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Abstract

Mechanical properties of cells can be used in diagnostics of various diseases. It has been
proven, by several independent research groups, that sick and healthy cells differ in stiff-
ness. Being able to extract this information will help bring medicine forward.

The Institute of Engineering Cybernetics at NTNU is in possession of an Atomic Force Mi-
croscope, which can be used to image and probe cells. They aspire to use their knowledge
within parameter identification to identify and estimate unknown parameters in models of
biological cells. The first step in this process is to obtain an overview of existing mod-
els and see which of them that are suited for this purpose. This has been the aim of this
thesis.

The work conducted on cell mechanics either views the cell as an elastic material or a
viscoelastic material. Due to these different interpretations, the field appears confusing.
The cell is viscoelastic, but it can be approximated as elastic to simplify calculations. In
this work, both these modelling approaches are discussed. Comments about parameter
estimation have also been included to make this thesis an adequate basis for further work
on this topic.

The target group of the thesis are readers with a mathematical understanding, but limited
knowledge about biology and cell mechanics. However, this review can be useful for
anybody that is interested as no existing work is comprehensive enough in the discussion
of both elastic and viscoelastic models. By the end of the thesis, the reader will have
obtained an overview of the field concerning cell mechanics. If a deeper insight is desired,
the bibliography and a list of the most important articles found in the Appendix can serve
as an excellent utility.

For the cell to yield a linear response, Atomic Force Microscopy experiments need to apply
sufficiently small forces. Though this is a simplification of the reality, the corresponding
models will be easier to perform parameter estimation on. They serve as a good starting
point in the further work on parameter estimation in mechanical models of cells.
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Sammendrag

De mekaniske egenskapene til celler kan brukes i diagnose av forskjellige sykdommer.
Flere uavhengige forskningsgrupper har bevist at syke og friske celler har ulik stivhet. Å
ha muligheten til å hente ut denne informasjonen fra celler vil bidra til å føre medisin
fremover.

Institutt for teknisk kybernetikk ved NTNU er i besittelse av et Atomic Force Microscope,
et mikroskop som kan brukes til å avbilde og undersøke celler. De ønsker å benytte sine
kunnskaper innen parameteridentifisering til å identifisere og estimere ukjente parametre i
modeller for biologiske celler. Det første steget i denne prosessen er å få en oversikt over
allerede eksisterende modeller og se hvilke av dem som egner seg til denne bruken. Dette
har vært formålet med denne masteroppgaven.

Arbeidet utført på cellemekanikk ser enten på cellen som et elastisk materiale eller et
viskoelastisk materiale. På grunn av disse ulike tolkningene fremstår feltet forvirrende.
Cellen er viskoelastisk, men den kan modelleres som elastisk for å forenkle beregninger. I
dette arbeidet er begge disse tilnærmingene vurdert. Kommentarer om parameterestimer-
ing er også tatt med for å gjøre denne oppgaven til et tilstrekkelig utgangspunkt for videre
arbeid på dette feltet.

Målgruppen for oppgaven er lesere som innehar matematisk forståelse, men med begrenset
kunnskap om biologi og cellemekanikk. Likevel kan denne gjennomgangen være nyttig
for alle som er interessert, ettersom det ikke finnes eksisterende arbeid som er omfattende
nok i diskusjonen av både elastiske og viskoelastiske modeller. Etter å ha lest denne opp-
gaven vil leseren ha fått en oversikt over feltet som omhandler cellemekanikk. Hvis en
dypere innsikt er ønskelig, kan litteraturlisten og vedlegget som oppsummerer de viktigste
artiklene være gode verktøy.

Hvis cellen skal ha lineær respons må eksperimentene med Atomic Force Microscope
anvende tilstrekkelig små krefter. Selv om dette er en forenkling av virkeligheten, vil
de tilsvarende modellene være lettere å utføre parameterestimering på. De fungerer som
et godt utgangspunkt i det videre arbeidet med å gjøre parameterestimering i mekaniske
cellemodeller.
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Chapter 1
Introduction

1.1 Background

The field of cybernetics is the science of dynamical systems’ behaviour and how to control
and monitor them autonomously. This includes robots, ships, engines, industrial processes
and many more. A particular strength is the ability to describe systems with mathematical
models and then do parameter estimation on unknown quantities and perform simulations
to see how the system behaves. The field is provident and has the capability to contribute in
other disciplines by merging knowledge. One example of this is Atomic Force Microscopy
(AFM) used in biology and medicine to study cell mechanics.

AFM is a microscopy technique used to image and manipulate cells. It can also reveal
their mechanical properties. This is interesting knowledge. It has for instance been proven
that healthy and diseased cells differ in stiffness (Lim et al., 2006; Guz et al., 2014; Haase
and Pelling, 2015). To obtain this information, it is necessary to have access to mechanical
models of the cell. A lot of work and effort have been conducted on this by numerous
researchers, and there is to a certain extent agreement on models that can explain how
cells respond to externally applied forces.

Previous work from cyberneticians on AFM has been related to control on the nanoscale,
which has lead to improved scanning speed during experiments. Now, there is a desire
to look into mathematical modelling of cells to potentially contribute to identify and es-
timate unknown parameters. This is not a well-developed research area in AFM context,
where most of the techniques used are curve fitting and statistical analysis. Engineering
Cybernetics can contribute with knowledge about dynamics, robotics and parameter iden-
tification to help bring this discipline forwards. To be able to do this, it is important to
examine existing mechanical models of cells, which is knowledge not held by the average
cybernetic researcher. The aim of this thesis is to present an overview of the leading the-
ories on mechanical modelling of cells that can be used in the analysis of data collected
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Chapter 1. Introduction

from AFM experiments. The contribution will be an extensive bibliography for this field
of study and a listing of the most relevant articles.

1.2 Limitations

This thesis will look at models that only are valid when cells are applied to small forces,
which results in a linear response. Even if the model itself has a nonlinear form, all models
discussed here will assume this. Consequently, there will be no evaluation of models that
describe cell’s nonlinear behaviour. This assessment is done because there are limited
existing descriptions for this kind of models. Also, they are too complex for a gentle start
considering parameter estimation.

When studying the mechanical response of an entire cell population, rare or transient phe-
nomena can be obscured when one averages together the response of individual cells (Ro-
driguez et al., 2013). Because of this, the research will be limited to models of single cells,
and the mathematical description of cell populations are omitted. This also fits better with
AFM, which can only probe one cell at the time.

1.3 Approach

When performing a literature review, there are a lot of articles to be read and considered.
In the start of the work, critical analysis is not possible as many mechanical and biological
terms need to be understood and defined. After gaining a better grasp of this, it will be
essential to excrete the articles that are not relevant and focus on the articles that discuss
mechanical models that are possible to use together with AFM. The most promising meth-
ods and results will be further investigated by viewing the bibliography of the articles that
examine them, but also take a look at work that have cited these particular articles.

The articles with a higher number of citations will be considered significant contributions
to the field. However, there should be a desire to obtain an overview that is up-to-date.
This will be achieved by looking at what kind of research that has been conducted in this
area the recent years. In these cases, the focus on multiple citations must be discarded as
there has not been enough time for the articles to attain this.

Search engines are powerful utilities in a literature review. Google Scholar will be a help-
ful tool to see quickly how many citations an article has. Databases like Web of Science,
Scopus and Oria, where the latter is NTNU’s library overview, are a better fit when search-
ing with proximity operators, truncations and Boolean operators to limit the search. A
combination of these approaches will by used in this work.

A goal in this literature review will be to, as far as possible, mainly base the content on
peer-reviewed articles.

Citations will be presented in Harvard style, as this will make the text easier to read. This
way, it is possible for the reader to see patterns of repeating articles.

2



1.4 Outline

Because some of the material in the bibliography is not directly relevant for cell mechanics
and AFM as they are being used for other definitions, there will be a table in the Appendix
that presents an overview of the most prominent ones. Together with the bibliography, this
thesis will be a great starting point for scientists that are interested in an overview of the
field concerning cell mechanics and AFM.

1.4 Outline

In chapter 2, the relevant theory about cells and definitions in mechanics is presented.
These concepts and terms may be familiar to biologists, but necessary for non-experts in
the field.

Next, in chapter 3, follows an extensive description of AFM and its working princi-
ples.

A review of cell mechanics in general can be found in chapter 4. Chapter 5 and chapter 6
then elaborates on elasticity and viscoelasticity calculations respectively.

The current challenges within the description of cell mechanics are the content of chapter
7, while chapter 8 and chapter 9 contains summary and conclusions for this thesis.

3
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Chapter 2
Theory

2.1 Biological Cells

Cells are the foundation of all living tissue and organs. The cell is alive itself and is thus
the smallest of all living substances in humans and animals. They have all the fundamental
features of an organic life: metabolism and the ability to move and reproduce.

There is a distinction between prokaryotic and eukaryotic cells. ”The simplest of simple
organisms” is a description of the prokaryotic cell, most of them sized around 1µm. They
are mainly bacteria and are not, in this context, as interesting as the larger eukaryotic cells
(10 − 100µm), found in plants and animals (Cooper and Hausman, 2009). A eukaryotic
cell has several components called organelles (little organs). Also, it contains structures
called cytosol and cytoplasm. A description of essential constituents of a cell follows,
where much of the information is gathered from (Rodriguez et al., 2013).

• Nucleus
The nucleus if often referred to as the cell’s brain. It can occupy up to 10 percent of
the space inside a cell and contains DNA which determines the cell’s identity and
masterminds its activities.

• Cytosol
The cytosol of a cell is its interior, excluding the organelles. It is a semi-fluid solu-
tion of proteins, salts and other molecules.

• Cell membrane
The barrier between the cytosol and the extracellular environment. Biological mem-
branes also enclose organelles and control the passage of materials into and out of
them.

• Cytoplasm

5



Chapter 2. Theory

The material between the membrane and the nucleus. It includes all the organelles
and the cytosol, except the nucleus. The previously described cytosol is the fluid
portion of the cytoplasm.

• Cytoskeleton
With the objective to study cell mechanics, the cytoskeleton is an essential part
of the cell because it yields shape and support. The cytoskeleton lies within the
cytoplasm and consists of different filamentous proteins: microtubules, intermediate
filaments and actin filaments. Out of these three, the actin filaments are central.
They are integrated into the cytoskeleton designed principally to reinforce the cell
against mechanical deformation and to allow for force generation, leaving them as
key components of the mechanical support of eukaryotic cells.

The study of cells can happen in vitro, in vivo or in silico. In vitro studies happen outside
the living organism, often in a laboratory, while in vivo happens within the biological
context. The advantages of doing experiments in vitro are that it is faster, less expensive
and that scientists can conduct studies on specific cells instead of the organism as a whole.
The downside is that the results do not necessarily translate well to real life. Another type
of approach is in silico biology, which refers to the use of computers to perform biological
studies. As pointed out by (Palsson, 2000), many other fields of science and engineering
have developed systems science and complicated mathematical simulations to a high level
of sophistication, but biology is lagging behind.

2.2 Mechanical Expressions

2.2.1 Stress and strain

To know how the forces acting on a body will deform it is an important mechanical prop-
erty of a material. There are two key terms here; stress and strain.

Stress is the applied force on a body and is defined as either compressive, tensile or shear
stress, see figure 2.1. Compressive stress pushes the body with forces while the tensile
stress stretches it. In both cases, the forces are perpendicular to the area they act on, and
they are referred to as normal stress. It has the definition:

normal stress = σ =
F

A
(2.1)

where F is the applied force and A is the cross-sectional area of the material, giving stress
the unit [N/m2] or [Pa].

Shear stress, on the other hand, works differently on a body because the applied forces are
parallel to the plane, and they do not share the same line of action.
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2.2 Mechanical Expressions

Compressive Tensile Shear

F

F

F

F

F

F

Figure 2.1: The various types of stress

shear stress = φ =
F

A
(2.2)

The other important term in this section is strain, which is a quantification of the stress
applied. It indicates how much extension there is per unit length and is given by the
formula

normal strain = ε =
∆l

lo
(2.3)

where ∆l is the extended or decreased length of the material and lo is the original length.
This is a unitless property. As for shear strain, the formula is equal, but the length differ-
ence is the movement of the cross-sectional area as a response to the applied forces. ∆x
is used instead of ∆l to avoid misunderstandings.

shear strain = γ =
∆x

lo
(2.4)

2.2.2 Rigidity, elasticity, plasticity and viscosity

Rigidity is the relative stiffness of a material that allows it to resist bending, stretching,
twisting or other deformation under a load (BusinessDictionary, n.d.).

Elasticity is a non-permanent deformation where the material recovers to its original shape
when the applied stress is removed. The elastic response of the cell is mainly due to its
cytoskeleton (Radmacher, 1997).

Plasticity is a property of a material that allows it to deform irreversibly. It has some sim-
ilarities to elasticity, but without the ”recovery” when removing the load. A body made

7



Chapter 2. Theory

out of plastic material can thus change its shape easily by the application of appropri-
ately directed forces, and retain the new shape upon removal of such forces (Lubliner,
1990).

Viscosity is the quantity that describes a fluid’s resistance to flow (Elert, n.d.). A fluid with
large viscosity, like e.g. honey, will resist motion better than a fluid with lower viscosity,
like water. Viscosity is denoted µ in this thesis, but note that many articles use η.

Materials composed of both rigid-like (elastic) and fluid-like (viscous) elements are char-
acterized as viscoelastic (Cameron et al., 2014). A viscoelastic material will return to its
original shape after the load is removed, i.e. it will show an elastic response. However,
it may take time to do so because of the viscous component (Vincent, 2012). Cells be-
long to this category of materials as they possess both behaviours (Kollmannsberger and
Fabry, 2011). If cells were purely elastic they would not be able to perform operations like
spreading and division and a purely viscous cell would be unable to maintain its structural
integrity (Fabry et al., 2001).

2.2.3 Young’s modulus and shear modulus

An important aspect of stress and strain is the relationship between them. The ratio be-
tween tensile stress and strain of a material is constant for a particular range of loads, see
figure 2.2.

strain

stress

Figure 2.2: Example of a stress-strain curve

This linear portion is called Young’s modulus, or modulus of elasticity, and measures the
resistance of the material against elastic deformation. It is denoted E and given by the
gradient of the correlation between stress and strain:

8



2.2 Mechanical Expressions

E =
tensile stress
tensile strain

=
σ

ε
=

Flo
A∆l

(2.5)

Note that as long as the stress-strain relation is linear, the deformation of the material is
elastic. However, when the curve in figure 2.2 deviates from linearity, the material enters
the plastic deformation stage that causes permanent changes in shape from the applied
stress (Vinckier and Semenza, 1998).

Larger gradient and Young’s modulus equal a stiffer material. For most substances this
quantity is known, but not for cells because they are more complex and have varying
stiffness. Hard materials like glass and steel can have a Young’s modulus of ≈ 100 GPa
while cells are somewhere between 1 kPa and 100 kPa (Radmacher, 1997). In chapter 5
there will be a description of how to calculate this number.

The ratio between shear stress and strain is called the shear modulus or modulus of rigidity
and is given by

G =
shear stress
shear strain

=
φ

γ
=

Fl0
A∆x

(2.6)

The shear modulus of solids is independent of frequency while that of liquids is propor-
tional to frequency. Because cells display viscoelastic behavior, there exists a frequency-
dependent variation of the shear modulus called dynamic shear modulus, G∗(ω). This
is an indicator of overall viscoelastic behaviour (Moeendarbary and Harris, 2014). It is
also referred to as the complex shear modulus when expressed as a complex quantity and
calculated doing oscillatory measurements over a wide frequency range. The frequency-
dependent shear modulus will be further explained and discussed in section 6.4 when
looking at viscoelastic power-law models.

There also exist a relationship between Young’s modulus and the shear modulus, valid for
linear elastic materials (Lim et al., 2006).

E = 2(1 + v)G (2.7)

with v being the Poisson’s ratio, giving a numerical value to the changes in dimensions
that occur when stretching a material. Equation (2.7) is not adequate for describing the
mechanics of cells, because the elasticity of a viscoelastic material will depend on both the
loading rate and loading history (Lim et al., 2006), but it can be used as an approximation.
Poisson’s ratio is given by

v = − lateral strain
longitudinal strain

(2.8)
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Chapter 2. Theory

This value will always be between 0 and 0.5 (Vinckier and Semenza, 1998). According
to (Sokolov, 2007; JPKinstruments, n.d.) the majority of biological material will have the
Poisson ratio v = 0.5.

2.2.4 Stress relaxation and creep

A large amount of the information in this section is from (Roylance, 2001).

While stress and strain can describe elastic materials, the mathematical description of
viscoelastic materials involves the introduction of a new variable - time. To model the
behaviour of materials with both viscous and elastic components, one can use stress relax-
ation and creep experiments. Both these are transient procedures. As defined in (Lopez-
Guerra and Solares, 2014) and shown in figure 2.3 and 2.4, stress relaxation is the time-
dependent drop in stress under constant strain, while creep is the time-dependent strain
relaxation under a constant stress.

σ ε

t0 t1 t0 t1

Figure 2.3: We can see stress relaxation from t1 where the strain is kept constant.

ε σ

t0 t1 t0 t1

Figure 2.4: Creep curve with recovery. A constant load is applied at t0 and removed at t1. Notice
that in this example the strain does not recover completely to its initial value, which means that the
deformation is permanent and that the material is plastic.

The alternative to transient experiments is dynamic procedures, where stress or strain is
varied cyclically with time. Then, the response is measured at various frequencies of defor-
mation (Vincent, 2012). In this section, however, the focus is on the transient experiments,
namely stress relaxation and creep.

Creep
Creep is the change of deformation under a load and how this evolves over time. During
constant stress experiments, creep compliance, J , can be measured. Compliance is the
inverse of stiffness (Haase and Pelling, 2015) given as
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J(t) =
ε(t)

σ0
(2.9)

This is used in the case where a time-varying strain, ε(t), arises from a constant stress, σ0.
Often, the creep compliance is plotted against the logarithm of time. In figure 6.2 the point
on the x-axis labeled ”log τ” marks the inflection from rising to falling slope, and τ is the
relaxation time of the creep process (Roylance, 2001).

log t

J(t)

log τ

Figure 2.5: Creep compliance plotted against the logarithm of time

Stress relaxation
In the other mentioned technique, stress relaxation, the material is deformed, and the force
required to maintain the deformation at a constant value is measured. The stress required
dies away with time and is said to relax (Vincent, 2012). Similar to creep compliance there
exists a relaxation modulus (Roylance, 2001)

Erel(t) =
σ(t)

ε0
(2.10)

where ε0 is the strain fixed at a constant value. The relaxation can be plotted against
logarithmic time in a similar manner to creep.

2.3 Parameter Estimation

The general problem (Zhang, 1997) is that the unknown parameters are gathered in a
vector p, whose dimension indicates the number of parameters to be estimated. The output
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Chapter 2. Theory

of the modeled system is assembled in a measurement vector z. A noise-free case, a
simplification done here, relates z to p so that

f(p, z) = 0 (2.11)

The desire is to use the observed measurements, y = z, to estimate p.

One approach is to use curve fitting. By minimizing the square of the error between
experimental data and established models, unknown parameters can be estimated. This
method is called least squares fitting.

To ease the calculations of the unknown parameters, it is preferable that they are linearly
given in the expressions.
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Chapter 3
Atomic Force Microscopy

In optical microscopy, a lens is used to magnify an image, and this is what most people
associate with the term microscope. Even though this can be a useful tool in a broad
range of applications, it has a maximum resolution of about 100 nm (Abramovitch et al.,
2007). Sometimes, especially when studying cells, it can be interesting to view objects
down to atomic scale and also be able to do nanomanipulation on the sample. As shown
in (Abramovitch et al., 2007), Atomic Force Microscopy (AFM) is one of the leading and
most versatile methods for imaging nanoscale structures after its invention and introduc-
tion by (Binnig et al., 1986) in the 1980’s. This is due to its resolution with the ability to
see individual atoms and that the imaging environment is flexible. See section 3.2 for a
more thorough discussion of the pros and cons of AFM.

Some scientists saw the potential of AFM to be used in biological studies already in the
early 1990s. They hoped to get the opportunity to capture microscopic images of biologi-
cal phenomena in vivo, but the development in the field was slow. This was partly because,
at that time, AFM was only applicable to samples in air. In vivo experiments were depen-
dent on imaging under fluid. With the further development and improvements of AFM,
the widespread use of the technique within biology started around the 2000s (Takeyasu,
2014).

Other techniques being used to study cell’s mechanics are, to mention some, micropipette
aspiration (Hochmuth, 2000), optical tweezers (Dao et al., 2003; Zhang and Liu, 2008),
magnetic beads (Haukanes and Kvam, 1993) and cytointender (Shin and Athanasiou,
1999). However, no further description will be presented here. If the reader is interested
in details about how they work, the cited articles serve as excellent sources of informa-
tion.

To understand the potential of AFM used in combination with mechanical models of cells,
a description of the technique is necessary. This chapter explains the working principles
of AFM and its modes of operation. Also, the information about cells that is possible to
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extract from AFM experiments is discussed. In the last section, 3.2, AFM benefits and
drawbacks are described.

3.1 Working Principles

The atomic force microscope consists of the components shown in figure 3.1. A probe
with a very sharp tip is connected to a cantilever and scans over a sample surface, causing
interaction forces between the tip and the surface. A laser beam is directed towards the
back of the cantilever and is reflected towards a photodetector. The probe follows the
contour of the sample and causes the cantilever to bend accordingly.

There are several ways of moving the tip relative to the sample. A standard approach is to
use a piezo actuator to move the sample in x- y- and z-direction. The vertical movement is
done in response to the deflection of the cantilever. An alternative is to do the movement in
the xy-plane by maneuvering a stage beneath the sample and control the z-axis by moving
the cantilever up and down (Abramovitch et al., 2007). To read more about issues related
to the choice of control design, see (Schitter, 2007) and (Kwon et al., 2003).

Depending on the mode of operation (see section 3.1.1), either the deflection of the can-
tilever or its amplitude of oscillation is held constant using a feedback loop to the z-
actuator. The surface estimate is given by the feedback loop itself, which in commercial
systems comes from some function of the control signal and serves as a good representa-
tion of the surface topography (Abramovitch et al., 2007).

3.1.1 Modes of operation

There are three primary imaging modes in AFM: contact mode, tapping mode and non-
contact mode. The latter two are dynamic methods while contact mode is static. Below
follows a description of them with their benefits and drawbacks. We primarily base the
material on (Wilson and Bullen, n.d.; Sokolov, 2007).

• Contact mode
The tip is ”dragged” across the surface of the sample. By keeping a constant can-
tilever deflection using a feedback system, the force between the sample and the
probe remains constant and thereby obtain an image of the surface. The drawback
is that it can scratch the sample and potentially destroy it due to high friction. Be-
cause of this, contact mode is seldom used on biological material. Advantages of
this mode are its simplicity and that it allows fast scanning.

• Tapping mode
AFM tapping mode only touches the sample surface for very short periods of time
because the cantilever oscillates during the measurements. The chosen oscillation
frequency is the cantilever’s resonance frequency or somewhere near it. Every time
the tip touches the sample there is a change in the oscillation amplitude, where
the change depends on the tip-sample distance. To avoid this, feedback is used to
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piezo actuator

sample

cantilever and probe

laser

photodetector

Figure 3.1: Typical AFM setup

keep the amplitude constant and thus obtain a constant tip-sample interaction. This
makes it possible to create an image of the surface. This approach is typically slower
regarding imaging bandwidth than contact mode because it is dependent on the slow
amplitude estimate. Despite this, tapping mode is the preferred imaging method for
soft biological surfaces. This is because there is lower lateral friction than in contact
mode, causing less harm on the sample.

• Non-contact mode
The probe is not in touch with the sample, but oscillates above it. By using a feed-
back loop to monitor the changes in the amplitude due to attractive forces, the topog-
raphy can be measured. The advantage of this mode is that there is less wear on the
probe tip and the sample compared to the two other modes. However, non-contact
mode provides the best results when operated under vacuum, which compromises
its use in biology (Takeyasu, 2014).

3.1.2 Force-distance and force-indentation curves

In addition to imaging, AFM can be used in force measurement, often referred to as force
spectroscopy (Takeyasu, 2014). This makes it possible to extract useful information about
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Chapter 3. Atomic Force Microscopy

the sample beyond its topography. In a force-distance curve analysis, the probe is re-
peatedly brought towards the surface and then retracted without scanning in the x- and y-
direction. The result is a plot of the tip-sample interaction forces vs. tip-sample distance.
In a stationary setting, the tip-sample interaction force is given by Hooke’s law:

Fc = −kcδc (3.1)

where kc is the cantilever spring constant, calibrated and measured previous to scan-
ning, and δc is the measured cantilever deflection from rest position (Capella and Dietler,
1999).

The cantilever deflection is measured with AFM. Also, the distance between the cantilever
rest position and the sample, Z, can be detected because this is determined by the piezo
actuator. With Z and Fc known it is possible to draw a force-distance curve, see figure
3.2 for an example. Force-distance curves consist of two parts: an approaching curve and
a retracting curve. As the probe approaches the surface, the cantilever may bend upwards
due to repulsive forces and the approach curve can thus be used to measure surface forces
(Dufrene, 2002). See (Capella and Dietler, 1999; Heinz and Hoh, 1999) for exhaustive
in-depth analysis of force-distance curves.

Fc(nN)

Z(nm)

Approach

Retract

0

Figure 3.2: Example of force-distance curve.

From the force-distance curves, it is possible to get force-indentation curves. As (Takeyasu,
2014) explains it:

”In a force-distance curve, the x-axis is the measured distance Z (a measure
of the piezo height), which is usually corrected to be the position of the un-
deflected cantilever. In a force-indentation curve, this measurement must be
corrected for by taking the deflection of the cantilever into account.”

This means that the actual tip-sample distance is
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D = Z − (δc + δs) (3.2)

where δs is the indentation of the sample (Capella and Dietler, 1999), see figure 3.3.

sample

δc

Z
D

δs

Figure 3.3: Scheme of the relevant distances in AFM.D is the tip-sample distance, Z is the distance
between sample and cantilever rest position, and δc and δs are the cantilever deflection and sample
indentation respectively. A copied version of Fig. 1 in (Capella and Dietler, 1999).

When D = 0, a force-indentation curve can be obtained (Heinz and Hoh, 1999). From
these curves, it is possible to extract mechanical properties. An example is to obtain
Young’s modulus by fitting the curve to an elasticity model like Hertz or Sneddon (Moreno-
Flores et al., 2010) as illustrated in figure 3.4. See details about this in chapter 5.

Fc(nN)

δs(nm)

Cell

Fit

Figure 3.4: Example of a force-indentation curve from measurements (blue dots) fitted to an elas-
ticity model (red line). Inspired by a figure from (Ramos et al., 2014).
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3.2 Benefits and Drawbacks

As previously mentioned, the atomic force microscope can work in several imaging envi-
ronments like air, vacuum and liquid. This is in contrast to other atomic scale microscopes
that relies on vacuum to function (Abramovitch et al., 2007). Other advantages of AFM in
the study of biological objects is that it can scan surfaces with up to nanometer resolution,
it can provide true 3D surface topographical information and minimum preparation of the
sample is required (Sokolov, 2007). However, the most important feature with our objec-
tive is that AFM allows measuring of various biophysical properties of materials.

AFM can also be used in nanomanipulation. The tip is able to apply a variety of forces, in-
cluding contact, magnetic, thermal, and electrical using modified tips (Abramovitch et al.,
2007).

Note that not all of these benefits are unique to AFM compared to other techniques.

Slow scanning speed is one of the main drawbacks of AFM (Abramovitch et al., 2007).
Especially when collecting data to draw force-distance curves, image acquisition time can
exceed 20 minutes (Pelling et al., 2007). According to (Cartagena-Rivera et al., 2015)
this is 1-2 orders of magnitude longer than that required to study dynamic cellular pro-
cesses.

Other challenges relate to uncertainty in the estimation of tip radius and spring constant,
compression of the sample against its substrate, nonlinear loading and non-ideal sample
morphology (Kurland et al., 2012). Another drawback mentioned in (Abramovitch et al.,
2007) is that each measurement, each sample and each new cantilever/tip combination
requires the system to be adjusted again. This makes it hard to repeat experiments because
the results can vary from scan to scan (Ragazzon, 2013). Also, each operating mode has
different pros and cons as explained in section 3.1.1.

Despite the drawbacks of AFM, the benefits are more substantial. As (Sokolov, 2007) puts
it: ”there are few other probe methods used to study cell mechanics. The most popular
ones are optical tweezers, magnetic beads and micropipette. However, those methods
cannot compete with the precision that can be attained with AFM method.”
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Chapter 4
Cell Mechanics in General

Cells are exposed to a variety of mechanical loads in vivo, both external and internal (Haase
and Pelling, 2015). They are regularly on the move through dense tissue, and it is important
that they can adapt their shape, but also be able to produce forces to withstand the stresses
from other cells (Brunner et al., 2006). In addition to this, cells are often subjected to
mechanical loads and many chemicals are known to increase or decrease the mechanical
properties of living cells. Due to all these environmental and internal impacts, it is of great
importance to know how the cells will respond (Lim et al., 2006).

There exist two distinct approaches to studying cellular systems, called top-down and
bottom-up. The bottom-up method gathers details about different constituents of the sys-
tem and builds a model based on their connections. This is hard to do with cells because
their structure is complex. In the top-down approach, the starting point is a description of
the entire system and then to break it down into smaller segments. In AFM context the
top-down approach is more applicable (Moeendarbary and Harris, 2014) and is what the
focus will be when choosing mechanical models. See (Kollmannsberger and Fabry, 2009)
for a list of models developed from the bottom-up perspective.

Another distinction of models is those derived from either the micro/nanostructural ap-
proach or the continuum approach. From (Lim et al., 2006):

”The former deems the cytoskeleton as the main structural component. [..]
On the other hand, the continuum approach treats the cell as comprising ma-
terials with certain continuum material properties. From experimental ob-
servations, the appropriate constitutive material models and the associated
parameters are then derived. [..] the approach is easier and more straightfor-
ward to use in computing the mechanical properties of the cells if the biome-
chanical response at the cell level is all that is needed.”

In the existing literature, there are two main areas of focus within cell mechanics: mea-
suring the elasticity of cells or measuring their viscoelasticity. The former is important
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because there are several reports on a correlation between stiffness of cells and diseases
like cancer, malaria, arthritis and aging (Guz et al., 2014). Young’s modulus of a cell can
be extracted from AFM experiments using force-indentation curves. However, as previ-
ously mentioned, cells are viscoelastic, and a description of elasticity is not adequate in
describing their mechanical properties. Because of this, the viscoelastic models are more
accurate, though the elastic models are satisfactory for their use. In the next chapters,
which are divided into elasticity and viscoelasticity calculations, we describe the most
common models available today. In addition, we will mention models without extensive
details. This is either because they are used by other techniques than AFM or that they are
derived from the micro/nanostructural approach.

See figure 4.1 for a visualization of the above information and which models we are dis-
cussing in this thesis. Note that there also exist, in addition to elastic and viscoelastic
models, a biphasic model. This model will only be briefly described in section 6.6.3 since
it is not widely used.

Elastic models Viscoelastic models Biphasic model

Continuum approach Micro/Nanostructural approach

Top-down Bottom-up

Mechanical models for living cells

Figure 4.1: The models we have chosen to look at in this thesis, which is top-down models derived
with the continuum approach. The chart is an extended version of figure 1 in (Lim et al., 2006).
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Elasticity Calculations

It has been shown that cells can change their elasticity quite considerably due to different
diseases, and it has been increasingly common to identify and characterize sick and healthy
cells using stiffness measurements (Haase and Pelling, 2015). It is possible to determine
the elasticity of cells by looking at the force applied by the AFM tip and the resulting
deformation (Vinckier and Semenza, 1998). Collecting the force curves over a particular
area provides the ability to create an elasticity map of the cell surface (Kuznetsova et al.,
2007).

The elasticity models that will be discussed in the next sections can be used in combination
with force-indentation curves made from an AFM scanning. Software, e.g. Matlab, fits
the mechanical models to experimental data. Young’s modulus, E, can then be derived
using these equations by different methods. Usually, it is calculated by fitting to the force-
indentation curves using E as a fit parameter. The contact point and baseline can also be
used as variable fit parameters, or they can be determined beforehand and used as fixed
values (JPKinstruments, n.d.).

5.1 The Hertz Model

A favoured mechanical model used to measure the elasticity of cells with AFM is the
Hertz model, based on Hertz theory of elastic contact (Benitez and Toca-Herrera, 2014).
The Hertz model is only valid when the indentation depth is no more than ∼ 10% of the
sample thickness and when the indentation depth is > 200nm (Pelling et al., 2007). The
result of this is that measurements are restricted to the central region of the cell (Gavara
and Chadwick, 2012). The model also assumes that the material is isotropic, homogeneous
and fully elastic, which is not true when looking at biological samples. However, it can be
a good approximation (Carmichael et al., 2015).
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The model has some deviations due to what kind of geometrical shape the tip of the inten-
der has, varying between conical, parabolic and spherical. The applied force is a function
of the indentation depth given by

F =
4

3

E

(1− v2)
R1/2δ3/2s (5.1)

for a spherical tip (Rico et al., 2005; Sen et al., 2005; Brunner et al., 2006; Kuznetsova
et al., 2007; Pelling et al., 2007; Carmichael et al., 2015) with R being the radius of the
intender if the surface is flat (Darling et al., 2007). Note that there exist controversy in
articles about the formulation of the Hertz model. (Vinckier and Semenza, 1998) and (JP-
Kinstruments, n.d.) mentions the same formula when discussing the parabolic tip, which
is understandable due to the similarity between the spherical and parabolic shape. (Rad-
macher, 1997) formulates the Hertz model for a conical intender as

F =
2

π

E

(1− v2)
δ2s tanθ (5.2)

where θ is the opening angle of the conical tip.

Calculating the force-indentation curve and fitting it with the Hertz model allows the es-
timation of Young’s modulus, previously illustrated in figure 3.4. The value of E will be
given by the best match between the two curves. One approach is to minimize the square
of the error between AFM data, FA, and the Hertzian response, FH .

E =

n∑
i=0

(F iA − F iH)2 (5.3)

where n is the number of data points (Tripathy, 2005).

(Pelling et al., 2007) points out that it is more interesting to look at the relative changes
in mechanical parameters rather than absolute values when discussing biological samples.
Especially stiffness measurements are dependent on the same experimental conditions to
be comparable (Haase and Pelling, 2015). (Pelling et al., 2007) proposed a normalized
Hertz model showing the relative changes in Young’s modulus given by

E∗ =
En
E0

=
Anπ(1−v2)

2tanθ
A0π(1−v2)

2tanθ

=
An
A0

(5.4)

with En as the Young’s modulus measured at time intervals (t) and E0 as the value of E
at time zero. This factors out the major unknowns such as tip geometry and Poisson ratio,
but the assumption is that they are constant.
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The Hertz model has led to the development of various other models, each of them made
to identify different types of parameters. Some of these are the Tu model and the Chen
model, see (Brunner et al., 2006).

5.2 The Sneddon Model

The Sneddon model has the same assumptions as the Hertz model and thus the same
challenges. It is used as a more accurate model when the tip of the cantilever is conical-
shaped instead of equation (5.2). The expression is given by (Guz et al., 2014) as

F =
8

3π
Eδ2s tanθ (5.5)

The model is only applicable for moderate indentations on thick parts of cells. A correction
to this model, called Bottom Effect Cone Corrected (BECC) model, has been proposed,
taking into account the finite thickness h of the soft sample (Guzman et al., 2015):

F =
8

3π
Eδ2s tanθ ×

{
1 + 1.7795

2tanθ

π2

δs
h

+ 50.67tan2θ
δ2s
h2

}
(5.6)

The BECC model can also incorporate a viscoelastic extension (Cartagena-Rivera et al.,
2015).

5.3 Other Models

5.3.1 Brush model

This is an extension of the Hertz and Sneddon models that considers the cell to be covered
by a brush layer, which is treated as a separate cellular structure. The model has not
been elaborated due to few available sources. Nevertheless, it is an interesting approach
used to measure elasticity and can be studied in more detail when the research becomes
more extensive. See (Guz et al., 2014) for details and a comparison relative to Hertz and
Sneddon.

5.3.2 Johnson-Kendall-Roberts (JKR) model

The JKR model is similar in form to Hertz and Sneddon, but not mentioned that often. Just
like the Derjaguin-Muller-Toporov (DMT) model (Prokopovich and Perni, 2011), it takes
adhesive forces into account, which is not the case with Hertz and Sneddon. Read more in
(Barthel, 2008; Benitez and Toca-Herrera, 2014; Efremov et al., 2015).
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5.3.3 Solid models

Solid models are applied to results from many experimental techniques, including AFM,
but they are very simplified. There exist models for both elasticity (linear elastic solid
model) and viscoelasticity (linear viscoelastic solid model). Details can be found in (Lim
et al., 2006; Rodriguez et al., 2013).
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Viscoelasticity Calculations

Instead of looking at the cell as purely elastic, it can be interesting also to take the viscous
contributions into account, as cells are indeed viscoelastic. Several articles have revealed
that also viscoelastic properties can to serve as indicators of cell disease (Babahosseini
et al., 2015).

Different experiments can be used to measure viscoelasticity. Common ones are stress
relaxation and creep experiments in the time domain and oscillatory tests in the frequency
domain (Kollmannsberger and Fabry, 2009).

There are various approaches in which viscoelastic behaviour can be described:

1. Extending elastic models into the time domain.

2. A differential representation leading to a linear differential equation, which uses
assemblages of springs and dashpots as models.

3. An integral representation defining an integral equation derived from the Boltzmann
superposition principle.

4. Power-law models

5. Frequency-dependent stress and strain representations

Some articles mention that it is possible to extend elastic models into the time domain to
model viscoelasticity. How to this with the Hertz model is shown in section 6.1.

The integral and differential models are not sufficient to fully describe a biological mate-
rial, even though many papers might give that impression. As pointed out in section 2.2.4
when introducing the concepts of stress relaxation and creep experiments, there is an as-
sumption that the elastic and viscous responses will behave linearly. This is not the reality.
Nevertheless, they can be used to derive constants that can be used as a basis for compar-
ison and prediction (Vincent, 2012). The two models are described in the time-domain.
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The most popular model for viscoelasticity, based on the number of articles using it, is the
differential representation with springs and dashpots, see section 6.2 for extensive details.
The integral approach is not that often used, but will be briefly described in 6.3.

Both power-law models and the frequency-dependent stress and strain representation use
oscillatory measurements, are expressed as functions of frequency and use the frequency-
dependent shear modulus. They are explained in sections 6.4 and 6.5, respectively. At
the end of the chapter, some other viscoelastic models in existing literature are men-
tioned.

As previously accentuated, all the models assume that the cells behave as linear viscoelas-
tic solids, which is only true for sufficiently small deformations.

6.1 Extended Hertz Model

By Laplace transformation and use of the correspondence principle, the Hertz model can
be expressed in the time domain. See (Darling et al., 2006) for the derivation.

F =
4

3

E

(1− v)
R1/2δ3/2s

(
1 +

τσ − τε
τε

e−t/τε
)

(6.1)

where τσ and τε are the relaxation times under constant load and deformation, respec-
tively.

6.2 Spring and Dashpot Models

(Benitez and Toca-Herrera, 2014) points out that while force-curves is the most common
tool to obtain Young’s modulus, force relaxation and creep experiments are starting to get
popular in the AFM community because they are also able to deliver information about
relaxation times and viscosities of the different cell parts. AFM force relaxation tests are
conducted setting the vertical position of the cantilever constant. In creep compliance tests
the cantilever’s force is kept constant (Moreno-Flores et al., 2010).

Any arbitrary linear viscoelastic behaviour can be modelled with networks of springs and
dashpots arranged in series or parallel (Kollmannsberger and Fabry, 2011). The models
can be used to mimic the response of viscoelastic surfaces under interaction with the AFM
tip (Lopez-Guerra and Solares, 2014). In this section, different spring-dashpot models will
be described, starting off with the simplest combinations and then increasing the complex-
ity. Some comments on parameter estimation are also included.
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6.2.1 Linear Maxwell and Kelvin-Voigt models

Linear Maxwell and linear Kelvin-Voigt are examples of models constructed with springs
and dashpots, which represents elastic and viscous components, respectively (Haase and
Pelling, 2015). The springs and dashpots are described by elastic modulus E and viscosi-
ties µ (Lubliner, 1990). The springs obey Hooke’s law, so that E = σs/εs, and in the
dashpot the expression µ = σd/ε̇d is valid. The subscripts s and d corresponds to the
experienced forces and deformations in the springs and dashpots.

tip

µE

tip

µ

E

(a) (b)
Figure 6.1: Linear Kelvin-Voigt(a) and Maxwell(b) models

The Kelvin-Voigt model uses a linear spring in parallel with a dashpot, see figure 6.1(a).
This model can reproduce time-dependent creep compliance with high accuracy, but not
stress relaxation (Solares, 2014). The surface lacks a spring that can accommodate the
immediate force applied to it. Because of this, the single spring in the model does not
have an instant response and only experiences compression until the parallel dashpot starts
yielding (Lopez-Guerra and Solares, 2014).

In a creep experiment, the strain decays exponentially with a characteristic time constant
τ = µ/E, so that

ε = ε0exp(−t/τ) (6.2)

where ε0 is the initial strain. See (Vincent, 2012) for deduction and details.

The differential equation describing the Kelvin-Voigt model is (Kelly, 2015):

σ = Eε+ µε̇ (6.3)

The Maxwell model consists of the same two elements, a linear spring and a dashpot, but
arranged in series (figure 6.1(b)). This model reproduces stress relaxation under constant
strain, but not creep compliance (Vincent, 2012; Solares, 2014). During retraction of the
cantilever tip in stress relaxation experiments, the sample experiences elastic recovery, but
not viscous recovery due to the lacking mechanism in the dashpot to return to its original
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position (Lopez-Guerra and Solares, 2014). In (Roylance, 2001) there is a deduction of
the differential equation that describes the Maxwell model as

ε̇ =
1

E
σ̇ +

σ

µ
(6.4)

In a stress relaxation experiment, ε̇ = 0, which yield an equation similar to (6.2) given
as

σ = σ0exp(−t/τ) (6.5)

The relaxation modulus, Erel, is in turn

Erel(t) = Eexp(−t/τ) (6.6)

6.2.2 Standard linear solid model and Zener model

To be able to capture both stress relaxation and creep compliance, a combination of the
Maxwell and Kelvin-Voigt models have been developed. It is called the Standard Lin-
ear Solid (SLS) model (Solares, 2014). When applied to normal stress, the strain creeps
towards a limit, while, under constant strain stress relaxes towards a limit.

It seems to be consensus on how this model is defined and it can be viewed in figure
6.2 (Vincent, 2012; Lopez-Guerra and Solares, 2014; Carmichael et al., 2015; Haase and
Pelling, 2015).

Here, the system relaxes through the dashpot located in the linear Maxwell arm, but the
stress does not relax to zero as some of it remain stored in the parallel spring. It is denoted
Ee because it provides an ”equilibrium” (Roylance, 2001). This behaviour is more accu-
rate than a total relaxation of the stress. As for the creep simulation, there is an immediate
elastic response, which is missing in the linear Kelvin-Voigt model.

(Chester, 2012) provides the mathematical expression for the SLS model,

ε̇ = (E + Ee)
−1
(
σ̇ +

E

µ
σ − EEe

µ
ε

)
(6.7)

In the case of stress relaxation, the relaxation modulus is similar to the one in the Maxwell
model given by equation (6.6), but shifted upwards by an amount of Ee:

Erel(t) = Ee + Eexp(−t/τ) (6.8)
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Figure 6.2: Standard linear solid (SLS) model

The drawbacks of the SLS model is that it can not reproduce multiple relaxation times
(Lopez-Guerra and Solares, 2014). Due to this, other models have emerged. One of them
is a series of linear Maxwell arms in parallel with an equilibrium spring to model multiple
relaxation times, which can be viewed in figure 6.3. According to (Lopez-Guerra and
Solares, 2014) this combination of springs and dashpots is called the Wiechert model and
the number of Maxwell’s arms corresponds to the number of relaxation times, which is
important when molecular segments with different contributions have different lengths.
Another version, however with only two Maxwell arms, is referred to as the Zener model in
(Moreno-Flores et al., 2010). (Vincent, 2012) calls the Wiechert structure a ”Generalized
Maxwell model”, but points out that any combination of multiple either Kelvin-Voigt or
Maxwell elements (without mixing them) will obtain a spectrum of time characteristics.
See section 6.2.3 for more details about these models.

Note that many articles describes a model they call Zener, but few agrees on the same
structure. As previously commented, (Moreno-Flores et al., 2010) defines it as a Wiechert
model with two Maxwell arms. (Carmichael et al., 2015) derives a version called fractional
Zenar, which is similiar to the SLS model, but with the linear damper replaced by a frac-
tional element. On the contrary, (Nobile et al., 2007; Moeendarbary and Harris, 2014; Zhu
et al., 2014) claims that Zener and the SLS model is completely similar. This is mentioned
to make the reader aware that there is not always consistency in the naming of different
spring-dashpot models.

6.2.3 Wiechert/Generalized Maxwell model

Now, one of the more complex spring-dashpot models remains. Some authors call it
the Wiechert model (Roylance, 2001; Machiraju et al., 2006; Lopez-Guerra and Solares,
2014), and others the Generalized Maxwell model (Vincent, 2012; Babahosseini et al.,
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Chapter 6. Viscoelasticity Calculations

2015), but it has the same components.

As described in section 6.2.2, it consist of n Maxwell elements in parallel with a spring,
see figure 6.3. If each of these have a different time constant, τ , the decay of stress will be
spread over a longer period as a result of a broader spread of relaxation times.

tip

µ1

E1

µ2

E2

µ3

E3

µn

En
E0

Figure 6.3: Generalized Maxwell model

If the Generalized Maxwell model is used to represent the cell surface, stress relaxation
experiments are used. Creep experiments are being used in combination with a Gener-
alized Kelvin-Voigt model. This is n Kelvin-Voigt elements in series with a spring, but
there will not be provided details here, see (Haghighi-Yazdi and Lee-Sullivan, 2011) for
this.

Deduction of the Generalized Maxwell model is retrieved from (Machiraju et al., 2006;
Vincent, 2012). From equation (2.5) and (6.5) it can be seen that the expression for a
single Maxwell element is

σ(t) = E · εexp(−t/τ) (6.9)

For a number of Maxwell elements joined in parallel at the same strain, ε, the stress
is

σ(t) = ε

n∑
Erel,nexp(−t/τn) (6.10)

whereErel,n and τn are the relaxation modulus and relaxation time of the nth element.

6.2.4 Parameter estimation in spring-dashpot models

By use of stress relaxation and creep experiments, and describing the cell surface through
springs and dashpots, the time-varying strain and stress can be viewed. Estimation of
the unknown parameters is possible in the corresponding differential equations. Take for
instance equation (6.3) describing the Kelvin-Voigt model. Stress, σ = F/A, and strain,
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ε = ∆l/lo, can be measured. If it is also possible to say something about the change in
strain, ε̇, by for example looking at the creep curve, there are only two unknown parameters
left; E and µ.

It may be an idea sticking to the simpler models, with simpler differential equations, when
doing parameter estimation with some compromise of accuracy. However, the same meth-
ods can be used on the SLS model, given in equation (6.7), by gathering the unkown pa-
rameters into one unknown parameter and then do parameter identification on this. For in-
stance,E/((E+Ee)µ) kan be expressed as just k1 and (EEe)/((E+Ee)µ) as k2.

An advantage with the spring-dashpot models is that the unknown parameters are lin-
ear.

6.3 The Integral Model

This approach is based on the Boltzmann superposition theory stating that the total re-
sponse to a number of individual excitations is the sum of the responses that would have
been generated by each excitation working alone. For example, σ(ε1 + ε2) = σ(ε1) +
σ(ε2). Also, previous actions in and on the material influence its present behaviour. To
illustrate this, the total strain at time t is given by (Vincent, 2012; Roylance, 2001)

ε(t) =

∫ t

−∞
J(t− τn)dσ(τn) (6.11)

which is usually rewritten as

ε(t) =

∫ t

−∞
J(t− τn)

dσ(τn)

dτn
dτn (6.12)

Similarly for stress,

σ(t) =

∫ t

−∞
Erel(t− τn)

dε(τn)

dτn
dτn (6.13)

6.4 Power-law Models

According to (Kollmannsberger and Fabry, 2011), the spring and dashpot models are not
sufficient for explaining the viscoelastic behaviour of cells because there is too large uncer-
tainty in the fit parameters. Instead, power laws can describe tissue biomechanics.
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Power-law model results are achieved from oscillatory tests and given as functions of
frequency. As mentioned in section 2.2.3 there exist a frequency-dependent shear modulus,
G∗(ω). It is either referred to as the complex shear modulus with a real and imaginary part
(Lim et al., 2006; Bansod and Bursa, 2015; Hecht et al., 2015)

G∗(ω) = G
′
+ iG

′′
(6.14)

or the dynamic shear modulus (Hoffman and Crocker, 2009; Moeendarbary and Harris,
2014)

|G∗(ω)| =
√

(G′(ω))2 + (G′′(ω))2 (6.15)

In both cases G
′

is called the storage modulus and G
′′

the loss modulus, representing the
elastic and viscous responses.

From (Alcaraz et al., 2003):

”A straightforward and robust approach to characterize cell microrheology
is by determining its complex shear modulus from oscillatory measurements
over a wide frequency range. G∗ is defined as the complex ratio in the fre-
quency domain between the applied stress and the resulting strain. The real
and imaginary parts of G∗(ω) account for the elastic energy stored and the
frictional energy dissipated within the cell at different oscillatory frequencies.
The ratio between the imaginary and real parts of G∗(ω) indicates the degree
of solid- or liquidlike mechanical behaviour of the cell.”

There are different formulations of power-law models. The next sections will look at
various representations. It is important to note that many of the articles used as sources on
these models are not made specifically for AFM, but it is pointed out by (Alcaraz et al.,
2003) that much of the work done on AFM is elasticity calculations and there exist little
information on oscillatory mechanics probed with AFM. Which sources that uses power-
law models in AFM context will be specified during the exposition.

6.4.1 Power-law structural damping model

The articles (Fabry et al., 2001; Alcaraz et al., 2003; Lim et al., 2006; Roca-Cusachs et al.,
2006; Hiratsuka et al., 2009; Bansod and Bursa, 2015) describe a power-law structural
damping model. Here, the complex shear modulus is defined as in equation (6.14) and
extended to:

G∗(ω) = G
′
+ iG

′′

= G0(
ω

ω0
)α(1 + iη)Γ(1− α)cos(

πα

2
) + iωµ (6.16)

32



6.4 Power-law Models

α is the power-law exponent and ω is the radian frequency 2πf (Fabry et al., 2001; Bansod
and Bursa, 2015). η is the structural damping coefficient given by

η = G
′′
/G

′
= tan(απ/2) (6.17)

G0 and ω0 are scaling factors for stiffness and frequency, respectively. µ is a viscosity
material parameter and depend on bead-cell geometry, which is also the case with G0. Γ
is the gamma function with the properties Γ(n) = (n − 1)! and Γ(x + 1) = xΓ(x). It is
defined for all complex numbers except non-positive integers.

(Alcaraz et al., 2003; Lim et al., 2006; Hiratsuka et al., 2009) use the power-law structural
damping model with AFM measurements. Here, equation (6.16) is used as a fitting model
for the calculated G∗(ω). The concept is to use an elasticity model like e.g. Hertz to relate
the loading force and the indentation depth. Then, using the relation G = E/2(1 + v) to
express G and next transform it to the frequency domain, an expression for a measurable
G∗(ω) is obtained. A more detailed derivation is given in (Alcaraz et al., 2003). The result
is (Roca-Cusachs et al., 2006):

G∗(ω) =
1− v

4(Rδ0)1/2

[
F (ω)

δ(ω)
− iωb(0)

]
(6.18)

using the Hertz model. According to this equation, the frequency dependence of the
cell mechanical response is included in the term in brackets, whereas the factor (1 −
v)/(4(Rδ0)1/2) accounts for the dependence on the tip geometry (Alcaraz et al., 2003). δ0
is an operating indentation in which the indentation oscillations, δ(ω), take place around.
b is a drag factor depending on the height from the cell surface and expressed as b(0) at
contact. This value is possible to measure, see (Alcaraz et al., 2003; Hiratsuka et al., 2009)
for details.

6.4.2 Power-law rheology

Another approach to power-laws is given by (Kollmannsberger and Fabry, 2011) and
(Hecht et al., 2015) and they refer to it as power-law rheology without a specific name
on the model. Only (Hecht et al., 2015) use it in combination with AFM while (Koll-
mannsberger and Fabry, 2011) reviews rheology of living cells in general.

The authors of the two articles does not have a completely similar end product, but agree
on the definition of creep compliance in power law rheology, which is given by

J(t) = j0 · (
t

τ0
)β (6.19)
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The prefactor j0 characterizes the material’s compliance at t0, giving j0 = J(t = t0).
Time is normalized by a timescale τ0, which can be arbitrarily set to 1 s or any other
convenient value. β is the power-law exponent with a value between 0 and 1, where
β = 0 indicates a purely elastic solid and β = 1 a purely viscous fluid (Hecht et al.,
2015). Changing τ0 will not affect the value of β, leaving the system behaviour timescale
invariant (Kollmannsberger and Fabry, 2011).

The rest of this section is divided into derivation of the complex modulus, which is given
with some deviation in the two articles.

(Kollmannsberger and Fabry, 2011)
The complex modulus of the cell is defined by the Fourier-transformed displacement and
force. Equation (6.19) then transforms to a power law with the same exponent β,

G∗(ω) =
1

j0
(iωτ0)βΓ(1− β) (6.20)

This is a very simple empirical relationship, as there is only one parameter that is free-fit:
the power-law exponent β. Higher values of β point to a more fluid-like behaviour, while
lower values to a more elastic behaviour (Hecht et al., 2015). At intermediate values of β,
both elastic and viscous mechanisms coexist. Equations (6.19) and (6.20) are only valid in
the limit of long timescales or low frequencies. See (Kollmannsberger and Fabry, 2011)
for more details.

(Hecht et al., 2015)
Here, the authors have chosen to write the complex modulus with Young’s modulus in-
stead of the shear modulus. They both have the same properties as with loss and storage
modulus, so E∗(ω) can be written as

E∗(ω) = E
′
+ iE

′′
(6.21)

The Young’s modulus at t0 is defined as E0 = 1/j0. From the parameters E0 and β the
storage and modulus can be expressed as

E
′

= E0Γ(β + 1)cos(βπ/2) (6.22)

E
′′

= E0Γ(β + 1)sin(βπ/2) (6.23)

These two equations are related by a loss tangent tan θ = E
′′
/E

′
= tan(βπ/2). Notice

the similarity to (6.17). Now, (6.21) can be rewritten to

E∗ = E0Γ(β + 1)e
βπ
2 i (6.24)
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(Hecht et al., 2015) have used this to develop a new AFM technique to measure viscoelastic
creep of live cells. They call it force clamp force mapping (FCFM), and the technique
combines force-distance curves with an additional force clamp phase during the tip-sample
contact.

6.4.3 Power-law model with dynamic shear modulus

Unlike the previous models explained there also exist a power-law model that is formulated
using the dynamic shear modulus instead of the complex version, given by (Hoffman et al.,
2006; Hoffman and Crocker, 2009). Note that neither of the articles is focused on AFM in
particular, but rather cell mechanics in general.

In the review done on cell mechanics by (Hoffman and Crocker, 2009) it is pointed out that
it has been difficult to compare the results of cell rheology measurements because

”Different labs would study different cell types and present their data in dif-
ferent forms, for example, as a creep function after applying a step stress,
as a function of oscillation frequency, or in terms of springs and dashpots.
Even with a given method, different labs might use tracers/probes with vary-
ing chemistry or size or make different assumptions to quantitatively interpret
or calibrate their measurement. Of course, comparisons were still made, usu-
ally of the overall stiffness, and the many results were found to be discordant
- reported stiffness values varied by orders of magnitude.

However, with time it emerged some patterns, showing that the dynamic shear moduli
could be described as a sum of two power laws (Hoffman et al., 2006):

G
′
(ω) = Acos(πβ/2)ωβ +Bcos(3π/8)ωβ

G
′′
(ω) = Asin(πβ/2)ωβ +Bsin(3π/8)ωβ (6.25)

|G∗(ω)|2 = G
′
(ω)2 +G

′′
(ω)2

β varies with different experiments and ranges between 0.1 and 0.3 (Hoffman and Crocker,
2009).

They also point out that an important consideration when fitting data is that either both
G

′
(ω) and G

′′
(ω) should be fit or |G∗(ω)| should be fit.

6.5 Frequency-dependent Stress and Strain

This section discusses how to represent stress and strain when the cell is exposed to oscil-
lations from AFM. As in the power-laws, the storage modulus, G

′
, and loss modulus, G

′′
,

are being used to express the behaviour.
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There is disagreement in the definition of stress and strain functions during dynamic load-
ing experiments, but some of them will be rendered here.

(Roylance, 2001)

If the origin along the time axis is selected to coincide with a time at which the strain
passes through its maximum, the strain and stress functions can be written as

ε = ε0 cos(wt) (6.26)

σ = σ0 cos(wt+ ϕ) (6.27)

wherre ϕ is the phase lag. The stress function can be written as a complex quantity

σ∗ = σ
′

0cos(wt) + i σ
′′

0 sin(wt) (6.28)

and the following relations hold:

tanϕ = σ
′′

0 /σ
′

0 (6.29)

|σ∗| = σ0 =
√

(σ
′
0)2 + (σ

′′
0 )2 (6.30)

σ
′

0 = σ0cosϕ (6.31)

σ
′′

0 = σ0sinϕ (6.32)

G′ = σ
′

0/ε0 (6.33)

G′′ = σ
′′

0 /ε0 (6.34)

(Vincent, 2012)

σ0 = ε0G
∗sin(ωt+ ϕ) (6.35)

which can be extended to
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σ0 = ε0 (G∗cosϕ)sinωt+ ε0 (G∗sinϕ)cos ωt = ε0G
′
sinωt+ ε0G

′′
cos ωt (6.36)

(Moeendarbary and Harris, 2014)

σ = σ0sin(ωt+ ϕ) = G
′
(ω)sin(ωt) +G

′′
(ω)cos(ωt) (6.37)

|G∗| =
√

(G′)2 + (G′′)2 (6.38)

The following properties are valid for pure elastic and viscous materials:

Pure elastic materials: ϕ = 0 G
′

= G G
′′

= 0 |G∗| = G

Pure viscous materials: ϕ = π/2 G
′

= 0 G
′′

= µω |G∗| = µω

6.6 Other Models

6.6.1 Liquid drop models

The liquid drop models are also referred to as cortical shell-liquid core models. They were
developed for micropipette aspiration and optical tweezers and views the suspended cell or
its parts as a deformable material with certain continuous material properties. Variations
are Newtonian, compound Newtonian, shear thinning and Maxwell liquid drop models.
Read more in (Lim et al., 2006; Rodriguez et al., 2013; Bansod and Bursa, 2015).

6.6.2 Tensegrity model

The tensegrity model is derived from the micro/nanostructural approach and therefore not
elaborated. It assumes that the intermediate and actin filaments in the cytoskeleton carry a
stabilizing tensile stress (”prestress”) that is balanced by internal microtubules and extra-
cellular adhesions. See (Sultan et al., 2004; Moeendarbary and Harris, 2014; Haase and
Pelling, 2015) for details.

6.6.3 Biphasic model

This is a model developed for cytointender that treats the cytoplasm as both solid and fluid-
like. Different variations are biphasic poroelastic and poro-viscoelastic models. See more
in (Lim et al., 2006; Moeendarbary and Harris, 2014; Bansod and Bursa, 2015).
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Chapter 7
Current Challenges

The work on improving AFM is in constant progress. One of the main objectives is to
further increase the scanning speed. (Cartagena-Rivera et al., 2015) recently introduced a
new technique that supposedly boosts the speed of imaging cells in dynamic AFM mode
by at least one order of magnitude. This is done using the cantilever mean deflection as
the feedback signal instead of the amplitude.

There are also challenges related to the mechanical models of cells, as it will be pointed
out in this chapter.

7.1 Inaccuracy of Models

All models described in this thesis assume that the probed cell shows linear behaviour.
This is not the reality and leads to reduced accuracy in their description of cell mechan-
ics.

7.1.1 Elastic models

In the mentioned techniques in chapter 5 when doing elasticity calculations, the inden-
tation is limited to approximately 10-15 % of the cell height. This excludes information
that may lay deeper into the cell that potentially can provide information for mechanical
diagnosis of disease (Carmichael et al., 2015).

In addition, the Hertz and Sneddon models assume that cells are homogenous, but in real-
ity, they are heterogeneous with the result that the organelles have different contributions
to cell elasticity. One example is that the nucleus is known to be stiffer than the cytoplas-
mic portion of the cell (Moeendarbary and Harris, 2014) and that the elastic moduli of
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purified filament networks are orders of magnitude lower than whole-cell measurements
(Haase and Pelling, 2015). It is important to note that there are different areas of rigidity
within one cell and that the Young’s modulus depends on the depth of the probe penetra-
tion.

A solution to these challenges is to use the Hertz and Sneddon models as approximations
and keep in mind that they are not an exact representation of the reality. Simultaneously,
it is important to continue the search for better models.

Computing the point of contact between the cantilever tip and the sample is difficult with
the Hertz model because of uncertainties in the tip geometry and adhesive influencing
forces (Heinz and Hoh, 1999; MacKintosh and Schmidt, 1999). A possible solution to this
is to automate the contact point (CP) selection. The CP is not known before an experiment
starts, but have an impact on the correct assessment of mechanical properties. See (Chang
et al., 2014) for more details on this topic and their proposed method to improve current
techniques.

7.1.2 Viscoelastic models

At low applied forces by AFM and small resulting deformations, cells present linear elastic
behaviour. At higher forces, a viscoelastic behaviour is observed (Haase and Pelling,
2015). However, the existing viscoelastic models are not complex enough to accurately
describe what happens in the cell at these high forces. As (Vincent, 2012) points out about
viscoelastic models:

”their mathematical representations rely on linearity of response of both elas-
tic and viscous components. This is normally considered to be attainable only
at strains of less (usually much less) than 0.01, but nearly all biological ma-
terials are not only nonlinear in response, but normally function at high and
extremely high (0.5+) strains. The models for viscoelasticity are not valid
under these conditions. This is a severe limitation and one that is not com-
monly recognised. Thus much work on artificial and natural polymers is of
dubious value, because it applies linear, small-strain models to nonlinear,
large-strain materials. That such data may well often be internally consistent
is no argument for the acceptance of the linear interpretation; it may merely
be coincidence. The mathematics of viscoelasticity at large strains remains to
be worked out.”

7.2 Finding a Universal Model

Although the study of cell mechanics has developed fast in recent decades, there still does
not exist a complete theoretical description of cell mechanics that is both time-dependent
and predictive (Pelling and Horton, 2008). (Haase and Pelling, 2015) says that an all-
encompassing theory of cell rheology must rely on a coarse-grained picture of the cell and
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that a potentially full range description of cell behaviour will require a complex nonlinear
model.

The ultimate result would be to find a single model general enough to describe accurately
the response of (almost) any cell type to any applied mechanical stimulus. Because most
cell types have similar mechanical parts, a universal model could be used by changing
material constants and parameters for each cell type (Rodriguez et al., 2013).

7.3 Description of Nonlinear Behaviour

A topic that hasn’t been covered in this thesis is a description of the nonlinear behaviour
of cells. The models reviewed here can only describe the linear response in the cells when
applied to small external forces. To accurately describe cell’s true mechanical behaviour,
models that can capture nonlinear response may be necessary.

(Lopez-Guerra and Solares, 2014) discuss a standard nonlinear solid (SNLS) model that
can say something about nonlinear behaviour when the AFM tip is in contact with the
sample.

(Carmichael et al., 2015) address the problem of using linear models to describe cells and
propose a fractional model to allow for a non-integer time-derivative relationship between
stress and strain. See also (Kollmannsberger and Fabry, 2011) for a discussion about
nonlinear mechanical properties of cells.
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Chapter 8
Summary

This thesis has reviewed existing mechanical models describing biological cells. The two
main categories of models are elastic models and viscoelastic models. The former is not a
true representation of how the cell will respond to applied forces, but a good approximation
to find Young’s modulus. The most important model is based on Hertz theory of elastic
contact, while variations of this are used in cases where the geometry of the cantilever tip
is not spherical or when adhesive forces can not be neglected.

By looking at cells as an elastic material, only the applied stress and the resulting strain
are taken into account. Viscoelastic models are better descriptions of the actual response
of cells because they also acknowledge that cell’s behaviour varies with time. The mod-
els that describe viscoelastic behaviour are more diverse than the elastic models. Out of
these, spring-dashpot models are most frequently used. They mimic the response of the
cell surface by combinations of springs and dashpots and can be described by differential
equations. Less used approaches are the integral model and extension of the Hertz model
into the time domain.

If dynamic experiments are performed, stress and strain will be functions of frequency
rather than time. Here, different power-law models are used to describe viscoelastic be-
haviour, but the literature is inconsistent on the best formulation.

Parameter estimation is possible to some extent on these models. In elastic models, the pa-
rameter estimation is mainly done through curve fitting of force-distance curves to known
models of elastic contact. In the viscoelastic models, the most straightforward choice is
performing it on the spring-dashpot models, as they are described by differential equations
with linear unknown parameters.
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Chapter 9
Conclusion

There has already been conducted a lot of work on cell mechanics with AFM. The intention
of this thesis was to gather the existing information and present an overview. The result
is not a complete manual, but a contribution to a deeper understanding of cell mechanics
using AFM.

Due to limited prior knowledge in the field of biology and cell mechanics, it has been a
challenge to evaluate the accuracy of the material investigated. The sources used in this
thesis are mainly published articles, the majority of them from journals, but also some
conference papers. A few books and master theses are also cited. Even if this material
can be assumed peer-reviewed in some or greater extent, there is no guarantee that all
their content is reliable. The solution has been to trust articles that have acquired a lot of
citations from other authors, but ignore this to some extent when dealing with more recent
publications. If there have been disagreements among different papers on for example
formulas, the opinion of the majority has been chosen. Alternatively, details of the various
approaches have been explained. However, to limit material that may not interest the
reader, the relevant articles have often been referred to for more detailed explanations and
derivations.

Because some of the articles cited throughout the text are used for definitions and back-
ground theory, it is desirable to highlight the most relevant ones. In the Appendix, there
is a table with a list of articles worth looking into if the reader is interested in gaining a
better understanding of different topics. The table shows what kind of material the article
covers, divided into AFM, calculation of Young’s modulus (Young), spring-dashpot mod-
els (S-D) and power-law models (P-L). In addition, two columns show if the article is a
review article or not, and how much it has contributed to this thesis, named ”Rev.” and
”Contr.” respectively.

In addition to the summary of cell mechanics presented by this thesis, the bibliography
and table in the Appendix are the main contributions to the further work on parameter
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estimation in these models.

9.1 Recommendations For Further Work

It would be interesting to investigate models that can describe the nonlinear behaviour of
cells. This will be a better representation of how cells respond to applied forces. The mod-
els presented in this review assumes linear response of both elastic and viscous elements
in the cell, and this is not an authentic portrayal of the reality.

However, with the goal of doing parameter estimation, the models that assume linear be-
haviour is the best starting point. Especially spring-dashpot representations of the cell
surface look promising. Sources that seems interesting to investigate are (Kim et al., 2004;
Tripathy, 2005; Yuya et al., 2008).
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Appendix

Table of Relevant Articles

The signs in the table indicates

X yes

∼ some

× no

Article AFM Young S-D P-L Rev. Contr.

(Abramovitch et al., 2007) X × × × × X

(Alcaraz et al., 2003) ∼ ∼ × X × X

(Babahosseini et al., 2015) X X ∼ × × ∼

(Benitez and Toca-Herrera, 2014) X X × × X X

(Bansod and Bursa, 2015) × × ∼ X X ∼

(Brunner et al., 2006) ∼ X × × × ∼

(Butt et al., 2005) X X × × X ∼

(Capella and Dietler, 1999) X X × × X ∼

(Carmichael et al., 2015) ∼ ∼ X × × ∼

(Cartagena-Rivera et al., 2015) X ∼ ∼ × × ∼

(Fabry et al., 2001) × × × X × ∼

(Fairbairn and Moheimani, 2013) X × × × × ∼

(Guz et al., 2014) ∼ X × × × ∼

(Haase and Pelling, 2015) X ∼ X X X X

(Hecht et al., 2015) X ∼ × X × X
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Article AFM Young S-D P-L Rev. Contr.

(Heinz and Hoh, 1999) X X × × X X

(Hoffman et al., 2006) × × × X × ∼

(Hoffman and Crocker, 2009) ∼ × × X X X

(JPKinstruments, n.d.) X X × × × X

(Kollmannsberger and Fabry, 2009) × × × X × ∼

(Kollmannsberger and Fabry, 2011) ∼ × ∼ X X X

(Kurland et al., 2012) X X × × X ∼

(Kuznetsova et al., 2007) X X × × X ∼

(Lim et al., 2006) ∼ ∼ ∼ X X X

(Lopez-Guerra and Solares, 2014) X × X X × X

(Lubliner, 1990) × ∼ X × × ∼

(Moeendarbary and Harris, 2014) X × X X X X

(Moreno-Flores et al., 2010) X ∼ X × × ∼

(Pelling et al., 2007) X X × × X X

(Rabinovich et al., 2005) X X × × × ∼

(Rodriguez et al., 2013) ∼ ∼ × X X X

(Roylance, 2001) × ∼ X ∼ × X

(Sokolov, 2007) X X × × X X

(Solares, 2014) X × X × × ∼

(Vincent, 2012) × X X X × X

(Vinckier and Semenza, 1998) X X × × X ∼
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