Friction in Robotic Manipulators
Modelling, Compensation and Simulation

Ola Jacob Mjgen Iversen
olajacob@pvv.ntnu.no
Trondheim, June 4th, 2002

DEPARTMENT OF ENGINEERING CYBERNETICS
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY



©Copyright by
Ola Jacob Mjgen Iversen
2002



NTNU Fakultet for informasjonsteknologi
Norges teknisk-naturvitenskaplige matematikk og elektronikk
universitet

Institutt for teknisk kybernetikk

HOVEDOPPGAVE

Kandidatens navn: Ola Jacob Mjgen Iversen
Fag: Teknisk Kybernetikk

Oppgavens tittel (engelsk): Friction in Robotic Manipulators: Modelling, Compensation
and Simulation

Oppgavens tekst: This text is based on Iversens project work from the autumn 2001, [1].

1. Consider a dynamic model of a manipulator with dynamic friction. Compare the
performance of control (tracking) systems for this system when the compensation
scheme is based on a) Dynamic friction models (LuGre and elasto-plastic) and b)
Static friction models. Are there benifits of using dynamic friction models in the
compensator? Does the use of the elasto-plastic model eliminate the drift mentioned
in [1]7

2. Assume that the parameters in the friction models are unknown and possibly timevary-
ing. Develop adaptive versions of the tracking controller schemes in [1]. Establish
the stability properties of the closed loop manipulator/observer/adaptive controller.

3. Study the possibility of using a neural network for in the friction compensator when
the Stribeck curve of the friction model is unknown.

4. Compare experiments and simulations of a DC motor with friction. Use both static
and dynamic friction models.

[1] Iversen, O.J.M. ”Friction in Robot Manipulators: Modelling, Compensation and Sim-
ulation”, Dept. of Engineering Cybernetics, 2001

Oppgaven gitt: 7/1-2002

Besvarelsen leveres: 4/6-2002

Besvarelsen levert: 4/6-2002

Utfgrt ved Institutt for teknisk kybernetikk

Trondheim, den 7/1-2002
Jan Tommy Gravdahl



ii



Preface

During one semester I have been working on my Master of Science thesis. I was supervised
by associate professor Dr. Tommy Gravdahl at Department of Engineering Cybernetics.
Industry partner ABB Corporate Research was represented by Dr. Dag Kristiansen.

The technical field of modelling and control of nonlinear and uncertain systems are really
interesting. I have learned a lot which I hope to benefit from in later occations.

I want to thank my advisor Dr. Tommy Gravdahl for the motivation and help during this
work. Secondly I want to thank my office mate Joar Holmefjord for providing me with
experimental data from ABB Billingstad.

Trondheim june 4th 2002

Ola Jacob Mjgen Iversen

il



v



Abstract

This thesis is focusing on friction phenomena in robotic manipulators. An introduction to
these phenomena presented the two main categories of friction models, static and dynamic
friction models. Dynamic friction models behave more like real friction, while static friction
models don’t include important friction phenomena and thus have poor performance at low
velocities and when crossing zero velocity. This was shown by experimental data of a DC
motor and comparing simulation studies.

The dynamic LuGre model has been verified to exhibit drift, however the drift is more
noticeable when the control signal is exposed to noise. Moreover it was shown that the
numerical value of this drift over the elapsed time, was quite small.

An adaptive compensation scheme was developed to estimate three unknown parameters in
the LuGre friction model in connection to a N-DOF robotic manipulator. It was assumed
that the Stribeck phenomenon was known. The adaptive controller depends upon a un-
known internal friction state which was estimated through a dual-observer. The closed-loop
and the position tracking error was shown to be globally asymptotically stable. Neverthe-
less, the shown bounded parameters didn’t converge to their true values, since this was not
proven in the stability analysis.

Finally a study of a different approach using neural networks to find the unknown Stribeck
phenomenon were performed. It was concluded that it is not straight forward to apply this
scheme to the Elasto-Plastic friction model.
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Chapter

Friction in Robot Manipulators

To boldly go where no map has gone before

1.1 Introduction

Mechanical systems such as motors, manipulators etc. includes dynamics that are difficult
to model exact. These phenomena are undesired in control systems and needs to be can-
celed out in order to obtain satisfactorily results. Researchers have been studying friction
phenomena for decades and have discovered the different friction phenomena by experi-
mental studies. As a result there have been established several mathematical formulas to
describe the different phenomena. Friction can be divided into two categories: static and
dynamic models. Static models are straight forward mathematical expressions that are
easy to implement and are widely used in the industry. Dynamic models includes more
phenomena and are more exact. At low velocities, friction becomes considerably significant
and can cause severe errors in the control system if not handeled properly.

One important obstacle in friction compensation is the parameter uncertainties. Friction
forces varies with time, temperature and metal properties. Off-line estimates of the different
parameter gives rise to increased uncertainties over time and requires frequent system
calibrations. On-line parameter estimating increases the flexibility and gives more reliable
results. In this work we will first assume that the friction parameters are constant and
known. Secondly we will treat the case when the parameters are unknown.

1.2 Motivation

Since the industry are using mostly static friction models, we are motivated to investigate
if there are any benefits of using dynamic friction models in the control system. By
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considering a dynamic model of a manipulator with dynamic friction we will be comparing
the performance of control (tracking) systems when the compensation scheme is based on
dynamic and static friction models. This will be under the assumption that the parameters
are known. Secondly we will assume the friction parameters being unknown and develop
an adaptive controller. There are two approaches to cope with uncertainties: 1) Live with
it and use robust control, or 2) reduce it and use adaptive control.

An introduction to established friction theory should provide the reader with insight into
the different friction phenomena. This survey is given in chapter 2 and is focusing on the
friction terminology and mathematical models from an control engineering point of view.

1.3 Organization of the Thesis

This report is organized into 7 chapters and an appendix

e Chapter 2 gives a survey of friction modelling and comparison of some of them.

e Chapter 3 presents modelling of experimental setup, the manipulator, inverse kine-
matics and controller design.

e Chapter 4 is divided into 4 main sections, where we present different compensation
schemes that will be simulated.

e Chapter 5 provides the experimental results and simulation results.
e In chapter 6 we discuss the results of this thesis
e Chapter 7 contain the main results and conclusions, and proposes further work

e The appendix provides tools for analysis and lists the main source code and Simulink
diagrams.



Chapter

Friction - A theoretical foundation

In this chapter, a brief introduction to friction phenomena, both static and dynamic models,
is presented. Friction has been subject for active research in several fields. [2] gives a
survey of models, analysis tools and compensation methods for the control of machines
with friction. For a more thorough introduction on friction phenomena, please refer to [1]
and [19]. A recent article discussing the elasto-plastic model is [6]. Interested readers
should also study [18].

2.1 Friction Phenomena

Friction is the tangential reaction force between two surfaces in contact, Figure 2.1. This
force is proportional to the normal force as the well known classical friction force F' = ulN.
The apparent contact of the surfaces is not the true area of contact. Asperities between
the surfaces makes the friction force to depend up on the properties of the materials,
displacements, relative velocity and lubrication.

Figure 2.2 demonstrates a model of the contact between two surfaces in a microscopic scale.
The surfaces are constructed by small asperities. The true contact occurs between these
asperities, in what are called asperity junctions. In engineering materials the slopes of the
asperities are typically 5 to 10 degrees, whereas the junction widths typically are 1 - 1075
(in steel). The true area of contact is therefore much smaller than the apparent area of
contact and is determined by

load

true area of contact = Vield pressure’

where “yield pressure” is a material property. The asperities deform to generate the contact
area necessary to take up the total load.
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Figure 2.1: Friction force

| |

F

Figure 2.2: Contact between asperities

Experiments on some surfaces have indicated that friction is less when surfaces are dry,
[19]. By dry friction one mean absence of pollution between the surfaces. This is only
an ideal situation that are not possible to achieve in real mechanical installations because
there will always be a chemical connection between materials in contact.

Descriptions of different friction phenomena is given in the literature. These have been
attempted identified. Some of them are well explained, while others are less known. When
the velocity isn’t constant, the dynamics of the model is becoming important and gives
rise to different phenomena.

Static friction (stiction) The force (torque) needed to put a body into movement.

Stic-slip movement Stic-slip movement is caused by the fact that the force is greater
when the body is at rest than when in movement. This effect will not appear when the
force is big enough, as can be seen in Figure 2.3 b). The setup is modelled as a box being
pulled by a force F' connected in series with a spring with a constant k, see Figure 2.3
a). The experiment was carried out by Canudas de Wit in [5]. In control systems, the
stic-slip is highly undesirable and a good model is desired in order to achieve a precise
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compensating.
&, Ingen sticion dersom hastigheten er stor nok
4
2]
- 0 T T 1
i 1] 20 30
a) Eksperimentell setup b} Simulering av stic-slip

Figure 2.3: Stic-slip movement

Dynamic (Coulomb) friction A friction component independent of the velocity.

Frictional lag Frictional lag, see hysteresis.

Viscous friction Velocity dependent friction between body and lubricate.

Pre-sliding displacement Small movements in the elastic area are called pre-sliding
displacement or the Dahl-effect. The area where the sliding is elastic is normally less than
2 micro for steel. This behaviour can be described as a spring when the applied force is
less than the force putting the body into sliding (break-away).

Stribeck effect At low velocities the friction force will decrease at increased velocity.
This is referred to as the Stribeck-velocity.

Hysteresis Hysteresis appears in the relation friction - velocity. Hess and Soom showed
the friction force is less at decreasing velocity than at increasing velocity.

Varying ”break-away” forces Break-away is the transition from stiction into sliding
(dynamic friction). The amount of force needed to break the static friction is called the
break-away force.
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Dissipative properties Friction is dissipative, which imply that it consumes energy
from a system. This is a very desired property of a friction model in control systems.

2.2 Static models

The simplest models describes the friction as a function of the relative velocity between
the gliding surfaces. These models are often referred to as static models. There are
several problems with these models, and one of them appears when the velocity crosses
zero, v = 0. Then the friction isn’t a function of velocity, which implies mathematical
complexities. Simulation of such models produces practical difficulties as a result of the
problem of telling when the velocity precisely reaches zero.

al

bj

.---""""—-

? e

P il

f)

—

Figure 2.4: a) Coulomb b) Coulomb + viscous ¢) Coulomb + viscous + stiction d) Stribeck
effect e) Karnopp f) Hess and Soom

2.2.1 Coulomb-friction

The Coulomb-friction depict the relation between friction and force. This model is simple
and linear, see Figure 2.4 a).

F = Fgsgn(v) = pFysgn(v), (2.1)
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where F is the friction force, Fy is normal load and p is the friction coefficient. This
model was first discovered by Leonardo da Vinci (1591), but was rediscovered by Amonts
(1699) and developed by Coulomb (1785), [2].

An extension and improvement of the Coulomb-friction was later done by including vis-
cosity as a proportional friction force with respect to velocity F' = Frv, Reynolds (1886).
This extension follows by the viscosity of the lubricants. Figure 2.4 b) shows Coulomb with
viscous extension. Experiments has shown that the parameters Fo and Fg often depends
on the direction of the velocity.

The model given by equation (2.1) does not describe the phenomenon when zero-velocity
because the signum function isn’t defined when v = 0. Applying a small force is causing
the friction to behave like a spring; and this is the phenomenon called “stiction” or static
friction. This is an extra friction force at zero velocity which can be seen graphically in
Figure 2.4 ¢). By extending the Coulomb-model, this model appears

(2.2)

o F,, if v =0 and |F,| < Fg;
| Fssgn(F.), ifv# 0 and |F,| > Fy.

where F, is the force applied on the body. The model can be looked at as a composition
of two models, one when v = 0 and a Coulomb friction model when v # 0. The model
when v = 0 implies that the friction has opposite direction relative to the velocity as long
as applied force is less than the stiction force Fj.

2.2.2 Stribeck-friction

In 1902 professor Stribeck discovered -by experiment- that the friction force does not
suddenly drop as illustrated in Figure 2.4 c¢). Stribeck [18] observed a friction force with
a falling shape as illustrated in Figure 2.4 d). The velocity vs; where the friction force is at
minimum is named the Stribeck-velocity. The Stribeck model is described as

F(v), if v # 0;
F=<F, if v =0 and |F,| < F; (2.3)
Fssgn(Fy), else

The function F'(v) can be identified by measuring the force that is needed to maintain
constant velocity. Mostly it is asymmetric, i.e. direction dependent.

Armstrong-Hélvoury (1990) proposed the following expression of F'(v):

|5

F(v) = Fo 4 (Fs — Fg)e 1Y% 4 Fro (2.4)
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| |1 IV

Figure 2.5: The generalized Stribeck curve

The Stribeck effect shall produce a destabiliating effect at low velocities.

I No sliding, elastic deformation.

IT Boundary lubrication

IIT Partial fluid lubrication

IV Full fluid lubrication
The first regime: static friction and presliding displacement. Contact is shown
to occur at asperity junctions. From the standpoint of control, these junctions have two

important behaviours: they deform elastically, giving rise to presliding displacement; and
both the boundary film and the asperities deform plastically, giving rise to static friction.

The second regime: boundary lubrication. In the second regime - that of very low
velocity sliding - fluid lubrication is not important, the velocity is not adequate to build a
fluid film between the surfaces.
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The third regime: partial fluid lubrication. Imagine a process where lubricant is
drawn into the contact zone as Figure 2.6. Lubricant is brought into the load bearing
region through motion, either by sliding or rolling. Some is expelled by pressure arising
from the load, but viscosity prevents all of the lubricant from escaping and thus a film is
formed. The entrainment process is dominated by the interaction of lubricant viscosity,
motion speed and contact geometry. The greater viscosity or motion velocity, the thicker
the fluid film will be. When the film is not thicker than the height of the asperities, some
solid-to-solid contact will result and there will be partial fluid lubrication. When the film
is sufficiently thick, separation is complete and the load is fully supported by fluid. Partial
fluid lubrication is the most difficult to model of the four regimes, [2].

The fourth regime: full fluid lubrication. Hydrodynamic or elasto-hydrodynamic.
Hydrodynamic and elasto-hydrodynamic lubrication (EHL) are two forms of full fluid lubri-
cation. Hydrodynamic lubrication arises in conformal contacts, and EHL in non conformal
contacts. Solid-to-solid contact is eliminated. In this regime, wear is reduced by orders of
magnitude and friction is well behaved. The object of lubrication engineering is often to
maintain full fluid lubrication effectively and at low cost.

Sliding Or Rolling
Motion

e

Lubricant, . .
Extruded by Pressure Entrained by Motion

Figure 2.6: Motion brings fluid lubricant into the contact zones.

2.2.3 Problems with the static models

Two main problems regarding static friction models were studied by Karnopp and Arm-
strong. Nevertheless, static friction models lack significant properties which becomes crit-
ical at low velocities.

1. They are dependent on detection of zero velocity, since switching between two dif-
ferent equations are done

2. They do not describe all observed dynamical effects, such as pre sliding displacement,
varying break away force and frictional lag.
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Karnopp model

In 1985 Karnopp presented a model as illustrated in Figure 2.4 e). This model includes a
dead-zone at zero velocity. The models described above has a disadvantage when identi-
fying zero velocity. In Karnopps model the condition v = 0 is replaced by |v| < e. The
model is an improvement of the stiction models, but introduces difficulties because the
behaviours depends strongly by the choice of € and the robustness of numerical integration
routines. An another drawback with the model is that it is strongly coupled to the rest of
the system. The external force is an input to the model and this force is not always given
explicitly. One can also observe that the models are discontinuous at v = 0. Karnopp
showed that an approximation with finite slope through the origin wouldn’t reflect the
physical phenomenon.

Armstrongs model

A classical model has been modified by [2] to account for some of the observed dynamics in
friction phenomena. This model introduces time dependency for stiction and the Stribeck
effect, but does not handle pre-sliding displacement. This was handeled by describing the
sticky behaviour with a separate equation. Then a mechanism must control the recoupling
between the stiction model and the sliding model. The friction is described by

F(z) = ooz (2.5)
when sticking and by

1
1+ (v(t—m)/vs)

F(v,t) = (FC + Fs(7,tq) 2) sgn(v) + F,v (2.6)

when sliding, where

ta
Fs(v,ts) =Fsa+ | Fsoo — Fsog—— 2.7
() = Fsa+ (Fooe — Frai ) 1)

Fg, is the Stribeck friction at the end of previous sliding period and ¢, the dwell time, i.e.,
the time since becoming stuck.

2.3 Dynamic Models

Studies has shown that friction models should include dynamics in order to describe the
friction phenomena more precise. The desire to obtain better precision and the use of
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better hardware makes it possible to implement friction compensators.

2.3.1 Dahl Model

The Dahl model is inspired by the stress-strain characteristics from solid mechanics. As a
consequence the friction force is described as only dependent of the position. The model
offers a good description of the unidimentional phenomenon when the transient behaviour
is elastic rather than viscous. When subject to stress the friction force increases gradually
until rupture occurs. Dahl modeled the stress-strain curve by a differential equation. Let
x be the displacement, F' the friction force, and F, the Coulomb friction force. The Dahl’s
model has the form

% — 0 (1 - %gn(v)>a (2.8)

where o is the stiffness coefficient and « is a parameter that determines the shape of the
stress-strain curve. The value @ = 1 is most commonly used. Higher values will give a
stress strain curve with a sharper bend. The friction force |F'| will never be larger than F,
if its initial value is such that |F'(0)| < F. [19].

To obtain the time domain model Dahl observed that

dF  dFdx dF F “
o _ e 1— 2.9
dt ~ dzdt  dz.  ° ( chg”(“)> v (2:9)
For a = 1 the Dahl model (2.9) reduces to
dF F
— =0V — =|v|. 2.1
il F\v\ (2.10)
Introducing F' = o0z the model can be written as
dz olvl
Z—p= 2.11
dt v Fc Z, ( )
F=o0z (2.12)

The Dahl model offers a regularization of Coulomb friction at velocity zero crossings, but
does not include stiction nor captures the Stribeck effect.
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2.3.2 Bristle Model

Haessig and Friedland introduced this friction model, which attempted to capture the
behaviour of the microscopical contact points between two surfaces. Due to irregularities
in the surface the number of contact points and their location are random. Each point of
contact is thought of as a bond between flexible bristles. As the surfaces move relative to
each other the strain in the bond increases and the bristles act as springs giving rise to
friction force. The force is given by

where N is the number of bristles, g the stiffness of the bristles, x; the relative position
of the bristles, and b; the location where bond was formed. As |z; — b;| equals 5 the bond
snaps and new one is formed at a random location relative to the previous location.

The complexity of the model increases with N. Good results where found with 20-25
bristles, but even a single bristle gave reasonable qualitative behaviour, [19]. The stiffness
of the bristles, oy, can be made velocity dependent. An interesting property of the model
is that it captures the random nature of friction. The randomness depends on the number
of bristles. The model is inefficient in simulations due to its complexity. Motion in sticking
may be oscillatory since there is no damping of the bristles in the model.
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2.3.3 Bliman-Sorine model

Bliman and Sorine stress rate independence. The magnitude of the friction depends only
on the sgn(v) and the space variable s defined by

s=/0 |v(T)|dT. (2.14)

In the Bliman-Sorine models, friction is then a function of the path only. It does not depend
on how fast the system moves along the path. This makes it possible to use elegant theory
of hysteresis operators developed in [12, 3]. The models are expressed as linear systems
in the space variable s

‘ZS — Az, + Bu, (2.15)
F =Cux, (2.16)

The variable v; = sgn(v) is required to obtain the correct sign. Bliman and Sorine have
models of different complexity. The first order model is given by

1
A=—-—, B= h and C =1. (2.17)
€f €f
This model can be written as
dF . dF@ dF . fi

= [v]

w2 <v _ |U|El) (2.18)

which is identical to the Dahl model with Fo = f;, o = f—i and o = 1. The first order
model does not give stiction, nor does it give a friction peak at a specific break-away
distance as observed by Rabinowicz. This can, however, be achieved by a second order

model with

dt  ds dt

— _L O
A = e ] (2]‘9)

nef

(2.20)

¢f
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where f; — fy corresponds to kinetic friction reached exponentially as s — oc. The model
can be viewed as a parallel connection of a fast and a slow Dahl model. The fast model
has higher steady state friction than the slow model. The force from the slow model is
subtracted from the fast model, which results in a stiction peak. Both the first and the
second order models can be shown to be dissipative. Bliman and Sorine also show that, as
€5 goes to zero, the first order model behaves as a classical Coulomb friction model, and
the second order model as a classical model with Coulomb friction and stiction. It should
be noted that the Stribeck effect of the second order model is not the same as observed in
[18]. The emulated effect by the second order model is only present at a certain distance
after motion starts. This means that it will not appear when motion slows down, as the
true Stribeck effect would. The friction peak is instead the equivalent of stiction for a
dynamic model.

2.3.4 LuGre Model

The LuGre model is another generalization of Dahl’s model. The model is related to the
bristle interpretation of friction. Friction is modeled as the average deflection force of
elastic springs. When a tangential force is applied the bristles will deflect like springs. If
the deflection is sufficiently large the bristles starts to slip. The average bristle deflection
for steady state motion is determined by the velocity. It is lower at low velocities, which
implies that steady state deflection decreases with increasing velocity. This models the
phenomenon that the surfaces are pushed apart by the lubricant, and models the Stribeck
effect. The model also includes rate dependent friction phenomena such as varying break-
away force and frictional lag. The model has the form

dz v
E =vU — UO@Z, (221)
F =0pz + 0y (v)% + f(v) (2.22)

where z denotes the average bristle deflection. The model behaves like a spring for small
displacements. Linearization around zero velocity and zero state gives

d(;stz) = v, (2.23)
6F = 040z + (01(0) + f(0))dw. (2.24)

The parameter oy is the stiffness of the bristles, and oy (v) the damping. For constant
velocity the steady state friction force is
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F = g(v)sgn(v) + f(v) (2.25)

The function g(v) models the Stribeck effect, and f(v) is the viscous friction. A reasonable
choice of g(v) which gives a good approximation of the Stribeck effect is

9(v) = ap + aze= /) (2.26)

The sum o + a7 then corresponds to stiction force and ag to Coulomb friction force. The
parameter v; determines how g(v) vary within its bounds o < ¢(v) < ap+ ;. A common
choice of f(v) is linear viscous friction f(v) = ayv as in (2.12).

The following special case of the model given by equation (2.21), (2.22) and equation (2.26),
which has linear viscous friction and constant o, is called the standard parameterization.

dz |
e el 2.27
o =Y JOg(U)Z (2.27)
g(v) = ap + e /)’ (2.28)
F = 0% + 0'17;' -+ Qv (229)

It is useful to let the damping o, decrease with increasing velocity, e.g.

o1 (v) = oye (/00 (2.30)
Physically this is motivated by the change of the damping characteristics as velocity in-
creases, due to more lubricant being forced into the interface. Another reason for using

(2.30) is that it gives a model which is dissipative, with the mapping v — 09z + 012, which
is the case when

oy < 490 (2.31)
The proof was shown in [10].

2.3.5 Elasto-Plastic Model

The Elasto-Plastic friction model is a new class of single state models in which presliding
is elasto-plastic: under loading, frictional displacement is first purely elastic and then
transitions to plastic.
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The rigid body displacement x is decomposed into elastic and plastic components z and
w:

rT=z+w (2.32)

Friction models typically define the elastic dynamics explicitly while the plastic displace-
ment w is defined implicitly.

The elasto-plastic model is defined by the following equations

=1 (1 — a(z, x)fss—(z)sgn(ac)z) @ >0, 1€Z (2.33)

fr=o00z+ 012+ 092, 0;>0 (2.34)

where the integer exponent ¢ was originally used by Dahl to govern the transition rate of
z in order to achieve a better experimental match. Applications of his model typically
employ the value ¢ = 1. The piecewise continuous function «(z, %) is defined as follows

Oa |Z| < Zbas
a(z,2) =C0< a<l, zp<|t| < zZmew(), (2.35)
1, 2] > Zmaz(2)
0 < 20 < Zmanl(d) = 2 s(@) e R (2.36)
0o

A breakaway displacement z,, > 0 is defined such that the models behave elastically for
|z| < zps- The model above possesses the following properties:

1. The state z is bounded: If |2(0)| < zmae = fmaz/00 then |2(t)| < zmas, VE > 0.

2. Super relaxation is precluded: 0 < dz/dx < 1 if no Stribeck effect is modeled and
—00 < dz/dx <1 otherwise.

3. The model possesses a stiction phase: A breakaway displacement z,, > 0 exists such
that the model behaves elastically for |z| < zp,.

4. During sliding, the friction force opposes slip: sgn(f;) = sgn(w), Vw # 0.

5. The model is dissipative for all = # 0.
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Property 5 states the dissipative property of the model. In [6] they considered the map
i — fy, from rigid body velocity to friction force. Using V(t) = 1/20¢2? as a positive
definite storage function, we write the input-output product as

i fr= (2 +w)(00z + 012) + 09i? (2.37)
=V + 0132 + i fr + 092 (2.38)
>V, Vi#0. (2.39)

Which can be used to conclude that the map & +— f; is dissipative for any nonzero input.

For simulation studies, «(z, ) is chosen to produce stiction and is given by

07 ‘Z‘ S Zbay
: . o (Zmeztig .
o(z,2) = %sm(w%) + %, Zba < 17| < Zmaz(T), (2.40)
1, 2] 2 Zmas (2)
and can be visualized as in Figure 2.7
0(2)

A

—ss —Zba 0 <ha Jss

Figure 2.7: Plot of a(z, ) for sgn(t) = sgn(z)
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2.4 Comparisons of friction models

A comparison of the Bliman-Sorine and the LuGre models were investigated in [11].
Comparisons were made of captured friction phenomena, behaviour at zero crossings of
the velocity and computational issues. It was concluded that the LuGre model exhibits
a richer behaviour in terms of friction phenomena. The Bliman-Sorine model can be
problematic to use because of poor damping properties at zero crossings of the velocity.

A recent article on dynamic models, [6], proposes the Elasto-Plastic Friction Model. The
article showed that modeling presliding displacement and sliding in a single function gave
rise to subtle issues. A comparison of phenomena in four different friction models pointed
out that the stiction property of the LuGre model is not rendered as expected in earlier
articles on the LuGre model. Table 2.1 shows the results of the comparisons.

Table 2.1: Comparison of four models of friction

Friction Model Stiction | Presliding Displacement
Coulomb and Karnopp Models Yes No
Regularized Coulomb No Yes
LuGre Model No Yes
Elasto-Plastic Model Yes Yes

Models in common use possess several combinations of presliding displacement and stic-
tion. the classic Coulomb friction mode, like Karnopp model, renders stiction but makes
no reference to presliding displacement. Because of challenges posed by the discontinuity
at zero velocity, the Coulomb friction model is sometimes regularized, leading to a model
having neither presliding displacement nor stiction. The LuGre model renders presliding
displacement but not stiction; and the elasto-plastic model renders both presliding dis-
placement and stiction, [6]. The LuGre model gives rise to a steady drift in position
during applied force. This is seen in Figure 2.8 from [7].

A similar simulation as in Dupont is visualised in Figure (2.9). The oscillatory applied
force represents noise.

As seen from Figure 2.10 the drift is not that significant without "noise” as when noise
is introduced to the system, Figure 2.9. The force applied to the LuGre system in Figure
2.10 is similar to the force in 2.9 except for the oscillatory movement.
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2.5 Friction in Servomotors

In a manipulator control system the friction arise in the joint actuation system, [16].
The joint motion is entrusted to motors which allow realizing a desired motion for the
mechanical system. The motors employed in robotics are the evolution of the motors
employed in industrial automation having powers ranging from about ten watts to about
ten kilowatts. For the typical performance required, such motors shall have the following
requirements with respect to those employed in conventional applications:

e low inertia and high power-to-weight ratio,

possibility of overload and delivery of impulse torques,

capacity to develop high accelerations,

wide velocity range (from 1 to 1000),

high positioning accuracy (at least 1/1000 of a circle),

e low torque ripple so as to guarantee continuous rotation even at low speed

These requirements are enhanced by the good trajectory tracking and positioning accuracy
demanded to an actuating system for robots, and thus the motor shall play the role of a
servomotor.

To control an electric servomotor, it is necessary to provide it with a voltage or current of
suitable form depending on the kind of servomotor employed. Voltage (or current) is direct
for permanent-magnet dc servomotors, while it is alternating for brushless dc servomotors.
The value of voltage for permanent-magnet dc servomotors or the values of voltage and
frequency for brushless dc servomotors are determined by the control signal of the amplifier,
so as to make the motor execute the desired motion, [16].

By customising the electric servomotors to the specific application in robotic control, one
will contribute to reduce the control difficulties. From a control engineers point of view, a
basic study of the used actuator system should point out the control scheme in practical
applications.

A common way of representing friction in servomotors is by adding viscous friction Bw as
shown in [8]

Jo=7—Bw—T; (2.41)

where T7, is the load.
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Figure 2.8: Top panel: force applied to a block in frictional contact with planar surface.
Other panels: resulting displacement of a block using three friction models.
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Response without "noise”
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Figure 2.10: Simulation without "noise”



Chapter

Modelling

3.1 DC Servo Motor

An experimental setup of a DC motor will be presented here. The setup is provided by
ABB, Billingstad, Norway.

Given the following equations of a DC-motor:

L% = R~ Ko + g (3.1)
dt
dwr ,
Jm% = Krpia — Ty, — T (3.2)
by,
B, (33)

where i, is the armature current, R, is the armature resistance, L, is the armature in-
ductance, u, is the armature voltage, wy, is the angular velocity of motor shaft, .J,, is the
inertia of the motor shaft, 77, is the torque that acts on the motor shaft from the load and
0., is the motor angle. The constants K7 and Kg are the torque and field constants, where
Kr = Kg. Ty is the friction torques of the system.

The setup is illustrated in Figure 3.1. An additional load torque is supplied by connecting
the motor to a cylindrical transmission shaft by a strap. The interconnection of the motor
and the load is assumed to form a rigid system.
An additional equation provides the load torque, which can be inserted into the equations
above:

de 1

Experimental results are presented in chapter 5 concerning static, Lugre and Elasto-Plastic
compensation.

25
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DC-motor

Figure 3.1: Experimental setup of a DC-motor and the load of a friction torque

3.2 Manipulator

The theory in this chapter is based on a study of [16] in addition to the others mentioned
below.

3.2.1 Dynamic model of a robot manipulator

The dynamics of a robot manipulator is described by a set of differential equations written
in compact form as

D(q)§j+C(q,4)g +9g(q) =T (3.5)

where D(q)q is the vector of inertia, C'(q, ¢)g is the vector of Coriolis and centrifugal forces
and g¢(q) is gravitational forces. 7 € R™ is the vector of control torques and the vector g
describes the motor position.

This plant is described by Euler-Lagrange equations of the form
L(q,q 0L(q, q
d (0L(g,9)\ _9L(g.d) _ (3.6)
dt 0q dq
where L(q,q) := T(q,q4) — V(q) is the Lagrange function, T'(q,¢) = %QTD(Q)Q, D(q) =
DT (q) > 0 is the kinetic energy and V(q) is the potential energy.

The rigid robot manipulator described by the equations of (3.5) has a passive mapping
from the input torque 7 to the angular velocity ¢q. To verify this, we want to show that
there exist a 3 such that

t
/ Tgds > -3, Vt>0 (3.7)
0
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Consider the total mechanical energy described by the Hamiltonian

H(q,d) = 5d" D(@)i + Ula). (3

U(q) is the potential energy due to gravity and dU/dq = g(q).

= @i+ 3 D@+ % 3.9)
= (D(9)§ + C(g:9)d + 9(9)) "¢ (3.10)
=114 (3.11)

where we used the property that D(q) —2C is a skew-symmetric matrix, [Craig,1988]. This
implies

/Ot 7'qds = H(q(t),4(t)) — H(q(0),4(0)) > —H (q(0), 4(0)) (3.12)

which fulfills the dissipativity condition of equation (3.7).

3.2.2 Two Link Manipulator

In this thesis we are using the two link robot arm of Harry Berghuis [4]. The model of
this robot is defined (with zero payload) by

1.02 cos(qz) + 8.77 0.76 + 0.51 cos
0.76 + 0.51 cos(gz) 0.62
' —0.51 sin(qs)ge —0.51 sin(qz) (4; + d2)
Clq,q) = o (3.14)
0.51 sin(qz) 4, 0
74.48 sin(¢q;) + 6.174 sin(q; + q2)
9(q) = : (3.15)
6.174 sin(q; + q2)

In order to simplify the analysis and further work we will assume that the gravity is being
compensated by the controller such that we omit g(g) from now.

The model of (3.5) has to be transformed into state space in order to be implemented in
a Matlab s-function. We introduce an intermediate variable z = [¢1 ¢o]* to keep track of
our variables. In state space we get

4 = T (3.16)
gy = D Y o)t — D Y(21)C (21, 72) 20 (3.17)
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q q
T = " A To = 1 (318)
q21 q22

We do the calculations by using the element equivalencies defined by

where

dy d

Dlay=| = (3.19)
d21 d22
C C

O(z1,15) = [ S ] (3.20)
C21  Ca2

where each element correspond to the elements in the equations (3.13)-(3.14).

By inserting the above calculations into (3.17) we eventually get our state space model

qu1 = qi2 (3.21)
qiz = di1 7 + digTe — [(di1c11 + di2an)qi2 + (diicia + di2c22)q02] (3.22)
@1 = G2 (3.23)
@0 = do1T1 + dooTo — [(da1c11 + daaca1)qi2 + (doic12 + daocas)gos] (3.24)

which are the equations to be used in the Matlab s-function. Our modification of the two
link model results in a two link planar (horizontal plane) model visualized in figure 3.2.

Circle Trajectory

Friction phenomena occurring at low velocities and at sign change can be obtained by
tracking a circle. In addition we get a nice visualisation of the friction phenomena when
adding friction to the manipulator joints. Before deriving its parametric representation, it
is necessary to introduce its significant parameters. Suppose that the circle is specified by
assigning:

e the radius r of the circle, defined by \7)|,

e the center of the circle @ = [0, 0],

e the position vector 7 of a point on the circle.

The end effector of the manipulator is specified when 7 is known. Link one and two are
represented by a1 and a3 respectively. The circle is then specified by

T=0+7 (3.25)
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X
Figure 3.2: Two link planar robot manipulator
which again can be parameterized by
Pz = 05 + 1C05(¢)) (3.26)
Py = 0y + rsin(e) (3.27)

We now have our reference model in the operational space. Next we will find the joint
angles by solving the inverse kinematics.

Inverse Kinematics

Our goal will be to find the joint angles ¢; and ¢, of our manipulator in order to track the
circle given by 7. We also know that 7 = af + @3, which means that the length of the two
links represents the position of the end effector. We need to be aware of the constraints

° \/Pi + pf, < a1 + ag gives two solutions,
LARY P2+ pfj = a; + ao gives one solution,

o /P2 + P2 > a1 + ap gives no solutions.

where a; = |a{| and ay = |a3).

An algebraic solution technique is used to solve the inverse kinematics. Desirable properties
of a solution to inverse kinematics problem are that it should be both local and cyclic. A
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a2 r

a1l

Figure 3.3: Two link manipulator tracking a circle. The joint angles ¢; and ¢, are found
by using inverse kinematics

local algorithm is one for which the solution can be determined from local path information
by having specified the orientation of the end-effector. From our calculation of 7 above,
we can make an equal solution by representing ? by the two robot links a; and a3 as
? = ai + a3 which we can parameterize as

Pe = a1 ¢08(q1) + a2 cos(¢1 + ¢2) (3.28)
Py = a1 sin(qr) + agsin(q; + ¢2) (3.29)

where a; = as = 1m according to Berghuis’ model. This simplifies our model

Pz = cos(q1) + cos(q1 + ¢2) (3.30)
py = sin(g1) +sin(q1 + ¢2) (3.31)

By squaring both sides of the equations and summing them up we get

P+ Pl =2+ 2cos(qa) (3.32)

where we have used the identity cos(A — B) = cos(A) cos(B) +sin(A) sin(B) as resulted in
the factor cos(gz) . Solving the equation with respect to cos(gz) and sin(gs) we get

2 2
Pyt 0, —2

sin(ge) = +4/1 — cos?(g2) (3.34)

(3.33)
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By choosing the positive sign results in the elbow-down posture and the negative sign
results in the elbow-up posture. You can chose either one for how its appropriate for your
task. The manipulator will be able to track its path with either solution, as long as there
exists a solution and in addition there are no obstacles or constraints. We chose the elbow-
up posture, which imply negative sign. Hence, the second joint angle can be computed
as

¥y = Atan2(sin(qz), cos(g2))- (3.35)

Having determined 1, the joint angle 9; can be obtained by substituting ¥ into (3.31)
yielding an algebraic system of two equations in the two unknowns sin(g;) and cos(q1),
where the solution in our case is given by

(1 + cos(qa))py — sin(ga)ps

i = 3.36

sin(q; ) P (3-36)
(1 + cos(q2))ps + sin(g2)py

_ 3.37

cos(q1) = o (3.37)

which gives the solution of the first joint angle 9,

Y1 = Atan2(sin(q; ), cos(q1)). (3.38)
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3.3 Controller Design

When plant dynamics are exactly known, a feedback linearization is an appropriate ap-
proach in controlling a manipulator. Feedback linearization amounts to canceling the
nonlinearities in a nonlinear system so that the closed-loop dynamics is in a linear form.
We will use this technique when compensating for exactly known friction parameters in our
system, i.e. a feedback linearization combined with a feed forward friction compensation.
Since the LuGre and Elasto-Plastic friction models have a nonmeasurable internal state,
z, we also need an observer to estimate it.

Backstepping controller design is a recursive approach divided into several steps, which
include Lyapunov design for each step. The resulting lyapunov function is used to prove
stability. For each step a virtual control is designed, and the resulting error is transferred
into the next step. Backstepping gives the designer the possibility to exploit ”good” non-
linearities while "bad” nonlinearities can be dominated e.g. by adding nonlinear damping.
One advantage is reduced control power consumption. Additional robustness is obtained.
In control systems including friction, there will be some unprecise dynamics present despite
the use of advanced friction models.

Friction
JE——
Y - o I ] % & —‘ 9,9
-, ) > — (4] -
Reference 4 ~ Controller Manipulator
-
—
Adaptive Obsenver

Figure 3.4: Controller system

3.3.1 Observer Design

Given a dynamical system, the observer aims at obtaining an estimate of the current state
by only using available measurements. For linear systems, the property of observability,
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characterized by the Kalman rank condition, guarantees the possibility to indeed design an
observer. In the case of non-linear systems, observability is not enough, basically because
this property in general depends on the input of the system. In other words, observability
of a nonlinear system does not exclude the existence of inputs for which two distinct initial
states cannot be distinguished by using the knowledge of the measured output. This result
in the fact that in general, observer gains can be expected to depend on the applied input.
Moreover, the existing observers generally tightly depend on some specific structure of the
considered system, [15].

From basic control theory we know that if a system is controllable we can place the closed-
loop poles wherever we want to. If one has more inputs than “necessary”, i.e. all inputs
are not needed to make the system controllable, one also has some freedom in placing the
eigenvectors. More inputs in the control problem relates to the dual observer problem as
more measurements. The more outputs we have, the more freedom we get when designing
the observer. The role of the observer is to make full use of the system information in
the system outputs, the dual observer takes advantage of the fact that the system can be
excited from more than one input, [21].

3.3.2 Adaptive Controller and Parameter Estimation

The presence of parametric uncertainties in dynamic friction models motivates an adap-
tive approach. While the control system is running, an on-line parameter estimation tech-
nique adapts the unknown parameters. There are several parameters in the LuGre model
that needs to be known in order to represent the friction force. However, the need of
the parameters to converge is not always the issue, actually in a tracking problem the
position/velocity-error is desired to converge to zero. It is sufficient that the parameters
are bounded. For parameter convergence to occur, a Persistently Fxciting reference signal
is needed.

Definition 3.3.1 Persistence of Excitation A reference signal r(t) = 1 — cos(2nwt) is
Persistently FEzciting (PE) if it satisfies

1 t+To
ol > T/ r(7)%dr > apl, Vt>0 (3.39)
0Jt
for some Ty, ag, a; > 0.

We say that r is sufficiently rich for identifying the plant if it contains a sufficient number
of frequencies to excite all the modes of the plant. Generally speaking for linear systems,
the convergent estimation of m parameters require at least m/2 sinusoids in the reference
signal r(t). However, for the nonlinear case, such simple relation may not be valid.
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Chapter

Case studies

The performance of tracking control using different friction models will be studied in this
chapter. Both static and dynamic models are presented. It is assumed that the friction
parameters are known in section 4.1 and 4.2, while all parameters are unknown in section
4.3. When using known friction parameters we aim to show the difference in performance.
In these studies, an Elasto-Plastic friction model is integrated in the manipulator dynamics,
so as to simulate the real friction.

For the case of unknown friction parameters the LuGre friction model is studied. Here
we also use the LuGre model as the integrated part of the manipulator system. The only
assumption made is known stribeck-curve.

Chapter 4.4 present a different approach using neural networks to find the unknown stribeck
curve in the LuGre friction model. This approach is a summary of an article presented by
[9]. The idea is to find out if it is possible to extend this approach to the elasto-plastic
friction model. This will be discussed in chapter 6.

4.1 Control System Using Static Compensation Scheme

Consider the static friction model given as follows:

Fy = g(q)sign(q) + Fuq (4.1)

where ¢ is the manipulator velocity vector, g(¢g) is the stribeck-curve and F,, is the viscous
friction constant. We assume all parameters being known. Recall the manipulator dynamic
model in the form:

D(q)i+C(¢,)g=17—F (4.2)

where F' represents the real friction, as in this simulation study is represented by the
Elasto-Plastic friction model. The desired task is to follow the circle trajectory given in
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chapter 3.2.2. A PD position tracking controller is chosen as

7= D(q)da — Ky — Kag (4.3)

where § = g4—q represents the position error, based up on the assumption that position and
velocity are available for measurement. Further the friction torque F' will be compensated
by the static friction torque Fy. This is feedback linearization and feed forward friction
compensation, hence linear control theory provides stability. Results are shown in chapter
5.

4.2 Control System Using Dynamic Compensation Scheme

Difficulties presented by the dynamic friction models includes several unknown parameters
and an additional unknown and unmeasurable state, z. In this section we assume that the
unknown parameters have been measured off-line. Further we need an observer to provide
information about the bristle state. We will show the performance of both the LuGre and
the Elasto-Plastic friction models in chapter 5.

4.2.1 The Lund-Grenoble Friction Model

Consider now the problem of tracking an operational space trajectory using the dynamic
LuGre friction model. The manipulator dynamic model in the form:

D(q)i+C(g:9)g=1—F (4.4)
where F' represents the real friction.

T = D(q)da + 002 + 012 + 024 — Kpd — Kad (4.5)
where the terms including o; (i € 0,1,2) are added to represent the LuGre friction. The
stability of this controller is the same as for the static case above, knowing from chapter
2.3.4 that the LuGre model is passive. In this control scheme, we can’t measure the

unknown bristle state z and an observer is needed:

Z=g— ooﬂz (4.6)

9(q)

where ¢ is measurable.
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4.2.2 The Elasto-Plastic Friction Model

The Elasto-Plastic friction model contain an additional function described by «(z, §):

0, 12| < 2pa,
o(z,q) =4 0<a<l, 2z <|q < zmu(d), (4.7)
1, |Z| > Zmaw(q)

By including this into the bristle state observer, we get the following state observer:

L C a3 Uo‘cﬂg
p=dmalnd g (4.8)

where « is represented by equation (4.8). The total controller is now:
T = D(q)da + 002 + 012 + 024 — Kpd — Kad (4.9)

as in the LuGre case, except for the difference in the 2 dynamics.

4.3 Adaptive Friction Compensation

In general, all the friction parameters and internal states are unknown. These parameters
can be estimated on-line by using an adaptive approach while running a nonlinear observer
to observe the unknown bristle state z. The design tool to be used is based on [13]
regarding backstepping, while a dual-observer design is motivated by [20]. The dual-
observer captures different nonlinear effects of the unmeasurable friction state.

The manipulator equations can now be rewritten in a backstepping point of view:

q=v (4.10)
D(q)v =7 —F — C(q,v)v —g(q) (4.11)

where D(q) = DT(q) > 0 is the inertia matrix, C(q,v) is a matrix of Coriolis and
centripetal terms defined in terms of the Christoffel symbols and g(q) is a vector of grav-
itational forces and moments. q € R" is a vector of joint angles, v.€ R" is a vector of
joint angular rates, 7 € R" is a vector of control torques and F € R" is a vector of friction
torques. The friction torques are represented by the LuGre friction model

il
gi(vi)
F =00z + 01Z + 03V (4.13)

(4.12)
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where o; i € {0, 1,2} are diagonal matrices. g;(v;) is the scalar stribeck curve for each joint
1 € R™. By rewriting the friction torques to include the derivatives of the bristle states, we
get

F =00z +01(v — z) + 0gv (4.14)

Ivil
gi(vi)
z (4.16)

(4.15)

= 0oz + (0'1 + 0'2)V — 01
vl
gi(vi)

where (g = 09, 1 = 01 + 02 and [ = 07. All parameters and the bristle state are un-
known.

= foz + 1V — P2

Defining the backstepping error in positions e; = q — qq Where qq is a vector of desired
positions and €; = v — qq is the error in velocities. The virtual control is defined by
v = a + ey resulting in the backstepping states

é1 =+ ey —qd (417)
Dé, = Do — Dé (4.18)
D(q)é2 =7 —F — C(q,v)v — g(q) — D(q)d (4.19)

A stabilizing function is chosen as & = qq — kye; — kiny(eg)e; where k; > 0 and k1 > 0
are diagonal matrices at the disposal of the designer. A nonlinear damping n;(e;) can in
general be introduced to guarantee global boundedness in the absence of adaption, as well
as to enhance performance. Now the resulting error states appears as following

é1 = —k1e1 — /ilnl(el)el + eq (420)

We now chose a Lyapunov function

1
Vl = e}éel (421)
and the time derivative
Vl = e}‘él (422)
= —e’:l[‘klel + erlrez — K11y (el)ef (423)

which will be used in the next step.

In order to design the update laws for the friction parameter estimates, we will depend on
the Lyapunov function chosen by

1 _ _ - - - 1~ - 4= ~ 4=
V,=V; + 2 (erzrD(Q)ez + 7y BoZo + 71 BaZ1 + By L B0 + BiT1 51+ B3 T 152)
(1.24)
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and the time derivative

. . . 1 . ~m 1A ~n 1A ~mo 1A - B - B
Vy=V; + eED(q)ez + §e'2rD(q)e2 - ﬂEFo 1ﬂ0 - ﬂ;rr1 1/51 - 52TF2 1ﬂ2 + Zgﬂozo + Z$51Z1

(4.25)
Before we can continue, we have to define the dual-observer dynamics as
2 vl .
Zo=V — 2o+ to (4.26)
gi(vi)
: vl
Z; =V — 21+ 11 (427)
gi(vi)

where ¢y and ¢; are additional dynamics to be defined later. Taking zg = z — Zo and
Z1 = z — 71 as the error dynamics computed as

_ 5 — 4.28

0 gi(Vi) 20 — to ( )
: vl .

— 4.29

VA gi(vl) 21 l1 ( )

which can be inserted into the Lyapunov function together with the error dynamics of the
system

. 1 .
V2 = —er{klel + e?eg - e?mnl (61)61 + §e2TD(q)e2 (430)
+e; (T — C(q,v)a—C(q,v)ez — foz — f1v + (2 g”;:!)z — D(q)d) (4.31)
— BaTg"Bo — BT o — B3T3 e (4.32)

8 (g ) * 5 (g ) )

Now we can choose the control torques as

. N A 3 3 v ~
7=D(q)& — e; — kees + C(q, v)a + g(q) — kenz(ez)ez + foZo + f1V — ﬂng(VU)Zl
(4.34)
Inserting the control torques and organizing the Lyapunov function, we get
. 1 .
V2 = —elTklel — e2Tk2e2 — elelnl (61)61 — egﬂgng(eg)eg + EeZTD(q)eg - egC(q, V)eg
(4.35)

- 50 (9220 + Faléo) — 51 (Vez + Fflél) + 5~2 <g|l‘(v|l‘)21 €z — 152) (4.36)

— BoZo(ez + o) + P71 (g‘J(‘;‘i‘)ez - L1) (4.37)

Ba73 (4.38)

vl

gi(vi)

[Ivl]

gi(Vi)ﬂ023 N
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where ; = 3;— 3; and by using the fact that eE(%D(q) — C(q, v))ez = 0, choosing update
laws and observer dynamics as

By = —Toeaio (4.39)
B = -Tiepv (4.40)
; vl .
T ()
Lo = —€2 (442)
[Ivl|
L = e 4.43
Fogi(v) (4.43)
we obtain
T T T T _ [v]| ~2 vl =2
V2 = —€; k1e1 €5 k262 € K1y (61)91 €5 /422712(62)62 ﬂzZl

gi(vi) 70 gi(vi)
(4.44)

The expression for & which appear in the controller torque 7 is computed by taking the
time derivative of v along the trajectories of qq and eq, hence

oo . oo

V= oy — 4.4
@ 8q'dqd 861 @ ( 5)
Ou
=Gy — (v —g 4.4
G4~ Ber (v — Gq) (4.46)

The desired state g4 is assumed to be smooth such that ¢; and ¢y exist.

To prove that the system is asymptotically stable and that the position tracking error
converges to zero asymptotically, we utilize the Lyapunov function and the closed loop
system dynamics. Using Fact 1 in appendix and choosing the constants k;, k9, k1 and ko
all positive definite we obtain V3 < 0. Combining this with the fact that the Lyapunov
function V5 in (4.3) is positive definite, we conclude that V5 is bounded, which means that
its components e1, s, Bo, b1, B2, Zo and Z; are all bounded. Of special interest we have
€1,€2 € Loo

Since the friction torque parameters ; are bounded unknown constants and by definition
[5’1- =G — Bi, we can see that the parameters BZ are also bounded signals. The position
tracking error e; = q¢ — g4 is bounded, and we assume g, to be bounded, then also the
motor positions q are bounded. From the expression of the stabilizing function « and the
fact that ¢; and e; are bounded signals, we can see that « is bounded. Combining this
with the fact that v = o + ey is bounded, we conclude that the motor angular velocity v
is a bounded signal. Considering the friction dynamics in equation (4.13), we know that
the friction dynamics is bounded since the angular velocity v is bounded. This also mean
that the friction state estimates Z; and Z; are bounded since 2y = 2 — 2p and 2; = z — %;
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are bounded due to the Lyapunov function. The boundedness of the control input 7 is
apparent from its expression in (4.34) and the fact that all the signals in the expression
are globally bounded.

In particular we have e;, ey € Ly and é1,69 € Ly, and it is seen from V5 that e, es € Lo.
We conclude that the error signals e; and ey converge to zero asymptotically.

4.4 Neural Network Approach

In the adaptive case treated above we have assumed the Stribeck curve being known. In
this section we will point out some ideas on solving this as proposed in [9] using Neural
Networks (NN). NN can be used to parameterise the unknown nonlinear characteristic
function of the dynamic friction model. The first case discussed in [9] is by assuming all
friction parameters in the LuGre model as known. Further they considered the unknown
characteristic function «(z, %) and proposed using a neural network to parameterise it:

o}

r) = — 4.47
) = G R = Ry T (4.47)
which yields
=1 —ax)|t|z (4.48)
F= opZ + 0'12'5 + 0'23.7 (449)

A NN is taken as a function approximator which emulates a given nonlinear function up to
a small error tolerance. It has been proven that any continuous functions can be uniformly
approximated by a linear combination of Gaussian radial basis function (RBF) if the size
is large enough. The RBF NN is a particular network architecture and can be described
as

frn(W,z,3) = WES(z, %) (4.50)
where z, © are the input variables, W € R! is the weight vector, and
S(x,2) = [s1(x, &), so(, %), -+, sz, 8)]T € R (4.51)
is the basis function vector having the form of
2 L2
Si(i,i“)Z&’Ep <_(./,C Mll) O—Z(x IU’ZZ) )’ 7;:].,"' ,l (4-52)

with o € R being the variance and [y;, u2;]T € R? being the centre vector. Other NN can
also be used without any difficulty.

Since this scheme assume the friction parameters oy,01 and 0, as known we will not
reproduce the scheme, but only note that the tracking error converged to zero and that all
the signals in the closed-loop were bounded.
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In the second case a controller is designed for full set of unknown parameters. This is done
by separating the viscous friction parameter into one part, and the terms containing the
bristle state z in a second part. The second part is bounded by a function independent of
z(t). Then a RBF NN is applied to approximate this unknown bounding function. Based
on Lyapunov synthesis, adaption algorithms for both the NN weights and the unknown
system and friction parameters are presented. The friction force is now yielding:

F=0i+F,(z,%,2) (4.53)

where § = 01 + 09, 0% represents viscous friction force and F,(x, %, z) = 09z — o1z, 1) |%|2
is the dynamic friction force which depends on z.

Proposition 4.4.1 There exist positive constants Qi and o, such that 0 < aup <
a(z, ) < ap,V  (x,1) € R?

Lemma 4.4.2 If [2(0)| < 1/aumin then|z(t)| < 1/amin, VE> 0.

From the lemma we know that F), is bounded by

|Fx (2,2, 2)| = [(00 — ora(z, 7)) ||2(?)] (4.54)

< oo + or1a(z, )

= Fy(z, ©) (4.55)

Qmin

where F,,,(z, £) is the bounding function of F,(z, %, z) and is independent of the unmeasur-
able internal friction state z. In sequel, an RBF NN is applied to approximate F,,(z, %),
and similarly there exist the following function approximation

Fon(z,2) = WTS(2,2) + € (4.56)

with W* being the optimal weight vector, and the NN approximation error € being bounded
by a small positive constant €4, i.e., |e| < eg.

The servo mechanism studied in [9] is described by
mi+F=u (4.57)
substituting friction dynamics (4.49) into system equation, we have
mi =u— 0i — F,(z, 1, 2) (4.58)

Defining e = x — x4, T, = £4— Ae and r = é+ Ae, where A > 0 and r is the filtered tracking
error. Then the tracking error dynamics is transformed into

mr =u— 0& — F,(z,&,2) — mi, (4.59)
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Considering the following controller
w=—cyr + 0% + mi, — Fyp(a, £)sgn(r) — ksgn(r) (4.60)

where constant ¢; > 0, 0 and 7 are the estimates of unknown 0 and m respectively,
Fon(z,2) = WTS(z,1) is the RBF NN approximation of function bound F,,,(z,%) and
k > €4.

Substituting (4.59) into (4.60) yields

A

mi = — eyr — 0% — i, — Fup(x, ©)sgn(r) — ksgn(r) — 0% (4.61)
— F,(z,%,2) (4.62)

where (%) = (%) — (%) denotes the unknown parameter estimation errors. Further manipu-
lation results in the following equation

mi = — cyr — 0% — i, + W' S(z, 2) + esgn(r) — (k — €)sgn(r) — F,(z,&,2)  (4.63)
— Fun(z, 2)sgn(r) — mi, (4.64)

where W = W* — W. Details in mathematical manipulations can be seen in the article.

Considering the closed-loop system consisting of system (4.57) with dynamic friction given
by LuGre dynamics, and adaptive controller (4.60). If the parameters 6, m and NN weight
W are updated by

0= —nedr (4.65)
M = —T iyt (4.66)
W =TSz, i)|r] (4.67)

where 7y and 7, are positive constants, I' = I'"’ > 0 is dimensionally compatible constant
matrix, then the tracking error converges to zero and all the signals in the closed-loop are
bounded. The proof is seen in [9].
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Chapter

Results

All simulations were performed by using Matlab/SIMULINK 6.1. It should be noted that
there are some differences between 6.0 and 6.1. Some of the source code didn’t apply to
6.0.

The objective of these simulations are as follows:

1. Hlustrate the performance of static vs. dynamic compensation schemes on esperi-
mental results.

2. and on simulation studies concerning known and unknown friction parameters.

This chapter is divided into three sections. First we present the experimental results in
section 5.1. Next we present simulation results when assuming known friction parameters
in section 5.2, and finally we present the adaptive scheme in section 5.3. All results are
discussed in chapter 6.

5.1 Experimental Setup

Experimental results from laboratory at ABB, Billingstad, were compared to a DC model
with both a static friction model and a dynamic friction model. Friction parameters have
been adjusted to fit the experimental result. The reference signal represents a sinus velocity.

It should be noted that these results were not performed by me so that I had no control
on the specific setup. The elastic strap connecting the motor to the shaft should probably
not have been there for this experiment. Anyway, the results provides a nice visualization
of the different friction models.

45
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5.1.1 Experimental environment

The following parameters were used in the simulation model of the DC motor

L, =14-103% F, =15

R, =106 ws = 0.0001
Jn = 3.66-10°

Ky =0.056 oo = 200.0
KE = KT o, = 0.04
., =01 oy = 0.045

The system was first simulated by using Coloumb and viscous friction forces. Fixed step
size was chosen using the Runge-Kutta 4 solver. Another simulation was performed using
the dynamic LuGre friction model. Variable step size and ODE4.5 was chosen.

DC-motor

)
N

strap

A

N

Figure 5.1: Experimental setup of a DC-motor and the load of a friction torque
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5.1.2 Experimental Results

Coloumb and viscous Friction
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Figure 5.2: Experimental result and a dynamic DC model including static friction
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Figure 5.3: A zoom about zero velocity from figure 5.2
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LuGre Friction

Velocity [rad/s]

Time [s]

Figure 5.4: Experimental result and a dynamic DC model including LuGre friction
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Figure 5.5: A zoom about zero velocity from figure 5.4
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Elasto-Plastic Friction

Velocity

Time [s]

Figure 5.6: Experimental result and a dynamic DC model including Elasto-Plastic friction
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Figure 5.7: A zoom about zero velocity from figure 5.6
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5.2 Simulation Results

A PD tracking controller is used with K, = 40 and K; = 25.

13 T T T T 13

12F

y displacement [m]
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e
3

i i i i i
0.4 0.6 0.8 1 12 1.4 0.5 1 15
x displacement [m] x displacement [m]

Figure 5.8: Manipulator tracking circle without friction. Left: Manipulator starts outside
trajectory with zero velocity at ¢, = 0. Right: Manipulator following trajectory with
correct velocities and position at ty =0
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Figure 5.9: Drive torque. Left: Manipulator starts outside trajectory with zero velocity
at to = 0. Right: Manipulator following trajectory with correct velocities and position at
t() =0
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System including Elasto-Plastic friction

End effector position
1.3 T T T

Figure 5.10: Circle trajectory including friction in manipulator joints
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Figure 5.11: Upper left: Position error link 1, Upper right: Position error link 2, Lower
left: Drive torque link 1 and Lower right: Drive torque link 2
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5.2.1 Static Compensation
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Figure 5.12: Circle trajectory including friction in manipulator joints
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Position error link 1, Upper right: Position error link 2, Lower

left: Drive torque link 1 and Lower right: Drive torque link 2
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5.2.2 LuGre Compensation

Velocity

Figure 5.14: Circle trajectory including friction in manipulator joints
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Figure 5.15: Upper left: Position error link 1, Upper right: Position error link 2, Lower
left: Drive torque link 1 and Lower right: Drive torque link 2
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5.2.3 Elasto-Plastic Compensation
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Figure 5.16: Circle trajectory including friction in manipulator joints
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5.3 Adaptive Friction Compensation

A PE signal ¢4(t) = 1 — cos(0.1¢) is used to excite the system. This is easy to derivate
analytically, and gives no numerical errors.
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Figure 5.18: Reference signals. Upper: Position, Lower: Velocity
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Figure 5.19: Friction parameters. Left column: Joint one, Right column: Joint two
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50 100 150 200 250 300 350 400

0.1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time [s]

Figure 5.20: Tracking error in e; and e,

Controller gains were selected as follows

A=5 (5.1)
k= \? 2)
ko = 2A (5.3)
for each joint, wheras the adaptive gains
Yo =10 5.4)
71 =20 (5.5)
Yo = 6 5

for each joint.



Chapter

Discussions

Friction in mechanical control systems is undesirable and a study of different friction phe-
nomena has provided us with insight which can be used in modelling and control of such
systems. The differences between static and dynamic friction models can be essential in
control systems operating at low velocities, and when crossing zero velocity. From the
presentation in chapter 2, it is clear that high-precision pointing and tracking applications
are dominated by presliding. Dahl was the first to attempt to model presliding for control
applications. The LuGre model was designed to extend Dahl’s model to include other
effects, such as those associated with the sliding of lubricated contacts. Dupont has shown
that drift is due to the fact that presliding displacement in the Dahl and LuGre models
always include a plastic (irreversible) component. To minimize drift, he presented a class of
single-state models in which presliding is elasto-plastic, i.e. under loading the displacement
is first purely elastic (reversible) before transitioning to plastic (irreversible).

A closer investigation of the drift shown by Dupont is seen in Figure 2.9. We tried to
recreate his simulation study so to be able to search for the main source of the observed
drift. The input signal consist of a ramp function from ¢; = 0 < 1 and a constant signal
from about 1 < ¢; < 1.8, a "noise” sinus signal from 1.8 < ¢, < 8 and a zero signal until 10
seconds. The sinus signal represents noise. The two graphs below the input signal is the
LuGre and Elasto-Plastic friction responses respectively. The main difference is apparent
when ¢ € t, where it is seen that the LuGre response is drifting away. In Figure 2.10
we have a simulation without the sinus "noise” in t5. We observe that the drift is hardly
noticed. In practical applications noise will most probably be present, but as seen in the
mentioned figures, the drift size or numerical value is quite small compared to the elapsed
time. The complexity of implementing the Elasto-Plastic model in a control system makes
the LuGre model more attractive considering dynamic models. In addition the Elasto-
Plastic model is mainly based on simulation studies and the presented ideas are not yet
confirmed experimentally.

o7
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6.1 Experimental Results

Figure 5.2 shows the experimental data representing a sinus signal. At each peak the
experimental data are noisy. A Coulomb with viscous friction i fitted to the data. We
observe that the simulated static model has a discontinuity when crossing zero velocity,
while the real system is possessing a stic behaviour. This becomes more obvious in the
zoomed Figure 5.3, which is zoomed about zero velocity.

The difficulties caused by Coulomb’s friction model in rigid-body dynamic simulation is
among others that the friction force isn’t smooth during rolling-sliding transitions. As a
result of this, some researchers introduced the tanh (%) which is making a smooth transition.
This is however not reflecting the important friction phenomena when crossing zero velocity.
In applications dealing with high velocities and where its not critical to operate precise,
the tanh(z) solution could apply.

Using the same experimental results, but applying the LuGre friction model we observe
improved results as shown in Figure 5.4. A closer look when crossing zero velocity is
seen in Figure 5.5 and it demonstrates the advantage of the dynamic friction model. An
explanation of the oscillations in the experimental data could be due to elasticity in the
strap coupling. An experimental study dedicated to the observation of friction phenomena
would have been more appropriate and should be explored further.

Surprisingly we observe a biased signal in the case of the Elasto-Plastic model in Figures
5.6 and 5.7. Notice the scaling of the axis compared to the LuGre case. The bias could
be explained due to the elasticity of the strap. Again we are convinced that a dedicated
study should be performed. As mentioned above, the Elasto-Plastic friction model has not
been confirmed experimentally.

A concluding remark is that the static friction models are performing bad at low velocities.

6.2 Simulation Studies

A robotic manipulator operating precisely has been investigated by simulation studies.
The end-effector is required to form a circle, hence position tracking controller in addition
to friction compensation were simulated using both static and dynamic friction models.

The graphical presentations of the circle trajectory are somewhat confusing. They are
compressed, or stretched so that they visualizes as an ellipse like shape. This is due to
presentation error, so that all circle trajectories shall be thought of as circular.

The reference signal is computed numerically using Maple and manually fitting of the
derivatives. This ended up giving an additional error to our system, but it is not of
importance in this scenario. To give the reader an visualized idea of this error, Figure
(5.17) should be given a closer look. A perfect compensation should result in zero position
error in the tracking. As seen in the upper error graphs, a small sinusoidal phenomena is
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represented due to the numerical error in the derivatives of the reference signal.

Simulation without friction

Figure 5.8 shows the ideal world without friction. The left figure represents the end-effector
starting outside the desired trajectory as would be the case in real applications. The right
figure is when the end-effector is tracking the circle perfectly without disturbance. The
corresponding drive torques are presented in Figure 5.9.

Simulation including Elasto-Plastic friction

Figure 5.10 shows tracking including Elasto-Plastic friction in the manipulator, but without
compensation of the friction phenomena. As seen in Figure 5.11 the position errors are
evident. The friction torques have also increased in amplitude.

Now we will continue discussing the performance of the different friction models when all
parameters are known.

6.2.1 Static Compensation

Figures 5.12 and 5.13 shows the results when using static compensation scheme. We observe
the discontinuities when crossing zero velocity. The position tracking error doesn’t behave
as desired close to zero. At high precision tracking this is very undesirable.

6.2.2 LuGre Compensation

Figures 5.14 and 5.15 shows the results when using dynamic LuGre compensation. The
discontinuities in the drive torque is removed and the tracking error is improved. It looks
like the error when crossing zero velocity is biased, which agree in comparison to the
experimental results in section 5.1 introduced by the Elasto-Plastic friction model.

The LuGre friction model has to include a damping in the o;(v) parameter to be shown
passive. This is a mathematical trick to introduce the passive property of the friction
model. By letting o; = 0 so that the resulting friction force appear as F' = 012 + o9v
while still using the z dynamics, we reduce the friction model and it can be seen that it
becomes passive. This is an approach that is not studied in the literature, and it would be
interesting to study this in more detail by doing an experimental comparison of the LuGre
model using 0; = 0 and o1 # 0.

6.2.3 Elasto-Plastic Compensation

Figures 5.16 and 5.17 shows the results when perfectly tracking is obtained by using the
Elasto-Plastic friction model. This is not surprisingly since the friction model used in the



60 CHAPTER 6. DISCUSSIONS

manipulator system is represented by the same model. This comparison is not of much
value in a simulation study, thus indeed a compensation scheme based on the Elasto-Plastic
model should be performed experimentally.

6.3 Adaptive Friction Compensation

An advanced robotic control system should switch between different control modes de-
pending on the speed, precision, and parameter adaption requirements of the task, [17].

In all practical applications the friction parameters are unknown. Off-line parameter es-
timation can be time consuming and not always easy accomplished. Suppose a satellite
operating in the space needs high precision in servo control to position the antenna point-
ing towards a specific point miles away. Temperature variations occurring depending on
the position of the sun can change the friction parameters significantly. Especially in
micro satellites where the weight and dimensions are small, the common way of thermi-
cally protecting materials isn’t quite as simple as for larger devices. An on-line parameter
estimating scheme is needed.

Figure 5.19 shows the reference position and reference velocity. Using the adaption scheme
presented in chapter 4.3, we obtain globally asymptotic tracking of the position error e; as
visualized in Figure 5.20. All parameters are converging, but only [, is converging to the
true one. The true values are 5y = 0.5, 1 = 0.4 and f, = 0.1. The stability analysis is not
including any proof of the parameters converging to the true ones. They are only bounded.
The reason could be that the system is not excited properly, i.e. that the reference signal
qq(t) isn’t sufficiently rich. For nonlinear systems this is not quite as simple as for the
linear case. In this position tracking scheme, the need for the parameters to converge to
the true ones, is not the main issue, whilst the position error is of crucial importance.

This adaptive scheme assumed the stribeck function to be known. An interesting ap-
proach using neural networks assumes all parameters including the stribeck function to be
unknown.

6.4 Neural Network Approach

Investigation of the neural network approach presented in [9] motivates for a closer look.
The friction phenomena were divided into a viscous part, 2 and a second part containing
the bristle dynamics, z. By assuming an upper bound of the dynamic friction force and
using Lemma 4.4.2, they were able to make the friction dynamics independent of the un-
measurable z dynamics, so that it was possible to apply a RBF NN function approximator.
Now the need of a bristle state observer is unnecessary.

The main idea of studying this article was to find out if it is possible to apply NN on the
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Elasto-Plastic friction model to approximate the unknown (%, z) of the model. Since the
smooth function depends on z inside the sinus function, the separation scheme is not that
obvious so to create an upper bound. A closer study of NN should be performed in order
to verify this. Such a study was not the focus of this thesis, so that we only conclude that
a similar approach is not that obvious.
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Chapter

Conclusions and Recommendations

We have provided an adequate survey of static and dynamic friction models in a control
engineering point of view. A comparing simulation study showed that dynamic friction
models are superior to static models when operating at low velocities, and especially when
crossing zero velocity. This was also shown using experimental data.

The drift in the LuGre friction model is not that significant without signal noise. The
Elasto-Plastic friction model minimize drift, where presliding is elasto-plastic, i.e. under
loading the displacement is first purely elastic (reversible) before transitioning to plastic
(irreversible).

Adaptive laws were developed for estimating the three unknown parameters in the LuGre
friction model. The stribeck curve was assumed to be known. The stability analysis showed
that the position tracking error was globally asymptotically stable. All signals were shown
to be bounded and it turned out in the simulation study that the estimated parameters
didn’t converge to the true ones.

An neural network approach were investigated to approximate the dynamic LuGre friction
components. It is not straight forward to use the same scheme on the Elasto-Plastic friction
model.

7.1 Recommendations for Further Work

e Experimental verification of compensation schemes presented in this report could be
performed.

e At Department of Engineering Cybernetics there are available motors at the real
time laboratory. Experimental data could be obtained and a more detailed study of
the comparison of static vs. dynamic models can be performed without an elastically
disturbance. Especially the Elasto-Plastic friction model compared to the LuGre
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model would be of interest when noise is exposed to the system. How long is the
time interval before the drift is becoming significant?

Additional experiments should be performed on a comparison of the LuGre model
with o7 = 0 and when o; # 0. Does this influence the friction phenomena observed
in the LuGre model? What about passivity?

A closer look to the NN theory could provide knowledge of how to handle the «(%, 2)
function in the Elasto-Plastic friction model.

Modelling a N-DOF manipulator in interaction with the environment considering
friction forces introduced by contact forces would be of interest. Variation in normal
forces and friction parameters will give rise to interesting challenges.
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Appendix

Appendix

A.1 Passivity

A physical interpretation of passivity may be made by simply considering a mechanical
system (plant and control system) with energy V(¢) at time ¢. The total energy of this
system will be the sum of kinetic and potential energy. Let the mechanical energy stored
in the system at the initial time ¢ = ¢, be denoted by V(0) > 0. Since the energy V(7T)
must be positive and lower bounded, it makes sense to define the total system as passive
if and only if the mechanical energy dissipated by the system is less than or equal to V(0).
Therefore, one of the main consepts of passivity theory is the dissipation of power, [14].
In contrast to the Lyapunov theory, where state variables are considered, passivity theory
is based on the input-output properties of a system.

V(t) < V(0) —i—/o yT (t)u(t)dt [power] (A.1)

where the integral represents the external energy inputs. Hence, the rate of change of
energy in the system at time ¢ is:

V(t) <y ()u(t) (A.2)

where the vector product y”u simply represents the external power input.
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A.2 Properties of L, signals

In [14] some properties of L, signals are presented. These properties can be used to analyze
the stability of a closed loop control system. Some useful facts are included

Fact 1: If V is a non-decreasing function and if V. < M for some M € R, then V
converges. Example

° VEOandV§0:>Vconverges.
Fact 2 If f € Ly and f € Lo, then f — 0 and f € L.

Fact 3 If f1 € Ly and fg € L2, then f1 -+ f2 € Lo

A.3 Symbols

Table A.1: List of Friction Symbols

Stiffness of surfaces 0o =0.5 Nm/rad
Damping coefficient o1 =0.1 NMs/rad
Viscous coefficient 02 = 0.3 Nms/rad
Coulomb friction level 0.285 Nm
Stiction level F,=0335 Nm
Stribeck velocity vy = 0.001 rad/s
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A.4 Experimental comparison

A.4.1 motor.m

function [sys,x0] = motor(t,x,u,flag)

if flag == 1,
% Konstante parametre

h

L_a = 1.4e-3;
R_a = 0.8;
J_m = 3.88e-5+3e-4;
K_T = 0.056;
K_E = K_T;
F_c =0.1;
F_s = 1.5;
w_s = 0.0001;
sigma_0 = 200.0;
sigma_1 = 0.04;
sigma_2 = 0.045;

g=(F_c+(F_s-F_c)*exp(-(x(1)/w_s)"2));
F = sigma_0 * u(1) + sigma_1*(x(1) - sigma_0/g*u(1)*abs(x(1))) + sigma_2*x(1);

%F = u(1); %For coulomb modell

end
if flag == 1,
u_a = u(2);
T_L = F;
h
i_a = x(2);
w_m = x(1);
h
i_a_dot = (1/L_a)*(-R_a*i_a - K_Ex1*w_m + u_a);
w_m_dot = (1/J_m)*(K_T*1%i_a - T_L);
yA
sys (1) = w_m_dot;
sys(2) = i_a_dot;

o

elseif flag ==

2
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% return initial conditions
sys=[2; 0; 2; 2; 0; 0]; % system values [kont,disk,output,input,,]

x0=[0,0];
elseif flag == 3,

% return outputs

sys=[x(1) x(2)]; %output

else

sys = [1;

end

A.4.2 friction.m

function [sys,x0] = friction(t,x,u,flag)
% u(1) : velocity

if flag == 1,
F_c =0.1;
F_s = 1.5;
w_s = 0.0001;
sigma_0 = 200.0;
sigma_1l = 0.04;
sigma_2 = 0.045;

g=(F_c+(F_s-F_c)*exp(-(u(1)/w_s)"2));
end

if flag == 1,

% return rates

sys(1) = u(l) - sigma_0/g*x(1)*abs(u(l));
elseif flag == 0,

% return initial conditions

sys=[1; 0; 1; 1; 0; 0]; % system values [kont,disk,output,input,,]

x0=[0];
elseif flag == 3,

sys=[x(1)]; %output

else

sys = [1;

end
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A.5 Simulation of Static, LuGre and Elasto-Plastic

All simulation studies used the same source code for the manipulator.m,friction.m,tracking.m
and pinit.m. The static compensation scheme needed no observer.m, while the LuGre
and the Elasto-Plastic simulation studies had different observer.m and feedback.m

A.5.1 Common files

manipulator.m

function [sys,x0] = manipulator(t,x,u,flag)
T TotoTo oo ToTo o oo ToTo 1o o oo To 1o 1o o o ToTo Jo o Jo To 1o Jo o To To 1o o o To Fo Jo o o To 1o o o o 1o Jo o o To 1o 1o o o To 1o o o T o
% Manipulator function
% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no
Toloto o ToToto o To o To o To o o ToTo o o ToTo o o ToJo o ToTo o To 1o o To T o o To Jo o ToTo o Jo T o o To o o To 1o o To o o To T o o To o o
% 2-link manipulator from Harry Berghuis (1990) PhD
% x(1)= position link 1 (qi)
% x(2)= velocity link 1 (qil_dot)
% x(3)= position link 2 (q1)
% x(4)= velocity link 2 (ql_dot)
% u(1)= Torque link 1
% u(2)= Torque link 2
% u(3)= z1 bristle state link 1
% u(4)= z2 bristle state link 2
Toloto o ToToto o To o To o Toto o ToTo o o To 1o o o ToJo o ToJo o To 1o o To T o o To o o ToTo o o Fo o o To o o To 1o o To o o To o o o To o o
global F;
if flag == 1, J Calculating matrices
TohoTototooToTo o too

% Friction on/off

on = 1;
off = 0;
val = on;

Tototolo fototofototo o
rad = pi/180; %til radianer

Tt ToToToToTo o o o oo o ToTo 1o To 1o o o oo o To T To 1o o o o o T T T 1o o oo o T o 1o 1o o oo o T 1o 1o 1o oo o o Fo 1o 1o 1o o oo
% Manipulator properties

Tt oo oo oo o o o o o o Jo o o o o T o T T T T oo o oo o oo o o o oo o o o To o o T o oo oo oo

ql = x(1);
ql_dot = x(2);
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q2 = x(3);
q2_dot = x(4);

dil = 1.02 * cos(q2*rad) + 8.77; % [ di1 d12 ]
d12 = 0.76 + 0.51 * cos(q2*rad); % D(q) = [ ]
d21 = 0.76 + 0.51 * cos(q2*rad); % [ d21 422 ]
d22 = 0.62;

dc1l = ( 1.02 * cos(x(3)*rad)+8.77 ) * (-0.51 * sin(x(3)*rad) * x(4))
+ (0.76+0.51 * cos(x(3)*rad)) * (0.51 * sin(x(3)*rad) * x(2) );

dc12 = ( 1.02 * cos(x(3)*rad)+8.77 ) * ( -0.51 * sin(x(3)*rad)*(x(2) + x(4)) );
dc21 = ( 0.76 + 0.51 * cos(x(3)*rad) ) * (-0.51 * sin(x(3)*rad) * x(4))

+ ( 0.62 * 0.51 * sin(x(3)*rad) * x(2) );
dc22 = ( 0.76 + 0.51 * cos(x(3)*rad) ) * (-0.51 * sin(x(3)*rad) * (x(2) + x(4)) );

Tl ToToToTotoTo o oo ToToTo o o Jo o oo o ToToTo o o o o o ToTo T o o o o o To ToFo o o o o o ToTa 1o 1o o o o o To T 1o 1o o o o
% Friction dynamics. Elasto-Plastic

Dot oo oo Jo o o o o o oo o T o o o T T T T T T oo o oo o oo o o o oo o o o To T T T o oo oo oo

pinit;
z1l = u(3);
z2 = u(4);

s1=(F_c+(F_s-F_c)*exp(-(x(2) /w_s)"2));
s2=(F_c+(F_s-F_c) *exp(-(x(4) /w_s)"2));

if sign(x(2)) == sign(zl),
if abs(zl) < z_ba,
al=0;
elseif abs(zl) >= z_ba & abs(zl) < z_max,
a1=(1/2)*sin(pi*(z1-0.5%(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(zl) >= z_max,
al=1;
end
else
end

if sign(x(4)) == sign(z2),

if abs(z2) < z_ba,
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a2=0;
elseif abs(z2) >= z_ba & abs(z2) < z_max,

a2=(1/2) *sin(pi*(z2-0.5%(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(z2) >= z_max,

a2=1;
end
else
a2 = 0;
end
hl = sigma_Oxal/s1;

[=2
N
1]

sigma_0*a2/s2;

F_1 = (sigma_0 * z1 + sigma_1*(x(2)*(1 - hlxzl*sign(x(2)) )) + sigma_2*x(2))*val;
F_2 = (sigma_0 * z2 + sigma_1%(x(4)*(1 - h2*z2*sign(x(4)) )) + sigma_2*x(4))x*val;

F=F_1; % used for error detection

tau_1 = u(1) - F_1;
tau_2 = u(2) - F_2;
end
if flag == 1,
% return states
sys(1) = x(2);
sys(2) = dlixtau_1+di12*tau_2-(dcl1*x(2)+dc12*x(4));
sys(3) = x(4);
sys(4) = d21xtau_1+d22*tau_2-(dc21*x(2)+dc22*x(4));

elseif flag == 0,

% return initial conditions

sys=[4; 0; 5; 4; 0; 0]; % system values

v = tracking(0);

x0=[v(3);v(5);v(4);v(7)]; %Initial betingelser, kalkulert fra tracking(0)

x0=[1.55;0;-1.75;0];
elseif flag == 3,

% return outputs

sys=[x(1) x(2) x(3) x(4) F]; Joutput
else

sys = [1;
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end

friksjon.m

function [sys,x0] = friksjon(t,x,u,flag)

Tototo o tofoTofoto To o To o To fo o Fo o Fo o To o To Foto Yo o To o Fo Fo o Fo o To Fo o Fo o o Fo o o o o fo o Fo o o o to Fo o o oo Fo o Fo o o
% Elasto-Plastic friction model

% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no

TotoTotsoto oo To oo To To foTo o o To Fo o To o o to o Foto To oo To o o to o o to To oo To Fo o To Fo o to Fo oo o oo o o oo Fo o Fo o o
A

% Outputs:

% x(1)= Friction internal bristle state link 1

% x(2)= Friction internal bristle state link 2

% Inputs:

% u(1)= velocity link 1 (ql_dot)

% u(2)= velocity link 2 (q2_dot)

h

Totolo o To o Tofoto To o To o To fo o Fo o Fo o o o To Foto Yo o To o to Fo o Fo o To Fo o o o o Fo o o o To o o Fo o o o to Fo o o oo Foto Fo o o

if flag == 1, % Friction values and Stribeck function
pinit;

z1l = x(1);

z2 = x(2);

gl=(F_c+(F_s-F_c)*exp(-(u(1)/w_s)~2));
g2=(F_c+(F_s-F_c)*exp(-(u(2)/w_s)~2));

if sign(u(1)) == sign(z1),

if abs(zl) < z_ba,
al=0;
elseif abs(zl) >= z_ba & abs(zl) < z_max,
al=(1/2)*sin(pi*(z1-0.5*%(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(zl) >= z_max,
al=1;
end

else
al = 0;
end

APPENDIX
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if sign(u(2)) == sign(z2),

if abs(z2) < z_ba,

a2=0;

elseif abs(z2) >= z_ba & abs(z2) < z_max,
a2=(1/2)*sin(pi*(z2-0.5%(z_max+z_ba))/(z_max-z_ba))+0.5;

elseif abs(z2) >= z_max,

a2=1;
end
else
a2 = 0;
end
hl = sigma_Oxal/gl;
h2 = sigma_0%a2/g2;
end
if flag == 1, % another "if" for the sake of clairity
% return rates
sys(1) = u(1)*(1 - hixx(1)*sign(u(1)) );
sys(2) = u(2)*(1 - h2*xx(2)*sign(u(2)) );

elseif flag == 0,

% return initial conditions
sys=[2; 0; 2; 2; 0; 0]; % system values [kont,disk,output,input,,]

x0=[0;0]; %Initial betingelser,

elseif flag == 3,
% return outputs
sys=[x(1) x(2)]1; %output [Z1,Z2]

else
sys = [1;
end

75



76 APPENDIX A. APPENDIX

tracking.m

function v = tracking(t)

Dol Tototo oo ToTo o oo ToTo 1o o oo To o 1o o o ToTo Jo o Jo To T Jo o To To 1o o o To T Jo o o To 1o o o o T Fo o o To 1o o o o To 1o o o T o
% Tracking circle

% (C) Ola Jacob Mjgen Iversen olajacob@pvv.ntnu.no

Do Tototo oo ToTo o oo ToTo o o oo To o To o o ToTo Jo o Jo To T o o To To 1o o o ToToJo o o To 1o o o o T Fo o o To 1o o o o To 1o o o o o
b

% Outputs: v = [vl,v2,vdl,vddl,vd2,vdd2]

h vl : desired angle position link 1
h v2 : desired angle position link 2
b vdl : desired angle velocity link 1
h vddl: desired angle acceleration link 1
h vd2 : desired angle velocity link 2
h vdd2: desired angle acceleration link 2

%
Tt toto ot to o T To o To o foFo o o To To o Fo o o To o Fo o To Fo o o Fo o Fo o oo To fo o Fo Fo o Fo Fo o to To Foto o o o o o fo o Fo o Jo o o
% al = a2 =1 [m]

Tolo o oo 1o To o To o To o To Jo o ToTo o o Jo o o o To 1o o To 1o o To 1o o Jo 1o o o T 1o o To 1o o o 1o oo o o o Jo 1o o Jo o o Yoo o o 1o o o
% Constants

Tolo o oo 1o To o To o To o To Jo o ToTo o o Jo o o o To 1o o To 1o o To 1o o Jo 1o o o T 1o o To 1o o o 1o oo o o o Jo 1o o Jo o o Yoo o o 1o o o
r = 0.4; % Radius pd referansesirkelen

ox = 1; % Sentrum (ox,oy) av sirkelen

oy 0.8;

w=0.7; % angular frequency

TolololototololoTo o oo oo oo o o o o o o ToTo o To o To o ool o oo o o o o o To o oo o ToToToTo o To To o oo o o o o
% Calculating reference circle

TolololototololoTo o oo oo oo o o o o o o ToTo o To o To o ool o oo o o o o o To o oo o ToToToTo o To To o oo o o o o
px = ox + r*cos(wkt);

Py = oy + rxsin(w¥t);

-0.1xr*sin(w*t) ;
0.1*r*xcos(wxt) ;

px_dot
py-_dot

px_ddot
py-_ddot

= -0.01*r*cos (w*t);

= =0.01*r*sin(w*t) ;

Tototo o To o To o to To o To o To Fo o Foo Fo o o o To Foto Yo o To o To Fo o Fo oo Yoo Fo o o Fo o o o o oo Fo o o o to Fo o Fo oo Fo o Fo o o
% Inverse kinematics

TotoTo o To o To Toto To o To o To Fo o Fo o To o To Yo To Fo o Fo o To o T Fo o To oo Fo o o o o Fo o o o o Fo o Fo o o o o Fo o o oo Fo o Fo o o
cq2 = (px~2+py~2-2)/2;
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sq2 = -sqrt(1-cq272);

v2 = atan2(sq2,cq2);

((1+cq2) *py-sq2*px) / (px~2+py~2) ;
((1+cq2) *px+sq2*py) / (px~2+py~2) ;

sql
cql

vl = atan2(sql,cql);
a=0.0355;

vd1=5e-3+a*sin(wkt) ;
vdd1l=wxa*xcos (w*t) ;

vd2=- (- (- (ox+r*cos (wxt) ) *r*sin (wkt) *w+ (oy+r*sin (wkt) ) *r*cos (wkt) *w)

/ (sqrt (1-(1/2% (ox+r*cos (w¥t)) "2

+1/2% (oy+r*sin(w¥t)) "2-1) "2))-sqrt (1- (1/2* (ox+r*cos (wxt)) "2

+1/2% (oy+r*sin(w¥t)) "2-1) "2) * (- (ox+r*cos (wxt) ) *r*sin (wkxt) *w

+(oy+r*sin(wkt) ) *rxcos (wkt)*w) / ((1/2* (ox+r*cos (wxt)) “2+1/2* (oy+r*sin(wkt)) “2-1)"2))
/ (1+(1-(1/2*% (ox+r*cos (wxt)) "2+1/2% (oy+r*sin (wxt)) "2-1)"2)/

((1/2% (ox+r*cos (wxt)) "2+1/2x (oy+r*sin(wxt)) "2-1)"2));

vdd2=- (- (- (ox+r*cos (wxt) ) *r*sin (wxt) *w+ (oy+r*sin(wxt) ) *r*cos (wxt) *w) 2
*(1/2% (ox+r*cos (wkt)) "2

+1/2% (oy+r*sin(w¥t)) ~2-1) / ((1-(1/2x (ox+r*cos (wxt)) "2+1/2

* (oy+r*sin(wkt)) ~2-1)"2)"(3/2))

—(r~2*sin(w*t) "2*w"2-(ox+r*cos (wkt) ) *r*cos (wkt) *w~2+r"2*cos (w¥t) "2

*w™2- (oy+r*sin(wkt) ) *r*sin(wkxt)*w~2)

/ (sqrt (1-(1/2* (ox+r*cos (wxt)) ~2+1/2x (oy+r*sin(wxt)) "2-1)"2) )+ (- (ox+r*cos (w*t))
*xr*sin(wkt) *w

+(oy+r*sin(wxt) ) *r*cos (wkt) *w) "2/ (sqrt (1-(1/2*x (ox+r*cos (w¥t)) "2

+1/2*% (oy+r*sin(w¥t)) "2-1)"2)

*(1/2% (ox+r*cos (wkt)) "2+1/2* (oy+r*sin(w¥t)) "2-1))

+2*sqrt (1-(1/2* (ox+r*cos (wkxt)) "2

+1/2*% (oy+r*sin(wkt)) "2-1) "2) * (- (ox+r*cos (wkt) ) *r*sin(wxt) *w+ (oy+r*ksin (wkt))
*xrkcos (wkt) *xw) "2

/ ((1/2x%(ox+r*cos (wxt)) "2+1/2*% (oy+r*sin(wx*t)) "2-1) ~3)

-sqrt (1-(1/2x (ox+r*cos (w¥t)) "2

+1/2% (oy+r*sin(w¥t)) "2-1) “2) * (r~2*sin(w¥t) ~2*w™2- (ox+r*cos (wkt))

*rkcos (Wkt)*w™2

+r~2%cos (wkt) "2*%w"2- (oy+r*sin (wkt) ) *r*sin(wkt)*w"2) / ((1/2x (ox+r*cos (wxt)) "2
+1/2% (oy+r*sin(w¥t)) "2-1)"2)) / (1+(1-(1/2* (ox+r*cos (wxt)) "2

+1/2% (oy+r*sin(wxt)) "2-1)"2)
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/ ((1/2x%(ox+r*cos (wxt)) "2+1/2% (oy+r*sin(wxt)) ~2-1)~2))
+(-(—(ox+r*cos (wxt) ) *r*sin (wkt) *w

+(oy+r*sin(wkt) ) *r*cos (wkt)*w) /(sqrt (1-(1/2* (ox+r*cos (wkt)) "2

+1/2% (oy+r*sin(wxt)) "2-1)"2))

-sqrt (1-(1/2% (ox+r*cos (wkt)) "2+1/2* (oy+r*sin(wxt)) "2-1) “2) * (- (ox+r*cos (wxt))
*xr*sin (wkt) *w

+(oy+r*sin(wkt) ) *r*cos (wkt)*w) / ((1/2* (ox+r*cos (wxt)) "2

+1/2*% (oy+r*sin(wkt)) "2-1)"2))

* (=2 (- (ox+r*cos (wxt) ) *r*sin(wxt) *w+(oy+r*sin(wxt) ) *r*cos (w*t) *xw)

/ (1/2% (ox+r*cos (wxt)) "2

+1/2% (oy+r*sin(w¥t)) “2-1) -2* (1- (1/2* (ox+r*cos (w¥t)) "2+1/2* (oy+r*sin(wxt)) ~2-1) ~2)
* (= (ox+r*cos (wkt))

*xr*sin (wkt) *w+ (oy+r*sin (wxt) ) *r*cos (wkt) *xw) / ((1/2* (ox+r*cos (wkt)) "2

+1/2* (oy+r*sin(wxt)) "2-1)"3))

/ ((1+(1-(1/2% (ox+r*cos (wkt) ) "2+1/2* (oy+r*sin(w¥t)) "2-1) ~2)

/ ((1/2* (ox+r*cos (wxt)) "2+1

/2% (oy+r*sin(wkt)) "2-1)"2))"2);

vv = [vl,v2,vdl,vddl,vd2,vdd2];

v = [vl,v2,vv];

pinit.m

TolololototoToToTo o oo oo otoolo o o o o ToTo o To o To o oo fo oo o o o o o o o oo o oo oo
% pinit.m

% Initialisation of friction parameters etc.

h

% mars 2002, 0la Jacob Mjgen Iversen

h

TolololototoToloTo o otooto oo oo o o o o ToTo o To oo o oo o fo oo oo o o o o oo o oo oo

sigma_0 = 10; % [Nm/rad] Stiffness of surfaces
sigma_1 = 5.4; % [Nm/rad] Damping coefficient
sigma_2 = 0.5; % [Nms/rad] Viscous coefficient

F.c=1; % [Nm] Coulomb friction level
F.s =1.1; % [Nm] Stiction level

w_s = 0.1; % [rad/s] Stribeck velocity
z_max = 0.1; % [m]
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z_ba = 0.0008; % [m]

A.5.2 Static Friction Compensation
feedback.m

\include{feedback_static}

A.5.3 LuGre Friction Compensation
observer.m

function [sys,x0] = observer(t,x,u,flag)

Totolo o To o To o to To o To o To fo o Fo o Fo o o o To Foto Fo o To o Fo Fo o Fo oo Fo o Fo o o Foto o o To o o Fo o o o to Fo o Fo oo Foto Fo o o
% Bristle state Observer

% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no

Tototo o To foTo Toto To o To o To Fo o Foo Fo o To o To Fo o Fo o To o T Fo o To oo Yoo o o o Fo o o o o Fo o Fo o o o T Fo o o oo Fo o Fo o o
h

% Outputs:

% x(1)= Friction internal bristle state link 1

% x(2)= Friction internal bristle state link 2

% Inputs:

% u(l)= velocity link 1 (ql_dot)

% u(2)= velocity link 2 (q2_dot)

h

Tototo o To o To Toto To o To o To fo o Fo o Fo o To o To Fo o Fo o To o Fo Fo o Fo o To Fo o Fo o o Fo o oo o oo Fo o o o to Fo o Fo oo Fo o Fo o o

if flag == 1, % Friction values and Stribeck function
pinit;

gl=(F_c+(F_s-F_c)*exp(-(u(1)/w_s)"2));
g2=(F_c+(F_s-F_c)*exp(-(u(2) /w_s)"2));
end

if flag == 1, ’ another "if" for the sake of clairity
% return rates
sys(1) = u(l) - sigma_0*x(1)*abs(u(1))/g1;
sys(2) = u(2) - sigma_0*x(2)*abs(u(2))/g2;

79
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elseif flag == 0,

% return initial conditions
sys=[2; 0; 2; 2; 0; 0]; % system values [kont,disk,output,input,,]

x0=[0;0]; %Initial betingelser,

elseif flag == 3,
% return outputs
sys=[x(1) x(2)]; Y%output [Z1,Z2]

else
sys = [1;
end

feedback.m

function tau_c = feedback(x)

Tototo o To foToToto To o To o To Fo o Foo To o To o To Foto Fo o To o T Fo o To oo Fo o o o o Fo o o o o oo Fo o o o T Fo o o oo Fo o Fo o o
% Feedback linearization control

% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no

Tototo o To o To Toto To o To o To Fo o Fo o Fo o To o To Foto Yo o To o T Fo o To o To Fo o Fo o o Fo o o o To oo Fo o o o T Fo o Fo oo Fo o Fo o o
%

% Outputs: tau_c = [taul,tau2]

b taul: control torque link 1
b tau2: control torque link 2
h

Tt oo oo oo oo o T o o o o Jo o o o o T o T T T T o o 1o 1o 1o o oo o o o oo o Jo o o T o o o o oo oo oo

T loToToTo o o 1o o oo ToToToTo o o o oo o ToToTo o o o o o To ToFo o o o o o T T oo o o o o To o 1o o o o o o T o 1o o o o o
% Inputs

ToToto o ToToto o To o To o Toto o ToTo o o To 1o o o To 1o o ToJo o To 1o o To 1o o o To Jo o To 1o o o 1o o o To o o To 1o o To o o Jo 1o o o To o o
ql = x(1);

q2 = x(2);

gml_dot
gqm2_dot

x(3); % "measured" velocity link 1
x(4); ' "measured" velocity link 2

x(3);
x(4);

ql_dot
g2_dot
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qdl_dot = x(7);
qd2_dot = x(9);
qd1_dot_dot = x(8);
qd2_dot_dot = x(10);
z1l = x(11);

z2 = x(12);

TotoToto o to oo To o o To To foTo o o To Fo o To o o to o fo o Fo oo To o o to o o to Fo oo Fo Fo o To Fo o to Fo Foto o oo o o oo Fo o Fo o o
% Constants

TotoTotootoTo o To o foTo To foTo o o To Fo o To o o to Fo foto Fo oo To o o to o o to Fo oo Fo Fo o To Fo o to Fo Fo o o oo o o oo Fo o Fo o o
pinit;

rad = pi/180; %til radianer

Fo1o1oToTo o To o Vo Jo Fo o 1o o To o o o Jo o 1o o To 1o o Jo 1o Jo 1o o Jo 1o Jo 7o o Jo Jo o 1o o Jo Jo o 1o o Jo 1o Jo 1o o o Fo o 1o 1o Jo 1o o Jo o Jo 1o
% Manipulator properties

Do Tototo oo o To o oo ToTo 1o o oo To o 1o o o ToTo Jo o Jo To T o o To To 1o o o To T Jo o o To 1o o o o T o o o To 1o o o o To 1o o o o o
di1 = 1.02 * cos(qg2*rad) + 8.77;

d12 = 0.76 + 0.51 * cos(q2+rad);

d21 = 0.76 + 0.51 * cos(qg2*rad);

d22 = 0.62;

cll = -0.51 * sin(q2*rad)*q2_dot;

c12 = -0.51 * sin(q2*rad)*(ql_dot + g2_dot);
c21 = 0.51 * sin(g2*rad)*ql_dot;

c22 = 0;

Tototo o To o To foto To o To o To fo o Fo o Fo o o o To Fo o Fo o To o Fo Fo o Fo oo Fo o Fo o o Fo o oo To oo Fo o o o to Fo o Fo oo Foto Fo o o
% Feedback linearisation

TotoTo o To foTo Toto To o To o To Fo o Fo o To o To o To Fo o Fo o To o T Fo o To o To Fo o Fo o o Fo o o o To Fo o Fo o o o T Fo o o oo Fo o Fo o o
tau_1
tau_2

T loToToToTo oo o oo o ToToTo o o o o oo o ToToFo o o o o o To To T o o o o o To T 1o o o o o o T Fa 1o o o o o o T Fa oo o o o
% LuGre Friction Compensation

Dol Tototo oo ToTo o oo ToToTo o oo ToTo 1o o o ToTo 1o o Jo ToTo Jo o To ToJo o o To T o o o ToFo o o o Fo o o o To T o o o To T o o o o

gl=(F_c+(F_s-F_c)*exp(-(qil_dot/w_s)"2));
g2=(F_c+(F_s-F_c)*exp(-(q2_dot/w_s)"2));

z1_prikk
z2_prikk

ql_dot - sigma_Oxzl¥abs(ql_dot)/gl;
q2_dot - sigma_Oxz2*abs(q2_dot)/g2;

d11l * qdl_dot_dot + d12 * qd2_dot_dot + cll * qdl_dot + c12 * qd2_dot;
d21 * qdl_dot_dot + d22 * qd2_dot_dot + c21 * qdl_dot + c22 * qd2_dot;
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taufi
tauf?2

sigma_O*zl1 + sigma_1*zl_prikk + sigma_2*ql_dot;
sigma_0*z2 + sigma_1*%z2_prikk + sigma_2%q2_dot;

taul=tau_1+taufi;
tau2=tau_2+tauf?2;

tau_c = [taul;tau2;taufl]; 7% Control Outputs

A.5.4 Elasto-Plastic Friction Compensation
observer.m

function [sys,x0] = observer(t,x,u,flag)

FotoTolo oo oo To o foTo To foTo fo o To Fo o Fo o o to Fo fo o Fo o to To o o to o o to Fo oo Fo Fo o To Fo o to Fo oo Fo Fo o o o oo Fo o 1o o o
% Dual-Bristle state Observer

% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no

Tototo o To FoTo Toto To o To o To Fo o Fo o Fo o To o To Fo o Fo o To o T Fo o To oo Yoo o o o Fo o o o o Fo o Fo o o o T Fo o o oo Fo o Fo o o
h

% Outputs:

% x(1)= Friction internal bristle state link 1

% x(2)= Friction internal bristle state link 2

% Inputs:

% u(l)= velocity link 1 (ql_dot)

% u(2)= velocity link 2 (q2_dot)

h

Tototo o To o To foto To o To o To fo o Fo o Fo o o o To Fo o Fo o To o Fo Fo o Fo oo Fo o Fo o o Foto o o o oo Fo o o o T Fo o o oo Fo o Fo o o

if flag == 1, % Friction values and Stribeck function
pinit; % Set the friction Parameters

zl = x(1);
z2 = x(2);

s1=(F_c+(F_s-F_c)*exp(-(u(1)/w_s)"2));
s2=(F_c+(F_s-F_c)*exp(-(u(2) /w_s)"2));

if sign(u(1)) == sign(z1),

if abs(zl) < z_ba,

APPENDIX
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al=0;
elseif abs(zl) >= z_ba & abs(zl) < z_max,
al=(1/2)*sin(pi*(z1-0.5%(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(zl) >= z_max,

al=1;
end

else
end
if sign(u(2)) == sign(z2),
if abs(z2) < z_ba,
a2=0;
elseif abs(z2) >= z_ba & abs(z2) < z_max,

a2=(1/2)*sin(pi*(z2-0.5*(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(z2) >= z_max,

a2=1;
end
else
a2 = 0;
end
hl = sigma_Oxal/s1;

h2 = sigma_0*a2/s2;

F_1 = sigma_0 * zl + sigma_1*(u(1)*(1 - hixzlxsign(u(l)) )) + sigma_2*u(1);

F_2 = sigma_0 * z2 + sigma_1*(u(2)*(1 - h2*z2*sign(u(2)) )) + sigma_2*u(2);
end

if flag == 1, ’ another "if" for the sake of clairity
% return rates
sys(1) = u(1)*(1 - hixx(1)*sign(u(l)) );
sys(2) = u(2)*(1 - h2*x(2)*sign(u(2)) );

elseif flag == 0,

% return initial conditions
sys=[2; 0; 2; 2; 0; 0]; % system values [kont,disk,output,input,,]
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x0=[0;0]; %Initial betingelser,

elseif flag == 3,
% return outputs
sys=[x(1) x(2)]; %output [Z1,Z2]

else
sys = [1;
end

feedback.m

function tau_c = feedback(x)

TotoTolo oo oo To o foTo To foTo o o To Fo o Fo oo to Fo fo o Fo oo To o o to o o o Fo oo Fo Fo o Fo Fo o to Fo Jo o Fo Fo o o o oo Fo o 1o o o
% Feedback linearization control

% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no

Totolo o To o To o to To o To o To fo o Fo o Fo o o o To Fo o Yo o To o Fo Fo o Fo o To Fo o Fo o o Foto o o To o o Fo o o o to Fo o Fo oo Fo o Fo o o
h

% Outputs: tau_c = [taul,tau2]

b taul: control torque link 1
b tau2: control torque link 2
A

Tt oo oo oo o o o o oo o T o o o T o T T T T o oo 1o 1o 1o o oo o o o o o o Jo o o T o o T o oo oo oo

Tooto T to oot To o TotoTo o To foto o Fo fo o To To Fo o to To To o foJo To To Fo o Fo to To fo o o to To o fo o Fo Fo o fo o Jo To o o oo To o o o o
% Inputs

Totoloto o to oo to o o To o foTo oo to Fo foto oo to o fo o To oo To o o to o oo o fo o Fo oo Fo o o to To Fo o o o o o o oo Fo o Fo o o
ql = x(1);

q2 = x(2);

gmli_dot = x(3); 7% "measured" velocity link 1

gm2_dot = x(4); 7% "measured" velocity link 2
ql_dot = x(3);
q2_dot = x(4);

qdi_dot = x(7);
qd2_dot = x(9);
qd1_dot_dot = x(8);
qd2_dot_dot = x(10);

z1 = x(11);
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z2 = x(12);

Totototo o to oo to o o To o foto o o to o foto oo to o fo o To oo To o o Fo o oo o fo o Fo oo Fo Fo o to To fo o o Fo o o o oo Fo o Fo o o
% Constants
Tt toto o to oo T To o To o foFo o foTo To foFo o o to o Fo o To Fo o To o o Fo o oo To fo o Fo oo Fo Fo o to Fo Fo o o Fo o To o oo Fo o Jo o o

pinit;
rad = pi/180; %til radianer
Toloto o ToToto o To o To o Toto o ToTo o o To 1o o o To 1o o ToTo o To 1o o To T o o To 1o o To T o o 1o o o To o o To 1o o To 1o o Jo T o o To o o

% Manipulator properties

Dol Tototo oo ToTo o oo ToToTo o oo To 1o 1o o o ToTo Jo o Jo To T o o To ToJo o o To T o o o ToFo o o o Fo o oo To T o o T To T o o o o

di1 = 1.02 * cos(g2*rad) + 8.77;

d12 = 0.76 + 0.51 * cos(qg2#*rad);

d21 = 0.76 + 0.51 * cos(qg2*rad);

d22 = 0.62;

cll = -0.51 * sin(q2*rad)*q2_dot;

c12 = -0.51 * sin(qg2*rad)*(ql_dot + qg2_dot);
c21 = 0.51 * sin(g2*rad)*ql_dot;

c22 = 0;

T hoToToToTo o To o oo o ToToTo o o Jo o oo o To ToFo o o o o o To To 1o 1o o o o o T Fo 1o o o o o o To T 1o o o o o o To o 1o o o o o
% Feedback linearisation

Tl ToToTo o o To o oo o ToToTo o o o o oo o ToToFo o o o o o T To T o o o o o To T 1o o o o o o To T 1o o o o o o T o 1o o o o o
tau_1l =
tau_2 =
T hoToToToTo oo o oo o ToToTo o o o o o o o ToToFo o o o o o To To T o o o o o T Fa 1o o o o o o ToFa 1o o o o o o To o oo o o o
% Elasto-Plastic Friction Compensation

Dot o oo oo oo o T o o o o Jo o o o o T o T T T T o o o 1o 1o 1o o oo o o o oo o Jo o o T o o T o o oo oo oo

s1=(F_c+(F_s-F_c)*exp(-(ql_dot/w_s)"2));
s2=(F_c+(F_s-F_c)*exp(-(q2_dot/w_s)"2));

if sign(ql_dot) == sign(zl),

if abs(zl) < z_ba,
al=0;
elseif abs(zl) >= z_ba & abs(zl) < z_max,
al=(1/2)*sin(pi*(z1-0.5*(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(zl) >= z_max,

al=1;

85

di1l * qdl_dot_dot + d12 * qd2_dot_dot + cll * qdl_dot + c12 * qd2_dot;
d21 * qdl_dot_dot + d22 * qd2_dot_dot + c21 * qdl_dot + c22

* qd2_dot;
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end
else
end
if sign(q2_dot) == sign(z2),
if abs(z2) < z_ba,
a2=0;
elseif abs(z2) >= z_ba & abs(z2) < z_max,

a2=(1/2) *sin(pi* (z2-0.5%(z_max+z_ba))/(z_max-z_ba))+0.5;
elseif abs(z2) >= z_max,

a2=1;
end
else
a2 = 0;
end

hl = sigma_O*al/s1;
h2 = sigma_0*a2/s2;

taufl = sigma_0 * zl + sigma_1*(ql_dot*(1 - hl*zl*sign(ql_dot) )) + sigma_2*ql_dot;
tauf2 = sigma_0 * z2 + sigma_1*(q2_dot*(1 - h2*z2*sign(q2_dot) )) + sigma_2*q2_dot;

taul=tau_1+taufil;
tau2=tau_2+tauf?2;

tau_c = [taul;tau2;taufl]; 7% Control Outputs, taufl for measurement purpose

A.6 Adaptive Friction Compensation

A.6.1 manipulator.m

function v_dot = manipulator (u)

u(l);
u(2);

ql
q2
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ql_dot = u(3);
q2_dot = u(4);

tau = [u(5);u(6)];

z1l = u(7);

z2 = u(8);

z = [z1;z2];

S0 = diag([0.5,0.51);
S1 = diag([0.1,0.11);
S2 = diag([0.3,0.31);

% Manipulator constants
11=1;
12=1;
mi=5;
m2=5;

% Christoffel symbols, c_ijk
cli1 = 0;

c222 = 0;

c112 = m2x11%12/2*sin(q2);
€221 = -m2*11%12/2%sin(q2);
c121 = -m2x11%12/2%sin(q2) ;

c211 = c121;
cl22 = 0;
c212 = c122;

M = [m1*11°2/3+m2*(11+12°2/2+11%11xcos(q2)), m2*(12°2/3+11*12/2*cos(q2))
m2% (1272/3+11%12%cos(q2) /2), m2x127°2/3];

C = [cllixql_dot + c211*q2_dot, c121*ql_dot + c221*q2_dot
c112xql_dot + c212%q2_dot, c122xql_dot + c222%q2_dot];

Minv = M™-1;

v = [ql_dot;q2_dot];

Fs = 0.335;
Fc = 0.285;
vs = 0.01;
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gl
g2

Fc+(Fs-Fc)*exp(-(ql_dot/vs)~2);
Fc+(Fs-Fc)*exp(-(q2_dot/vs) "2);

G=diag([1/gl,1/g2]);
F = SOxz + S1x(v - triu(triu(G*(abs(v)*z’))’)*[1;1]) + S2%v;

yAS

v_dot = Minv*tau - Minv*F - Minv*Cxv;

A.6.2 observer.m

function [sys,x0] = observer(t,x,u,flag)

=[0;0];

APPENDIX A. APPENDIX

Tt oo oo oo o T o o o o Jo o Jo o o Jo o T o T T o oo 1o 1o 1o o oo o o o oo o Jo o o T o o T o o oo oo oo

% Dual bristle state Observer
% (C) 0la Jacob Mjgen Iversen olajacob@pvv.ntnu.no
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h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

Outputs:
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10):
Inputs:
u(1l)
u(2)
u(3)
u(4)
u(b5)
u(6)
u(7)
u(8)
u(9) :
u(10):

: hat_z_01
: hat_z_11
: hat_beta_01
: hat_beta_11
: hat_beta_21
: hat_z_02
: hat_z_12
: hat_beta_02
: hat_beta_12

hat_beta_22

:ql

1 q2

: ql_dot

: q2_dot

: ql_ref

: q2_ref

: ql_dot_ref
: q2_dot_ref
: ql_ddot_ref

q2_ddot_ref

Tt oo oo oo oo o T o o o o Jo o Jo o o T o T o T o oo 1o 1o 1o o oo o o o oo o Jo o o T o o T o o oo oo oo
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if flag == 1, ’ Friction values and Stribeck function

pinit;

ql = u(1);

q2 = u(2);

ql_dot = u(3);

q2_dot = u(4);

ql_ref = u(5);

q2_ref = u(6);

ql_dot_ref = u(7);
q2_dot_ref = u(8);

F_c = 0.285; % [Nm] Coulomb friction level
F_s = 0.335; % [Nm] Stiction level
= 0.01; % [rad/s] Stribeck velocity

0
|

gamma_01 = 10;
gamma_11 = 20;
gamma_21 = 6;
gamma_02 = 10;
gamma_12 = 20;
gamma_22 = 6;

g =(F_c+(F_s-F_c)*exp(-(ql_dot/w_s)"2));
g2=(F_c+(F_s-F_c)*exp(-(q2_dot/w_s)"2));

o®

-

[
|

= ql-ql_ref;
= q2-q2_ref;

o®

[N

N
|

e2_1 = gql_dot - ql_dot_ref + kllxel_1;
= q2_dot - q2_dot_ref + kl2%el_2;

®

It\)

N
|

end

if flag == 1, % another "if" for the sake of clairity

if abs(el_1)>1.5%10"(-8),
% Dual-Observer joint 1

sys(1) = ql_dot - abs(ql_dot)*x(1)/g-e2_1;

sys(2) = qil_dot - abs(ql_dot)*x(2)/g + abs(ql_dot)*e2_1/g;
% Adaptive laws joint 1
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sys(3) = -gamma_01 * e2_1xx(1);
sys(4) = -gamma_11 * ql_dot*e2_1;
sys(5) = gamma_21 * abs(ql_dot)*x(2)/g*e2_1;
else
sys(1) =
sys(2) =
sys(3) =
sys(4) =
sys(5) =
end
if abs(el_2)>1.5%10"(-8),
% Dual-Observer joint 2
sys(6) = g2_dot - abs(q2_dot)*x(6)/g2-e2_2;
sys(7) = gq2_dot - abs(q2_dot)*x(7)/g2 + abs(q2_dot)*e2_2/g2;
% Adaptive laws joint 2
sys(8) = -gamma_02 * e2_2*x(6);
sys(9) = -gamma_12 * q2_dot*e2_2;
sys(10) = gamma_22 * abs(q2_dot)*x(7)/g2*e2_2;
else
sys(6)
sys(7)
sys(8)
sys(9) ,
sys(10) = 0;
end

b
b
2

2

o O O O O

2

o n
T e

o O O O

elseif flag == 0,

% return initial conditions
sys=[10; 0; 10; 10; 0; 0]; % system values [kont,disk,output,input,,]

x0=[0,0,0,0,0,0,0,0,0,0];

elseif flag == 3,
% return outputs

sys=[x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)]1; %output
else
sys = [1;
end
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A.6.3 friction.m

function z_dot=friction(x)

vl = x(1);

v2 = x(2);

z1l = x(3);

z2 = x(4);

v = [vl;v2];

z = [z1;z2];

Fs = 0.335;

Fc = 0.285;

vs = 0.01;

gl = Fc+(Fs-Fc)*exp(-(vl/vs)~2);

g2 = Fc+(Fs-Fc)*exp(-(v2/vs)~2);
G=diag([1/gl,1/g2]);

z_dot = v - triu(triu(Gx(abs(v)*z’))’)*[1;1];

A.6.4 controller.m

function ut = controller(x)

% Inputs
A —
ql = x(1);
q2 = x(2);
vl = x(3);
v2 = x(4);
qdl = x(5);
qd2 = x(6);
vdl = x(7);
vd2 = x(8);
vddi= x(9);
vdd2= x(10);

z01 = x(11);

91
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z11 = x(12);
beta_01 = x(13);
beta_11 = x(14);
beta_21 = x(15);
z02 = x(16);
z12 = x(17);
beta_02 = x(18);
beta_12 = x(19);
beta_22 = x(20);

[q1;q92];

v = [vi;v2];

qd = [qdl;qd2];
vd = [vdl;vd2];
vdd= [vddl;vdd2];

Q
1]

e =q - qd;
e_dot = v - vd;

11=1,;
12=1,;
mi=5;
m2=5;

pinit;

clil = 0;

c222 = 0;

c112 = m2%11%12/2%sin(q2) ;
€221 = -m2%11%12/2%sin(q2) ;
c121 = -m2%11%12/2%sin(q2) ;
c211 = c121;

cl22 = 0;

€212 = ¢122;

lambdail
lambda2

5;
5;

Kp = diag([lambdal~2,lambda2"2]);

APPENDIX A. APPENDIX
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Kd = diag([2*lambdal,2*lambda2]) ;
A=diag([5,5]);

alfa = vd - Axe;
s = v - alfa;
alfa_dot = vdd - A*(v-vd);

M = [m1*11°2/3+m2%(11+1272/2+11%11xcos(q2)), m2*(1272/3+11%12/2*cos(q2))
m2* (1272/3+11%12%cos(q2)/2), m2%12°2/3];

C = [cliixvl + c211%v2, c121*vl + c221%v2
c112*%vl + c212%v2, c122*%vl + ¢222%v2];

gl=(F_c+(F_s-F_c)*exp(-(v1/w_s)"2));
g2=(F_c+(F_s-F_c)*exp(-(v2/w_s)"2));

F_hat_1
F_hat_2

beta_01%z01 + beta_11*vl - beta_21*abs(vl)*zl11/gl;
beta_02*z02 + beta_12%v2 - beta_22*abs(v2)*z12/g2;

F=[F_hat_1;F_hat_2];
u = Mxalfa_dot + Cxalfa - Kdxs — Kpxe + F;

ut=[u;e;e_dot;s];

A.6.5 trajectory.m
function d = trajectory(t)

w=0.1 % angular frequency

qdl = pix(1-cos(wxt))/3;
qd2 = pi*(1-cos(wxt))/3;
vdl = pixwxsin(wxt)/3;
vd2 = pi*wksin(wxt)/3;
vddl = pi*w~2*cos(w¥t)/3;
vdd2 = pi*w~2*cos(w¥t)/3;



94

APPENDIX A.

d = [qdl gqd2 vdl vd2 vddl vdd2];

A.6.6 pinit.m

Tt ol oo o oo oo To o o o o T o o T o To o T T o oo 1o 1o oo o oo o o o o o To o o o T o

% pinit.m

% Initialisation of friction parameters etc.

h

% (C) 2002, Ola Jacob Mjgen Iversen

A

Tl oo oo oo oo To o oo o T Fo T Jo o To T T T o oo 1o o oo o oo o o o o o To o o o T o

sigma_0 = 0.5; %
sigma_1 = 0.1; %
sigma_2 = 0.3; %
F_c =0.285; %
F_s = 0.335; %
w_s = 0.01; h
lambdal = 5;

lambda2 = 5;

[Nm/rad] Stiffness of surfaces
[Nm/rad] Damping coefficient
[Nms/rad] Viscous coefficient
[Nm] Coulomb friction level
[Nm] Stiction level

[rad/s] Stribeck velocity

Kp = diag([lambdal~2,lambda2~2]);
Kd = diag([2*lambdal,2*lambda2]) ;

A=diag([5,51);

k11=A(1);
k12=A(4) ;

k21=Kd (1) ;
k22=Kd(4) ;

APPENDIX
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A.7 Simulink

A.7.1 Simulink System with known Parameters
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A.7.2 Inside Manipulator
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A.7. SIMULINK

A.7.4 Simulink System of Adaptive Scheme
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A.7.5 Inside Manipulator
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A.7. SIMULINK

A.7.6 Inside Controller
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