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Abstract

In this thesis, two different strategies for describing a formation of satellites are proposed. Both
rely on a Leader/Follower architecture, i.e. a hierarchical structure where the Follower satellite
is controlled so as to maintain a predefined relative position and attitude to the Leader.
The first strategy is to derive the equations of motion for the Follower satellite relative to the
Leader, where as the second strategy is to model both satellites as rigid bodies and then use
synchronization theory to control their motion relative to each other. Relevant disturbances are
modeled and incorporated in both strategies.
The Hill-Clohessy-Wiltshire equations are presented and used for deriving fuel efficient paths,
appropriate for formation flying satellites.
By using methods from nonlinear control theory, and taking advantage of results already
achieved on formations of other mechanical agents, controllers and estimators are developed.
The theoretical results are supported by simulations, using MATLAB� and Simulink�
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Chapter 1

Introduction

The major reason for formations of satellites, is the desire to distribute the functionality of large
satellites. The ability of small satellites to fly in precise formation will make a wide array of
new applications possible, including a next-generation Internet, space-based radar and ultra-
powerful space telescopes.
There is also an economic aspect to this; often it is more expensive to place one big satellite
with all the functions built-in, into orbit than several smaller ones of the same collective weight.
Therefore as the number of missions that use spacecraft flying in formation, proposed or under
development, still increases, one can imagine assembly lines of standardized spacecraft, thus
lowering the cost of building them drastically. These standardized spacecraft will of course be
fully equipped with the proper instruments for their mission.
A formation is in Folta, Newman & Gardner (1996) defined as ”two or more spacecraft that
use an active control scheme to maintain the relative positions of the spacecraft”. In particular,
from Scharf, Hadaegh & Ploen (2003), at least one member of the set of satellites must

1. track a desired state profile relative to another member, and

2. the associated tracking control law must at the minimum depend upon the state of this
other member

As opposed, is a constellation ”two or more spacecraft in similar orbits with no active control by
either to maintain a relative position”. The concept of satellites as a part of a formation have
been subject to a lot of scientific research in the last decade. A great overview on this research
is found in Scharf et al. (2003) and Scharf, Hadaegh & Ploen (2004).

1.1 Formation flying guidance

Formation flying guidance is defined in Scharf et al. (2003) as ”the generation of any reference
trajectories used as an input for a formation member’s relative state tracking control law”. The
literature can be divided in two main categories, based on the ambient dynamic environment,

1. Planetary Orbital Environments, and

2. Deep Space

where both consider optimal formation reconfiguration. The Planetary Orbital Environments
are subject to significant orbital dynamics and the literature is therefore mainly focused on the
development of periodic, thrust-free relative spacecraft trajectories, so-called passive relative
orbits. Such an orbit must be accurate, since if this orbit is the solution of a disturbance-free
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design model, the periodicity may be ruined when the Earth’s oblateness is included. As a
result, extra fuel is consumed to artificially maintain such an orbit.
In Deep Space the formation flying guidance is simplified by the fact that arbitrary rigid for-
mations can be maintained with no fuel penalty. On the other hand, the fuel consumption has
to be balanced across the formation. For example, the life-time of the outermost spacecraft will
be shorter by reconfiguration through rotation. The reader may look up Beard & F. Hadaegh
(1999) for more information on the subject, but it will not be treated further in this thesis.

1.2 Formation flying control

Formation flying control ”encompasses design techniques and stability results for the coupled-
state laws”, according to Scharf et al. (2004). The literature on the subject is divided into five
architectures

1. Multiple-Input Multiple-Output (MIMO), in which the formation is treated as a single
multiple-input, multiple-output plant.

2. Leader/Follower, in which individual spacecraft controllers are connected hierarchically.

3. Virtual Structures, in which spacecraft are treated as rigid bodies embedded in an overall
virtual rigid body.

4. Cyclic, in which individual spacecraft controllers are connected non-hierarchically.

5. Behavioral, in which multiple controllers for achieving different (and possibly competing)
objectives are combined.

In the MIMO architecture, formation controllers are designed using a dynamical model of the
entire formation, i.e. the formation is treated as a multiple-input, multiple-output plant.
The most studied architecture is undoubtedly the Leader/Follower architecture, which is also
often referred to as Chief/Deputy, Master/Slave or even Target/Chase, the traditional termi-
nology from two-spacecraft rendezvous. The Leader/Follower architecture uses a hierarchical
arrangement for individual spacecraft controllers that reduces formation control to individual
tracking problems. Examples of both linear and nonlinear control strategies are given in Naasz,
Karlgaard & Hall (2002), based on the equation of motion attained in Karlsgaard & Lutze
(2001).
In the Virtual Structure architecture, the spacecraft behaves as rigid bodies embedded in a
larger, virtual body. Reference trajectories are generated from the overall motion of the virtual
structure and the spacecrafts specified motion and orientation within it. The overall motion
include rigid body motions and contractions/expansions.
Cyclic architecture is formed connecting individual spacecraft controllers, and is in that sense
similar to the Leader/Follower architecture. However, the cyclic architecture is not hierarchical,
and each spacecraft controls itself with respect to a neighboring spacecraft.
The last architecture, the Behavioral, combines the outputs of multiple controllers to achieve
different and possibly competing behaviours.
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Reference Frames

The following reference frames, see Fossen (2002), are convenient when describing satellites in
6 DOF. The first two reference frames are Earth-Centered, where as the last two are body
centered.

Figure 2.1: The Earth-centered Earth-fixed frame xeyeze rotates with an angular rate ωe relative to
the Earth-centered inertial frame xiyizi

2.1 Earth-Centered Inertial Frame

The Earth-centered inertial frame, xiyizi, is a non-accelerating reference frame, with frame axis
zi, directed along the axis of rotation toward the celestial north pole. The frame axis xi is in
the vernal equinox direction, found by drawing a line from Earth to the Sun on the first day of
Spring. The last axis if directed so as to complete a right hand orthogonal frame.
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2.2 Earth-Centered Earth-Fixed Frame

The Earth-centered Earth-fixed reference frame, xeyeze, has also its origin fixed to the center
of Earth, but rotates about the frame axis ze = zi relative to the inertial frame ECI.

2.3 Body Frame

The body reference frame, xbybzb has its origin located at the center of mass of the satellite.
The body axes, xb, yb and zb, are chosen to coincide with the principal axes of inertia. Rotation
about the xb, yb and zb will be denoted roll, pitch and yaw, respectively.

2.4 Orbital Frame

The orbital reference frame, xoyozo, has its origin located at the center of mass of the satellite.
The frame axis xo is directed away from Earth, along the line connecting the center of Earth
with the center of the satellite. The zo axis points along the orbital angular momentum vector
of the spacecraft, and the yo-axis is directed so as to complete a right hand orthogonal frame.
For a circular orbit the yo axis will point in the velocity direction.
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Notation and Mathematical
Background

This chapter introduces the basic mathematics and explains the notation used throughout this
thesis. The material is mainly taken from Egeland & Gravdahl (2002), Hughes (1986) and
Fossen (2002).

3.1 Vectors

A vector, which description does not rely on the definition of any coordinate frame, will be
denoted �v. These vectors are called coordinate-free. Vectors described in a certain coordinate
frame will be denoted with a bold font and superscript to indicate its coordinate frame, e.g. vb.
They are said to be on coordinate form. Angular velocity vectors on coordinate form are denoted
in a similar manner, but with additional subscripts to state which frame has the angular velocity
and relative to what frame. For instance, will the vector ωb

ib describe the angular velocity of
the body frame relative to the inertial frame expressed in the body frame.

3.2 Vectrices

The basis vectors characterizing a reference frame Fa, can easily be manipulated using a vectrix

Fa =

⎡
⎣ �a1

�a2

�a3

⎤
⎦ (3.1)

Once a reference frame has been defined, a coordinate-free vector, �v, can be transformed in a
coordinate vector form

�v = (va)T Fa = FT
a va (3.2)

The dot product of two vectrices is defined as

Fa · FT
b =

⎡
⎢⎣ �a1 ·�b1 �a1 ·�b2 �a1 ·�b3

�a2 ·�b1 �a2 ·�b2 �a2 ·�b3

�a3 ·�b1 �a3 ·�b2 �a3 ·�b3

⎤
⎥⎦ (3.3)

which for
Fa · FT

a = 1 (3.4)
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This leads to the expression for the relationship between v and �v

va = Fa · FT
a va = Fa · �v = �v · Fa (3.5)

(va)T = (va)T Fa · FT
a = �v · FT

a = FT
a · �v (3.6)

Now, let Fa and Fb be the vectrices corresponding to frame Fa and Fb. By using the above
notation, va = Fa · �v and �v = FT

b vb, such that

va = Fa · FT
b vb (3.7)

= Ra
bv

b (3.8)

i.e.
Ra

b = Fa · FT
b (3.9)

where Ra
b is the rotation matrix. The transformation between two vectrices is

Fa = Ra
bFb (3.10)

which can be verified by postmultiplication of ·FT
b .

3.3 Rotation Matrices

The rotation matrix Ra
b from reference frame Fa to Fb has three interpretations, according to

Kyrkjebø (2000). It transform vectors represented in frame Fa to Fb while preserving the length
of the vectors. It also rotates a vector within a reference frame. Finally, a rotation matrix
describes the mutual orientation between two coordinate frames, where the column vectors are
cosines of the angle between the two frames. Using (3.9) and the dot product of two vectrices,
the rotation matrix can be written as

Ra
b =

⎡
⎢⎣ �a1 ·�b1 �a1 ·�b2 �a1 ·�b3

�a2 ·�b1 �a2 ·�b2 �a2 ·�b3

�a3 ·�b1 �a3 ·�b2 �a3 ·�b3

⎤
⎥⎦ =

[
c1 c2 c3

]
(3.11)

where the vectors ci are called direction cosines. Notice that (Ra
b )

T = Rb
a, where Rb

a is equivalent
to the opposite rotation of Ra

b . By using (3.10) and the fact that Fb · FT
b = 1 a convenient

property of the rotation matrices can be deduced, namely orthonormality

Ra
bR

b
a = Ra

b (Fb · FT
b )Rb

a

= Ra
bFb · (Ra

bFb)T

= Fa · FT
a

= 1

(3.12)

Differentiating this equation with respect to time yields

d
dt

(Ra
bR

b
a) = Ṙa

bR
b
a + Ra

bṘ
b
a = 0 (3.13)

By defining
S = Ṙa

bR
b
a (3.14)
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the above equation becomes S + ST = 0 which suggest that the matrix S = −ST is skew
symmetric. This skew symmetric matrix can be seen as the skew symmetric form of the angular
velocity vector, ωa

ab,

S(ωa
ab) = (ωa

ab)
× =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (3.15)

Notice that the kinematic differential equation of the rotation matrix can be given on two
alternative forms

Ṙa
b = S(ωa

ab)R
a
b (3.16)

Ṙa
b = Ra

bS(ωb
ab) (3.17)

where the first is obtained by post-multiplication of (3.14) with Ra
b and the second by using the

coordinate transformation rule S(ωa
ab) = Ra

bS(ωb
ab)R

b
a. Furthermore, the rotation matrix of a

composite rotation, is given by the product of the rotation matrices

Ra
c = Ra

bR
b
c (3.18)

Two important properties of the indexed angular velocity representation is

ωa
ab = −ωa

ba (3.19)

and
ωa

ac = ωa
ab + ωa

bc (3.20)

3.4 Unit Quaternions

The unit quaternions or Euler parameters is a four-parameter representation of attitude, which,
unlike the Euler angles, avoid singularities. A quaternion

q =
[

η
ε

]
(3.21)

consist of a scalar number η and a complex vector ε, defined as

η = cos
β

2
(3.22)

ε = [ε1, ε2, ε3]T = λ sin
β

2
(3.23)

where the angle β is the rotation about the axis given by the unit vector λ. A unit quaternion
satisfy qTq = 1. According to Hughes (1986), the coordinate transformation matrix for the
unit quaternions is

R(q) = Rη,ε = I3×3 + 2ηS(ε) + 2S2(ε) (3.24)

From this equation it follows that q and −q represents the same orientation. Furthermore, the
inverse rotation matrix can be written

R−1(q) = RT (q) = R(q∗) (3.25)

where q∗ is the complex conjugate of q, defined as

q∗ =
[

η
−ε

]
(3.26)
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The quaternion product between two quaternion vectors q1 = [η1 εT
1 ]T and q2 = [η2 εT

2 ]T is
defined, see Egeland & Gravdahl (2002), as

q1 ⊗ q2 =
[

η1η2 − εT
1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
(3.27)

The matrix

F(q) =
[

η −εT

ε η1 + S(ε)

]
(3.28)

represents quaternion pre-multiplication with q in the sense that

q ⊗ u = F(q)u (3.29)

while

E(q) =
[

η −εT

ε η1 − S(ε)

]
(3.30)

represents quaternion post-multiplication with q in the sense that

u ⊗ q = E(q)u (3.31)

for any uεR4.
The kinematic differential equations can be written in vector form as

q̇ =
1
2

[ −εT

η13×3 + S(ε)

]
ωb

ab (3.32)

or alternatively

q̇ =
1
2

[ −εT

η13×3 − S(ε)

]
ωa

ab (3.33)

where q̇ = [η̇ ε̇T ]T .
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The HCW’s Equations

Satellite formations can of course not be chosen arbitrary, but are constrained by the laws of
physics. Since the amount of fuel is a scarce resource, the satellites have to be placed in force-
free orbits. Satellites can neither be placed side by side forever or above each other and be
expected to be at the same pace. Their orbits will cross.
One of the big challenges is to find appropriate paths for all the satellites in a formation, so
that the desired functionalities are achieved, both with a view to fuel efficiency and to fulfill the
predefined mission.
The most common linear passive relative orbits, are solutions to the Hill-Clohessy-Wiltshire
Equations. The original deduction of these equations are to be found in Hill (1878), and were
used to describe the motion of the Moon relative to the Earth. A linearized form of these
equations was introduced in Clohessy & Wiltshire (1960), for describing the orbital rendezvous
problem.
In this chapter these equations are attained under the assumptions that the Leader satellite is
in a circular orbit, the Earth is spherically symmetric, and the nonlinear terms in the relative
motion variable can be neglected. The trajectories are in particular useful for formations of
earth pointing instruments. Non-circular orbits are treated in, among others, Inalhan, Tillerson
& How (2002), and J2 perturbations are considered in Serrani (2003).

4.1 The Hill-Clohessy-Wiltshire equations

The following deduction is mainly from Schwartz (2004). Starting point is the two-body problem
with the assumptions that:

1. The equations of motion are expressed in a non-inertial reference frame and the origin of
that frame coincides with the center of mass of the central body

2. The central body and satellite are both homogenous spheres or points of equivalent mass

3. The inverse-square gravitational force between the two bodies are the only force in action

Under these assumptions, the governing equation is

�̈ri = −G(M + m)
r3
i

�ri (4.1)

where G is the gravitational constant, M is the mass of the central body, mi is the mass of
the satellite in question, and �ri is the vector from the center of mass of the central body to the
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satellite. Let the subscript i = l, f denote the Leader and Follower satellite respectively.
The position of the Follower, with respect to the Leader is given by

�ρ = �rf − �rl (4.2)

For convenience the relative motion equations are expressed in a circular reference frame, ro-
tating with radius rl. The rotating reference frame Fh, termed the Hill frame, rotates once per
orbit with respect to the inertial frame Fi. The axes of the Hill frame, �er, �eθ and �ez are defined in
the radial, velocity and orbit-normal directions, respectively. Thus the average angular velocity
of the reference frame is given by

�ωih = ν̇�ez (4.3)

where ν, see 4.2, is the true anomaly of the Leader satellite’s orbit. The position vector from
the Leader to the Follower satellite can be expressed as

�ρ = �rf − �rl (4.4)
= x�er + y�eθ + z�ez (4.5)

where x, y and z are the components of �ρ in the Hill frame, see figure 4.1. For later use, the

Figure 4.1: The Hill frame

second derivative of ρ is

�̈ρ = ẍ�er + 2ẋ�̇er + x�̈er + ÿ�eθ + 2ẏ�̇eθ + y�̈eθ + z̈�ez (4.6)

Using (A.3), (A.4), (A.5) and (A.6) from appendix A for �̇er, �̈er, �̇eθ and �̈eθ, respectively, yields

�̈ρ = ẍ�er + 2ẋν̇�eθ − xν̇2�er + xν̈�eθ + ÿ�eθ − 2ẏν̇�er − yν̇2�eθ − yν̈�er

= (ẍ − 2ẏν̇ − xν̇2 − yν̈)�er + (ÿ + 2ẋν̇ − yν̇2 + xν̈)�eθ + z̈�ez

(4.7)
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Figure 4.2: The true anomaly is the angle measured from perigee to the spacecraft’s position vector,
in the direction of the spacecrafts motion

Define the angular momentum per unit mass, i.e. the specific angular momentum as

�h ≡
�L

m
≡ �r × �p

m
= �r × �̇r (4.8)

By differentiating, it follows that the specific angular momentum for the Leader satellite is

�̇hl = �̇rl × �̇rl + �rl × �̈rl

= �0 + �rl ×
(
−G(M + m)

rl
3

�r

)

= −G(M + m)
rl

3
�rl × �rl

= �0

(4.9)

where (4.1) has been used. Therefore �hl is conserved, and since �hl is perpendicular to the plane
defined by the radial and the velocity direction, the motion is confined to a plane spanned by the
corresponding vectors, �er and �eθ respectively. Using polar coordinates and (A.3) the following
expression is obtained:

�hl = rl�er × (ṙ�er + rl�̇er)
= rl�er × (ṙl�er + rlν̇�eθ)

= rl
2ν̇�ez

(4.10)

Since hl is constant,
hl = rl

2ν̇ (4.11)

is equivalent to Kepler’s third law of motion1. Upon taking the derivative of (4.11), the following
expression is obtained:

ḣl = 2rlṙlν̇ + rl
2ν̈

= rl(2ṙlν̇ + rlν̈)
(4.12)

1See http://scienceworld.wolfram.com/physics/Two-BodyProblem.html, 2005-02-02
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Since ḣl = 0 and rl �= 0 then
2ṙlν̇ + rlν̈ = 0 (4.13)

This provides a constraint on the second derivative of the true anomaly of the Leader satellite’s
orbit, such that the acceleration equation of the Leader satellite can be written

�̈rl = (r̈l − rlν̇
2)�er + (2ṙlν̇ + rlν̈)�eθ

= (r̈l − rlν̇
2)�er

(4.14)

where �̈rl was found using the same approach as in finding �̈ρ in equation (4.7). Maintaining the
assumption that there are no perturbations, (4.1) are compared with (4.14) which gives the
following scalar equation for the acceleration of the Leader satellite

r̈l = (rlν̇
2 − G(M + ml)

rl
2

) (4.15)

a second constraint on the motion of the Leader satellite. The second derivative of the vector
of the Follower satellite, is, using the same procedure as for deriving equation (4.7),

�̈rf = (r̈l + ẍ − 2ẏν̇ − ν̈y − ν̇2(rl + x))�er

+ (ÿ + 2ν̇(ṙl + ẋ) + ν̈(rl + x) − ν̇2y)�eθ

+ z̈�ez

(4.16)

Using (4.1) for the Follower satellite, and (4.15), yields that (4.16) can be written

�̈rf =
((

rlν̇
2 − G(M + ml)

rl
2

)
+ ẍ − 2ẏν̇ − ν̈y − ν̇2(rl + x)

)
�er

+ (ÿ + 2ν̇(ṙl + ẋ) + ν̈(rl + x) − ν̇2y)�eθ

+ z̈�ez

=
(

ẍ − 2ν̇

(
ẏ − y

ṙl

rl

)
− xν̇2 − G(M + ml)

rl
2

)
�er

+
(

ÿ + 2ν̇

(
ẋ − x

ṙl

rl

)
− yν̇2

)
�eθ

+ z̈�ez

= −G(M + mf )
rf

3
�rf

(4.17)

where the expression for the second derivative of the true anomaly from (4.13) also has been
used. This vector expression can be written as three scalar equations

ẍ − 2ν̇

(
ẏ − y

ṙl

rl

)
− xν̇2 − µ

rl
2

= − µ

rf
3
(rl + x) (4.18a)

ÿ + 2ν̇

(
ẋ − x

ṙl

rl

)
− yν̇2 = − µ

rf
3
y (4.18b)

−z̈ = − µ

rf
3
z (4.18c)

where the assumptions µ = GM � G(M + ml) and µ � G(M + mf ), since M � ml and
M � mf , have been used. These are the full, nonlinear equations of relative motion for a
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Follower spacecraft with respect to a Leader spacecraft in an unperturbed orbit.
From any book on basic orbital dynamic, e.g. Sellers (2000), the following relation can be found

r =
p

1 + e cos ν
(4.19)

where p is the semilatus rectum, defined as

p ≡ h2

µ
(4.20)

Now, (4.11) turns into

hl = r2
l ν̇ =

p2

(1 + e cos ν)2
ν̇ (4.21)

so that the following relationship is achieved

ν̇2

1 + e cos ν
=

hlν̇(1 + e cos ν)
p2

=
µ

rl
3

(4.22)

In a circular orbit the change-in-radius, ṙl, and the eccentricity terms drop out, and the deriv-
ative of the true anomaly, ν̇, can be replaced by the mean motion, n. By also assuming a close
formation, such that rl ≈ rf , which can be justified by the following

rf =
√

(rl + x)2 + y2 + z2

= rl

√
1 +

2x

rl
+

x2 + y2 + z2

rl
2

≈ rl

√
1 +

2x

rl

(4.23)

the Hill-Clohessy-Wiltshire equations are obtained

ẍ − 2nẏ − 3n2x = 0 (4.24a)
ÿ + 2nẋ = 0 (4.24b)

z̈ + n2z = 0 (4.24c)

These equations form the basis for a lot of research done in the design of tracking controllers in
the last half decade. The objective of the control is to herd the satellites into a desired formation
after initial deployment, and to pull them back into this formation as soon as they start drifting
away. The main reason for them drifting away is the J2 perturbation, see section 5.1.
In appendix B, the following analytical solution is derived

x(t) =
ẋ0

n
sin nt − (3x0 + 2

ẏ0

n
) cos nt + 4x0 + 2

ẏ0

n
(4.25a)

y(t) =
2ẋ0

n
cos nt + (6x0 + 4

ẏ0

n
) sinnt − (6nx0 + 3ẏ0)t − 2ẋ0

n
+ y0 (4.25b)

z(t) =
ż0

n
sin nt + z0 cos nt (4.25c)

Equation (4.25b) includes a secular term, i.e. a term that increases linearly in time. To eliminate
the secular drift the following additional constraint is invoked

ẏ0 = −2x0n (4.26)
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and results in a relative orbit that is displaced from, but has the same energy, and thus the
same semimajor axis, as the reference orbit. This leads to the following parametric solution of
(4.24a)-(4.24c)

x(t) =
ẋ0

n
sin nt + x0 cos nt (4.27a)

y(t) =
2ẋ0

n
cos nt − 2x0 sin nt − 2ẋ0

n
+ y0 (4.27b)

z(t) =
ż0

n
sin nt + z0 cos nt (4.27c)

4.2 Examples of Satellite Formations

To get a picture of which paths are sustainable with a view to minimization of the fuel con-
sumption, the following examples are considered, based on Yeh & Sparks (2000). Let the initial
placement of the Follower satellite be somewhere at radial axis, i.e. ẋ0 = 0. Then the sine
and cosine terms, can be written in terms of the solutions of the HCW-equations in radial- and
velocity directions as follows

x

x0
= cos nt (4.28)

y − y0

−2x0
= sinnt (4.29)

Taking the square and adding the two equations gives

x2

x0
2

+
(y − y0)2

4x0
2

= cos2 nt + sin2 nt = 1 (4.30)

which is the equation for an ellipse centered somewhere at the axis of the velocity direction.
Writing the solution of the orbit-normal direction in terms of the other two directions, gives

z = − ż0

2nx0
(y − y0) +

z0

x0
x (4.31)

The set of equations describing the motion of the Follower-satellite around the Leader-satellite,
can also be achieved by letting the initial placement of the Follower-satellite be at the axis of
the velocity direction, i.e. x0 = 0. The solutions will now be reduced to

x(t) =
ẋ0

n
sin nt (4.32)

y(t) =
2ẋ0

n
cos nt − 2ẋ0

n
+ y0 (4.33)

Using the same procedure as above the following equation of an ellipse, centered at the radial
direction axis, is achieved for the in-plane motion

x2

( ẋ0
n )2

+
(y + 2ẋ0

n − y0)2

(2ẋ0
n )2

= 1 (4.34)

For the out of plane motion, the equation is

z =
ż0

ẋ0
x +

nz0

2ẋ0
y +

nz0

2ẋ0
(
2ẋ0

n
− y0) (4.35)
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The eccentricity of an ellipse with major axis a and minor axis b is given by

e =

√
1 − b2

a2
(4.36)

which for this case will be

e =

√
1 − x0

2

4x0
2

=
√

3
2

(4.37)

4.3 Circular Formation

A circular formation is attained by proposing the following constraint

x2 + y2 + z2 = k2 (4.38)

where k is the radius of the formation. Using equation (4.30) and (4.31), this can be written

k2 = x2
0(cos nt)2 + y2

0 − 4x0y0 sin(nt) + 4x2
o(sin(nt))2 + z2

0(cos nt)2

+ 2z0 cos nt
ż0

n
sin nt +

ż2
0

n2
(sin nt)2

(4.39)

The constraint implies that y0 = ż0 = 0 and z0/x0 = ±√
3. This is a circular formation in the

plane z = ±√
3x, which is at an angle of ±60◦ with the x-axis. This special formation was first

described in Sabol, Burns & McLaughlin (1999).

4.4 In-Plane Elliptic Formation

If both z0 = 0 and ż0 = 0 in (4.31), then the motion is an elliptic motion purely in xy-plane.
The eccentricity of the ellipse is

√
3/2 and its major axis is parallel to the y-axis, that is, parallel

to the direction of motion of the Leader satellite. Such a formation can be seen in figure 4.3.

Figure 4.3: The Follower satellite moves in an ellipse relative to the Leader satellite
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4.5 Projected Circular Formation

The perhaps most interesting formation, at least for earth pointing devices, is the projected
circular formation. That is, the formation appears as circular under the assumption that the
viewpoint is on the line connecting the center of Earth to the center of the relative orbit.
Extensions to the case of a viewpoint above or below this line is quite straightforward. The
formation is achieved from imposing the following constraint

y2 + z2 = k2 (4.40)

where k is the radius of the projected circle. By using equation (4.30) and (4.31), the initial
conditions are y0 = ż0 = 0 and z0/x0 = ±2.
It is possible to place as many satellites in a circular apparent orbit with a initial angle sep-
arating them, and also as many circular orbits with radial separation, as desired, see Chichka
(2001). This would cause a ”pinwheel” effect from the planetary surface as the satellites rotate
about the center of the formation.



Chapter 5

Perturbing Forces Modeling

A satellite orbiting the Earth is influenced by many perturbing forces and torques. Satellites in
all altitudes are highly affected by the gravitational perturbation, caused by the non-symmetric,
non-homogenous Earth. For high altitude orbits, the atmospheric drag may be ignored, where as
it is a dominating force at low altitudes. Other perturbing effects are caused by solar radiation
and solar wind, the magnetic field of the Earth and the gravitational force from the Moon and
the Sun. This is shown illustratively in Figure 5.1 from Brown (2002).

Figure 5.1: The influence of disturbing forces at different altitudes (c.f. Brown (2002))

5.1 J2 Gravity Perturbation

The Earth is no perfect sphere, and neither is its mass distribution homogeneous. This means
that the usual approximation of the gravitational force, based on the assumption that the total
mass of the Earth is concentrated in its center,

�f =
µm

r3
�r (5.1)

where m is the mass of the satellite, situated at �r, µ = GM and G denotes the universal
gravitational constant, is no longer satisfactory. Therefore, following the steps of Montenbruck
& Gill (2000), a more realistic model of the gravitational force will be derived.
The model involves the gradient of the gravitational potential, U , as follows

�f = m∇U (5.2)
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where the gravitational potential is generalized to include an arbitrary mass distribution by
summing up the contributions from each mass element dm = ρ(�s)d3�s, i.e.

U = µ

∫
ρ(�s)d3�s

|�r − �s| (5.3)

The density at some point �s inside Earth is denoted by ρ(�s). The inverse of the distance may
be expanded in a series of Legendre polynomials as

1
|�r − �s| =

1
�r

∞∑
n=0

(s

r

)n
Pn(cos γl) (5.4)

where
Pn(u) =

1
2nn!

dn

dun
(u2 − 1)n (5.5)

is Rodrigues’s formula for the Legendre polynomial of degree n, and γl is the angle between �r
and �s such that

cos γl =
�r · �s
rs

(5.6)

Now, let the point �r be given by

x = r cos µc cos l (5.7)
y = r cos µc sin l (5.8)
z = r sin µc (5.9)

where l is the longitude and µc is the geocentric latitude. Let l′ and µ′
c be the corresponding

values for �s. The spherical harmonic addition theorem, also known as the addition theorem of
the Legendre polynomials, states that

Pn(cos γl) =
n∑

m=0

(2 − δ0m)
(n − m)!
(n + m)!

Pnm(sin µc)Pnm(sin µ′
c) cos (m(l − l′)) (5.10)

The associated Legendre polynomial of degree n and order m, is defined, see for example
Kreyszig (1999), as

Pnm(u) = (1 − u2)
m
2

dm

dum
Pn(u) (5.11)

The Earth’s gravity potential can now be written

U =
µ

r

∞∑
n=0

n∑
m=0

(a

r

)n
Pnm(sin µc)(Cnm cos ml + Snm sin ml) (5.12)

with coefficients

Cnm =
2 − δ0m

mEarth

(n − m)!
(n + m)!

∫ (s

a

)n
Pnm(sin µ′

c) cos ml′ρ(�s)d3�s (5.13)

Snm =
2 − δ0m

mEarth

(n − m)!
(n + m)!

∫ (s

a

)n
Pnm(sin µ′

c) sinml′ρ(�s)d3�s (5.14)

which describe the dependence on the Earth’s internal mass distribution. In the literature it is
quite common to use the normalized coefficients

Cnm =

√
(n + m)!

(2 − δ0m)(2n + 1)(n − m)!
Cnm (5.15)

Snm =

√
(n + m)!

(2 − δ0m)(2n + 1)(n − m)!
Snm (5.16)
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Cnm m = 0 1 2 3
n = 0 1.00

1 0.00 0.00
2 −1.08 · 10−3 0.00 1.57 · 10−6

3 2.53 · 10−6 2.18 · 10−6 3.11 · 10−7 1.02 · 10−7

Snm m = 0 1 2 3
n = 0 0.00

1 0.00 0.00
2 0.00 0.00 −9.03 · 10−7

3 0.00 2.68 · 10−7 −2.12 · 10−7 1.98 · 10−7

Table 5.1: Geopotential coefficients up to degree and order three

which are much more uniform in magnitude than the unnormalized coefficients. By also using
the normalized associated Legendre functions

Pnm =

√
(2 − δ0m)(2n + 1)(n − m)!

(n + m)!
Pnm (5.17)

the gravitational force can be rewritten as

�f = m∇µ

r

∞∑
n=0

n∑
m=0

(a

r

)n
Pmn(sin µc)(Cnm cos (ml) + Snm sin (ml)) (5.18)

Approximate values of the Earth’s low-order potential coefficients can be found in Table 5.1. In
computing the gravity potential at a given point, recursive formulas of the Legendre polynomials
can be used. The polynomials of same degree and order, are calculated from

Pmm = (2m − 1)(1 − u2)
1
2 Pm−1,m−1 (5.19)

with P00 = 1. The remaining values are calculated from

Pm+1,m(u) = (2m + 1)uPmm(u) (5.20)

and from
Pnm(u) =

1
n − m

((2n − 1)uPn−1,m(u) − (n + m − 1)Pn−2,m(u)) (5.21)

for n > m + 1. By defining

Vnm =
(a

r

)n+1
Pnm(sin µc) cos ml (5.22)

Wnm =
(a

r

)n+1
Pnm(sin µc) sinml (5.23)

it can be shown that the gravity potential may be written as

U =
µ

a

∞∑
n=0

n∑
m=0

(CnmVnm + SnmWnm) (5.24)

with

Vmm = (2m − 1)
[
xa

r2
Vm−1,m−1 − ya

r2
Wm−1,m−1

]
(5.25)

Wmm = (2m − 1)
[
xa

r2
Wm−1,m−1 +

ya

r2
Vm−1,m−1

]
(5.26)
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and

Vnm =
(

2n − 1
n − m

)
za

r2
Vn−1,m −

(
n + m − 1

n − m

)
a2

r2
Vn−2,m (5.27)

Wnm =
(

2n − m

n − m

)
za

r2
Wn−1,m −

(
n + m − 1

n − m

)
a2

r2
Wn−2,m (5.28)

and Vm−1,m and Wm−1,m set to zero and V00 = a
r and W00 = 0. The gravitational force may

now be calculated using the gradient of U from

fx = mẍ = m
∑
n,m

ẍnm (5.29)

fy = mÿ = m
∑
n,m

ÿnm (5.30)

fz = mz̈ = m
∑
n,m

z̈nm (5.31)

with the partial accelerations

ẍnm
(m=0)
=

µ

a2

[
−Cn0Vn+1,1

]
(m>0)
=

µ

2a2

[
(−CnmVn+1,m+1 − SnmWn+1,m+1)

+
(n − m + 2)!

(n − m)!
(CnmVn+1,m−1 + SnmWn+1,m−1)

]

ÿnm
(m=0)
=

µ

a2

[
−Cn0Wn+1,1

]
(m>0)
=

µ

2a2

[
(−CnmWn+1,m+1 + SnmVn+1,m+1)

+
(n − m + 2)!

(n − m)!
(−CnmWn+1,m−1 + SnmVn+1,m−1)

]

z̈nm
(m≥0)
=

µ

a2

[
(n − m + 1)(−CnmVn+1,m − SnmWn+1,m)

]

(5.32)

For simplicity, the mass distribution will be considered symmetric with respect to the axis of
rotation. That is, the expansion of the potential contains only zonal terms, Cn0, and does
not depend on the longitude. Using the recursive equations (5.25),(5.26),(5.27) and (5.28), the
gravitational force components are found to be

fx = −xeµ

r3

[
1 +

3J2a
2

2r2
− 15J2a

2z2
e

2r4

]
(5.33)

fy = −yeµ

r3

[
1 +

3J2a
2

2r2
− 15J2a

2z2
e

2r4

]
(5.34)

fz = −zeµ

r3

[
1 +

9J2a
2

2r2
− 15J2a

2z2
e

2r4

]
(5.35)

where the commonly used notation
Jn = −Cn0 (5.36)
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has been introduced. The gravity vector is therefore given by

f e
g =

⎛
⎝ fx

fy

fz

⎞
⎠ (5.37)

in the ECEF-frame. By also taking the accelerations due to J3 into account, the gravitational
force components become

fx = −xeµ

r3

[
1 +

3J2a
2

2r2
− 15J2a

2z2
e

2r4
+

15J3a
3z

2r4
− 35J3a

3z3

2r6

]
(5.38)

fy = −yeµ

r3

[
1 +

3J2a
2

2r2
− 15J2a

2z2
e

2r4
+

15J3a
3z

2r4
− 35J3a

3z3

2r6

]
(5.39)

fz = −zeµ

r3

[
1 +

9J2a
2

2r2
− 15J2a

2z2
e

2r4
+

30J3a
3z

2r4
− 35J3a

3z3

2r6
− 3

10r2z

]
(5.40)

For higher degree computations, see for example Vallado (2001). It should be noted that the
geopotential coefficients Cnm and Snm can not be calculated from equations (5.13) and (5.14),
but are determined indirectly through satellite tracking, surface gravimetry and altimeter data.
The reader are referred to Montenbruck & Gill (2000) for an explanation of these concepts. In
Hsu (1996) a comparison of the J2 gravitational model with other models are made. According
to Hsu (1998) the J2 gravitational model is not good enough for high accuracy applications. A
better and more complex model is implemented in the Aerospace Blockset toolbox in Simulink,
but with the drawback that the satellites position must be given relative to the surface of Earth.

5.2 Gravitational Torque

The gravitational field is not uniform in space, so due to the variations in the specific grav-
itational force, a gravitational torque about the body mass center will occur. The following
assumptions from (Hughes 1986), simplifies the expression for the gravitational torque:

1. Only on celestial primary need be considered.

2. This primary possesses a spherically symmetrical mass distribution.

3. The spacecraft is small compared to its distance from the mass center of the primary.

4. The spacecraft consists of a single body.

Using 1.), 2.) and 4.) above, the total gravitational torque can be expressed as

�mg = −µ

∫
B

�t × �rt

r3
t

dm (5.41)

where �t is the location of the mass element dm relative to the center of mass of the satellite, and
�rt = �r +�t is the location of the mass element dm relative to the center of Earth. The universal
gravitational constant times the mass of Earth is denoted by µ = GM . By using assumption
3), i.e. t/r 	 1 and a binomial expansion, we get that

r−3
t = r−3

[
1 − 3(�t · �r)

r2
+ O

(
t2

r2

)]
(5.42)
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By leaving the higher order terms out and setting
∫
B

�t dm = 0, the torque is given by

�mg = −µ

∫
B

�t × �rt

r3

[
1 − 3(�t · �r)

r2

]
dm

= −µ

∫
B

�t × (�r + �t)
r3

[
1 − 3(�t · �r)

r2

]
dm

= −µ

∫
B

�t × �r

r3

[
1 − 3(�t · �r)

r2

]
dm

=
( µ

r3

)
�r ×

∫
B

�tdm −
(

3µ

r5

)
�r ×

∫
B

�t�t dm · �r

= −
(

3µ

r5

)
�r ×

∫
B

�t�t dm · �r

(5.43)

The expression
∫
B

�t�t dm of 5.43 is a part of the expression for the inertia dyadic �I, that is

�I =
∫

B
(t2�1 − �t�t) dm (5.44)

where �1 represents the unity dyadic. By using the vectrix notation from section 3.2, and that
�I = FT

b IFb, the gravitational torque in the body frame Fb becomes

mb
g = Fb · �mg

=
3µ

r5
Fb · �r × FT

b IFb · �r
(5.45)

Now, by defining �r = FT
b pb = (pb)T , where p is chosen so as to coincide with the notation in

section 7.2, the torque can be written

mb
g =

3µ

r5
FT

b · (pb)T Fb × FT
b IFb · FT

b pb

=
3µ

r5
FT

b · (pb)T Fb × FT
b Ipb

(5.46)

It has been used that Fb · FT
b . It can be shown, see Hughes (1986), that pT

b Fb × FT
b Ipb =

FT
b (pb)T Ipb, such that

mb
g =

3µ

r5
Fb · FT

b (pb)T Ipb

=
3µ

r5
S(Rb

ip
i)IRb

ip
i

(5.47)

Since
µ

r2
=

|fg|
m

(5.48)

the gravitational torque is given as

mb
g =

(
3|fg|
r3m

)
S(Rb

ip
i)IRb

ip
i (5.49)

where fg is given by (5.37).
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5.3 Atmospheric Drag

Atmospheric drag is caused by the momentum transfer from particles in the atmosphere, onto
the satellite. There are two different principles for describing this molecular momentum transfer
to a physical surface, namely specular reflection and diffuse reflection. By specular reflection
the impinging particles have an elastic impact with the surface, and bounces off with no change
in energy and at an angle equal to the angle of incidence. Diffuse reflection, on the other hand,
occurs when the atmospheric particles penetrate the satellite surface, interact with the body
molecules, and are finally re-emitted in a random manner, see Montenbruck & Gill (2000). Both
these types of momentum transfer to the surface appears at various degrees. In the following,
a mathematical model of the atmospheric drag is derived, as in Hughes (1986), under the
assumptions that

1. The momentum of molecules arriving at the surface is totally lost to the surface, i.e.
diffuse reflection.

2. The mean thermal motion of the atmosphere is much smaller than the speed of the space-
craft through the atmosphere.

3. Momentum transfer from molecules leaving the surface is negligible.

4. For spinning vehicles, the relative motion between surface elements is much smaller than
the speed of the mass center.

Let the velocity of the local atmosphere relative to a surface element dA be denoted by �vr and
let �nA be a unit vector pointing inward normal to the surface at dA. The area projected normal
to the direction of �vr is then dA cos α, where

cos α � �vr

vr
· �nA (5.50)

and α is the angle of attack. The force imparted to the surface element dA, is the flux through
dA cos α, which is

d�fd = ρavr cos α�vrdA (5.51)

for cos α ≥ 0, and 0 otherwise since dA will then not be directed against the flow. By integrating
over the vehicle surface, the total force and torque is given as

�fd =
�

H(cos α)ρavr cos αdA�vr (5.52)

and
�md =

�
H(cos α)ρavr cos α�tdA × �vr (5.53)

respectively. Here, H(x) is the Heaviside function, i.e.

H =

{
1 for x ≥ 0
0 for x < 0

(5.54)

and �t is the location of dA relative to the center of mass. In table 5.3, the atmospheric density,
ρa for different altitudes are found, just as in Wertz & Larson (1999). In terms of conventional
aerodynamic, equation (5.52) can be stated as

�fd =
1
2
ρavrCdA�vr (5.55)
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Alt Minimum Mean Maximum
(km) (kg/m3) (kg/m3) (kg/m3)
0 1.2 1.2 1.2
100 4.61 · 10−7 4.79 · 10−7 5.10 · 10−7

200 1.78 · 10−10 2.53 · 10−10 3.52 · 10−10

300 8.19 · 10−12 1.95 · 10−11 3.96 · 10−11

400 7.32 · 10−13 2.72 · 10−12 7.55 · 10−12

500 8.98 · 10−14 4.89 · 10−13 1.80 · 1012

600 1.68 · 10−14 1.04 · 10−13 4.89 · 10−13

700 5.74 · 10−15 2.72 · 10−14 1.47 · 10−13

800 2.96 · 10−15 9.63 · 10−15 4.39 · 10−14

900 1.80 · 10−15 4.66 · 10−15 1.91 · 10−14

1000 1.17 · 10−15 2.79 · 10−15 8.84 · 10−15

Table 5.2: Atmospheric Density

where the drag coefficient Cd is a dimensionless quantity that describes the interaction of the
atmosphere with the surface material of the satellite. In table 5.3 the ballistic coefficients, BC

for several low Earth orbit satellites are given, which relates to the drag coefficient as follows

BC =
m

CdA
(5.56)

For a non-spinning satellite, the aerodynamic torque can be written as

�md = �rp × �fd (5.57)

where �rp is the vector from center of mass to the center of pressure.

5.4 Solar Radiation and Solar Wind

According to Sidi (2002), the Solar radiation comprises all the electromagnetic waves radiated
by the sun with wavelengths ranging from X-rays to radio waves, where as the solar wind mainly
consists of ionized nuclei and electrons. The radiation pressure is best explained in terms of
the corpuscular nature of radiation, i.e. that the photons possesses a momentum flux which
results in an pressure on the radiated area. The mean solar energy flux of the solar radiation is
proportional to the inverse square of the distance from the sun, and leads to the following force
acting on the satellite, see Montenbruck & Gill (2000)

�fr = −P cos βA [(1 − ε)�e + 2ε cos β�n] (5.58)

where P ≈ 4.56 · 10−6Nm−2 is the solar radiation pressure, �n is the normal vector of the surface
A. The vector �e points in the direction of the Sun, and is inclined at an angle β relative to
�n. In (5.58), the distance between the Sun and the satellite are assumed to be constant. This
is not true due to the eccentricity of the Earth’s orbit, but the annual variation in the solar
radiation pressure have a minor impact on the force acting on the satellite, and can therefore
be neglected.
The solar wind momentum flux is smaller than that of the solar radiation, by a factor of 100 to
1000, according to Sidi (2002), and will therefore not be modeled.

1With solar panels
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Satellite
Mass
(kg) Shape

Max.
XA
(m2)

Min.
XA
(m2)

XA
Drag
Coef.

Min.
XA
Drag
Coef.

Max.
Ballistic
Coef.

(kg/m2)

Min.
Ballistic
Coef.

(kg/m2)

Type
of

Mission
Oscar-1 5 box 0.075 0.0584 4 2 42.8 16.7 Comm.
Intercos.-16 550 cylind. 2.7 3.16 2.67 2.1 82.9 76.3 Scientific
Viking 277 octag. 2.25 0.833 4 2.6 128 30.8 Scientific
Explorer-11 37 octag. 0.18 0.07 2.83 2.6 203 72.6 Astronomy
Explorer-17 188.2 sphere 0.621 0.621 2 2 152 152 Scientific
Sp. Teles. 11,000 cylin.1 112 14.3 3.33 4 192 29.5 Astronomy
OSO-7 634 9-sided 1.05 0.5 3.67 2.9 437 165 Solar Physics
OSO-8 1,063 cylind.1 5.99 1.81 3.76 4 147 47.2 Solar Physics
Pegasus-3 10,500 cylind.1 264 14.5 3.3 4 181 12.1 Scientific
Landsat-1 891 cylind.1 10.4 1.81 3.4 4 123 25.2 Rem. Sens.
ERS-1 2,160 box1 45.1 4 4 4 135 12.0 Rem. Sens.
LDEF-1 9,695 12-face 39 14.3 2.67 4 169 93.1 Environment
HEAO-2 3,150 hexag. 13.9 4.52 2.83 4 174 80.1 Astronomy
Vanguard-2 9.39 sphere 0.2 0.2 2 2 23.5 23.5 Scientific
SkyLab 76,136 cylind.1 462 46.4 3.5 4 410 47.1 Scientific
Escho-1 75.3 sphere 731 731 2 2 0.515 0.515 Comm.

Table 5.3: Typical Ballistic Coefficients for Low-Earth Orbit Satellites

5.5 Other Perturbing Forces and Torques

For models of other perturbing forces, the reader is referred to Montenbruck & Gill (2000)
or Vallado (2001), where as perturbing torques are treated extensively in Hughes (1986) and
Kristiansen (2000).
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Chapter 6

Modeling: Relative Position and
Attitude

In this chapter a nonlinear model for the motion of the Follower satellite relative to the Leader
satellite will be derived. It will be obtain in the same way as the linear model from chapter
4, but is now generalized to also include forcing terms due to disturbances, e.g. aerodynamic
forces, a third gravitating body, solar radiation, magnetic fields etc.

6.1 Relative Position

Equation (4.1) is generalized to include forcing terms, Fdl, Fdf ε R
3, due to disturbances, and

actual control input vectors ul, uf ε R
3, so that

�̈rl = −G(M + m)
rl

3
�rl −

�Fdl

ml
+

ul

ml
(6.1)

�̈rf = −G(M + m)
r3
f

�rf −
�Fdf

m f
+

uf

mf
(6.2)

where rl and rf are the the position of the Leader and the Follower, respectively. By subtracting
(6.1) from (6.2), the following equation describing the position of the Follower spacecraft relative
to the Leader spacecraft is obtained

mf �̈ρ + mfµ

(
�rl + �ρ

(rl + ρ)3
− �rl

rl
3

)
+

mf

ml
�ul + �Fdf − mf

ml

�Fdl = �uf (6.3)

Now, by using equation (4.6), the nonlinear position dynamics of the Follower spacecraft relative
to the Leader spacecraft can be arranged to

Mρ̈ + C(ν̇,mf )ρ̇ + n(ρ, ν̇, ν̈, rl) +
mf

ml
ul + Fd = uf (6.4)

similar to the one found in (Yan, Yang, Kapila & de Queiroz 2000). Here

ρ =

⎡
⎣ x(t)

y(t)
z(t)

⎤
⎦ (6.5)

is the relative position vector,

M =

⎛
⎝ mf 0 0

0 mf 0
0 0 mf

⎞
⎠ (6.6)
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is the mass matrix,

C(ν̇,mf ) = 2mf ν̇

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ (6.7)

is the Coriolis-like matrix and

n(ρ, ν̇, ν̈, rl) = mf

⎡
⎢⎣

µ( rl+x
rf

3 − 1
rl

2 ) − (ν̇2x + ν̈y)
µ( y

rf
3 ) − (yν̇2 − ν̈x)

µ( z
rf

3 )

⎤
⎥⎦ (6.8)

is a nonlinear term. The composite disturbance force, Fd is given by

Fd = Fdf − mf

ml
Fdl (6.9)

Notice that (6.4) represents the same equations as equations (4.18a)-(4.18c), except that now
also the forcing terms are also considered. Using this set of equations, adaptive output feedback
tracking controllers were developed in Yan et al. (2000), Wong, Kapila & Sparks (2001) and
Wong & Kapila (2003).
The fact that the equations of motion can be stated in the way of (6.4) implies that a lot of the
control methods developed for other kind of mechanical agents, e.g. robot manipulators and
ocean vehicles, can also be used for formation of satellites.

6.2 Relative Attitude Dynamics and Kinematics

In the following, the relative attitude dynamics and kinematics will be derived, based on Pan
& Kapila (2001). Let the reference frames Fl and Ff be bodyframes of the Leader- and the
Follower satellite, respectively. Let �hl denote the angular momentum of the Leader spacecraft.
The Euler’s Second Axioms state that

id
dt

�hl = �ml
�hl = �I · �ωil (6.10)

where �ml are the moments acting on the body’s center of mass, �ωil is the angular velocity of
frame Fl relative to the inertial frame Fi, and �I is the inertia dyadic about the body’s center of
gravity. Using the rule for differentiating of vectors,

id
dt

(�I · �ωil) =
ld
dt

(�I · �ωil) + �ωil × (�I · �ωil) (6.11)

and
id
dt

�hl = �ml, the rotational motion of the Leader satellite can be written as

�I ·
ld
dt

�ωil + �ωil × (�I · �ωil) = �ml (6.12)

It has been used that �I is constant in Fl. On coordinate form, the equation becomes

Ilω̇l
il + S(ωl

il)I
lωl

il = ml (6.13)

The kinematics of the Leader satellite, can according to Egeland & Gravdahl (2002) be described
by

q̇l =
[

η̇l

ε̇l

]
=

1
2

[ −εT
l

ηlI3×3 + S(εl)

]
ωl

il (6.14)
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The attitude dynamics and kinematics for the Follower satellite are analogously found to be

If ω̇f
if + S(ωf

if )Ifωf
if = mf (6.15)

and

q̇f =
[

η̇f

ε̇f

]
=

1
2

[ −εT
f

ηlI3×3 + S(εf)

]
ωf

if (6.16)

The attitude kinematics of the Follower satellite relative to the Leader satellite can be described
by using the quaternion product, see (3.27), as

qr = q−1
l ⊗ qf =

[
η̇r

ε̇r

]
=

[
ηlηf + εT

l εf

ηlεf − ηfεl − S(εl)εf

]
(6.17)

The relative angular velocity of the Leader and the Follower is �ωlf = �ωif − �ωil, and can be
expressed in the Follower reference frame as

ωf
lf = ωf

if − Rf
l ωl

il (6.18)

The time derivative will then be

ω̇f
lf = ω̇f

if − Ṙf
l ωl

il − Rf
l ω̇l

il

= ω̇f
if − S(ωf

fl)R
f
l ωl

il − Rf
l ω̇l

il

(6.19)

where equation (3.16) has been used. Inserting equation (6.18) for the expression Rf
l ωl

il, gives

ω̇f
lf = ω̇f

if − S(ωf
fl)(ω

f
if − ωf

lf ) − Rf
l ω̇l

il (6.20)

By using equation (3.19), that is ωf
lf = −ωf

fl, and the fact that S(ωf
fl)ω

f
fl = 0, the time

derivative of the angular velocity can be written

ω̇f
lf = ω̇f

if − S(ωf
fl)ω

f
if − Rf

l ω̇l
il

= ω̇f
if − S(ωf

if )ωf
lf − Rf

l ω̇l
il

(6.21)

Multiplying this equation by the inertia matrix of the Follower spacecraft yields

If ω̇f
lf = If ω̇f

if − IfS(ωf
if )ωf

lf − IfRf
l ω̇l

il (6.22)

By using (6.13) and (6.15) and (6.18) in the last equation, the following relative attitude dy-
namics is obtained

If ω̇f
lf = −S(ωf

if )Ifωf
if − IfS(ωf

if )ωf
lf − IfRf

l (Il)−1(−S(ωl
il)I

lωl
il + ml) + mf

= −S(ωf
lf + Rf

l ωl
il)I

f (ωf
lf + Rf

l ωl
il) − IfS(Rf

l ωl
il)ω

f
lf

− IfRf
l (Il)−1(−S(ωl

il)I
lωl

il + ml) + mf

(6.23)

In addition the Follower spacecraft relative attitude kinematics is given by

q̇r =
[

η̇r

ε̇r

]
=

1
2

[ −εT
r

−ηrI3×3 + S(εr)

]
ωf

lf (6.24)

Next, let �ωdl denote the desired angular velocity of the Follower spacecraft relative to the Leader
spacecraft. The desired kinematics will then be

q̇d =
[

η̇d

ε̇d

]
=

1
2

[ −εT
d

ηdI3×3 + S(εd)

]
ωd

dl (6.25)
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where ωd
dl denotes the coordinate form of �ωdl, decomposed in the desired, Follower spacecraft

body-fixed reference frame, Fd. From the above equation it should be noted that

ωd
dl = 2

[ −εT
d

ηdI3×3 + S(εd)

]T

q̇d

= 2(ηdε̇d − η̇dεd − S(εd)ε̇d)

(6.26)

and consequently

ω̇d
ld = 2(η̇dε̇d + ηdε̈d − η̇dε̇d − η̈dεd − S(ε̇d)ε̇d − S(εd)ε̈d)

= 2(ηdε̈d − η̈dεd − S(εd)ε̈d)
(6.27)

Then, if ηd,εd and their first two time derivative are all bounded functions of time, it follows
that ωd

ld and ω̇d
ld also will be bounded.

The open loop error dynamics of the attitude motion of the Follower spacecraft relative to the
Leader can be found as follows. Let q̃ denote the unit quaternion characterizing the mismatch
between the actual orientation of the Follower spacecraft relative to the Leader spacecraft and
the desired orientation of the Follower spacecraft relative to the Leader

q̃ = q∗
d ⊗ qr (6.28)

Let the angular velocity of the the frame Ff relative to Fd be defined by �ωdf = �ωif −�ωld. Notice
also that �ωdf = �ωlf − �ωld, which expressed in the Follower spacecraft body-fixed reference frame
becomes

ωf
df = ωf

lf − Rf
dωd

ld (6.29)

where Rf
d = Rf

l R
l
d. Its time derivative will then be

ω̇f
df = ω̇f

lf − Ṙf
dωd

ld − Rf
dω̇d

ld

= ω̇f
lf − S(ωf

fd)R
f
dωd

ld − Rf
dω̇d

ld

= ω̇f
lf + S(ωf

df )(ωf
lf − ωf

df ) − Rf
dω̇d

ld

(6.30)

Multiplying this expression with If
f on both sides yields

If
f ω̇f

df = If
f ω̇f

lf + If
fS(ωf

if )(ωf
lf − ωf

df ) − If
fR

f
dω̇d

ld (6.31)

The open-loop tracking error dynamics of the Follower spacecraft relative to the desired attitude
reference frame can now be stated

If
f ω̇f

df = −S(ωf
lf + Rf

l ωl
il)I

f (ωf
lf + Rf

l ωl
il) − IfS(Rf

l ωl
il)ω

f
lf

− IfRf
l (Il)−1(−S(ωl

il)I
lωl

il + ml) + mf

+ If
fS(ωf

if )(ωf
lf − ωf

df ) − If
fR

f
dω̇d

ld

(6.32)

using (6.23) and, which by using (6.29) and (6.18), can be written

If
f ω̇f

df = −S(ωf
df + Rf

dωd
lf + Rf

l ωl
il)I

f
f (ωf

df + Rf
dωd

lf + Rf
l ωl

il)

− If
fS(Rf

l ωl
il)(ω

f
df + Rf

dωd
ld)

− If
fR

f
l (Il

l)
−1(−S(ωl

il)I
l
lω

l
il + ml

l) + mf
f

+ If
fS(ωf

df + Rf
dωd

ld + Rf
l ωl

il) − If
fR

f
dω̇d

ld

(6.33)



6.2 Relative Attitude Dynamics and Kinematics 33

The open loop tracking error kinematics is given by

q̇e =
[

η̇e

ε̇e

]
=

1
2

[ −εT
e

−ηeI3×3 + S(εe)

]
ωf

df (6.34)

Finally, the tracking control objective can then be stated as

lim
t→∞ εe, ω

f
df = 0 (6.35)
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Chapter 7

Modeling: Rigid Body

In this chapter the satellites will be modeled using the vectorial rigid body differential equations.
These equations are well known from the robotics and from the modeling of ocean vehicles.

7.1 Kinematics

The kinematics is given by the quaternion differential equations of section 3.4 and restated here
as

q̇ = T(q)ωb
ib (7.1)

where

T(q) =
1
2

⎡
⎢⎢⎣

−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

⎤
⎥⎥⎦ (7.2)

7.2 Dynamics

The rigid-body dynamics of a satellite can be expressed in several different ways, as shown in
Ploen, Hadaegh & Scharf (2004). The equations given here, is a representation of the equations
of motion of a rigid body about an arbitrary point fixed to the body in terms of body-fixed rates
of change. It is the same representation as given in Fossen (2002). The translational motion is
given by

m[v̇b
o + ω̇b

ib × rb
g + ωb

ib × vb
o + ωb

ib × (ωb
ib × rb

g)] = f b
o (7.3)

whereas the rotational motion is given by

Ib
oω̇

b
ib + ωb

ib + mrb
g × (v̇b

o + ωb
ib × vb

o) = mb
o (7.4)

where

vb
o = [X Y Z]T -force decomposed in Fb-frame

mb
o = [K M N ]T -moment decomposed in Fb-frame

vb
o = [u v w]T -linear velocity decomposed in Fb-frame

ωb
ib = [p q r]T -angular velocity of the Fb-frame relative to the Fi-frame

rb
c = [xc yc zc]T -vector from a point P to CG decomposed in the Fb-frame

By letting the origin of the body-fixed coordinate system coincide with the center of gravity,
CG, rb

g = [0 0 0]T , these expressions reduces to

m(v̇b
c + S(ωb

ib)v
b
c ) = f b

c (7.5)
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for the translational motion and to

Ib
cω̇

b
ib + S(ωb

ib)I
b
cω

b
ib = mb

c (7.6)

for the rotational dynamics. As shown in Fossen (2002) the rigid-body dynamics can be ex-
pressed in a vectorial setting as

Mν̇ + C(ν)ν = τ (7.7)

with ν = [(vb
c)

T (ωb
ib)

T ]T being the generalized velocity vector and τ = [(f b
c )T (mb

c)
T ]T being

the generalized vector of external forces and moments, all decomposed in Fb. Notice that M
and C have the following advantageous properties:

Property 7.1. (Rigid-Body System Inertia Matrix M)
The representation of the system inertia matrix M is unique and satisfies:

M = MT > 0, Ṁ = 06×6

Property 7.2. (Rigid-Body Coriolis and Centripetal Matrix C)
The rigid-body Coriolis and centripetal matrix C(ν) can always be represented such that C(ν)
is skew-symmetric-i.e.:

C(ν) = −CT (ν), ∀νεR6

The proofs can be found in Sagatun & Fossen (1991). These properties are valid for an arbitrary
choice of origin, and an example of such a skew-symmetric representation of the rigid-body
Coriolis and centripetal matrix, is

C(ν) =
[

03×3 −mS(ν1) − mS(S(ν2)rb
g)

−mS(ν1) − mS(S(ν2)rb
g) mS(S(ν1)rb

g) − S(Ib
oν2)

]
(7.8)

where ν1 = [u, v, w]T and ν2 = [p, q, r]T . By letting the origin coincide with the center of
gravity, this representations simplifies to

C(ν) =
[

03×3 −mS(ν1)
−mS(ν1) −S(Ib

cν2)

]
(7.9)

Other useful skew-symmetric representations can be found in Fossen & Fjellstad (1995). Another
important property is

Property 7.3. (Linearity of C in its Argument)
The rigid-body Coriolis and centripetal matrix is linear in its argument, i.e.:

C(α1a + α2b) = α1C(a) + α2C(b)

Now the total 6 DOF model can be stated

η̇ = J(q)ν (7.10a)
Mν̇ + C(ν)ν + D(ν)ν + g(q) = τ (7.10b)

with η = [(pi)T qT ]T ,

J(q) =
(

Ri
b 03×3

04×3 T(q)

)
(7.11)
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The aerodynamic damping matrix D can be defined, using a similar notation as for the hydro-
dynamic damping matrix for ocean vehicles, see Fossen (2002), as

D(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎝

νTD1ν
νTD2ν
νTD3ν
νTD4ν
νTD5ν
νTD6ν

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.12)

Here, Di are 6× 6 matrices that depend on the atmospheric density ρa, the drag coefficient Cd

and the area projected A, see section 5.3. Aerodynamic damping satisfy the following important
property:

Property 7.4. (Aerodynamic Damping Matrix D(ν))
For a rigid-body moving through the atmosphere, the aerodynamic damping matrix will be real
and strictly positive, i.e.

D(ν) > 0,∀νεR6

The gravity vector g is defined as

g =
[

f b
g

mb
g

]
(7.13)

where fg and mg are defined in section 5.1 and 5.2, respectively.

7.3 Gyrostat Dynamics

The dynamics of the gyrostat has been derived using Hughes (1986), Tsiostras, Shen & Hall
(2001) and in particular Goeree & Chatel (1999). The total angular momentum of a gyrostat
about CG, hi

c, is the sum of the angular momentum of the core and the angular momentum of
the reaction wheels

hi
c = Ri

b[Icω
b
ib + hb

w] (7.14)

where Ic is total moment of inertia of the satellite, hb
w is the angular momentum of the reaction

wheels and ωb
ib is the angular velocity of the body frame Fb, relative to the inertial frame Fi,

expressed in body frame coordinates. Let Iw,k be moment of inertia about the spin axis tb
k of

reaction wheel k, and Ωk + (tb
k)

T ωb
ib the total angular velocity. Then the angular momentum of

reaction wheel k can be written as

hb
w,k = [tkIk(Ωk + tT

k ωb
ib)] (7.15)

The total angular momentum of the reaction wheels is the sum of the individual momentums,
and can be expressed in matrix form as

hb
w = TwIw(Ω + TT

wωb
ib) (7.16)

where the following vector and matrices have been defined

Ω = [Ω1 Ω2 Ω3 Ω4]T (7.17)
Iw = Iw14×4 (7.18)
Tw = [t1 t2 t3 t4] (7.19)
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Type

Thrust
Range
(mN)

Specific
Impulse

(sec)

Thruster
Efficiency

(%)
Thrust

Duration
Typical

Propellants

Kinetic Power
per Unit Thrust

(W/mN)
Resistojet 200-300 200-350 65-90 Months NH3, N2H4,H2 0.5-6
Arcjet 200-1000 400-1000 30-50 Months H2, N2, N2H4, NH3 2-3
Ion engine 0.01-200 1500-5000 60-80 Months Xe, Kr, Ar 10-70
PPT1 0.05-10 600-2000 10 Years Teflon 10-50
MPD2 0.001-2000 2000-5000 30-50 Weeks Ar, Xe, H2, Li 100
Hall thruster 0.01-2000 1500-2000 30-50 Months Xe, Ar 100

Table 7.1: Typical performance parameters for electrical propulsion systems

Euler’s second axiom states that
ḣi

c = mi
c (7.20)

such that the moment exerted from the reaction wheels becomes

mb
w = S(ωb

ib)h
b
w + ḣb

w

= [S(ωb
ib)(TwIw(Ω + TT

wωb
ib)) + TwIw(Ω̇ + TT

wω̇b
ib)]

(7.21)

where Ṙi
b = Ri

bS(ωb
ib) has been used. Due to the principle of conservation of energy, the torque

rotating the reaction wheels will produce a torque of the same magnitude on the satellite, but
in the opposite direction.

7.4 Propulsion system

Electric propulsion systems will be used for orbital control of the satellites. According to Sutton
& Biblarz (2001) it is common to distinguish between these three fundamental types

1. Electrothermal. Propellant is heated electrically and expanded thermodynamically; ie.,
the gas is accelerated to supersonic speeds through a nozzle, and in the chemical rocket.

2. Electrostatic. Acceleration is achieved by the interaction of electrostatic fields on non-
neutral or charged propellant particles such as atomic ions, droplets, or colloids.

3. Electromagnetic. Acceleration is achieved by the interaction of electric and magnetic fields
within a plasma. Moderately dense plasmas are high-temperature or nonequilibrium gases,
electrically neutral and reasonably good conductors of electricity.

Table 7.4 from Sutton & Biblarz (2001) shows the typical performance parameters of various
types of electrical propulsion systems.

1Solid pulsed plasma
2Magnetoplasma dynamic



Chapter 8

Controllers and Observers

Throughout the literature, the research done on the Hill-Clohessy-Wiltshire equations is quite
extensive. Therefore, no controller or observer will be designed here, based on those equations.
Instead the reader is referred to Scharf et al. (2004) to get a overview over the work already
done.
In this chapter a state feedback linearizing controller and a passivity based controller for the
relative position case are derived. The passivity based controller is then extended to also
incorporate an observer.
At last a controller and an observer for the synchronization of two satellites modeled as rigid
bodies are proposed.

8.1 Relative Position Control by State Feedback Linearization

In this section a state feedback linearizing controller will be derived, based on the model of
section 6.1. Of simplicity reasons, let the Leader satellite and the Follower satellite have the
same attitude, i.e. the components ul,x, ul,y, ul,z and uf,x, uf,y, uf,z of the control-forces ul and
uf are assumed to work in the radial, velocity and out-of-plane direction, respectively. The
disturbance forces are not taken into account, neither is the control forces from the Leader
satellite. Now, using

ρ =

⎡
⎣ x1

x3

x5

⎤
⎦ , ρ̇

⎡
⎣ x2

x4

x5

⎤
⎦ (8.1)

the system can be written on state-space form as

ẋ = f(x) +
m∑

i=1

gi(x)ui = f(x) + G(x)u (8.2)

yi = hi(x) (8.3)

which in this case will be

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

1
mf

(
2ν̇x4 − µ( rl+x1

rf
3 − 1

rl
2 ) + (ν̇2x1 + ν̈x3)

)
x4

1
mf

(
−2ν̇x2 − µ( x3

rf
3 ) − (ν̇2x3 − ν̈x1)

)
x6

1
mf

(
−µ x5

rf
3

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1

mf

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ux +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

mf

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

uy +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

mf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

uz

(8.4)
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and
y = x (8.5)

where it is assumed that all states can be measured, i.e. the relative distance and velocity
between the Leader and the Follower satellite can be measured, and decomposed in the x-,y-
and z-direction. By differentiating the output until the input appears explicit, the following
equation is attained⎡

⎢⎢⎣
(r1)
y1
...

(rm)
ym

⎤
⎥⎥⎦ =

⎡
⎢⎣

Lr1
f h1(x)

...
Lrm

f hm(x)

⎤
⎥⎦ +

⎡
⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)
...

. . .
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎦

⎡
⎢⎣

u1
...

um

⎤
⎥⎦ (8.6)

With the output

y =

⎡
⎣ x1

x3

x5

⎤
⎦ (8.7)

the first vector on the right side will be

α(x) =

⎡
⎢⎢⎢⎣

1
mf

(
2ν̇x4 − µ( rl+x1

rf
3 − 1

rl
2 ) + (ν̇2x1 + ν̈x3)

)
1

mf

(
−2ν̇x2 − µ( x3

rf
3 ) − (ν̇2x3 − ν̈x1)

)
1

mf

(
−µ x5

rf
3

)
⎤
⎥⎥⎥⎦ (8.8)

where as the matrix becomes

β(x) =

⎡
⎢⎣

1
mf

0 0
0 1

mf
0

0 0 1
mf

⎤
⎥⎦ (8.9)

Since the total relative degree, with the output stated above is
m∑

i=1

ri = n (8.10)

the nonlinear system (8.3) is transformable into a linear controllable system in Brunovsky con-
troller form, by a nonsingular state feedback transformation, which consists of a nonsingular
state feedback

u = {β(x)}−1[−α(x) + v] (8.11)

and a diffeomorphism
z = T (x) (8.12)

The new input v is chosen such that

lim
t→∞y(t) != yr(t) (8.13)

where yr is the reference-trajectory, or with error e(t) = y(t) − yr(t), the elements of e must
satisfy

(r)
e + pr−1

(r−1)
e + · · · + p1ė + p0

!= 0 (8.14)

Here, pi are chosen from poleplacement, and must satisfy

λn + pn−1λ
n−1 + · · · + p1λ + p0

!=
n∏

i=1

(λ − λi) (8.15)
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Theorem 8.1. The state feedback linearizing tracking controller

u = {β(x)}−1[−α(x) + v]

with v, α and β((x)) as given above, is globally exponentially stable.

Proof. Since all nonlinearities are canceled out and the poles of the linear system are placed in
the left half plane, globally exponentially stability follows.

For an analytical proof of this kind of multiple input, multiple output linearizing controller, see
Isidori (1995)

8.2 Relative Position Control Based on the Passivity Concept

In the following a controller for the model of section 6.1 will be derived, based on the Lyapunov
concept. Notice that equation (6.4) is quite similar to the nonlinear dynamic equation for a
multiple-link robot. Passivity result for such a robot is presented in Berghuis (1993), and is
attained for a satellite in formation in a similar way here. The matrix C is skew-symmetric
and obviously is also Ṁ − C skew-symmetric, since here M is assumed to be constant. Let
ρ̇r ≡ ρ̇d −Λe, where ρd is the desired reference trajectory, e ≡ ρ−ρd is the position error, and
Λ is a symmetric, positive definite matrix. Define

s ≡ ρ̇ − ρ̇r = ė + Λe (8.16)

a so-called sliding variable. Let the control law be

uf = Mρ̈r + Cρ̇r + n − Kpe + v (8.17a)
v = −Kds (8.17b)

where Kp and Kd are positive definite symmetric matrices. By inserting uf into (6.4) the
following equation is attained

Mṡ + Cs + Kpe + Kds = 0 (8.18)

Here, Fd and uf in (6.4), are not taken into consideration.

Theorem 8.2. The tracking controller

uf = Mρ̈r + Cρ̇r + n − Kpe − Kds

ρ̇r = ρ̇d − Λe

e = ρ − ρd

s = ρ̇ − ρ̇r

with Kp,Kd and Λ being symmetric, positive definite matrices, is globally exponentially stable.

Proof. As storage function candidate

V =
1
2
sTMs +

1
2
eTKpe (8.19)
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is chosen, which formally defines a Lyapunov function candidate. Besides being positive definite,
it is radially unbounded, and its derivative satisfies

V̇ = sTMṡ + ėTKpe

= sT(−Cs − Kpe − Kds) + ėTKpe

= −sTKds − (s − ė)TKpe

= −sTKds − (ė + Λe − ė)TKpe

= −sTKds − eTΛKpe

(8.20)

Hence the system is passive with input v = −Kds and output s, with V as the storage function.
From Lyapunov’s direct method, the closed-loop system is globally exponentially stable.

8.3 Relative Position Control by Combined Controller-Observer
Design

In the case where only position measurements are available, an observer has to be designed
to give the appropriate estimates of the velocity. According to Berghuis & Nijmeijer (1993) a
combined controller-observer design has the advantage of a simpler structure, compared to that
of separate controller and observer design. As seen in section 8.2, ρ̈ cannot be realized without
velocity measurement. Therefore, following the steps of Berghuis & Nijmeijer (1993), the vector
ρ̇r from that section is redefined to be

ρ̇r ≡ ρ̇d − Λ1(ρ̂ − ρd) (8.21)

where Λ1 is symmetric and positive definite. Consequently

s1 = ρ̇ − ρ̇r ≡ ė + Λ1(e − ρ̃) (8.22)

Furthermore, define
ρ̇0 ≡ ˙̂ρ − Λ2ρ̃ (8.23)

where Λ2 is diagonal and positive definite. In addition, let

s2 = ρ̇ − ρ̇0 ≡ ˙̃ρ + Λ2ρ̃ (8.24)

The control law is chosen as

uf = Mρ̈r + Cρ̇r + n − Kd(s1 − s2) − Kpe (8.25)

where Kp and Kd are symmetric, positive definite matrices, and s1 − s2 is found to be

s1 − s2 = ( ˙̂ρ − ρ̇d) + Λ1(e − ρ̃) − Λ2ρ̃ (8.26)

from combining equation (8.22) and (8.24). The reason for introducing s2 in the first place is
that s1 cannot be realized, whereas the difference s1 − s2 is a function of known signals. By
combining equation (6.4) and (8.25), the tracking error dynamics becomes

Mṡ1 + Cs1 = −Kd(s1 − s2) − Kpe (8.27)

As in section 8.2, Fd and uf in (6.4), are not taken into consideration. The observer is chosen
as

˙̂ρ = z + Ldρ̃ (8.28a)

ż = ρ̈r + M−1(Lp1ρ̃ − Kpe) + Lp2ρ̃ (8.28b)
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with Ld, Lp1 and Lp2 are constant, diagonal and positive definite matrices. Furthermore, Ld

and Lp2 are chosen to be

Ld = ld13×3 + Λ2 (8.29a)
Lp2 = ldΛ2 (8.29b)

where ld > 0. Inserting equation (8.28a) into (8.28b) and using (8.22) and (8.24) gives the
observer error dynamics

M(ṡ2 + lds2) + Lp1ρ̃ = Mṡ1 + Kpe (8.30)

By inserting the tracking error dynamics, i.e. equation (8.27), the observer error dynamics can
be rewritten as

Mṡ2 + Cs2 + (ldM − Kd)s2 + Lp1ρ̃ = −Kds1 + C(s2 − s1) (8.31)

In the robotics, the matrix C can be represented in terms of the Cristoffel symbols. This is not
the case here, and the stability analysis will be slightly different. First, assume the following:

Assumption 8.1
The matrix C(ν̇,mf ) is bounded with respect to ν̇ and mf , so

Cm ≤ ‖C(ν̇,mf )‖ ≤ CM (8.32)

This is a fair assumption since the physical values of mf and ν̇ are obviously bounded. Let a
storage function candidate be given as

V =
1
2
sT
1 Ms1 +

1
2
eTKpe +

1
2
sT
2 MsT

2 +
1
2
ρ̃TLp1ρ̃ (8.33)

The time derivative of the storage function is found to be

V̇ = sT
1 Mṡ1 + eTKpė + sT

2 Mṡ2 + ρ̃TLp1
˙̃ρ

= sT
1 (−Cs1 − Kd(s1 − s2) − Kpe) + eTKpė

+ sT
2 (−Cs2 − ldMs2 + Kds2 − Lp1ρ̃ − Kds1 + C(s2 − s1)) + ρ̃TLp1

˙̃ρ

= −sT
1 Kds1 + sT

2 Kds2 − sT
2 ldMs2 + eTKp(ė − sT

1 ) + ρTLp1( ˙̃ρ − s2) + sT
2 C(ss − s1)

= −sT
1 Kds1 + sT

2 Kds2 − sT
2 ldMs2 − eTKpΛ1e + eTKpρ̃ − ρTLp1Λ2ρ̃ − sT

2 Cs1

(8.34)

by using equation (8.27), (8.31), (8.22) and (8.24). Now, let Λ1 = Λ2 = Λ and Kp = Lp1. Then

− eTΛ1Kpe + ρ̃TΛ1Kpe − ρ̃TΛ2Lp1ρ̃ ≤ −1
2
eTΛKpe − 1

2
ρ̃TΛKpρ̃ (8.35)

and

−sT
2 Cs1 ≤ CMsT

2 s1

≤ CM (
λ

2
sT
2 s2 +

1
2λ

sT
1 s1) ∀λ

(8.36)

For any matrix A = AT > 0, let Am and AM denote the minimum and maximum eigenvalue
of A, respectively. Then the time derivative of the storage function can be upper bounded by

V̇ ≤ −(Kd,m − 1
2λ

CM )‖s1‖2

− (ldMm − Kd,M − λ

2
CM )‖s2‖2

− 1
2
Kp,mΛ−1

M ‖Λρ̃‖2 − 1
2
Kp,mΛ−1

M ‖Λe‖2

(8.37)

and the following theorem can be stated:
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Theorem 8.3. The closed-loop system, with controller

uf = Mρ̈r + Cρ̇r + n − Kd(ρ̇0 − ρ̇r) − Kpe

ρ̇r = ρ̇d − Λ(ρ̂ − ρd)

ρ̇0 = ˙̂ρ − Λ(ρ − ρ̂)

and observer

˙̂ρ = z + Ld(ρ − ρ̂)

ż = ρ̈r + Lp2(ρ − ˆrho) + M−1Kp(ρd − ρ̂)

is locally exponentially stable under the following conditions

Kd,m >
1
2λ

CM (8.38a)

ld > M−1
m (Kd,m +

λ

2
CM ) (8.38b)

Proof. Take the storage function, V , given above as a Lyapunov function. This function satisfies

1
2
Pm‖x‖2 ≤ V ≤ 1

2
PM‖x‖2 (8.39)

with xT = [sT
1 (Λe)T sT

2 (Λρ̃)T ],

δ = min
{

ldMm − Kd,M

CM
− 1

2
,
Kk,m

CM
− 1

2

}
(8.40)

and

Pm = min{Mm,Λ−2
M Kp,m} (8.41a)

PM = max{MM ,Λ−2
m Kp,M} (8.41b)

Under the conditions (8.38a) and (8.38b), there exists a constant κ such that

V̇ ≤ −κ‖x‖2 (8.42)

and local, exponential stability follows.

8.4 Syncronization

Now turn to the second case, where each satellite is modeled with the rigid body equations
of motion. In Nijmeijer & Rodriguez-Angeles (2003) a distinction is made between internal
synchronization and external synchronization. Internal synchronization refers to an interaction
of all elements in the system, and can in the context of formation flying satellites be related
to the Cyclic Structure, (see section 1.2). External synchronization on the other hand, refers
to the case where one object in the system is dominant, and its motion can be considered
as independent of the motion of the others. The Leader/Follower architecture is therefore an
external synchronization problem.
The control of the Leader satellite is a tracking problem, that is, the control objective is to
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follow a predefined reference trajectory. The trajectory is given by the desired position, pi
d,l,

the desired attitude, qd,l, and the desired velocities and their time derivatives

vl
d,l = Rl

iṗ
i
d,l (8.43a)

v̇l
d,l = Rl

ip̈
i
d,l − S(ωl

il)R
l
iṗ

i
d,l (8.43b)

ωl
d,l = Rl

iω
i
d,l (8.43c)

ω̇l
d,l = Rl

iω̈
i
d,l − S(ωl

il)R
l
iω̇

i
d,l (8.43d)

The control of the Follower satellite, on the other hand, is a synchronization problem. A
reference trajectory for the Follower satellite will therefore also depend on the states of the
Leader satellite. For many applications of formations of satellites the objective will be to point
measuring instruments in the same direction. Let therefore the reference trajectory for the
Follower satellite be the measured attitude of the Leader satellite, i.e.

qd,f = ql (8.44a)

ωf
d,f = Rf

l ωl
il (8.44b)

ω̇f
d,f = Rf

l S(ωl
f l)ω

l
il + Rf

l ω̇l
il (8.44c)

As mentioned in the introduction each satellite should be designated its own orbit, so as not
to spend fuel unnecessarily. Let the position of such a orbit for the follower satellite be defined
with pi

p. Then the actual desired trajectory for the position of the follower satellite is given by

pi
d,f = pi

p − pi
d,l + pi

l (8.45a)

vf
d = Rf

i ṗ
i
p + Rf

l (vl − vl
d,l) (8.45b)

v̇f
d = Rf

i p̈
i
p − S(ωf

if )Rf
i ṗ

i
p + Rf

l S(ωl
f l)(v

l − vl
d,l) + Rf

l (v̇l − v̇l
d,l) (8.45c)

8.5 Controller Design for Synchronization in 6 DOF

It can be shown, see Egeland & Gravdahl (2002), that composite rotations can be expressed in
terms of unit quaternions

R(q1)R(q2) = R(q1 ⊗ q2) (8.46)

The deviation between two rotation matrices is described by the two alternative error matrices

R̃1 = RT
d R (8.47a)

R̃2 = RdRT (8.47b)

where R̃1 is the rotation matrix from the desired frame Fd to the body frame Fb, and R̃2 is
the rotation matrix from the body frame to the desired frame. Combining (8.47a) and (3.25)
results in

R̃1 = R(q̃) (8.48)

where q̃ = q∗
d ⊗ q.

Perfect tracking in terms of quaternions parametrization is obtained for

q = ±qd (8.49)
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which implies that

q̃ =
[ ±1

0

]
(8.50)

The rotation error matrices, R̃1 and R̃2 are related through a similarity transformation R̃2 =
RR̃1RT = RR̃1R−1, and hence they have both the same eigenvalues, that is

eig(R̃1), eig(R̃2)ε{1, 2η̃2 − 1 ± i2η̃
√

1 − η̃2} (8.51)

Notice that R̃1 and R̃2 are strictly positive for η̃2 > 1
2 . The controller stated in this section is

the one found in Fjellstad & Fossen (1994) and Fjellstad (1994). It was originally derived for the
control of underwater vehicles, which attitude representation neither can contain singularities.
The control law is given in the body frame, Fb, as

τ = Mν̇r + C(ν)νr + D(ν)νr + g − Kds (8.52)

The virtual velocity reference vector

νr � νd − Λe (8.53)

is assumed to be continuously differentiable. This calls for some further definitions:

νd �
[

vd

ωd

]
(8.54)

Λ �
[

Kp 03×3

03×3 −2c∂W
∂η̃ 13×3

]
(8.55)

e �
[

p̃i

ε̃

]
(8.56)

p̃i � pi − pi
d (8.57)

The scalar function W (η̃) satisfies the Lipschitz condition on the interval η̃ε[−1, 1]. Moreover,
it is non-negative on the same interval an vanishes only at η̃ = −1 and/or η̃ = 1.
Now, the following theorem is stated

Theorem 8.4. The controller

τ = Mν̇r + C(ν)νr + D(ν)νr + g − Kds

is globally uniformly asymptotically stable

The proof, found in Fjellstad & Fossen (1994), is given here for the sake of completeness.

Proof. Let the virtual body-fixed velocity error vector s is defined as

s � ν − νr (8.58)

The error dynamics, achieved from substituting (8.52) into(7.10b), is

Mṡ + C(ν)s + D(ν)s = −Kds (8.59)

By using the positive definite Lyapunov function

V =
1
2
sTMs > 0, ∀s �= 0 (8.60)
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which is decrescent and satisfy

λmin(M)‖s‖2 ≤ 2V ≤ λmax(M)‖s‖2 (8.61)

global uniform asymptotical stability of the equilibrium point s = 0 can be guaranteed, since

V̇ = sTMṡ (8.62)

= sT (−C(ν)s − D(ν)s − Kds) (8.63)

= −sT [Kd + D(ν)]s (8.64)

≤ −[λmin(Kd) + λmin(D(ν))]‖s‖2 (8.65)

This is due to application of Lyapunov’s direct method for non-autonomous systems, see Khalil
(2002).

By combining (8.58) with (8.53), the dynamics at s = 0, becomes
[

ṽb

ω̃b
ib

]
=

[
Kp 03×3

03×3 −2c∂W
∂η̃ 13×3

] [
p̃i

ε̃

]
(8.66)

The following candidate for Kp is chosen

Kp = λ1Rb
i(qd) (8.67)

Since ˙̃pi = Ri
b(q)ṽb, using (8.66) and (8.67),

˙̃pi = λ1Ri
b(q)Rb

i(qd)p̃i

= λ3Ri
b(q̃)p̃i

(8.68)

where equation (8.46) has been used in the last line. Since Ri
b(q̃) is strictly positive for η̃2 > 1

2 ,
see equation (8.51), p̃i converges to zero for λ1 > 0. To prove convergence of ω̃b

ib to zero, the
attitude error differential equation is considered, namely

˙̃q =
[ −ε̃T

η̃13×3 + S(ε̃)

]
ω̃b

ib (8.69)

As seen, ˙̃η = −1
2 ε̃T ω̃b

ib, which will be used in the time differentiation of the Lyapunov function
candidate, W (η̃), as follows

Ẇ (η̃) =
∂W

∂η̃
˙̃η

= −1
2

∂W

∂η̃
ε̃T ω̃b

ib

= −c(
∂W

∂η̃
)2ε̃T ε̃

(8.70)

which is negative ∀∂W
∂η̃ �= 0, ε̃ �= 0. In Fjellstad & Fossen (1994) many suggestions for W (η̃) are

stated. One of them is
W (η̃) = 1 − |η̃| (8.71)

which leads to
∂W

∂η̃
= sgn(η̃) (8.72)
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where the signum function is defined as

sgn(x) =
{ −1 x < 0

1 x ≥ 0
(8.73)

The signum function is non-zero by definition to avoid an extra (unstable) equilibrium point at
η̃ = 0. This leads to

− cε̃T ε̃ (8.74)

and consequently, ε̃ → 0 and η̃ → ±1. From (8.66), it follows that ω̃b
ib → 0. This definition of

W (η̃) leads strictly speaking to a νr which is not continuously differentiable. This is solved by
either defining

d
dt

sgn(x) ≡ 0 (8.75)

or for example redefine W (η̃) to

W (η̃) = 1 − 2
π

arctan (αη̃) (8.76)

which converges to the original W (η̃) for large α.
It should be noted that the control law presented in this section quite easily can be extended
to an adaptive version, to account for parameter uncertainties in the dynamical model. This
is shown in Fjellstad & Fossen (1994), based on the results for attitude control of satellites in
Egeland & Godhavn (1994).

8.6 Observer Design for Synchronization in 6 DOF

The controller design from the previous section, assumed that the angular and translational
velocity could be measured. If this is not the case, a velocity observer has to be implemented.
In Salcudean (1991), the following globally convergent velocity observer for rigid body motion
is derived

˙̂hi = Ri
b[m

b +
1
2
kp(Ib)−1ε̃ sgn(η̃)] (8.77)

˙̂q =
1
2
Tq(q̂)(ω̂b

ib + kv(Ii)−1ε̃ sgn(η̃) (8.78)

This observer is quite extensively used throughout the literature. With minor changes, it is
used in Fjellstad (1994) for estimating the angular velocity of underwater vehicles, where as in
Bondhus, Pettersen & Gravdahl (2005) the same observer is used for Leader/Follower synchro-
nization of satellite attitude.
Now, using the fact that Ii = Ri

bI
bRb

i and ωi
ib = Ri

bω
b
ib the left-hand side of equation (8.77) can

be written

˙̂hi =
d
dt

(Ri
bI

bRb
iR

i
bω̂

b
ib)

= Ṙi
bI

bω̂b
ib + Ri

bI
b ˙̂ωb

ib

= Ri
bS(ω̂b

ib)I
bω̂b

ib + Ri
bI

b ˙̂ωb
ib

= Ri
b(S(ω̂b

ib)I
bω̂b

ib + Ib ˙̂ωb
ib)

(8.79)

It has been used that Ṙi
b = Ri

bS(ωb
ib) and ω̂b

ib � ωb
ib and Ri

bR
b
i = 1. Hence the attitude observer

dynamics and kinematics becomes

Ib ˙̂ωb
ib + S(ω̂b

ib)I
bω̂b

ib = mb +
1
2
kp(Ib)−1ε̃ sgn(η̃) (8.80)
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and
˙̂q =

1
2
Tq(q̂)(ω̂b

ib + kv(Ri
b(I

b)−1Rb
i ε̃ sgn(η̃) (8.81)

by using (Ri
b)

−1 = Rb
i . This is really just a copy of equation (7.6) and an injection term. Since

the observer is changed from the one given in Salcudean (1991), the stability analysis given
there, is no longer valid. By also copying the translational dynamics and kinematics in the
same way, the total 6 DOF observer dynamics becomes.

M ˙̂ν + C(ν̂)ν̂ + g(q) = τ + k1 (8.82)

with

k1 =
[

1
2kp(Ib)−1ε̃ sgn(η̃)

Kq(pi − p̂i)

]
(8.83)

As stated above, the rotational observer kinematics is

˙̂q =
1
2
Tq(q̂)(ω̂b

ib + kv(Ri
b(I

b)−1Rb
i ε̃ sgn(η̃) (8.84)

and finally the translational observer kinematics

˙̂pi = Ri
bv

b + Kq(pi − p̂i) (8.85)

The main reason for using this particular observer, is that these equations also give an estimate
of the acceleration, which can be forwarded to the controller of the Follower satellite.
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Chapter 9

Simulations

The simulations are performed using Matlab and Simulink, together with the Marine GNC
Toolbox1. The Leader satellite is in all cases assumed to orbit the Earth at a circular orbit of
600 km altitude. The orbit have an inclination, see figure 9.1, of 90 degrees, i.e. the orbit is
polar. Perfect measurement of both position and attitude is assumed.

Figure 9.1: The inclination is the angle from the zi vector to the angular momentum vector �h

9.1 Position Control by State Feedback Linearization

In this section the simulation results of the satellites relative motion using the controller of
section 8.1 are presented. The orientation of the two satellites is not taken into consideration,
which can be justified by the fact that the attitude dynamics are much faster than the position
dynamics. For simplicity reasons the thruster forces are assumed to work in the directions of
the Hill-frame. Maximum thrust force is set to 5 Newton. The Follower satellite is furthermore
only assumed to be influenced by the gravitational forces, including the J2-perturbations. Other

1NTNU-MSS, Marine Systems Simulator (2005).
Norwegian University of Science and Technology, Trondheim, Norway.
Available at <www.cesos.ntnu.no/mss>
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Mass m = 70kg

Moment of Inertia I =

⎡
⎣ 4 0 0

0 4 0
0 0 3

⎤
⎦

Altitude 600 km
Orbit Circular, Polar

Table 9.1: Satellite data

perturbing forces have hardly any impact on satellites at 600 km attitude. The Follower satellite
is controlled, so as to make up an in-plane elliptic formation, as described in section 4.4. The
reference trajectory is found from equation (4.28) and (4.29), and their time derivatives.
Adequate performance was reached by placing the poles of each of the decoupled linear systems
at λ1 = 0.05 and λ2 = 600. The initial conditions for the Follower satellite were chosen to be
ρ(0) = 0, and ρ̇(0) = 0, i.e. it started at the same position and with the same velocity as
the Leader satellite. Figure 9.2(a) and 9.2(b) shows how the Follower satellite reaches the de-
sired position and velocity after approximately 70 seconds. In figure 9.2(c) the actuating forces
needed to bring the satellite into the desired position are plotted, where as in figure 9.2(d) the
relative position between the satellites throughout one orbit is shown.

The exponential stability and the fact that well-established linear design techniques can be
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(d) 3D plot of Follower satellites position relative to
Leader satellite
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Parameter Value
Λ1 13×3

Λ2 13×3

Kp

⎡
⎣ 10 5 5

5 10 5
5 5 10

⎤
⎦

Kd

⎡
⎣ 3 1.5 1.5

1.5 3 1.5
1.5 1.5 3

⎤
⎦

ld 1
Lp1 Lp2

Lp2 ldΛ2

Ld ld13×3 + Λ2

Table 9.2: Controller and observer parameters for the combined controller-observer design

used, are the main advantages with state-feedback linearization. But even though the plots
indicate good performance, state feedback linearizing controllers has a number of limitations
that are important to keep in mind.
First, the full state of the satellite has to be measured. This can be solved using a nonlinear
observer, but stability analysis of a combination of a stable state feedback controller and a stable
observer is not straight forward, due to the lack of a general separation principle. Note that
this is not just a limitation for state feedback linearizing controllers, but applies to nonlinear
systems in general.
Secondly, according to Slotine & Li (1991), in the presence of parameter uncertainties or unmod-
eled dynamics, no robustness is guaranteed. State feedback linearizing controllers are especially
sensitive, since they rely on an exact model of the system.
Finally, by state-feedback linearization, the advantage of stabilizing terms are not taken, since
all nonlinearities are canceled. Hence the control efforts are even greater than they have to be.

9.2 Position Control by Combined Controller-Observer Design

Using the combined controller-observer design of section 8.3, the motion of the Follower satellite
relative to the Leader is simulated. The assumptions, initial conditions and reference trajec-
tories are the same as in the previous section. In addition the observer is given the somewhat
arbitrary initial conditions ρ̂(0) = [3 2 5]T and z(0) = [1 4 2]T . The controller and esti-
mator parameters are shown in table 9.2.
Figure 9.2(e) and 9.2(f) shows that the tracking position and velocity errors are within reason-

able values after 50 seconds. The estimation position and velocity errors are plotted in figure
9.2(g) and 9.2(h), respectively. Figure 9.2(i) shows the actuator forces needed to bring the Fol-
lower satellite into desired orbit, where as a 3D model of the follower satellites motion relative
to the leader is depicted in figure 9.2(j).
One of the advantages of passivity-based control is its robustness. If the model possesses the

same passivity properties, regardless of the numerical values of the physical parameters, and a
controller is designed so that stability relies on the passivity properties only, then the closed
loop will be stable whatever the values of the physical parameters. As opposed to the state
feedback linearizing controller, a passivity based controller takes advantage of stabilizing terms.
More about advantages and disadvantages can be found in Khalil (2002).



54 Simulations

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

6

8

10

12

(e) Tracking position error for the Follower satellite

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(f) Tracking velocity error for the Follower satellite

0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

(g) Estimation position error for the Follower satellite

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7

8

(h) Estimation velocity error for the Follower satellite

9.3 Synchronization of Position and Attitude

In this section the controller from section 8.5, together with the observer from section 8.6 are
used in the synchronization of two satellites. The reference trajectory for both satellites is a
polar orbit in the same orbital plane, but with the Follower satellite 10 meters behind the Leader
satellite. These trajectories are generated using equation (8.43), (8.44) and (8.45). The same
controller and observer parameters are used for both satellites, and are summarized in table
9.3. The thruster forces and gyro moments are saturated to 10 Newton and 10 Newtonmeter,
respectively.
The satellites were given an initial displacement in position from the reference trajectory, but

no displacement in attitude. Figure 9.2(k), 9.2(l), 9.2(m) and 9.2(n) show the tracking and
estimation error for the Leader satellite in position and attitude. Notice that the attitude error
is given in Euler angles by using a quaternion- to Euler angles transformation algorithm, see
Fossen (2002). The input forces needed to control the Leader satellite are shown in figure 9.2(o).
Figure 9.2(p), 9.2(q), 9.2(r) and 9.2(s) show the tracking and estimation error for the Follower
satellite in position and attitude, where as figure 9.2(t) shows the input forces needed to control
the Follower satellite. In the case where an initial displacement in orientation was given, the
satellites were unable to follow the reference trajectory, even with velocity feedback. This was
most likely due to an implementation error.
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(j) 3D plot of Follower satellites position relative to Leader
satellite

Parameter Value
λ1 1
c 1

Kd diag{200 · 13×3, 10 · 13×3}
λ2 5
Kp [100 · 13×3]
λ3 20
λ4 20
Kq diag{1500, 300, 500, 1

2λ413×3}

Table 9.3: Controller and observer parameters for synchronization of satellites
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(o) Control forces and torques necessary to bring the Leader
satellite to its reference trajectory
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(q) Estimation position and attitude error for the Follower
satellite

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

6
x 10

−12

(r) Tracking velocity error for the Follower satellite
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Chapter 10

Concluding Remarks and
Recommendations

10.1 Conclusion

In this thesis the linear equations for the relative position of satellites, called the Hill-Clohessy-
Wiltshire equations, have been presented. They have been used in the development of fuel
efficient reference orbits, suitable for formations flying of satellites.
The linear relative model has been extended to a nonlinear version, where also the forcing terms
from actuators and disturbance forces have been incorporated. In a similar manner a model for
the relative attitude has been derived.
For the nonlinear relative equations of motion, both a state feedback linearizing controller and
a passivity based controller, were developed. The passivity based controller was extended to a
combined observer-controller scheme, by taking advantage of such schemes already developed
for robot manipulators. In this way velocity measurements were no longer needed. Simulations
were performed to illustrate the behavior of the different controllers.
A different approach was then taken in the modeling of the formation. Each satellite was
modeled using the 6DOF rigid body equations of motions, which are well known from the
modeling and control of robot manipulators and ocean vehicles. In this way not only a more
complete model for the behavior of the satellites was achieved, but it also opens a toolbox of
controllers and observers already developed in other fields of study.
Using synchronization theory and a controller developed for underwater vehicles, formations
were simulated.

10.2 Recommendations

For future work based on this thesis, the following recommendations are given

• The complete 6 DOF model for the relative position and attitude could be implemented.
Further should controllers and observers for the relative attitude be designed.

• The controller proposed for synchronization of satellites should be re-implemented. Incor-
porating an observer, and perform stability analysis of the total system. Relevant articles
for combined controller-observer schemes in 6 DOF using quaternions for describing the
attitude are Caccavale, Natale & Villani (2003), Antonelli, Caccavale & Chiaverini (2004),
Antonelli, Caccavale, Chiaverini & Villani (1998) and Caccavale, Natale & Villani (1999).

• Incorporate the models for the actuators.
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• The accuracy of using the GPS for position measurements should be investigated. Perhaps
incorporate and investigate other sensors, such as star trackers, magnetometers and inertial
measuring units.



Appendix A

Polar Coordinates

The unit-vectors in polar coordinates are given by

�er = cos θ�ex + sin θ�ey (A.1)
�eθ = − sin θ�ex + cos θ�ey (A.2)

The time derivative of (A.1) is

�̇er = −θ̇ sin θ�ex + θ̇ cos θ�ey

= θ̇�eθ

(A.3)

where (A.2) have been used. Taking the second time derivative of the same equation gives

�̈er = −(θ̇2 cos θ + θ̈ sin θ)�ex + (−θ̇2 sin θ + θ̈ cos θ)�ey

= −θ̇2(cos θ�ex + sin θ�ey) + θ̈(− sin θ�ex + cos θ�ey)

= −θ̇2�er + θ̈�eθ

(A.4)

where both (A.1) and (A.2) have been used. The time derivative of (A.2) is given by

�̇eθ = −θ̇ cos θ�ex − θ̇ sin θ�ey

= −θ̇�er

(A.5)

where (A.1) has been used. Its second time derivative is

�̈eθ = (θ̇2 sin θ − θ̈ cos θ)�ex − (θ̇2 cos θ + θ̈ sin θ)�ey

= −θ̇2(− sin θ�ex + cos θ�ey) − θ̈(cos θ�ex + sin θ�ey)

= −θ̇2�eθ − θ̈�er

(A.6)

where both (A.1) and (A.2) have been used.
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Appendix B

Analytical Solution of the
Unperturbed HCW Equations

The Laplace-transformed of unperturbed HCW equations can be written

s2X − sx0 − ẋ0 − 2nsY + 2ny0 − 3n2X = 0 (B.1)

s2Y − sy0 − ẏ0 + 2nsX − 2nx0 = 0 (B.2)

s2Z − sz0 − ż0 + n2Z = 0 (B.3)

where X = L {x}, Y = L {y} and Z = L {z}, i.e. the Laplace transformed of x, y and z
respectively. Inserting (B.2) into (B.1) gives

X =
sx0

s2 + n2
+

ẋ0

s2 + n2
+

2nẏ0

s(s2 − n2)
+

4n2x0

s(s2 + n2)
(B.4)

Inserting this result for X in (B.2) gives

Y =
y0

s
+

ẏ0

s2
− 2nx0

s2 + n2
+

2nẋ0

s(s2 + n2)
− 4n2ẏ0

s2(s2 + n2)
− 8n3x0

s2(s2 + n2)
+

2nx0

s2
(B.5)

Equation (B.3) can be written

Z =
sz0

s2 + n2
+

ż0

s2 + n2
(B.6)

The inverse Laplace transformed of each term for these three equations give

x = x0 cos nt +
ẋ0

n
sin nt +

2ẏ0

n
(1 − cos nt) + 4x0(1 − cos nt) (B.7)

y = y0 + ẏ0t − 2x0 sin nt +
2ẋ0

n
(1 − cos nt)

− 4ẏ0(t − 1
n

sin nt) − 8nx0(t − 1
n

sin nt) + 2nx0t

(B.8)

z = z0 cos nt +
ż0

n
sin nt (B.9)

which finally can be written

x =
ẋ0

n
sin nt − (3x0 +

2ẏ0

n
) cos nt + 4x0 +

2ẏ0

n
(B.10)

y =
2ẋ0

n
cos nt + (6x0 + 4

ẏ0

n
) sinnt − (6nx0 + 3y0)t − 2ẋ0

n
+ y0 (B.11)

z = z0 cos nt +
ż0

n
sin nt (B.12)
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Appendix C

Lie-derivatives in Mathematica

The Lie derivative of a function λ(x) along a vector field f(x) is, as in Isidori (1995)

Lfλ(x) =
∂λ(x)

∂x
f(x) = 〈dλ(x), f(x)〉, dλ =

[
∂λ

∂x1
,

∂λ

∂x2
, . . . ,

∂λ

∂xn

]
(C.1)

Lk
fλ(x) =

∂Lk−1
f λ(x)

∂x
f(x), L0

fλ(x) = λ(x) (C.2)

where the recursive formula for the last equation can be written in Mathematica as

Lie[\[Lambda]_List, x_List, f_List, 0] := \[Lambda]
Lie[\[Lambda]_,x_,f_,k_] :=
Flatten[Outer[D,Lie[\[Lambda],x,f,k-1],x].f]

The Lie product (or bracket) of f and g is

[f ,g] =
∂g
∂x

f(x) − ∂f
∂x

g(x) = adfg(x) (C.3)

adk
f = [f , adk−1

f g](x), ad0
fg(x) = g(x) (C.4)

and the recursive formula can be written in Mathematica as

LieKla[f_List,g_List,x_List,0] := g
LieKla[f_List,g_List,x_List,k_Integer] :=
Flatten[Outer[D,LieKla[f,g,x,k-1],x].f-Outer[D,f,x].LieKla[f,g,x,k-1]]
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Appendix D

Submitted Abstract and Conference
Presentation

D.1 Space Technology Education Conference, Aalborg, Den-
mark



Space Technology Education Conference 1

Coordinated control of satellites: 
the relative position case

Department of Engineering Cybernetics,
Norwegian University of Science and Technology,

N-7491 Trondheim
Norway

Esten Ingar Grøtli

Space Technology Education Conference 2

Outline of the talk

• Introduction

• Model

• Controllers and observer

• Simulations

• Conclusion

Space Technology Education Conference 3

What is a formation of satellites?

• Definition: ”Two or more spacecraft that
use an active control scheme to maintain
the relative positions of the spacecraft.”

Folta, Newman & Gardner

Space Technology Education Conference 4

Why do we want formations of
satellites?

• We are familiar with other types of formations...

Space Technology Education Conference 5

Why do we want formations of
satellites?

• Distribute the functionality of large satellites

• Lowered total cost and risk

• Increased flexibility

• Redundancy

Space Technology Education Conference 6

Applications

• Ultra powerful telescopes

• Space-based radar

• Next-generation Internet
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HCW Equations

• x – radial direction

• y – velocity direction

• z – completes the
right-hand rule

xy
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Space Technology Education Conference 8

HCW Equations

• The Hill-Clohessy-Wiltshire equations:
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HCW Equations
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Nonlinear Equations
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Disturbance Models

• J2 Gravity Model:
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State Feedback Linearization

• State feedback controller
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State Feedback Linearization
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Passivity based controller-
observer design

• Passivity based controller with only position
measurement available:
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Passivity based controller-
observer design

• Passivity based observer
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Passivity based controller-
observer design
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Conclusion

• Generation of appropriate reference 
trajectories using the Hill-Clohessy-
Wiltshire equations

• Nonlinear model

• Disturbance models

• Design and implementation of state-
feedback linearizing controller and 
passivity based controller
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Extended abstract

Flying spacecraft in formations is revolutionizing our way of performing space-based
operations, and this new paradigm brings on several advantages in space mission ac-
complishment and extends the possible application area for such systems. Spacecraft
formation flying is a technology that includes two or more spacecraft in a tightly con-
trolled spatial configuration, whose operations are closely synchronized. Earth and
deep space surveillance with radio interferometry and Synthetic Aperture Radar (SAR)
technology is one area where spacecraft formations can be useful. These systems in-
volve data collection and processing over an aperture where the resolution of the obser-
vation is inversely proportional to the baseline lengths. Further exploration of neigh-
boring galaxies in space can only be achieved by indirect observation of astronomical
objects, and space based interferometers with baselines of up to ten kilometers have
been proposed. However, to successfully utilize spacecraft formations for this purpose,
accurate synchronization of both position and attitude of the cooperating spacecraft
is vital, which again depends on accurate system models of the formation including
external elements that might perturb the flight.

This paper presents a detailed nonlinear mathematical model in six degrees of free-
dom of relative translation and rotation of two spacecraft in a leader-follower forma-
tion. The model of relative position is based on the two-body equations derived from
Newton’s inverse square law of force, and the position and velocity vectors of the fol-
lower spacecraft are represented in a reference frame located in the center of mass of
the leader spacecraft, known as the Hill frame. In addition, rotation matrices between
the Hill frame and an earth centered inertial reference frame are given. The relative at-
titude model is based on Euler’s momentum equations, and the attitude is represented
by unit quaternions and angular velocities.

The model also includes the mathematical expressions for external disturbances
originating from gravitational variations, atmospheric drag, solar radiation, and per-
turbations due to other celestial bodies, known as third body effects. Results from
simulations in Matlab are presented to visualize the properties of the model and to
show the impact of the different disturbances on the flight path.
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