was too slow to per-

form natural-feeling control of the robot (Evjemo, 2016). However, at the end of the project, the

conclusion was that the main issue was the robot’s internal IK-solver.

For my master’s project, I therefore decided that LabVIEW was a good choice for implementing

much of the system’s functionality. This was also based on the fact that the engineers working

at SINTEF Fisheries and Aquaculture are using this program in many of their projects, which

should mean that it is quite suitable for projects where latency is an issue.

In addition, LabVIEWhas amodule calledMathScript RT, whichmakes it possible to include ba-

sic .m-files to the block-diagram environment (Working with .m Files in LabVIEW, 2014). Math-

Script is a programming language with syntax similar to MatLab which contains more than 800

basic built-in functions (Antonacci andMorrell, 2009). LabVIEWalso has aMatLab-block, which

works in a similar way, but also includes more of the functions fromMatLab. In order to use the

MatLab-block, one must have a licenced version of MatLab installed on the computer. Using

either MathScript RT or the MatLab-block in LabVIEW would allow for some calculations of for

instance rotation matrices or Euler angles to be done directly in LabVIEW. The calculations in

question will be presented in section 2.5.2.

16 Chapter 2. Method

C++

The IK-solver created by N. Kofinas was to be the basis for this master’s thesis. In addition to

his thesis (Kofinas, 2012), he had made all of his scripts available through GitHub as part of the

Kouretes Robocup Team (Kouretes Team, 2014). As will be explained in section 3.3, the com-

plete IK-solver was written in C++. Therefore it was to be expected that some programming had

to be done in C++, at least to modify how the IK-solver received input and returned the output.

LabVIEW has no easy way to communicate with C++, but it seemed likely that it would be nec-

essary to find a way for the programs to communicate, like we did for Python and LabVIEW in

the summer project. It was either that, or to redo the IK-solver in a compatible programming

language, or directly in LabVIEW. This subject is discussed further in section 3.3.3.

MatLab - for checking calculations

It would be necessary to implement quite a lot of matrix calculations and transformations in

this system. It would therefore be very helpful to have some way to check that these functions

and transformations did in fact return the expected values. Luckily, MatLab’s Robotics System

Toolbox includes a lot of this functionality. Here are some of the most useful functions. The

explanation for how they work are found in theMathWorks Documentation (MathWorks, 2016).

• eul2rotm/rotm2eul: Converts Euler angles to an orthonormal rotation matrix and vice

versa. The Euler angles are given in the order ’ZYX’.

• quat2rotm/rotm2quat: Converts quaternions to an orthonormal rotationmatrix and vice

versa. The quaternions are given in the order qω, qx , qy , qz .

• eul2quat/quat2eul: Converts Euler angles to quaternions and vice versa. The Euler angles

are given in the order ’ZYX’, and the quaternions are given in the order qω, qx , qy , qz .

In addition, the methods for finding the inverse and determinant of a given matrix were used

frequently to check the output of the implemented functions.

2.1 Software and system structure 17

2.1.2 Structural changes in the system

Parts of this section are based on section 2.1.2 of my project thesis (Evjemo, 2016).

This master’s thesis is in a sense the third attempt to implement telemanipulation of the NAO

robot as effectivelyway as possible. Underway there has been some changes in the system struc-

ture, and it was only to be expected that the same would happen this time.

In our original program, the run-time was about 100 ms, which is not even close to what a

natural-feeling telemanipulation system should be aiming for. Latency of about 10 ms or less

would be ideal to make the telemanipulation of the robot to feel as natural as possible. In the

summer project we were also using the LabVIEW and Python-scripts. Because LabVIEW is not

compatible with Python, we originally had to use TCP-connections to send information be-

tween the different parts of the system. The communication flow in the old program is roughly

summed up in figure 2.2.

Figure 2.2: Old program: In the original program, LabVIEWwas used as a centre of communica-
tion. Thismeant that it was necessary to have TCP-connections both between the Python-script
and LabVIEW, and between LabVIEW and the NAO robot.

The system we had created in LabVIEW during the summer project was quite complex, and

18 Chapter 2. Method

included code from Python-scripts, additional MatLab-scripts, and block-diagrams. Because

of the complex structure, the variety of scripts used in the system, and the additional TCP-

connections, I suspected that the LabVIEW-program was the main reason why the original sys-

tem so slow. The system created while working on the project thesis therefore looped around

LabVIEW, and aimed to control NAO directly using scripts in a compatible programming lan-

guage. The communication flow for the project thesis is shown in figure 2.3. As explained in

section 1.2, the work in the project thesis led to the conclusion that LabVIEW was not the prob-

lem after all.

Figure 2.3: Second attempt: In the program created in the project thesis in the fall of 2015,
all communication between the different hardware happened directly through one or several
Python-scripts.

In the newest system created in this master’s project, LabVIEW was re-introduced, as explained

in section 2.1.1. Communicationwith C++-scripts was also necessary, and Python-scripts would

still be used for the actual control of the robot.

However, it was difficult to say exactly how the systemflowwould turn out. The decisions related

to communication and generalmethodswill be discussed further in section 2.3 and 2.4. Still, the

main system structure should be something like the structure shown in figure 2.4. Data would

be collected from STEM, and sent to the IK-solver via one of the methods discussed later in

this chapter. The IK-solver should then give the necessary joints as output. This data would

be used to control the robot with joint control methods from the SDK in Python, or tested on a

3D-model of the robot created in LabVIEW. It was at this point unclear exactly how the IK-solver

would communicate with the rest of the system, so this will be discussed later in the report. The

structure in figure 2.4 was just a sketch to get an idea of the desired system flow.

2.2 Controlling the robot 19

Figure 2.4: New system structure: In this new system, data from the STEM-system would be
collected usingDLL-files or text-files. The data would then be sent to the IK-solver, whichwould
hopefully return the angles necessary to realize the movement. These angles would then either
be sent to LabVIEW for testing, or to a Python-script to control the actual robot.

2.2 Controlling the robot

The goal of this project was to test the systemdirectly on the robot, so as to see if the joint control

methods could actually allow close to real-time control of the robot. As will be explained later

in the report, getting as far as to actually test the system on the physical robot turned out to be

more difficult than expected. Still, the whole system is built with control of the physical robot

in mind. It is therefore necessary to explain how the control methods work, and present some

of the many different methods for controlling the robot’s motions included in the SDK (Python

SDK, 2015). In this section the choice of start position and working frame for the robot will also

be explained.

20 Chapter 2. Method

2.2.1 Choosing control methods

Some parts of this section are based on section 2.2.2 of my project thesis (Evjemo, 2016).

Just like when working on the project thesis, it was necessary to consider the fact that there

is an alternative way of controlling the robot: Instead of using the methods from the SDK, it is

possible to control the robot’s effectors directly through the Device Communication Manager

(DCM). However, according to the documentation for NAO, this way of controlling the robot is

very complicated, and can lead to disaster if you do not know what you are doing (DCM - Intro-

duction, 2012). The conclusion in the project report was that when it comes to controlling the

robot in real-time, the main bottleneck was the robot’s internal IK-solver. This is why the main

goal of this master’s thesis was to test the joint control methods from the NAOqi SDK. Control

using the DCM directly will therefore not be considered in this thesis.

Instead, the focus was on methods from the NAOqi SDK. An arm movement can be described

either as angular curves of the joints, or as a spatial trajectory (Morasso, 1981). As explained in

the introduction, the focus for this thesis was to test angular control of the robot, because the

Cartesian methods were much too slow. However, because the control was to be done using

only a hand-held STEM-tracker, the system would have no information about how the rest of

the human arm holding the tracker was oriented in space. This was the main thing separating

this project from the two other telemanipulation projects I had looked into, as mentioned in

section 1.2.

If my system had some way of tracking the whole arm for the person controlling the robot, it

should be quite straight-forward to find the necessary angles between each joint, and send these

directly to NAO. But this system was supposed to follow the trajectory of a hand-held STEM-

tracker. This meant that the system had to rely on Kofinas’ analytical IK-solver to find the joint

angles necessary to reach the positions and orientations registered by the STEM-tracker, as ex-

plained in section 3.3. These angles could then be sent to joint methods from the NAOqi SDK,

which is explained further in section 3.1.2.

2.2 Controlling the robot 21

2.2.2 Movement frame

This subsection is largely based on section 2.2.1 of my project thesis (Evjemo, 2016).

As will be explained in section 3.1, there are different ways of controlling an effector. But all

of the control methods have to relate to a chosen movement frame. The NAO robot has initially

three different frames it canmove relative to. All coordinates are given relative to the origin, but

the position of the origin differs for each coordinate system.

• Torso: The origin is placed in the centre of NAO’s torso, like shown in the left part of fig-

ure 2.5. This is themost stable frame, as this point is never inaccurate relative to the robot’s

actuators. This movement frame will move along with the robot’s torso, both when he

moves around, and when he leans or sits down.

• Robot: The origin is placed along the z-axis, on the ground between NAO’s feet, as shown

in the right part of figure 2.5. This frame, like the torso frame, keeps the x-axis pointing

straight forward, and moves with the robot.

• World: The origin is placed along the z-axis on the ground between NAO’s feet, like for the

robot frame, as shown in figure 2.6. However, for the world frame, the origin is left behind

when NAO walks, both its position and orientation.

According to the documentation fromAldebaran, theWorld frame ismost useful for calculations

which require an external, absolute frame of reference (Cartesian Control 2-1, 2015). One of the

long-term goals of this project is to place the robot and the trackers in a larger, global coordinate

system, whichwill be discussed in section 5.2.4. Therefore, this frame had originally seemed like

the obvious choice.

However, while working on the project thesis, the World frame was found to be quite inaccu-

rate, because NAO’s internal gyros did not handle slipping and inaccuratemovements very well,

which is discussed further in my project report (Evjemo, 2016). Since the Sixense STEM system

was available, it seemed that the most accurate results could be acquired using the Torso frame:

22 Chapter 2. Method

Figure 2.5: Choosing the frame: This is Nao’s torso and robot frame. The torso fram is what we
will be using in this project. Picture from (Cartesian Control 2-1, 2015).

By transforming the coordinates from the STEM system’s coordinates over to local Torso coordi-

nates before sending them to NAO, the movement control could be very accurate. This meant

quite a few transformations of coordinate systems, as shown in section 3.4.4. This approach

was used successfully both in the summer project and in the work onmy project thesis, and the

Torso-frame was therefore kept for the work onmymaster’s thesis as well.

2.2.3 Initial position

This subsection is largely based on section 2.2.4 in my project thesis (Evjemo, 2016).

When the robot starts up, he stands up and goes to Autonomous life-mode (Understanding Au-

tonomous Life, 2015). This is amodewhere several of the robots actuators are in constantmove-

ment, making the robot sway slightly from side to side. Some of the sensors are also at work, so

2.2 Controlling the robot 23

Figure 2.6: Choosing the frame: This is Nao’s world and robot frame. Theoretically, this should
be able to track NAO’s complete movement from startup. Picture taken from (Cartesian Control
2-1, 2015).

that NAO can turn his head towards sounds etc. To be able to move NAO’s arm effectors as ac-

curately as possible, it was necessary to keep the robot in a position and state where he kept

completely still.

When NAO is in his initial position, he has both hands slightly in front of him and out to the

sides, like seen in figure 2.7. The robot’s body is kept completely still, but it is possible to move

the effectors by using functions from the NAOqi SDK. This start-position was chosen because it

was a quite steady position when considering the robot’s balance, at the same time as it allowed

the robot to move his hands freely in all directions.

24 Chapter 2. Method

Figure 2.7: StandInit: This is the pre-set position StandInit, which is a good start position for
controlling NAO’s arms.

Whenworking with the actual robot, and not just amodel, it was important to keep inmind that

NAO’s enginesmight overheat due to the strain of keeping his joints locked in the same position

over time. When the robot was kept in autonomous life-mode, the engines would not get warm

as quickly, which made it evident that the slight wagging helped keeping the engines in NAO’s

effectors fromoverheating. It is alsoworth noting that inNAO’s initial position, the robot legs are

locked in a position where the knees are not hyper-extended. This is more challenging for the

engines than if the legs were completely straight, because they must support the robot’s weight

against gravity (Kuo, 2007).

The plan was therefore to make NAO sit down and rest between all test runs, so that the engines

could cool down. When controlling the robot’s actuators, it was also important to make sure

that the robot did not tip out of balance, as the system does not have any safety mechanism to

2.2 Controlling the robot 25

override the control-input if that should happen (Cartesian Control, 2015).

Data from the robot’s initial position was used when testing the IK-solver, as described in sec-

tion 3.3. The data for the position and orientation of NAO hands when the robot was in initial

position were collected through functions from ALMotion, which are explained in more detail

in section 3.1.2. This made it possible to test the IK-solver for a position and orientation which

had a known, real solution. The initial position and orientation were also used to combine the

STEM-tracker movements with corresponding movements on the robot’s arm effector, as ex-

plained in section 2.5.3 and section 3.4.4.

2.2.4 A closer look at the arm effector

NAO’s arm effectors has 5 DOFs, distributed as shown in figure 2.8: 2 DOFs in the ball-in-socket

joint in the shoulder, 2 in the ball-in-socket joint in the elbow, and 1 in the rotating wrist. How

the five DOFs are distributed is also shown in figure 3.16, which also illustrates better which axis

each joint rotates about. The fact that the robot arm only has 5 DOFs means that the robot’s

arms are simplified compared to a human arm, which has 7 DOFs (Cruse, 1986).

Figure 2.8: Arm joints: Here we can see how the five DOFs in NAO’s right arm is distributed.
Picture from (NAO Technical Guide: H25 - Joints - V3.2, 2012).

26 Chapter 2. Method

Themost noticeable difference between a human arm and NAO’s arm, is that the wrist only has

1 DOF. Thismeans that the orientation of the hand effector is always locked to the orientation of

the underarm, except for the ability to rotate about the axis going through the underarm. This

means that the robot’s arm does not have the same ability as the human arm to reach one given

position and orientation in a seemingly endless number of angle orientations for the remaining

angles in the arm.

Just consider this: If you place your hand flat on a table, you will still be able to move the rest

of your arm around, because the wrist can move quite freely from the underarm. For the robot,

keeping the hand in this position will mean that the entire arm is more restricted. However,

there is still redundancy in the robot’s arm effector, meaning that there are several ways to po-

sition each joint in order for the end effector to reach one desired position. This makes it very

challenging to do the inverse kinematics, because it is necessary to create constraints that en-

ables the robot to choose one way of moving to a given point over another (Cruse, 1986).

When using the methods from the NAOqi SDK, which will be presented in section 3.1, it is nec-

essary to be aware of where the sensors that make up the end effector of NAO’s arm chains are

located. As shown in figure 2.9, the sensors are located in the center of the robot’s hands. The

goal is to make this point in the center of the hand follow the movements of the STEM-tracker,

both in position and orientation.

Amanipulator’sworkspace is the total volume in which the end effector canmove when consid-

ering all possiblemovements. Theworkspace is constrained both by themechanical constraints

of the joints, and by the geometry of themanipulator (Spong, Hutchinson, and Vidyasagar, 2006,

p. 6). The experience fromworking with the robot in the summer project and the project thesis,

was that themobility of the arm effector gaveNAO a quite large workspace around its own torso.

When controlling the arm effector with the STEM-controller, it would still be important to keep

the movements small enough to stay within the robot’s workspace.

2.3 Simulating the robot 27

Figure 2.9: Control points: The sensors that make up the control point for NAO’s effectors. As
shown, the sensor in NAO’s arm is located in the centre of the hand (Cartesian Control, 2012).

2.3 Simulating the robot

Based on my previous work with the NAO robot, I had learnt the hard way that the robot might

behave quite surprisingly if the control input was not thoroughly tested. For example, when we

were working on the summer project, we once experienced that the robot hyperextended its an-

kle joints and "jumped" backwards when we were really only trying to make the robot close its

hand... This did of course happen because the control input was not tested before it was run on

the physical robot. Luckily, the robot was not damaged in that incident, but it became clear that

it would be a good idea to create some kind of simulated 3D-model to test the system on before

trying angle control on the robot itself.

In addition, testing the program on a simulated model of the robot would make it easier to

make sure that the system worked properly before introducing another possible error source in

the form of more hardware. Working with hardware will always mean more uncertainty than

working with theoretical models, and the STEM-system was already creating enough problems,

28 Chapter 2. Method

which will be explained further in section 3.8.

2.3.1 LabVIEW model

When trying to decide on a simulation tool for the 3D-model of the robot, programs like V-rep

and Autocadwere considered as alternatives. I had no previous experience with 3D-modelling,

so I consulted with my advisers at SINTEF to find the most suitable program. My system was

using the frame Torso for the robot, which mapped all movements relative to the robot’s own

torso, which will be further explained in section 2.2.2. It was therefore only necessary to create a

simple model of the robot’s torso with the same DOFs as NAO. Based on the advice frommy su-

pervisors at SINTEF, I ended up using the functionality for 3D-modelling included in LabVIEW.

Even though I was not familiar with this part of the program, it seemed easier to learn a new part

of a program I had some experience with than to start from scratch.

It is alsoworthmentioning that some of themost time consuming problems I experiencedwhen

working withmy project thesis (Evjemo, 2016), was trying tomake different programs and hard-

ware communicate with each other. Because the plan for themaster’s project was to implement

most of the system functionality in LabVIEW, it seemed safest to also include the 3D-model in

LabVIEW in order to avoid an additional problem related to software communication. Even

though LabVIEW does not necessarily have as much of the functionalities regarding the visual

design of the 3D-model that can be found in more advanced 3D-modelling programs, the con-

clusionwas that this did notmatter. The important thing formy project was to have away to test

the code and my program other than the physical NAO robot, and a simplified stickman would

suffice.

The 3D-model created is shown in figure 2.10. It is a simple model of the robot’s torso and

arms, which has the same DOFs in the arm effectors as the H25-model of the NAO robot. When

implementing themodel, the different angles were set with controls in the actual range for each

joint, based on the specifications from the scripts and original thesis (Kofinas, 2012), and the

documentation(H25 - Links, 2015). In figure 3.9, it is shown more clearly how the 3D-model

ends up in the same position as the physical robot when the angles are set to be identical.

2.3 Simulating the robot 29

Figure 2.10: Robot model: This is the 3D-model created in LabVIEW to perform tests of the
system. The model is similar to NAO’s torso, and the arms have the same DOFs, so that the
different joints moves just like NAO’s joints.

The 3D-model had originally no latency implemented, because it was necessary to check how

fast the LabVIEW-programwas able to interpret the angle output written to file, and actuate the

movement on the model. When the system worked as it should, the plan was to implement

latency to be able to test how much latency one could have before the control stopped feeling

natural. I will get back to this in section 3.9.

When creating the 3D-model in LabVIEW, itwas important to be aware ofwhich joints depended

on each other, and in what order. For instance, if the elbow yaw had been independent of the el-

bow roll, the elbow yaw andwrist yawwould always be rotations about the same axes. However,

this was not the case, and the 3D-model had to take this into account. The fact that the elbow

30 Chapter 2. Method

yawwas not independent from the elbow roll was also the reason why this system could not use

the IK-solver developed by 5th year student Åsmund Pederson Hugo, see section 3.6.

When creating themodel, the angles were set via manual controls. When these were thoroughly

tested, and it was certain that the 3D-model’s mobility matched the NAO robot’s, they were re-

placed with input from the IK-solver. When the IK-solver returned valid results, the five angles

representing the arm effector in question were written to file. The LabVIEW-program with the

3D-model would then read these angles from file, and send them directly to the model’s joints.

The first test-run for this program was to use the collected data for the orientation and position

of the arm effectors during NAO’s initial pose for the robot. This data was run through the

IK-solver, and the corresponding angle solution written to file. The resulting pose is shown in

figure 3.9, and it is clear that this corresponds with the actual robot’s pose, shown in the same

figure.

2.3.2 Virtual NAO robot in Choreographe

In addition to the simulated robot created in LabVIEW, I realized that the programChoreographe

that came with the robot also had its own, virtual robot model. Even though Choreographe was

not used in the system in general, this model proved useful for testing the Python-scripts that

were to control the physical robot. The simulated robot created in LabVIEW would be helpful

for testing the validity of the angle input from the IK-solver. However, it could not be used for

testing the methods from the NAOqi SDK, which were used to actually control the robot. These

methods will be explained further in section 3.1.2.

The virtual robot in Choreographe is shown in figure 2.11, and looks exactly like the physical

robot. It has the same abilities as the real robot, and can be controlled by the same methods,

either through Choreographe’s control methods, or though scripts in Python or C++. This is

explained further in section 2.2. However, it is worth noting that the simulated robot is not

subjected to gravity (Simulated Robots, 2015). This means that the virtual robot cannot fall

down because it loses balance, unlike the real robot. Because the model was only meant for

testing of small armmovements, this should not be a problem.

2.4 Communicating with STEM 31

Figure 2.11: Virtual NAO: This is the virtual robot in Choreographe. All methods from theNAOqi
SDK (see section 2.2) could be tested on this model, and it would behave almost exactly like the
real robot.

2.4 Communicating with STEM

One of the challenges while working on the previous projects, was to get hold of the tracker

data from the STEM-system. As explained in section 1.4.1, the 5-controller STEM-system used

in this project is only a BETA-version, and the access to documentation and coding examples

quite limited. This meant that simple things like extracting the tracker data became a challenge,

and something that had to be solved in different ways depending on the complete system struc-

ture. Because the system-designwould be different for themaster’s project than for the previous

projects, as explained in section 2.1.2, it was once again necessary to rethink the approach for

collecting tracker data. There were several different approaches that had to be considered.

32 Chapter 2. Method

2.4.1 Old solutions using DLL-files

During the summer project, the system structure made it necessary to send tracking data from

the STEM-trackers to LabVIEW. This was because all the robot control was done via LabVIEW,

and the tracking data was sent to the Python-scripts via TCP-connections, see section 2.1.2. The

communication problem was then solved by using a DLL-file created in C++ combined with a

DLL-block in LabVIEW.

When the system structure was changed during the work on the project thesis, it was neces-

sary to send the tracking data from STEM to Python. This was because LabVIEW was not used

in the project thesis, and all of the control was done directly through Python-scripts. The prob-

lem was then solved using the foreign functions library ctypes in Python (Stack overflow, 2008),

which allowed the Python-scripts to read DLL-files.

2.4.2 New potential solution using text-files

In the late stages of the project thesis, Sixense Entertainment released a firmware update for

STEM which also included some coding examples. This made it easier to create an effective

way of reading data from the trackers, and send them to other programs or hardware. One of

my advisers at SINTEF Fisheries and Aquaculture created a simple program in LabVIEW which

communicated with STEM using text-files.

The basic functionality is that the position and orientation of each tracker is registered, and

written to file. In addition, some information about the two controllers’ joysticks and buttons

are registered, andwritten to the same file. The positions are written as x-, y-, and z-coordinates,

given in the STEM-systems own coordinate system, see section 3.4.3. The functionality of the

program is explained further in section 3.2.1.

2.4.3 Specifications for the new system

For thismaster’s project, it was necessary to extract the tracking data from the STEM-controllers,

and somehow send the data describing position and orientation to the IK-solver. The IK-solver

2.5 Theory 33

should then return a solution containing the corresponding angles to realize the movement, as

will be explained further in section 3.3. It was therefore necessary to re-evaluate if any of the old

solutions to the communication problemwould work for the new system structure. This will be

discussed further in section 3.4.3.

2.5 Theory

In this theory section the principles behind forward and inverse kinematics will be explained,

as these are the foundations for robot control. I will also present different ways of representing

rotations and Cartesian movements mathematically, which all have different advantages that

had to be considered when designing the system. How any given position and rotation can be

transformed fromone frame to anotherwill also be explained. Lastly I will present the principles

of polar decomposition, which has to be used in order to create valid, normalized input for the

IK-solver.

2.5.1 Forward and inverse kinematics

A robot actuator, like the arm of the NAO robot, is composed of a set of links. These links are

connected through joints, and the number of directions you can move these joints determines

the actuator’s total number of DOFs. A joint’s movement can either be revolute, which allows

relative rotation between two links, or prismatic, which allows a linear relative motion between

two links (Spong, Hutchinson, and Vidyasagar, 2006, p. 4). Because all of NAO’s joints are revo-

lute, this thesis will not go into more detail regarding prismatic joints.

The forward kinematics problem is to determine the position and orientation of the end effec-

tor of an actuator when you know the joint angle values of the individual joint variables (Spong,

Hutchinson, and Vidyasagar, 2006, p. 76). The joint variables are in this case the angles between

the links. Forward kinematics can be used to determine the position and orientation for each

and every link and joint in an effector, but in this thesis the focus will be only on the end effector

of NAO’s arm. A forward kinematics problem will always have one solution.

34 Chapter 2. Method

The inverse kinematics problem is the opposite of the forward kinematics problem, and quite

a lot more challenging: It determines the joint variable values necessary to make the end ef-

fector end up in a desired position and orientation in Cartesian space (Spong, Hutchinson, and

Vidyasagar, 2006, p. 93). In addition, any solution to the inverse kinematics problemdepends on

the engineering of the specific actuator, not only the mathematics. For example, a mathemati-

cal solution might not be realizable if the given joint angles cannot rotate a full 360◦. Therefore,

an IK-solver must take this into account, and check if eachmathematical solution is compatible

with the physical limitations of the actuator.

The equations necessary to solve the inverse kinematics problem are usually complicated non-

linear functions of the effector’s joint variables. A solution can be found through an analytic,

closed-form approach, which means that you find an explicit relationship between the joint

variables and the position and orientation of the end effector. Alternatively, it is possible to use

a numeric, iterative method to find a solution. The analytic, closed-form solution is preferable

because it is much quicker, and because it allows you to implement rules for choosing among

several solutions, should that be the case (Spong, Hutchinson, and Vidyasagar, 2006, p. 95).

As explained earlier, the NAO robot uses a numeric IK-solver, which seems to be very slow (Ev-

jemo, 2016). The hope is that an external, analytic IK-solver will make the systemmore effective.

Because the forward and inverse kinematics solver used in this thesis has been developed by

others (Kofinas, Orfanoudakis, Lagoudakis, 2013), I will not go into further detail regarding how

the forward kinematics and inverse kinematics calculations are done. It is still important to keep

inmind that when doing the forward kinematics, a given set of values for the different joints will

always result in one and only one position and orientation of the end effector. For inverse kine-

matics, however, a given position and orientation might have zero, one, or several solutions for

the combination of joint values in the effector. How probable it is that there can be several solu-

tions, depends on the number of DOFs and the geometry of the effector. For more information

about forward and inverse kinematics, see chapter 3 in Robot Modelling and Control (Spong,

Hutchinson, and Vidyasagar, 2006).

2.5 Theory 35

2.5.2 Describing rotation and Cartesian position

Rotations are registered relative to axes in a coordinate system with a known orientation, and

this coordinate system is called the frame. A given rotation is described differently depending

on the frame where the rotation happens, which will be explained further in section 2.5.4. A

rotation can be described by Euler angles, quaternions, or a rotation matrix.

Euler angles

A very common way of representing a rotation with respect to a given frame, are Euler angles.

This is also perhaps the most intuitive method, because it is quite easy to visualize the rotation.

A rotation relative to a given coordinate system, or frame, is described by three successive ro-

tations about the three axes (Spong, Hutchinson, and Vidyasagar, 2006, p. 53-54). The most

common is that the three Euler angles φ, θ, and ψ describe a rotation about the z-axis, y-axis,

and then the z-axis again, respectively. Euler angles can also describe rotations about different

combinations about the three axes. If the rotation happens about all three axes, they are often

called ex , ey , and ez . As long as one knows how the Euler angles are defined for the system in

question, these approaches are equally correct.

Figure 2.12: Current frame: This figure shows the Euler angle rotations happening about the
current frame. When rotating about the current frame, only two of the three axes will change
orientation. Picture from Euler Angles, 2016.

Rotationsmight happen about the current frame, or about a global, fixed frame (Spong,Hutchin-

son, and Vidyasagar, 2006, p. 53-54). Figure 2.12 shows rotations about the current frame. The

36 Chapter 2. Method

blue frame represents the initial, fixed frame, but the rotations are happening about the axes

of the black coordinate system. With this kind of rotation, the axis about which the rotation

happens will not change orientation.

Figure 2.13: Fixed frame: This figure shows the Euler angle rotations happening about the same,
fixed coordinate system shown in blue. This means that all of the axesmight change orientation
in one, single rotation. Picture from Euler Angles, 2016.

Another way of doing a rotation is to rotate an object or frame about a fixed frame, like shown in

figure 2.13. The black coordinate system rotates in its current orientation about the fixed, blue

frame. As the figure illustrated, this means that all three axes might change orientation at once.

Rotation matrix

Each rotation can be represented by a rotation matrix, which is a 3× 3 matrix describing a

rotation around the x-, y- and z-axis in a given frame. According to Spong, Hutchinson, and

Vidyasagar, a rotation matrix Rn−1
n is a matrix whose column vectors are the coordinates of the

unit vectors along the axes of the frame n expressed relative to frame n (Spong, Hutchinson and

Vidyasagar, 2006, p. 39). Because unit axes are mutually orthogonal, the transpose of a rotation

matrix R is equal to its inverse, and when working with right-hand coordinate frames, the de-

terminant is also equal to +1 (Spong, Hutchinson and Vidyasagar, 2006, p. 40). These kinds of

n ×n matrices are called the Spherical Orthogonal group, and is denoted by the symbol SO(n)

(Spong, Hutchinson and Vidyasagar, 2006, p. 40). In general, a rotationmatrix R ∈ SO(n) has the

following properties (Spong, Hutchinson and Vidyasagar, 2006, p. 41):

2.5 Theory 37

• RT = R−1 ∈ SO(n)

• The columns aremutually orthogonal. Thismeans that the rows are alsomutually orthog-

onal.

• Each column is a unit vector. This means that each row is also a unit vector. In other

words: For each row or column with elements r1,r2,andr3,
√

r 21 + r 22 + r 23 = 1.

• The determinant of R is equal to 1.

Because the column vectors of a rotation matrix are of unit length and mutually orthogonal

(their inner product is zero), the matrix is also orthogonal. This means that the determinant of

a rotation matrix must always be 1 (Spong, Hutchinson and Vidyasagar, 2006, p. 40). Having

a determinant equal to 1, leads to the transpose and the inverse of the matrix being identical.

The product of an orthogonal matrix and its transpose will always equal the identity matrix:

RT ·R = R ·RT = I . A rotation matrix representing a movement can be written as follows:

R =

⎛
⎜⎜⎜⎜⎝

r00 r01 r02

r10 r11 r12

r20 r21 r22

⎞
⎟⎟⎟⎟⎠

A rotation matrix can be used to describe a rotation to both a fixed and a current frame, as will

be explained further in section 2.5.3. The rotation matrices describing a single rotation θ about

the x-, y-, or z- axis, are defined as:

Rx,θ =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎟⎟⎟⎠
,Ry,θ

⎛
⎜⎜⎜⎜⎝

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

⎞
⎟⎟⎟⎟⎠
,Rz,θ

⎛
⎜⎜⎜⎜⎝

cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎟⎟⎟⎠

When combining these rotation matrices, one can describe more complex rotations of frames.

It is important to note that the order in which these, or any other, matrices are multiplied, is

38 Chapter 2. Method

not arbitrary. One rotation matrix can represent several combinations of Euler angles, because

several different combinations of rotation can lead to the same, final orientation. This will not

be explained further in this thesis, but is important to remember when converting between dif-

ferent ways of representing rotation. Formore details, seemy project thesis section 2.4 (Evjemo,

2016) or the article Decomposing and Composing a 3x3 Rotation Matrix (Ho, 2011).

Quaternions

In addition to Euler angles or a rotation matrix, a given rotation in a 3-dimensional space can

also be represented by quaternions. This representation was first introduced by the the Irish

mathematician William Rowan Hamilton in 1843 (Egeland and Gravdahl, 2002). The quater-

nions were written:

q = qω+ i qx + j qy +kqz (2.1)

Where i , j , and k are all imaginary units satisfying (Egeland and Gravdahl, 2002, 232):

i 2 = j 2 = k2 = i j k =−1 (2.2)

i j =− j i = k, j k =−k j = i ,ki =−i k = j (2.3)

Unit-length is a characteristic of the quaternions, but when using numerical methods, it is

sometimes necessary to to small corrections to make sure that the quaternions stay normal-

ized, as will be explained further in section 3.5.6. Checking if the quaternions registered from

the STEM tracker were already normalized could be done by making sure that the relation pre-

sented in equation 2.4 was true (Using Quaternion to Perform 3D rotations, 2011):

√
q2x +q2y +q2z +q2w = 1 (2.4)

2.5 Theory 39

To have normalized quaternions is important when finding the rotation matrix based on the

quaternions, which will prove useful in this project. If the quaternions are normalized, the ro-

tation matrix can be represented as shown in figure 2.14. If they are not normalized, this can

be done by dividing qw , qx , qy , and qz by
√

q2x +q2y +q2z +q2w (Using Quaternion to Perform 3D

rotations, 2011).

It is worth noting that the four quaternions are sometimes given in the order qω, qx , qy , qz ,

other times in the order qx , qy , qz , qω. it is therefore important to check in which order the

quaternions are given for a given system, as will be discussed further in section 3.4.2.

Figure 2.14: Creating the rotation matrix: When knowing the normalized quaternions, the ra-
tion matrix can be created using this corrolation. Picture taken from (Baker, 2016).

Transformation matrix

To describe both rotation andCartesian position, one can use a transformationmatrix. Thisma-

trix consists of the rotation matrix and Cartesian coordinates that describe the transformation

from one frame to another (Spong, Hutchinson, and Vidyasagar, 2006, p. 73-74). For example

will a rotationmatrix describing the rotation R0
n and the Cartesian translation o0n from the initial

frame 0 to frame n, be described as:

T =

⎛
⎝R

0
n o0n

0 1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r00 r01 r02 x

r10 r11 r12 y

r20 r21 r22 z

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

40 Chapter 2. Method

Like for the rotation matrix, it is possible to find partial transformations, for example the trans-

formation T 0
1 from frame 0 to 1, and the transformation T 1

n from frame 1 to n. When calculating

partial transformations, it is necessary to extract the rotation matrix and translation separately.

How to calculate the partial movements is explained in section 2.5.3.

2.5.3 Calculating partial movements

In order to make the arm effectors follow the trajectory and rotation of the STEM system, it was

necessary to look at the position and rotation of both the tracker and the end effector (NAO’s

hand) at the moment we started the control program. From there, it was necessary to find the

actual movements of the tracker from the point when our program started running. In other

words: It was necessary to find the change in position and orientation of the tracker from the

beginning of the current tracking session and up until the present time.

It was also necessary to consider the initial position and orientation of the robot arm. By com-

bining this with the tracker data from STEM, it would be possible to find the new, desired posi-

tion and orientation of the arm effector. Because the robot control was based on joint control

methods in this project, this data would be sent to the IK-solver, as will be further explained in

section 3.1.1. The IK-solver should then return the angles necessary to realize this movement,

which finally would be sent to the robot, allowing it to move its arm accordingly.

Cartesian position

First, it was necessary to find the actual movement of the STEM-tracker from the beginning

of the current session and up until the moment of the calculation. For the Cartesian position

coordinates, this was quite straight forward. By subtracting the initial value from the new value,

we get the actual movement:

posmove = poscur r ent −posi ni t (2.5)

2.5 Theory 41

The process is a bit more complex for rotations because of how the frames are defined in our

system.

Rotation

To find the change in rotation, it is possible to use rotation matrices. Basic rotation matrix cal-

culations lead to this mathematical relationship (Spong, Hutchinson and Vidyasagar, 2006, p.

49):

R0
2 = R0

1 ·R1
2 (2.6)

Equation 2.6 tells us that the total rotation of an object, R0
2, is equal to the product of the ini-

tial rotation R0
1 and the actual change in rotation R1

2. In our case, the R0
1-matrix represents the

rotation matrix we get the moment we initialize the tracked object. The current rotation is rep-

resented by the R0
2-matrix. The change in rotation from the moment we began the tracking ses-

sion is therefore represented by the R1
2-matrix. This can be found by doing some basic matrix

multiplications:

(R0
1)

T ·R0
2 = (R0

1)
T ·R0

1 ·R1
2 (2.7)

Because (Rn)T ·Rn = Rn ·(Rn)T = I , we endupwith the following relationship between the current

rotation matrix, the initial rotation matrix, and the rotation matrix that represents the move-

ment we have performed:

R1
2 = (R0

1)
T ·R0

2 (2.8)

2.5.4 Frame transformations

Later in this report it will be explained that some of the rotationmatrices have to be transformed

because data is collected in two different coordinate systems, or frames. A rotation can be de-

scribed in different frames by multiplying the initial rotation matrix with rotations about the

three axes necessary to get to the new, desired frame (Spong, Hutchinson and Vidyasagar, 2006,

42 Chapter 2. Method

p. 50-51). An example are the two frames shown in figure 2.15: The coordinate system on the

right is really only the coordinate system on the left that has been rotated +90◦ about its x-axis.

Figure 2.15: Axis rotations: If the coordinate system to the left is rotated 90◦ about the x-axis,
the result will be the coordinate system to the right. In the same way, a rotation matrix describ-
ing a rotation in the right coordinate system, can be described in the left coordinate system by
multiplying it with the corresponding rotation matrix Rx .

In the sameway, a rotation described in the frame to the left can be described in the frame to the

right if we "rotate it" +90◦ about its x-axis. To rotate the with the angle θ in 3D about the three

axes, we use the three rotation matrices Rx,θ, Ry,θ, and Rz,θ, shown in section 2.5.2.

The rotation can either be performed relative to the current frame, or with respect to the world

frame, which is a global coordinate system defined for the given system. If the rotation is per-

formed with respect to the current frame, the respective rotation matrices are post-multiplied

to the initial rotation matrix. Otherwise, the rotation matrices are pre-multiplied to the initial

rotation matrix (Spong, Hutchinson and Vidyasagar, 2006, p. 50-51).

The frames in the system in which the coordinate transformations will occur, have the same,

general orientation. The only difference is that the axes are defined in different directions, but

along the same lines, just like the two frames in figure 2.15. Therefore, changing the Cartesian

position coordinates will be as easy as swapping them around and changing their sign. This will

be explained further in section 3.4.3.

2.5 Theory 43

2.5.5 Polar decomposition

When working with real square matrices that have to be orthogonal, it is possible to use polar

decomposition. What this methods says is that every real square matrix A can be factored into:

A =QS

where Q is orthogonal, and S is symmetric positive semi-definite (Strang, 1988, p. 445). There

are several methods for factoring matrices into orthogonal matrices, but what makes polar de-

composition very useful is that it guarantees that the orthogonal matrix Q is the closest orthog-

onal matrix to the matrix A (Keller, 1975).

The matrix S is given by

S =�
A∗A

where A∗ is the conjugate transpose. This thesis will only work with real matrices, and for real

matrices the conjugate transpose A∗ is equal to the transpose AT (Strang, 1988, p.293). This

means that the closes orthogonal matrix Q to a square matrix A, is any orthogonal matrix Q

which is the result of the polar decomposition A =Q
�

AT A (Keller, 1975). How to find the square

root(s) of a matrix will not be explained here, because this will not be used in the project work.

44 Chapter 2. Method

Chapter 3

Results

3.1 Joint control methods for NAO

In the project report, the focus was on Cartesian methods of control, and the conclusion was

that these methods were too slow for achieving anything close to real-time control of the robot

(Evjemo, 2016). As explained in section 2.2, control of the robot’s arm effectors would therefore

be done using joint control methods in this master’s thesis.

3.1.1 Animation methods - why they were not used

This section is based on section 3.1.1 of my project thesis (Evjemo, 2016).

Like for Cartesian methods, the documentation for the robot states that there are two ways of

controlling an effector (Joint Control API, 2015). One way is through animation methods, which

are functions that are time fixed and blocking. Time fixed means that these methods move one

or multiple joints to a target angle within specified time trajectories.

Like the Cartesian animation methods, the animation methods for joint control can be useful

if you want the robot’s arm to move steadily between a given series of orientations. However, if

the animation methods were to be used, it would be necessary not only to register the change

in movement of the STEM-trackers, but also the time it took the tracker to move from point to

45

46 Chapter 3. Results

point. This seemed like unnecessary work, as the goal was really only to make NAO’s arm effec-

tors follow the STEM-trackers as closely as possible.

Even though the time-step-condition is unnecessary, it would have been possible to implement.

The thing that made it clear that animation methods should be avoided altogether, whether us-

ing Cartesian or joint control, was the second characteristic of thesemethods: The fact that they

are blocking. Controlling NAO with blocking methods imply that the next instruction will only

be executed after the end of the previous command (NAOqi Framework, 2012). In other words:

It would make it impossible to control both hands at the same time. The robot would then have

to take turns between executing commands for the two hands, which would likely lead to oscil-

lating movements due to an uneven distribution of force.

An example of a blocking call is the opening and closing command for NAO’s hands. This func-

tionality was implemented in the original summer project in order for the robot to pick up an

object. It was impossible for NAO to open the hand and move the arm at the same time. This

meant that every time wewanted tomake NAO close his hand, this required a full stop for about

three seconds for all othermovements. This could also to large leaps in the angle input for NAO’s

joints, should the controller forget to stopmoving the STEM-tracker. Controlling the joints with

methods that demand that you only perform one command at a time was therefore something

that should be avoided.

3.1.2 Reactive methods

Parts of this section is taken from section 3.1.2 of my project thesis (Evjemo, 2016).

The other way to use joint control to move one of the robot’s effectors, was by using reactive

methods. These methods are non-blocking, which enables the robot to do several things at

once, like moving both arm-effectors independently (Joint Control API, 2015). There were a

few different methods for performing joint control included in the NAOqi SDK.

3.1 Joint control methods for NAO 47

ALMotionProxy::setAngles

This method takes in the parameters names, angles, and fractionofmaxspeed, which are ex-

plained as follows:

• Names: The name or names of joints or chains that should move, for instance "HeadYaw"

or "ElbowRoll".

• Angles: One ormore angles corresponding to a joint or chain. The angle(s) must be given

in radians.

• FractionOfMaxSpeed: A set value between 0 and 1 to describe how fast NAO’s joint(s)

should move to the given angle(s), relative to maximum speed. If 0, nothing will happen,

while if this is set to 1, NAO will try to move the joint(s) to the given angle(s) at full speed.

It can be wise to set this to 0.8 or 0.9, because maximum speed might make the robot

unstable, or lead to oscillations in the effector because the joint reaches the desired angle

so fast that it is unable to stop in time.

When running the IK-solver, the output should be the five angles for the robot’s arm effector

necessary in order to make the sensor in the hand reach a desired position and orientation. To

realize this movement should therefore be as simple as to run the function

ALMotionProxy::setAngles with the five angles in the arm effector as input, along with the

values in radians, and a fraction of max speed.

ALMotionProxy::changeAngles

The NAOqi SDK also contains the function ALMotionProxy::changeAngles, which works sim-

ilarly to the function ALMotionProxy::setAngles: It has the same three inputs, and is also a

method for joint control. The difference is that this method does not set the joints in the angles

that are given as input, but rather changes the joint-angles by this amount. In other words: Each

angle-input is added to the existing joint-angle.

This might initially seem like a good method to use in this project. After all, the goal is to make

NAO’s arm effector follow change in position and orientation of the STEM-tracker. Therefore,

48 Chapter 3. Results

only registering the change in movement , and sending is as input to

ALMotionProxy::changeAngles would perhaps seem like the most logical choice.

The problem is that in order to use joint control methods, it is necessary to get all of the an-

gles for the effector that should realize the movement. In order to get these angles, the desired

position and orientation need to be run through an IK-solver. Because the IK-solver is designed

to give solutions for positions and orientations relative to its torso-frame (see section 2.2.2), it

will return the full angles necessary to realize the movement. This means that in order to use a

function which only looked at the change in the angle value, it would be necessary to subtract

the new angle solution from the existing angle. This seems like it would be more work, not less.

However, it was possible that this function could be faster than ALMotionProxy::setAngles,

so it was considered worth testing if time allowed it.

ALMotionProxy::getPosition

Even though the system created in this project is based on joint control methods, it was neces-

sary to use a Cartesianmethod to find the position and orientation of the robot’s effectors at the

beginning of the program (Cartesian Control API, 2015). As explained in section 2.2.3, the robot

control would be performed while the robot was in the initial position. Therefore, it was only

necessary to collect this information once, and use the collected data for position and orienta-

tion as constants in our calculations.

This method takes in the parameters name, frame, and useSensorValues, which are explained

as follows:

• Name: The name or names of a joint or chain sensor, for instance "RHand".

• Frame: The desired frame for the coordinates sent to the robot. 0 for Torso, 1 for World,

and 2 for Robot. As mentioned in section 2.2.2, the Torso-frame is always used in this

project.

• UseSensorValues: Determines whether or not to use the sensors to find the position and

orientation values. If true, the sensor values will be used to determine the position.

3.2 Receiving tracker data from STEM 49

The function returns the position and Euler angle orientation of the sensor, given inmeters and

radians. The position and orientation for NAO’s hand (sensor input "RHand" and "LHand") are

shown in figure 3.4.

It would also have been quite easy to modify the program so that this function was simply run

once at the beginning of each session, and the positions and orientations saved in some way.

This would also make it possible to alter the robot’s position when performing the arm con-

trol. The reason why this was not implemented from the beginning was to avoid an additional

complication or problem area. If there was time, the program would be altered to include this

functionality, but initially it was more practical to just use the constant data.

ALMotionProxy::getTransform

As will be explained later in the report, it turned out to be quite challenging to get valid output

from the IK-solver. To make sure that the error was not caused by inaccuracy in the data for the

initial position andorientation ofNAO’s armeffectors, themethod ALMotioProxy::getTransform

was also used. This function took in the parameters name, frame, and useSensorValues, which

are explained in the previous subsection.

The only difference between ALMotionProxy::getPosition and ALMotionProxy::getTransform,

is that the latter returns a vector of 16 floats representing the 16 values in the transformations

matrix. In other words: both functions returns the Cartesian position, but one function returns

the orientation in Euler angles, while the other returns the orientation in the form of a rotation

matrix. See section 2.5.2 for a reminder of what data the transformation matrix describes.

3.2 Receiving tracker data from STEM

As explained in section 1.4.1, the Sixense STEM-system is in the BETA-testing phase, and not

finalized for commercial use. Therefore, there is only a limited amount of documentation avail-

able, andmany challenges with using the system had to be discovered and solved along the way.

50 Chapter 3. Results

In section 2.4 it was explained that receiving the tracker data from the STEM-system was one

of these challenges. In section 3.2.1, I will discuss the limitations of the different solutions, and

how this was to be solved in this project. In addition, the STEM-system and the NAO robot have

defined their respective coordinate systems differently. In section 3.4.3 I will explain how this

was solved, and how it had to be compensated for in the scripts.

3.2.1 Old approaches

As explained briefly in section 2.4, communication with Sixense STEM has been a challenge for

as long as I have been using the system. While working with the system, different approaches

have been used to solve the communication problem. For the work done in this master’s thesis,

it was important that the data collected from the STEM-trackers could, after some modifica-

tions, eventually be sent to the IK-solver.

The solution used in the summer project sent the data from the STEM-trackers directly to Lab-

VIEW. If this approach were to be used in the master’s project as well, the C++ based IK-solver

and LabVIEW would have to be able to communicate somehow. LabVIEW can only interpret

C or C++ scripts if they are compiled into a DLL file or a .out file (Using C/C++ Models, 2014).

This approach might therefore mean that the IK-solver somehow would have to be included as

a DLL-file as well, at least if the IK-solver was to communicate directly with LabVIEW.

The experience from working with the project thesis in the fall of 2015 had made it clear that

creating DLL files from code written in C++ is both time consuming and challenging. The C++

in the IK-solver would first have to be wrapped to create regular C-code, before finally creating

DLL-files. This would be very challenging in itself, but an additional problem would be my lack

of depth-understanding of the scripts I would be working with. Therefore, a different method

for using C++ scripts together with LabVIEWwould be preferred.

The same challeng occurred for the solution used in the project thesis: If the communication

was to happen through Python, it would still be necessary to create a DLL-version of the IK-

solver. This seemed both challenging ant time-consuming, and I hoped to avoid this if possi-

3.2 Receiving tracker data from STEM 51

ble. The most promising solution initially seemed to be the system created by Elling Ruud Øye,

which collected the tracker data, and wrote it to file. This system was examined closer, to see if

it provided all necessary data and functionality.

3.2.2 Øye’s tracker-data program

Because the tracker-data program was created by one of my supervisors at SINTEF, he was

availible to answer questions about the program’s functionality and output. The focus was

therefore on understanding what information this program could provide, rather than spend-

ing time understanding exactly how it worked. The program consisted of several scripts and

files, but according to Øye, there was only one file that needed my attention: the executable file

sxCoreTest.exe.

In order to connect the STEM-tracker to the base station, the Sixense System Test-program

that came with the hardware had to be run on the computer. This was necessary in order to

allow the trackers to connect to the base station, and to communicate with the computer. When

asking one of the main developers, Alejandro Diaz, about why this was necessary (Redmine -

Sixense, 2015), he replied:

“Just to make sure, are you running a Sixense application (SxTest)? Without a Sixense enabled

application running, there is nothing for the devices to communicate with. There is no OS level

driver/service for Sixense devices yet, so without a Sixense enabled application running, there is

no one to manage the connection, update LED states, etc.“

So, after running the Sixense System Test-program, the trackers would then be connected

to the base station (at least when not experiencing any of the problems listed in section 3.8).

After the trackers had connected, it was necessary to close the Sixense System Test-program

before running the .exe-file, so that this program and Øye’s program would not compete for

connection to the trackers. I will not go into detail on how this worked, because the important

thing for my thesis is what data this program returned.

52 Chapter 3. Results

While sxCoreTest.exewas running, tracking data from each of the five trackers would be writ-

ten to text files named device0.txt -device4.txt. The data registered in one of these files is

shown in figure 3.1.

Figure 3.1: Tracker data: The following data from the given STEM-tracker was continuously
written to a designated text file.

The different data shown in the text file is explained as follows:

• Device: Ranged 0 to 4 based on which order they were connected to the base station. In

other words, this number could change from time to time, and was not a good indicator

for which of the trackers this data belonged to.

• Docked: Yes/No tells whether or not the given tracker is placed in its docking station on

the STEM-base station. Next is the name of the tracker, in this case the right controller,

or Cont Right. The number at the end of this line is a constant number that tells us which

tracker this is. The trackers are numbered 1-5 in the following order: Left controller, right

controller, left pack, middle pack, right pack.

• Buttons: The two larger controllers have several buttons in addition to the tracking, be-

cause the system is meant for games. The buttons currently pressed are listed here, but

this functionality is not relevant for this thesis.

• Trigger: The two larger controllers each have a trigger which gives out a value between 0.0

and 1.0 depending on howmuch the trigger button is pressed in. If unpressed the value is

0.0, and if pressed all the way in the value is 1.0.

3.2 Receiving tracker data from STEM 53

• Joystick: The two larger controllers have joysticks, because the system ismeant to be used

for games. The two values returned are the x- and y coordinates for the joystick’s position.

In x-direction the value is -1.0 to 1.0 from left to right. In y-direction the value is -1.0 to 1.0

from down to up.

• Position: Returns the exact position of the magnetic tracker inside the given controller

realtive to the magnetic tracker in the base station. The values returned are the x-, y-,

and z-coordinates given in millimeters. The coordinates are given in the STEM-system’s

own coordinate system, and had to be transformed in order to be used for controlling the

robot, as explained in section 3.4.3.

• Rot Quat: Returns the four quaternions representing the current rotation of the STEM-

tracker. The order of the quaternions are qω, qz , qy , and qx (this is discussed in sec-

tion 3.4.2).

Data from the buttons and trigger will not be used in this project, but it is worth noting that this

could easily be used to include functionality for opening and closing NAO’s hand etc. The data

is available - all that has to be done is to combine it with methods from the SDK. As explained

in section 3.3.1, the only data the IK-solver needed was the position and rotation. During the

summer project, the rotationmatrix for the STEM-tracker was retrieved directly from the STEM-

system. It is possible to get the matrix directly, but Øye’s system did not include this function-

ality: it only returned the rotation in quaternions. Because the conversion from quaternions

to rotation matrix seemed pretty straight forward, it did not seem necessary to ask Øye to help

change his data collecting system.

On the previous projects, there had been some problems with identifying what data came from

which tracker, as explained in section 3.2.3 in my project thesis (Evjemo, 2016). The number in

each file identifying which of the trackers the data is from, solved this problem.

As long as the executable file was running, the text files would be updated continuously for

all connected trackers. These coordinates and quaternions could then be read by for example

54 Chapter 3. Results

a LabVIEW-program or a C++-script, and used to do additional calculations. In addition, the

tracking data was displayed in a command window, as shown in figure 3.2.

Figure 3.2: Program running: This window shows the tracker data for all five trackers. In this
case, only two of the trackers are connected. The other three trackers would not connect be-
cause of the problems discussed in section 3.8

3.2.3 Advantages and limitations

Because the tracker-data program returned quaternions instead of Euler angles or the rotation

matrix, this had to be implemented in our system. As explained in section 3.3.1, the IK-solver

needed the transformation matrix representing the desired position and orientation of the end

effector, in our case the hands. Therefore, it was necessary to find the rotation matrix from the

Euler angles. The equations for this are presented in section 2.5.2.

This way of collecting data from the STEM-system seemed very accurate when comparing the

registered data with themovements of the trackers. The registered tracker-data displayed in the

3.3 The inverse kinematics solver 55

command window was updated in what felt like real-time, so it seemed like the write to file-

approach had very low latency. In addition, the trackers would not disconnect and act funny

very often, unlike when I was working on the project thesis. This would change during the

course of the project, which will be discussed further in section 3.8.

If the IK-solver could read the data from the text files, it should be able to use this data to perform

the necessary inverse kinematics and return the angles for the joints in the arm effector neces-

sary to make the end effector end up in the desired position and orientation. How to access the

angles returned by the IK-solver will be discussed further in section 3.5.5.

3.3 The inverse kinematics solver

The foundation for the work done in this master’s thesis, is the analytic IK-solver for the NAO

robot developed by N. Kofinas in 2012. The hope was that by combining the tracker data from

STEM with his IK-solver, it would be possible to make the robot move its arms along the same

trajectory as the trackers, and that this could also be done in something close to real-time. First,

it was necessary to get some basic understanding of how the IK-solver worked, and to test that it

worked properly when given valid input. It would also be necessary to find some way to include

the IK-solver in the rest of the system.

3.3.1 A brief introduction to how Kofinas’ system works

As will be discussed further in section 3.3.3, the C++-scripts that made up the inverse kinemat-

ics solver created by N. Kofinas were quite complicated. However, fully comprehending the

complexity of the code was not necessary in order to use the scripts in this project. The most

important thing to understand was how the input and output of the IK-solver worked, as this

really determined the design of the rest of the system.

The IK-solver needs input in the form of a transformation matrix, which consists of a rotation

represented by a rotation matrix, and Cartesian position coordinates. The position coordinates

must be given in millimeters, and in NAO’s Torso-frame, which is described in section 2.2.2.

56 Chapter 3. Results

Kofina’s system also includes a FK-solver, which takes a given effector and its respective angles

as input. The FK-solver returns a transformationmatrix describing the position and orientation

of the end effector when the joints are set to these angles.

The main.cpp file for Kofina’s system is used as a foundation for how the IK-solver and FK-solver

have been used in this project. This script starts with setting all angles of the five effectors, be-

fore running the FK-solver. The final position and orientation of the end of these five effectors

are then returned in five 2D-arrays named output1-output5. These five arrays are transforma-

tionmatrices describing the current position and orientation of NAO’s five effectors: Left Hand,

Right Hand,Left Leg, Right Leg and Head.

To get solutions from the IK-solver, it should only be necessary to set the transformation matrix

corresponding with the desired effector to values describing the desired point and orientation,

and run the program. If there is a solution, the angle solution will returned in an array called

results. If not, this array will be empty, and the text "No valid solution" will be displayed in the

command window.

In this project, the IK-solver was used by building the Makefile in the Visual Studio Command

Prompt. This created an exe file, which could be run in the command window. It is worth men-

tioning that because I was not able to edit the Makefile, the main.cpp-file had to be named the

same throughout the process. In other words: The backup files could be named mainedit.cpp

etc., but the file currently in use had to be named main.cpp.

3.3.2 Testing the existing scripts

As will be explained in section 3.3.3, the simplest approach for combining the IK-solver in the

C++ files with LabVIEW, was thought to be re-creating the IK-solver in another programming

language. But no matter if the IK-solver was to be implemented in a new programming lan-

guage or not, it would always be necessary to compare the output from potential new IK-solver

files with the output from the old C++-files. And if the original files were to be used, it would still

3.3 The inverse kinematics solver 57

be necessary to check if the results from this IK-solver made sense.

The inverse kinematics in the C++ files created by N. Kofinas had of course been checked by

other professors at his university, and was approved by the IEEE. It therefore seemed safe to

assume that they worked as they should. Still, some testing should be done to make sure that

the IK-solver was using the same movement frame for NAO, if the output made any sense, and

simply to familiarize with the system.

As mentioned in section 3.3.1, the original main.cpp-file created by N. Kofinas was a simple

test program for both inverse and the forwards kinematics calculations.

• First, all of the angles were set manually.

• Then, the FK-solver was run, and the x-, y-, and z-coordinates for the point of the end

effector was returned.

• Lastly, the IK-solver was run with the transformation matrix given by the forward kine-

matics solver as input.

This was an easy way to test if the calculations done by the system were in fact correct. If so, the

angles returned by the IK-solver should be equal to the angles set in the beginning of the script.

When testing this program, the only focus was on the inverse and forwards kinematics for the

arm effectors, because these were the effectors I hoped to control. The arm effectors each have

five DOFs, distributed as explained in section 2.2.4. This meant that five angles had to be set

before the FK-solver was run, and the IK-solver should return the same five angles.

The inverse kinematics solver seemed to work well for both the right and the left arm. When

running the test program, it returned approximately the same angles. The variations were less

than 1μm, and could be considered irrelevant, as the control of the robot will not be that accu-

rate anyway.

58 Chapter 3. Results

However, one exception was discovered. If the initial joint angles were set so that that the el-

bow yaw and wrist yaw were parallel, i.e. the arm was completely straight, the angles returned

by the inverse kinematics solver would not be identical to the initial angles. However, the differ-

ence between the two angles remained the same.

One example of this is shown in figure 3.3, where the initial values for elbow yaw and wrist yaw

are 0.3 and 0, respectively. However, when running the position and orientation through the IK-

solver, the return values were 1.97 radians for elbow yaw, and -1.67 radians for wrist yaw. This

meant that the angles had been altered dramatically. But, as we can see, the difference between

the two yaw angles were the same. The reason for this is that when the arm is kept straight, like

in figure 2.11, the end effector will end up with exactly the same orientation for the two differ-

ent angle combinations. In fact, as long as the elbow yaw and wrist yaw are rotating around

the same axis, any solution for the two yaw-angles is valid, as long as the difference remains the

same. It is also worth mentioning that the new values for elbow yaw and wrist yaw were both

within the valid bounds shown in figure 2.8: 1.97 radians is approximately 112◦, and -1.67 radi-

ans is approximately 96◦.

Several tests were run tomake sure that the IK-solver did in fact return values equal to the initial

values in cases where the arm was not straight, and it worked every time.

Figure 3.3: Change in angles: Here we see that the elbow yaw and wrist yaw has changed val-
ues. However, the difference between the two stays the same, so the end effector would still be
positioned with the desired orientation.

In addition to testing the IK-solver with data directly from the FK-solver, it was also tested with

input for the left arm effector retrieved from NAO using output from the function ALMotion-

3.3 The inverse kinematics solver 59

Proxy::getPosition when NAO was in its initial position. This will be explained in section 3.5.2.

3.3.3 Using original scripts or not

This project uses the IK-solver that was developed in N. Kofinas thesis (Kofinas, 2012), and the

code for the IK-solver was implemented in C++ as part of his thesis. It is possible to implement

MatLab-code directly in a LabVIEW-program, but LabVIEW does not have compatibility with

C++ scripts.

On N. Kofinas’ GitHub, both C++ and MATLAB files for the IK-solver were available. Because

LabVIEW is compatible with .m-files, see section 2.1.1, I wanted to use the MATLAB code as a

basis for the new implementation of the inverse kinematics. However, when contacted, N. Kofi-

nas explained that the MATLAB-code that was available on GitHub was not finished, and could

not be used in its current state.

After consulting withmy supervisors at SINTEF Fisheries and Aquaculture, who have a lot of ex-

periencewith LabVIEWand its compatibilities, the next planwas to try to re-create the IK-solver

in LabVIEW. This could either be done using block diagrams, or by using LabVIEW MathScript

or MatLab-blocks. Because the IK-solver is mostly basic math operations on matrices and vec-

tors, the functionality of MathScript or MatLab-blocks should be enough.

Asmentioned in section 3.3.1, a lot of timewent into getting the old IK-solver to run. Making de-

cisions based on what would be least time consuming therefore becamemore important for the

rest of the project. After studying the scripts thoroughly, I decided against trying to implement

the code in a different programming language. It was thought to be too time consuming, espe-

cially when considering that there was no guarantee that the new system would work properly.

If this was a wise decision or not will be discussed further in section 4.4.1.

60 Chapter 3. Results

3.3.4 Early correspondence with N. Kofinas

Tomake some parts of the code clear, N. Kofinas was contacted through e-mail, see appendix B.

He explained that the inverse kinematics solver naturally depended on being given a valid set of

parameters in order to return a solution. This meant that if it was impossible for the arm effec-

tor to reach a desired point, the IK-solver would not return the closest feasible solution. Initially

the idea was that the possibility of getting no valid solution from the IK-solver would make it

be necessary to implement some exception handling in case the desired position was not in the

feasible area. However, this turned out to be quite a big deal, and much more severe for the

functionality of the system than first expected, as will be explained further in section 4.1.

N. Kofinas also explained that when given valid input, it was very unlikely that a given posi-

tion and orientation of the end effector could have several feasible solutions for the joint angles

in the arm effector. Still, if the IK-solver was to return multiple solutions, a possible way to han-

dle this would be to simply compare the solutions with the current joint angles, and choose the

solution closest to the current robot pose.

As will be explained further in section 3.5, the problems I experienced when trying to use the

IK-solver in the full system caused me to try to contact Kofinas again. At the time of submitting

this Master thesis, he has not replied. However, it eventually became clear why it was so diffi-

cult to get the analytic IK-solver to return valid solutions for the STEM tracker’s trajectory, and

this will be discussed in section 4.1. I also wanted to ask Kofinas why it was unlikely that the

IK-solver would return multiple solutions. As was mentioned in section 3.3.2, certain combina-

tions of position and orientation should potentially have infinite solutions due to parallel joint

axes. Perhaps the IK-solver only returns the first solution it finds, or perhaps it is so sensitive

that it only considers one of the solutions to be accurate enough. This thesis will not answer

these questions, because the system never became functional enough for this to be a concern.

3.4 Processing the tracked data 61

3.4 Processing the tracked data

The data collected from the STEM-tracker had to be processed before it could be sent to the

IK-solver. It had to be combined with the data describing the robot effector’s current position

and orientation, it was necessary to compensate for differences in frames, and the data had to

be transformed into a form that was compatible with the rest of the system.

3.4.1 Getting initial position and orientation of robot arm

This section is partially based on section 3.1.2 of my project thesis (Evjemo, 2016).

As explained in section 2.2.3, the NAO robot’s "initial position" was chosen to be the starting

point for all movement of the robot arms. This position would be used both for testing done on

the actual NAO robot, and on simulated robots used for testing.

In order to be able to account for the starting position of NAO’s hands, it was necessary to collect

the data describing the initial position and orientation of NAO’s hands.

Finding the initial position and orientation of the arms could be done using the method

ALMotionProxy::getPosition from the NAO’robots SDK (Cartesian Control API, 2015). Given

an effector and a movement frame, this function will return the Cartesian position and Euler

angle orientation of the end effector, like seen in the output in figure 3.4. The Euler angles re-

turned here are based on a rotation about the fixed frame, more specifically NAO’s Torso frame,

which was explained in section 2.2.2. In order to use the initial rotation in further calculations,

it was necessary to convert the Euler angles to a rotationmatrix, as will be explained later in this

section.

The only thing separating the coordinates for the right and the left hand, is the y-coordinates.

Other than that, the coordinates are almost exactly mirrored, as shown in figure 3.4. The same

goes for the orientation of the robot hands, which are identical except for opposite orientation

about the x-axis. As shown in figure 2.5, the robot’s x-axis is defined straight forwards, and fig-

62 Chapter 3. Results

ure 1.4.2 showing the initial position confirms that the arms have this opposite rotation around

this axis. In the edited main.cpp-file, these initial values were set manually in the script based

on the position and orientation in figure 3.4.

Figure 3.4: Initial values: Here we can read what the coordinates for NAO’s right and left arm is,
given in the Torso frame. Image taken from (Evjemo, 2016)

After first using the ALMotionProxy::getPosition-function to get the initial Cartesian coor-

dinates and Euler angles for the robot arms, it became clear that it would be much more useful

to get the rotation matrix directly. This would of course shorten the script’s execution time,

but more importantly: It would mean one less possible source of error. Therefore, the function

ALMotionProxy::getTransform was used instead: Given an effector name and a movement

frame, this function will return the complete transform matrix of the given effector, see sec-

tion 3.1.2.

By adding the movement and rotation of the tracker together with the initial position and ro-

tation of NAO’s arms, like explained In section 2.5.3, i was possible to find the Cartesian coordi-

nates and rotationmatrix describing the desired point for the end effector to end up. How to do

this is explained in section 3.4.4.

3.4 Processing the tracked data 63

3.4.2 Some necessary transformations

When combining different hardware and softwarewith individual specifications regarding units,

frames etc., there were a lot of transformations and calculations that had to be done. This sec-

tion sums up some of the modifications that had to be done on different kinds of data before it

was compatible with the rest of the system.

Euler angles to rotation matrix

As shown in figure 3.4 and explained in section 2.2.3, the initial position and orientation of the

arm effectors could be found using the function ALMotionProxy::getPosition. This function

would return the rotation given in Euler angles relative to the robot’s Torso frame. As explained

in section 2.5.3, calculations on partial rotations are possible when using rotation matrices. Be-

cause of differences in frames, it would be easier to have the initial orientation of NAO’s arm

effectors represented as a rotation matrix rather than in Euler angles. Using rotation matrices

also removes some uncertainty because an Euler angle rotation can be described as only one

rotation matrix, while one rotation matrix can describe several combinations of Euler angle ro-

tations. This is explained in section 2.5.2.

When knowing the initial Euler angle rotation, the rotation matrix could be found using the

MatLab-function eul2rotm, see section 2.1.1. It was important to remember that the function

eul2rotm assumes that the Euler-vector has the Euler angles in the order z, y and x. The rotation

matrix gotten fromMatLab could then be included in the script as constants.

Including the initial position and orientation as constants seemed like a possible approach since

the idea was to always start the robot in the same initial position, as described in section 2.2.3.

Still, it would have been more ideal to extract the initial position of the arm effectors at the

beginning of the program. As mentioned earlier in this section, a different function from the

NAOqi SDK was used to get the initial rotation matrix directly, skipping the MatLab-step. Using

this function would make it even easier to include this in the script, rather than setting position

and orientation as constants.

64 Chapter 3. Results

Quaternions to rotation matrix

In section 3.2.2 it was explained that the position and orientation of the STEM-trackers were

written to file, and that theywere represented inmillimeters and quaternions. It is possible to do

partial rotation calculations using quaternions, but I had worked more with rotation matrices

than with quaternions, and consequently felt more comfortable with this way of representing

rotation. I therefore chose to convert the rotations described in quaternions to rotation matri-

ces, using the formulas shown in figure 2.14.

When using quaternions, it is always necessary to check if they are given in the order qω, qx ,

qy , qz or in the order qx , qy , qz , qω, as explained in section 2.5.2. To check this for the STEM-

system, the following approach was used:

• First, the STEM-tracker was placed in the orientation which relative to STEM’s frame rep-

resents a rotation of zero. To find this position, the Sixense STEM application that came

with the system was used.

• Then, MatLab was used to see how the quaternions looked for a rotation equal to zero.

That is: Euler angles ex=ey=ez=0, or a rotation matrix equal to the identity matrix, R=I .

• Lastly, the quaternions from the STEM-tracker with zero rotation were compared to the

results fromMatLab.

The testing showed that when the rotation is zero, the quaternions have these values: qω = 1, qx

= qy = qz = 0. The output from the STEM-tracker was approximately " 1 0 0 0 ", which gave this

order of the quaternions: qω, qx , qy , qz .

In order to double-check that the order of the quaternions was registered correctly, two exam-

ples from Sixense’ own documentation were used (Sixense SDK Overview, 2012).

According to the documentation from Sixense, the point of zero rotation for the flat trackers, or

packs, was when they were lying flat on the table with the LEDs facing the ceiling, pointing in

3.4 Processing the tracked data 65

Figure 3.5: Checking rotation matrices: According to the documentation from Sixense, these
two rotations of the tracker relative to the base station, should result in the two rotationmatrices
Ra and Rb (Sixense SDK Overview, 2012).

the same direction as the base station. This is shown to the left in figure 3.5. Being the point of

zero rotation, the rotation matrix created from the quaternions in this position should result in

the identity matrix, illustrated in matrix Ra .

Ra =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠
,Rb =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 0 −1
0 1 0

⎞
⎟⎟⎟⎟⎠

The documentation also states that if the tracker is placed aiming at the ceiling, like shown to

the right in figure 3.5, then the resulting rotationmatrix should be similar tomatrix Rb . Unfortu-

nately, the C++ script did not result in these two matrices when processing the quaternions for

the tracker in this position. This meant that the order of the quaternions were not correct after

all.

As explained in section 3.2.2, the rotation matrix was collected directly from the STEM-tracker

during the summer project and the work on my project thesis. One thing that led to some con-

fusion back then, was that the rotation matrix was indexed differently than what is the norm,

which is explained in detail in section 3.2.2 in my project report (Evjemo, 2016). According to

66 Chapter 3. Results

documentation from Sixense, the rotationmatrix is stored in column order, each of the columns

representing one of the three transformed unit axes (Sixense SDK Overview, 2012).

Rnor m =

⎛
⎜⎜⎜⎜⎝

r00 r01 r02

r10 r11 r12

r20 r21 r22

⎞
⎟⎟⎟⎟⎠
,RST E M =

⎛
⎜⎜⎜⎜⎝

r00 r10 r20

r01 r11 r21

r02 r12 r22

⎞
⎟⎟⎟⎟⎠

This meant that the rotation matrix collected directly from the STEM-tracker in earlier work,

was composed so that it actually was the transpose of a rotationmatrix following the norm. The

next idea for achieving the correct rotationmatrix from the four quaternions, was therefore that

the quaternions might be given in an order, or calculated in a way which made the resulting ro-

tationmatrix have the same composition. The order of the elements in thematrix was therefore

changed, and tested both for the order qω, qx , qy , qz and the order qx , qy , qz , qω. However,

when placing the pack in the orientations illustrated in figure 3.5, none of these matrices corre-

sponded to the matrix Ra or Rb .

The order of the quaternions was eventually determined by testing the quaternion values when

the tracker was rotated 180◦ around each of the three axes, always starting in the "zero-rotation"

position shown to the left in figure 3.5. When the rotation was zero, the qω would be 1 or -1,

while the rest of the quaternions were 0. When rotating the controller 180◦ about one of the

three other axes, the quaternions corresponding to this axis would be 1 or -1, while the others

would be zero. The quaternion output was checked with MatLab, to see which of the quater-

nions this rotation corresponded with.

This last approach showed that the order of the quaternions was in fact qω, qz , qy , qx .

Scaling of translation

The tracked Cartesian position for the STEM-trackers was given in millimeters. When using the

function ALMotionProxy::getPosition, the position of NAO’s effector was given in meters.

3.4 Processing the tracked data 67

The IK-solver needed the input in millimeters. It was therefore necessary change the unit of the

position of NAO’s effector frommeters to millimeters, simply by multiplying the value by 1000.

3.4.3 Compensating for differences in coordinate systems

This section is partly based on section 3.2.2 of my project thesis (Evjemo, 2016).

The STEM-system has defined its coordinate system, differently from the NAO robot. For NAO,

the x-axis points forwards, the y-axis points to the left, and the z-axis points upwards, as seen in

figure 2.5. For the STEM-system, the x-axis points to the right, the y-axis points upwards, and

the z-axis points backwards, like seen in figure 3.6. Because the IK-solver uses the NAO robot’s

coordinate system, the tracked data received from STEM had to be transformed into NAO’s co-

ordinate system. In other words, it was necessary to implement that:

• The STEM-system’s x-axis was the NAO robot’s negative y-axis

• The STEM-system’s y-axis was the NAO robot’s z-axis

• The STEM-system’s z-axis was the NAO robot’s negative x-axis

Fixing the Cartesian coordinates was quite basic, and could be done simply by changing which

of the Cartesian values read from file was connected to which coordinate, as shown in figure 3.7.

However, it was also necessary to transform the rotation matrix R1
2 before it could be sent to the

IK-solver.

Like for the Cartesian coordinates, this meant changing the output of the rotationmatrix so that

it fitted the robot’s coordinate system. If the system had used Euler angles, this could have been

done by just changing the output according to the axes, like for the Cartesian position. But be-

cause the IK-solver needed the rotation matrix, as explained in section 3.3.1, the process was a

bit more complicated.

As explained in section 3.2.2, the tracker data describing the orientation of the STEM-tracker

68 Chapter 3. Results

Figure 3.6: STEM coordinates: The coordinate system that the STEM-trackers follow are defined
like shown in this figure, which is differently from the robot’s coordinate system. Picture taken
from (Evjemo, 2016)

Figure 3.7: Changing the axes: When registering the Cartesian position of the STEM-conroller,
the axes are changes to fit NAO’s coordinate system

.

was registered in quaternions. Because changing frames for rotation matrices is quite straight

froward, the first step was therefore to transform the rotation from quaternions to the corre-

sponding rotation matrix. Next, the registerred rotation had to be transformed from STEM’c

coordinate system to NAO’s coordinate system.

At first, this was done by rotating the STEM-coordinate system 90◦ around the y-axis, and then

3.4 Processing the tracked data 69

-90◦ around the x-axis. The rotation matrices for these rotations are given as follows (Spong,

Hutchinson and Vidyasagar, 2006):

Ry =

⎛
⎜⎜⎜⎜⎝

cos(90°) 0 sin(90°)

0 1 0

−sin(90°) 0 cos(90°)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

0 0 1

0 1 0

−1 0 0

⎞
⎟⎟⎟⎟⎠

Rx =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cos(−90°) −sin(−90°)
0 sin(−90°) cos(−90°)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

1 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎟⎟⎠

When registering the rotation matrix R0
1 from STEM, the transformation to the robot’s coordi-

nate system was done by multiplying it with these to rotations, as seen in equation 3.1

R0
1 = RST E M ·Ry ·Rx (3.1)

The rotation matrices Ry and Rx were post-multiplied, because the rotations are about the cur-

rent axes, not the axes in the world coordinate system, as explained in section 2.5.4.

However, testing showed that this approach really only worked if the STEM-tracker’s initial ori-

entation corresponded to what the STEM-system considered "zero" rotation relative to the base

station (see section 3.7.2). My assumption had been that the tracked orientation were always

given relative to the STEM-system’s base station, but this turned out to be wrong. The reason

was that the registered orientation was given relative to each tracker’s current orientation. In

other words: the frame in which the rotation was registered, followed the rotation of the STEM-

tracker continuously. This meant that is was necessary to compensate for the STEM-tracker’s

initial orientation relative to the base station as well, not only the difference between the frames

of the base station and the robot.

70 Chapter 3. Results

While this initially seemed like it would only create a more complicated system, this also made

it possible to trick the system into registering the orientation in the robot’s frame from the be-

ginning. How this was done will be explained further in section 3.7.2.

3.4.4 Real movement for robot

When the change in position of the STEM-tracker was registered, this had to be combined with

data for the position and orientation of NAO’s arm effector. The initial rotation of NAO’s arm

effector was described by the rotation matrix R0
1N AO , while the rotation of the STEM controllers

after starting the program was described by the rotation matrix R1
2ST E M . Because the goal was

to make NAO’s arms follow the movement of the STEM-trackers, the movements after starting

the program should be identical:

R1
2N AO = R1

2ST E M (3.2)

The new rotation matrix for NAO’s arm, R1
2N AO , was therefore found by multiplying the two

rotation matrices together (Spong, Hutchinson Vidyasagar, 2006):

R0
2N AO = R0

1N AO ·R1
2ST E M (3.3)

The goal was to get the final transformation matrix T 0
2N AO describing the full, current position

and orientation, and send this into the IK-solver created by N. Kofinas. To do this, it was neces-

sary to find the new position as well.

As explained in section2.5.3, this was done by adding the change in the Cartesian coordinates of

the STEM-tracker to the initial position of the effector:

new posN AO = i ni t posN AO + (new posST E M − i ni t posST E M) (3.4)

3.5 Trying to get valid output from the IK-solver 71

new pos0N AO is the desired Cartesian position of the effector. By combining this Cartesian posi-

tion with the rotation matrix R0
2N AO representing the desired orientation, it was possible to get

the transformationmatrix T 0
2N AO describing what the robot’s effector should do. The final trans-

formationmatrix was then sent into the IK-solver, as explained in section 3.3.1 and section 3.3.2.

3.5 Trying to get valid output from the IK-solver

The methods and transformations necessary to crate the transformation matrix describing the

desired position and orientation for the robot’s arm effector were implemented directly in the

main.cpp file of the IK-solver. As explained in section 3.3.1, the reason was that the IK-solver

was used by running an exe-file created when building the scripts. In this section I will present

some of the tests that were run on the system and the scripts to try and get valid output from the

IK-solver. Some of the choices made when editing the main.cpp file are also explained. All the

testing was done for NAO’s left arm effector.

3.5.1 Initial testing: movement between two points

It turned out to be extremely difficult to get valid output from the IK-solver. Testing was done

by writing the initial position and orientation of a STEM-tracker to a file called deviceX0.txt.

Then, the tracker was moved slightly, and the program run again, this time writing the value to

a different text file called deviceX1.txt. A more detailed description on how this was done is

included in section 3.5.3. With the tracker data for two different points, the change in position

and orientation between these two points could be calculated using the methods explained in

section 3.4.

However, when the new transformation matrix for NAO’s arm effector was sent as input to the

IK-solver, all it returnedwas "No valid solutions". As explained in section 3.3.2, the IK-solver had

been tested to check that it worked the way it should as long as the input was valid. Still, during

testing I never seemed to get a valid solution when trying to run the IK-solver for a movement

of the STEM-tracker, no matter how small or simple the movement was.

72 Chapter 3. Results

Because the IK-solver had not only been created as a thesis by Kofinas, but had also been pub-

lished as a scientific article byKofinas and several professors (Kofinas, Orfanoudakis, and Lagoudakis,

2013), it seemed safe to assume that it should work properly when given valid parameters.

Therefore, it seemed very probable that the error was somewhere in my own code. So a se-

ries of different tests were performed to try to identify the problem. These are described in the

following sections.

3.5.2 Checking for type errors

As explained in section 3.3.1, I did not feel that I fully understood how the IK-solver scripts

worked. Therefore, my initial though was that the problem could be re-setting the values in the

transformation matrix which was sent into the IK-solver. Unlike Python, which had been used

for most of the programming when writing my project report (Evjemo, 2016), C++ is a type-

sensitive language, meaning that any mix-ups between floats, ints, or doubles etc. could be

critical.

Because of this, I tried setting the transformation matrix to values retrieved from NAO using

output from the function ALMotionProxy::getPosition when NAO was in its initial position. As

explained in section 3.1.2, this function returns the position and Euler angle rotation of a given

effector. The output that was used is showed in figure 3.4. The Cartesian position only had to

be scaled down from meters to millimeters. Using the eul2rotm-function in MatLab (see sec-

tion 2.1.1), I was able to get the rotationmatrix describing the same rotation as the Euler angles.

The rotation matrix values were used to replace the old values in the transformation matrix.

This time, the IK-solver did return a valid solution in the form of five angles, as shown in fig-

ure 3.8. To make sure that this really corresponded with NAO’s initial position, they were tested

on the 3D-model of the robot in LabVIEW. The left arm of the 3D-model ended up as shown in

figure 3.9, which convinced me that the IK-solver worked properly when given valid input. At a

later stage, this was also tested on the virtual robot in LabVIEW.

3.5 Trying to get valid output from the IK-solver 73

Figure 3.8: Valid solution: When manually setting the transformation matrix in the C++-script
to match the transformation matrix for NAO’s left hand when being in the Initial Position, the
IK-solver returned the output shown above for the five angles in NAO’s left arm effector.

From the results illustrated in figure 3.9, it seemed clear that the position of the left armmatched

the position of the left arm on the actual robot when in the Initial position.

The conclusion of this test was that the problems with getting valid output from the IK-solver

were not caused by wrong types, or other errors related to changing the values in the transfor-

mation matrix.

3.5.3 General troubleshooting

The next step was to double-check if the problem was caused by some mistake in the edited

scripts related to units or simple calculations. It would have been much harder to discover er-

rors in the system if the troubleshooting was done when the C++-scripts were combined with

LabVIEW etc, so in a sense it was a good thing having to do these tests at an early stage.

One example was double-checking the calculations of the changes in the tracker’s position and

74 Chapter 3. Results

Figure 3.9: Matching angles: When setting the five angles on the left armof the simple 3D-model
on the right, the final position and orientation of the armmatched the actual robot in its Initial
position. As mentioned in section 3.5, testing was only done on the left arm of the robot.

orientation, and see if the calculated movement made any sense when comparing it to the

movement in the real world.

A simple test was run to check if the inverse kinematics solver in C++ did in fact return results

that made sense. The program that wrote the tracker data to file was run. Two backup-versions

of the given text file was then saved at two different times, with the tracker being moved slightly

in between. The two backup files are shown in figure 3.10, where device30 was saved first, and

device31was saved after the tracker was moved.

3.5 Trying to get valid output from the IK-solver 75

Figure 3.10: Small changes: Here we see the tracking data from the same tracker at two different
points in time. It is clear that the rotation is almost identical, as the quaternions are quite similar,
but the controller has moved a lot in the STEM-system’s negative z-direction. This means that it
has movedforwards, or in the NAO robot’s positive x-directions, see section 3.4.3.

If the scriptworked as it should, the transformationmatrix created at the end of the script should

contain the new rotation matrix and Cartesian coordinates for NAO’s arm effector if it began its

movement in NAO’s initial position, see section 3.4.2.

Checking if the rotation matrix made sense or not is a little complicated, and requires using

the methods explained in section 2.5.3. Checking the Cartesian coordinates in the transforma-

tion matrix should on the other hand be relatively straight forward, so this was step one. The

initial position of the effector the test was run on, NAO’s left hand, is:

• x-coordinate: 110.01

• y-coordinate: 127.08

• z-coordinate: -55.29

When changing the tracked coordinates for the STEM-tracker to match NAO’s coordinate sys-

tem like described in section 3.4.3, the movement given in millimeters ends up being:

• In x-direction: -(346 - 489) = 143

• In y-direction: -(159 - 131) = -28

• In z-direction: 149 - 157 = -8

76 Chapter 3. Results

Added together, the new Cartesian coordinates for NAO’s hand should be:

• x-coordinate: 110.01 + 143 = 253

• y-coordinate: 127.08 - 28 = 99

• z-coordinate: -55.29 - 8 = -63

If the scripts worked properly, these values should be found in the right-most column of the

final rotationmatrix. However, when running the scripts, the final transformationmatrix ended

up as shown in figure 3.11. This meant that the maths in the script was somehow wrong.

Figure 3.11: Wrong output: It is clear that the calculated Cartesian coordinates do not match
what is known to be the correct answer. Somewhere in the program there must be some math-
ematical error.

In this case, themistake was simply that the axes had been flipped one toomany times, because

the difference in coordinate systems had already compensated for earlier in the script.

Several tests like this were run in order to double check that the position and rotation values

were saved correctly, and that calculations were done right. All details regarding this testing will

not be included in this thesis, as most of them are quite elementary, though time-consuming.

3.5 Trying to get valid output from the IK-solver 77

3.5.4 Reducing accuracy

As explained in section 3.5.2, problems with variable types etc. when setting the values in the

transformation matrix was not why the IK-solver would not return valid solutions. So far, the

only way of getting valid solutions from the IK-solver, seemed to be sending in positions and

orientations for the effector which were know to be valid because they were acquired by us-

ing the ALMotion:getPosition-function on the actual robot. If the IK-solver worked the way

I hoped, it should be possible to get valid solutions for other desired positions and orientations

for the arm effector as well.

The next potential problem investigated, was that the rotation matrix and Cartesian positions

that were sent to the IK-solver might be too specific. In other words: There might be so many

decimals that the exact position and orientation did not correspond to a valid solution, even

though another point close-by might give a solution. Reducing the number of decimals was

therefore tested, which meant sending a less accurate rotation matrix and position to the IK-

solver. The number of decimals was reduced from 6 significant figures, to 3 decimals after the

decimal point. For the Cartesian coordinates, this meant reducing the number of decimals by

one or two decimals, as the old values had six significant figures.

This kind of change in the number of decimals would make the system less accurate, which

could end up being a problem in itself. But it still had to be tested, as a slightly less accurate sys-

tem seemed better than a system that did not work at all. Also, the reduction in accuracy would

probably not be too noticeable in the end. After all, reducing the number of decimals from 5 to

2, only means reducing the accuracy of, for instance, the Cartesian position with one tenth of a

millimeter. When considering that the person controlling the robot is unlikely to be able to con-

trol his own movements with that kind of accuracy in the first place, it seemed negligible. Still,

possible implications would have to be discussed and evaluated further if reducing the number

of decimals did in fact help.

78 Chapter 3. Results

Figure 3.12: Change in solution: As shown in the command windows above, reducing the num-
ber of decimals for the values in the transformationmatrix also changed the values of the angles
returned by the IK-solver. The commandwindow to the left is shows the original transformation
matrix, while the scaled version is shown to the right.

Changing the number of decimals of the values in the transformation matrix on known, valid

positions, had some effect on the solution returned by the IK-solver, as shown in figure 3.12.

However, it did not seem to solve the problem, because any solution based on a movement

made by the STEM.tracker would still return "No solution".

In fact, if the number of decimals was reduced to only two decimals after the decimal point,

the IK-solver would give "No valid solution" even for the position and rotation taken directly

from the robot, which I knew was supposed to have a solution. This made it necessary to recon-

sider the approach of reducing the number of decimals, at least for the values representing the

rotation matrix. Making these values less accurate might lead to the rotation matrix no longer

being full rank. Therefore, I abandoned this approach. Reducing the accuracy of the Cartesian

position, on the other hand, proved useful on a later stage of the project. This will be explained

further in section 3.7.3.

3.5 Trying to get valid output from the IK-solver 79

3.5.5 Continuous update of movement

As explained in section 3.5.2 and 3.5.4, neither setting the types in the transformationmatrix nor

the number of decimals for the values in the transformation matrix seemed to be the problem.

However, as explained in section 3.5, the testing was done by finding the movement between

two specific Cartesian positions and orientations. Therefore, it was possible that I had only

been unfortunate with my choice of values. Even though about 15-20 different movements had

been tested, this was still a relatively small set of points and orientations.

The next step was therefore to create a program which would continuously check for valid so-

lutions for a desired position and orientations while the STEM-tracker moved. Because writing

to and reading from text files was already used in different parts of this project, this method was

used here as well. The new program should:

• Register and save the initial position and orientation values of the STEM-tracker, prefer-

ably to a text file.

• Save the current position andorientation values for the STEM-tracker. These values should

also be written to a text file, but a different one than the initial values.

• Continuously update the position and orientation values for the STEM-tracker in close-to

real-time. This could hopefully be done using a loop.

Since the IK-solver was used through the exe-file, as explained in section 3.3.1, it was natural

to try and use this file directly in the new program. The hope was to not have to spend time

learning a newmethod unless it became absolutely necessary.

A simple program called IKtester.vi was created in LabVIEW, and the block diagram part of

this program is shown in figure 3.13. Before running IKtester.vi, Øye’s program for writing

the STEM-tracker data to file, SixenseTest.exe (see section 3.2.1), had to be run in the back-

ground, before IKtester.vi was run.

80 Chapter 3. Results

Figure 3.13: Continuous IK-solver testing: The exe-file is calculating the movement between
the tracker data in deviceinit.txt with the data currently written in device1.txt. The data
in the last file is continuously updated by Øye’s program, see section 3.2.2.

This program would first read the tracker values from the text file corresponding to the STEM-

tracker in use. See section 3.2.2 for details regarding which file corresponds to which tracker.

These values were then copied to the text file deviceinit.txt. This was only done once, at the

very beginning of the program,meaning that the text in deviceinit.txt remained the same for

the entire session. This was necessary in order to find the actual movement of the STEM-tracker

relative to where it started, as explained in seciton 2.5.3.

In the next part of the program, shown to the right in figure 3.13, the NAOKinematics.exe-

file was run continuously within a while-loop. Because Øye’s file SixenseTest.exe was still

running in the background, the data written in device1.txt was updated continuously, see

section 3.2.1. Simultaneously, some small changes were done in main.cpp. Another textfile,

3.5 Trying to get valid output from the IK-solver 81

Figure 3.14: Angle solution: The C++-script was edited so that if there was a valid solution, the
five angles were written to a text file called deviceangles.txt. If there was no solution, the line
"No valid solution" was written to this text file instead.

deviceangles.txt, was updated with these angles, as shown in figure 3.14. If there was no

valid solution, the text No valid solution was written there instead.

For this program to work, it was only necessary to include the block with functionality for run-

ning the NAOKinemtaics.exe-file through a commandwindow, which can be seen the top-right

corner of figure 3.13. In addition, it was necessary to continuously check what was written in

deviceangles.txt. Some functionality for continuously reading from the twofiles device1.txt

were also included. Thiswas necessary in order to see that the valueswerewritten to device1.txt

fast enough, and that the values made sense. It was possible to see if NAOKinematics.exe

gave valid solutions for any of the new positions and orientations simply by reading from the

deviceangles.txt-file: If any valid solutions were generated, the text read from this file should

be angle values.

82 Chapter 3. Results

AS it turned out, all that was ever returned was the text No valid solutions, so the IK-solver still

made no sense. It is also worth mentioning that LabVIEW would sometimes crash during these

tests, though not so often that it made it impossible to run the tests. However, LabVIEW did

seem to crash more often when moving the STEM-controller to an infeasible point, so that the

IK-solver would return "No solution".

3.5.6 Normalizations and orthogonality

To begin with, I had assumed that all quaternions that were collected from the STEM-trackers

were already normalized. This had been tested by checking if equation 3.5was true for a random

sample of quaternions collected from the STEM-tracker.

√
q2x +q2y +q2z +q2w = 1

(3.5)

Having normalized quaternions was necessary in order to create an orthogonal rotation matrix

by using the equations described in figure 2.14, as these were valid if and only if the quaternions

were normalized (Using Quaternion to per-form 3D rotations, 2011).

It still seemed necessary to double-check if all of the collected quaternions were normalized,

and if the resulting rotation matrix were indeed orthogonal. The IK-solver could perhaps not

return a valid solution because it was not able to handle a non-orthogonal rotation matrix as

input. The C++ script was modified to check if q2x +q2y +q2z +q2w = 1 every time new quaternions

were read from file. It was unnecessary to check for the square root, because +�1= 1.

It turned out that the quaternions were in fact not always normalized, which meant that q2x +
q2y +q2z +q2w sometimes added up to a number which was a few hundredths larger than 1. It was

only a very small deviation, but it was possible that this was the reasonwhy the IK-solver did not

work as it should. Luckily, normalizing quaternions is done quite easily by dividing each of the

quaternions with whatever number you do get from the left side of equation 3.5. The script was

3.5 Trying to get valid output from the IK-solver 83

modified to always normalize the tracked quaternions, regardless of whether or not they were

normalized already. This was OK because trying to normalize an already normalized quaternion

will not change anything, as this would only mean dividing each quaternion by 1.

Creating a rotation matrix based on normalized quaternions, should ensure that the resulting

rotation matrix was indeed orthogonal, as explained in section 2.5.2. Still, things can go wrong

when doing numeric calculations. For example: 0.67+ 0.67 = 1.34, which can be rounded off

to 1.3. But if the addends are rounded off before they are added together, the result will be:

0.7+0.7= 1.4. These kinds of simplifications can result in small irregularities, and give a differ-

ent result than what was expected. It was therefore necessary to check it the rotationmatrix was

indeed always orthogonal.

To start with, this was donemy checking if the determinant was equal to 1, which turned out not

to be the case. The determinant would almost always end up as a number slightly larger than 1,

like 1.000000342. This could seem like an insignificantly small deviation, but it was still possible

that the IK-solver could not handle anything but absolute accuracy. For orthogonal matrices,

the product of the matrix and the matrix’ transpose equals the identity matrix, as explained in

section 2.5.2. Testing showed that this was not the case for the rotation matrices generated in

this system, which was not unexpected considering that the determinant was also inaccurate.

The next step was therefore to find a way to get the correct, orthogonal rotation matrix.

The method of polar decomposition was considered, and is described in section 2.5.2. This

method takes a non-orthogonal matrix, and gives us the closest orthogonal matrix. Because

there are several steps to this method that demands matrix multiplications, it seemed quite

comprehensive to implement in the script. Especially considering that this would have to be

done every time a new rotation matrix was created from the quaternions received from the

STEM-tracker.

Because implementing the polar decomposition method seemed both challenging and time-

consuming, it was important to make sure that it was necessary. The idea was that the IK-solver

84 Chapter 3. Results

was very sensitive to non-orthogonal rotation matrices. If this was really the case, then the ro-

tation matrix collected directly from the NAO robot in a valid posture (see section 3.3.2), which

did get a valid solution from the IK-solver, should be orthogonal. However, this matrix’ deter-

minant was also slightly larger than 1, with a margin just as large as for the other matrices. This

is shown in figure 3.15, where it is also shown that the product of the rotation matrix and the

rotation matrix’ transpose was not exactly equal to the identity matrix either.

Figure 3.15: Checking for orthogonality: Here is the results when checking if the rotationmatrix
is orthogonal. The red square at the top shows that the product of the matrix R and R transpose
does not equal the identity matrix, and further down it is shown that the determinant is in fact
larger than 1. Still, the IK-solver returns a valid solution.

This was proof that the IK-solver could indeed handle slightly inaccurate rotationmatrices. The

polar decomposition method was therefore not implemented. Making sure that the rotation

matrices were always orthogonal might be a good functionality in a fully-working system, since

rotation matrices are supposed to be orthogonal. However, seeing as the system did not give

any valid output at this point, it did not seem like a good idea to use time on implementing this

functionality at this stage of the project.

3.5 Trying to get valid output from the IK-solver 85

3.5.7 Alternative approach: Do most calculations in MatLab

Because it seemed impossible to get any valid output from the IK-solver, I started wondering if

the problem might be that the formulas created for matrix calculations in my edited main.cpp

file were not correct. The output of these functions had been cross-checked with built-in meth-

ods inMatLab to check that they would in fact invert a matrix correctly etc. Even so, it started to

seem plausible that errors made in the calculations had to be the problem.

An alternative LabVIEW-programwas therefore created. As explained in section 2.1.1, LabVIEW

hasMatLab-blocks that allows you to use manyMatLab-methods directly in LabVIEW. The new

programwould read the initial and current tracking data for the STEM-tracker directly from the

two text files deviceinit.txt and device1.txt, just like the system described in section 3.5.5.

However, this program would not convert the quaternions to rotation matrices using the for-

mulas in figure 2.14, or do matrix multiplications based on formulas I had programmed my-

self. Instead, the quaternions would be sent to the MatLab-block, and all computations done

using MatLab-methods. The MatLab-block would then return the final transformation matrix

describing the desired point and orientation of NAO’s arm effector.

The output from this new program ended up being almost exactly the same as the output of

the C++ script. Some decimals had changed, which were to be expected when doing a series of

calculations in two different programming languages, each with their own set of norms. When

testing with values collected from the initial position of NAO’s hand, the new transformation

matrix would give close to the same solution as when using the transformation matrix frommy

C++ script. But it was still impossible to find a valid solution with a final transformation matrix

based on the movements of the STEM-tracker.

This was of course also good news in the sense that it made me more confident that the func-

tions I had implemented in C++ were correct. Still, the problem was not solved. Because the

MatLab-based program in LabVIEW was slow, and would crash quite often, the calculations

were again done directly in the C++ script after these series of tests.

86 Chapter 3. Results

3.6 Testing an alternative IK-solver

As explained in section 3.5, getting valid output from Kofinas’ IK-solver proved to be very prob-

lematic. I tried discussingwhat the problemmight bewith the students I hadworkedwith on the

summer project in 2015, seeing as they also had experience with working with the NAO robot.

As it turned out, one of them, Åsmund Pedersen Hugo at the institute of Marine Cybernetics,

had developed an analytic IK-solver for the NAO robot inMatLab during his project thesis in the

fall of 2015. I was not aware that he had developed this kind of system, or I might have consid-

ered using it from the beginning. MatLab is directly compatible with LabVIEW, as explained in

section 2.1.1, which might have made the system structure less complicated.

Hugo had developed an analytic, full-body IK-solver for the NAO robot in MatLab. His solu-

tion had never been tested on the physical NAO robot, and Hugo informedme that some of the

specifications he had used for joint length and joint angle limitations might not be accurate.

Still, at this point I felt that it would be better to test an IK-solver on an experimental stage, than

to be stuck with a thoroughly tested IK-solver that would not give any valid output. After all, I

had both my own 3D-model in LabVIEW and the virtual robot described in section 2.3 to test

the IK-solver on. Even if Hugo’s IK-solver proved to be inaccurate, there was no risk of damaging

the physical robot.

Unfortunately, when taking a closer look at Hugo’s IK-solver, more specifically the IK-solver for

the arm effectors, it became evident that this IK-solver would not work on the simulated robots

in my project. The reason was that Hugo had made an assumption regarding the DOFs of the

arm effector that did not match the physical robot. Hugo’s IK-solver was based on the elbow

yaw and wrist yaw of the arm effector always rotating about a parallel axis, namely the robot’s

underarm. In other words, it assumed that the elbow yaw was a rotation about the underarm.

The joint angles representing the rotations of the elbow yaw and wrist yaw had therefore been

combined, and the arm effector was considered to have only 4 DOFs instead of 5.

As explained in section 3.3.2, the elbow yaw and wrist yaw does in fact rotate about the same

3.7 Achieving valid output - a revelation 87

Figure 3.16: Actual DOFs: This figure shows the armeffectors 5DOFs, and aboutwhich axis each
of the joints rotates. As shown here, the elbow yaw is a rotation about the overarm, whereas the
wrist yaw is a rotation about the underarm. Picture taken from Choreographe.

axis when the robot arm is kept straight. But, as shown in figure 3.16, the elbow yaw on NAO’s

arm effector is in fact a rotation about the overarm. This implies that when the arm is bent

slightly, the two joints no longer rotate about the same axis. Because the alternative IK-solver

was based on an arm effector with a different structure and different DOFs than the real one,

I only did basic testing of it, never including it in my complete system. Hugo’s solution seems

both valid and functional, just not for a robot arm with the same DOFs as NAO.

3.7 Achieving valid output - a revelation

After what seemed like countless tests and modifications to the script, it was finally possible to

get valid solutions from the IK-solver. However, this was only under very specific circumstances,

which lead to some quite eye-opening realizations related to the methods used in this project.

In this section it will be explained how these final tests were done, and how they lead to valid

joint angle solutions from the IK-solver.

88 Chapter 3. Results

3.7.1 Changing NAO’s initial position

After many attempts to make the IK-solver return a valid input, it seemed like the structure of

the input was not the problem. For instance, the problem was not that the rotation matrix-part

of the transformation matrix was not orthogonal, because the IK-solver could handle small ir-

regularities, as explained in section 3.5.6. But it was possible that the combination of orientation

and position that were sent to the IK-solver was infeasible.

The next step was to test a simple rotation movement of the robot hand, controlled by the

STEM-tracker. The rotations that were sent to the IK-solver , were given relative to the robot’s

own coordinate system. In the initial pose used for the robot, the hand effector was kept

in an orientation which made it impossible to realize a simple rotation about only one axis in

the robot’s frame. However, if the start-position of the robot was changed so that the arms were

stretched out in front of the robot, the arms would be parallel with the robot’s x-axis. This would

mean that a rotation about the x-axis would be realizable by simply changing the value of elbow

yaw or wrist yaw, as explained in section 3.3.2.

The positionwhere NAOhas his arms stretched out in front of him corresponds to all of the joint

values in the arm effectors being zero (Poses, 2015). The pose is shown to the left in figure 2.5,

and in figure 2.11. This was also one of the pre-programmed poses in the NAOqi SDK, which

meant that the virtual robot could be sent to this position using methods in Choreographe.

From there, it was possible to get the values for position and orientation of the hand by using

ALMotionProxy::getPosition or ALMotionProxy::getTransform, just like for the initial po-

sition (Joint Control API, 2015). These values could then be included in the script as constants,

making the IK-solver consider this as the robot arm’s initial position and orientation.

However, sending a simple rotation of the STEM-tracker to the IK-solver would still not return a

valid solution.

3.7 Achieving valid output - a revelation 89

3.7.2 Simplifying the approach for rotation tracking

As explained in section 3.4.3, registering the orientation of the STEM-tracker turned out to be

more complex than expected. In this section it is explained how the tracker data was collected

in a way that made it directly compatible with the NAO robot’s coordinate frame.

Instead of using the larger controllers, one of the flat STEM-trackers, or packs, were used for

testing. As shown in figure 1.2 and 1.3, the electromagnetic tracker inside a controller is slightly

tilted when the controller is placed on a flat surface, while this is not the case for the packs.

Therefore, it was easier to test specific rotations about a single axis relative to the base station

or the robot on a prismatic pack than on a controller. According to the documentation for the

STEM-system, the orientation of this kind of tracker should be "zero" relative to the base station

when placed in the position shown on the top left in figure 3.17 (Sixense Entertainment Inc.,

2012).

When placed in this position, a rotation of 90◦ about each of the three axes was tested, and

the rotation matrix that was generated for each movement was compared to the standard rota-

tion matrices introduced in section 2.5.2. By studying the signs of the values in these matrices,

which corresponded to the sines and cosines of the registered angles, it was possible to check

how the current frame had defined each of the three axes, and if a specific rotation about each

axis was considered to be positive or negative. These tests showed that the frame for the tracker

in this orientation was actually oriented differently than for the base station, as shown to the

top left of figure 3.17. In order to get to the same frame as the base station, the tracker had to

be rotated 180◦ about the z-axis, whichmade the controller end up in the position shown to the

upper right in the same figure.

As discussed in section 3.4.3, the rotations necessary to get from the frame of the base station to

the frame of the robot, were a positive rotation of 90◦ about the current y-axis, followed by a ro-

tation of −90◦ about the current x-axis. These rotations were performed directly on the tracker,
as shown in the lower half of figure 3.17. When the telemanipulator held the trakcer in this final

orientation while facing the base station at the beginning of a tracking session, the change in

90 Chapter 3. Results

Figure 3.17: Changing frame for the tracker: Here are the four steps for changing the frame of
the tracker to match the frame of the robot. The rotating frame of the tracker is shown in the
bottom left corner of each step, while the frame of the base station remains fixed.

orientation would be registered in the robot’s frame. For example, the small rotation shown in

figure 3.19 would be registered as a positive rotation about the x-axis. This meant that no addi-

tional transformations were necessary for the rotation, other than combining it with the initial

3.7 Achieving valid output - a revelation 91

rotation of the robot’s hand, see section 3.4.4. The position was still tracked relative to the base

station’s frame, and had to be transformed by swapping the axes, as described in section 3.4.3.

The new approach for tracking the change in rotation made it easier to double-check that the

registered orientation and the actual orientation were identical. This was not necessarily a very

good way for controlling the robot in the final telemanipulation system, because using a tracker

from an arbitrary start position would be more intuitive. But at this point, the priority was to

see if it was possible to get the IK-solver to work at all. It is worth mentioning that the tests

described earlier in this chapter were done with this new tracking approach as well, but the IK-

solver would still refuse to return a valid solution for any of the movements that were tested.

To simplify the movements even more, the initial position of the robot was changed so that

the arm effectors were pointing straight forward as described in section 3.7.1. This shouldmean

that the small rotation about the robot’s x-axis shown in figure 3.19 was feasible: Seeing as the

arms pointed straight forward, parallel to the robot’s x-axis, it should only require a small change

in elbow yaw or wrist yaw, as mentioned in section 3.3.2.

When testing rotations of the STEM-tracker, it felt natural to assume that the centre of rotation

was in the middle of the STEM-tracker. But, as shown figure 1.3, the electromagnetic tracker in

the STEM-tracker is in fact placed at one end. If the goal was to get the STEM-tracker to rotate

about its own axis, it was important to keep this in mind, and try to make the rotation happen

about the point where the electromagnetic tracker was located.

But even when it was possible to check that the change in orientation registered by the STEM-

tracker should be feasible, the IK-solver would refuse to return a valid solution.

3.7.3 Focus only on rotation

As explained in section 3.7.2, it was challenging to rotate the STEM-tracker exactly about the

point where its electromagnetic tracker was located. This meant that there would be some

change in Cartesian position, not only rotation. To check how large the change in Cartesian

92 Chapter 3. Results

Figure 3.18: Slight rotation: This shows a small rotation about .

position was, the difference between the initial and current position was written to screen.

The results are shown in figure 3.19, and it is clear that it is difficult for the telemanipulator

to rotate the controller about a fixed point. The Cartesian position would change with a few

millimeters even when trying to keep the tracker’s center of rotation completely still. To see if

the IK-solver would give a solution for a rotation only about the x-axis, the script was changed

so that the change in position was ignored. This meant that the change in orientation of the

tracker was combined with the initial rotation of NAO’s hand, but the Cartesian position stayed

fixed in the initial position.

To begin with, it was still not possible to get a valid output. But when I tried reducing the accu-

racy of the position to millimeters instead of meters as well, the IK-solver would finally return

valid solutions. It would return solutions continuously as long as the movement was restricted

to a simple rotation about the x-axis, so it was evident that ignoring the changes in position and

keeping the rotation about the x-axis made the movement feasible. What this actually meant in

the long run, will be discussed in section 4.1.

3.8 Problems with STEM 93

Figure 3.19: Changes in position: The output here shows the small, but significant, changes in
position which are registered by the STEM-tracker when trying to keep the tracker’s centre of
rotation perfectly still. The sensitivity of the tracker, and the inaccuracy of the telemanipulator,
makes the combination of position and orientation very difficult for the robot arm to follow.

3.8 Problems with STEM

Some parts of this section are based on section 3.3 of my project thesis (Evjemo, 2016).

As mentioned in section 1.4.1, the tracking system used in this project is a BETA-version of the

5-controller system Sixense STEM. When working with this system during the summer and fall

of 2015, I encountered some quite time-consuming problems, and many of these issues were

still there while working on the Master thesis. These issues have been a continuous problem,

but they have not been given much attention in other parts of this thesis. This is partly because

these problems were less prominent in this project compared to previous work because there

were little or no direct robot control, and partly because focusing on these issues continuously,

would draw attention away from the general progress of the project.

Some of the issues with the STEM-systemwere due to severe physical weaknesses in the STEM-

system. These problems will hopefully be improved or removed before STEM is released to the

94 Chapter 3. Results

commercial market.

3.8.1 WiFi sensitivity

The Sixense STEM system is quite sensitive to WiFi-connections, so using it in the lab was diffi-

cult during the project thesis. The trackers would more often than not refuse to connect to the

base station, which was indicated by that the LED lights in the front kept rotating. Sometimes

only a few of the trackers would connect, and it seemed completely random which trackers

would connect and not. Other times, none of the trackers would connect at all. The solutions

suggested in the documentation (Diaz, 2015) would not help. For more details, see my project

thesis section 3.3.1 (Evjemo, 2016).

In the summer project, these issues eventually improved when the robot was connected to the

local network with a wire instead of using WiFi. This was challenging because this made it nec-

essary to make sure that the NAO robot did not trip on any of the wires connecting the robot

to the router, as we can see in figure 3.20. Even though the problems improved somewhat, the

trackers would still disconnect quite frequently, which made the system very difficult to work

with.

The difficulties with WiFi-sensitivity was not that big of an issue when working with the Mas-

ter thesis as it had been in the previous projects. This was mainly because most of the work

was done outside of the lab, away from both the physical robot and routers. In e-mail corre-

spondence with the Sixense STEM-developers in the fall of 2015, their advice was to change the

frequency of the routers nearby, because routers running on 2.4 GHz where known to cause in-

terference with the system. The full e-mail correspondence is included in appendix C. This was

not tested because the problems became less prominent with the latest firmware updates. It is

still necessary to mention it, because if the complete system was to be tested on the physical

robot, the WiFi weakness would be a limitation in the sense that the robot would have to be

connected to the Internet through a wire, as shown in figure 3.20. It is not a crippling obstacle,

but still quite limiting.

3.8 Problems with STEM 95

3.8.2 Metal sensitivity

The Sixense STEM system is incredibly sensitive tometal. If the controllers and packs were used

too close to objects with metal surfaces, like chairs, desks or screens, the tracking failed com-

pletely. This was evident bothwhen following the trackers with the STEM-system’s API, andwith

Øye’s Sixense application, whichwas described in section 3.2.2. For example, when a trackerwas

actually standing still, close to a metal surface, the tracking data would indicate that it bounced

around, or that it was positioned in a different location.

If the entire base station was placed too close to metal, it would for the most part fail to con-

nect with the computer at all, and trackers that managed to connect to the base station would

disconnect again within seconds. The metal sensitivity was the reason why the whole lab-setup

in the summer project was eventually changed to be made out of cardboard, as shown in sec-

tion 3.20.

When the Sixense STEM-developers were contacted about the problem in the fall of 2015, they

explained that the STEM-system was sensitive to metal because of the magnetic tracking. They

explained that this was common for other tracking solutions as well, and that it was necessary

to make environmental considerations when using it. They recommended to avoid any metal

within a radius of 1 meter from the base station. The full e-mail correspondence is included in

appendix C.

As mentioned in section 3.8.2, most of the testing was done outside of the lab while working

on this Master thesis, so the metal sensitivity were less of an issue than it had been in previous

projects. Still, if the base station was placed to close to the computer screen, or the trackers

came too close to my office chair, they would disconnect or give out tracking data that made no

sense. This was not too difficult to avoid, but it made it clear that combining the STEM-system

with other kinds of hardware consisting of metal will be problematic.

96 Chapter 3. Results

Figure 3.20: Summer lab: Here is the complete system from the summer project. The rig is
made of cardboard because of Sixense STEM’s metal sensitivity, and the robot is connected to
the Internet through a cable because of the WiFi-sensitivity.

3.8.3 Lifeless trackers

A new problem that arose at the late stages of the work on my project assignment, was that one

or several trackers would seem completely lifeless. The LED lights would stay dark, and it would

3.8 Problems with STEM 97

refuse to connect to the base station.

While working with the Master thesis, there have been very few periods of time where all five

trackers have been functional at the same time. In the early stages of my work, four out of five

trackers worked properly, while the middle pack was lifeless (see section 1.4.1). It did not help

to restart the system or the computer. In fact, the tracker was "dead" for several weeks.

Then, suddenly, all five trackers worked for a short period of time. There had not been any

updates of firmware, and I had done nothing differently. And only a short while after, the two

other packs stopped working. So throughout the period that I have been working on this thesis,

one or several trackers have always been lifeless for no apparent reason, before suddenly work-

ing again when I least expected it.

Luckily, my system could be tested using only one tracker at a time, so this was not a very big

issue for the testing. It only meant that I occationally had to change which of the text files the

IK-solver colelcted the data from, see section 3.2.2. However, as will be discussed further in

section 5.2.4, a suggestion for further work would be to place the robot, the STEM-system, and

other necessary hardware in the same coordinate frame using all five trackers. In that case, the

problem with lifeless trackers would be very inconvenient, as I will get back to in section 4.3.

3.8.4 Issues that have been fixed or improved by firmware updates

Some of the STEM-problems that I experienced in previous projects, have been improved or

fixed through firmware updates while I have been working with the Master thesis.

No more confusion related to axis directions

One of the problems I had experienced while working with the STEM-system that could po-

tentially do most harm, was that STEM would sometimes register both directions of an axis to

be positive. The values would rise in one direction, and approach zero when closing in on the

base station’s center, as it should. But when moving the tracker in the opposite direction, the

position value for the given axis would start decreasing as normal, before suddenly becoming

98 Chapter 3. Results

positive again. This is explained further in my project thesis, section 3.3.4 (Evjemo, 2016). This

error caused large problems when trying to control NAO, because it can lead to massive jumps

in the given coordinates. Fortunately, the latest firmware updates seems to have gotten rid of

this problem completely, and it has not been an issue while working on the Master thesis.

Fewer random disconnects

When working with the STEM-system in this project, it was also less common that the trackers

would randomly disconnect. While working on the project thesis in the fall of 2015, it almost

became a daily routine to have the trackers or the base station disconnect, and refuse to connect

again until the computer and the entire system was rebooted. This would happen in the same

environment as where I have been working on the Master’s thesis. Fortunately, the issue has

been improved tremendously by the latest firmware updates. Trackers would still disconnect at

random if left outside of their docking stations, sometimes after only aminute, other times after

a long period of time. However, they would almost always connect again without any problems

as soon as they were placed back in their docking stations. This is, of course, not counting the

semi-permanently lifeless tracker-problem described in section 3.8.3.

Chapter 4

Discussion

The goal of this project was to create a system allowing telemanipulation of the NAO robot’s

armwithminimal latency. It turns out that using an analytic IK-solver to make a robot armwith

a limited number of DOFs follow the motions of a human arm, is much easier said than done.

Even though this project did not result in aworking system, it has lead to some important insight

into both robot control in general, and to how a system like this could be improved further.

4.1 Combining STEM-control with analytic IK-solver

Throughout chapter 3, it has been explained how the systemwas tested in order to achieve valid

solutions from the analytic IK-solver. The problem was not type errors when setting the values

for the transformationmatrix in the C++ script, nor was it basic mathematical mistakesmade in

the implementation. And the problem was not that the rotation matrix was not orthogonal, be-

cause the IK-solver could handle small inconsistencies like this. In section 3.7, it finally became

clear that the system did work, but only under very specific circumstances. This allowed me to

conclude that my implementation was correct, and that the challenge seemed to be with the

combination of Cartesian position and orientation registered by the STEM-tracker. Therefore,

the problem had to be related to limitations of the analytic IK-solver.

The analytic IK-solver has been thoroughly tested, both by myself and by others. It was also

possible to get a valid solution from it, if only for a very specific rotational movement of the

99

100 Chapter 4. Discussion

STEM-tracker described in section 3.7. It was therefore necessary to try to understand why it

did not return a valid solution for all movements. To understand this, I had to go back and con-

sider what limitations the IK-solver had that made it consider almost all of the combinations of

position and rotation that the STEM-tracker sent it non-feasible.

The analytic IK-solver was of course created specifically for the NAO robot’s effectors. And, as

explained in section 2.2.4, the arm effectors of the NAO robot does not have the same number

of DOFs as a normal, human arm. Even though the mobility of the shoulder and elbow joint

was quite similar to a human arm, the robot’s wrist joint was very limited in comparison: The

robot’s wrist joint only has 1 DOF, allowing nothing but a simple rotation about the underarm.

Thismeant that while a human is able to change the orientation of its hand quite freely from the

position of the full arm, the robot-hand was locked to the orientation of its underarm.

As explained in section 2.2.4, theNAO robot’s armeffectors seemed to have quite a largeworkspace.

However, this was based only on which points in Cartesian space the robot arm could reach, not

on what orientation the arm effector could have in each given point. The general workspace of

a manipulator can be divided into the reachable workspace and the dexterous workspace. The

first is, as the name indicates, all the points the end effector is able to reach. The dexterous

workspace, on the other hand, is the subset of points that the manipulator can reach with an

arbitrary orientation (Spong, Hutchinson, and Vidyasagar, 2006, p. 6). Because NAO’s arm ef-

fectors have only 5 DOFs, the dexterous workspace is very limited.

When considering this, one can understand that it is not possible to send any combination of

position and orientation from the STEM-tracker to the IK-solver, and expect a valid solution.

For each Cartesian position the end effector is able to reach, there is an almost endless number

of orientations that is out of bounds, and only a small subset of orientations that is realizable.

This feels more intuitive if tested on your own, human arm: If you try "locking" your wrist so

that you only allow for rotation about the underarm, the number of orientations you can realize

with your hand in any, fixed position in Cartesian space is very limited.

4.2 Cartesian vs. joint control 101

Early on in the project, Kofinas had informedme that the IK-solverwouldnot return the "nearest

possible solution" if given a non-feasible combination of position and orientation (Appendix B).

At the time this did not seem too problematic, only indicating that there would have to be some

kind of exception-handling for such occasions. I now understand that this was not only a limita-

tion in the IK-solver Kofinas had designed, but on the robot itself. This did in fact mean that the

robot would have no way of following most of the movements registered by the STEM-tracker.

4.2 Cartesian vs. joint control

Because I was not able to create a functioning system for joint control of the NAO robot in this

project, it is not possible to give an exact estimate of how effective joint control is compared

to Cartesian control. However, the experiences from testing the two methods during both this

project and earlier work, has shown that joint control seemsmore stable. In addition, the Carte-

sianmethods are based on the robot’s own numeric IK-solver. As mentioned in section 2.5.1, an

analytic IK-solver is more effective than a numeric one. This is because an analytic approach

is a direct calculation, while a numeric approach is an optimization problem. Therefore, it is

almost certain that a system based on joint control will be most effective.

As explained in the introduction, no testing was done on the physical NAO robot in this project.

However, some testing was done on the virtual robot in Choreographe. I had little experience

with the virtual robot in Choreographe before this project, so it was difficult to tell whether or

not it behaved enough like the real robot for the results to be valid. However, when running

old code from the project thesis (Evjemo, 2016) on the virtual robot, the behaviour was exactly

like the behaviour of the real robot. Even the scripts that had made the physical robot shake

or become unstable, gave the same behaviour. Therefore, I choose to trust that this is the case

the other way around as well, and that the results seen on the virtual robot in this project are

transferable to the physical robot.

The Cartesian control methods seemed to have difficulties with keeping the robot stable if the

desired position and orientation of the end effector were too far from the current position. The

102 Chapter 4. Discussion

robot arm would often be shaking, never coming to a full stop. The same would sometimes be

the case for smaller movements: Instead of just moving the end effector to its new position and

orientation, the robot arm would keep moving slightly, never really coming to a halt. Joint con-

trol methods, on the other hand, seemed to have no problem with big changes in angle values.

Once the end effector had reached its new position, it would also stay completely still until be-

ing told to move to a new point.

To understand the robot’s behaviour for the two control methods, it is necessary to go back

to the basics of forward and inverse kinematics, which were explained in section 2.5.1. First of

all, a inverse kinematics problem can have one solution, multiple solutions, or no solution at all.

A forward kinematics problem on the other hand, will always have one and only one solution.

Secondly, a numeric IK-solver like the one used by the NAO robot for Cartesian control, uses

an iterative method to come to an optimized solution to the problem. This means that when

the robot is told to move its effector to a given position and orientation, the numeric IK-solver

might come up with a slightly different solution each time.

After all, the robot’s controller will never give "no solution" as output, like the analytic IK-solver.

Instead, it will try to find a feasible solution that is close to the desired position and orientation.

For joint control, however, the robot’s controller only has to set each of the joint angles to the

given value. the end effector will therefore always end up exactly in the one position and ori-

entation that is the solution to the given forward kinematics problem. This could explain why

joint control methods are a more stable way of controlling the robot.

4.3 Evaluating the STEM system’s practical use

In previous work there has been a lot of difficulties with the STEM-system, and the work on this

master’s thesis was no exception. There would still be randomdisconnects of the trackers, times

when the base station would not connect with the computer, and of course problems related to

metal and WiFi sensitivity. However, the problems were considerably less dominant than be-

fore. It was clear that the newest firmware updates had had some effect, which made it possible

4.3 Evaluating the STEM system’s practical use 103

to use the system for testing and control throughout the project. The physical problems related

to metal in the system’s surrounding had not improved, but they were fairly easy to avoid in this

case. However, in larger projects involving a lot of different hardware, this would make the sys-

tem quite useless. Hopefully, this will be improved before the commercial release of the tracking

system.

One major issue in earlier work had been that the sign of the position coordinates would some-

times change. These random changes could potentially send massive jumps in position data to

the robot’s effector, which could be harmful to the physical robot. This problem was fixed now,

which made testing on the physical robot a lot less risky - if the project had ever gotten that far.

The fact that the stability had improved, with fewer random disconnects, also indicated that the

work onmaking the systemmore user friendly was going in the right direction. Asmentioned in

section 3.8.1, the firmware updates had alsomade the system less sensitive toWiFi interference.

The main concern at this point was the new problem that had arisen during the work on the

project thesis: the "permanently" dead trackers. Most of the other problems, like the base sta-

tion not connecting to the computer, or the trackers losing contact with the base station, could

be fixed by simply re-setting the computer and the STEM-system. This was of course somewhat

time-consuming, but it was a quick-fix tomost of the problems. The fact that some of the track-

ers would now stay dead for weeks at a time, makes the system less suitable for use in larger

projects, where this kind of delay could be critical.

After seeing how the system has improved over time, it seems very probable that it will be suit-

able use in this kind of projects at a later stage. When it works as it should, the tracking is very

accurate. The controllers also havemany functionalities like joysticks and buttons, whichmakes

the system evenmore attractive whenworking on larger projects. Asmentioned in section 3.2.2,

implementing opening/closing functionality for NAO’s hands, or changing modes during test-

ing, could be done relatively easily using the functionalities which the STEM-system provides

in addition to tracking. Still, the STEM-system has some weaknesses that must to be improved

or removed completely before it is ready to be used in projects that demands a fully functioning

104 Chapter 4. Discussion

tracking system.

4.4 More general system structure decisions

In this section some of the general choices for the system structure will be discussed to see if

they were the wisest choice or not. This could help create an easier and more effective system

in future work.

4.4.1 The decision to use the original C++-files

The decision to stick with the original C++ scripts for the IK-solver seems like a good choice.

Even after working with the scripts for severalmonths, I do not understand how they work down

to a point where it would be an easy task to recreate the IK-solver in a different programming

language. However, the method of running the executable file in LabVIEW described in sec-

tion 3.5.5, would occasionally make LabVIEW crash. Therefore, it might be an idea to try and

finish the MatLab-scripts that Kofinas has made available through GitHub. However, at this

point, using the C++ scripts seems like a good enough solution, as long as LabVIEW crashing

does not become a bigger problem.

4.4.2 Collecting data from the STEM-system

Out of the three choices for collecting tracker data discussed in section 2.4, this project went

with the approach of using Øye’s program to write data for each of the STEM-trackers to a des-

ignated text file. This system seemed to work fairly well, and was highly effective. However,

it would have been possible to use DLL-files in LabVIEW as well. This solution was discarded

because I thought at the time that using DLL-files would make it necessary for LabVIEW to get

data directly from the IK-solver, which would require some way of direct communication be-

tween the C++ scripts and LabVIEW. As explained in section 3.2.1, this would be easier said than

done, because LabVIEW is not compatible with C++. However, the work on the project made

it clear that communication between LabVIEW and the IK-solver could have been solved in a

similar way as for the current system if I had been using DLL-files.

4.4 More general system structure decisions 105

A solution with DLL-files would require some way of transporting the information between the

programs, like writing to and reading from file, which was used in the current system. Using

TCP-connections might also be an alternative. Because using Øye’s program makes it possible

to get the tracker data directly to text files, which can be read by the IK-solver, this still seems

like the easiest solution for the system at this point. But if restructuring the system had made

it easier to use DLL-files, this solution would also be possible. Using DLL-files combined with

Python could, for the same reasons, be used if more of the system was to be implemented di-

rectly in Python, but would also make it necessary to transport the data between the programs

using text files or network connections. In other words: Discarding the DLL-solutions is still the

wisest choice for this system structure. But in future work, the decision for how to collect data

from the STEM-trackers must be based on what is more effective for the given system structure,

because all three approaches can be used.

When working on the project thesis during the fall of 2015, the rotation of the STEM-trackers

were collected in the form of a rotation matrix. Both the quaternions and the rotation matrix

can be collected directly from the trackers. Formore details on this, see section 2.3 ofmy project

report (Evjemo, 2016). Øye’s program collects the rotation in the form of quaternions instead of

the rotation matrix. Because the IK-solver needed the rotation in the form of a transformation

matrix, it would have been a better choice to get the rotation directly in the form of a rotation

matrix.

To get the rotation matrix directly would save the system the work of transforming the quater-

nions to rotation matrices. When using DLL-files in earlier project, it was possible to choose

what data to extract from the STEM-tracker. However, I was not able to make changes in Øye’s

system. In retrospect, it would have been best to ask Øye to help edit his program to return the

rotation matrix from the start. This was not done because at the time, I thought it would be

more trouble than it was worth. I did not consider how much work it might be to convert the

quaternions to rotationmatrices. As explained in section 3.4.2, it took time to determine the or-

der of the quaternions. It was also necessary to make sure that they were normalized, and they

106 Chapter 4. Discussion

had to be converted to a rotation matrix.

Chapter 5

Conclusion and further work

5.1 Conclusion

In the end, I was not able to create a system that would allow for low-latency control of the arm

effectors of a NAO robot. The physical limitations of the robot arm makes it impossible for the

end effector to follow the exact movements of a tracker that moves like a human hand. If the

robot is to follow the STEM-tracker, there must be some kind of compromise between follow-

ing the position and following the orientation. It is therefore impossible to use only a straight-

forward analytic IK-solver to perform joint control of the arm effectors, as this will only return

solutions for the very few, feasible combinations of position and orientation. How the system

might be changed to make this possible, must be left for further work.

As for the STEM-system, the conclusion has to be, once again, that it is currently too unsta-

ble to be used in this kind of project work, even though it is very accurate and easy to use, and

has improved a lot over the last year. Dealing with the bugs takes up too much time, and some-

times puts a halt to the testing altogether. Hopefully, future firmware updates will help make

this BETA-version more stable. When the commercial version of the system is released to the

public, it will hopefully have reached its full potential.

Based on the limited testing done in this project and experiences from previous work, it seems

pretty clear that joint control is the most effective way of controlling the arm of the NAO robot.

107

108 Chapter 5. Conclusion and further work

It is both a faster and a more stable control method than Cartesian control, and seems like the

most promising way to achieve low-latency telemanipulation of the robot arm. To create a sys-

tem with joint control based on hand-held motion trackers, it could be possible to use an ex-

ternal IK-solver to do the maths, and then send the angles directly to the robot. This project

has shown that this would require quite a lot of work. Another approach could be full-armmo-

tion tracking, where the angles between the different joints in the human arm are measured

directly. Because the STEM-system cannot be considered a suitable tracking tool at this point,

one should keep this approach in mind when looking for alternative tracking solutions.

5.2 Suggestions for further work

This project did not succeed in creating a low latency system for telemanipulation of the NAO

robot. But the new-found understanding of what did not work,brings with it ideas and sug-

gestions for what could be done differently in future projects. In this section I will present my

suggestions for future work, and my ideas for fixing the system, that there were unfortunately

not enough time to test.

5.2.1 Modifying joint control with analytic IK-solver

The conclusion of the work in this project is that it is not possible to make the end effector of

a robot arm with only 5 DOFs follow the movements of a human hand both in position and

orientation. The human arm has 2 additional DOFs, which makes our dexterous workspace

much larger than the dexterous workspace of the robot arm. In this section, some possible

solutions to this problemwill be presented. None of these ideas have been tested in this project,

but are suggestions for further work.

Mapping the robot’s workspace with orientation constraints

One way of creating a system using joint control methods together with a hand held tracker

similar to STEM, could be to somehow map all of the feasible positions and orientations of the

arm effector. If it was possible to create a table with all of these values, and then look up a given

value each time, it could be possible to narrow it down to a feasible solution. This would almost

5.2 Suggestions for further work 109

certainly demand the use of an effective search algorithm.

If the current position and orientation did not have a solution, then one could try iterating over

"nearby" points in position and orientation to find a feasible point close by. This could for ex-

ample be done by changing the position onemillimeter at a time in one direction or the other, or

changing the orientation by one degree around one of the axes. This would demand some kind

of weighting between position and orientation to determine what solution the system should

be looking for: Is it most important to keep the position, and alter the rotation, or is the ori-

entation the most important thing? Should either position or rotation stay fixed, or are small

changes in both parameters preferable? These are questions that need to be answered if this

kind of solution is to be tested in a larger system.

Adding more degrees of freedom

Another way to solve the problem with an analytic IK-solver and a hand-held motion tracker,

would be to introduce more DOFs. This could for example be done by allowing the robot to

move forward and/or sideways. This can easily be implemented using methods from the SDK.

The desired position would still be given in Cartesian coordinates relative to the robot’s torso.

This means that when the robot moved, the movement in the "global frame" would have to be

added or subtracted from the Cartesian coordinates describing the position in the robot’s Torso

coordinates. This way, if given a position and orientation that were not feasible, the robot could

move along its x- and y-axis until it hopefully ended up somewhere that made the desired posi-

tion and orientation a feasible point.

This approach would be quite straight-forward to simulate, because it would only be necessary

to iterate over the x- and y- values of the desired position to see if changing the value makes it

easier to find a valid solution. If this solution was to be put to practical use, however, it might be

more realistic to place the robot on a controllable, moving surface than to have it walk around.

In order to stay in balance, the NAO robot’s walk is very slow, and would therefore be a big in-

terruption in a telemanipulation system that requires low latency. This approach of introducing

more DOFs is still worth mentioning if the idea is to create a functioning system based on an

110 Chapter 5. Conclusion and further work

analytic IK-solver.

5.2.2 Tracking the joint angles directly

Parts of this section is based on section 5.1 in my project report (Evjemo, 2016).

Another way to use joint control would be to try and avoid an IK-solver altogether, and in-

steadmeasure the angles between the joints directly. This could be donewith the STEM-system,

should its functionality improve. By fastening one tracker to the overarm, one to the underarm,

and holding one tracker in the hand, all the information needed to send direct angles to the

robot would be available. It would also be necessary to have one tracker fastened to the torso of

the controller, and for the controller to keep his back straight. This way the system would have

a point of reference for the straight position NAO’s torso is kept in.

With the current STEM-system, with its five trackers, this would limit the telemanipulation to

only one arm at a time. Still, it could be used for testing that would help determine how much

faster joint control is compared to Cartesian control. Like mentioned in section 1.4.1, one of

the other tracking systems that were considered for this project is based on direct joint control

(Advanced Realtime Tracking, 2016). The ART Hybrid Suit has trackers that are fastened to all

the major joints of the human body, measuring the change in position and orientation for each

of them. This would, on a larger scale, perhaps allow telemanipulation of the full body of the

NAO robot, but as for now, the focus is on producing a way of successfully controlling the arms..

It is important to note that it is necessary to limit the DOFs of the teleoperator’s armwhen using

STEM, or any other hardware to measure the joint angles directly. It would therefore be neces-

sary to somehow lock the wrist to stay parallel to the underarm. otherwise, the orientation of

the hand of the teleoperator would make no sense when comparing it to the DOFs of the robot

arm.

5.2 Suggestions for further work 111

5.2.3 DCM-programming

Parts of this section is based on section 5.3 in my project thesis (Evjemo, 2016).

It is possible that using the DCM is the fastest way to control the robot, but it might also be

extremely difficult, and possibly disastrous. The DCM is a link between the "upper level" soft-

ware and the "lower level" software of the NAO robot (DCM - Introduction, 2012). The DCM is

in charge of communication with all sensors, actuators and boards in the robot. The ALMotion

module uses the DCM to send commands to the actuators. If it was possible to go around the

ALMotion module, and communicate directly with the DCM, this would certainly be more ef-

fective.

However, Aldebaran strongly warns against meddling with the DCM unless you know exactly

what you are doing. It therefore seems logical to try to develop a functioning system using the

approaches described in section 5.2.1 and 5.2.2 before attempting to go over to DCM-control.

If it is possible to find a way of controlling the robot using joint control methods from ALMotion

which is effective enough for the telemanipulation to feel natural, it might be unnecessary to

use DCM-control, even if it could result in a system with even lower latency.

5.2.4 Global frame and scaling of movements

Parts of this section is based on section 5.4 in my project thesis (Evjemo, 2016).

In this project, the system is based on the robot working relative to its Torso frame, meaning

that it interprets all coordinates to be relative to its own torso’s position. As explained in sec-

tion r2.2.2, it can theoretically also use coordinates relative to its starting position, but this is

very inaccurate in real-life. For further work, sensor fusion algorithms might be something to

consider. This is a technique that allows a system to be robust by combining the data from sev-

eral sensors tomake sense of input that has been disturbed by the surroundings (Mathas, 2012).

Sensor fusion could be part of a system where all the equipment is placed in one global frame.

112 Chapter 5. Conclusion and further work

This could be achieved by using several tracking units from the system STEM-system - if it starts

working properly, of course. By fastening one tracker directly on the robot, and on any other

hardware included in the system, it would be possible to find the exact position of all the differ-

ent hardware in the same, global frame. It would then be possible to get the robot tomove its ef-

fectors, mainly its arms, towards a given point in this global coordinate system. This might even

allow the robot to move around in the room, because all of the movements would be tracked

accurately. By converting the tracked coordinates to be relative to the robot’s torso, as has been

done to some extent in this thesis, the robot could move its arm to a given point in the global

system.

In further work with a functional system, it would also be a good idea to scale the movements

of the telemanipulator down to the robot’s size, to properly test if the movements feel and look

natural when the robot performs them. This way, larger and more realistic movements can be

tested without moving the tracker outside of the robot’s quite limited workspace. In the long

run, the goal is to make the robot follow a movement as closely as possible relative to its own

body, which makes scaling down the movements essential. In a functional system where the

movements are tested on a simulation of the robot, one should also try testing intentionally in-

troducing time-delay in order to evaluate how big the system latency can become before the

telemanipulation feels unnatural.

Appendix A

E-mail correspondence with Halit Bener

Suay

Linn Danielsen Evjemo <linndevjemo@gmail.com> Mon, Sep 21, 2015 at 1:17 PM

To: benersuay@wpi.edu

Hello

name is Linn Danielsen Evjemo, and I am a 5th year student of cybernetics and robotics at the Norwe-

gian University of Science and Technology. I am currently working on a project assignment where we are

trying to control the arms of a NAO robot using a new, and very accurate motion tracking system callen

Sixense STEM: http://sixense.com/wireless

One of the main problems of our project is to reduce latency enouch so that the control of NAO’s arms

feel natural for the person controlling him. I have looked into your project with telemanipulation of NAO

using a 3D camera, and I see that you have very little delay. We have so far tried controlling everything

though a program called Labview: We have written the code for controlling NAO in Python, which the

communicates with Labview using a TCP-connection. Labview is connected to the motion tracking sys-

tem, and sends coordinates for where NAO shouldmove his arms using another TCPconnection, and the

setPositions()-method.

I wondered if you could share how you communicate with/send coordinates to NAO in your system?

I see that the github-link does not work anymore. if would be very helpful to get some input on a better

i

ii Chapter A. E-mail correspondence with Halit Bener Suay

way to communicate with the robot than what we are using now. I really hope that you can help me.

Regards

Linn Danielsen Evjemo

5th year Cybernetics and robotcs

Norwegian University of Science and Technology

—————————————–

Suay, Halit Bener <benersuay@wpi.edu> Mon, Sep 21, 2015 at 3:25 PM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Dear Linn,

Thank you for getting in touch with me. I would like to clarify a few things,

1. I’ve moved the code here /fair warning: super messy code with very little testing and it used to work

with a very old version of ROS): https://github.com/benersuay/nao_rail/tree/fuerte-devel/nao_openni

2. Since I was using ROS, inherently the communication is over TCP/IP and yes, there is a noticeable

amount of delay between the user’s motions and the robot’s imitation.

3. When I was controlling the robot, my movements are as slow as possible in order to make up for the

delay.

I’ve had a few other people complaining about this problem (from different schools), and there may be a

few things to do to mitigate the issue:

- If it is possible, try using the wired connection and see if that makes any difference. Nao’s hardware is

very limited in general (though I don’t know which version you’re using, the latest Naos may be better

than the ones I have used).

- If possible, try to timestamp all the outputs of your system blocks and see where the biggest delay is

occurring (you mentioned Labview, and I have no experience with it, however I know that it’s being used

for signal processing in general. For example if your system is roughly designed as:

[camer as]−−> [PC : l abvi ewD AQmethod]−−> [l abvi ew f i l ter method]−−>

iii

[other l abvi ew f uncti ons]−−> [l abvi ew tcpsocketout put]−−> [nao : py thonsocketi nput]

Then try to measure how many msec every block takes to process each call. Of course, it all adds up

and what you observe as a user is the total delay, however if one of the blocks is takings 10 times more

than the others, you may re-think / re-design that block and improve the throughput of your system.

If I had any experience in LabView I would offer to read your code and help you with that but unfor-

tunately I know almost nothing about it. Please let me know if there’s anything more I can help you with.

I check my emails very frequently.

Best,

Ben

iv Chapter A. E-mail correspondence with Halit Bener Suay

Appendix B

E-mail correspondence with Nikolaos

Kofinas

Linn Danielsen Evjemo <linndevjemo@gmail.com> Wed, Mar 9, 2016 at 2:08 PM

To: nikofinas@gmail.com

Hello

My name is Linn Danielsen Evjemo. I am a 5th year student in cybernetics and robotics at the Norwegian

University of Science and Technology. I am currently writing my master’s thesis, which is partly based

on the inverse kinematics that you developed for the NAO robot in you own thesis. My goal is to use the

inverse kinematics that you developed in order to control the arms of a NAO robot with two hand-held

motion trackers. By transforming the registered position and orientation of the hand-held trackers, I hope

to send the joint angles for the arm effector-chains directly to NAO, and thereby control NAO in close to

real-time, at least a lot quicker than when using NAO’s own IK-solver.

I would really appreciate it if you had time to answer a couple of quick questions regarding the c++

files that you have made available on GitHub. I just want to make sure that I have understood the code

properly, as I still find it a bit difficult to read and interpret other people’s code.

- Is the code that is currently available on GitHub "finished", in the sense that it can be used di-

rectly as it is? I ask because of the commented ares, like the "Under construction"part in main.cpp.

- I wish to send in a given position and orientation, and then get the angles in the arm effector chain to

v

vi Chapter B. E-mail correspondence with Nikolaos Kofinas

make the hand end up there. Can your code, as it is now, be used for this?

- When there are several possible solutions, what method do you recommend for finding the "best"

solution? Comparing the solution with the previous movements, to see what is "closest"? Or send all

solutions through the forward kinematics, and compare the results?

If you have the time to answer me, I would greatly appreciate it. And if you are too busy, I com-

pletely understand, but it would be great if you could reply to my email and let me know.

Sincerely

Linn Danielsen Evjemo

5th year student in cybernetics and robotcis

Norwegian University of Science and Technology

—————————————–

Nikos Kofinas <nikofinas@gmail.com> Wed, Mar 16, 2016 at 10:19 PM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Dear Linn,

First of all I am really sorry for the late response.

- Is the code that is currently available on GitHub "finished", in the sense that it can be used di-

rectly as it is? I ask because of the commented ares, like the "Under construction"part in main.cpp.

The code is finished and can be used as is. I don’t see any "under construction" parts in the main

function, can you please give me a pointer to them?

- I wish to send in a given position and orientation, and then get the angles in the arm effector chain to

make the hand end up there. Can your code, as it is now, be used for this?

Yes. But you need to give a valid set of parameters else you will not get any solution (e.g. you will not

get the closest feasible solution).

- When there are several possible solutions, what method do you recommend for finding the "best" solu-

tion?Comparing the solution with the previous movements, to see what is "closest"? Or send all solutions

through the forward kinematics, and compare the results?

It is unlikely that you will have multiple solutions. If you get multiple solutions then just use the one that

vii

it is closest to the current robot pose.

Best regards,

Nikolaos Kofinas

——————————————-

Linn Danielsen Evjemo <linndevjemo@gmail.com> Thu, Mar 17, 2016 at 1:52 PM

To: Nikos Kofinas <nikofinas@gmail.com>

Hello

Thank you somuch for your reply! It seems that the first time I downloaded the files, I somehowmanaged

to download only the oldest versions. In the updated files there are no "under construction" parts, sorry

about that :) I only have one more question: Is the MatLabsolution as complete as the C++ solution? I

am not as familiar with MatLab as i am with C++, so I do not understand if all of the inverse kinematics

are there? Sorry if that is a silly question, but I guess it is better do ask anyway. If the MatLabsolution is

complete, it would be easier to use in my project than C++, because I am using LabVIEW, which is not

compatible with C++.

Best regards

Linn Danielsen Evjemo

——————————————–

Nikos Kofinas <nikofinas@gmail.com> Fri, Mar 18, 2016 at 6:48 AM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Hey,

The matlab solution is incomplete. I lost the actual correct files and I never reimplemented it.

Cheers,

Nikos

viii Chapter B. E-mail correspondence with Nikolaos Kofinas

Appendix C

E-mail correspondence with

STEM-developer

Linn Danielsen Evjemo <linndevjemo@gmail.com> Mon, Aug 31, 2015 at 5:56 AM

To: Steve Braman <steve.b@sixense.com>

Cc: John Reidar Mathiassen <John.Reidar.Mathiassen@sintef.no>, Elling Ruud Øye

<Elling.Ruud.Oye@sintef.no>

Hello Steve,

The STEM system has worked well in general, and is very accurate. However, we have had some quite

time consuming difficulties, mostly because it took us a while to realize exactly what the problems were.

It seems like our STEM system is easily disturbed by WiFi. We tried using the STEM system in the same

room as a NAO robot from Aldebaran Robotics, which was connected to a local network via WiFi. The

controllers and packs would more often than not refuse to connect to the base station. Sometimes only

a few of the controllers and packs would connect, other times none of them. When the controllers and

packs connected, it was also just a matter of time before they all disconnected again, and returned to the

state with rotating lights. When we eventually connected the Nao robot to the local network with a wire

instead, the system worked much better.

In addition, the STEM system is very(!) sensitive to metal. When we tried using the controllers and packs

too close to metal (chairs, screens etc), the tracked movement in the Sixense Test program showed that

ix

x Chapter C. E-mail correspondence with STEM-developer

the motion tracking failed completely. When we placed the base station too close to metal, it often failed

to connect with the computer at all. Controllers and packs that managed to connect to the base station

would disconnect again within seconds, and go to the state where the leds kept flashing. This happened

if we placed the base station as far as 2 meters from a small metal frame (about 1.5x0.5 m2) which was

part of our lab. Whenwe removed themetal frame, the STEM systemworked fine. Both theWiFi problem

and the metal sensitivity is very limiting, and makes it problematic to integrate Sixense STEM in a larger

project that includes different kinds of hardware. At this point we are able to work around these prob-

lems, but that might become more challenging las our project progresses. Has anybody else had similar

problems?

Sincerely

Linn Danielsen Evjemo

—————————————–

Steve Braman <steve.b@sixense.com> Wed, Sep 9, 2015 at 3:02 AM

To: Linn Danielsen Evjemo <linndevjemo@gmail.com>

Cc: John Reidar Mathiassen <John.Reidar.Mathiassen@sintef.no>, Elling Ruud Øye

<Elling.Ruud.Oye@sintef.no>

Hey all,

I apologize for the delayed response. I am happy to hear that the system performs well and hope I can

help address the issues you are experiencing, As far as the Wifi issue, yes some routers that are running

2.4GHz wifi have been known to cause interference. Can you switch to running 5GHz wifi?

Similarly to other tracking solutions, there are environmental considerations that need to be made for

magnetic tracking. The environment should be as free of metal as much as possible especially near the

base station and between the base station and user. We recommend keeping metal out of the magnetic

field which would be 1 meter put from the base station. If you are still experiencing these issues or have

further questions please let me know.

Thanks,

xi

Steve Braman

Designer/Developer Support Sixense Studios

xii Chapter C. E-mail correspondence with STEM-developer

Bibliography

Aldebaran Robotics, 2012a. Cartesian control. Accessed: 2016-06-06.

URL http://doc.aldebaran.com/1-14/naoqi/motion/control-cartesian.html

Aldebaran Robotics, 2012b. Dcm - introduction. Accessed: 2016-05-21.

URL http://doc.aldebaran.com/1-14/naoqi/sensors/dcm/introduction.html

Aldebaran Robotics, 2012c. Nao technical guide: H25 - joints - v3.2. Accessed: 2016-03-31.

URL http://doc.aldebaran.com/2-1/family/nao_h25/joints_h25_v32.html#

h25-joints-v32

Aldebaran Robotics, 2012d. Naoqi framework. Accessed: 2015-11-20.

URL http://doc.aldebaran.com/1-14/dev/naoqi/index.html

Aldebaran Robotics, 2015a. Cartesian control 2-1. Accessed 2015-11-15.

URL http://doc.aldebaran.com/2-1/naoqi/motion/control-cartesian.html

Aldebaran Robotics, 2015b. Cartesian control api. Accessed: 2016-06-02.

URL http://doc.aldebaran.com/2-1/naoqi/motion/control-cartesian-api.html#

ALMotionProxy::getPosition__ssCR.iCR.bCR

Aldebaran Robotics, 2015c. H25 - links. Accessed: 2016-06-01.

URL http://doc.aldebaran.com/2-1/family/robots/links_robot_v32.html

Aldebaran Robotics, 2015d. Joint control api. Accessed: 2015-05-21.

URL http://doc.aldebaran.com/2-1/naoqi/motion/control-joint-api.html

Aldebaran Robotics, 2015e. Poses. Accessed: 2016-06-09.

URL http://doc.aldebaran.com/2-1/dev/python/examples/motion/poses.html

xiii

xiv BIBLIOGRAPHY

Aldebaran Robotics, 2015f. Programming. Accessed: 2016-06-01.

URL http://doc.aldebaran.com/2-1/dev/programming_index.html

Aldebaran Robotics, 2015g. Python sdk. Accessed: 2016-02-24.

URL http://doc.aldebaran.com/2-1/dev/python/index.html

Aldebaran Robotics, 2015h. Simulated robots. Accessed: 2016-06-01.

URL http://doc.aldebaran.com/2-1/dev/tools/robot-simulation.html

Aldebaran Robotics, 2015i. Understanding autonomous life settings. Accessed 2015-12-04.

URL http://doc.aldebaran.com/2-1/nao/nao_life.html

Aldebaran Robotics, 2016a. Cool tools. Accessed 2016-06-01.

URL https://www.ald.softbankrobotics.com/en/cool-robots/cool-tools

Aldebaran Robotics, 2016b. Joints information. Part of complete, updated NAO documentation.

Accessed: 04.06.2016.

URL http://ii.tudelft.nl/naodoc/site_en/reddoc/hardware/joints-names.html

Anthony Antonacci, D. M., 2009. Introduction to labviewmathscript. Accessed: 2016-03-07.

URL http://home.hit.no/~hansha/documents/labview/training/LabVIEW%

20MathScript/Background/Introduction%20to%20LabVIEW%20MathScript.pdf

ART, 2016. Advanced realtime tracking. Accessed: 2016-01-24.

URL http://www.ar-tracking.com/technology/

Baker, M. J., 2016. Maths - conversion quaternion to matrix. Accessed: 2016-04-21.

URL http://www.euclideanspace.com/maths/geometry/rotations/conversions/

quaternionToMatrix/

CProgramming.com/"Confuted", 1997-2011. Using quaternion to perform 3d rotations. Ac-

cessed 2016-04-10.

URL http://www.cprogramming.com/tutorial/3d/quaternions.html

Cruse, H., 1986. Constraints for joint angle control of the human arm. Biological Cybernet-

ics (54), 123–132.

BIBLIOGRAPHY xv

De Xu, Carlos A Acosta Calderon, J. Q. G. H. H., 2013. An analysis of the inverse kinematics for a

5-dof manipulator. International journal of Automation and Computing 2 (2), 114–124.

Diaz, A., January 2015. STEM System Devkit Manual. Sixense Entertainment Inc., gpd-002 Edi-

tion, effective date: 2015-08-05.

Google Code, 2015. Framework for playstation move on pc. Accessed 2015-01-24.

URL https://code.google.com/archive/p/moveframework/

Ho, N., 2011. Decomposing and composing a 3x3 rotation matrix. Accessed: 2015-06-19.

URL http://nghiaho.com/?page_id=846

Keller, J. B., 1975. Closest unitary, orthogonal and hermitian operators to a given operator.Math-

ematics Magazine 48 (4), 192–197.

Koenemann, J., 2011. Whole-body imitation of human motions with a nao humanoid: Real-

time teleoperation. Youtube-video, results of bacherlor’s thesis, https://www.youtube.com/

watch?v=dC16A6u8WA8. Accessed: 2016-06-02.

Kofinas, N., 2012. Forward and inverse kinematics for the nao humanoid robot. Master’s thesis,

Technical University of Crete, Chania, Greece.

Kuo, A. D., June 2007. Choosing your steps carefully: Trade-offs between economy and versatility

in dynamic walking bipedal robots. IEEE Robotics & AutomationMagazine (14), 18–29.

Mark W. Spong, Seth Hutchinson, M. V., 2006. Robot Modelling and Control. JohnWiley & Sons,

Inc.

Mathas, C., 2012. Sensor fusion: The basics. Accessed: 2016-06-18.

URL http://www.digikey.com/en/articles/techzone/2012/apr/

sensor-fusion-the-basics

Mathworks, 2016. Robotics system toolbox. Accessed: 2016-06-08.

URL http://se.mathworks.com/help/robotics/ref/eul2rotm.html

Morasso, P., 1981. Spatial control of armmovements. Experimental brain Research (42), 223–227.

xvi BIBLIOGRAPHY

N. Kofinas, E. Orfanoudakis, M. G. L., 2013. Complete analytical inverse kinematics for nao. 13th

International Conference on Autonomous Robot Systems (Robotica).

National Instruments, 2014. Working with .m files in labview. Accessed: 2016-06-01. Full name:

Working with .m Files in LabVIEW for Text-Based Signal Processing, Analysis, andMath.

URL http://www.ni.com/white-paper/4854/en/

National Instruments, August 2014. Using c/c++ models(model interface toolkit). Accessed:

2016-03-28.

URL http://zone.ni.com/reference/en-XX/help/374160B-01/vsmithelp/mit_

model_from_c/

Redmine - Sixense, 2015. Trouble connecting controllers and packs to base station. Closed fo-

rum for BETA-system users Accessed: 22.05.2016.

URL http://redmine.sixense.com/issues/213

Sixense Entertainment, Inc., 2012. Sixense sdk overview. Redmine.Sixense.com, internal pages

for BETA-users. Closed forum.Accessed 2016-06-06.

Sixense Entertainment, Inc., 2014. Stem system. Accessed: 2016-06-17.

URL http://sixense.com/wireless

Stack Overflow, 2008. How can i use a dll-file from python. Accessed: 2016-05-21.

URL http://stackoverflow.com/questions/252417/how-can-i-use-a-dll-file-from-python

Strang, G., 1988. Linear Algebra and its Applications, 3rd Edition. Harcourt Brace Jovanovich,

Publishers.

Suay, H. B., 2010a. Humanoid robot control and interaction. Website. Accessed: 2012-06-02.

URL http://wiki.ros.org/openni/Contests/ROS%203D/Humanoid%20Robot%

20Control%20and%20Interaction

Suay, H. B., 2010b. Nao_rail. Accessed: 2016-06-02.

URL https://github.com/benersuay/nao_rail/tree/fuerte-devel/nao_openni

BIBLIOGRAPHY xvii

Team Kouretes, 2014. Naokinematics. Accessed 2016-01-30.

URL https://github.com/kouretes/NAOKinematics

The Sixense Team, 2014a. 08/01/2014 - stem pack details. Accessed: 2016-06-16.

URL http://sixense.com/stemupdate-stem-pack-details

The Sixense Team, 2014b. Kickstarter: Sixense stem. Accessed: 2016-06-16.

URL https://www.kickstarter.com/projects/89577853/stem-system-the-best-way-to-interact

posts/827198

Wikipedia, 2016. Euler angles. Used for pictures. Accessed: 2016-06-02.

URL https://en.wikipedia.org/wiki/Euler_angles

