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Abstract

In this master’s thesis, trajectories and orbit control for the micro satellite
ESMO (The European Student Moon Orbiter) are studied. The ESMO
satellite is a project of the Student Space Exploration Technology Initiative
(SSETI) that works together with the European Space Agency (ESA).

For better understanding, an overview of concepts and geometry for Earth
and Moon orbits is given. Then three transfer methods are presented; the
Hohmann transfer, the Ballistic Capture Transfer (BCT) and the Patched
Conic Approximation (PCA). The latter method is studied closer in this
thesis.

Orbit control is studied, and two controllers are suggested as a means of
keeping the satellite in orbit despite perturbations. The first is the traditional
PID controller and the second a nonlinear controller derived from Lyapunov
control theory.

The MatLab/Simulink environment is chosen for simulations. To make it
perform its best, different solvers are tested. The PCA trajectory is simu-
lated and used as the reference trajectory. The Moon is added as a pertur-
bation. The two mentioned controllers are simulated on this system to make
the satellite follow the reference trajectory even with the perturbation. Sta-
bility is studied for the nonlinear controller. The corresponding Lyapunov
function is also simulated.



xii



Chapter 1

Introduction

In SSETI students from many different European countries participate. They
are all united by their desire to ’launch the dream’. ESA’s Education Office
gives them full support. There are four planned launches. The SSETI project
started with the vision to create and build a micro-satellite and should be
completed with the development of a Moon Rover in the third mission. The
launch described in this thesis is the micro satellite The European Student
Moon Orbiter, (ESMO). The goal of this launch is to make the ESMO satel-
lite orbit the Moon.

One of the teams working on the ESMO project is the Attitude Determina-
tion and Control System (ADCS) team. They work on control of the attitude
and the orbit of the ESMO satellite.

To add control to the orbit of the satellite, forces acting on the satellite
need to be described. Here there are many options on what to include.
The number of celestial bodies has to be decided on, making the problem
a two-, three- or four-body problem depending on the number of celestial
bodies included. These will form the largest forces, but other forces such as
atmospheric drag and solar radiation pressure can also be included. Also,
there are many possibilities to choose from amongst possible trajectories to
get to the Moon. Some are more fuel-efficient than others, but these often use
longer time. But no matter which is used, there will always be perturbations
to consider.

To deal with the perturbations, there are two main options; to try to model
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most of them and include them in the model describing the environment
of the satellite, or to just take into account the most fundamental forces in
the environment and add a controller to make the satellite keep its desired
trajectory. The latter is chosen for this thesis to get large errors in the
trajectory to give a practilcal environment to test orbit controllers.



Chapter 2

Orbital Mechanics

The main part of this chapter is taken from (Johansson [2004]). It gives an
overview of concepts and geometry for orbital mechanics.

2.1 Dynamics

Satellite orbits are results of basic nature laws, such as Newton’s and Kepler’s
laws.

2.1.1 Newton’s laws

Newton’s three laws of motion are given as (Sidi [2000]):

1. Every object in a state of uniform motion tends to remain in that state
of motion unless an external force is applied to it.

2. The relationship between an object’s mass m, its acceleration a, and
the applied force ~F is

~F = m~a. (2.1)

3. For every action there is an equal and opposite reaction,

~Fab = −~Fba. (2.2)
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There is also the law of gravitational attraction;

Any two objects with masses m1 and m2 exert a gravitational force ~F of
attraction on each other given by

~F =
Gm1m2~r

r3
(2.3)

where G = 6.67259× 10−11m3kg−1s−2 is the gravitational constant and ~r is
the vector with magnitude r along the line connecting the two masses. The
direction of the force is along this line joing the objects.

2.1.2 Kepler’s laws

Kepler gave three main laws of orbital mechanics (Sidi [2000]):

1. All the planets orbit the Sun in an elliptic orbit with the Sun at one
focus

2. For any planet orbiting the Sun the line joining them sweeps out equal
areas in equal intervals of time

3. The square of the sideral period of an orbiting planet is directly propor-
tional to the cube of the orbit’s semimajor axis

2.1.3 The general n-body problem

In a system consisting of n bodies, the sum of forces acting on the ith body
is (Sidi [2000])

Fi = G

j=n∑
j=1

mimj

r3
ij

(rj − ri), i 6= j. (2.4)

It follows from Newton’s second law of motion, equation (2.1), that

d2ri

dt2
= G

j=n∑
j=1

mi

r3
ij

(rj − ri), i 6= j. (2.5)
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2.1.4 The two-body problem

The simplest of the n-body problems is the two-body problem. Here, only
two masses is considered at a time. Let the masses be denoted as m1 and
m2. The n-body equation (2.4) becomes

F1 = m1r̈1 = Gm1m2
r2 − r1

|r2 − r1|3
, (2.6)

F2 = m2r̈2 = Gm1m2
r1 − r2

|r1 − r2|3
= −F1. (2.7)

Combining these two equations gives (Sidi [2000])

r̈2 − r̈1 = −G(m1 + m2)
r2 − r1

r3
, (2.8)

and with r = r2 − r1,

r̈ + G(m1 + m2)
r
r3

= 0. (2.9)

Equation (2.9) is the basic equation of motion for the two-body problem.

2.1.5 The three-body problem

The restricted three-body problem is a good way to describe forces between
Earth, the Moon and a satellite. It consists of a system that includes three
masses moving in a plane. Let Earth have mass m1, the Moon mass m2

and the satellite mass m3, (Egeland and Gravdahl [2002]). Mass m3 is a lot
smaller than m1 and m2, so it can be neglected.

The law of gravitation gives gravity force ~F1 on Earth from the Moon and
gravity force ~F2 the opposite way. They are given by

~F1 = −~F2 = k2 m1m2

L2
~b1 (2.10)

where k is the Gaussian constant of gravitation, L is the distance between
body 1 and 2 and ~b1 is the unit vector along the axis from Earth to the
Moon. The vector ~b3 is along the axis of rotation of the Earth-Moon system.
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The vector from the centre of Earth to the centre of the Moon rotates with an
angular velocity ~ω = ω~b3. Earth has position ~R1 = −x1

~b1 and the Moon has
position ~R2 = −x2

~b1. L is therefore given by L = x1 +x2. The accelerations
become (Egeland and Gravdahl [2002])

~a1 = ~ω × (~ω × ~R1) = ω2x1
~b1 (2.11)

~a2 = ~ω × (~ω × ~R2) = −ω2x2
~b1. (2.12)

The gravitational and centrifugal forces are in balance. This gives

k2 m1m2

L2
= m1x1ω

2 = m2x2ω
2, (2.13)

and from this Kepler’s third law is found as

ω2 =
k2M

L3
, (2.14)

where M = m1 + m2. The position of the satellite is

~r = x~b1 + y~b2, (2.15)

the velocity is

~v =
d

dt
~r + ~ωib × ~r = ẋ~b1 + ẏ~b2 + ω(x~b2 − y~b1) (2.16)

and the acceleration becomes

~a =
d2

dt2
~r + 2 ~ωib ×

d

dt
~r + ~αib × ~r + ~ωib × ( ~ωib × ~r)

= ẍ~b1 + ÿ~b2 + 2ω(ẋ~b2 − ẏ~b1)− ω2(x~b1 + y~b2). (2.17)

Using equation(2.4), the motion of the satellite can be described as

~F3 = −k2 m1m3

r3
1

[
(x + x1)~b1 + y~b2

]
− k2 m2m3

r3
2

[
(x− x2)~b1 + y~b2

]
, (2.18)
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where

~r1 =
√

(x + x1)2 + y2, ~r2 =
√

(x− x2)2 + y2. (2.19)

In the x and y direction this results in

ẍ− 2ωẏ − ω2x = −k2

[
m1

r3
1

((x + x1) +
m2

r3
2

(x− x2)
]

(2.20)

ÿ + 2ωẋ− ω2y = −k2

(
m1

r3
1

+
m2

r3
2

)
. (2.21)

The model is usually presented in normalized form where the distances are
divided by L and τ = ωt.

This is just one way of presenting the three-body problem. It can be done
more easily by just using equation (2.5) for n = 3 bodies. It is however more
time consuming to do computations on.

2.1.6 Dynamics of orbits

When orbital mechanics is to be described, there are many different types
of coordinate systems to choose from. It is quite easily expressed in polar
coordinates. The plane polar coordinates are (r, θ) and the unit vectors are
(~er, ~eθ) as shown in Figure 2.1. The velocity vector is

~v = ṙ ~er + rθ̇ ~eθ, (2.22)

and acceleration vector is

~a = (r̈ − rθ̇2)~er + (rθ̈ + 2ṙθ̇)~eθ. (2.23)

The equations of motion can be divided up into radial and transverse direc-
tion from equation (2.23).
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Figure 2.1: Polar coordinates

In the radial direction the equation of motion is

r̈ − rθ̇2 = − µ

r2
, (2.24)

where µ = Gm (G - gravitational constant, m - mass of spacecraft) and the
whole expression on the right hand side is gravity. This is the only acceler-
ation that works in radial direction.

In transverse direction the equation of motion is

rθ̈ + 2ṙθ̇ = 0, (2.25)

which can be restated as

1
r

d

dt
(r2θ̇) = 0. (2.26)

From equation (2.26) it can be seen that r2θ̇ is constant. r2θ̇ is equal to the
angular momentum per unit mass; h. By substiting θ̇ = h

r2 into equation
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(2.24)

r̈ − h2

r3
= − µ

r2
(2.27)

is found. From equation (2.27), the following equation can be derived

r(θ) =
h2

µ

1 + Ah2

µ cos(θ − θ0)
, (2.28)

where A and θ0 are constants. This is the equation of an ellipse in polar
coordinates, (McInnes [2004]).

2.2 Geometry of orbits

The simplest orbits follow basic geometry of conic sections. Conic sections
are different intersections of a plane and a cone. Much of the material in
this section is from (Bate et al. [1971]) and (Sidi [2000]).

The circle intersects the cone horizontally, and the ellipse intersects the cone
with a tilt, see Figure 2.2. Both are closed curves. The hyperbola intersects
the cone resulting in an open curve. There is yet another basic conic section;
the parabola. The parabola is the single curve which divides the closed
ellipse from the open hyperbola. Here the plane is parallell to the side of the
cone.

There are two points of particular interest on the orbits; the pericentre1 and
the apocentre2. The pericentre is the point where a spacecraft will be closest
to the object it is orbiting, and the apocentre is the point furthest away, see
Figure 2.3.

In Figure 2.3, b is the semi-minor axis, a is the semi-major axis and ae is
the distance from the center to the focal point. The distance from the center
to the focal point is determined by the conic sections’s eccentricity; e. The
eccentricity determines the type of orbit obtained. Table 2.1 gives the orbits
with the corresponding eccentricities.

1also referred to as perigee or periapsis
2also referred to as apogee or apoapsis
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Figure 2.2: Conic sections

Figure 2.3: Orbit parameters



2.2. GEOMETRY OF ORBITS 11

Eccentricity Orbit

e = 0 Circular Orbit
0 < e < 1 Elliptical Orbit
e = 1 Parabolic Orbit
e > 1 Hyperbolic Orbit

Table 2.1: Orbits with corresponding eccentricities

To describe an orbit accurately, more parameters are needed. The six re-
quired elements to fully define an orbit are described in Table 2.2, see also
Figure 2.3 and 2.4.

Element Name Description

a Semi-major axis See Figure 2.3
e Eccentricity When mulitplied with a, it gives the distance

from the centre of the orbit to the focal point
i Inclination The angle between the

equator and the orbit
Ω Longitude of The point where the satellite crosses

ascending node equator moving south to north
ω Argument of pericentre Describes the orientation

of the orbit
ν True anomaly Location of the satellite

with respect to perigee

Table 2.2: Description of Keplerian Elements

These parameters are called Keplerian elements. They are also referred to
as classical orbital elements (COE).

Another parameter that is often used is the mean anomaly M . It can be
used instead of the true anomaly ν. M is defined by

M = ε− e sin ε, (2.29)

where ε is the eccentric anomaly and is given by

cos ε =
e + cos ν

1 + e cos ν
. (2.30)
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Figure 2.4: Keplerian elements

To convert a satellite position given in COEs to usual cartesian coordiates,
the convertion(Hegrenæs [2004])

x

y

z

 = r ×

cos(ν + ω) cos Ω− sin(ν + ω) sinΩ cos i

cos(ν + ω) sinΩ + sin(ν + ω) cos Ω cos i

sin(ν + ω) cos i

 (2.31)

is used, where r is calculated as

r =
a(1 + e2)
1 + e cos ν

. (2.32)

The velocity of the satellite can be calculated as

ẋ

ẏ

ż

 =
na

r

 bl2 cos ε− al1 sin ε

bm2 cos ε− am1 sin ε

bn2 cos ε− an1 sin ε

 , (2.33)

where n is the mean motion which is found from

n =
√

µ

a3
, (2.34)
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and

b = a
√

1− e2

l1 = cos Ω cos ω − sinΩ sinω cos i

m1 = sinΩ cos ω + cos Ω sinω cos i

n1 = sinω sin i

l2 = − cos Ω sinω − sinΩ cos ω cos i

m2 = − sinΩ sinω + cos Ω cos ω cos i

n2 = cos ω sin i.

The time a satellite uses to get to a point on the orbit from the pericentre,
is called time of flight. It can be calculated using Kepler equation

te =
ε− e sin ε

n
. (2.35)

2.2.1 Elliptical Orbits

The polar equation of an ellipse is found to be (Sidi [2000])

r(ν) =
a(1− e2)
1 + e cos ν

, (2.36)

where r is the radius from the centre of the object that is orbited to the
spacecraft, a is the semi-major axis, e is the eccentricity and ν is the true
anomally. Equation (2.36) is simplified at the pericentre and at the apocen-
tre. At the pericentre ν = 0 and

rp = a(1− e). (2.37)

At the apocentre ν = π and

ra = a(1 + e). (2.38)
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The orbit is found by identifying

h2 = µa(1− e2) (2.39)

from equation (2.36) and (2.28). At the pericentre, angular momentum per
unit mass, h, is rpvp. As h is conserved, equation (2.39) becomes a2(1 −
e)2v2

p = µa(1− e2). This results in the equation for pericentre speed

vp =

√
µ

a

1 + e

1− e
. (2.40)

Similarly, speed in the apocentre is found to be

va =

√
µ

a

1− e

1 + e
. (2.41)

Total energy is expressed as E = K + P where K is kinetic energy and P is
potensial energy. The energy per unit mass is

E =
1
2
v2 − µ

r
. (2.42)

At the pericentre

E =
1
2
(
µ

a

1 + e

1− e
)− µ

a(1− e)
, (2.43)

which can be restated as

E = − µ

2a
. (2.44)

Comparing equation (2.42) and (2.44) gives

1
2
v2 − µ

r
= − µ

2a
, (2.45)

which can be rearranged to the equation of velocity on an elliptical orbit

v2 = µ(
2
r
− 1

a
). (2.46)
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The orbit period can be calculated from the equation for the area of an
ellipse, the definition of an orbit period and equation (2.39), and results in

T = 2π

√
a3

µ
. (2.47)

2.2.2 Circular, Parabolic and Hyperbolic Orbits

In circular orbit, the eccentricity is zero, which means that the radius is
constant; R. This results in the following velocity and orbit period equations
(Sidi [2000])

v =
√

µ

R
(2.48)

and

T = 2π

√
R3

µ
. (2.49)

In a parabolic orbit the eccentricity is one. This results in the velocity
equation

v =

√
2µ

r
. (2.50)

The orbit period T →∞ since a →∞.

In hyperbolic orbit the eccentricity is greater than one. The velocity equation
is then

v2 =
2µ

r
+ V 2

∞, (2.51)

where V∞ is the hyperbolic excess speed expressed as

V∞ =
√

µ

a
. (2.52)
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2.3 Perturbations of Orbits

2.3.1 Lunar and Solar gravity

The Sun and the Moon can influence the trajectory of a satellite by their
gravity. When one of them is taken into account with the satellite and
Earth model, we must study a three-body problem. The following equation
determines forces that are acting on the ith body in a system of n bodies
(Sidi [2000])

~Fi = G

j=n∑
j=1

mimj

r3
ij

(~rj − ~ri). (2.53)

It follows that the acceleration becomes

d2ri

dt2
= G

j=n∑
j=1

mj

r3
ij

(~rj − ~ri). (2.54)

The mass of Earth, me, and the mass of the satellite, ms, can be extracted
from the summation. The used radii are definied as

~r = ~r2 − ~r1 = ~r12

~r2j = ~ρj

~r1j = ~rpj .

Placing the origin of the inertial frame at the center of Earth gives

d2ri

dt2
=

j=n∑
j=3

µpj

[
~ρj

ρ3
j

− ~rpj

r3
pj

]
, (2.55)

where µpj = Gmpj . Perturbations coming from these forces are very relevant
for the ESMO satellite as it is travelling to the Moon. Naturally, as the
satellite gets closer to the Moon, the more the gravity of the Moon will
influence the orbit of the satellite.
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2.3.2 The flattening of the Earth

Earth is in everyday life thought of as being a perfect sphere. But this is not
entirely true. Earth is slightly flattened at top and bottom.

Figure 2.5: Earth’s nonhomogenity

Besides being flat at top and bottom, Earth has a bulge on Equator. It is
not important to take this effect into account for Low Earth Orbits (LEOs)
as it will avarage out after many revolutions, but it should be taken into
account when determining orbits for Geosynchronous Earth Orbits (GEOs).
As the ESMO satellite will keep a high altitude orbit around Earth before
being launched into Moon orbit, it is relevant.

The equations for this perturbation are found in (Sidi [2000]). When only
J2 zonal harmonic coefficient is considered, see (Sidi [2000]), the result is

~aEx = GAJ2(15
xz2

r7
− 3

x

r5
) (2.56)

~aEy = GAJ2(15
yz2

r7
− 3

y

r5
) (2.57)

~aEz = GAJ2(15
z3

r7
− 3

z

r5
), (2.58)
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where AJ2 = 1
2J2R

2
e and Re is the mean equatorial radius of Earth and J2

the zonal harmonic coefficient of order 0. The radius from the satellite to
Earth is r =

√
x2 + y2 + z2.

2.3.3 Atmospheric drag

Atomospheric drag is a breaking force and therefore dissipates energy from
the satellite in orbit. Orbital height of the satellite will decrease slightly
(Sidi [2000]). Atmospheric drag force is dependent on air density. Air den-
sity decreases with altitude. Therefore, atmospheric drag force is inversely
proportional with altitude. It can be one of the main perturbations if work-
ing on a satellite in LEO. The ESMO satellite will only be in an orbit where
atmospheric drag is relevant when it is in its parking orbit around Earth and
possibly in the start of the transfer orbit.

Acceleration from atmospheric drag force can be expressed as (Rao et al.
[2002])

~ad =
1
2

ρCdAv2

mSat
, (2.59)

where ρ is the density of the air, Cd is the drag coefficient, A is the reference
area and v is the velocity of the satellite relative to the air. A is often set to
1
2 .

2.3.4 Solar radiation pressure

The Sun’s radiation causes a small force on the spacecraft that is exposed
to it. This is because the Sun emits photons that are either absorbed or
reflected by the satellite. Therefore, the force experienced by the satellite
depends upon the surface area of the satellite. The acceleration can be
expressed as (Rao et al. [2002])

~asp = Psνr2
seCr

A

mSat

~rss

r3
ss

, (2.60)

where ν is the eclipse factor, rse is the distance between the Sun and Earth,
Cr = 1 + η where η is the reflectivity of the surface of the satellite, Ps is the
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solar radiation pressure constant and A is the cross-section area. To make
the equation easier to read, νCrr

2
se ≈ K .

2.3.5 Onboard thruster system

Not only celestial bodies can make perturbations to the satellite’s trajectory.
Also the satellite’s own thrusters can change the orbit unintentionally. Dur-
ing a long thrust orbital manoeuvre, the mass of the satellite will change
during the burn as propellant is consumed. A simple, constant thrust model
is however often sufficient to describe the motion of a spacecraft during
thrust arcs (Montenbruck [2000]). When a propulsion system ejects a mass
|dm| = |ṁ|dt per time interval dt at a velocity ve, the spacecratft of mass m

experiences a thrust F which results in the acceleration

~at =
F

m
=
|ṁ|
m

ve. (2.61)

2.3.6 Bad thruster impulses

The satellite can cause itself to miss the desired trajectory if one fireing
of the thrusters is not properly performed. This can be seen as a kind of
perturbation as it makes the satellite follow another trajectory than the
desired one.

2.3.7 Impact on the satellite motion equation

Recall equation (2.3), where gravitational force is expressed. By dividing
by the mass of the satellite, the acceleration of the satellite is found and
expressed as

~a =
GM~r

r3
. (2.62)

With perturbations, the expression becomes more complex (Rao et al. [2002])

~a =
GM~r

r3
+ ~ks, (2.63)
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where

~ks = ~am + ~as + ~aE + ~ad + ~asp + ~at, (2.64)

and ~am and ~as are due to Lunar and Solar gravity, ~aE is due to the flattening
of Earth, ~ad is due to atmospheric drag, ~asp is due to solar radiation pressure
and ~at is due to the thrusters.



Chapter 3

Trajectories and Orbital
manoeuvres

There are many possible trajectories and orbital manoeuvres to choose be-
tween. The choice depends on the satellite that finally is deceided on. Dif-
ferent kinds of propulsion will make a big difference in weight of the satellite.
The best trajectory should be carefully chosen in terms of applicability, re-
liability, simplicity and cost.

3.1 Orbital manoeuvres

To get the satellite to follow a trajectory, different orbital manoeuvres have
to be performed. These are performed by consumption of propellant. The
less propellant the mission needs to use, the lighter the satellite can be and
the less the mission will cost. Therefore, propellant consumption is a crucial
factor in orbital manoeuvres.

Adjustment of orbits can be made by single or multiple impulses. Only a
few orbital manoeuvres can be obtained by a single impulse, but by using
multiple impulses, any desired orbit can be obtained. Also, when making
sure that the correct orbit is obtained, multiple impulses have to be used,
(Sidi [2000]).
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Figure 3.1: Spacecraft using propellant

3.1.1 The Rocket Equation

The rocket equation relates change in the velocity of the spacecraft, ∆V to
the change in mass, that is propellant used. The initial condition of the
spacecraft is mass m and velocity V at time t. Then the thrusters let out
an exhaust gas element, −dm, that exits with exhaust speed Ve. The new
velocity of the spacecraft is V + ∆V and the mass is m − (−dm) at time
t + ∆t, see Figure 3.1. The linear momentum is conserved so that (McInnes
[2004])

mV = (m− (−dm))(V + dV )− (−dm)(Ve − V )

= mV + mdv + V dm + dmdV + Vedm + V dm, (3.1)

where dmdV ≈ 0. If Ve is constant, equation (3.1) can be written as

∫ V2

V1

dV = −Ve

∫ m2

m1

dm

m
, (3.2)

(V2 − V1) = −Ve ln(
m2

m1
). (3.3)
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Defining ∆V = (V2 − V1) gives

∆V = Ve ln(
m1

m2
), (3.4)

or equally

m2 = m1e
−∆V

Ve . (3.5)

Efficiency of a given thruster is measured in specific impulse, Isp, which is
defined as momentum gained per unit weight of propellant used,

Isp =
dmVe

gdm
=

Ve

g
, (3.6)

where g is the gravitational acceleration. Here, Isp is measured in seconds.
Sometimes, Isp is measured in m/s. This results in the normal form of the
rocket equation

m2 = m1e
−∆V
gIsp , (3.7)

and when defining ∆m = m1 −m2

∆m = m1(1− e
−∆V
gIsp ). (3.8)

3.1.2 Getting from one orbit to another

To get from a circular orbit to an elliptical transfer orbit, which is often used
in different manoeuvres, the change in velocity, ∆V , required can be found
by finding the velocity on a circle, equation (2.48), and subtract it from the
velocity on an ellipse, equation (2.46). The resulting ∆V is

∆V =
√

2µ

r1
− 2µ

r1 + r2
−

√
µ

r1
, (3.9)

where r1 is the radius of a circle and the pericentre of an ellipse, and r2 is
the radius of the apocentre of an ellipse.
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To get from a circular to a parabolic orbit, the required ∆V is (McInnes
[2004])

∆V = (
√

2− 1){
√

µ

r1
+

√
µ

r2
}. (3.10)

To get from a circular to a hyperbolic orbit, the required ∆V is

∆V =

√
2µ

R
+ V 2

∞ −
√

µ

R
. (3.11)

3.2 Trajectories

The trajectory of the ESMO satellite is not yet determined (June 13, 2005).
Therefore, more than one option is considered in this section.

3.2.1 Hohmann Transfer

The Hohmann Transfer is the traditional way to construct a satellite transfer
to the Moon. It only uses two-body dynamics, as described in Section 2.1.4,
and is constructed by determining an elliptic transfer orbit from an Earth
parking orbit to the orbit of the Moon. It is however an expensive approach,
when the ratio of the two radii of the orbits is large as it requires a large
∆V . This subsection will therefore only describe it briefly. The information
is mainly taken from (Sidi [2000]).

The initial orbit has radius r1, and the second orbit has radius r2. Two
impulses are applied. The first is applied at the pericentre of the transfer
orbit to get it from the first circular orbit to an elliptical transfer orbit. The
second is applied at the apocentre of the transfer orbit, which corresponds
to the orbital radius of the Moon. This is illustrated in Figure 3.2. When
in Moon orbit, the gravitational field of the Moon will capture the satellite.
To find the required ∆V to construct this transfer, the ∆V to get from the
circular orbit to the elliptical orbit and the ∆V to get from the elliptical
orbit to the Moon orbit, are added. The first ∆V , ∆V1, is given by equation
(3.9). The second ∆V , ∆V2, is found in the same way as ∆V1, only the
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Figure 3.2: Hohmann transfer

velocity on the elliptical orbit is subtracted from the velocity on the larger
circular orbit. ∆V2 becomes

∆V2 =
√

µ

r2
−

√
2µ

r2
− 2µ

r1 + r2
. (3.12)

The resulting ∆V is found by ∆V = ∆V1 + ∆V2. This gives

∆V =
√

2µ

r1
− 2µ

r1 + r2
−

√
µ

r1
+

√
µ

r2
−

√
2µ

r2
− 2µ

r1 + r2
. (3.13)

3.2.2 Patched Conic Approximation Method (PCA)

The Patched Conic Approximation is a well-known method. When used on
a transfer between Earth and the Moon, it is also referred to as the Lunar
Patched Conic. It is a good way to make an approximation of a simulation
of a lunar transfer orbit. Still it is restricted to the two-body problem, but
more than one two-body problem are used, hence the name of the method.
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This method is however not very likely to be chosen for the launch of the
ESMO satellite as it is a rough approximation. It also has a condition that
is hard to obtain; the lunar transfer orbit has to be coplanar. This is not
often the case. For a coplanar trajectroy that is launched from a latitude
of 28.5 degrees (Cape Canaveral), it is only possible when the inclination of
the Moon’s orbit is at its maximum. This happened in the first months of
1969 and will happen again in 2006, (Bate et al. [1971]).

The trajectory of the method is explained graphically in Figure 3.3. The
trajectory is broken into regions that can be handeled. Here, gravity from
one body at a time is considered in each region, that is, the problem is
divided into three two-body problems. Earth’s sphere of influence extends
well beyond the orbit of the Moon, so the patched conic method is a rough
approximation. The three regions of the transfer are (Sellers [1994])

1. Sun-centered transfer from Earth; Sun’s gravitational pull dominates

2. Earth departure; Earth’s gravitational pull dominates

3. Arrival at the Moon; Moon’s gravitational pull dominates

Figure 3.3: Lunar Patched Conic

A planet’s sphere of influence (SOI) has been mentioned earlier. It is the
area within where the planet’s gravity dominates a satellite’s motion. The
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size of the SOI depends on the planet’s size and its distance to the Sun. The
radius of a planet’s SOI is given by (Sellers [1994])

rs = aplanet

[
mplanet

mSun

] 2
5

, (3.14)

where aplanet is the semi-major axis of the planet’s orbit around the Sun.

In the first region, motions are relative to the Sun. The problem is treated
like the satellite is travelling from Earth’s orbit around the Sun, to the
planet’s orbit around the Sun. In this problem, the planet is the Moon and
it is not really orbiting the Sun like the planets, but as Earth is orbiting the
Sun, so is the Moon. This trajectory is a Hohmann-transfer ellipse around
the Sun. The Hohmann transfer was described in Section 3.2.1. In the
second region, motions are relative to Earth. This is really the first part of
the trajectory. Here, the satellite escapes Earth and arrives at the SOI with
the required velocity to enter into the heliocentric transfer orbit of region
one. The satellite needs to increase its velocity in the parking orbit by a
certain amount. In the third region, motions are relative to the Moon. Here,
the satellite needs to be slowed down. If not, it will only swing by the Moon
on a hyperbolic trajectory and depart the SOI on the other side.

Calculations of the design of a mission can be divided into eight steps (Brown
[1998]).

1. Initial conditions are set. These are the parameters of the transfer
ellipse; the right injection radius r0, velocity v0 and the flight path
angle γ0. Another parameter that needs to be set, is the angle λ which
defines the arrival location at the Moon’s sphere of influence, see Figure
3.3.

2. Define the ellipse. This can be done by using the energy equation
(2.42); Eel = 1

2v2
0 −

µ
r0

. It is not necessary to reach the escape velocity
for Earth as the departure trajectory is an ellipse rather than a hyper-
bola. If the injection velocity is not high enough, the initial conditions
have to be set again. Another parameter to be found for the ellipse, is
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its eccentricity. It can be found from

e =

√
1 + 2Eel

h2

µ2
, (3.15)

where the specific momentum h is found from

h = r0v0 cos γ0. (3.16)

3. The radius to the sphere of influence, r1, is found, see Figure 3.3. It is
found by the cosine law as

r1 =
√

r2
EM + r2

s − 2rEMrs cos λ, (3.17)

where rs is found by (3.14) and rEM is the distance between centres
of mass for Earth and the Moon which is 384 400 km. λ was found in
step 1. The phase angle shown in Figure 3.4 can be found from the
same triangle as

φ1 = cos−1

[
r2
1 + r2

EM − r2
s

2r1rEM

]
. (3.18)

Also the velocity on the elliptic orbit in the point where the satellite
hits the SOI, can be found from equation (2.22) as

v1 =
√

µe(
2
r1
− 1

ael
), (3.19)

where the semi-major axis of the ellipse is found from

ael = − µe

2Eel
. (3.20)

4. The time of flight to the sphere of influence boundary can be found by
combining equation (2.35) and (2.34) to

t =
ε− e sin ε√

µ
a3

, (3.21)
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Figure 3.4: The phase angle and r1

where ε is the eccentric anomaly. Equation (2.30) can be used to find
ε. Equation (2.30) uses the true anomaly ν1 to calculate ε, and ν1 can
be found by rearranging equation (2.36) and (2.37) to

cos ν1 =
r0
r1

(1 + e)− 1
e

, (3.22)

where r0 (corresponds to rp in equation (2.36)) was found in step 1, e
in step 2 and r1 in step 3.

5. So far, the parameters for the flight to the sphere of influence are found.
Now the parameters inside the sphere of influence need to be found.
The necessary parameters are the velocity v2, the flight path angle
σ and the radius r2, which is constant as it is the Moon’s sphere of
influence, which is 66 300 km. The cosine law can find v2 to be

v2 =
√

v2
m + v2

1 − 2vmv1 cos α, (3.23)

where the velocities are shown in Figure 3.5. To calculate this the
angle α needs to be found. It is calculated as

α = γ1 − φ1, (3.24)

where γ1 is the flight path angle calculated as

γ1 = tan−1

[
e sin(ν)

1 + e cos(ν)

]
. (3.25)
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The angle, σ, associated with the velocity v2 inside the sphere of in-
fluence, can be found from Figure 3.5 as

σ = sin−1

[
vm

v2
cos λ− v1

v2
cos(λ + φ1 − γ1)

]
. (3.26)

Figure 3.5: Geometry of the lunar arrival

6. The definition of the arrival orbit is made. Parameters that are to be
found are the specific enery E for the lunar orbit, the specific momen-
tum h, the semimajor axis a and the eccentricity e. Starting with E,
equation (2.42) gives

E =
v2
2

2
− µm

r2
, (3.27)

where µm = 4902.8km3/s2. The specific momentum can be calculated
by

h = r2v2 sin(σ). (3.28)
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The semimajor axis is found by rearranging equation (2.44) to

a = −µm

2E
, (3.29)

and the eccentricity is given by (3.15) to be

e =

√
1 + 2E

h2

µ2
m

. (3.30)

The radius of the pericentre is found to be

rp =
h2

µm(1 + e)
. (3.31)

Also, the satellite will hold a certain velocity around the Moon. This
velocity depends upon the type of orbit. The velocities for the different
orbits can be found in Section 2.2.1 and 2.2.2. The obtained orbit might
not be the desired to orbit the Moon. Therefore, more manoeuvres
might be required to descend the satellite to a suitable orbit around
the Moon. A Hohmann manoeuvre is often used in an approximated
method as this.

7. By now, all necessary parameters are set. The launch day may now be
found using the time of flight and the average orbital velocity.

8. If the desired orbit is not achieved by the calculated arrival orbit, the
initial conditions needs to be adjusted and the process starts at step
one again.

As the Moon orbits Earth, naturally the position of the Moon at the time
of injection and arrival of the satellite are not the same. The angle between
the position of the Moon at injection and at arrival, see Figure 3.3, can be
calculated as (Marthinussen [2004])

Γ = 13.177(tarrival − tinjection). (3.32)
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Figure 3.6: ∆Vs in the Lunar Patched Conic

3.2.3 Ballistic Capture Transfer (BCT)

BCT is one of the most fuel-efficient methods used to put a spacecraft into
orbit around the Moon, (Belbruno and Carrico [2000]). It takes advantage
of the Moon’s sphere of influence (SOI) to avoid having to use an impulse
∆V to get the satellite from the transfer orbit to the orbit around the Moon.
This way the satellite only requires one ∆V to get the satellite from Earth
to the Moon. The main drawback with this is that the satellite’s Moon orbit
is not stable. After a few days, the satellite will have gained enough energy
from its orbit to escape from the sphere of influence again. This period can
however be increased by applying a small extra ∆V when in Moon orbit.
The figures in this section are taken from (Koon et al. [2001]).

The only required ∆V is applied at Earth. This launches the satellite into a
hyperbolic orbit. When the satellite reaches the Moon’s sphere of influence
with hyperbolic velocity, the Moon will capture it and keep it in orbit around
itself for a few days. The way to design this transfer, is to think of it back-
wards. Start with the inital conditions that are desired for the lunar orbital
elements. Then propagate the trajectory back in time to reach an orbit that
barely escapes the Moon, travels to the Earth-Sun sphere of influence, and
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Figure 3.7: BCT

Figure 3.8: BCT in Sun-Earth rotatin frame
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Figure 3.9: Different views of the Poincaré section

ends up with dropping back to pass Earth at a very close range, (Belbruno
and Carrico [2000]).

The first step in the design of the trajectory is therefore to choose the initial
state so that the Moon escapeing orbit can be found. The velocity vector is
parallel to the ecliptic plane1 and perpendicular to the position vector. The
other elements are chosen so that the point of perilune is on the Earth side
of a line which connects Earth and the Moon. This is done because it gives
optimal approach to the Moon for the satellite. This initial state (position
and velocity) should be on the Poincaré section Γ. An explanation of Γ is
found in (Koon et al. [2001]) and will not be explained further here as the
BCT is not the chosen simulation approach. This section helps to glue the
Sun-Earth Lagrange point portion of the trajectory with the lunar ballistic
capture portion.

The second step is to choose the eccentricity. The eccentricity is adjusted
until it is at its minimum for the satellite to escape the Moon. When the
escape orbit is found, the eccentricity is increased with very small amounts
to reach an orbit that will travel past the Earth-Sun sphere of influence and
then return back to Earth. Some orbits will pass Earth at a very close range.
These are the one used to design BCT trajectories by reversing time again.

A standard mission design approach is to view the solar system as a series of

1see Figure 2.4
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Figure 3.10: Vary the phase of the Moon until Earth-Moon L2 manifold cut
intersects Sun-Earth L2 manifold cut.

two-body problems where Keplerian theory applies. But when the ballistic
capture regime of motion is dealt with, a three-body decomposition of the
Solar System is absolutely necessary, (Koon et al. [2001]). The system con-
sidered here is really a four-body system (Earth, Moon, Sun and Satellite).
Since the structure of the phase space of the four-body system is poorly un-
derstood in comparison with the three-body system, it is more convenient
to model it as two coupled planar circular restricted three-body systems. In
doing so, the Lagrange point dynamics2 of both the Earth-Moon-satellite
and Sun-Earth-satellite systems can be utilized.

As mentioned earlier, the mission is designed by propagating back in time.
With the right initial state, the satellite will be guided by the L2 Earth-
Moon manifold3 and get ballistically captured by the Moon. Looking at
Figure 3.10 the orbit should lie in the interior of the gray curve but in the
exterior of the black curve.

The BCT would be a good alternative for bringing ESMO to the Moon as it
is fuel efficient.

2Further explanation in (Koon et al. [2001]) as the BCT is not the chosen simulation
approach.

3Further explanation in (Koon et al. [2001]) as the BCT is not the chosen simulation
approach.
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Chapter 4

Control

In the presented two- and three-body problems, many perturbing effects are
ignored. Some are mentioned in Section 2.3. To make sure the satellite
follows the desired trajectory, feedback control can be applied. A sketch of
what is meant by this is found in Figure 4.1. It is assumed that the satellite
has a thruster in the x-, y- and z-direction.

Ideally, to apply feedback control to the satellite orbit, the real values of
the position and velocity of the satellite are compared to the desired values.
Then the desired thrust direction is determined based on the chosen control
law.

Figure 4.1: A standard feedback system
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Figure 4.2: Block diagram of PID controller

4.1 PID Controllers

The controller needed to make the satellite follow the desired trajectory is
not expected to be very advanced. Therefore, a PID (proportional, integral,
derivative) controller is a natural choice. The PID controller is a popular
controller, therefore many of its characteristics are well known.

A block diagram of an ideal PID controller is shown in Figure 4.2. The
corresponding transfer function is given as

hr(s) = Kp

(
1 +

1
Tis

+ Tds
)

= Kp
1 + Tis + TiTds

2

Tis
. (4.1)

The parameters deciding the characteristics of the controller, are Kp, Ti and
Td. If Td is set to zero, the controller is a PI controller and, if in addition Ti

is set to ∞, the controller is a P controller.

A way to tune the PID controller is to use Ziegler-Nichols method, (Balchen
et al. [2002]). This method is used for experimental tuning of controllers.
To use this method, the system has to be stable. The method can in short
terms be described as follows:

• Set Ti = ∞ and Td = 0. This gives a pure P-controller

• Increase the gain Kp until the system gives a standing oscillation on
the system exit. This value is called the critical gain and is denoted
Kpk.
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Controller Kp Ti Td

P 0.5Kpk ∞ 0
PI 0.45Kpk 0.85Tk 0
PID 0.6Kpk 0.5Tk 0.12Tk

Table 4.1: Ziegler-Nichols rules

Figure 4.3: A limited PID controller

• The period of the oscillation is denoted Tk.

• The values Kpk and Tk are used to find the parameters of the desired
controller. How this is done is found in Table 4.1.

Ziegler-Nichol’s method is primarily used on scalar, linear systems. If the
state is a vector instead of a scalar, one of the states have to be chosen to
tune by. Alternatively, many of the states could be tuned and a compromise
that satisfy most of them could be chosen. There is no common rule on how
to do this except experimental try and fail. The same goes for nonlinear
systems.

Another version of the PID controller that is often used, is the limited PID
controller, as seen in Figure 4.3. Its transfer function is found to be

hr(s) = Kp(1 +
Ti

s
+

Tds
1
N s + 1

) = Kp
Ti + (1 + Ti

N )s + (Td + 1
N )s2

s( 1
N s + 1)

. (4.2)
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4.2 Nonlinear controller and stability

Nonlinear systems are dealt with in detail in (Khalil [2000]). In this thesis,
the systems will be on the form

ẋ = f(t, x), (4.3)

that are nonlinear, nonautonoumus systems. The uncontrolled, nonper-
turbed, differential equations for the satellite, derived from equation (2.5)1,
are

~̇r = ~v (4.4)

~̇v = −Gm2
~rE

r3
E

−Gm4
~rSun

r3
Sun

, (4.5)

where G is the gravitational constant, m2 is the mass of Earth and m4 is the
mass of the Sun. When used in a feedback loop, a control input u will be
included in the equations, and the errors will be ∆r = rcontrolled − rreference

and ∆v = vcontrolled − vreference. With u as a velocity control input, the
error system is

∆ṙ = ∆v + u (4.6)

∆v̇ = ~̇vcontrolled −~̇vref

= −Gm2
~rE

r3
E

−Gm4
~rSun

r3
Sun

− (−Gm2
~rEref

r3
Eref

−Gm4
~rSunref

r3
Sunref

)

= −Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
−Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

)
, (4.7)

and if the control u is set to be a force, or an acceleration, the error system
is

1more on the dynamic model in Chapter 5.2
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∆ṙ = ∆v (4.8)

∆v̇ = ~̇vcontrolled −~̇vref + u

= −Gm2
~rE

r3
E

−Gm4
~rSun

r3
Sun

− (−Gm2
~rEref

r3
Eref

−Gm4
~rSunref

r3
Sunref

) + u

= −Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
−Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

)
+ u. (4.9)

To be able to say something about the stability of the systems, Lyapunov
stability theorems can be applied to these systems. The following theorems
are taken from (Khalil [2000]).

Theorem 4.1 [Theorem 4.8 Khalil [2000]]Let x = 0 be an equilibrium point
for (4.3) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞)×D → R

be a continouously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (4.10)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ 0 (4.11)

∀ t ≥ 0 and ∀ x ∈ D, where W1(x) and W2(x) are continuous positive
definite functions on D. Then, x = 0 is uniformly stable.

�

Theorem 4.2 [Theorem 4.9 Khalil [2000]]Suppose the assumptions of The-
orem 4.8 are satisfied with inequality (4.11) strengthened to

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) (4.12)

∀ t ≥ 0 and ∀ x ∈ D, where W3(x) is a continuously positive definite function
on D. Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c
are chosen such that Br = {‖ x ‖≤ r} ⊂ D and c ≤ min‖x‖=rW1(x), then
every trajectory starting in {x ∈ Br | W2(x) ≤ c} satisfies

‖x(t)‖≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0 (4.13)



42 CHAPTER 4. CONTROL

for some class KL function β. Finally, if D = Rn and W1(x) is radially
unbounded, then x = 0 is globally uniformly asymptotically stable.

�

First of all, a Lyapunov function that satisfies equation (4.10) in Theorem
4.1 has to be found for the error systems. A standard choice that can be
applied is (Naasz [2002])

V (∆r, ∆v) =
1
2
k1∆rT ∆r +

1
2
k2∆vT ∆v, (4.14)

The time derivative of equation (4.14) is

V̇ (∆r, ∆v) =
[
k1∆r

k2∆v

]T [
∆ṙ

∆v̇

]
, (4.15)

With the error system with control in the velocity, see equation (4.6) and
(4.7), inserted in equation (4.15), V̇ is

V̇ = k1∆rT (∆v + u)−

k2∆vT

(
Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
+ Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

))
,(4.16)

and with the control in the acceleration, as given in equation (4.8) and (4.9),
V̇ is

V̇ = k1∆rT ∆v − k2∆vT

(
Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
+Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

)
− u

)
. (4.17)

Equation (4.17) will now be used to design control laws. Equation (4.16)
will not be used further as it is more physically correct to apply the control
in the acceleration than in the velocity.
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4.2.1 Nonlinear controller

To design a nonlinear controller, Lyapunov theory can be applied. In this
case there is a time-varying reference, so the theory has to be applicable to
nonautonomous systems. This was derived in Section 4.2. To ensure that
the resulting control of the system is stable, the control input u in equation
(4.17) is chosen so that it cancels the possibly positive terms in the same
equation. The resulting u is

u = −k1

k2
∆r − k3∆v

+Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
+ Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

)
, (4.18)

giving the error system

∆ṙ = ∆v (4.19)

∆v̇ = −k1

k2
∆r − k3∆v. (4.20)

The resulting V̇ is

V̇ = −k2k3∆vT ∆v ≤ 0. (4.21)

Hence, from Theorem 4.1 it can be seen that the system with the nonlinear
controller is uniformly stable.

However, to show asymptotic stability, Theorem 4.2 states that it is needed
to show that V̇ ≤ −W3, see equation (4.12). This can not be found as the
expression in equation (4.21) will be zero if ∆v = 0.

Another approach can be taken. The system can be shown to be stable and
convergent using a version of Barbalat’s lemma restated in Lemma 4.1 taken
from (Slotine and Li [1991]).

Lemma 4.1 [Lemma 4.3 Slotine and Li [1991]]If a scalar function V (x, t)
satisfies the following conditions
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• V (x, t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous in time

then V̇ (x, t) → 0 as t →∞.

�

The first criteria was shown with equation (4.14) and the second with equa-
tion (4.21). To use this lemma, the third criteria also have to be checked.
The derivative of V̇ is

V̈ = −k2k3∆vT ∆v̇ − k2k3∆v̇T ∆v

= −2k2k3∆vT ∆v̇

= −2k2k3∆vT (−k1

k2
∆r − k3∆v)

= 2k1k3∆vT ∆r + 2k2k
2
3∆vT ∆v. (4.22)

This shows that V̈ is bounded, since ∆r and ∆v were shown by equation
(4.21) to be bounded. Therefore, V̇ is uniformly continuous and hence,
V̇ (x, t) → 0 as t →∞. The system is stable and convergent.

Remark 4.1 The system (4.19) and (4.20) has through feedback lineariza-
tion become linear. Regular linear systems theory can however not be applied
as it is only applicable to linear time-invariant (LTI) systems, and this is an
error system that has a time-varying reference.

4.3 Propulsion use

The best possible controller might not be very propulsion efficient. As it is
desirable with a controller that works well and at the same time is propulsion
efficient, compromises have to be made.

The propellant needed depends on the size of the impulses needed, see Section
3.1.1. It also depends on the kind of propellant used, but even if propellant
with low Isp is used, the size of the impulses should still not be too high.
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If the satellite’s thrusters give an impulse each time the satellite gets a bit
off course, it will use a lot of propellant. Therefore, to reduce the use a
propellant, a limit can be set as to how far away from the desired orbit the
satellite should be before the thrusters are fired. This will however reduce
the satellite’s ability to stay directly on course.
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Chapter 5

Simulations

In this section, a satellite trajectory calculated by the PCA is simulated.
This is first done without perturbations, then with perturbations and last
with perturbations and different controllers. The chosen platform for the
simulations is MatLab/Simulink1.

5.1 Numerical integrators

To propagate the satellite, the equations of motion are integrated. The
different n-body problems used requires different numerical integrators. As
a general rule, it is easily seen that the higher the number of n, the higher
an accuracy of the numerical integrator is needed.

5.1.1 MatLab solvers

There are two main choices in numerical integrators in MatLab; fixed-step
and variable-step.

Fixed-step solvers solve the model at regular time intervals from the begin-
ning to the end of the simulation. The size of the interval is known as the
step size. The step size can be specified manually, or the solver can choose

1The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,USA
http://www.mathworks.com
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it. Generally, decreasing the step size increases the accuracy of the results
and increases the time required to simulate the system.

Some of the fixed-step solvers are the ode1 and the ode4 solvers. ode1 is a
simple Euler method and ode4 is a Runge-Kutta 4.

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly
and increasing the step size to avoid taking unnecessary steps when the
model’s states are changing slowly. Computing the step size adds to the
computational overhead at each step but can reduce the total number of
steps, and hence simulation time, required to maintain a specified level of
accuracy for models with rapidly changing or piecewise continuous states.

Some of the most accurate variable-step solvers, as defined in (MatLab
[2004]):

ode45 (MatLab [2004]); Based on an explicit Runge-Kutta (4,5) formula,
the Dormand-Prince pair. It is a one-step solver - in computing y(tn), it
needs only the solution at the immediately preceding time point, y(tn−1). In
general, ode45 is the best function to apply as a "first try" for most problems.

ode113 (MatLab [2004]); Variable order Adams-Bashforth-Moulton PECE
solver. It may be more efficient than ode45 at stringent tolerances and when
the ODE function is particularly expensive to evaluate. ode113 is a multistep
solver - it normally needs the solutions at several preceding time points to
compute the current solution.

5.1.2 Choosing solvers for the different N-body problems

As the two-body problem is the least complex of the n-body problems, it does
not require a highly advanced integration method. In earlier simulations
(Johansson [2004]) the ode4 has been applied with success in Earth and
Moon orbits.

For the three-body problem, some of the solvers described in Section 5.1.1
were tested on a periodic solution of a normalized system with a satellite,
Earth and the Moon, as such a system requires high accuracy. From Figure
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5.1 it can easily be seen that the last method tried, the ode45 with rela-
tive tolerance 10−6, has to be applied to the three-body problem to get a
satisfactory result.

Even the ode45 might come a bit short when applied to a higher n-body
problem as it is not much over adequate for the three-body problem. The
ode113 might be appropriate.

5.2 Trajectories and control

5.2.1 Dynamic model

To simulate the different stages of the trajectory, a common set of differential
equations can be applied. The implementation is shown in Appendix B.1
and is taken from (Jerpetjøn [2004]). These equations are derived from
equation (2.5) and includes a satellite, Earth, the Moon and the Sun. The
state vector x represents the 24 states of a four-body system. x(1) − x(6)
represents respectively the satellite’s position in x, y and z coordinates and
its velocity in the same coordinates. The origo is in the centre of the Sun.
x(7)− x(12) represents the same for Earth, x(13)− x(18) for the Moon and
x(19) − x(24) for the Sun. As the Sun is considered the non-moving origo,
the initial conditions x0(19)− x0(24) is set to zero.

Also, in the simulations, everything is considered to be in the xy-plane.
Therefore, all the z components are initially also set to zero.

5.2.2 PCA

The PCA is the chosen trajectory in this thesis for use in the simulations.
Parameters and initial conditions for the simulations of the PCA can be
found in Table 5.1, see also Figure 5.2. As Earth is orbiting the Sun, and the
Moon is orbiting Earth, these velocities have to be added to the velocity the
satellite has relative to Earth or the Moon as found in the calculations from
the PCA, when appropriate. For example, the initial velocity of the Moon
is found as vEarth rel to Sun + vMoon rel to Earth in the y-direction as all the
velocities have to be relative to the Sun in the simulations.
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Figure 5.1: A periodic orbit simulated with the solver; a) ode1 with step size
7∗10−4 b) ode4 with step size 3∗10−3 c) ode45 with relative tolerance 10−3

d) ode45 with relative tolerance 10−6
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Name Value

r Sun to Earth 1.5e11 m
r Earth to Moon 356000000 m
r satellite to Earth 24 000 000 m
Velocity of Earth relative to Sun in y-direction 29680 m/s
Velocity of Moon relative to Earth in y-direction 1092.9 m/s
Velocity of sat. rel. to Earth in y-dir. before ∆V , non-phased 4084.4 m/s
∆V from initial orbit to transfer ellipse 1515 m/s
Γ, angle of phaseing 0.67189 rad
Velocity of Moon relative to Sun in x-direction 0 m/s
Velocity of Moon relative to Sun in y-direction 30772.9 m/s
Velocity of satellite relative to Sun in x-direction, phased 4578.9320 m/s
Velocity of satellite relative to Sun in y-direction, phased 26457.1656 m/s

Table 5.1: Initial values for the PCA

Figure 5.2: The initial distances (not to scale)
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Figure 5.3: The phased initial distances (not to scale)

The transfer ellipse intersects the SOI of the Moon at an angle that can make
it hard to reach the desired Moon orbit, (Johansson [2004]). Therefore, the
impulse that transfers the satellite from a circular Earth orbit to the elliptic
transfer orbit, is applied slightly later, more specifically at the angle ν = π

11 .

As the Moon moves in the simulation, the initial position of the satellite
needs to be phased so that the satellite will be put into a transfer ellipse
that ends up where the Moon is going to be at the time of the arrival of the
satellite, see Figure 5.3. The angle Γ is found from equation (3.32), and the
angle ν is added to this. In this case tinjection is set to zero and tarrival is
found from the simulations to be the time when the satellite is closest to the
Moon on its transfer orbit.

To simulate the PCA trajectory, the ∆V impulses is first found by running
the MatLab code in Appendix A, which implements the equations described
in Section 3.2.2. However, certain changes have to be made as the PCA is a
strictly theoretical way of finding a trajectory to the Moon.

The second ∆V found, the one that transfers the satellite from the elliptic
transfer orbit to a hyperbola around the Moon, should not be added in the
simulations. This is because it only gives the difference in the velocities the
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Figure 5.4: The arrival angle of the satellite

satellite has relative to Earth and relative to the Moon.

As the second ∆V is not part of the simulations, the next two ∆V s calculated
are not applicable either in the simulations. To put the satellite in an orbit
around the Moon, another approach is taken. When the satellite reaches the
point on the transfer ellipse that is closest to the Moon, the radius down
to the centre of the Moon is found. Then, the desired new velocities to
make the satellite orbit the Moon in a circle with this radius are found, and
the appropriate ∆V s are calculated from the state of the end transfer, see
Appendix B.3. Here, the simple formula shown in equation (2.48) is used
to find the velocity on a circular orbit with a certain radius. This is the
tangential velocity in the circle. To find how much impulse to apply in each
direction, the angle of arrival is found from the simulations, see Figure 5.4
and Appendix B.3.

If a smaller radius is desired, the velocity of an ellipse, as shown in equation
(2.46), can be applied instead with the desired radius as the perigee. When
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Impulse Value

∆V1 1515
∆V2x -1249.2
∆V2y 308.7

Table 5.2: ∆V s used in the simulations

in perigee, another ∆V can be applied to bring the satellite over on a circular
orbit. The ∆V s used in the simulations is found in Table 5.2

To add the ∆V s at the correct time in the simulations, the simulation is run
in two parts, see Appendix B.2. First the transfer ellipse is simulated for
the desired time. Then, the found ∆V are added. This can be done in two
different ways that give the same result.

First, the ∆V s were added to the previous velocity of the satellite and the
simulation is continued with the previous state parameters, included the
added ∆V s, as initial conditions. This is not a very physically correct way
of doing it. It is more natural to convert the ∆V s to accelerations (or forces)
and add them over a short time interval to the acceleration of the satellite.
Therefore, this is the way ∆V s are added in the simulations when control is
applied and Simulink is used.

Then, the simulations with the satellite in orbit around the Moon is run for
however long it is desired.

5.2.3 Control of the satellite

The different controlled satellite trajectories are simulated in Simulink. Both
control schemes have the same main configuration, see Appendix C.1 and
C.2. It consists of the differential equations of the system, which are called
as a MatLab function, a feedback to a controller, and a control input from
the controllers to the system again. The controller receives a signal that
is the difference between a reference signal and the current states of the
system. The reference signal is obtained by running the system without
perturbations and correction in the differential equations, see Appendix D.1.
The true position of the satellite is simulated by a perturbed model. In the
physical satellite this position will be given by the sensors on the satellite.
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Perturbation Function in x-direction

Moon (Gm3(xM − xE))/‖~rSat − ~rM‖3

Oblateness of Earth GAJ2(15 (xSat−xE)(zSat−zE)2

‖~rSat−~rE‖7 − 3 xSat−xE
‖~rSat−~rE‖5 )

Atmospheric drag −((0.5ρCdAvvx)/mSat)
Solar radiation pressure ((KPAxSat)/(‖~rSat − ~rSun‖mSat))

Table 5.3: Functions for perturbations

The MatLab code for the perturbed system with PID control is found in Ap-
pendix D.2, and with nonlinear control in Appendix D.3. The perturbations
available for simulations are listed in Table 5.3.

However, only the gravitational perturbation from the Moon was used in
the simulations as other perturbing forces were negligible compared to the
gravity force from the Moon. The controlled simulations are only performed
on the transfer orbit. This is because the Moon is orbiting Earth. Therefore,
the Moon and Earth have to be part of the reference of the simulation when
the satellite is in Moon orbit, even though only the Moon should be consid-
ered according to the PCA method. Thus there are no large perturbations
in Moon orbit and there is no need to simulate this each time.
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Chapter 6

Results

The results consist of plots from simulations described in Chapter 5 and a
plot of the Lyapunov function described in Chapter 4.

6.1 PCA

The simulations described in Section 5.2.2 are presented in Figure 6.1. The
upper plot is the satellite’s orbit relative to Earth and the lower plot is the
satellite’s orbit relative to the Moon.

The largest perturbing force comes from the Moon. It is therefore the one
chosen in the simulations, see Section 5.2.3. The transfer orbit with and
without the perturbing Moon is plotted in Figure 6.2.

6.2 Control

6.2.1 PID controller

The PID controller’s performance depends on the tuning parameters. As
stated in Section 4.1, the system is nonlinear, so tuning has to be done by
adjusting the parameters without any specific rules to go by. Parameters
that give a satisfying result are presented in Table 6.1. Also a PD controller
is suggested.
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(a) The satellite in PCA trajectory seen from Earth

(b) The satellite in PCA trajectory seen from the Moon

Figure 6.1: The satellite in the PCA trajectory

Controller Kp Ti Td

PD 1 0 10
PID 0.1 10 1

Table 6.1: Parameters of the simulated PID controllers
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(a) The transfer orbit with and without the perturbing Moon, seen from the
Moon

(b) The transfer orbit with and without the perturbing Moon, seen from
Earth

Figure 6.2: The transfer orbit with and without the perturbing Moon
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Controller Kp Ti Td N

PID 1 5 5 10

Table 6.2: Parameters of the simulated limited PID controller

Controller k1 k2 k3

Nonlinear 1 1 10

Table 6.3: Parameters of the simulated Nonlinear controller

Figure 6.3 and 6.4 show the position of the satellite and the errors, that
is the difference between the reference and actual position and velocity for
the PD controller respectively. It is the Euclidean norm of the x-, y- and
z-components that is used for the plots. Figure 6.5 and 6.6 show the same
for the PID controller. For all plots of the position of the satellite, the
reference is barely visible as the plot of the actual satellite orbit covers it
almost completely.

The same simulations are also done with a limited PID controller. The
suggested set of values are given in Table 6.2. Here, N is the denominator
seen in Figure 4.3. The corresponding plots are shown in Figure 6.7 and 6.8.

6.2.2 Nonlinear controller

Different values of the nonlinear controller’s parameters were tested. The
values that give the best results are shown in Table 6.3. The corresponding
plots are shown in Figure 6.9 and 6.10.

6.3 Stability

The chosen Lyapunov function for the nonlinear controller is plotted to see
if it concurrs with the stability theory. The plots are shown in Figure 6.11.
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(a) The position seen from Earth

(b) The position seen from the Moon

Figure 6.3: Simulation results for the PD controller; positions
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(a) The error in position

(b) The error in velocity

Figure 6.4: Simulation results for the PD controller; errors
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(a) The position seen from Earth

(b) The position seen from the Moon

Figure 6.5: Simulation results for the PID controller; positions
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(a) The error in position

(b) The error in velocity

Figure 6.6: Simulation results for the PID controller; errors
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(a) The position seen from Earth

(b) The position seen from the Moon

Figure 6.7: Simulation results for the limited PID controller; positions
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(a) The error in position

(b) The error in velocity

Figure 6.8: Simulation results for the limited PID controller; errors
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(a) The position seen from Earth

(b) The position seen from the Moon

Figure 6.9: Simulation results for the Nonlinear controller; positions
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(a) The error in position

(b) The error in velocity

Figure 6.10: Simulation results for the Nonlinear controller; errors
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(a) Lyapunov function for the nonlinear controller

(b) Lyapunov function for the nonlinear controller, close-up

Figure 6.11: Lyapunov function plots
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6.4 Propulsion use

The controllers are both continuous. They therefore consume a lot of pro-
pellant. As can be seen from the plots, the satellite orbit oscilliates around
the desired orbit before it gets closer to it. This is propellant consuming,
and ideally the satellite orbit should be smoother.



Chapter 7

Discussion

7.1 Trajectories

This thesis describes three methods of getting the satellite to the Moon; the
Hohmann transfer, the PCA and the BCT. The cheapest of these three is
the BCT as it uses less fuel than the other two methods. On the other hand,
it is also the most complicated of the three.

The chosen method to use for the simulations in this thesis, is the PCA as
the main goal is to use a controller to make the satellite follow a desired
trajectory. Therefore, the choice of trajectory does not really matter that
much as the control theory will be the same for any trajectory.

Because of the choise of dynamic model, where celestial bodies move, a
variation of the PCA method is used. The impulse from the transfer orbit
to the orbit around the Moon had to be recalculated from the simulations.
One could therefore argue that another trajecotry might have been better.

With the newly calculated impulses however, the simulations work well, and
the satellite ends up orbiting the Moon in a circle as long as no perturbations
are taken into consideration.

Many perturbations are described in Section 2.3, but only the perturbing
Moon is used in the transfer trajectory in the simulations. This is because
the others become insignificante next to it. Figure 6.2 in the results shows
that the Moon very much makes the satellite go out of course. This is most
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easily seen, naturally enough, as the satellite gets closer to the Moon.

7.2 Control

In the later sections, different PID controllers and a nonlinear controller are
applied to a simulated satellite to make it follow a desired trajectory despite
perturbations.

The plots from the different PID controllers show that the results vary a lot
depending on the tuning of the parameters and if a normal or a limited PID
controller is used. The pure PD controller has many spikes in the plots of
the error in position and velocity, see Figure 6.4. These spikes vanish when
a PID or a limited PID is used.

The PID controller, when correctly tuned, seems from the plots to give a
satisfactory result. It is however more difficult to say something about this
in theory because of the many nonlinearities. In the plots it can be seen that
the satellite oscillates around the desired orbit. Therefore stability can not
be proven without further theoretical analysis.

The simulation of the system with the nonlinear controller gives a plot of a
Lyapunov function, Figure 6.11, that shows that the system is not stable,
although stability theory concludes that the system is stable and convergent.
For the system to be stable, V̇ ≤ 0. This plot of the Lyapunov function V

is promising in the sense that it is decreasing. But at the same time it is
oscillitaing, so V̇ � 0 and the system is not stable, although it performs
quite well.

A possible cause to these contradictory results can be the effect of the non-
linear perturbation in the system. When the perturbation is reconded for in
equation (4.9), the equation is changed to

∆v̇ = −Gm2
~rE

r3
E

−Gm4
~rSun

r3
Sun

− (−Gm2
~rEref

r3
Eref

−Gm4
~rSunref

r3
Sunref

) + p + u

= −Gm2

(
~rE

r3
E

−
~rEref

r3
Eref

)
−Gm4

(
~rSun

r3
Sun

−
~rSunref

r3
Sunref

)
−Gm3

~rM

r3
M

+ u. (7.1)
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Here, p is the perturbation and ~rM is the distance from the satellite to the
Moon. With the same control input u as in equation (4.18), the resulting V̇

is

V̇ = −k2k3∆vT ∆v − k2Gm3∆vT ~rM

r3
M

. (7.2)

It is easily seen that V̇ can not be shown to be ≤ 0 without constrains. This
indicates that the system including the perturbation might not be stable.

It does however seem to be bounded, see Figure 6.11. Theory on how to prove
boundedness can be found in (Khalil [2000]) chapter 9: Stability of Perturbed
Systems. All the theorems require at least uniform asymptotic stability of
the nominal system. The nominal system presented in this thesis, has only
been proven stable and convergent. Hence, boundedness of the perturbed
system can not be proven.

Another cause for the oscillations of the satellite might be numerical errors
in the simulations. The numerical solver used for the simulations, ode45,
is well tested and should not give large errors. But it could be that it is
not as accurate as hoped for, and it might be the reason why the nonlinear
controller can not be tuned to make the errors in position and velocity cancel
each other when used in the Lyapunov function after a very large number of
attempts.

7.3 Conclusion

There are many ways of getting a satellite to the Moon. A fairly simple
method is the Patched Conic Approximation. It is not the cheapest trajec-
tory, but it gives a good platform for testing trajectory controllers.

The description of the satellite and its surroundings can be described by
including a number of celestial objects such as Earth, the Moon and the
Sun. In the simulations in this thesis, the Sun and Earth is always included.
The Moon is considered a perturbation in the satellite’s transfer orbit.

The perturbation brings the satellite out of course relative to its reference
trajectory which is calculated from the PCA method. A feedback loop to a
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controller can make the satellite follow the reference trajectory despite the
perturbation. Two controllers are suggested and tested; a PID controller and
a nonlinear controller.

The PID controller is a very common controller, and is therefore easier to re-
alize. When applied to the uncontrolled system, it makes the satellite follow
the desired trajectory at an accuracy of approximately one decimeter. The
PID and limited PID controller perform better than the pure PD controller.

The nonlinear controller is derived from Lyapunov control theory and is likely
to be more difficult to realize. It eliminates all the nonlinearities from the
set of differential functions of the satellite and stabilizes it. However, from
plots it can be seen that it is only the case for the nominell system.

From the results it can be seen that it is fully possible to use a controller
to keep a satellite in orbit even though the satellite dynamics are poorly
described. It will however make the satellite heavy as it will require large
quantities of propellant. A combination could on the other hand be very
useful. The dynamics of the satellite can be more accurately described in
addition to a controller that takes care of the unforeseen perturbations.

7.4 Future work

The controllers could be tested on a satellite that runs in a Low Earth
Orbit (LEO) to see if they will be able to correct smaller errors in the orbit
that are caused from the other mentioned perturbations in this thesis. The
parameters might have to be adjusted to the new situation, otherwise they
should work without problems.

The controllers in this thesis are used on the PCA method. But they should
in theory be applicable to any desired trajectory as long as an accurate
reference trajectory is given. It would therefore be interesting to use the
controllers on trajectories more likely to be used for the ESMO satellite
than the PCA.

Another controller should also be found for the system, one that can both
be proven stable in theory and be shown to be stable in simulations for the
perturbed system. Asymptotic stability would be best.
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More work can be done on the thrusters with respect to the amount of time
they are used. At the moment, they are used continuously. A thruster with
a constant magnitude thrust is more likely to be onboard a satellite, and
can therefore naturally not be used continuously, but be turned on when the
error in the position of the satellite crosses a set limit.
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Appendix A

Finding parameters for the
PCA trajectory

function out = calc(r0,v0e,gamma0,lambda)

% Constants
mye = 3.986*10^14; % m^3/s^2
mym = 4.9028*10^12; % m^3/s^2
rs = 66300000; % m
rem = 384400000; % m
vm = 1.023e3; % m/s

% Initial values in circular orbit
v0c = sqrt(mye/r0)
E = (1/2)*v0c^2 - (mye/r0)

% Transfer ellipse values

E = (v0e^2/2) - (mye/r0)
h = r0*v0e*cos(gamma0)
a = - (mye/(2*E));
e = sqrt(1 + 2*E*h^2/(mye^2))

% In the point where the satellite hits the SOI of the Moon

r1 = sqrt(rem^2 + rs^2 - 2*rem*rs*cos(lambda))
v1 = sqrt(mye*((2/r1) - (1/a)))
phi1 = asin(rs*sin(lambda)/r1)
nu = acos(((r0/r1)*(1 + e) - 1)/e);
epsilon = acos((e + cos(nu))/(1 + e*cos(nu)));
t = (epsilon - e*sin(epsilon))/(sqrt(mye/a^3))
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TRAJECTORY

% In SOI

gamma1 = atan(e*sin(nu)/(1 + e*cos(nu)))
alpha = gamma1 - phi1;
v2 = sqrt(vm^2 + v1^2 - 2*vm*v1*cos(alpha))
sigma = asin((vm/v2)*cos(lambda) - (v1/v2)*cos(lambda + phi1 - gamma1))
r2 = rs
E = (v2^2/2) - (mym/r2)
h = r2*v2*sin(sigma);
a = - (mym/(2*E))
e = sqrt(1 + (2*E*h^2/(mym^2)))
rph = h^2/(mym*(1 + e))
vhs1 = 2*mym/r2;
vhs2 = (mym/abs(a));
vhs = sqrt((2*mym/r2) + (mym/abs(a)))
betta = pi - sigma - (gamma1 - phi1) - ( pi - (pi/2) - lambda)

% From hyperbola to ellipse in SOI

r3a = rph
r3p = 2000000
ael = 0.5*(r3a + r3p)
vhe = sqrt((2*mym/r3a) + (mym/abs(a)))
vel3 = sqrt(mym*((2/r3a) - (1/ael)))

% From ellipse to circle

rc = r3p
vc = sqrt(mym/rc)
vel4 = sqrt(mym*((2/rc) - (1/ael)))

% Required deltaVs

dv1 = v0e - v0c;
dv2 = v2 - v1;
dv3 = vel3 - vhe;
dv4 = vc - vel4;

out = [dv1 dv2 dv3 dv4 t];
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MatLab simulations

B.1 Differential functions

function xdot = fourfunction (t, x)

xdot = zeros (24,1);
m1=0; % K: mass of satellite
m2=6e24;% m2=0; % % K: mass of earth
m3=7.35e22;%m3=0;% % K: mass of moon
m4=1.99e30;%m4=0;% % K: mass of sun

G=6.6433e-11;

l12=norm(x(1:3)-x(7:9));
l13=norm(x(1:3)-x(13:15));
l14=norm(x(1:3)-x(19:21));
l23=norm(x(7:9)-x(13:15));
l24=norm(x(7:9)-x(19:21));
l34=norm(x(13:15)-x(19:21));

xdot(1) = x(4);
xdot(2) = x(5);
xdot(3) = x(6);
xdot(4) = (G*m2*(x(7)-x(1)))/l12^3 +(G*m3*(x(13)-x(1)))/l23^3+(G*m4*(x(19)-x(1)))/l14^3;
xdot(5) = (G*m2*(x(8)-x(2)))/l12^3 +(G*m3*(x(14)-x(2)))/l23^3+(G*m4*(x(20)-x(2)))/l14^3;
xdot(6) = (G*m2*(x(9)-x(3)))/l12^3 +(G*m3*(x(15)-x(3)))/l23^3+(G*m4*(x(21)-x(3)))/l14^3;
xdot(7) = x(10);
xdot(8) = x(11);
xdot(9) = x(12);
xdot(10) = (G*m1*(x(1)-x(7)))/l12^3+(G*m3*(x(13)-x(7)))/l23^3+(G*m4*(x(19)-x(7)))/l24^3;
xdot(11) = (G*m1*(x(2)-x(8)))/l12^3+(G*m3*(x(14)-x(8)))/l23^3+(G*m4*(x(20)-x(8)))/l24^3;
xdot(12) = (G*m1*(x(3)-x(9)))/l12^3+(G*m3*(x(15)-x(9)))/l23^3+(G*m4*(x(21)-x(9)))/l24^3;
xdot(13) = x(16);
xdot(14) = x(17);
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xdot(15) = x(18);
xdot(16) = (G*m1*(x(1)-x(13)))/l13^3+(G*m2*(x(7)-x(13)))/l23^3+(G*m4*(x(19)-x(13)))/l34^3;
xdot(17) = (G*m1*(x(2)-x(14)))/l13^3+(G*m2*(x(8)-x(14)))/l23^3+(G*m4*(x(20)-x(14)))/l34^3;
xdot(18) = (G*m1*(x(3)-x(15)))/l13^3+(G*m2*(x(9)-x(15)))/l23^3+(G*m4*(x(21)-x(15)))/l34^3;
xdot(19) = x(22);
xdot(20) = x(23);
xdot(21) = x(24);
xdot(22) = (G*m1*(x(1)-x(19)))/l14^3+(G*m2*(x(7)-x(19)))/l24^3+(G*m3*(x(13)-x(19)))/l34^3;
xdot(23) = (G*m1*(x(2)-x(20)))/l14^3+(G*m2*(x(8)-x(20)))/l24^3+(G*m3*(x(14)-x(20)))/l34^3;
xdot(24) = (G*m1*(x(3)-x(21)))/l14^3+(G*m2*(x(9)-x(21)))/l24^3+(G*m3*(x(15)-x(21)))/l34^3;

B.2 Running PCA

% runPCA.m

% For transfer to the point where the deltaV should be added to make a circle
timer = 70;

% For transfer ellipse phased to reach the moving moon:
x0 = [ 1.5e11-1.38136e7 , -1.96261e7 , 0, 4578.9320 , 26457.1656 ,0 ,1.5e11 ,
0 , 0, 0 , 29680 , 0,1.5e11+356000000,0,0,0,1092.9+29680,0,0,0,0,0,0,0];

t=[0:1:3600*24*(timer/24)];

tol = 1e-13;
NUM=[tol:tol:tol*24];%66]
options = odeset(’RelTol’,tol,’AbsTol’,NUM);
[t,x] = ode45 (’fourfunction’, t, x0, options);

figure;
plot(x(:,1)-x(:,13),x(:,2)-x(:,14),’b’)
figure;
plot(x(:,1)-x(:,7),x(:,2)-x(:,8),’b’)
hold on
plot(x(:,13)-x(:,7),x(:,14)-x(:,8),’g’)
axis equal;

% After transfer ellipse:
b = size(t);
c = b(1);
a = x(c,:);
save initAtMoon a

% For circle
timer = 200;

load initAtMoon
findingV;
x0 = [a(1),a(2),a(3),a(4)+dvx,a(5)+dvy,a(6),a(7),a(8),a(9),a(10),a(11),
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a(12),a(13),a(14),a(15),a(16),a(17),a(18),a(19),a(20),a(21),a(22),a(23),a(24)];

t=[0:1:3600*24*(timer/24)];

tol = 1e-13;
NUM=[tol:tol:tol*24];%66]
options = odeset(’RelTol’,tol,’AbsTol’,NUM);
[t,x] = ode45 (’fourfunction’, t, x0, options);

figure(1);
hold on;
plot(x(:,1)-x(:,13),x(:,2)-x(:,14),’r’)
figure(2);
hold on;
plot(x(:,1)-x(:,7),x(:,2)-x(:,8),’r’)
plot(x(:,13)-x(:,7),x(:,14)-x(:,8),’g’)
axis equal;

B.3 Finding the velocities

B.3.1 Finding the new velocities of the Moon orbit

% findingV.m

% Finding circle velocity in x and y from transfer ellipse

xSat = a(1);
ySat = a(2);
xMoon = a(13);
yMoon = a(14);
xdif = (xMoon - xSat);
ydif = (yMoon - ySat);

r = sqrt(xdif^2 + ydif^2);

G = 6.6433e-11;
mMoon = 7.35e22;

vCirc = sqrt(G*mMoon/r);

alpha = acos(xdif/r);
betta = (pi/2) - alpha;

vxSat = vCirc*cos(betta);
vySat = vCirc*sin(betta);
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B.3.2 Finding ∆V2x and ∆V2y

b = size(t);
c = b(1);
a = x(c,:);

findingV; % Gives vxSat and vySat.

vxWanted = a(16)-vxSat; % Velocity of the Moon in x-direction and the wanted velocity of
the satellite relative to the Moon in x-direction.

vyWanted = a(17)+vySat; % Velocity of the Moon in y-direction and the wanted velocity of
the satellite relative to the Moon in y-direction.

dvx = vxWanted - a(4); % The velocity wanted minus the former velocity of the satellite
giving the difference that should be applied, x-direction.

dvy = vyWanted - a(5); % The velocity wanted minus the former velocity of the satellite
giving the difference that should be applied, y-direction.
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Simulink diagrams

C.1 Transfer with PID control
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Figure C.1: Simulink diagram of PID controlled transfer
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Figure C.2: Simulink diagram of the PID controller

Figure C.3: Simulink diagram of the limited PID controller
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C.2 Transfer with Nonlinear control
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Figure C.4: Simulink diagram of transfer with nonlinear controller
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Figure C.5: Simulink diagram of the Lyapunov function
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MatLab code for Simulink
boxes

D.1 Non-perturbed differential functions

function xdot = fourfunction(input)

x0 = input(26:49);
t0 = input(50);
dvx = input(51);
dvy = input(52);

t = input(25); % from clock
xdot = zeros (24,1);

if (t <= (t0 + 1))
x = x0; % initial states

else
x = input(1:24); % state; positions and velocities

end

If going into Moon orbit: (comment out if not)
if (t <= (t0 + 10))

ux = dvx/10;
uy = dvy/10;

else
ux = 0;
uy = 0;

end

m1=0; % mass of satellite
m2=6e24;% m2=0; % mass of earth
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m3=7.35e22;%m3=0; % mass of moon
m4=1.99e30;%m4=0; % mass of sun

G=6.6433e-11;

l12=norm(x(1:3)-x(7:9));
l13=norm(x(1:3)-x(13:15));
l14=norm(x(1:3)-x(19:21));
l23=norm(x(7:9)-x(13:15));
l24=norm(x(7:9)-x(19:21));
l34=norm(x(13:15)-x(19:21));

xdot(1) = x(4);
xdot(2) = x(5);
xdot(3) = x(6);

% If for Earth and transfer orbit:
% xdot(4) = (G*m2*(x(7)-x(1)))/l12^3+(G*m4*(x(19)-x(1)))/l14^3;
% xdot(5) = (G*m2*(x(8)-x(2)))/l12^3+(G*m4*(x(20)-x(2)))/l14^3;
% xdot(6) = (G*m2*(x(9)-x(3)))/l12^3+(G*m4*(x(21)-x(3)))/l14^3;
% If for Moon orbit:
xdot(4) = (G*m2*(x(7)-x(1)))/l12^3+(G*m4*(x(19)-x(1)))/l14^3+(G*m3*(x(13)-x(1)))/l13^3 + ux;
xdot(5) = (G*m2*(x(8)-x(2)))/l12^3+(G*m4*(x(20)-x(2)))/l14^3+(G*m3*(x(14)-x(2)))/l13^3 + uy;
xdot(6) = (G*m2*(x(9)-x(3)))/l12^3+(G*m4*(x(21)-x(3)))/l14^3+(G*m3*(x(15)-x(3)))/l13^3;

xdot(7) = x(10);
xdot(8) = x(11);
xdot(9) = x(12);
xdot(10) = (G*m1*(x(1)-x(7)))/l12^3+(G*m3*(x(13)-x(7)))/l23^3+(G*m4*(x(19)-x(7)))/l24^3;
xdot(11) = (G*m1*(x(2)-x(8)))/l12^3+(G*m3*(x(14)-x(8)))/l23^3+(G*m4*(x(20)-x(8)))/l24^3;
xdot(12) = (G*m1*(x(3)-x(9)))/l12^3+(G*m3*(x(15)-x(9)))/l23^3+(G*m4*(x(21)-x(9)))/l24^3;
xdot(13) = x(16);
xdot(14) = x(17);
xdot(15) = x(18);
xdot(16) = (G*m1*(x(1)-x(13)))/l13^3+(G*m2*(x(7)-x(13)))/l23^3+(G*m4*(x(19)-x(13)))/l34^3;
xdot(17) = (G*m1*(x(2)-x(14)))/l13^3+(G*m2*(x(8)-x(14)))/l23^3+(G*m4*(x(20)-x(14)))/l34^3;
xdot(18) = (G*m1*(x(3)-x(15)))/l13^3+(G*m2*(x(9)-x(15)))/l23^3+(G*m4*(x(21)-x(15)))/l34^3;
xdot(19) = x(22);
xdot(20) = x(23);
xdot(21) = x(24);
xdot(22) = (G*m1*(x(1)-x(19)))/l14^3+(G*m2*(x(7)-x(19)))/l24^3+(G*m3*(x(13)-x(19)))/l34^3;
xdot(23) = (G*m1*(x(2)-x(20)))/l14^3+(G*m2*(x(8)-x(20)))/l24^3+(G*m3*(x(14)-x(20)))/l34^3;
xdot(24) = (G*m1*(x(3)-x(21)))/l14^3+(G*m2*(x(9)-x(21)))/l24^3+(G*m3*(x(15)-x(21)))/l34^3;

D.2 Perturbed and controlled differential functions
for PID controller

function xdot = fourfunctionControlPID(input)
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x0 = input(32:55);
t0 = input(56);
dvx = input(57);
dvy = input(58);

t = input(28); % from clock
xdot = zeros (24,1);

if (t <= (t0 + 1))
x = x0; % initial states
incorrx = 0;
incorry = 0;
incorrz = 0;
diffx = 0;
diffy = 0;
diffz = 0;

else
x = input(1:24); % state; positions and velocities
incorrx = input(25);
incorry = input(26);
incorrz = input(27);
diffx = input(29);
diffy = input(30);
diffz = input(31);

end

corrx = incorrx;
corry = incorry;
corrz = incorrz;

% If going into Moon orbit: (comment out if not)
%if (t <= (t0 + 10))
% ux = dvx/10;
% uy = dvy/10;
%else
% ux = 0;
% uy = 0;
%end

% If Earth parking or transfer orbit: (comment out if not)
ux = 0;
uy = 0;

m1=0; % mass of satellite
m2=6e24; % mass of earth
m3=7.35e22; % mass of moon
m4=1.99e30; % mass of sun

G=6.6433e-11;

l12=norm(x(1:3)-x(7:9));
l13=norm(x(1:3)-x(13:15));



xvi APPENDIX D. MATLAB CODE FOR SIMULINK BOXES

l14=norm(x(1:3)-x(19:21));
l23=norm(x(7:9)-x(13:15));
l24=norm(x(7:9)-x(19:21));
l34=norm(x(13:15)-x(19:21));

xdot(1) = x(4);
xdot(2) = x(5);
xdot(3) = x(6);
xdot(4) = (G*m2*(x(7)-x(1)))/l12^3+(G*m4*(x(19)-x(1)))/l14^3

+(G*m3*(x(13)-x(1)))/l13^3 + ux + corrx;
xdot(5) = (G*m2*(x(8)-x(2)))/l12^3+(G*m4*(x(20)-x(2)))/l14^3

+(G*m3*(x(14)-x(2)))/l13^3 + uy + corry;
xdot(6) = (G*m2*(x(9)-x(3)))/l12^3+(G*m4*(x(21)-x(3)))/l14^3

+(G*m3*(x(15)-x(3)))/l13^3 + corrz;
xdot(7) = x(10);
xdot(8) = x(11);
xdot(9) = x(12);
xdot(10) = (G*m1*(x(1)-x(7)))/l12^3+(G*m3*(x(13)-x(7)))/l23^3+(G*m4*(x(19)-x(7)))/l24^3;
xdot(11) = (G*m1*(x(2)-x(8)))/l12^3+(G*m3*(x(14)-x(8)))/l23^3+(G*m4*(x(20)-x(8)))/l24^3;
xdot(12) = (G*m1*(x(3)-x(9)))/l12^3+(G*m3*(x(15)-x(9)))/l23^3+(G*m4*(x(21)-x(9)))/l24^3;
xdot(13) = x(16);
xdot(14) = x(17);
xdot(15) = x(18);
xdot(16) = (G*m1*(x(1)-x(13)))/l13^3+(G*m2*(x(7)-x(13)))/l23^3+(G*m4*(x(19)-x(13)))/l34^3;
xdot(17) = (G*m1*(x(2)-x(14)))/l13^3+(G*m2*(x(8)-x(14)))/l23^3+(G*m4*(x(20)-x(14)))/l34^3;
xdot(18) = (G*m1*(x(3)-x(15)))/l13^3+(G*m2*(x(9)-x(15)))/l23^3+(G*m4*(x(21)-x(15)))/l34^3;
xdot(19) = x(22);
xdot(20) = x(23);
xdot(21) = x(24);
xdot(22) = (G*m1*(x(1)-x(19)))/l14^3+(G*m2*(x(7)-x(19)))/l24^3+(G*m3*(x(13)-x(19)))/l34^3;
xdot(23) = (G*m1*(x(2)-x(20)))/l14^3+(G*m2*(x(8)-x(20)))/l24^3+(G*m3*(x(14)-x(20)))/l34^3;
xdot(24) = (G*m1*(x(3)-x(21)))/l14^3+(G*m2*(x(9)-x(21)))/l24^3+(G*m3*(x(15)-x(21)))/l34^3;

D.3 Perturbed and controlled differential functions
for Nonlinear controller

function xdot = fourfunctionLyapunovNew(input)

x0 = input(32:55);
t0 = input(56);
dvx = input(57);
dvy = input(58);

t = input(28); % from clock
xdot = zeros (24,1);
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if (t <= (t0 + 1))
x = x0; % initial states
diffvelx = 0;
diffvely = 0;
diffvelz = 0;
diffposx = 0;
diffposy = 0;
diffposz = 0;

else
x = input(1:24); % state; positions and velocities
diffvelx = input(25);
diffvely = input(26);
diffvelz = input(27);
diffposx = input(29);
diffposy = input(30);
diffposz = input(31);

end

% If going into Moon orbit: (comment out if not)
%if (t <= (t0 + 10))
% ux = dvx/10;
% uy = dvy/10;
%else
% ux = 0;
% uy = 0;
%end

% If Earth parking or transfer orbit: (comment out if not)
ux = 0;
uy = 0;

m1=0; % mass of satellite
m2=6e24;% m2=0; % mass of earth
m3=7.35e22;%m3=0; % mass of moon
m4=1.99e30;%m4=0; % mass of sun

G=6.6433e-11;

l12=norm(x(1:3)-x(7:9));
l13=norm(x(1:3)-x(13:15));
l14=norm(x(1:3)-x(19:21));
l23=norm(x(7:9)-x(13:15));
l24=norm(x(7:9)-x(19:21));
l34=norm(x(13:15)-x(19:21));

%--Lyapunov control part------------
corrx = 0;
corry = 0;
corrz = 0;

if (t >= (t0 + 1))
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% A quite good set of k’s:
k1 = 1;
k2 = 1;
k3 = 10;

rSatx = input(57);
rSaty = input(58);
rSatz = input(59);
rEx = input(63);
rEy = input(64);
rEz = input(65);
rSx = input(75);
rSy = input(76);
rSz = input(77);

rSat = input(57:59);
rE = input(63:65);
rS = input(75:77);

r12 = norm(rSat-rE);
r14 = norm(rSat-rS);

ulinx = G*m2*(((x(1)-x(7))/l12^3)-((rSatx-rEx)/r12^3))
+ G*m4*(((x(1)-x(19))/l14^3)-((rSatx-rSx)/r14^3));

uliny = G*m2*(((x(2)-x(8))/l12^3)-((rSaty-rEy)/r12^3))
+ G*m4*(((x(2)-x(20))/l14^3)-((rSaty-rSy)/r14^3));

ulinz = G*m2*(((x(3)-x(9))/l12^3)-((rSatz-rEz)/r12^3))
+ G*m4*(((x(3)-x(21))/l14^3)-((rSatz-rSz)/r14^3));

corrx = - k3*diffvelx - (k1/k2)*diffposx + ulinx;
corry = - k3*diffvely - (k1/k2)*diffposy + uliny;
corrz = - k3*diffvelz - (k1/k2)*diffposz + ulinz;

end
%--end corr part-----------------------

xdot(1) = x(4);
xdot(2) = x(5);
xdot(3) = x(6);
xdot(4) = - (G*m2*(x(1)-x(7)))/l12^3 -(G*m4*(x(1)-x(19)))/l14^3
-(G*m3*(x(1)-x(13)))/l13^3 + ux + corrx;

xdot(5) = - (G*m2*(x(2)-x(8)))/l12^3 -(G*m4*(x(2)-x(20)))/l14^3
-(G*m3*(x(2)-x(14)))/l13^3 + uy + corry;

xdot(6) = - (G*m2*(x(3)-x(9)))/l12^3-(G*m4*(x(3)-x(21)))/l14^3
-(G*m3*(x(3)-x(15)))/l13^3 + corrz;

xdot(7) = x(10);
xdot(8) = x(11);
xdot(9) = x(12);
xdot(10) = -(G*m1*(x(7)-x(1)))/l12^3-(G*m3*(x(7)-x(13)))/l23^3-(G*m4*(x(7)-x(19)))/l24^3;
xdot(11) = -(G*m1*(x(8)-x(2)))/l12^3-(G*m3*(x(8)-x(14)))/l23^3-(G*m4*(x(8)-x(20)))/l24^3;
xdot(12) = -(G*m1*(x(9)-x(3)))/l12^3-(G*m3*(x(9)-x(15)))/l23^3-(G*m4*(x(9)-x(21)))/l24^3;
xdot(13) = x(16);
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xdot(14) = x(17);
xdot(15) = x(18);
xdot(16) = (G*m1*(x(1)-x(13)))/l13^3+(G*m2*(x(7)-x(13)))/l23^3+(G*m4*(x(19)-x(13)))/l34^3;
xdot(17) = (G*m1*(x(2)-x(14)))/l13^3+(G*m2*(x(8)-x(14)))/l23^3+(G*m4*(x(20)-x(14)))/l34^3;
xdot(18) = (G*m1*(x(3)-x(15)))/l13^3+(G*m2*(x(9)-x(15)))/l23^3+(G*m4*(x(21)-x(15)))/l34^3;
xdot(19) = x(22);
xdot(20) = x(23);
xdot(21) = x(24);
xdot(22) = (G*m1*(x(1)-x(19)))/l14^3+(G*m2*(x(7)-x(19)))/l24^3+(G*m3*(x(13)-x(19)))/l34^3;
xdot(23) = (G*m1*(x(2)-x(20)))/l14^3+(G*m2*(x(8)-x(20)))/l24^3+(G*m3*(x(14)-x(20)))/l34^3;
xdot(24) = (G*m1*(x(3)-x(21)))/l14^3+(G*m2*(x(9)-x(21)))/l24^3+(G*m3*(x(15)-x(21)))/l34^3;
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