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Preface

As a part of the national student satellite program, the NUTS (NTNU Test Satellite) CubeSat

project was initiated at NTNU in 2010. The projects goal is to give hands-on experience to

students within different fields of satellite technology. This includes planning, specification,

design, construction, launch and operation of a satellite.

The main parts of the satellite bus are:

• Power system (solar cells and batteries)

• Attitude and orbit control

• Mechanical system (structures and mechanisms)

• TT&C (telemetry, tracking and command)

• Thermal system

• On-board data handling

• Payload and experiment

The NUTS CubeSat is using the AVR32 UC3 MCU as main processor. There are two pro-

cessors on board, one for the main computer and one for the communications system. The

system is running the FreeRTOS operating system.

This Master’s thesis is a contribution to the attitude determination and control system

(ADCS) of the satellite done during the spring semester 2015. It is not the continuation of

the specialization project of the fall semester 2014 even if the overall goal of developing the

ADCS for NUTS still stands. This thesis has not been submitted previously and has been

made by independent work. However there has been much cooperation with Henrik Rudi

Haave and Marius Fløttum Westgaard, the other two members of this academic year’s ADCS

team.

The thesis consists of two distinct and independent parts.

The first part, Prediction Algorithms for the Attitude Estimator, is a direct contribution to

the NTNU Test Satellite and relates the theory and implementation of three predictors that

the attitude estimator needs. There is one prediction algorithm for the position of the sun

with respect to the satellite, one for the position and velocity of the satellite with respect
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to the earth and one for the earth’s magnetic field vector at the current satellite location.

The term "Predictor" is used because the position of the sun and the magnetic field vector

are measured by sensors of the satellite, but this information is not used in the algorithms

presented here. They just predict where the sun and how the earth’s magnetic field should

be before the attitude estimator merges this information with the sensor data to get the best

possible attitude information.

This part is mostly self-contained and should not need much previous knowledge apart form

elementary physics, mathematics and basic programming skills. The algorithms themselves

are complicated, but the text can also serve as user’s guide for the future developers who do

not need to understand the details, but just how the software belonging to the report works.

The second part, Robust Attitude Stabilization using Magnetorquers, aims to prove that

a known controller also works well even in the case when the inertia matrix is not known or

should change. This is a theoretical issue with no direct use for the NUTS CubeSat project.

Interested readers should have knowledge of nonlinear systems and attitude dynamics be-

cause not everything is repeated. The bibliography gives some hints where to start searching.

There is a reason for the presence of two such independent parts in one Master’s thesis.

It seemed logical for Henrik Rudi Haave and Marius Fløttum Westgaard to continue the work

they began in their specialization projects, namely a focus on the determination and control

parts of the ADCS respectively. There was no third large enough project related to the satellite

for a whole Master’s thesis especially after the successful work on the detumbling procedure

in the specialization project during the fall semester 2014. So the two smaller projects were

merged to one thesis.

Trondheim, 1 June 2015

Antoine Pignède
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Summary and Conclusions

Prediction Algorithms for the Attitude Estimator

The attitude estimator is an extended Kalman filter, a recursive algorithm to treat noisy in-

puts to a dynamical system. The filter is optimal to compute the system’s states. One of the

steps involves a model representation of the system. In the case of the attitude dynamics

of a satellite that has sun sensors and a magnetometer, this requires prior knowledge of the

position of the sun with respect to the satellite and the magnetic flux density vector of the

earth’s magnetic field at the satellite location.

These problems have all been solved already, good software is available online and no

new discovery was made here. The innovation is the integration of these software parts, the

harmonization of their interfaces and the legitimate simplifications done to prevent too high

complexity on restricted hardware. The digital attachment contains ready to use software

and test procedures for the further development of the attitude determination and control

system. The thesis describes the theory and serves as user’s guide for the five parts

1. Time Conversions: The algorithms depend on time. Different time systems (e.g. uni-

versal time, terrestrial time) and time representations (e.g. time and date, day of the

year) are advantageous dependent on the application. The user deals only with the

time and date representation of universal time.

2. Frame Transformations: As with the time, some reference frames are better suited

than other for particular tasks. The user only sees vectors expressed in the Earth-

Centered Inertial Frame, but internally a lot of transformations occur.

3. Sun Vector Predictor: A low accuracy Astronomical Almanac sun vector algorithm is

used. The satellite is so close to the earth that there is no difference in the vector from

the earth’s centre to the sun compared to the vector from the satellite to the sun.

4. Orbit Position and Velocity Prediction: This is also called orbit propagation. The Sim-

plified General Perturbations 4 propagator is used. It needs the Two-Line Element Set

for NUTS for the orbit description and returns the satellite position needed for the next

predictor. The velocity can be useful for the attitude controller.

5. Geomagnetic Field Prediction: There are currently two equally precise models imple-

mented, The World Magnetic Model 2015 and The 12th Generation International Ge-
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omagnetic Reference Field. Of course only one is necessary for the satellite. Hardware

tests suggest to use the World Magnetic Model because it runs faster.

Robust Spacecraft Attitude Stabilization using Magnetorquers

Attitude control of a spacecraft with magnetic coils as only actuators does not suffice to at-

tain and maintain any desired attitude. However if the aim is to stabilize the spacecraft such

that one axis points to the earth, there are formal proofs that magnetorquers provide enough

control action for the stabilization under certain assumptions. This chapter extends two

such proofs. The need of knowledge of the spacecraft inertia is relaxed and no special prop-

erty on the earth’s magnetic field is required.

The first controller is a nonlinear D controller. A strict Lyapunov function is found with

help of Matrosov’s theorem. If the unknown inertia is viewed as the (small) perturbation of

an estimate, the controller still stabilizes the attitude globally, uniformly and asymptotically.

The second controller is designed with the sliding mode control method. If the torque

that the unknown inertia raises, is viewed as part of a (small) disturbance, the controller still

stabilizes the attitude globally, uniformly and asymptotically.
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Sammendrag og Konklusjon

Prediksjonsalgoritmer for Attitudeestimering

Attitudeestimatoren er et extended Kalman filter, en rekursiv algoritme som behandler de

støyete inngangene til satellitens dynamiske system. Filteret er optimalt for å regne ut sys-

temets tilstander. Et av trinnene trenger en modell av systemet. For attitudedynamikken til

en satellitt som har solsensorer og et magnetometer, kreves det kunnskap om solas posisjon

i forhold til satellitten, og vektoren til jordas magnetfelt der satellitten befinner seg.

Disse problemene har blitt løst allerede, god programvare er tilgjengelig på internett

og ingen ny oppfinnelse ble gjort her. Hovedbidraget til denne oppgaven er sammenset-

telsen av de forskjellige delene, grensesnittet og forenklingene som er nødvendige slik at

programvaren kan kjøre på enkel maskinvare. Det digitale vedlegget inneholder ferdig pro-

gramvare med tester som kan benyttes i videre utvikling av satellittens attitudeestimering

og -regulering. Denne oppgaven beskriver teorien om, og er bruksanvisningen til, de fem

delene:

1. Tidskonverteringer: Algoritmene er tidsavhengige. Forskjellige tidssystemer (f.eks.

universal time, terrestrial time) og tidsformater (f.eks. dato og tidspunkt, årets dag)

er brukbare for forskjellige anvendingsområder. Brukeren jobber bare med dato og

tidspunkt formatet til universal time.

2. Rammetransformasjoner: Som med tida er noen rammer bedre egnet enn andre for

visse oppgaver. Brukeren ser bare vektorer i Earth-Centered Inertial Frame, men mange

transformasjoner skjer i bakgrunnen.

3. Solvektorprediksjon: En algoritme fra Astronomical Almanac med lav nøyaktighet blir

brukt. Satellitten er nær nok jorda til at det er neglisjerbar differanse mellom vektoren

fra jorda til sola og vektoren fra satellitten til sola.

4. Baneposisjons- og Banehastighetsprediksjon: Også kalt banepropagasjon. "The Sim-

plified General Perturbations 4" brukes. Banen til NUTS er beskrevet av et "Two-Line

Element Set", og propagasjonsalgoritmen regner ut satellittens posisjon som den neste

prediksjonen trenger. Hastigheten kan være nyttig for attitudereguleringen.

5. Prediksjon av Jordas Magnetfelt: To modeller er implementert, "The World Magnetic

Model 2015" og "The 12th Generation International Geomagnetic Reference Field",
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som er like gode. Selvfølgelig trengs det bare en for satellitten. Tester på maskinvaren

antyder at "World Magnetic Model" bør brukes fordi den kjører raskere.

Robust Attitudestabilisering ved Bruk av Magnetspoler

Gitt kun magnetspoler vil det ikke være mulig for et romskip å nå og holde en ønsket attitude.

Men hvis målet er å stabilisere romskipet slik at en akse peker på jorden, fins det formelle

bevis at magnetspoler kan skape nok effekt for stabiliseringen hvis visse krav er oppfyllt.

Dette kapittelet utvider to slike bevis. Det er ikke lenger nødvendig å kjenne romskipets

treghet eksakt og det er ingen antagelser om egenskaper til jordas magnetfelt.

Den første regulatoren er en ulineær D-regulator. En "strict Lyapunov function" blir fun-

net ved hjelp av Matrosovs teorem. Hvis den ukjente tregheten blir sett som en (liten) per-

turbasjon, kan regulatoren fortsatt stabilisere attituden globalt, uniformt og asymptotisk.

Den andre regulatoren er lagt ved hjelp av "sliding mode control". Hvis dreiemomentet fra

grunn av den ukjente tregheten blir sett som en del av en (liten) forstyrrelse, kan regulatoren

fortsatt stabilisere attituden globalt, uniformt og asymptotisk.
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Chapter 1

Introduction

1.1 About the NUTS Project

NUTS is a satellite building project launched in 2010 and currently under development at

the Norwegian University of Science and Technology in Trondheim. The aim is to place a

picosatellite in accordance with the CubeSat standard (10cm × 10cm × 20cm, a so-called

"Double CubeSat", Figure 1.11) into orbit by the end of 2016. The project is the third part of

the student satellite program driven by the Norwegian Center for Space-related Education

(NAROM), the other two being HiNCube, built at the Narvik University College and already

launched, and CubeSTAR currently under development at the University of Oslo.

The satellite’s payload is an optical camera that will take pictures of the earth. But the

main focus of the project is to actually go through all steps of the development of a satel-

lite and to permit students to get in touch with state-of-the-art space technology and group

project work already during their university education.

1.2 Previous Work on the NUTS ADCS

Some predecessors at the Department of Engineering Cybernetics did already a lot of work

on the ADCS in their Master’s theses. However most of that work concerned only theory

and computer simulations, e.g. the very complete thesis [29]. It was not before the spring

semester 2014 that Øyvind Rein built an ADCS prototype, that can be seen in Figure 1.22, and

real testing began [26]. His work is the most interesting source since it was used as starting

1Image taken from [26].
2Image taken from [26].
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The NTNU Test Satellite

point for subsequent tasks of the academic year 2014/2015. The specialization projects of the

fall semester 2014 [12], [24] and [38] refer to it to a great extent. It is therefore recommended

to the reader to take a look at [26] before reading them. The same three students continued

with Master’s theses during the spring semester 2015, where the bounds to previous work

on the NUTS ADCS are less tight. Especially the present report refers very seldom to older

theses concerning NUTS directly.

Fortunately NUTS is not the first picosatellite and a lot of people faced the same prob-

lems in past years and found solutions to overcome them. There is therefore good literature

accessible on this field. There is no literature review chapter in this report because the two

parts concern so specific parts of spacecraft attitude determination and control, that the few

interesting sources are cited directly at the relevant places.

1.3 Overall Goal of the Master’s Thesis

As already stated in this introduction a lot of theoretical work and simulations have been

done for the NUTS project in the past years. The time has come now to build the engineering

model and for this a first fully functional ADCS is needed. This is the motivation for the first

part of this thesis where a concrete problem for the NUTS ADCS is faced and software to
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Figure 1.2: The ADCS prototype
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solve it is discussed. The complete source code is in the digital attachment.

The second part also belongs to the category of attitude determination and control with

magnetorquers only, but deals with a completely different problem. The bounds to NUTS are

much looser, in fact this is just a theoretical inspection whose results may not be included to

NUTS, but will hopefully help for the future of CubeSats and be inspiring for the interested

ADCS developer. Reasons for this twofold Master’s thesis are already given in the Preface and

Summary of the thesis.

1.4 Structure of this Report

The structure of the thesis is actually quite simple. The two parts have each their own in-

dependent chapter. They both begin with an introduction to describe the problem and mo-

tivation before proceeding to explain the solution. Conclusions and thoughts about future

work are also included for each chapter such that a global conclusion chapter is not neces-

sary. The two chapters are ordered after their importance for the NUTS project as a whole

beginning with the most important one.

The focus is on some specific ADCS parts and it is assumed that the reader has already

some knowledge about the attitude determination and control system as a whole. Again [26]

is a good place to start but also other Master’s theses about NUTS done at NTNU’s Depart-

ment of Engineering Cybernetics are worth reading. For more information about the current

status please also refer to the Project and Master’s theses of Henrik Rudi Haave and Marius

Fløttum Westgaard.

It is additionally assumed that the reader is familiar with control theory as explained in

[19], rigid-body dynamics such as explained in [8], easy laws of magnetism and basics of the

C programming language.



Chapter 2

Prediction Algorithms for the Attitude

Estimator

2.1 Introduction

The attitude estimator for NUTS is an extended Kalman filter, EKF, which in one of its steps

takes a model description of the following form in general.

xk+1 = f(xk ,ωb
b/i ,k )+wk (2.1a)

zk = h(xk )+vk (2.1b)

For the satellite attitude estimation the state vector xk , the output vector zk , the state

equation (2.1a) and the output equation (2.1b) are [12]

xk =


qk

bb
s,k

bb
m,k

 zk =
 sb

norm,k

mb
norm,k

 (2.2a)

xk+1 =
Ω(ωb

b/i ,k ) 03×6

06×4 06×6

xk +wk zk =
Rb

i (qk ) 03×3

03×3 Rb
i (qk )

 ri
s

ri
m

+
 bb

s,k

bb
m,k

+vk (2.2b)

The super- and subscripts are to be read as follows:

• k denotes the discrete time.

• s stands for "sun" or "sun sensor".

5



6 CHAPTER 2. PREDICTION ALGORITHMS FOR THE ATTITUDE ESTIMATOR

• m stands for "magnetic field" or "magnetometer".

• b and i mark vectors expressed in the BODY and inertial frame, see section 2.3.

The other symbols used above are

• The state q is the quaternion representing the attitude, see section 3.2.

• The states b are biases to sensors.

• The output sb
norm,k is the normed vector pointing from the satellite to the sun expressed

in the BODY frame.

• The output mb
norm,k is the normed earth’s magnetic field vector expressed in BODY.

• ωb
b/i ,k is the angular velocity of the BODY frame with respect to the inertial frame ex-

pressed in the BODY frame (gyroscope measurement).

• Ω(ωb
b/i ,k ) is the matrix for the quaternion differential equation q̇ =Ω(ωb

b/i ,k )q. This is

another compact notation of the attitude kinematics, equation (3.2), than q̇ = T(q)ωb
b/i ,k .

In their expanded form they’re exactly the same.

• wk and vk are the process and measurement noise.

• Rb
i (qk ) is the rotation matrix dependent on the quaternion representing the attitude,

see section 3.2. It maps vectors from the inertial to the BODY frame.

• ri
s and ri

m finally are the reference vectors for the sun position and the earth’s magnetic

field expressed in the inertial frame.

To find the reference vectors without the sensors and attitude information is the subject

of this chapter. This is required because the EKF needs to linearize the output equation (2.1b)

to compute the Kalman gain and the covariance matrix. More details about the Kalman filter

in general can be found in [1], more details about how the predictions are used for NUTS

is part of Henrik Rudi Haave’s contribution to the satellite through Project [12] and Master’s

thesis (likewise done in the spring semester 2015).

The following sections describe the algorithms for the time and frame transformations

and the predictors that the ADCS of NUTS is going to use. A lot of time and frame transfor-

mations are needed because the reference vectors are dependent on time and place of the

satellite and the algorithms use different systems and representations.
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The three first sections on the time conversions and frame transformations as well as the

sun vector predictor are mainly based on David Vallado’s "Fundamentals of Astrodynamics

and Applications" [35].

The orbit position (needed for the geomagnetic vector) and orbit velocity (needed for the

attitude control, see Marius Fløttum Westgaard’s Project [38] and Master’s thesis) predictor

is based on the original [14] and revisited [36] editions of the "Spacetrack Report no. 3".

Source code implementing the algorithms of theses sources is available for free in the lan-

guages C++, Fortran, MATLAB and Pascal on the "CelesTrak" website [18].

Two different models of equal quality of the earth’s magnetic field are described in the fifth

section. Implementations in C [34] and MATLAB [4] respectively are also available for free on

the internet.

There is then a section that lists all the global constants that are needed by several functions.

They describe mainly geometrical and magnetic properties of the earth.

The tests done on the implementation are explained and justified in section 2.8. The source

code is not listed in this thesis but available as digital attachment or upon request.

The very important assumption that the current time is exactly known to the ADCS board,

is a strong restriction and impossible to satisfy precisely by the satellite. The last but one

section discusses what happens if the on board clock differs from the high precision clocks

defining the universal time on earth.

Some material of the "User’s Guide" subsections addressing the duties of future NUTS ADCS

users and developers are summarized in the last section of the chapter on further work

needed for the prediction algorithms for the attitude estimator.

Each of the main sections about a part of the software follows the same pattern. After an

introduction to explain the purpose, the theory and the algorithms are described. The most

important part of each section concerns then the implementation, the code found on the

internet was for the most not very well suited for the overall goal just to find the reference

vectors on the satellite hardware. It was thus shorten and simplified a lot, which is in a way

the red line of this chapter. The program has to run on the satellite hardware which is not

as performing as a personal computer. Thus easy algorithms and as few time systems and

reference frames as possible are included. A focus is set on explaining the interface and

assumptions made. Most of the readers may jump to the "User’s Guide" labelled subsections

directly if the only interest is how to use the software.
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Two software packages are in the digital attachment of this thesis. The MATLAB package

was used to rapidly make the required changes and do some preliminary tests. The second

one, written in C in the Eclipse Platform and compiled with the GNU C Compiler, is meant

to be added to the NUTS ADCS software and was tested more thoroughly.

Every function in the source code has a longer introduction comment explaining what the

function does, what inputs and outputs it has and if any other function of the software pack-

age is used. Cross references to other related or similar functions are given too.

2.2 Time Conversions

To know the current date and time as accurately as possible is necessary for several parts of

the software. The position of the sun and the earth’s magnetic field change with time and the

transformations from inertial to non-inertial frames too. There exist a lot of different time

systems and ways to represent time, several are needed in NUTS because some algorithms

are easier to do with one or another.

The time conversions is the first part of the software package explained in this thesis

because it does not rely on other parts, its rather that the other software parts need the time

conversions.

2.2.1 Time Systems

The time is the fundamental physics dimension of the moment something occurs. A time

system is used to accurately define this moment based on a recurring interval such as one

day or one (SI) second. The predictors use the two systems solar time, implemented in the

universal time system, and terrestrial time. In addition sidereal time must also be explained

because the modern universal time is based on it.

The two time systems sidereal and solar time are best explained by a picture. Consider

Figure 2.11 that shows the difference between a sidereal and a solar day. Note that this illus-

tration is greatly exaggerated.

1"Sidereal Time en" by Francisco Javier Blanco González - May 29, 2009. Licensed under CC BY-SA
3.0 via Wikipedia - http://en.wikipedia.org/wiki/File:Sidereal_Time_en.PNG#mediaviewer/File:
Sidereal_Time_en.PNG.

http://en.wikipedia.org/wiki/File:Sidereal_Time_en.PNG#mediaviewer/File:Sidereal_Time_en.PNG
http://en.wikipedia.org/wiki/File:Sidereal_Time_en.PNG#mediaviewer/File:Sidereal_Time_en.PNG
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Figure 2.1: Sidereal Time and Solar Time.
Left: A distant star (the small red circle) and the sun are at culmination on the local merid-
ian. Center: Only the distant star is at culmination, a sidereal day is complete. Right: A few
minutes later the sun is on the local meridian again, a solar day is complete.

Sidereal Time

The sidereal time is based solely on the rotation of the earth about itself which takes about

236s less than a solar day, this is the sidereal day visualized in Figure 2.1. It is usually mea-

sured as an angle from the vernal equinox, an invariable direction not rotating with the earth,

see section 2.3, to the longitude of the current location positively eastward. Distant celestial

objects apparently immobile with respect to the earth are used to measure this angle.

The exact vernal equinox moves, very slowly but it does, such that deviations are induced

in the sidereal time. That’s why one has to differ from the mean sidereal time with respect

to a mathematically defined mean equinox and the apparent sidereal time that uses the true

vernal equinox as reference point.

One of the frame transformations needs to take this difference of sidereal time into ac-
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count. There is thus a function in the predictor software package that returns the Greenwich

mean sidereal time, GMST, as angle in radians. This function though should not be needed

directly.

Universal Time

The universal time is based on the sun crossing the prime meridian each day, this is the

modern, precise implementation of the solar time used throughout the ages that itself is

based on the solar day visualized in Figure 2.1. However as the sun’s motion has irregularities,

the position of distant stars and galaxies apparently immobile with respect to the earth, that

is the sidereal time, is used to derive the universal time. This purest form is named UT0. The

UT1 form of the universal time then removes the polar motion of the earth, see section 2.3,

to have a time that is independent of the location of the measurement station.

Because this universal time does not completely coincide with the generally accepted so-

lar day of 86400s (24 hours), the commonly used time system is coordinated universal time,

UTC, where fractions of seconds are not corrected each day in the difference between UT1

and the 86400s of a solar day. UTC is kept within ±0.9s of UT1 by the insertion or removal of

leap seconds from time to time. This ensures small errors when UT1 is approximated with

UTC. This assumption, U T 1 =U TC , is also done for all time manipulations on the ADCS.

A part of the functions in the predictors that need time inputs, take them as coordinated

universal time and all the functions that the attitude estimator calls directly and need time

inputs, take them as UTC even if the underlying functions refer to another time system.

Terrestrial Time

When describing the motion of celestial objects relativistic phenomenons are important to

consider. It is then often useful to have the equations of motion about the barycenter of the

solar system, that is it’s center of mass. The independent variable in these equations is the

barycentric dynamical time. Describing this in terms of the motion of the earth results in the

terrestrial time, TT. The correct definition is

«the theoretical timescale of apparent geocentric ephemerides of bodies in the

solar system.» [35]

It is fortunately easier than the definition suggest to include the terrestrial time system

to the predictors. A conversion from UTC to TT is required because some other functions
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that need time inputs e.g. for finding rotation matrices, have their coefficients dependent of

terrestrial time.

The difference between both time systems is called ∆T = T T −U T where the universal

time is approximated with the coordinated universal time in the NUTS software. ∆T is not

constant but can be approximated with polynomials as described in [23]. For the years 2005

to 2050 it is a simple quadratic function of the year and month.

2.2.2 Time Representations

Actual time points, independent of the time system, can be represented in various ways and

with different units. People are used to express time as date and time of the day but this is

not very practical for computer software. The time representation for NUTS are presented in

the next paragraphs. For every interaction with the users the common date and time repre-

sentation is chosen for ease of use.

Date and Time

This is the common way to represent time in everyday conversation. The date has the three

elements year, month and day and the time is depicted into hours, minutes and seconds. All

the five first values are integers while the seconds also can contain fractional parts.

This time representation, in the coordinated universal time system, is also assumed to

be available on NUTS and is thus the base time representation. Whenever the user needs to

provide a time input to get one reference vector, a combined variable of five integers and one

floating point number must be provided.

Instead of hours, minutes and seconds the time of the day can also be given as angle from

a reference point, usually the vernal equinox. This value, along with the date as year, month

and day, is the preferred way for sidereal time. It is just used internally at one place for the

GMST and thus not important to consider for the user.

Year and Fraction, Day of the Year and Fraction

There are several disadvantages with the common representation mentioned above. The

month and the day of the month do not start with 0 but with 1 and on top of that not every

month has the same number of days but can have 28, 29, 30 or 31 days.
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A better representation of time and one that uses less variables, namely one floating point

number, is thus to give the month, day, hours and so on as fraction of the given year.

This format is for example used in the geomagnetic field predictors. The flux density

coefficients are given as pairs. The first value is the coefficient at the beginning of the valid

time range of the model, 1 January 2015 or 2015.0 for the moment, and the second is a slope

value which is estimated to hold for the next five years. The magnetic coefficients of any date

and time in between those five years can then easily be found by linear interpolation if the

time is given as fractional year.

The lack of precision of this kind of representation can be improved if the fraction of the

year is expressed in days. That is two values define the time point, the year and the day and

fraction. This is a popular time format in space applications because it is relatively easy to

read, even if one of the mentioned drawbacks is not solved by it. The unit of the second value

is "day of the year" meaning that it still begins with 1 and not with 0.

Julian Date and Julian Century

As in the previous representation date and time can also just be expressed in days and frac-

tion of days after or before an arbitrary date, called epoch. This is the concept of the Julian

date, JD, where the time is given as the difference with 1 January 4713 BC at noon in days.

Note that the Julian calendar and not the Gregorian calendar is used, meaning that each year

evenly divisible by four is a leap year.

The strange epoch has its origin in the only common point for the solar cycle (28 years),

the Metonic cycle (19 years) and the Roman Indication (15 years) which together create the

Julian period lasting 7980 years [35]. To set the beginning at noon instead of midnight per-

mitted astronomers to make their observations (night work) on one day. This noon however

can be 12:00:00 in sidereal, universal or terrestrial time. Universal time is usually meant

when the Julian date is given without explicit time system.

The Julian date tends to use very large numbers in common applications meaning a lack

of precision in the milliseconds range. That’s why the modified Julian date, MJD, was intro-

duced that simply removes the two highest digits of our era and shifts the beginning of the

day to midnight, i.e.

M JD = JD −2400000.5

But a lot of functions from the source code require the full Julian date and its precision is
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good enough for NUTS. The modified Julian date is just used in two short approximation

algorithms in the NUTS frame transformations.

Another concept on the contrary is often used to calculate rotation matrices. They ex-

press their coefficients not in days but in Julian centuries (36525 days exactly) before or after

1 January 2000 at noon in terrestrial time. This epoch is commonly referred to as J2000.0.

The conversion from the Julian date is

TT T = JDT T −2451545

36525
(2.3)

where the subscript denotes that terrestrial time must be used. Note however that the same

conversion can be applied for any time system.

2.2.3 Assumptions

Before moving on to detail the functions related to time manipulation in the predictors of

NUTS, some important assumptions made to simplify the software must be listed.

The most important assumption is that the current coordinated universal time is known

to the ADCS as year, month, day, hour, minute and seconds (with fraction). Whether it may

be provided by the on-board computer or is directly accessible on the ADCS board does not

matter. Should the format of this clock not be year, month, day, hour, minute and seconds,

then an additional conversion function must be implemented if the software package in the

digital attachment is to be used.

As already written in the presentation of the universal time concept, the precise universal

time version UT1 is approximated here with the coordinated universal time. This brings in

the worst case an error of 0.9s, but is accurate enough as the sun position and the earth

magnetic field do not change that fast.

The weekly published IERS Bulletin A [16] has an approximation formula for the difference

U T 1−U TC but this is not included in the software for NUTS as this would make even more

conversions necessary. In addition the source code from [18] not always is clear when UTC

or UT1 should be used.

Finally two less important assumptions, that are of no threat to NUTS, must be men-

tioned.

The algorithm used to find the Julian date is only valid for years between 1900 and 2100. This
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exceeds the life expectation of NUTS very much.

The polynomial estimation of ∆T , the difference between universal and terrestrial time, is

only valid from 2005 to 2050. NUTS will be launched in this decade and will, like every ob-

ject in low earth orbit, experience rests of atmospheric drag that will slow down the speed

and end the satellite’s life after 25 to 30 years, so before 2050. This smaller validity period is

thus not of practical meaning either. Anyway the source [23] provides further polynomials

valid for other year ranges if needed.

2.2.4 Implementation Details

In total eleven functions, all having names beginning with the keyword "time", and one

struct are declared and defined in the timeConv.h header and the timeConv.c source files.

The typedef struct Time regroups five integers and one floating point number to form

a data structure for the base time representation as date and time of the day. The floating

point number is of course for the seconds and fractions of seconds. The user only will have

to deal with this time representation.

The first ten functions are pairs to convert time systems or representations back and

forth. Not all of these actually are used in the predictors, but they were very important in

the testing phase.

Time Systems Conversion

Only two time systems, terrestrial time and universal time (approximated by UTC), are part

of the software package. A time struct expressed in one of the systems can be converted to

the other with the two functions

• Time timeUtc2tt(Time timeUTC)

• Time timeTt2utc(Time timeTT)

They implement the currently valid approximation for the difference T T −U T in seconds

[23]

y = year + month −0.5

12

∆T = 62.92+0.32217(y −2000)+0.005589(y −2000)2
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and return a new Time struct in the other time system. The year and fractional days repre-

sentation is used internally to simplify. Problems possibly arising in the beginning or end of

years as well as leap years are treated.

Time Representation Conversions

The other eight functions convert between different representations. Four of them

• double timeDatetime2days(Time time)

• Time timeDays2datetime(int year, double days)

• double timeDatetime2years(Time time)

• Time timeYears2datetime(double years)

should be self-explanatory and the only difficulties are to consider leap years and that the

variable "days" for the day of the year plus fraction begins with 1. They were implemented

from scratch with occasional help from [35]. Note however that this source assumes the year

to be between 1900 and 2100 such that every fourth year is a leap year. The functions for

NUTS are universal in that case, even if the practical usage is negligible.

The two functions that handle Julian dates

• double timeDatetime2jd(Time time)

• Time timeJd2datetime(double jd)

were copied almost directly from [18], the software package that goes together with [35]. The

algorithm to compute the Julian date for years between 1900 and 2100 implemented in the

first of these to functions is

JD = 367year−
ÌÌÌÊ7

(
year +

⌊
month+9

12

⌋)
4

ÍÍÍË+⌊
275month

9

⌋
+d ay+1721013.5+

sec
60 +mi n

60 +hour

24

The back conversion does not invert the function above because of the floor operator b·c. It

takes away the Julian date of 1 January 1900 from the input. It then finds the integer year and

uses the easy conversion for fractional days back to Time listed above.

The last pair of conversion functions

• double timeJd2jc(double jd)
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• double timeJc2jd(double jc)

applies equation (2.3) and its reverse. Note that even if equation (2.3) mentions terrestrial

time, the same conversion is also valid for any other time system.

The last time conversion function, which also was copied form [18], is a little different

and has no reverse function implemented.

• double timeGstime(double jd)

finds the Greenwich mean sidereal time of the Julian date (universal time) in radians with

the following algorithm [35]

1. Compute the Julian century TU T with the function timeJd2jc.

2. Compute the GMST in seconds

θGMSTsec =−6.2 ·10−6T 3
U T +0.093104T 2

U T + (876600 ·3600+8640184.812866)TU T

+67310.54841s

3. Compute the GMST in radians

θGMST = θGMSTsec · π

180

rad

deg
· 1

240

deg

s

4. Ensure that θGMST lies in the interval [0,2π] .

There is no reverse function because it’s not possible to find the date and hence the time of

that date from just one angle. But that is of no concern because the GMST is only needed as

angle value to compute the sidereal time rotation matrix in the frame transformations.

2.2.5 Time Conversions User’s Guide

There should be no great need to use the time conversion functions directly, especially if the

ADCS can provide the current time in the format of the Time struct. But one should know

what each functions does, especially those that convert from date and time representation

to another. They are often one of the first steps of the frame transformations or predictors

because they need internally another time format as the user inputs. Sometimes, like for

the sidereal time rotation matrix described in the coming frame transformation section, two

conversion one after the other are necessary (because timeGstime takes a Julian date input).
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2.3 Frame Transformations

Ideally every position and velocity vector would be expressed in just one reference frame re-

gardless of the application. But it is quasi impossible to find one frame that fits all purposes.

Inertial frames are often preferred for equations of motion because Newton’s laws are valid

just for them. The earth’s magnetic field on the other hand rotates with the earth and the

models make use of this by addressing the position in coordinates that rotate with the earth,

rotating frames are not inertial.

In the years since the beginning of spaceflight a lot of different coordinate systems were

defined depending on what effect they should emphasize and for what application they are

intended. An important part of any astrodynamics software consists thus of transforma-

tion functions between several frames. This usually means computing rotation matrices,

but in theory translations could also be needed if different origins such as the sun’s center,

the earth’s center or the earth’s surface at an arbitrary point make the application easy.

Note that the vectors are not changed by the transformation, they’re only represented

with different coordinate values according to a different set of axes.

2.3.1 Reference Frames

The number of frames in the NUTS software package was reduced to four right-handed

frames from the numerous ones defined in [35] and implemented in the software package

of [18]. Two of them are earth-centered, non-rotating, thus sufficiently inertial frames. The

third reference frame is also earth-centered but rotates with it. In addition to Cartesian co-

ordinates this frame also uses two other sets of coordinates, geodetic and geocentric coor-

dinates, in the geomagnetic field prediction, see section 2.6. This predictor has as original

output a magnetic vector with north-, east- and downward components at the specific loca-

tion. This is the fourth frame.

Earth-Centered Inertial Frames

Earth-centered non-rotating frames are not really inertial because the earth moves around

the sun and the whole solar system also moves in the galaxy (which of course moves too),

but approximate an inertial frame well enough for earth orbiting satellites.

The first and most important of all the frames is the geocentric equatorial reference frame



18 CHAPTER 2. PREDICTION ALGORITHMS FOR THE ATTITUDE ESTIMATOR

which is often referred to as ECI, as done in this thesis, or J2000 because the principal direc-

tion is based on the J2000.0 epoch. As its name indicates the origin is in the earth’s center

and the fundamental plane is the earth’s equator, that means that the z-axis points to the

north pole.

The principal direction, that is the x-axis, is the vernal equinox of the J2000.0 epoch. When

an observer sees the sun crossing the intersection of the equatorial plane with the ecliptic

(the plane of the earth’s mean orbit about the sun), the vector pointing to the sun is called

"equinox" because this is when day and night are equally long. This happens twice a year at

the beginning of spring (around 21 March, the vernal equinox) and of fall (around 23 Septem-

ber, the autumnal equinox). From the northern hemisphere point of view the sun crosses the

intersection upwards on the vernal equinox, that’s why one also says that the sun is at its as-

cending node. Actually the principal direction of ECI is not the true but the mean equinox, a

mathematically defined direction that has not the slow movement of the true equinox.

The y-axis simply is in the fundamental plane 90◦ east of the x-axis to complete the right-

handed system.

All inputs and outputs of functions that are important for the user, will be vectors ex-

pressed in this ECI frame. Whenever another reference frame is more practical, the transfor-

mations are done internally as first and last steps.

ECI should not be confused with the geocentric celestial reference frame which is closely

aligned with the geocentric equatorial reference frame but has varying fundamental plane

and principal direction with respect to ECI to achieve an even better inertial approximation.

The reason why the orbit position and velocity estimator presented in section 2.5 is a

good choice for NUTS, is explained in that section. But it has an impact on the frame trans-

formations because the position and velocity outputs are in the true equator mean equinox

reference frame, TEME, and not in the ECI reference frame. But a common base frame is

wanted.

The original "Spacetrack Report no. 3" [14] published in 1980 says nothing about the

reference frame for the output values and surprisingly nobody seems to exactly know how

to resolve the position and velocity vectors to one of the known and well defined frames.

Additionally the name is misleading because this frame uses the true equator, like ECI, as

fundamental plane but not the mean equinox conventionally used today.
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Likewise the time system is not explicitly named in [14].

The general belief how to deal with these uncertainties can be found in the revision of

the "Spacetrack Report no. 3", [36]. With the universal time system and the given formu-

las to convert TEME vectors to ECI, the algorithm’s outputs are equal to observations done

by sensors within the measurement and numerical accuracy. A summary of this revision is

contained in [35] and, as with nearly everything in this section, implementations are on [18].

Earth-Centered Earth-Fixed, International Terrestrial Reference Frame

As stated in the introduction to this section, the earth’s magnetic field is modelled easiest

with a frame fixed to the earth, that is a frame that rotates with the earth and is thus not

inertial. The commonly used earth-centered earth-fixed reference frame is the international

terrestrial reference frame, hereafter referred to as ECEF as the sources do.

Again the fundamental plane is the earth’s equator, hence the z-axis points to the north pole.

The principal direction points to the intersecting point of the equator and the Greenwich

prime meridian. To form a right-handed system the y-axis is 90◦ east of the x-axis in the

fundamental plane.

The latest revision of the world geodetic system, WGS 84, used for example by GNSS, does

not completely coincide with ECEF but has usually deviations in the centimeters range.

In everyday speech, maps of the earth and a lot of applications ECEF positions are not

given as Cartesian coordinates but as latitude φ, longitude λ and altitude h. Together these

three values form the geodetic coordinates as can be seen in Figure 2.22. Unfortunately the

altitude term is ambiguous. While everyday speech most often refer to the elevation above

mean sea level, altitude in this thesis means the height above the ellipsoid as indicated in the

figure.

Even if the geodetic coordinate system is the input for the geomagnetic field calculators

of the sources, they internally use another coordinate set, the geocentric coordinates which

are the ellipsoidal equivalent of spherical coordinates. Figure 2.33 shows them as well as

their relation to the geodetic coordinates. The three values are called radial distance r , az-

2"Geodetic coordinates" by Peter Mercator - Own work. Licensed under CC BY-SA 3.0 via Wikimedia
Commons - http://commons.wikimedia.org/wiki/File:Geodetic_coordinates.svg#mediaviewer/
File:Geodetic_coordinates.svg.

3"Geocentric coordinates" by Peter Mercator - Own work. Licensed under CC BY-SA 3.0 via
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Geocentric_coordinates.svg#
mediaviewer/File:Geocentric_coordinates.svg.

http://commons.wikimedia.org/wiki/File:Geodetic_coordinates.svg#mediaviewer/File:Geodetic_coordinates.svg
http://commons.wikimedia.org/wiki/File:Geodetic_coordinates.svg#mediaviewer/File:Geodetic_coordinates.svg
http://commons.wikimedia.org/wiki/File:Geocentric_coordinates.svg#mediaviewer/File:Geocentric_coordinates.svg
http://commons.wikimedia.org/wiki/File:Geocentric_coordinates.svg#mediaviewer/File:Geocentric_coordinates.svg
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Figure 2.2: Geodetic Coordinates P (φ,λ,h) Figure 2.3: Geocentric or Spherical Polar Coordi-
nates P (r,θ,λ) or P (r,ψ,λ)

imuth angle λ (it is equal to the longitude) and elevation angle ψ. The latter is often called

geocentric latitude, as opposed to the geodetic latitude, or replaced by the polar angle θ,

which sometimes has the names inclination or geocentric co-latitude.

The two figures greatly exaggerate the flattening of the earth. In fact the difference in

(geodetic) latitude and (geocentric) elevation angle is never larger than 0.2◦.

North East Down Reference Frame

The orthogonal plane that can be seen at point N in Figure 2.2 defines the north east down

reference frame, NED. This is a local reference frame often used for indicating marine vessel

or aircraft velocities with one component pointing to the north pole, one in eastern direction

and the third perpendicularly down.

This right-handed system is usually not used in astrodynamics and is only included in

this thesis because the earth’s magnetic field vector is given in this frame by the geomagnetic

field models. It is then transformed to ECI in the implementation for NUTS as explained in

section 2.6.

One has not to account for the translation when transforming velocity vectors expressed

in NED to velocity vectors expressed in ECEF. One only needs a rotation matrix that is de-

pendent on the latitude and the longitude. Fortunately the same applies also for magnetic

vectors such that the same NED to ECEF transformation as in [8] can be used.
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Figure 2.4: The NUTS BODY Reference Frame

BODY and ORBIT Reference Frame

Two last reference frames have to be mentioned even if they’re not used in the prediction

software. But it is necessary to know them, to understand the Kalman filter model (2.2) and

the background, that is that the predictions are needed to perform attitude determination

and control for an earth orbiting satellite. In addition they appear often in the second main

chapter of this thesis.

The BODY reference frame origin is located at the satellite’s center of mass and the x-, y-

and z-axes are the principal axes, meaning that the inertia matrix is diagonal. Figure 2.44

shows this frame, the positive sense of the axes is through the electromagnetic coils.

The extended Kalman filter actually works in the inertial frame, but the magnetometer, the

gyroscope and the sun sensors express their measurements in the BODY frame, thus rota-

tions have to be included in the underlying model. Those however are not part of the pre-

diction algorithms and won’t be considered further because the satellite is treated as a point

with negligible mass compared to the earth in this chapter. Chapter 3 and other publications

on the NUTS ADCS give more information on the BODY frame and transformations.

The ORBIT frame also has its origin in the satellite’s center of mass but the axes do not

rotate with the satellite. The z-axis points to the earth’s center, the x-axis in the velocity

direction and the y-axis completes the right-handed frame. This frame rotates about the

4Image provided by the NUTS team.
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Figure 2.5: Rotation (green), Precession (blue) and Nutation in Obliquity (red) of a Planet

earth with the angular velocity ωo .

The attitude of the satellite is defined as the rotation matrix or quaternion or Euler angle

set describing how vectors expressed in the BODY and ORBIT frame are related to each other.

To actively control this is the goal of the attitude determination and control system.

2.3.2 The Earth: Orbit, Rotation and Shape

The transformation between the earth-centered inertial frames and the earth-fixed frame

is the repeated application of rotation matrices describing one variation in the earth’s orbit

about the sun or one variation of the earth’s rotation about itself. The three first parts of this

subsection will account for them.

The last paragraphs of this subsection about a model of the earth’s shape are important

for the three coordinate sets used in the ECEF reference frame.

Precession

Two effects are regrouped under the term precession. This is the blue circle shown in Figure

2.55 and can be experienced by everyone with a spinning top.

In the earth’s case the blue circle is mainly caused by the gravity forces of the sun and the

moon on the non-spherical earth. They induce luni-solar precession which results in circular

motion of the earth rotation axis. The period is about 26000 years long and the half angle of

5"Praezession" by User Herbye (German Wikipedia). Designed by Dr. H. Sulzer - Original. Licensed under
CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Praezession.svg#
mediaviewer/File:Praezession.svg.

http://commons.wikimedia.org/wiki/File:Praezession.svg#mediaviewer/File:Praezession.svg
http://commons.wikimedia.org/wiki/File:Praezession.svg#mediaviewer/File:Praezession.svg
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Figure 2.6: The path of the north celestial pole
among the stars due to precession

Figure 2.7: The path of the south celestial pole
among the stars due to precession

the cone traced by the axis equals approximately 23.5◦. Figure 2.66 shows the north circle for

the current precession period. One can see that Polaris not always was so close to the north

pole as it is now. Of course the same circle is drawn at the south, Figure 2.77.

In addition to this precession, there is a somewhat linearly increasing precession because

the ecliptic is not fixed with respect to the distant celestial objects that create the time sys-

tems. The obliquity, the angle formed by ecliptic and equator, decreases very slowly and the

vernal equinox moves constantly westward. This precession of the ecliptic is due to the grav-

ity forces of the other planets in the solar system and is therefore still often called planetary

precession even if the term is considered obsolete.

Nutation

A smaller and faster oscillation of approximately 18.6 years in the rotation axis of the earth,

the red line in Figure 2.5, is induced by the moon. This nutation is in the range of millidegrees

and has several causes. The most important is the 18.6 precession period of the moon itself,

but also the orbit inclination and eccentricity of the moon’s orbit about the earth as well as

some solar induced perturbations result in nutation.

6"Precession N" by Tau’olunga - self, 4 bit GIF. Licensed under CC BY-SA 2.5 via Wikime-
dia Commons - http://commons.wikimedia.org/wiki/File:Precession_N.gif#mediaviewer/File:
Precession_N.gif.

7"Precession S" by Tau’olunga - self, 4 bit GIF. Licensed under CC BY-SA 2.5 via Wikimedia Commons - http:
//commons.wikimedia.org/wiki/File:Precession_S.gif#mediaviewer/File:Precession_S.gif.

http://commons.wikimedia.org/wiki/File:Precession_N.gif#mediaviewer/File:Precession_N.gif
http://commons.wikimedia.org/wiki/File:Precession_N.gif#mediaviewer/File:Precession_N.gif
http://commons.wikimedia.org/wiki/File:Precession_S.gif#mediaviewer/File:Precession_S.gif
http://commons.wikimedia.org/wiki/File:Precession_S.gif#mediaviewer/File:Precession_S.gif
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Because of this number of effects the nutation matrix is the most difficult rotation matrix

to compute for the frame transformations. Two Euler angles are computed as weighted sums

of five time varying fundamental or Delaunay arguments:

1. The mean anomaly of the moon, the angle with respect to the periapsis in the orbit

about the earth.

2. The mean anomaly of the sun in the orbit about the solar system barycenter.

3. The mean argument of latitude of the moon, that is the angle between the ascending

node and the current position vector.

4. The mean elongation, the angle at the moon in the sun-earth-moon triangle.

5. The right ascension of the ascending node of the moon’s orbit, that is the angle in the

ecliptic plane from the equinox to the ascending node.

These arguments refer to the mean moon and sun, that is they are not the exact current

values for the moon or sun, but calculated with respect to mathematically defined mean

motions of the moon and sun.

Polar Motion

The rotation axis of the earth is not fixed with respect to the crust. That means that the poles

on a map of the earth at latitudes of ±90◦ are not exactly the places were the axis pierce

through the surface.

On 31 December 2014 for example the axis is shifted from the ECEF poles by 8.95◦ ·10−6

along the prime meridian and 7.78◦ ·10−5 along the 90◦ W longitude [17]. This is about 87m

from the ECEF north pole at the surface but increases of course with higher altitude, such

that polar motion is more important to take into account for satellite positions.

Flattening

As already hinted in the presentation of the ECEF frame, the earth is not a sphere but ap-

proximately an oblate ellipsoid of revolution with two equal semimajor axes a in the equa-

tor plane, the equatorial radii, and one shorter polar radius, the semiminor axis b. Two

semiprincipal axes are thus equal which permits a two dimensional analysis as already done
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in Figure 2.2 and Figure 2.3. The mathematical description of this non ideal "roundedness"

can be done with the eccentricity e or the flattening f property.

For the earth the flattening is easier to visualize. It is simply the ratio

f = a −b

a

where a = OA and b = OB in Figure 2.2. The value for the earth is very low, 1
298.3 , but due to

the large dimensions the difference between the earth radii is 21km and not negligible.

The eccentricity is easier to explain with the orbit of a light celestial object about a much

heavier one located at one of the foci, e.g. the earth’s orbit around the sun or the orbit of a

satellite about a planet. But flattening and eccentricity describe the same phenomenon. If

one denotes the half of the distance between the two focal points with c, the eccentricity is

e = c

a
=

p
a2 −b2

a

and again very small for the earth ellipsoid, about 0.082.

The next formula gives the relation between eccentricity and flattening

e2 = 2 f − f 2

It is used very often because the flattening of the earth is easier to measure while the eccen-

tricity often is better to use in the transformation formulas.

For even preciser analysis the ellipsoid model has to be altered for example with a latitude

dependent oblateness, but the complicated math behind this won’t be explained here even

if the orbit position and velocity predictor uses it, see the main sources of these sections [35]

and [36] for deeper insight.

2.3.3 Assumptions

Of course the assumptions for the time conversions listed longer up also count for the frame

transformations as all of them, except the transformation between the Cartesian, geodetic

and geocentric ECEF coordinates, have rotation angles that change with time. But additional

and quite restrictive assumptions have to be made on the year in which the transformation

between ECI and ECEF is valid. They do not affect the transformation between the two iner-
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tial frames.

The displacement of the rotation axis with respect to the ECEF poles, the polar motion, is

given by the angle xp along the prime meridian and the angle yp along the 90◦ W longitude.

The weekly updated IERS Bulletin A [16] gives the daily observed values for the last week

and predictions up to one year in advance in the milliarcsecond unit. But to omit computer

programs to save large look-up tables an interpolation of the following form is given

M JD = JD −2400000.5 (2.4a)

A = 2π
M JD −M JDbulletin

365.25
, C = 2π

M JD −M JDbulletin

435
(2.4b)

xp = ax +bx cos A+ cx sin A+dx cosC +ex sinC (2.4c)

yp = ay +by cos A+ cy sin A+dy cosC +ey sinC (2.4d)

where JD is the Julian date for the time point at which one wants to get the polar displace-

ment, M JDbulletin is the modified Julian date of release of the IERS Bulletin A and ax , . . . , ey

are coefficients given in the bulletin that slightly change each week.

The only comment on the validity of the interpolation the bulletin makes is:

«The [...] formulas will not reproduce the predictions given below [the xp and

yp predictions for the next 365 days], but may be used to extend the predictions

beyond the end of this table.» [16]

This suggests that one can use the ax , . . . , ey coefficients of one bulletin longer than one year

and still have meaningful values for the displacement. But whether e.g. the next five years are

within this time span or not and whether dates before the release can use this approximation

as well, is not known.

For the best performance it is thus recommended to update the global constants, see Table

2.3, used in equations (2.4) with the values from the newest bulletin close to the launch date.

This should be enough for at least a few years of operation.

In this thesis the IERS Bulletin A released 12 February 2015 was used throughout the testing

phase. Even if these tests involved dates that lie years before this release, reasons for the

actual test dates are given in section 2.8, the approximation is in general good, at least 4

significant digits are always equal between test result and verification value.

For reasons explained in the next subsection the IAU-76/FK5 reduction method is used

for the transformation between ECI and ECEF. Because of this choice two parameters in the



2.3. FRAME TRANSFORMATIONS 27

rotation matrix for nutation are needed, the earth orientation parameter corrections in lon-

gitude nutation δ∆Ψ1980 and in obliquity nutation δ∆ε1980. They account for the differences

between the older IAU-76/FK5 and the newer IAU-2000 reduction method and ensure that

transformations between the same frames have the same results with both methods.

The monthly updated IERS Bulletin B [17] lists the values of the two parameters in milliarc-

seconds for the second but last month, that is the bulletin released on 1 February 2015 has

the daily values of December 2014. It does not provide predictions, but the paper [37] that

reviews the long term changes of amongst other things δ∆Ψ1980 and δ∆ε1980, has linear trend

lines for these two parameters (in arcseconds) using the M JD as in equations (2.4)

δ∆Ψ1980 =−8 ·10−6M JD +0.2506 (2.5a)

δ∆ε1980 =−7 ·10−7M JD +0.022 (2.5b)

These equations yield higher values compared to [17] with approximately −5.71◦ · 10−5 for

δ∆Ψ1980 and −4.98◦ · 10−6 for δ∆ε1980 for 31 December 2014 (MJD 57022). The ranges ob-

served by the IERS in the last months of 2014 oscillate between −2.5◦ ·10−5 and 2.4◦ ·10−5 for

δ∆Ψ1980 and between −2.8◦ ·10−6 and 2.5◦ ·10−6 for δ∆ε1980. This is not very good, although

anyway the earth orientation parameter corrections always are small, but nonetheless the

linear interpolation, equations (2.5), is implemented in the NUTS software because it was

the only alternative found to constant values or to a look-up table approximated with the

IERS Bulletin B [17]. In addition [37] claims that its linear trend may not be very accurate on

daily basis but catches the long term variation and is based on the final values of the last 50

years.

This also is the reason why the linear trend line for xp and yp that [37] also provides,

is not implemented in the frame transformations. The oscillations around the linear trend

for δ∆Ψ1980 and δ∆ε1980 have a much smaller amplitude than the oscillations of xp and yp .

There the approximations with the weighted sine and cosine sum of equations (2.4) is closer

to the truth even if the coefficients are not valid for the same long time range.

To summarize this subsection, in addition to the time assumptions the polar motion ap-

proximation (equations (2.4)) and the linear interpolation δ∆Ψ1980 and δ∆ε1980 (equations

2.5) are assumed to be valid for the life span of NUTS.
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2.3.4 Implementation Details

There are fourteen frame transformation functions, that all begin with the keyword "frame",

and one struct in the frameTrans.h header and the frameTrans.c source files.

The typedef struct Delaunay regroups five floating point numbers to form a data

structure for the Delaunay fundamental arguments needed to compute the nutation matrix.

The first six functions are pairs to transform position vectors from one reference frame to

the other. These are the functions that are called in the predictors each time a frame change

must be done.

Then come seven functions that are called during the frame transformation calculations.

Five of them compute the rotation matrices that take the earth rotation descriptions into

account, one calculates the fundamental arguments and one function is used recursively for

a step of the ECEF Cartesian to geodetic coordinate transformation.

The last function of the fourteen provides the rotation matrix to the geomagnetic predic-

tor to transform the north-east-down magnetic field vector to a vector expressed in the ECEF

frame.

Transformations between the Geocentric Equatorial Reference Frame (ECI) and the Inter-

national Terrestrial Reference Frame (ECEF)

The two functions

• void frameEcef2eci(double recef[3], Time timeUTC, double reci[3])

• void frameEci2ecef(double reci[3], Time timeUTC, double recef[3])

implement the frame transformation

ri = PNe RWre (2.6a)

re = WTRTNT
e PTri (2.6b)

That is they take the values the first pointer points to, calculate the four time dependent ro-

tation matrices at the given time point and write the transformation result where the second

pointer points to. The four rotation matrices that connect vectors expressed in the ECI and

ECEF together are the precession matrix P, the nutation matrix Ne (there is a similar nutation
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matrix for transformations between ECI and TEME, hence the subscript to distinguish), the

rotation matrix for sidereal time displacement R and the polar motion rotation matrix W.

The older IAU-76/FK5 and not the newer IAU-2000 reduction method is used in the NUTS

software package because the source code taken from [18] implements this method in its

own ecef2eci and eci2ecef functions. There are also functions for the newer reduction but

there are two different ways to implement them and they are slightly more difficult to use.

With the correction parameters mentioned in the preceding subsection nearly exactly the

same results come from all transformation implementations. The last argument to use the

IAU-76/FK5 method, is that the transformation between ECI and TEME also is implemented.

It uses the same functions for the fundamental arguments and the precession matrix and a

similar nutation matrix. The choice reduces thus the number of functions needed.

The four rotation matrices are calculated by these four functions again edited from [18]

• void framePrecess(double ttt, double prec[9])

• void frameNutation(double ttt, double *deltapsi, double *meaneps,

double *omega, double nut[9]), this function calls a fifth function

– Delaunay frameFundarg(double ttt)

• void frameSidereal(double jd, double deltapsi, double meaneps, double

omega, double st[9])

• void framePolarm(double jd, double pm[9])

framePrecess takes the current time as terrestrial time Julian century ttt and writes

the matrix P where the prec[9] pointer points to. The precession is described by the three

Euler angles ζ about the z-axis, θ about the y-axis and z about the z-axis. Simple third order

polynomials return the angles.

frameNutation at first calls frameFundarg to interpolate the Delaunay fundamental ar-

guments at the current time point. One correction to the original IAU-76/FK5 reduction are

the newer IAU-2000 fourth order polynomials returning preciser fundamental arguments. It

is legitimate to do this because this gives a higher accuracy even if this differs from the orig-

inal method. The pointer *omega saves the fifth fundamental argument, the right ascension

of the ascending node of the moon’s orbit, that is needed later.

The actual algorithm to obtain the matrix Ne is complicated and not necessary to relate in
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detail here. It involves a weighted sum of the fundamental arguments to ultimately find the

true obliquity of the ecliptic ε for a rotation about the x-axis, the longitude nutation∆Ψ angle

of the next rotation about the z-axis (saved in the *deltapsi pointer) and the mean obliq-

uity of the ecliptic ε̄ for another rotation about the x-axis, this value is also returned with the

*meaneps pointer. This process involves the global constants IAR80 and RAR80, see Table

2.3, and the corrections δ∆Ψ1980 and δ∆ε1980, that are approximated according to equations

(2.5). Finally the matrix Ne is saved where nut[9] points to.

In the ECI frame the mean sidereal time, with respect to the mean vernal equinox, holds.

In the ECEF frame, that moves with all movements of the earth, on the contrary the appar-

ent sidereal time, measured with respect to the true vernal equinox, holds. The transfor-

mation must therefore have a rotation about the z-axis to account for this effect, and that’s

what frameSidereal does. The angle is a function of the Greenwich mean sidereal time

θGMST (returned by a time conversion function) and the four input arguments jd, deltapsi,

meaneps and omega. The rotation matrix R can be accessed by the pointer st[9].

The final rotation matrix W describes the polar motion and is the result of the framePolarm

function saved where the pointer pm[9] points to. Two principal rotations are performed,

with the angle xp about the y-axis and with the angle yp about the x-axis. As difference to

the original functions from [18] that simply asks for xp and yp to be input arguments, the al-

gorithm (2.4) presented in the Assumptions subsection is implemented in the function and

the reason why the Julian date format of the universal time jd is an input argument to the

function.

Transformations between the Geocentric Equatorial Reference Frame (ECI) and the True

Equator Mean Equinox Reference Frame (TEME)

The pair of transformation functions

• void frameTeme2eci(double rteme[3],Time timeUTC, double reci[3])

• void frameEci2teme(double reci[3],Time timeUTC, double rteme[3])

implements the back and forth transformation of ECI and TEME

ri = PNt rt (2.7a)

rt = NT
t PTri (2.7b)
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that uses the same precession matrix P than the transformation (2.6) but a different nutation

matrix, hence called Nt . Luckily both frames are considered inertial such that the velocity

transformations between ECI and TEME, the only velocity transformations needed in the

predictions, are exactly the same than the transformations for the position vectors. That is

one can simply replace r with ṙ in equations (2.7).

The two functions work exactly like frameEcef2eci and frameEci2ecef explained in

the preceding paragraphs. At first they do the necessary time conversions, then they get the

time dependent matrices and finally apply the transformation (2.7).

The precession matrix is again calculated in framePrecess as for the transformations

between ECI and ECEF. The nutation matrix Nt is different and the result of

• void frameTruemean(double ttt, double nutteme[9])

Like for the Ne calculation the current terrestrial time given in Julian centuries after the

J2000.0 epoch ttt is an input argument, but here no correction terms are needed. The matrix

pointed to by nutteme[9] is actually more than just a nutation matrix. The weighted sum of

the fundamental arguments is the same than in frameNutation discussed in the previous

section, but a kind of sidereal time matrix is multiplied afterwards.

Transformations between Cartesian and Geodetic Coordinates in the ECEF Frame

These transformation functions were not taken from [18], like the vast majority of functions

in this chapter, but copied form the MATLAB IGRF source code [4]. The reason for this, is that

[18] provides two slightly different transformations from Cartesian to geodetic coordinates,

but no back transformation. On the other hand [4] has two functions for both transforma-

tions that are easy to read.

Nearly no change had to be made to incorporate the functions into the NUTS predictor

package. Even if the help comments of the original function tell the user that the Cartesian

coordinates and the height over the ellipsoid must be in meters, absolutely no change in the

algorithm itself is needed if every figure is interpreted as kilometers. One must just make

sure that the earth constants are in kilometers too. This is not difficult to do when the global

values of Table 2.3 are used instead of locally declared constants.

Using the same naming convention as before, the transformation is implemented with

• void frameEcef2geod(double recef[3], double rgeod[3])



32 CHAPTER 2. PREDICTION ALGORITHMS FOR THE ATTITUDE ESTIMATOR

• void frameGeod2ecef(double rgeod[3], double recef[3])

One can see directly that these coordinate changes are easier than those described earlier,

because they’re independent of time, which is obvious because Cartesian and geodetic co-

ordinates are just two different ways to express the same vector in the same reference frame.

recef[3] points to a vector
(
x y z

)T
in Cartesian coordinates in km, while rgeod[3]

points to a vector
(
φ λ h

)T
in geodetic coordinates, see the definition in Figure 2.2. The

latitude φ and the longitude λ is in degrees and the altitude, or height over the ellipsoid, h is

in km as already said. Note that the program does not use the Greek letters but simply calls

the variables latitude, longitude and altitude.

frameEcef2geod implements the coordinate transformation from Cartesian to geodetic

coordinates using the following algorithm.

1. The most difficult value to find is the latitude φ. This is done recursively using

• void frameLatitudeRecur(double lat_in, double z, double rd,

int iter, double *latitude, double *Nphi)

lat_in is the current best estimate for the latitude, the initial value is

φ0 = arcsin

(
z√

x2 + y2 + z2

)

z is the z coordinate input and rd is
√

x2 + y2, these two variables do not change during

the recursive process. iter is the number of the current iteration. Because two output

values come from the recursive function, pointers are used with *latitude pointing

to the improved latitude estimate (k is the iteration number)

φk+1 = arctan

(
z +Nk (φ)e2 sinφk√

x2 + y2

)

and *Nphi pointing to the radius of curvature in the meridian

Nk+1(φ) = a√
1−e2 sin2φk+1

that is the distance from N along the line NC until it crosses the vertical axis below O

in Figure 2.2.
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The recursion ends either when the change in latitude is smaller than 10−12 or 20 iter-

ations have been reached.

2. Now that the latitude is known the height over the ellipsoid is found according to

h =
√

x2 + y2 cosφ+ (z +e2N (φ)sinφ)sinφ−N (φ)

3. The longitude is simply

λ= arctan
y

x

where the angle is resolved to the interval [−180◦,180◦] using the atan2 function.

The back transformation implemented in frameGeod2ecef is easier:

N (φ) = a√
1−e2 sin2φ

x = (N (φ)+h)cosφcosλ

y = (N (φ)+h)cosφsinλ

z = (N (φ)(1−e2)+h)sinφ

Transformations between Geodetic and Geocentric Coordinates in the ECEF Frame

The geomagnetic predictors (section 2.6 explains why two different algorithms are imple-

mented) use both geodetic and geocentric coordinates depending on what is more conve-

nient for the current operation. However no such transformation is part of the frameTrans.c

source file because the IGRF uses the polar angle θ, while the WMM uses the elevation angle

ψ. Thus the transformations are done directly inside the respective function.

For the sake of completeness of this section on reference frames an easy conversion for

the geodetic and geocentric angles is nonetheless provided. The longitude for geodetic and

azimuth for geocentric coordinates are the same, hence the common symbol λ. Elevation

angle ψ and Latitude φ are related to each other with the known eccentricity e of the earth

according to [35]

ψ= arctan
(
(1−e2) tanφ

)
, φ= arctan

(
tanψ

1−e2

)
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Transformations between the International Terrestrial Reference Frame (ECEF) and the

North East Down Reference Frame (NED)

The "Handbook of Marine Craft Hydrodynamics and Motion Control" [8] lists the rotation

matrix Re
n for converting velocity vectors expressed in the NED frame to velocity vectors ex-

pressed in ECEF. The same rotation matrix transforms any kind of vectorial quantity (forces,

field strengths) and the back transformation is achieved by taking the inverse matrix, which

for rotation matrices always is the transpose, that is Rn
e = (Re

n)−1 = (Re
n)T.

This matrix is dependent on the latitude φ and longitude λ only:

Re
n =


−sinφcosλ −sinλ −cosφcosλ

−sinφsinλ cosλ −cosφsinλ

cosφ 0 −sinφ


The function

• void frameRotationNed2ecef(double sinlat, double coslat, double

sinlon, double coslon, double Ned2ecef[9])

returns this rotation matrix at the place the pointer Ned2ecef[9] points to. The input ar-

guments are not the latitude and longitude but rather their sine and cosine values. This

makes the implementation slightly faster because frameRotationNed2ecefmerely consists

of some multiplications. The calling functions, the geomagnetic field predictors, already

have the sine and cosine values available.

2.3.5 Frame Transformations User’s Guide

Just as the time conversions, the frame transformations should seldom be needed directly,

and if they are, then most probably it will be one of the functions that transform from one

frame to another. Then one has first to declare a floating point array of length 3 that will

be the last input parameter. The function will then write the result in that array. This is the

easiest way to return arrays or multiple values in the C programming language, so even if

all the functions have the return type void, they actually do "return" something. The same

concept applies for all function returning 3×3 matrices. But the matrices are addressed as if

they were 9×1 matrices, that is first the three rows of the first column then the second and

finally the three rows of the third column.
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An example situation where the frame transformations are addressed by the user directly,

is the testing of the orbit position and velocity predictor. The test output vectors are in the

ECI frame, but the verification values [36] are provided in the TEME frame. Then one has

first to convert using a transformation function to see if the test was successful.

An important notice for future users is to check if the approximations still are close enough

to δ∆Ψ1980 and δ∆ε1980 that are published every month in the second section of the IERS

Bulletin B [17]. Likewise the MJDPOLAR, XPOLAR[5] and YPOLAR[5] constants, see Table 2.3,

should be updated with the newest IERS Bulletin A [16] before the launch.

2.4 Sun Vector Prediction

Now that the preliminaries, that is the time and reference frames, are done, the real purposes

of this chapter, that is to find the reference vectors of the EKF with predictors, are addressed.

The first and easiest of them is the sun vector predictor.

2.4.1 Astronomical Almanac Sun Vector Algorithm

An algorithm to find the sun vector originally published in the Astronomical Almanac is re-

lated in [35] and a good choice for NUTS because of its shortness. The low accuracy of 0.01◦

at best is no major drawback for the project. The reference vectors need not to be very pre-

cise to yield acceptable results in the attitude estimator.

This algorithm returns a vector pointing from the center of the earth to the center of the

sun. The lines from the earth to the sun in the greatly exaggerated Figure 2.1 can help to

visualize this vector. Because of the immense distance from the earth to the sun, one astro-

nomical unit i.e. 1AU = 149597870700m on average, it makes no difference at all that the

vector points from the center of the earth and not from the accurate position of the satellite,

other assumptions (next subsection) are more important.

The first step of the algorithm is to find the mean anomaly M¯ and the mean longitude

λM¯ of the sun using linear interpolation. The latter must be adapted to the inertial frame

resulting in the longitude of the ecliptic

λecliptic =λM¯ +1.914666471◦ sin M¯+0.019994643◦ sin2M¯
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which is the angle from the vernal equinox to the current sun position vector. The obliquity

of the ecliptic ε is also interpolated linearly. The actual figures are not important to relate

here and can be read in the source code or [35]. These approximations are then used to

calculate the magnitude of the sun vector r¯ and finally the sun vector itself r¯. The last

steps are hence

r¯ = 1.000140612AU−0.016708617AUcos M¯−0.000139589AUcos2M¯

r¯ =


r¯ cosλecliptic

r¯ cosεsinλecliptic

r¯ sinεsinλecliptic


2.4.2 Assumptions

The accuracy of this sun vector prediction algorithm is as said not very high, 0.01◦ at best

[35], but that does not come from the fact that the satellite’s position with respect to the

earth is not taken into account. The distance from the earth to the sun is millions of km

longer than the satellite’s distance from the earth’s center such that no significant difference

occurs by the assumption that the sun vector of the satellite is the same than the sun vector

starting at the center of the earth.

The following assumptions are responsible for the limited accuracy. They are still satis-

fied well enough by NUTS for the attitude estimation.

The polynomial interpolations of the mean anomaly M¯, the mean longitude λM¯ of the

sun and the obliquity of the ecliptic ε are truncated to the first order, that is a simple linear

relationship with time is assumed. This results in good approximations only for about a cen-

tury. The values used in the implementation of the algorithm in [35] are taken at the J2000.0

epoch, thus the algorithm is only valid for years between 1950 and 2050. This assumption

is of no practical importance for NUTS. The same assumption, thus also of no importance,

holds for the truncated expressions for the longitude of the ecliptic λecliptic and the magni-

tude of the sun vector r¯ that stop after the second harmonic.

When describing the motion of planets and other celestial bodies in the solar system, it’s

best to use the barycentric dynamical time. This time system is the independent variable in

the equations of motion. It can without problem be approximated with the terrestrial time

because the difference is in the ms range [35].
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Finally as before the universal time is implemented by the coordinated universal time

UTC only. This also is well within the needed accuracy for NUTS as the sun vector won’t

change significantly even in the worst case when UTC differs by 0.9s from UT1.

Even if this subsection might seem long, actually there is no real restrictive assumption

that harms the usage of this easy algorithm for the NUTS ADCS.

2.4.3 Implementation Details

A short and easy to use function returning the sun vector after the algorithm presented here

is available at the main code source [18]. Some minor changes were done to remain consis-

tent with the defined interface.

• void sun(Time timeUTC, double rsun[3])

now writes the sun vector at the desired universal time, representing by the timeUTC struct

(see section 2.2), in the array rsun is pointing to.

The Astronomical Almanac uses the mean equator of date, MOD, inertial frame which is

not the ECI frame used throughout this thesis as the inertial reference frame. Thus a final

step

ri
¯ = Pr¯

must be added to the algorithm which transforms the sun vector form MOD to ECI, hence the

i superscript on the left hand side, by finding the precession matrix P with the framePrecess

function discussed earlier.

The output unit is AU which is somewhat the mean distance of the earth from the sun.

But the magnitude changes a little periodically with the slightly elliptic orbit of the earth

about the sun. To make the processing in the EKF easier the sun vector is always normed to

a magnitude of 1 before it is returned.

The last difference between the original code from [18] and the implementation for NUTS

concerns the time systems. The barycentric dynamical time, that actually should be used in

the linear interpolations, is approximated with universal time in the original function. How-

ever a far better approximation is available in the NUTS software, the terrestrial time which

differs from the barycentric dynamical time only by a few ms at most. The difference be-

tween terrestrial (thus also the difference between barycentric dynamical) time and univer-

sal time however is about 69s for January 2015 according to the polynomial approximation
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Listing 2.1: Sun Vector Prediction Example

1 ...
#include "sunPred.h"
...
int main(){

// Excerpt of ex5_1.m from Vallado (2013) Fundamentals of →
←Astrodynamics and Applications

6 Time time;
time.year = 2006;
time.mon = 4;
time.day = 2;
time.hr = 0;

11 time.min = 0;
time.sec = 0;
double rsun [3];
sun(time , rsun);
printf("rsun: %f %f %f\n", rsun[0], rsun[1], rsun [2]);

16 return 0;
}

[23] and is expected to continue to increase. The better approximation i.e. terrestrial time

was added to the sun function too.

2.4.4 Sun Vector Prediction User’s Guide

The sun vector predictor is most likely the first presented function to be of great importance

for the user, because its output is directly fed into the extended Kalman filter algorithm

through the estimator model. It is the reference vector ri
s in equation (2.2). Therefore it is

important to know how to use the predictor. Fortunately this one is very simple.

Once the sunPred.h header file is included, the sun function is available to get the sun

vector at an arbitrary time. This function has two input arguments and at first sight no output

because the return type is void. However this is not completely true as the second input

argument is a pointer where the sun vector is written by the function. Thus the user must

first declare a floating point array, preferably of double precision type, of length three and

provide the pointer name as second input argument. The first argument is the time point

when the sun vector shall be calculated. The format is the Time struct presented in section

2.2 and must use the universal time system.

Note that the sun vector is normed to magnitude 1 and expressed in the geocentric equa-

torial reference frame (ECI) which is not the same output as the Astronomical Almanac sun
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vector algorithm provides (MOD). The ECI frame is rotated with respect to the MOD frame

with the precession matrix.

The usage is best explained by a short example. See Listing 2.1 which is taken from ex-

ample 5-1 in [35]. The output of the NUTS implementation is

«rsun: 0.978049 0.191181 0.082883 »

which is exactly equal to the result of example 5-1 in [35] rotated to the ECI frame and

normed.

2.5 Orbit Position and Velocity Prediction

The EKF needs a reference vector ri
m for the geomagnetic field in the model equation (2.2).

Of course the earth’s magnetic field depends primarily on the current position of the satel-

lite with respect to the earth. There is however no possibility to get a good estimate of the

position from the sensors on NUTS. The position has thus to be estimated directly without a

correction method based on sensors. The alternative would be to have a GNSS receiver but

this has not been under consideration so far.

Processes that calculate positions of space objects based on orbital elements only, are

called orbit propagators, the name orbit predictor is chosen for the scope of this thesis to

show the connection with the sun vector and geomagnetic field predictors that are the main

parts of the software package. Theses two are called predictors because the sensors on NUTS

will measure a sun vector and the earth’s magnetic field with sensors and both prediction and

measurement will be used to estimate the attitude.

Orbit propagators have in general also the ability to give an estimate of the satellite ve-

locity. This is the second reason for the inclusion of such a function in the ADCS.

The gyroscope on board measures the angular velocity of the BODY frame with respect to

the inertial frame expressed in BODY ωb
i b . However the angular velocity with respect to the

ORBIT frameωb
ob is needed in the attitude controller and the equation relating both together

is [38]

ωb
i b =ωb

ob +ωb
i o =ωb

ob +Rb
oω

o
i o (2.8)

where ωo
i o =

(
0 −ωo 0

)
. ωo is the orbital angular velocity and there are two ways to calcu-

late it. The first equation has been used so far in simulations of the attitude controller. The
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gravity and the centrifugal forces are in balance, thus ωo =
√

µ
a+h using the earth’s gravita-

tional parameter µ, its semimajor axis a and the satellite’s altitude h assumed to be constant.

However with the predictor the easier formula without square root ωo = ṙ
r involving just the

orbit position and velocity magnitudes is possible to use instead. Note that this formula is

exact just for circular orbits, however the other formula also assumes a circular orbit and in

addition a constant altitude.

For the moment this newer equation is not implemented but both approaches will be con-

sidered in the future development. See Marius Fløttum Westgaard’s contribution to the satel-

lite through Project [38] and Master’s thesis (likewise done in the spring semester 2015).

In theory if one knows the initial position and velocity of an object and integrates all

forces and torques acting on this object, one can give the position and velocity at any time in

the future with great accuracy. But there is a drawback to this approach, numerical integra-

tion. One cannot just specify the desired time for the prediction and directly get the result,

rather a lot of small steps in between are needed, where each time the position and the ve-

locity have to be computed, to ensure a small error. As space surveillance tracks thousands

of objects at the same time, this approach is not practical and analytical solutions the better

choice. Even if the NUTS software only will track one satellite, itself, and the time steps be-

tween two requests will be small, two or three tenths of a second, such analytical solutions

are easier to implement and to use. One has namely not to tune the step size to balance the

accuracy and computation speed, the accuracy of the model is known and readjustments of

parameters are easy to perform.

For NUTS the simplified general perturbations 4, SGP4, model originally presented in

the "Spacetrack Report no. 3" [14] was chosen for several reasons. It was also used in the

successful UWE-3 CubeSat mission [9] and source code in C++, Fortran, Java, MATLAB and

Pascal is available for free on the "CelesTrak" website [18] along with explanations. SGP4 is

very popular because of the good compromise between accuracy and efficiency and the ex-

tremely large amount of object data, the two-line element set, TLE, published for all satellites

on the "CelesTrak" website too.

2.5.1 Orbital Elements

Just like three position and three velocity components fully define an object’s state, six orbital

elements are required in order to fully define an object’s orbit and thus to use an analytical
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Figure 2.8: Geometry of an Orbit.
Green Plane: Fundamental Plane, Blue Plane: Orbit Plane, Blue Line: Orbit of Celestial
Body, A: Apoapsis, B : Primary Focus, HK : Celestial Body, M : Center of the Ellipse, P :
Periapsis, a: Semimajor Axis, a ·e: Half the Distance between Foci (Semimajor Axis multi-
plied with Eccentricity e), i : Inclination, r : Distance from Primary Focus to Celestial Body,
ν: True Anomaly,Ω: Right Ascension of the Ascending Node,ω: Argument of Periapsis, �:
Principal Direction, �: Ascending Node, �: Descending Node

orbit propagator.

The classical orbital elements, also known as Keplerian elements, are in general the set

of choice for orbit definitions. Figure 2.88 shows the six elements as well as some other

important points and parameters of elliptical orbits. The six classical orbital elements are

• The semimajor axis a, half the distance between apoapsis and periapsis (the furthest

and nearest point of the orbit to the primary focus, the earth for earth orbiting objects).

8„BahnelementeEllipse“ von Modalanalytiker - Eigenes Werk. Lizenziert unter CC BY-SA 3.0 über Wikimedia
Commons - http://commons.wikimedia.org/wiki/File:BahnelementeEllipse.svg#mediaviewer/
File:BahnelementeEllipse.svg.

http://commons.wikimedia.org/wiki/File:BahnelementeEllipse.svg#mediaviewer/File:BahnelementeEllipse.svg
http://commons.wikimedia.org/wiki/File:BahnelementeEllipse.svg#mediaviewer/File:BahnelementeEllipse.svg
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• The eccentricity e of the orbit.

e = c

a
=

p
a2 −b2

a
=

√
2 f − f 2 , 0 ≤ e < 1

• The inclination i of the orbit plane to the fundamental plane, 0◦ ≤ i < 180◦.

• The right ascension of the ascending node Ω, that is the angle from the principal di-

rection to the ascending node, where the orbit crosses the fundamental plane from

"below" (from south to north referring to the equator), 0◦ ≤Ω< 360◦.

• The argument of periapsis ω, from the ascending node to the periapsis , 0◦ ≤ω< 360◦.

• The true anomaly ν, that is the object’s current angle from the periapsis, 0◦ ≤ ν< 360◦.

With these six elements a solution to Kepler’s problem, the position change of an object in

orbit after a certain amount of time, is possible in an ideal world with just the body at the

primary focus, the celestial body in orbit and gravity as only force.

However there always are other objects like the sun, the moon and the planets as well as

drag due to the outer layers of the atmosphere or solar winds. These perturbations must be

taken into account and lead to models like the Simplified General Perturbations.

Two-Line Element Set

The SGP4 implementation does not take the classical elements as input but several quan-

tities regrouped to the two-line element set. They differ slightly from the classical orbital

elements and there are additional elements. It is very important to use only these elements

when tracking satellites with simplified general perturbations models (and only with these

models), the results will be erroneous otherwise. This is because the elements are gener-

ated with SGP models and have, like any other program, their own way to represent data and

model the world.

The values are not updated regularly but rather just when needed. This can happen some

times a day for manoeuvrable objects like the International Space Station, once or twice per

week for low earth orbit satellite that don’t manoeuvre like NUTS and more seldom for ex-

ample for geostationary satellites that experience less atmospheric drag. Thousands of TLEs

are published on the "CelesTrak" website [18]. Any new object is added as soon as its TLE is

established and remains there for 30 days. Upon request this span is prolonged.



2.5. ORBIT POSITION AND VELOCITY PREDICTION 43

Two-line element sets are issued in a specific format consisting of two lines of 69 char-

acters. The format is best explained with an example set. Consider the following TLE [36]

(third and fourth line) and see Table 2.19 for the short explanation. The first two lines help

to enumerate the 69 characters of each line.

0 1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890123456789

1 00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753

2 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667

Some of the fields, like the majority of the fields in the second line, are self explanatory,

others need additional comments [18].

1.2 & 2.2: Of course the satellite numbers of both lines must be the same.

1.4 - 1.6: These three fields together form the international designator, a unique name to the

object assigned by the World Data Center-A for Rockets and Satellites.

1.7 & 1.8: This is the universal time epoch at which the orbital elements are referenced.

1.9, 1.10 & 2.8: Instead of the semimajor axis a, the TLE uses the mean motion n, the average

angular rate of the object,

n =
√

µ

a3
=

√
Gm⊕

a3
=

√√√√6.673 ·10−20 km3

kgs2 ·5.973332 ·1024 kg

a3

where µ is the gravitational parameter of the primary focus, the earth. The values in

fields 1.9 and 1.10 are precisely ṅ
2 in revolutions

day2 and n̈
6 in revolutions

day3 . However these two

values are not used by the SGP4 model.

1.10 & 1.11: +NNNNN-N has to be read like ±0.NNNNN·10±N, i.e. 28098-4 is 0.28098 ·10−4.

1.11: The drag term is defined as B∗ = 1
2 · CD A

m ρ0R⊕ and has the unit 1
earthradius . CD is the drag

coefficient of the object, A its cross-sectional area and m its mass. ρ0 is the reference

atmospheric density and R⊕ the equatorial earth radius.

9’N’: a figure or a space, ’A’: a letter or a space, ’+’: a plus sign, a minus sign or a space, ’-’: a plus sign or
a minus sign, ’C’: ’U’ for unclassified data or ’S’ for secret data (of course, only unclassified data are publicly
available).
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Table 2.1: Two-Line Element Set Format Definition [18]

Field Column Description Pattern9 Example
1.1 01 Line number 1 1
1.2 03-07 Satellite number NNNNN 00005
1.3 08 Classification C U
1.4 10-11 International designator NN 58

(last two digits of launch year)
1.5 12-14 International designator NNN 002

(launch number of the year)
1.6 15-17 International designator AAA B

(piece of the launch)
1.7 19-20 Epoch (last two digits of year) NN 00
1.8 21-32 Epoch (day of the year NNN.NNNNNNNN 179.78495062

and fractional day)
1.9 34-43 First time derivative of the mean +.NNNNNNNN .00000023

motion
1.10 45-52 Second time derivative of the mean +NNNNN-N 00000-0

motion
1.11 54-61 B∗ drag term +NNNNN-N 28098-4
1.12 63 Ephemeris type N 0
1.13 65-68 Element number NNNN 475
1.14 69 Checksum (modulo 10) N 3

(letters, blanks, periods, ’+’ = 0, ’-’ = 1)

2.1 01 Line number 2 2
2.2 03-07 Satellite number NNNNN 00005
2.3 09-16 Inclination in degrees NNN.NNNN 34.2682
2.4 18-25 Right ascension of the NNN.NNNN 348.7242

ascending node in degrees
2.5 27-33 Eccentricity (decimal point assumed) NNNNNNN 1859667
2.6 35-42 Argument of perigee in degrees NNN.NNNN 331.7664
2.7 44-51 Mean anomaly in degrees NNN.NNNN 19.3264
2.8 53-63 Mean motion in revolutions

day NN.NNNNNNNN 10.82419157
2.9 64-68 Revolution number at epoch NNNNN 41366
2.10 69 Checksum (modulo 10) N 7
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1.12: The ephemeris type used to designate which model generated the TLE. Today only the

SGP4 model generates TLEs and field 1.12 is always 0.

1.13: This number should correspond to the set number of the object and increase with one

at each update. Unfortunately [18] points out that this is not always the case.

1.14 & 2.10: To calculate the checksum of a line, simply add all but the last digits together,

ignore letters, blanks, periods and plus signs and finally add 1 for each minus sign. The

last digit of the checksum should correspond to field 1.14 and 2.10 respectively.

2.7: The simplified general perturbations use the mean anomaly M instead of the true

anomaly ν, see Figure 2.910. While the true anomaly is the angle from the periapsis

to the current position along the orbit, the mean anomaly is the angle around a cir-

cular orbit with radius a if the object travels at the constant mean motion speed, i.e.

M(t ) = n(t −T ) where T is the epoch.

2.9: This is the revolution the object is performing at the epoch. Revolution 1 begins the

first time the object crosses the ascending node.

2.5.2 Simplified General Perturbations Models

As already said several times the simplified general perturbations models were originally pre-

sented in the "Spacetrack Report no. 3" [14] in 1980. The term "perturbation" in this context

means that the two-body equation, that is the mathematical description of a satellite with

negligible mass orbiting a far greater body (the earth or the sun) disregarding any other ob-

ject or force beside gravity, is enlarged with a model of how the real world differs from this

idealization. Like every model of the world, this also makes assumptions and simplifications

but in general the results are reliable at least for some shorter time in the future.

The first simplified general perturbation model, SGP, has its origins in the 1960s and

by this time only low earth orbiting objects were considered. Following some development

time four newer, quite different and assumed more accurate models were released in the

mentioned paper. Two of them, SGP4 and SGP8, again only consider low earth orbits, but

both of them have an extension model for deep-space named SDP4 and SDP8 respectively.

10"Kepler’s equation scheme German" von Kepler’s_equation_scheme.svg: AndrewBuckderivative work:
René Schwarz (talk) - Kepler’s_equation_scheme.svg. Lizenziert unter CC BY-SA 3.0 über Wikimedia
Commons - http://commons.wikimedia.org/wiki/File:Kepler%27s_equation_scheme_German.svg#
mediaviewer/File:Kepler%27s_equation_scheme_German.svg.

http://commons.wikimedia.org/wiki/File:Kepler%27s_equation_scheme_German.svg#mediaviewer/File:Kepler%27s_equation_scheme_German.svg
http://commons.wikimedia.org/wiki/File:Kepler%27s_equation_scheme_German.svg#mediaviewer/File:Kepler%27s_equation_scheme_German.svg
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The term "deep-space" may be misleading today because it is actually just modelling further

perturbations form medium earth to geosynchronous orbits and not meant for interplane-

tary missions. The SDP4 or SDP8 model should be used for orbit periods that are longer than

225min, which is about 6000km altitude. There the atmospheric drag becomes smaller than

the perturbations due to the inhomogeneous gravity fields of the earth, the moon and the

sun. The actual threshold value however is merely historically and empirically defined [18].

The description of the models in [14] is very short. The equations are listed with sparse

comments and a Fortran translation is provided. Neither assumptions nor derivations are

given. That’s also the reason why the actual algorithm won’t be repeated here. The interested

reader is referred to the bibliography or the source code.

Of the five models only the SGP4 and SDP4 survived. The SGP was clearly inferior while

the SGP8 and SDP8, although claimed better, especially when the tracked object attains spe-

cial cases, apparently never came to use [36].

SGP4

The SGP4 and SDP4 models were both revised several times, the last time in "Revisiting

Spacetrack Report #3: Rev 2" [36] issued in 2006. This paper merges both models together

by applying the deep-space corrections only if needed (the period is known anyway, so it’s

not difficult to include or skip some steps) and publishes programs in several languages of

which the MATLAB and C++ versions [18] are the basis for the NUTS implementation. This

paper again reminds the important fact for consistency reasons to use the SGP4/SDP4 rou-

tines with the official two-line element sets only. Issues concerning reference frames, time

formats and computer code are well retraced but again the actual algorithm is just provided

as source code with sparse comments. A lot of parameters and equations are just declared

and it’s left to the user to try and understand what happens.

The central equation is Kepler’s equation

√
a3

µ
= t −T

E −e sinE

expressing Kepler’s third law (t is the independent time variable, T the TLE epoch)

«The square of the period of a planet is proportional to the cube of its mean

distance to the sun.» [35]
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Figure 2.9: Geometry for Kepler’s Equation.
Umkreis: Auxiliary Circle, C : Center of the Ellipse, E : Eccentric Anomaly, M : Mean
Anomaly, P : Celestial Body, S: Primary Focus, T : True Anomaly, X and Y : Fictive Posi-
tions, Z : Periapsis, a: Semimajor Axis, a · e: Half the Distance between Foci (Semimajor
Axis multiplied with Eccentricity e), b: Semiminor Axis

in mathematical terms. This also explains why the TLE use the mean motion n =
√

µ

a3 and

the mean anomaly M = E−e sinE to describe the orbit. The eccentric anomaly E is the angle

at the center of the ellipse to an object on the auxiliary circle of this ellipse having the same

perpendicular base on the semimajor axis. Figure 2.9 should make this clear.

"Solving" Kepler’s equation is the usually iterative calculation of the time needed to travel

between two points and is a central part of Kepler’s problem (i.e. orbit propagation) which

also involves Kepler’s second law

«The line joining the planet to the sun sweeps out equal areas in equal times.»

[35]

expressed mathematically as
t −T

A
= P

πab

with the period for one revolution P and the area A enclosed by the ellipse and the three

points S, Z , and P in Figure 2.9.

This is basically what the SGP4 algorithm does. It only in addition includes several steps

for the most important perturbations. With these calculations it finds the magnitude and

direction of the position and velocity vectors of the satellite for any time difference prior or

posterior to the TLE epoch.

Defining the position magnitude rk , its first derivative with respect to time ṙk , a short pe-
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riod periodic r ḟk
11, the right ascension of the ascending nodeΩk , the inclination ik and the

argument of latitude uk (angle between ascending node and satellite position), that all have

been found through several calculations involving the satellite parameters, the last steps of

the SGP4 algorithm are [14]

u =


−sinΩk cos ik

cosΩk cos ik

sin ik

sinuk +


cosΩk

sinΩk

0

cosuk

v =


−sinΩk cos ik

cosΩk cos ik

sin ik

cosuk −


cosΩk

sinΩk

0

sinuk

r = rk u

ṙ = ṙk u+ r ḟk v

where the k subscript denotes that the values changed from the TLE epoch (subscript 0) to

the time for the prediction.

2.5.3 Assumptions

The NUTS implementation assumes in addition to the stated assumptions of the preceding

sections, that a two-line element set for NUTS is available. TLEs for all satellites launched at

longest 30 days ago are in the data base of the "CelesTrak" website [18] and the duration it

keeps them, can be prolonged upon request. The difficulty with this assumption will be to

send the TLE to NUTS in orbit. Before this happens the detumbling part of the attitude con-

trol will work, but the estimator will deliver erroneous values to the attitude controller, that

thus will not be able to work properly. Remember that no orbit position prediction equals

no geomagnetic reference vector and a wrong EKF model.

As long as no updated TLE is published one can assume the current values to be correct.

All deep-space related parameters and calculations have been removed from the source

code. Therefore only positions and velocities for satellites with less than 225min revolution

time can accurately be predicted. NUTS is constructed to have a low earth orbit, between

11This combined variable is unfortunately not nearer defined in the original source [14]. While r obviously is
the position magnitude, f and its first time derivative ḟ remain unclear. The revised code [36] calls this short
period periodic variable rvdot (r v̇k ) instead which could mean velocity magnitude v .
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160 and 2000km altitude or orbital periods of 90 to 130min, for which the SGP4 model is

intended. There is thus no constraint from this side.

2.5.4 Implementation Details

The starting point for the orbit position and velocity predictor for NUTS is the SGP4/SDP4

implementation published in [36] and available for free in several languages on the internet

[18]. This implementation merges the basic SGP4 and the deep-space extension model SDP4

together and is intended to be used to track a lot of objects at the same time.

After removing all unnecessary parts of the code, that is

• All parameters and routines for deep-space objects.

• Unofficial additions to the TLE to specify time points for the desired positions.

• The ability to track several satellites at the same time using one data structure.

• Input and output interaction with the user.

and adjusting the implementation to the interface (ECI frame, UTC time), three functions,

beginning with the "orbit" keyword, declared and defined in the files orbitPred.h and

orbitPred.c, remain. The header file also defines the typedef struct Satrec that saves

all the relevant satellite information to perform the prediction. In detail it contains

• One char array error[128] where errors and warning messages are written.

• One char, one char array, five integers and ten double precision floating point numbers

that are a direct translation of the two-line element set.

• One integer and 26 double precision floating point numbers that are additional pa-

rameters derived from the TLE data.

The two functions

• Satrec orbitTwoline2rv(char tle[139])

• void orbitSgp4init(Satrec *satrec)
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do the initialization work. orbitTwoline2rv converts as its name indicate the two-line ele-

ment set to a data structure containing the same information easier to treat on a computer,

this is the place where the Satrec struct is instantiated.

The two-line element set has to be provided as input char array not formatted as two lines

like in the example TLE of Table 2.1. The char tle[139]must contain just all 138 characters

and the string ending sign, make sure that there is no newline or return sign between the last

character of the first line and the first character of the second line.

The first thing the functions does is then to check that the length of the char array is long

enough for the processing. If not a message is written in the error field of the struct that is

returned and the function stops. This is the only place where an error causes the function to

stop. All other errors are written in the error field too, but don’t produce a C error that would

cause the function to crash, thus the calculations continue, but the outputs will probably be

wrong. So it is recommended to check for error messages each time a new TLE is processed.

If the input array is long enough, the function translates it to the mentioned fields, to be

precise:

char: Classification

char array: International designator

five integers: Satellite number, Year of epoch, Ephemeris type, Element number and Revo-

lution number

ten floating point numbers: Day of epoch, First derivative of the mean motion (converted

to rad
min2 ), Second derivative of the mean motion (converted to rad

min3 ), B∗ drag term,

Inclination (converted to rad), Right ascension of the ascending node (converted to

rad), Eccentricity, Argument of perigee (converted to rad), Mean anomaly (converted

to rad) and Mean motion (converted to rad
min )

Before the function continues with the initialization of additional satellite values, six simple

tests on the TLE are done to detect possible errors.

1. Assert that first line number is ’1’.

2. Assert that the second line number is ’2’.

3. Assert that the classification is ’U’.
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4. Assert that both satellite numbers (field 1.2 and 2.2) are the same.

5. Calculate the first line checksum and compare with field 1.14.

6. Calculate the second line checksum and compare with field 2.10.

Even if one or more of the tests fail, the function will not stop, only a message will be written

to the error field of the satrec struct. This is because the algorithm will not crash, but a fail

is a strong indication that the orbit prediction is going to have errors.

The function orbitTwoline2rv gives a pointer *satrec to the orbitSgp4init function

as last step. This function fills the other 26 floating point variables of the struct with values,

for example the squared eccentricity, sine and cosine values of the inclination and coeffi-

cients derived from B∗. The epoch as Julian date and the time at which the SGP4 algorithm

shall compute the velocity and position in minutes, are two fields too. Of course the latter is

0min during the initialization function and will first be used in the actual predictor.

orbitSgp4init also computes the perigee of the satellite. If it is less than 220km the integer

isimp of Satrec, which actually is a boolean variable, is set from the default 0 (False) to 1

(True). This done, not all fields are initialized and some steps of the algorithm will be skipped

because some minor perturbations are irrelevant at such low altitudes.

When this function is finished the calling function orbitTwoline2rv returns the new Satrec

struct which now is ready for the orbit propagation.

The actual orbit position and velocity prediction is done by the function

• void orbitSgp4(Satrec *satrec, Time timeUTC, double reci[3], double

veci[3])

that returns the position and the velocity vectors reci[3] and veci[3]of the object *satrec

points to for the UTC time point timeUTC. Just a few, small changes in the actual predictor

steps were done to the original source code, nearly all of them concern the deep-space ex-

tension (tests on the conditions for deep-space and subsequent further calculations) that

simply was removed.

As for a lot of functions in the NUTS package, the most important changes concern the in-

terface. Instead of providing the time difference in minutes, positive or negative, from the

TLE epoch saved in *satrec, the user gives the UTC time as Time struct (see section 2.2) and

the function computes the time difference. Likewise the position and velocity vectors are
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transformed from the TEME to the ECI frame before they’re returned (see frameTeme2eci

in section 2.3).

The other important change is to provide a pointer to the Satrec struct that contains the

satellite parameters instead of the struct itself. The reason is to have the same possibility of

error messages in the error char array of the struct than in the initialization functions. At

four places conditions that do not result in meaningful output when fulfilled, are checked.

These are legacies of the source code copied from [18] that is more intended to track sev-

eral satellites at once, where input errors can be more frequent. In normal operation and

assuming that the TLE was successfully transferred to NUTS, they should never yield posi-

tive responses. If so the position and velocity arrays will be filled with zeros in the first three

cases.

1. Soon after the beginning the mean motion is read out of the *satrec pointer. If it

happened to be negative a wrong TLE must have been sent to the satellite, because

n =
√

µ

a3 cannot be negative.

It is very unlikely that this ever will happen, as such an error most probably also would

yield to a wrong checksum in orbitTwoline2rv.

2. Directly after this, the second condition looks on the eccentricity (from the TLE) and

semimajor axis (derived). The condition states that the eccentricity has to be between

−0.001 and 1 and the semimajor axis larger than 0.95 times the equatorial earth radius,

REQU in Table 2.3, to be in the valid region of the SGP4 model.

Again this is unlikely to happen especially for the eccentricity (NUTS is intended to

have a nearly circular orbit) if the TLE is transmitted correctly.

3. One of the derived quantities more in the middle of the program is the semilatus rec-

tum p = b2

a , also known as semiparameter. This is the distance from the primary focus

to the orbit perpendicular to the semimajor axis, in other words the line B� in Figure

2.8. This test is to ensure its positiveness.

A fail of this condition is also an obvious case of wrong data, but the error reason would

be more difficult to find, as its involves a lot of steps and parameters.

4. The final test is actually done after the whole algorithm, so even if it occurs reci[3]

and veci[3] can be different from zero.

The position vector is calculated as magnitude and direction before it is expressed in
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the TEME reference frame (and later rotated to the ECI frame). A magnitude smaller

than one earth radius means obviously that the satellite has decayed, and this would

be fatal for the implementation presented here, because it will run on the satellite.

However if a calculation or an algorithmic error results in a smaller magnitude than the

earth radius, while the satellite still is in orbit, it is better not to return zero because the

direction of the position vector might still be right and at least one piece of information

useful.

The SGP4 algorithm is surprisingly short in terms of lines of code, 650 for the three func-

tions including the long introductory comments of each function, and running time because

there is no iteration as a numerical integrator would require. The program assignments are

for the most additions and multiplications and occasionally trigonometric function calls. It

is always taken care to save the trigonometric function results to minimize the number of

times these longer calculations need to be done.

2.5.5 Orbit Position and Velocity Prediction User’s Guide

The orbit position is not needed directly in the attitude estimator and attitude controller for

NUTS, but the estimator needs the reference vector of the earth’s magnetic field which of

course has to be predicted at the satellite’s position. The orbit position and velocity can be

used for the gyroscope measurement adjustment of equation (2.8) in the controller instead

of the calculation based on the balance of gravity and centrifugal force. Therefore the right

usage of the predictor is important and will, as the sun vector predictor from section 2.4,

be explained with an example. It is taken from [35] on page 234 (no example number) and

executed as shown in Listing 2.2. The NUTS software prints

«satrec.error after initialization: ”

satrec.error after SGP4: ”

reci: -9059.921859 4659.702830 814.126503 km

veci: -2.233430 -4.110207 -3.157239 km/s»

which is very close to the values in the book

ri =


−9059.9413786

4659.6972000

813.9588875

km, ṙi =


−2.233348094

−4.110136162

−3.157394074

 km

s
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Listing 2.2: Orbit Position and Velocity Prediction Example

...
#include "orbitPred.h"

3 ...
int main(){

// TEME example from Vallado (2013) Fundamentals of Astrodynamics →
←and Applications p. 234

char tle [139] = "1 00005U 58002B 00179.78495062 .00000023 →
←00000 -0 28098 -4 0 47532 00005 34.2682 348.7242 1859667 →
←331.7664 19.3264 10.82419157413667";

Satrec satrec = orbitTwoline2rv(tle);
8 printf("satrec.error after initialization: '%s'\n", satrec.error);

Time time;
time.year = 2000;
time.mon = 6;
time.day = 30;

13 time.hr = 18;
time.min = 50;
time.sec = 19.733571;
double reci [3];
double veci [3];

18 orbitSgp4 (&satrec , time , reci , veci);
printf("satrec.error after SGP4: '%s'\n", satrec.error);
printf("reci: %f %f %f km\n", reci[0], reci[1], reci [2]);
printf("veci: %f %f %f km/s\n", veci[0], veci[1], veci [2]);
return 0;

23 }

The reason for the small differences is found in the time and frame transformations. It is e.g.

assumed that the coordinated universal time is the only universal time implementation and

some other functions actually are not valid for the time of the example that already lies 15

years in the past.

The listing shows the most important things to consider. Even if it’s not easy to see, the

char array that is saved in tle[139] has no line breaks, just the 138 TLE characters enclosed

by quotation marks. The satrec struct is then returned by calling the orbitTwoline2rv

function to translate the TLE. The orbitSgp4init function is called internally and should

not be needed explicitly by the user. It is recommended to check for error messages each

time a new TLE is translated and each time a new prediction is computed, the first check

being especially important. The usage regarding the time input and the two output vectors

should be obvious from Listing 2.2 and is in accordance to the interface used throughout.

A very important task for the future users will be to provide the two-line element set to

the satellite in orbit via the radio uplink. The actual place to save the char array has not been
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defined so long, for the tests local variable arrays have been used. The "CelesTrak" website

[18] will list the TLEs for NUTS automatically upon release some time after the launch. To

maintain the updates online a request not to omit them after 30 days must be sent.

As final comment on this section, one could suggest to use the orbit position vector to

improve the sun vector prediction, that as said in section 2.4 returns the vector from the

center of the earth to the sun. A simple vector addition will return the vector from the satellite

position to the sun. This is not implemented in the predictor software for NUTS for the

moment because after a unit conversion (1AU = 149597870.7km) the magnitude of the sun

vector is so much higher, that no significant change occurs.

2.6 Geomagnetic Field Prediction

Now that the position of the satellite is known, the magnetic flux density at this point can be

predicted to have the second reference vector of the EKF model, ri
m in equation (2.2). Again

the term "prediction" is used to mark the difference with the magnetic vector returned by

the magnetometer.

In contrast to the other predictions not one but two different predictors are part of the

NUTS software for the moment. This is because there exist two models of the earth’s mag-

netic field, the international geomagnetic reference field, IGRF, and the world magnetic model,

WMM, that according to the online calculator for both models [33] and its "Frequently Asked

Questions" [32] are of comparable quality. They also have similar numbers of lines of code,

coefficients to save and running time (at least on a modern personal computer).

Just one of them will finally be part of the NUTS software package but both have been

implemented in this thesis to find out which one suits the project’s needs best. The main de-

cision criterion being the algorithm running time on a microcontroller. The last subsection

on the geomagnetic field prediction gives arguments why the WMM is the better choice.

2.6.1 The Earth’s Magnetic Field

The earth’s magnetic field, also called the geomagnetic field, surrounds and penetrates the

earth and protects it from the solar winds. Its emergence is still not completely under-

stood, but the generally accepted theory for the main source is that of the geodynamo or

dynamo mechanism of the earth [10]. The electrical conductivity of the solid inner core of
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earth, mainly composed of iron, cannot solely be the source of the field because of its very

high temperature (iron above 700◦C cannot be magnetized permanently). The mechanism

is rather located in the liquid outer core, that is colder and made out of iron too. There is

a constant flow in the iron due to convection currents, that is rising and falling of fluid at

different temperatures and densities. But the earth itself is rotating and therefore the flow

is not straight but helical. As Figure 2.1012 depicts, circulating electrical currents arise be-

cause of this and, like every electric current, generate a magnetic field. The complexity of the

convection flow causes the magnetic field to change both with time and place. It has even

changed its polarity several times, the last time about 750000 to 780000 years ago [32]. In

addition to this core field other contributions to the inner field are due to magnetic materials

in the mantel and crust. This is the crustal field that does nearly not change with time.

The external field varies a lot faster but is in general weak, although high flux densities may

occur from time to time. It comes from the charged particles moving chaotically at high

speeds in the atmosphere [3].

On the surface of the earth the magnetic flux density is between 25000 and 65000nT and

is not aligned with the earth-centered earth-fixed reference frame. It is easiest to give a pic-

ture of the surface field with maps showing the total intensity, Figure 2.1213, the declination,

that is the angle between a compass needle and the ECEF north pole, Figure 2.1314, and the

inclination, that is if the compass needle points upwards or downwards, Figure 2.1415. Note

that these maps are only a model, the latest world magnetic model to be exact, of the slowly

changing core field which is responsible for more than 90% of the total field. Likewise maps

for other dates differ from the maps shown here, of course more the larger the time gap with

January 2015 is.

On a cosmical scale the magnetosphere is formed as shown in Figure 2.1116. The left

side of the figure shows the side that is turned towards the sun, there the magnetosphere

extends to approximately ten earth radii. On the other side the field can be measured up

12"Outer core convection rolls" by United States Geological Survey - http://geomag.usgs.gov/images/faq/Q6.jpg.
Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:
Outer_core_convection_rolls.jpg#mediaviewer/File:Outer_core_convection_rolls.jpg.

13Maps taken from [34].
14Maps taken from [34].
15Maps taken from [34].
16"Magnetosphere Levels" by Magnetosphere_Levels.jpg: Dennis Gallagher derivative work: Frédéric

MICHEL - Magnetosphere_Levels.jpg. Licensed under Public Domain via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Magnetosphere_Levels.svg#mediaviewer/File:
Magnetosphere_Levels.svg.

http://commons.wikimedia.org/wiki/File:Outer_core_convection_rolls.jpg#mediaviewer/File:Outer_core_convection_rolls.jpg
http://commons.wikimedia.org/wiki/File:Outer_core_convection_rolls.jpg#mediaviewer/File:Outer_core_convection_rolls.jpg
http://commons.wikimedia.org/wiki/File:Magnetosphere_Levels.svg#mediaviewer/File:Magnetosphere_Levels.svg
http://commons.wikimedia.org/wiki/File:Magnetosphere_Levels.svg#mediaviewer/File:Magnetosphere_Levels.svg
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Figure 2.10: Illustration of the dynamo mechanism that creates the earth’s magnetic field.
Convection currents of magma in the earth’s outer core, driven by heat flow from the
inner core, organized into rolls by the Coriolis force, create circulating electric currents,
which generate the magnetic field.

Figure 2.11: An artist’s rendering of the structure of a magnetosphere.
1: Bow Shock, 2: Magnetosheath, 3: Magnetopause, 4: Magnetosphere, 5: Northern Tail
Lobe, 6: Southern Tail Lobe, 7: Plasmasphere
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Figure 2.12: Main Magnetic Field Total Intensity modelled by the World Magnetic Model 2015 for the
time and date 01/01/2015 00:00:00.
The strongest intensity is between the Antarctic and Australia as well as over central Rus-
sia and Canada. The lowest intensity is over South America and the South Atlantic Ocean.
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Figure 2.14: Main Magnetic Field Inclination modelled by the World Magnetic Model 2015 for the
time and date 01/01/2015 00:00:00.
The green line is the magnetic equator (no inclination), while red means positive (down)
and blue negative (up) inclination.
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to more than one hundred earth radii [32]. Luckily NUTS is a low earth orbit satellite and

thus so close to the surface that the asymmetry of the magnetosphere due to the sun has no

measurable impact. This allows to use easier models of the magnetic field that just depend

on the earth-fixed position and time.

2.6.2 Modelling the Earth’s Magnetic Field

There is a need for models of the earth’s magnetic field as one cannot simply place magne-

tometers everywhere. Depending on the application different model assumptions and de-

grees (number of harmonic wavelengths considered) lead to several geomagnetic field mod-

els. The most popular ones are the IGRF and WMM that will be explained with more details

soon. They only account for the core field and have a low degree, so if higher precision is

demanded, higher degree models should be used.

The natural extension to the WMM is the enhanced magnetic model, EMM [30], which

models the crustal field on top of the core field. It extends the number of spherical harmon-

ics from 12 to 720. The ability to run the program on a microcontroller in reasonable time

is therefore surely limited. The high definition geomagnetic model, HDGM [31], adds pre-

dictions for the external field to the EMM and is consequently even more complicated. It

is e.g. intended to help high precision drilling. This model completely overgrows the needs

for NUTS and has other drawbacks like the yearly updates (instead of every five years for the

WMM and EMM) and the price.

Beside these predictive models that attempt to foresee the earth’s magnetic field, there

are historic models relating the field direction and strength of the past. Each new IGRF gen-

eration for example includes a new definitive or DGRF model for the past five years that is

added to the field database. This database begins with estimates for the early 20th century

and has then the definitive models from 1945 to the present. Nonetheless even these models

will not equal the output of magnetometers done at the same time and place, DGRF and con-

sorts remain models of the true magnetic field. Likewise should the predictions obviously be

treated with care especially by the end of the validity period.

The International Geomagnetic Reference Field

The international geomagnetic reference field model is issued by the International Associ-

ation of Geomagnetism and Aeronomy, IAGA, and updated every five years. The current
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model is the 12th generation IGRF [15] that contains estimates for the years 1900 to 1945

(IGRF1900, IGRF1905, etc. to IGRF1940), the definitive model for the years 1945 to 2015

(DGRF1945, DGRF1950, etc. to DGRF2010) and the predictive model that is valid for 2015 to

2020 (IGRF2015 and secular variation for 2015 to 2020), the part of the 12th generation IGRF

that is interesting for NUTS. However the model structure and equations do not change from

the historic to the predictive models, just the Gaussian coefficients are not the same for each

five year range.

The magnetic flux density B modelled by the IGRF accounts only for the core field which

contributes to about 90 to 95% of the total field [32]. It is calculated as the negative gradient

of a scalar potential V in geocentric coordinates (r,θ,λ), see Figure 2.3,

B =−∇V (r,θ,λ, t ) =−∂V

∂r
er − 1

r

∂V

∂θ
eθ−

1

r sinθ

∂V

∂λ
eλ (2.9)

The scalar potential V is given by the series [7]

V (r,θ,λ, t ) = rmean

N∑
n=1

(rmean

r

)n+1 n∑
m=0

(g m
n (t )cosmλ+hm

n (t )sinmλ)P m
n (cosθ) (2.10)

where n is the degree (maximum N ) and m is the order for the time-varying Gaussian coef-

ficients g m
n (t ) and hm

n (t ) as well as the Schmidt quasi-normalized associated Legendre func-

tions P m
n (cosθ). rmean is the mean earth radius, see Table 2.3, and should not be confounded

with the semimajor axis or equatorial radius a when reading [7].

Function (2.10) is a spherical harmonic representation of the magnetic potential. Spher-

ical harmonics are the natural extension of Fourier series in 3 dimensions. In the same man-

ner that Fourier series are used to represent functions on a circle, spherical harmonics are

defined on the surface of a sphere and are an instrument to solve differential equations, this

because they’re homogeneous solutions to Laplace’s equation ∇2V = 0. Figure 2.1517 shows

the three first degrees of spherical harmonic functions.

Inserting equation (2.10) in equation (2.9) yields the magnetic flux density components

17"Spherical Harmonics" by Inigo.quilez - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Com-
mons - http://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png#mediaviewer/File:
Spherical_Harmonics.png.

http://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png#mediaviewer/File:Spherical_Harmonics.png
http://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png#mediaviewer/File:Spherical_Harmonics.png
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Figure 2.15: Visual representations of the first few real spherical harmonics.
Blue portions represent regions where the function is positive, yellow portions represent
where it is negative. The distance of the surface from the origin indicates the magnitude
of the spherical harmonic.

in geocentric coordinates

Br =
N∑

n=1

(rmean

r

)n+2
(n +1)

n∑
m=0

(g m
n (t )cosmλ+hm

n (t )sinmλ)P m
n (cosθ) (2.11a)

Bθ =−
N∑

n=1

(rmean

r

)n+2 n∑
m=0

(g m
n (t )cosmλ+hm

n (t )sinmλ)
∂P m

n

∂θ
(cosθ) (2.11b)

Bλ =
−1

sinθ

N∑
n=1

(rmean

r

)n+2 n∑
m=0

m(−g m
n (t )sinmλ+hm

n (t )cosmλ)P m
n (cosθ) (2.11c)

As one can see, the components are only dependent on the geocentric coordinates. When

looking at Figure 2.11 it is obvious that the sun’s position plays a major role for the shape of

the magnetosphere and thus of the magnetic flux density at a specific point and time, espe-

cially when the place is far away from the surface as it is the case for satellites. Unfortunately

there seems not to be an altitude validity range for the IGRF. However due to the similarities

with the WMM the same upper validity limit of 850km should hold. This complies with the

specification of low earth orbits and the IGRF can be used as predictor for NUTS.

Legendre functions are a generalization of Legendre polynomials Pn(x) to non integer de-
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gree. Associated Legendre polynomials Pn,m(x) are related to them with the following equa-

tion [7]

Pn,m(x) = (1−x2)
m
2

dmPn

dxm
(x)

The Schmidt quasi-normalized associated Legendre polynomials P m
n (x) are then obtained

by applying the Schmidt quasi-normalization

P m
n (x) =

√
2(n −m)!

(n +m)!
Pn,m(x)

However it is computationally more efficient to use the Gaussian normalization

P n,m(x) = 2n !(n −m)!

(2n)!
Pn,m(x)

because the Gaussian normalized associated Legendre functions and their derivatives for a

sine or cosine input are easy to compute recursively [4]

P 0,0(cosθ) = 1, P 1,1(cosθ) = sinθ (2.12a)

P n,n(cosθ) =
√

1− 1

2n
sinθP n−1,n−1(cosθ) (2.12b)

P n,m(cosθ) = 2n −1p
n2 −m2

cosθP n−1,m(cosθ)−
√

(n −1)2 −m2

n2 −m2
P n−2,m(cosθ) (2.12c)

∂P 0,0

∂θ
(cosθ) = 0,

∂P 1,1

∂θ
(cosθ) = cosθ (2.12d)

∂P n,n

∂θ
(cosθ) =

√
1− 1

2n

(
sinθ

∂P n−1,n−1

∂θ
(cosθ)+cosθP n−1,n−1(cosθ)

)
(2.12e)

∂P n,m

∂θ
(cosθ) = 2n −1p

n2 −m2

(
cosθ

∂P n−1,m

∂θ
(cosθ)− sinθP n−1,n−1(cosθ)

)

−
√

(n −1)2 −m2

n2 −m2

∂P n−2,m

∂θ
(cosθ) (2.12f)

The Gaussian coefficients g m
n and hm

n of the IGRF model are actually Schmidt quasi-

normalized coefficients to take care of the normalization change in the Legendre function

explained above. Then one can just use the Gaussian normalized associated Legendre func-

tions (2.12) with the given Schmidt quasi-normalized coefficients in equations (2.11) to ob-

tain the three geocentric components of the geomagnetic field.

g m
n and hm

n are time dependent and must be linearly interpolated between the according

time points, that is e.g. with the DGRF2005 and DGRF2010 coefficients for dates between 1
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January 2005 and 31 December 2009. For doing this the year plus fraction time representa-

tion (section 2.2) is useful. The maximum degree N is 10 until DGRF1995 and 13 beginning

with DGRF2000. There are no predictions for the 2020 epoch, i.e. no IGRF2020 coefficients,

nonetheless the current IGRF is also valid for years between 2015 and 2020. The coefficients

can be interpolated linearly with the IGRF2015 values and the secular variation coefficients

that give a slope assumption for the 8 first degrees for the years 2015 to 2020. Higher degrees

are very small and vary slowly, they need no interpolation, that anyway would result in no

significant change.

The World Magnetic Model

«Sponsored by the U.S. National Geospatial-Intelligence Agency (NGA) and the

U.K. Defence Geographic Centre (DGC), the World Magnetic Model (WMM) is

produced by the U.S. National Oceanographic and Atmospheric Administration’s

National Geophysical Data Center (NOAA/NGDC) and the British Geological Sur-

vey (BGS). It is the standard model used by the U.S. Department of Defense

(DoD), the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)

and the International Hydrographic Organization (IHO), for navigation, attitude

and heading referencing systems using the geomagnetic field. It is also used

widely in civilian navigation and heading systems.» [3]

The world magnetic model [34] works much like the IGRF, but thanks to its background

has more and better official documentation, e.g. the WMM website [34] that also has a free to

use C program, the technical report [3], an online calculator [33] (that also has IGRF values)

and an FAQ page [32]. It also gives precise information about what type of field is included

(just the core field, neither the crustal nor the external field) and that the WMM only is valid

«from 1km below the Earth’s surface to 850km above the surface.» [3]

Fortunately NUTS’s orbit will be inside this range where the effects of solar winds are negli-

gible and just the position with respect to the surface matters.

The WMM is issued every five years where again just the coefficients and not the model

structure changes. Despite its military background it can be used by particulars just like the

more international, cooperative and research-orientated IGRF. In contrast to it no definitive

model for past dates exists, there is no need for historical data for the official users of the
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WMM. The current issue, the world magnetic model 2015, just has the coefficients for the

beginning of the validity range, 1 January 2015, and the secular variation slope values for

interpolation until 31 December 2019. This is no drawback for NUT as the satellite also won’t

need past values but only the current field.

As soon as one has the geocentric position and time for the prediction, the calculation

follows the steps for the IGRF. The magnetic flux density vector B is again given as gradient

field, however the WMM defines geocentric coordinates not with the polar angle θ but with

the elevation angle ψ, Figure 2.3. That’s why the argument of the Schmidt quasi-normalized

associated Legendre functions is sinψ instead of cosθ. Likewise one must replace every sinθ

with cosψ. Apart from this the WMM uses equations (2.9), (2.10) and (2.11) too [3].

The equations (2.12) (with sinψ instead of cosθ and cosψ instead of sinθ) are also used and

Gaussian normalized associated Legendre functions calculated. g m
n and hm

n for the WMM

however are given as Gaussian coefficients, that’s why the Schmidt quasi-normalized Legen-

dre function have first to be calculated form the Gaussian normalized associated Legendre

functions before using the equations (2.11). The step is a simple multiplication

P m
n (x) = Sn,mP n,m(x) ,

∂P m
n

∂x
(x) = Sn,m

∂P n,m

∂x
(x)

with the recursive algorithm for the factors Sn,m [7]

S0,0 = 1

Sn,0 = 2n −1

n
Sn−1,0

Sn,m =
√

(n −m +1)(δ1
m +1)

n +m
Sn,m−1

The Kronecker delta δ1
m is defined in the List of Abbreviations and Symbols and x of course

is sinψ in the WMM algorithm.

2.6.3 Assumptions

Both the 12th generation IGRF and the WMM of 2015 are in the predictors of NUTS and be-

fore giving some details about the implementation, the obvious but nonetheless important

assumption that the geomagnetic prediction represents the true earth magnetic field for the

years 2015 to and including 2019 must be stated.
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In the following paragraphs this assumption will be tested against the known weaknesses of

the models. But they also give arguments why the assumption is valid.

The magnetic models of low degree, i.e. IGRF and WMM, only model the geomagnetic

core field. All other contributions to the total magnetic field, that is the crustal and the ex-

ternal field, are considered to be perturbations. [15] states the model error due to this to be

in the order of 10nT with additional 10nT errors in the coefficients. [34] has a figure to vi-

sualize these two kinds of errors. Figure 2.1618 shows the assumed differences between the

output of the calculation and the actual compass declination around the globe. One part of

the error is due to the finite degree of the model, the other error kind is of numerical nature

because only a finite precision is possible.

In the huge majority of times when NUTS will predict the magnetic field vector, the as-

sumption that the model truly represents the world will not harm the operation. Declination

errors in the order of magnitude of a few degrees are within the noisy measurements of the

magnetometers. Cases where the disturbance field greatly exceeds the mentioned bounds

will likely occur, but they usually are just quick peaks. The satellite attitude dynamics are

slow and won’t respond significantly to peaks and theses cases can be ignored.

This however counts only inside the specified validity range of the WMM up to 850km

above the earth’s surface, which is also assumed to hold for the IGRF. The earth’s surface is

very difficult to model but in general not very far away from the height over the ellipsoid,

such that the demand can be formulated that NUTS shall not orbit the earth at altitudes

higher than 850km. This is well inside the assumed altitude NUTS finally will have.

This ensures also that the geomagnetic field is not influenced by solar winds, see Figure 2.11,

thus the model in fact can just express the position in the ECEF frame in geocentric coordi-

nates as it is done in the equations (2.9) and (2.10).

Finally the 12th generation international geomagnetic reference field and the 2015 ver-

sion of the world magnetic model are standards for the years 2015 to 2020 with obviously

higher accuracy at the beginning of this interval. Figure 2.1719 shows the expected accuracy

loss in declination over the five years. While it is still very small on a majority of locations on

the earth, the declination in neighborhood of the magnetic poles returned by the WMM will

be of poorer quality. The IGRF on its side states about 20 nT
year loss in accuracy.

This should not be of greater importance as long as the year 2020 did not begin. Then how-

18Image taken from [34].
19Image taken from [34].
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Figure 2.16: Global distribution of the declination error provided by the WMM2015 error model

Figure 2.17: Estimated WMM2015 declination inaccuracy without considering crustal and distur-
bance field contributions
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ever with the advent of a new IGRF generation and the WMM2020, an update of the coef-

ficients is recommended. Because of reasons explained in the next subsection a coefficient

change is relatively easy to perform but not an increase of degree. That is the highest degree

will remain 13 for the IGRF and 12 for the WMM implementations on NUTS unless someone

changes the C code at several places.

2.6.4 Implementation Details

IAGA has a Fortran program for the IGRF algorithm, but it was not used in this thesis. It was

a lot easier to adapt the MATLAB file exchange implementation [4] to C source code.

All program lines of code relating to the historic models have been removed and the coef-

ficient loading and interpolation merged into the main function. This means that just one

function for returning the IGRF prediction remains

• void magIgrf(double reci[3], Time timeUTC, double Beci[3])

Again the interface just makes use of vectors expressed in the inertial reference frame

(position input vector reci, magnetic flux density output vector Beci) and coordinated uni-

versal time points (time input struct Time). The algorithm itself follows the steps presented

in the preceding subsections along with the model. But some points are worth noting.

A lot of arrays are defined in the function, they all have fixed (hard coded) sizes to avoid

dynamical allocation which would use too much time and place on the ADCS microcon-

troller. This is also the reason why a higher degree of IGRF would come along with a lot of

small changes in the function whenever arrays are declared and involved in loops, e.g. for

the Legendre functions and derivatives.

The Schmidt quasi-normalized spherical harmonic main and secular variation coeffi-

cients are defined in two arrays of size 196 in exactly the same way then the official source

[15], that is g m
n and hm

n together in one array to save place for the coefficients which by defi-

nition are 0. The first array has all the main field coefficients, the second all secular variation

coefficients. MATLAB begins array indexation at 1, C begins at 0. Place holders are at the

front of the two arrays in the C code to effectively start the indexation at 1 too. The year plus

fraction representation of the time is advantageously used for the linear interpolation.

The potential function is expressed in the geocentric coordinates radial distance r , polar

angle θ and azimuthλ, the frameEci2ecef function of section 2.3 however returns Cartesian
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coordinates and frameEcef2geod the geodetic coordinates latitude φ, longitude λ (equals

azimuth) and altitude h. On top of that the magnetic flux density is actually calculated as

north east down values and needs to be expressed in ECI before the extended Kalman filter

can use it. For these transformations [4] uses the Fortran method of the IGRF source

ρ =
√

(a sin(90◦−φ))2 + (b cos(90◦−φ))2

r =
√

h2 +2hρ+a4 sin2(90◦−φ)+b4 cos2(90◦−φ)

ρ2

cd = h +ρ
r

sd = (a2 −b2)cos(90◦−φ)sin(90◦−φ)

rρ

cosθ = cd cos(90◦−φ)− sd sin(90◦−φ)

sinθ = cd sin(90◦−φ)+ sd cos(90◦−φ)

where ρ is a help value and a, b are the semimajor and semiminor axes of the earth. The

polar angle θ is not computed explicitly but just its sine and cosine values that are needed in

the algorithm. cd , sd are help values called like this because of their replacement of sine and

cosine value in the next three equations.

BN =−Bθcd −Br sd

BE = Bλ

BD = Bθsd −Br cd

Finally Bn =
(
BN BE BD

)
is transformed to Bi with the rotation matrix returned by the

function frameRotationNed2ecef (see section 2.3).

The U.S. National Oceanic and Atmospheric Administration’s National Geophysical Data

Center (NOAA/NGDC) publishes on its website [34] an official C implementation of the WMM

that private persons are allowed to use and edit for free. Of course this was the starting point

for the NUTS implementation. Much of the work was again removing unnecessary parts and

compliance to the interface such that the only remaining function is

• void magWmm(double reci[3], Time timeUTC, double Beci[3])
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with the obvious parallels to magIgrf.

As for the IGRF function the arrays have fixed lengths and place holders are used to begin

array indices with 1 (this is also the case in the source). Likewise the time is converted form

the Time struct to a year plus fraction representation to facilitate the linear interpolation of

the Gauss coefficients g m
n and hm

n . They are separated here such that four arrays of length 91

are defined, two for the main field coefficients and two for the secular variation.

The main part of the algorithm is still unchanged, but, as usual, steps in the beginning

and end have been added. The potential function is expressed in the geocentric coordinates

radial distance r , elevation angle ψ and azimuth λ. [34] uses a more classic transformation

r =
√

x2 + z2 , ψ= arcsin
(z

r

)

The conversion to a magnetic flux density expressed in the North East Down frame is then

also the classic approach

BN = Bψ cos(ψ−φ)−Br sin(ψ−φ)

BE = Bλ

BD = Bψ sin(ψ−φ)+Br cos(ψ−φ)

Again the result transformed to the ECI frame is written in the array Beci points at.

It should be noted that both models have singularities near the (geographic) poles, that

is for very high elevation or very low polar angle respectively. The implementations take care

of this with special routines in the respective cases

• |sinθ| < 10−6 in magIgrf

• |cosψ| < 10−10 in magWmm

2.6.5 Geomagnetic Field Prediction User’s Guide

The way to use the geomagnetic predictors corresponds to the way to use the other functions

described in this chapter. Note that again the usual user only needs to know the coordinated

universal time and the ECI place because all time and frame manipulations happen inside

the functions. The header file magPred.h and the source file magPred.c contain the two

earth’s magnetic field predictors.
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An example will show the necessary steps. To verify own implementations, the WMM

report has test values, one of them is used in Listing 2.3. The IGRF test value for the same

time and place comes from the official online field calculator for IGRF and WMM [33].

Neither the location of the test value nor the magnetic flux density itself can directly be com-

pared between the sources and the NUTS implementation. The location is given in geodetic

coordinates and the magnetic flux density as north east down values in [3] and [33]. The

NUTS software interacts only in the ECI reference frame with the user. Thus the latitude 80◦

N, longitude 0◦ E and altitude of 0km above the ellipsoid are first converted to an ECI vector

with the functions of section 2.3. In another small program not displayed here the North East

Down source values are transformed to the inertial reference frame from

Bn
WMM =


6627.1

−445.9

54432.3

nT, Bn
IGRF =


6630.9

−447.2

54434.5

nT

to

Bi
WMM =


3174.479998

−15647.973476

−52460.043531

nT, Bi
IGRF =


3176.483417

−15651.804494

−52461.553370

nT

where one also sees that both models yield comparable flux densities.

The output following the execution of Listing 2.3 is

«WMM: 3174.465260 -15647.939589 -52460.008194 nT

IGRF: 3176.537955 -15651.713869 -52461.553057 nT »

and clearly very near to the official values. It’s not sure where the small differences arise, but

each manipulation of floating point numbers and the extensive usage of trigonometric func-

tions induces rounding errors. Likewise different summing and multiplication orders may

result in slightly different results. Finally the global constants for the earth’s shape or π are

not guaranteed to be exactly equal.

Anyway the result of the NUTS implementation is very good and so it is with all other offi-

cial test values. One of the two predictor results can thus be used as reference vector ri
m in

equation (2.2).

Future users will also have the duty to update the model coefficients every five years, the

first time in 2020. The satellite should be in orbit then and maybe still operational. Of course
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Listing 2.3: Geomagnetic Field Prediction Example

...
2 #include "magPred.h"

...
int main(){

// Official WMM 2015 test value 1
Time time;

7 time.year =2015;
time.mon = 1;
time.day = 1;
time.hr = 0;
time.min= 0;

12 time.sec= 0.0;
double rgeod [3] = {80.0 , 0.0, 0.0};
double recef [3];
frameGeod2ecef(rgeod , recef);
double reci [3];

17 frameEcef2eci(recef , time , reci);

double Beci [3];
magWmm(reci , time , Beci);
printf("WMM: %f %f %f nT\n", Beci[0], Beci[1], Beci [2]);

22

// Official WMM 2015 test value 1, IGRF result
magIgrf(reci , time , Beci);
printf("IGRF: %f %f %f nT\n", Beci[0], Beci[1], Beci [2]);
return 0;

27 }

the software won’t fail totally if this is not done directly because the linear interpolation will

carry on working, but the accuracy decays little by little as shown in Figure 2.17. As already

said, even if newer IGRF and WMM updates have higher degrees of precision, they must be

cut down to 13 and 12 respectively if one wants to avoid to rewrite some parts of the code.

2.6.6 Recommendations on the Geomagnetic Field Model Choice

So there are two geomagnetic field models as part of the predictor package of NUTS for the

moment. This redundancy is of course not required in the satellite flight model so one of the

two models must be chosen.

All sources agree that no model is known to yield better results, that is nearer to the true

geomagnetic field, so arguments for the IGRF or the WMM have to be found at other places.

No previous Master’s thesis or paper on NUTS looked at the WMM and the book [35] e.g.

also just mentions the IGRF. This is because of its international and scientific community
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origin (it also accounts for historic values), while the WMM has a more military background.

On the other hand the WMM has more and better documentation as well as a very good

official implementation with test values to verify.

But the decision for one or the other model should be mainly based on performance of

the simplified implementation on the NUTS hardware.

The IGRF operates with 13 degrees of spherical harmonics while the WMM has one less.

Therefore it needs less coefficients, but due to a clever way of the IGRF to save them, that is

leaving out all zeros by definition, the difference is small. There are 4 ·91 = 364 WMM and

2·196 = 392 IGRF coefficients of double precision among the global constants. This is a weak

argument for the WMM.

The IGRF has slightly less lines of code because the spherical harmonic coefficients are

Schmitt quasi-normalized instead of the Gauss normalized coefficients of the WMM. This

avoids one normalization step and should also result in a faster function.

The running time is the most important comparison criterion because hardware on the

satellite is restricted and the predictor functions are used often. Four running time tests

answer this question (the decision for the time point and place to evaluate is explained in

section 2.8). The same C source code written in the Eclipse Platform 3.8.1 was used on these

two platforms

• Samsung P580 computer with Intel® Core™ i5 CPU M 430 @ 2.27GHz ×4 running

the Ubuntu 14.04LTS 64-bit Linux operating system, code compiled with the GNU C

Compiler 4.8.2.

• Atmel UC3-A3 Xplained evaluation kit with the Atmel AVR AT32UC3A3256 microcon-

troller running FreeRTOS for AVR UC3 version 8.0.0, code compiled and written on the

microcontroller with Atmel Studio 6.2.

The Atmel AVR AT32UC3A3256 is actually not the microcontroller that will be the ADCS

controller on the NUTS flight model, an Atmel AVR AT32UC3C2256C that has a float-

ing point unit was chosen in the spring semester 2015. However it was not available

for testing purposes, such that a comparable evaluation board was used. This also ex-

plains why the differences between the PC and the microcontroller are so high. There

are a lot of floating point operations to do and trigonometric functions to evaluate,

processes that can take very long without floating point unit. But these differences are

not important, what counts is which model is the fastest on the respective platform.
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Table 2.2: Running Time of IGRF and WMM on Computer and Microcontroller in Clock Ticks

Model Date and Time Personal Computer Microcontroller
WMM 01.01.2015 00:00:00 68 2224000
IGRF 01.01.2015 00:00:00 63 2885500
WMM 15.10.2018 12:34:56.789 68 2224200
IGRF 15.10.2018 12:34:56.789 60 2893300

The clock() function of the C standard library is triggered just before and after the pre-

dictor call and the time difference is the running time of the predictor. The unit in which the

results are expressed in Table 2.2, is clock ticks. This unit varies from system to system, the

macro CLOCKS_PER_SEC returns how many ticks are in one second for the specific system,

for the personal computer and the microcontroller it is both times 1000000.

The IGRF prediction needs always only about 90% of the time of the WMM prediction

on the tests on a personal computer because it has one normalization step less to do. The

absolute time differences are however very small, both functions run quasi in an instant.

This is interesting but again of minor importance for the suggestion which geomagnetic field

model to use for the satellite flight model.

The best way to decide is to look on the function running times on the microcontroller

the ADCS is going to use. One should expect a similar result than on the personal computer

but in fact the WMM took only about 77%, see Table 2.2, of the time of the IGRF, most likely

because it has one degree of precision less. That is why this thesis suggests that the world

magnetic model should be used as geomagnetic field predictor on the NTNU Test Satellite.

2.7 Libraries and Global Constants

All these predictors and transformations need a lot of coefficients and global constants. Like-

wise some special functions to treat strings or for mathematical operations are used a lot.

That’s why not just the usual stdlib.h and stdio.h C header files must be included in or-

der to compile the software. One needs also the C standard libraries

• string.h, which helps a lot when handling the two-line element set, and

• math.h. It provides a macro M_PI for π and the functions for one floating point num-

ber sqrt for the square root as well as the trigonometric functions. Functions for two

floating point numbers such as fmod for the remainder of a division and pow to raise to
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Table 2.3: Global Constants for the Prediction Algorithms

Name Description, Unit, Source Value (Row 1-13)
Dimension (Row 14-23)

DEG2RAD Conversion factor from deg to rad, [35] M_PI / 180.0
RAD2DEG Conversion factor from rad to deg, [35] 180.0 / M_PI
TWOPI Circumference of the unit circle, [35] 2.0 * M_PI
REQU Earth semimajor axis, equatorial radius, km, [35] 6378.137
RPOL Earth semiminor axis, polar radius, km, [35]; 6378.137 * (1 -

semimajor axis reduced with earth flattening (1.0/298.257223563))
RMEAN Mean earth radius, km, [4] 6371.2
ECCSQRD Earth eccentricity squared, [35]; two times earth 2.0*(1.0/298.257223563)-

flattening minus earth flattening squared pow(1.0/298.257223563,2)
J2 J2 earth oblateness coefficient, [36] 0.00108262998905
J4 J4 earth oblateness coefficient, [36] -0.00000161098761
J3OJ2 J3 earth oblateness coefficient divided -0.00000253215306

by J2 earth oblateness coefficient, [36] / 0.00108262998905
VELKMPS Orbit velocity at 0km altitude, km

s , [35]; sqrt(398600.4418
square root of gravitational parameter / 6378.137)
divided by semimajor axis

XKE Reciprocal of the time unit (time to 1.0 / 13.4468520637
travel 1rad in orbit), 1

min , [36]
MJDPOLAR Modified Julian date of the Bulletin for 57065

polar motion estimation coefficients, [16]

XPOLAR Polar motion estimation coefficients, [16] double[5]
YPOLAR Polar motion estimation coefficients, [16] double[5]
IAR80 Integer IAU-1980 nutation coefficients, [35] int[530]
RAR80 Real number IAU-1980 nutation coefficients, [35] double[424]
IGRFGH 12th gen. IGRF Schmidt quasi-normalized double[196]

spherical harmonic main coefficients, nT, [15]
IGRFGHSV 12th gen. IGRF Schmidt quasi-normalized double[196]

secular variation coefficients, nT
year , [15]

WMMG 2015 WMM main Gauss G coefficients, nT, [34] double[91]
WMMGSV 2015 WMM secular variation G coefficients, double[91]

nT
year , [34]

WMMH 2015 WMM main Gauss H coefficients, nT, [34] double[91]
WMMHSV 2015 WMM secular variation H coefficients, double[91]

nT
year , [34]
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power are used often too.

time.h must be included for the time tests. This header is not required by the predictors.

All global constants were exported into an own header file named constants.h. and

declared as static const double scalars and arrays. Table 2.3 shows all constants with

their name, description, value (scalars) or dimension (arrays, see the digital attachment for

the values) as well as source. The earth constants are those of the world geodetic system

1984.

2.8 Verifying the NUTS Prediction Software

The last source file of the predictor package, testC.c, has a method with at least one test

for all the functions of the package. The values returned from the test are verified against

known values taken from [35], [36] and [33]. If the absolute and relative difference is small,

the main function just prints the tested function’s name and "OK!", the returned value and

the expected value are printed next to each other otherwise. In total 39 tests are done and 29

of them return the expected value. For the 10 others the differences are slightly higher, but a

closer inspection shows that they’re still very acceptable.

The time conversion and frame transformation functions are just tested once and their

correctness verified with examples from [35]. This may seem too little testing especially as

small errors are returned by some frame functions, but the predictor functions use nearly

all of them such that the correct implementation of the time and frame functions is proven

indirectly by the successful verification of the predictors.

The only test of the sun predictor is Listing 2.1 [35] which shows that the algorithm works

as awaited.

In addition to Listing 2.2, the orbit propagator is tested with another example of [36]

which uses a different TLE, to be precise the first TLE ever used to verify the SGP4 algorithm

published in [14]. The tests return nearly exactly the expected position and velocity.

Four of the official WMM2015 test values and their four IGRF counterparts [33] are com-

pared to the NUTS implementations of the earth’s magnetic field models. Because the test

values possibly are special cases, Listing 2.3, which is one them, for example has 0◦ longi-

tude and does not need the secular variation because it asks for the field on 1 January 2015

at midnight, a ninth and tenth test are implemented. They ask for the field vectors 5km
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above Trondheim (63◦ north and 10◦ east) on 15 October 2018 at 12:34:56.789.

Six of the ten tests are "OK!", two tests of the IGRF and two tests of the WMM have little

higher but still very small differences in the magnetic flux density compared to the online

calculator [33], so also this predictor works well enough for the purposes of NUTS.

The first and last tests of the WMM and IGRF are timed to have an objective argument which

model is better for the satellite, see the last subsection on the geomagnetic field predictors.

The running times on a personal computer and microcontroller are found in Table 2.2.

2.9 Relaxing the Clock Assumption

The central assumption in section 2.2 on the time conversions, which thus also affects all

other predictor parts, is that the ADCS knows precisely the current coordinated universal

time. Clearly this is almost impossible to realize on a CubeSat which does not have a highly

precise atomic clock on board.

There are of course clock functions on the microcontroller and in FreeRTOS, but the time

on the ADCS board will drift compared to the accurate clocks for universal time on earth. The

NUTS team will need to readjust the clock from time to time, depending on the clock drift

and the comments of this section that looks how an inexact clock affects the predictors.

2.9.1 Verification Values

In order to relate the impact of the clock on the predictors some other tests than those of sec-

tion 2.8 are needed because here they must satisfy all the other assumptions of the chapter.

To maintain this section related to what the user will need, only the three predictors for sun,

orbit and geomagnetic field are inspected. It’s not needed to look at the time conversions, as

they’re mostly just to change the representation of the same time point. Some of the frame

transformations of course are affected by a drifting clock, but this impact will show itself

through the predictors.

The exact time that the clock on board should have for the tests throughout this section,

has to be between 2005 and 2050 to satisfy the additional time conversion assumptions, in

the neighborhood of the IERS Bulletin A or B release date from which the coefficients are taken

for the frame transformations, between 1950 and 2050 for the sun vector assumptions, in the

neighborhood of the TLE release epoch to satisfy the orbit position and velocity assumptions
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and between January 2015 and December 2019 because of the geomagnetic field prediction

assumptions. The easiest way to tackle everything at the same time, is to take the epoch of a

recent Two-Line Element Set for a low earth orbit satellite.

The already mentioned UWE-3 (e.g. [9]) has orbit specifications that are very similar with

those of NUTS (in addition it is a CubeSat too). The orbit has a very low eccentricity (circular

obit), a short period of 97min (low earth orbit) and the inclination is 97.7◦ (nearly polar, in

fact sun-synchronous), thus the following recent TLE was taken from [18]

1 39446U 13066AG 15091.16814487 .00002750 00000-0 38274-3 0 9998

2 39446 97.7351 154.4636 0072683 33.0976 327.4752 14.76760372 71880

and the epoch 15091.16814487 set as basis for the tests of this section. This corresponds to

the date 1 April 2015 and the time 04:02:08. In the following the time was perturbed by adding

10s, 30s, 1min, 2min and 3min to the epoch. It is assumed that the performance when

setting the clock back instead of forth is the same. Before commenting the performance

with inexact clock the verification values must be calculated from the sources.

Sun Vector Verification Value

The original MATLAB implementation copied from [18] of the sun vector algorithm [35] was

used to get the sun vector in the MOD reference frame. It was then transformed to the ECI

frame using the original MATLAB function for the precession matrix. To ensure the highest

possible precision, the appropriate IERS Bulletin B [17] was downloaded and the ∆T value

for 1 April 2015 (modified Julian date 57113) used for the time conversions. The sun vector

verification value (normed to one) in the ECI reference frame is thus

ri
¯ =


0.981949

0.173541

0.075229


Orbit Position and Velocity Verification Value

Similarly to the preceding paragraph the original MATLAB implementation copied from [18]

of the SGP4 algorithm [36] was used to get the orbit position and velocity vectors of the men-

tioned TLE at the epoch time in the TEME reference frame. Likewise the resulting vectors

were transformed to the ECI frame using the functions of [35], here again the highest possible
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precision was used in the transformation options (highest order 106 and complete nutation

matrix) and for the time conversions. The orbit position and velocity verification vectors in

the ECI reference frame are

ri =


−6285.864466

3029.483180

9.366419

km, ṙi =


0.488089

0.902297

7.513168

 km

s

Geomagnetic Field Verification Value

The official online calculator for the earth’s magnetic field [33] returns the magnetic flux den-

sity for both models. The TLE epoch is converted to 2015.245334 years and the location is

r from the preceding paragraph. This has first to be converted to the ECEF reference frame

and then expressed in geodetic coordinates. Here again [18] provides all the necessary func-

tions and the appropriate IERS Bulletin B [17] the missing constants U T 1−U TC ,∆T , xp , yp ,

δ∆Ψ1980 and δ∆ε1980 to have the magnetic flux densities

Bn
IGRF =


21722.7

1934.9

7375.4

nT, Bn
WMM =


21720.4

1936.5

7373.3

nT

that expressed in the ECI frame become

Bi
IGRF =


5835.947136

−4945.923954

21713.949796

nT, Bi
WMM =


5833.357342

−4946.453473

21711.653587

nT

2.9.2 Impact of an inexact Clock on the Predictions

The results of all test runs to describe the impact of an inexact clock on the predictions are

summarized in Table 2.4, they were essentially achieved using the approach already shown

in the listings of the respective sections.

Sun Vector Prediction

Comparing at first the exact time result of the NUTS implementation with the verification

value shows once again that there are no mistakes in the implementation of this predictor.
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Table 2.4: Impact of an inexact Clock on the Predictions

Function Date and Time Result
sun 01.04.2015 04:02:08 rsun:0.981949 0.173541 0.075229
sun 01.04.2015 04:02:18 rsun:0.981949 0.173543 0.075230
sun 01.04.2015 04:02:38 rsun:0.981948 0.173546 0.075231
sun 01.04.2015 04:03:08 rsun:0.981947 0.173552 0.075233
sun 01.04.2015 04:04:08 rsun:0.981945 0.173563 0.075238
sun 01.04.2015 04:05:08 rsun:0.981942 0.173573 0.075243

orbitSgp4 01.04.2015 04:02:08 reci:-6285.864160 3029.483033 9.366418
orbitSgp4 01.04.2015 04:02:18 reci:-6280.614041 3038.328117 84.496584
orbitSgp4 01.04.2015 04:02:38 reci:-6267.900441 3054.946258 234.718525
orbitSgp4 01.04.2015 04:03:08 reci:-6243.306855 3077.178132 459.821743
orbitSgp4 01.04.2015 04:04:08 reci:-6174.329672 3111.851524 908.325985
orbitSgp4 01.04.2015 04:05:08 reci:-6079.203873 3133.346060 1352.973031

orbitSgp4 01.04.2015 04:02:08 veci:0.488089 0.902297 7.513167
orbitSgp4 01.04.2015 04:02:18 veci:0.561911 0.866651 7.512615
orbitSgp4 01.04.2015 04:02:38 veci:0.709385 0.795041 7.508854
orbitSgp4 01.04.2015 04:03:08 veci:0.930031 0.686896 7.496573
orbitSgp4 01.04.2015 04:04:08 veci:1.368412 0.468403 7.448144
orbitSgp4 01.04.2015 04:05:08 veci:1.801315 0.247768 7.368041

magIgrf 01.04.2015 04:02:08 IGRF: 5834.848416 -4945.775712 21714.086846
magIgrf 01.04.2015 04:02:18 IGRF: 6473.450124 -5247.516299 21653.679747
magIgrf 01.04.2015 04:02:38 IGRF: 7750.654918 -5859.634172 21483.475284
magIgrf 01.04.2015 04:03:08 IGRF: 9660.398950 -6796.687715 21103.388941
magIgrf 01.04.2015 04:04:08 IGRF:13417.026973 -8720.128474 19889.058864
magIgrf 01.04.2015 04:05:08 IGRF:17013.342942 -10673.677670 18070.269757

magWmm 01.04.2015 04:02:08 WMM: 5832.282720 -4946.270106 21711.751311
magWmm 01.04.2015 04:02:18 WMM: 6470.811765 -5247.914865 21651.532915
magWmm 01.04.2015 04:02:38 WMM: 7747.975451 -5859.839359 21481.722613
magWmm 01.04.2015 04:03:08 WMM: 9657.916464 -6796.628674 21102.212427
magWmm 01.04.2015 04:04:08 WMM:13415.662558 -8719.786141 19888.615585
magWmm 01.04.2015 04:05:08 WMM:17013.310283 -10673.458899 18069.589674



82 CHAPTER 2. PREDICTION ALGORITHMS FOR THE ATTITUDE ESTIMATOR

Clearly the sun vector prediction is not affected by an inexact clock, the first four signifi-

cant digits in all three vector components remain the same throughout the tests. This is no

surprise as the earth is not moving far in just three minutes. Therefore suggestions on what

is an acceptable time shift, are not based on the sun vector predictor. A test with an even

higher clock error of 10min still yielded an acceptable sun vector.

Orbit Position and Velocity Prediction

The verification value and the exact time calculation with the NUTS implementation again

coincide very well, so the inexact time results can directly be compared to the exact time

results in Table 2.4 without having to look back to the verification value.

The differences are of course higher than for the sun vector, but it’s difficult to judge if

this is acceptable for NUTS, based on these values only because they’re not used directly in

the attitude estimator. The position will just be the input of the geomagnetic field predictor.

It was suggested in the beginning of section 2.5 that ω0 = ṙ
r (the quotient of the magni-

tudes of velocity and position) should be used in equation (2.8). The magnitudes of reci

and veci in Table 2.4 do not change very much such that this equation still is valid even with

2min and 3min clock error.

Geomagnetic Field Prediction

This predictor is a bit different then the other two because it depends on the time and po-

sition. The time dependence of the earth’s magnetic field is rather low, but as an inexact

clock results in a different position (see preceding paragraph) the impact is doubled. In fact

the decision how much clock error is acceptable for NUTS should be based on the geomag-

netic field predictor. Which model, the WMM or IGRF, is used is insignificant for the present

discussion as can be seen in the tabled values. They also show one more time that the im-

plementation is working if one compares the output for the exact time and the verification

values longer above.

To help to understand Table 2.4 the result vector of the world magnetic model are drawn

in Figure 2.1820. A plot of the IGRF values is not included because they essentially are equal

to the WMM vectors, neither is the verification value plotted because no difference can be

seen with the vector labelled "exact".

20Own production using MATLAB’s quiver3 function.
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Figure 2.18: Impact of an inexact Clock on the World Magnetic Model

Unfortunately the differences with a slightly inexact clock already are somewhat large.

One minute is still OK, but two minutes or more is obviously unacceptable. In addition the

variation in the earth’s magnetic field is higher near the (geographic and magnetic) poles as

well as above the South Atlantic Anomaly, than in the example (equatorial plane, because

the reci z value nearly is 0 for the exact time).

To summarize this section it is of course desirable to have the best possible clock but

should it drift too much, the geomagnetic field prediction will be the first affected. This

mainly because of a wrong position computed by the orbit propagator. In any case one

should aim to maintain the clock error under one minute.

But to finish on a positive note, the implementation of the predictors for the attitude

estimator of NUTS was once again verified to yield the expected results. If all assumptions

are satisfied, they match within a very small error with the highly reliable sources.

2.10 Conclusion and Further Work

The outcome of this chapter is very positive as the faced problems were solved. A fully func-

tional and easy to use prediction software package is now available for NUTS and all future

developers. In addition the theory behind e.g. the frame transformations, the orbit propaga-
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tion and the earth’s magnetic field are described with much more details than in comparable

works such that hopefully the reader has now a better understanding in this exciting field.

Not much further work concerning the prediction algorithms is needed for NUTS. All the

necessary functions have been written and tested several times successfully. However the

development was done on a personal computer and not on a microcontroller. The reasons

for this are the easier handling and faster debugging as well as the fact that no exemplar of

the new microcontroller for the ADCS board was available during most of the time of the

semester. The remaining work to do concerns thus to port and test the code on the micro-

controller. This should not be a problem as the functions run on a very similar microcon-

troller without error.

A serious issue could be the long running time of some functions, especially the geomag-

netic models and the two functions frameNutation and frameTruemean that return the nu-

tation matrices Ne and Nt , see section 2.3.

The order of the WMM and IGRF can be reduced from 12 and 13 respectively down to 8 or

9 without losing much precision in a shorter computation time. Note that changes must be

done at several places (marked in the comments) because fixed array lengths are used.

The most time taking part to calculate the nutation matrices is a weighted sum for two pa-

rameters with 106 terms. The coefficients are ordered by size such that 106 can easily be

reduced in the for loop of the functions (down to 20 or 40 for example) to speed up the

computation. The result will still be accurate enough for NUTS.

Finally as said at several places, the global constants MJDPOLAR, XPOLAR and YPOLARmust

be adjusted with the newest values from the IERS Bulletin A [16] close to the launch. They

provide a good interpolation for at least one or two years, occasional cross checking between

the interpolation and the IERS Bulletin A can be interesting to see when the coefficients must

be replaced. Likewise it’s recommended to change the coefficients of the IGRF and WMM

should the satellite operate beyond 2020. And of course the two-line element set from [18]

must be transferred to the satellite as soon as possible after its publication.



Chapter 3

Robust Spacecraft Attitude Stabilization

using Magnetorquers

3.1 Introduction

Spacecraft attitude control using magnetorquers has successfully been done for decades es-

pecially for low earth orbit missions and small satellites. However mathematical proofs for

the theoretical global feasibility (or infeasibility) of magnetic control are still missing de-

spite being the object of active research. There are numerous papers facing the problem and

equally numerous solutions to specific parts of the problem (e.g. detumbling procedure, see

[24], or just the orbit stabilization as in this chapter) or solutions under certain assumptions

(e.g. the satellite’s orbit faces a periodic geomagnetic field).

Indeed magnetorquers have proven themselves in the field and their obvious advantages

are appreciated by spacecraft engineers. There are no moving parts, there is potentially an

unlimited energy supply as no tank can go empty and solar panels recharge the batteries,

magnetorquers are cheap, easy to operate and reliable. The main disadvantage is that it is

not possible to provide a torque in every direction at all times but only torques perpendicular

to the surrounding magnetic field of the earth. One can overcome this by adding a reaction

wheel to the actuator set, but this is not the subject of this chapter. The other drawback of

magnetic control, namely the relatively weak torques, is irrelevant for theoretical analyses.

The genesis of the present work begins with two papers demonstrating asymptotic atti-

tude stability of a small satellite under different circumstances using magnetorquers only.

In short [11] assumes a perfectly known satellite inertia and nothing about the geomagnetic

85
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field and proves asymptotic stability for nadir pointing using purely nonlinear analysis. The

second and newer paper [2] on the other side assumes a periodic earth’s magnetic field but

an unknown inertia matrix and proves local exponential stability for alignment of the prin-

cipal satellite axes with the orbit considering a linear average approximation of the attitude

dynamics. The aim of this chapter is to combine both papers and try to prove stability for an

unknown satellite inertia while not assuming anything special for of the geomagnetic field.

For the whole chapter it is assumed that the reader is familiar with nonlinear system anal-

ysis and Lyapunov stability as for example explained in [19]. It is also highly recommended

to read [11] and [2].

3.2 Problem Description and Preliminaries

3.2.1 Spacecraft Attitude Kinematics and Kinetics

The notation for this chapter follows for the most the notation of [11] but is harmonized with

the preceding chapter. Many ideas are also taken from [8]. For this problem three reference

frames are relevant the Earth-Centered Inertial, ECI, the ORBIT and BODY reference frame.

As in chapter 2 vectors expressed in the different frames are marked with (·)i , (·)o and (·)b

superscripts respectively.

The rotation matrices are Ro
i , Rb

i etc. are of minor importance apart from the rotation

matrix between ORBIT and BODY that describes the satellite’s attitude. There are several

possibilities to parametrize it, [11] uses three (column) vectors of direction cosines, that is

projections of the ORBIT axes onto the BODY frame axes

Rb
o =

(
cb

1 cb
2 cb

3

)
=


cb

11 cb
12 cb

13

cb
21 cb

22 cb
23

cb
31 cb

32 cb
33


[2] describes the rotation like in the extended Kalman filter of chapter 2 with a unit quater-

nion q , a computationally efficient way to regroup the rotation axis unit vector λ and angle

β

q =
ε
η

=
λsin β

2

cos β2

 , ε2
1 +ε2

2 +ε2
3 +η2 = 1



3.2. PROBLEM DESCRIPTION AND PRELIMINARIES 87

Note that the order of ε and η often is the reversed in q like e.g. in [8]. The rotation matrix for

the attitude is then

Rb
o =


1−2(ε2

2 +ε2
3) 2(ε1ε2 −ε3η) 2(ε1ε3 +ε2η)

2(ε1ε2 +ε3η) 1−2(ε2
1 +ε2

3) 2(ε2ε3 −ε1η)

2(ε1ε3 −ε2η) 2(ε2ε3 +ε1η) 1−2(ε2
1 +ε2

2)



However these rotation matrices are not very important for the kinematics and dynam-

ics of the satellite attitude as one is not interested in position and linear velocity but in the

attitude and angular velocity. The rotation matrix differential equation

Ṙb
o = Rb

o S(ωb
ob) = Rb

o


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


using the cross product operator S(·) not only provides a way to define the angular velocity

vector ω but also the attitude differential equations for the direction cosine vectors as used

in [11]

ċb
1 = S(cb

1 )ωb
ob , ċb

2 = S(cb
2 )ωb

ob , ċb
3 = S(cb

3 )ωb
ob (3.1)

When using unit quaternions as in [2] the attitude differential equation is

q̇ = T(q)ω= 1

2

ηI3×3 +S(ε)

−εT

ω (3.2)

Equations (3.1) and (3.2) are the attitude kinematics. They form the dynamics or equa-

tions of motion together with the attitude kinetics

Jω̇b
i b =−S(ωb

i b)
(
Jωb

i b

)
+τb (3.3)

with the vector τb regrouping all the torques acting on the satellite and its inertia matrix J.

The latter is a diagonal matrix since equation (3.3) is expressed in the BODY frame (center

of gravity, principal axes). However one is most often not interested in reducing the angular

velocity of the spacecraft with respect to the inertial frame, but rather with respect to the
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ORBIT frame. Simplifying equation (2.8) toωb
i b =ωb

ob +ω0cb
1 yields the kinetics

Jω̇b
ob =−ω0JS(cb

1 )ωb
ob −S(ωb

ob)
(
Jωb

ob

)
−ω0S(ωb

ob)
(
Jcb

1

)
−ω0S(cb

1 )
(
Jωb

ob

)
−ω2

0S(cb
1 )

(
Jcb

1

)
+τb

(3.4)

3.2.2 Attitude Stabilization

For the scope of this thesis attitude stabilization aims to bring the satellite attitude to a cer-

tain equilibrium point and to hold it there. This is a difference to full attitude control where

the goal is to turn the satellite to any desired attitude.

For [11] this objective is nadir pointing where the first and third axes of ORBIT and BODY

are parallel. This is mathematically expressed as

ωb
ob = 03×1 , cb

21 = 0, cb
31 = 0, cb

13 = 0, cb
23 = 0 (3.5)

or x = 07×1 in short, where the state vector x regroups the seven variables. There are thus four

such points depending if the BODY x-axis, respectively z-axis, points in the same (cb
11 = 1,

respectively cb
33 = 1) or opposite direction (cb

11 = −1, respectively cb
33 = −1) as the ORBIT x-

axis, respectively z-axis. Remember that the three cb are unit vectors. The alignment of the

x-axes is not relevant for NUTS (i.e. cb
11 can be ±1), but the alignment of z-axes is because

the camera on board is intended to take pictures of the earth (i.e. cb
33 = 1 must hold). There is

no need to specify a condition for the BODY y-axis. Because of the coupling of the direction

cosines, parallel x- and z-axes result in parallel y-axes of BODY and ORBIT.

The equilibrium point defined by [2] is much stronger, namely to align the satellite prin-

cipal axes with the axes of the inertial frame ECI i.e.

ωb
i b = 03×1 , q =

03×1

±1

 (3.6)

where q is the unit quaternion parametrizing the Rb
i rotation matrix. η=±1 does not mean

that there are two equilibrium points, but results from the definition of the unit quaternion

and the symmetry of the sine and cosine functions. Each attitude has two quaternion repre-

sentations, q and −q.
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3.2.3 Magnetorquers

Figure 1.2 shows the NUTS ADCS prototype. On the two larger sides not facing the camera

and on the top square side are coils through which a current can flow. This is the usual way

to do magnetic attitude control. The current raises a magnetic field which interacts with

the earth’s magnetic field through the well known fact that the magnetic field lines tend to

align to each other. Here it also becomes clear, and equation (3.7) confirms this qualitative

statement, that only torques that are perpendicular to the surrounding magnetic field can

be generated with magnetorquers. Of course the earth’s magnetic field does not change but

the satellite that raises the magnetic field, can move freely and the torque trying to align the

field lines will affect the coils an eventually the satellite body rigidly attached to them.

This effect is easily described with the concept of magnetic moment. The magnetic dipole

moment of a coil with N turns, covering the area A is m = N Ai when a current i is flowing.

This quantity links the resulting torque τb
m experienced by a magnet (permanent, electro-

magnet or charged particle) to the magnetic flux density Bb that surrounds it following the

law

τb
m = S(mb)Bb (3.7)

where Bb is the flux density vector of the earth’s magnetic field in the orbit and mb is the

magnetic dipole moment vector and in case of electromagnets the control variable. All the

vectors are expressed in the BODY frame, but this fundamental relationship is global.

Of course anyone can design a control law for mb at free will, but it is wise to include a

cross product with the surrounding magnetic field such that in any case mb is orthogonal

to Bb . This requires the presence of magnetometer which for this theoretical analysis is no

restriction.

3.2.4 Robust Attitude Stabilization

The last term in the chapter’s title to define is "robust". Throughout the following this is

associated with unknowns, uncertainties or changing parameters in the satellite model. In

short a robust control algorithm works well not just in the idealized world of the model used

for the design, but also in the real environment with all its disturbances.

Considering equation (3.3) (or (3.4)) there are two obvious and hence central uncertain-

ties, the inertia matrix J and the total torque τb acting on the spacecraft.
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The inertia can be measured to some extent but not as precisely as e.g. the coil param-

eters area and turn count. That’s why the control variable mb won’t be perturbed in the

following. The analysis in the next section however will assume an unknown inertia matrix

J̃. This is actually quite realistic as a lot of factors can alter the inertia for example during

the launch phase or because of space debris. Satellites with fuel tanks will experience even

greater change of inertia.

J̃ is not completely unknown because every inertia matrix is positive definite, it is also still

diagonal when expressed with reference to the principal axes, these can however change. In

addition a lower and upper bound may be known

03×3 <λmin(J̃)I3×3 ≤ J̃ ≤λmax(J̃)I3×3 (3.8)

Beside the control torque, equation (3.7), applied to the satellite, other environmental

torques will affect the attitude. It’s difficult to chose which of these are large enough such

that they’re relevant to consider and even more difficult to model the chosen disturbance

torques.

[2] does not include any other torque than the magnetic torque, but [11] includes the gravity

gradient torque

τb
g = 3ω2

0S(cb
3 )

(
Jcb

3

)
(3.9)

which is quite popular to add to the analysis because it usually has stabilizing effect and is in

the order of magnitude of the torque the coils can generate.

Another robustness aspect is of importance specially for spacecraft with magnetorquers.

Some stability proofs require the geomagnetic field to be periodic along the satellite orbit,

that is the same flux density is present after the satellite did one revolution about the earth.

This is e.g. necessary if the attitude dynamics are linearized and a linear quadratic regulator

implemented. [25] shows that when the earth’s magnetic field is approximated by a dipole,

the PD controller relying on this design technique is robust with respect to small perturba-

tions in the inertia matrix but that larger perturbations can destabilize the system. While this

assumption is not far from reality for a shorter time period, it is well known that the magnetic

field changes with time in a way difficult to predict, see section 2.6. Clearly controllers not

assuming periodicity of the earth’s magnetic field can be qualified as more robust than the

others.
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3.2.5 Preliminary Results

Results of [11]

[11] shows that the equilibrium point (3.5) is globally uniformly asymptotically stable when

the gravity gradient torque is considered and the magnetic torque is controlled by

mb = H
(
S(ωb

ob)Bb
)

(3.10)

where H is a positive definite controller matrix. It is assumed that the inertia matrix is per-

fectly known.

The beginning of the argumentation and the control law (3.10) are repetitions of the anal-

ysis of [40] with the correction proposal [5]. Global uniform stability is shown with the Lya-

punov function

V = Ekin +Eg +Egyro = 1

2

(
ωb

ob

)T
Jωb

ob +
3

2

(
ω2

0

(
cb

3

)T
Jcb

3 − Jz

)
+ 1

2
ω2

0

(
Jx −

(
cb

1

)T
Jcb

1

)
(3.11)

= 1

2

(
ωb

ob

)T
Jωb

ob +
3

2
ω2

0

(
(Jx − Jz)c2

13 + (Jy − Jz)c2
23

)+ 1

2
ω2

0

(
(Jx − Jy )c2

21 + (Jx − Jz)c2
31

)
which has the nice property of describing the most important energy parts of the satellite

in orbit. The first term Ekin is the kinetic energy of the rotation of the satellite with respect

to the ORBIT frame, the second summand Eg takes the energy due to the gravity gradient

and the third term Egyro finally is the potential energy of a satellite orbiting the earth. The

Lyapunov function is positive definite for the state vector x containing the seven variables of

equation (3.5) if Jx > Jy > Jz in the diagonal inertia matrix J = diag(Jx , Jy , Jz). This condition

eventually means that the gravity gradient has a stabilizing effect.

The first time derivative of the Lyapunov function is found to be

V̇ = ∂V

∂x
f(t ,x) =

(
ωb

ob

)T
τb

m (3.12)

=
(
ωb

ob

)T
S

(
H

(
S(ωb

ob)Bb
))

Bb =−
(
ωb

ob

)T
ST(Bb)HS(Bb)ωb

ob

after some reduction steps using the kinematic and kinetic equations, the gravity gradient

torque and the controller. This is a negative semidefinite function and the equations (3.11)

and (3.12) show that the equilibrium (3.5) of the satellite dynamics (3.1) and (3.4) is globally

uniformly stable with the controller (3.10).
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Without making V̇ negative definite [11] shows nonetheless that x = 07×1 is globally uni-

formly asymptotically stable by applying Matrosov’s theorem as presented and proven by

[20]. The difference with [40] (and the correction proposal [5]), that uses LaSalle’s invariance

principle to prove local uniform asymptotic stability, is that Matrosov’s theorem does not

need to assume that the earth’s magnetic field is periodic along the satellite orbit.

Results of [2]

[2] takes a different way in his proof on stability of the equilibrium (3.6) with the controller

mb =−S(Bb)(ε2k1ε+εk2ω
b
i b) (3.13)

where k1 and k2 are two positive control gains and ε is a sufficiently small positive number

(this should not be confounded with the three quaternion components ε).

Only local results come out of the analysis as the satellite dynamics are at first linearized,

however this at first permits to relax the knowledge of the inertia matrix because the differ-

ence between J and J̃ acts just as a perturbation of the averaged linearized system. Addi-

tionally the stability of a linear system is exponential and not just asymptotic. However the

condition

lim
T→∞

1

T

T∫
0

S(Bi )ST(Bi )dt > 03×3 (3.14)

must hold for the average system to be exponentially stable. [2] argues that this is equivalent

to a periodic geomagnetic field along the orbit.

After several steps the averaged linearized system is proven to be (exponentially) stable

which by nature of exponential stability means that it’s robust to small parameter pertur-

bations. Local exponential stability of (3.6) for the satellite dynamics (3.2) and (3.3) follows

immediately.

In a second relaxation step of the model [2] even proves that his controller (3.13) remains

stable without the measurements of the angular velocity. They can be replaced by a dynamic

filter of the attitude quaternion, that eventually does not change much in the stability proof.

In the same sense saturation in the magnetorquers, i.e. a limit in the capacity of generating a

magnetic dipole moment, does not alter the robust stabilization achieved by the control law.

At first sight equation (3.14) seems to restrict the analysis to a very special case because

the multiplication of a skew-symmetric matrix with its transpose always is singular. However
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[21] gives arguments that show that the requirement in fact is not restrictive. The variation in

the surrounding magnetic field is mainly dependent on the orbital velocity about the earth

ω0. If the absolute value of the angular velocity of the satellite about the earth ‖ωb
i b‖ is suffi-

ciently smaller thanω0, the magnetic flux density seen by the satellite Bb cannot change fast

enough to attain a point where equation (3.14) does not hold longer. ‖ωb
i b‖ almost always is

small when using magnetic attitude control because of the detumbling procedure [24] and

the small torques raised by the coils. The analysis of [2], that extends [21] for an unknown

inertia, is therefore often near the reality in space. This effect applies even more for orbits

with high inclination.

3.2.6 Ideas for Extension

The task is now to extend the presented stability analyses by removing assumptions to build

a more realistic environment. The question is if it’s still possible to prove stability of the

equilibrium points.

It is difficult to remove the periodicity of the geomagnetic field from [2]. It is a central

assumption ([40] and [5] assume it too) and without the condition (3.14) there is no point in

considering the average system because stability cannot be shown longer (indefinite matrix).

This thesis will thus disregard linear analysis and concentrate on extending [11] by introduc-

ing an unknown inertia matrix (with known bounds). Two main approaches with several

methods to find an answer to the question above are distinguished.

• Keep the controller (3.10) and

– prove exponential stability, because exponential stability is robust to vanishing

perturbations.

– find another Lyapunov function than (3.11) for the system with known inertia

that has a negative definite time derivative, because a proof of asymptotic stabil-

ity even for perturbations needs a Lyapunov function with negative definite time

derivative.

– find another Lyapunov function than (3.11) for the system with unknown inertia

that is positive definite and has a negative (semi-) definite time derivative, be-

cause J̃x > J̃y > J̃z is no longer guaranteed then. In other words the Lyapunov
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function is no longer positive definite because the gravity gradient torque may

destabilize the attitude dynamics.

This is the subject of the next section.

• Study the robustness properties of other stabilizing controllers that

– include the attitude term explicitly.

– use sliding mode control.

– use more advanced nonlinear control design techniques.

This is done in section 3.4.

An unknown inertia matrix with known bounds seems to be a classical application area

for adaptive control, where the unknown parameter is estimated online. However such

adaptive control laws won’t be considered with the controllers of [11] and [2] because they do

not have gains or other values that are directly dependent on the satellite inertia. And mak-

ing the control matrix H of the controller (3.10) dependent on the estimated inertia matrix

does not remove the definiteness problems of the Lyapunov functions. Therefore the estima-

tion of the actual inertia matrix does not help much. This is actually the case for a lot more of

control laws in the literature on this particularly field, but online parameter estimation can

be a good extension for sliding mode control (second subsection of section 3.4).

A limitation however is whether the system input is sufficiently rich, i.e. whether the

persistence of excitation condition is satisfied, to estimate the three unknown moments of

inertia J̃x , J̃y and J̃z (assuming a diagonal inertia matrix).

3.3 Advanced Stability Analysis for the Control Law (3.10)

There are numerous control laws for spacecraft using magnetorquers so there in the begin-

ning seems to be no need to design a new one. In addition the controller equation (3.10) was

successfully demonstrated to work in simulations [11] and in the field with for example the

Ørsted Satellite [40] that was launched in 1999 and is still operational 16 years later.

The following discussion of this section is based on the introduction and first section of

chapter nine of Hassan Khalil’s "Nonlinear Systems" [19].
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The satellite attitude system with unknown inertia can be rewritten in the standard form

ẋ = f̃(t ,x) with the general torque replaced with the gravity gradient (3.9) and the magnetic

torque generated by the magnetorquers. The inertia matrix for a satellite will always be pos-

itive definite and thus invertible.

ω̇b
ob = J̃−1

(
−ω0J̃S(cb

1 )ωb
ob −S(ωb

ob)
(
J̃ωb

ob

)
−ω0S(ωb

ob)
(
J̃cb

1

)
−ω0S(cb

1 )
(
J̃ωb

ob

)
−ω2

0S(cb
1 )

(
J̃cb

1

)
+3ω2

0S(cb
3 )

(
J̃cb

3

)
+ST(Bb)HS(Bb)ωb

ob

)
ċb

1 = S(cb
1 )ωb

ob

ċb
3 = S(cb

3 )ωb
ob

This can be viewed as a perturbation of the nominal system (3.1), (3.4) in standard form

ẋ = f(t ,x) in the following way

ẋ = f̃(t ,x) = f(t ,x)+ (
f̃(t ,x)− f(t ,x)

)= f(t ,x)+g(t ,x) (3.15)

which is advantageous for the further analysis because the Lyapunov function (3.11) requires

Jx > Jy > Jz to be positive definite. This can of course not be guaranteed for an unknown in-

ertia matrix J̃. However perturbations in the form (3.15) permit statements on the perturbed

system based on an analysis of the nominal system. In addition the perturbed system has an

equilibrium point at the origin just as the nominal system, i.e.

f(t ,0) = 0 , f̃(t ,0) = 0 , g(t ,0) = 0

The last term is known as vanishing perturbation and makes the following steps easier.

3.3.1 Attempts to prove exponential Stability

The following lemma, taken from [19], suggests to try at first to prove exponential stability

of the origin of the nominal system, that would imply exponential stability for the perturbed

system.

Lemma 3.1 (Lemma 9.1 in [19]) Let x = 0 be an exponentially stable equilibrium point of the

nominal system

ẋ = f (t , x)
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Let V (t , x) be a Lyapunov function of the nominal system that satisfies

c1‖x‖2 ≤V (t , x) ≤ c2‖x‖2

∂V

∂t
+ ∂V

∂x
f (t , x) ≤−c3‖x‖2∥∥∥∥∂V

∂x

∥∥∥∥≤ c4‖x‖

in [0,∞)×D. Suppose the perturbation term g (t , x) satisfies

‖g (t , x)‖ ≤ γ‖x‖ , ∀t ≥ 0, ∀x ∈ D

γ≤ c3

c4

Then, the origin is an exponentially stable equilibrium point of the perturbed system

ẋ = f (t , x)+ g (t , x)

Moreover, if all the assumptions hold globally, then the origin is globally exponentially stable.

The first set of conditions is simply the direct Lyapunov method to prove exponential stabil-

ity of the origin. The conditions on the perturbation term state that the vanishing perturba-

tion must grow linearly in the norm of the state vector.

Lemma 3.1 in its pure form requires the knowledge of an appropriate Lyapunov function.

But even in the case that it should be unknown, the qualitative statement of the lemma, that

exponentially stable equilibrium points are robust to vanishing perturbations that grow lin-

early, always holds. The knowledge of the Lyapunov function (guaranteed to exist for expo-

nentially stable equilibria) just adds a bound on the growth rate to this qualitative statement.

For the question of this chapter a qualitative statement would already be a good answer.

In short the difference between asymptotic and exponential stability of an equilibrium

point is that the Lyapunov function is positive definite and its time derivative negative def-

inite in the same order of magnitude in all states, e.g. all states appear in positive quadratic

terms in the Lyapunov function and negative quadratic terms in the time derivative.

The seven states are all present with positive quadratic terms in equation (3.11) but the

time derivative (3.12) only has the angular velocity as negative quadratic terms, the other

four states vanish in the analysis and exponential stability seems impossible to show. But
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there are possibilities to show exponential stability even without a negative definite Lya-

punov function, e.g. directly with the definition or using the following theorem, also taken

from [19].

Theorem 3.1 (Theorem 8.5 in [19]) Let D ⊂ Rn be a domain containing x = 0 and suppose

f (t , x) is piecewise continuous in t and locally Lipschitz in x for all t ≥ 0 and x ∈ D. Let x = 0

be an equilibrium point for ẋ = f (t , x) at t = O. Let V : [0,∞)×D → R be a continuously

differentiable function such that

W1(x) ≤V (t , x) ≤W2(x)

V̇ (t , x) = ∂V

∂t
+ ∂V

∂x
f (t , x) ≤ 0

V (t +δ,φ(t +δ; t , x))−V (t , x) ≤−λV (t , x) , 0 <λ< 11

∀t ≥ 0, x ∈ D, for some δ > 0, where W1(x) and W2(x) are continuous positive definite func-

tions on D and φ(τ; t , x) is the solution of the system that starts at (t , x). Then, the origin is

uniformly asymptotically stable. If all the assumptions hold globally and W1(x) is radially

unbounded, then the origin is globally uniformly asymptotically stable. If

W1(x) ≥ k1‖x‖c , W2(x) ≤ k2‖x‖c , k1 > 0, k2 > 0, c > 0

then the origin is exponentially stable.

The difficulty here is to find the solution function which is often impossible to express

in closed form. Nonetheless this theorem gives a good hint whether the attempts to prove

exponential stability should be pursued or not.

As V defined by equation (3.11) is bounded from above and below by positive definite, radi-

ally unbounded and quadratic functions and because V̇ (equation (3.12)) is negative semidef-

inite, the only condition to show global uniform exponential stability of the origin with The-

orem 3.1 is

V (t +δ,φ(t +δ; t ,x))−V (t ,x) ≤−λV (t ,x) , 0 <λ< 1

1There is no loss of generality in assuming that λ < 1, for if the inequality is satisfied with λ1 ≥ 1, then it is
satisfied for any positive λ< 1, since −λ1V ≤−λV . Notice, however, that this inequality could not be satisfied
with λ> 1, since V (t , x) > 0, ∀x 6=O.
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No formal proof for a against this condition was found, but intuitively it is not satisfied. As-

sume thatωb
ob 6= 03×1 is constant. The left hand side simplifies to

3

2
ω2

0

((
cb

3 (t +δ)
)T

Jcb
3 (t +δ)−

(
cb

3 (t )
)T

Jcb
3 (t )

)
+ 1

2
ω2

0

((
cb

1 (t )
)T

Jcb
1 (t )−

(
cb

1 (t +δ)
)T

Jcb
1 (t +δ)

)

that is the quadratic term 1
2

(
ωb

ob

)T
Jωb

ob vanishes. The right hand side of the condition on the

other hand still has this term and no matter how small λ is chosen, the condition most likely

cannot be satisfied.

So in conclusion it is improbable that the controller makes the origin exponentially stable

and thus robust to perturbations, Lemma 3.1 can’t be applied and another approach must

be found.

3.3.2 Searching another Lyapunov Function

The uniformly asymptotically stable origin of the nominal system does not almost automati-

cally guarantee stability for the perturbed system like exponential stability of the origin does.

The condition to show now is [19]

∥∥∥∥∂V

∂x
g(t ,x)

∥∥∥∥<W3(x) (3.16)

where W3(x) is a positive definite, time independent function that is the right hand side in

V̇ ≤ −W3 for the nominal system. In other words the time derivative of the Lyapunov func-

tion along the trajectories of the perturbation must have a smaller magnitude than the time

derivative of the Lyapunov function along the trajectories of the nominal system.

Here a problem arises in the present analysis because (3.12) is just negative semidefinite

such that there is no positive definite function W3 to test equation (3.16) with. However

the converse Lyapunov theorems state that there is a function for the nominal system (3.1),

(3.4), (3.9) and (3.10) with negative definite time derivative because the origin is uniformly

asymptotically stable and the Jacobian matrix is bounded (the system is smooth, so there are

no singularities) [19]. It remains just to find it.

[22] provides a systematic way in form of the following theorem to achieve this, when one

has proven the asymptotic stability with Matrosov’s theorem as done in [11]. The assump-

tions may seem long and difficult but in most of the cases when Matrosov’s theorem can
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successfully be applied, they’re satisfied almost instantly. This is fortunately the case with

the application of Matrosov’s theorem done in [11].

Assumption 3.1 (Assumption 3.1 in [22]) There exist an integer j ≥ 2; known functions

Vi : X →R ,

Ni : X → [0,∞) , and

φi : [0,∞) → [0,∞) ;

and real numbers ai ∈ (0,1] such that Vi (0) = 0 and Ni (0) = 0 for all i ;

∇V1(x) f (x) ≤−N1(x) ∀x ∈X ; and

∇Vi (x) f (x) ≤−Ni (x)+φi (V1(x))
i−1∑
l=1

N
ai

l (x)V 1−ai
1 (x)

for i = 2, . . . , j and all x ∈X . The function V1 is also assumed to be positive definite on X .

Assumption 3.2 (Assumption 3.2 in [22]) The following conditions hold:

1. there exists a function ρ : [0,∞) → (0,∞) such that

j∑
l=1

Nl (x) ≥ ρ(V1(x))V1(x) ∀x ∈X ; and

2. there exist functions p2, . . . , p j : [0,∞) → [0,∞) and a positive definite function p̄ such

that for each i ∈ {2, . . . , j }, the following hold:

(a) If Vi is positive definite, then

pi (r ) = 0 and |Vi (x)| ≤ p̄(V1(x))

for all r ≥ 0 and x ∈X .

(b) If Vi is not positive definite, then

|Vi (x)| ≤ pi (V1(x))V1(x)

holds for all x ∈X .
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Theorem 3.2 (Theorem 3.1 in [22]) Let Assumptions 3.1 and 3.2 be satisfied. Then one can

explicitly determine C 1 functions kl ,Ωl ∈K∞ such that the function

S(x) =
j∑

l=1
Ωl (kl (V1(x))+Vl (x))

satisfies

S(x) ≥V1(x)

and

∇S(x) f (x) ≤−1

4
ρ(V1(x))V1(x)

for all x ∈X .

The assumptions are satisfied with the following set of functions using the naming con-

vention of [22] and the results of [11]

V1(x) = 1

2

(
ωb

ob

)T
Jωb

ob +
3

2

(
ω2

0

(
cb

3

)T
Jcb

3 − Jz

)
+ 1

2
ω2

0

(
Jx −

(
cb

1

)T
Jcb

1

)
(3.17a)

V2(x) =−
(
cb

3

)T
JTST(cb

3 )
(
Jωb

ob

)
(3.17b)

V3(x) =
(
cb

1

)T
JTST(cb

1 )
(
Jωb

ob

)
(3.17c)

N1(x) =
(
ωb

ob

)T
ST(Bb)HS(Bb)ωb

ob (3.17d)

N2(x) = 3ω2
0

(
cb

3

)T
JTST(cb

3 )S(cb
3 )

(
Jcb

3

)
(3.17e)

N3(x) =ω2
0

(
cb

1

)T
JTST(cb

1 )S(cb
1 )

(
Jcb

1

)
(3.17f)

V1 is positive definite and [11]

V̇1(x) =−N1(x) (3.18a)

V̇2(x) =−
(
ċb

3

)T
JTST(cb

3 )
(
Jωb

ob

)
−

(
cb

3

)T
JTST(ċb

3 )
(
Jωb

ob

)
−

(
cb

3

)T
JTST(cb

3 )
(
Jω̇b

ob

)
≤−N2(x)+ν2

(
ωb

ob

)T
ωb

ob (3.18b)

V̇3(x) =
(
ċb

1

)T
JTST(cb

1 )
(
Jωb

ob

)
+

(
cb

1

)T
JTST(ċb

1 )
(
Jωb

ob

)
+

(
cb

1

)T
JTST(cb

1 )
(
Jω̇b

ob

)
≤−N3(x)+ν4

(
ωb

ob

)T
ωb

ob +ν5

(
cb

3

)T
cb

3 (3.18c)

The last two equations look a bit different from [11] because the bound is quadratic and

not linear. That however is no mistake because if one replaces the ċb
3 terms in V̇2 with the
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kinematic equation (3.1) and does the same in V̇3, the angular velocity appears in quadratic

terms. This is easier to comply with the last condition of Assumption 3.1. a1,2 = 1 and the

positive constants φ2 and φ3 adjust the coefficients of the quadratic terms such that φ2N1,

φ3N1 andφ3N2 are compatible with V̇2 and V̇3 and the last two right hand sides of the equa-

tion set (3.18).

The first condition of Assumption 3.2 can be satisfied with ρ = 1, i.e.

N1(x)+N2(x)+N3(x) ≥V1(x) (3.19)

if the positive definite controller matrix H is chosen sufficiently large, the other terms follow

directly. The second conditions are equally easy to satisfy with sufficiently large positive

constants p2 and p3, i.e.

|V2(x)| ≤ p2V1(x) , |V3(x)| ≤ p3V1(x)

such that the conclusion of Theorem 3.2 can be applied. There is a Lyapunov function V for

which

V (x) ≥V1(x) , V̇ (x) ≤−1

4
V1(x) =−W3(x)

holds globally. This means that the time derivative of the Lyapunov function is bounded from

above by a negative definite function of the same order of magnitude than V itself. Note that

the notation from the source [22] was harmonized with the notation of this thesis.

So if one compares, in the sense of the condition (3.16), that the time derivative of the

Lyapunov function along the trajectories of the perturbation must have a smaller magnitude

than the time derivative of the Lyapunov function along the trajectories of the nominal sys-

tem, this equals

∥∥∥∥∂V

∂x
g(t ,x)

∥∥∥∥<W3(x) (3.20a)∥∥∥∥∂V

∂x

(
f̃(t ,x)− f(t ,x)

)∥∥∥∥=
∥∥∥∥∂V

∂x
f̃(t ,x)− ∂V

∂x
f(t ,x)

∥∥∥∥< 1

4
V1(x) (3.20b)∣∣∣∣1

8

(
ωb

ob

)T
(J̃− J)ωb

ob +
3

8

(
ω2

0

(
cb

3

)T
(J̃− J)cb

3 − ( J̃z − Jz)

)
+ 1

8
ω2

0

(
( J̃x − Jx)−

(
cb

1

)T
(J̃− J)cb

1

)∣∣∣∣< 1

8

(
ωb

ob

)T
Jωb

ob +
3

8

(
ω2

0

(
cb

3

)T
Jcb

3 − Jz

)
+ 1

8
ω2

0

(
Jx −

(
cb

1

)T
Jcb

1

)
(3.20c)
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which is true for small perturbations in the range

J̃ = diag( J̃x , J̃y , J̃z) < diag(2Jx ,2Jy ,2Jz) = 2J

or referring to equation (3.8) for the eigenvalue conditions

λmax(J̃) < 2λmax(J)

[22] also shows a systematic way to construct the new Lyapunov function of Theorem 3.2

explicitly. The construction follows the steps of the proof and begins with

k1(s) = s , k2,3(s) = s +p2,3(s)s = (1+p2,3)s

where the last equality holds because p2 and p3 are constants. The next lemma defines the

Matrosov strict Lyapunov construction functions.

Lemma 3.2 (Lemma 3.1 in [22]) The functions {Ui } defined by

U1(x) =V1(x) and Ui (x) = ki (V1(x))+Vi (x) for i ≥ 2

satisfy

2ki (V1(x))+ p̄(V1(x)) ≥Ui (x) ≥V1(x) for i = 2, . . . , j and all x ∈X

The Matrosov strict Lyapunov construction functions for the present problem are

U1(x) =V1(x) , U2(x) = (1+p2)V1(x)+V2(x) , U3(x) = (1+p3)V1(x)+V3(x)

The very systematic approach of the proof is too complicated with the equations of the set

(3.17), so Remark 3.5 to one example in [22] (not quoted here) is followed. The time deriva-

tives are approximated

U̇1(x) =−N1(x)

U̇2(x) ≤−(1+p2)N1(x)−N2(x)+ν2

(
ωb

ob

)T
ωb

ob

U̇3(x) ≤−(1+p3)N1(x)−N3(x)+ν4

(
ωb

ob

)T
ωb

ob +ν5

(
cb

3

)T
cb

3
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and the next suggestion done using the first condition of Assumption 3.2, see equation (3.19),

U̇2(x)+U̇3(x) ≤−N1(x)−N2(x)−N3(x)+ (ν2 +ν4)
(
ωb

ob

)T
ωb

ob +ν5

(
cb

3

)T
cb

3

≤−V1(x)+ (ν2 +ν4)
(
ωb

ob

)T
ωb

ob +ν5

(
cb

3

)T
cb

3

Now the Lyapunov function needs to be guessed. Clearly

V (x) =U2(x)+U3(x)+ (φ2 +φ3 +φ2φ3)V1(x)+φ3V2(x)

is greater or equal to V1(x). The time derivative is shown to be negative definite

V̇ (x) = U̇2(x)+U̇3(x)+ (φ2 +φ3 +φ2φ3)V̇1(x)+φ3V̇2(x)

≤−V1(x)+ (ν2 +ν4)
(
ωb

ob

)T
ωb

ob +ν5

(
cb

3

)T
cb

3 − (φ2 +φ3 +φ2φ3)N1(x)

+φ3

(
−N2(x)+ν2

(
ωb

ob

)T
ωb

ob

)
≤−V1(x)+ (φ2 +φ3)N1(x)+φ3N2(x)− (φ2 +φ3 +φ2φ3)N1(x)−φ3N2(x)+φ2φ3N1(x)

≤−V1(x)

This proof is just a sketch, but the arguments are correct up to the constants (e.g. φ2

and φ3) which are not defined explicitly. The Lyapunov function won’t be expressed with

more details than with the construction functions as it is done above because inserting the

equations (3.17) would just lead to confusion, the complexity is already high enough. But

the inequality confirms the analysis of equations (3.20) (the same steps without dividing by

4) that the attitude stabilization with the controller (3.10) first presented in [40], improved in

[5] and further investigated in [11] is robust in the sense presented in section 3.2, thus adding

this thesis to the list.

3.4 Robustness Analysis of other stabilizing Controllers

Asymptotic stability of the origin of the perturbed system has been shown in the preceding

section. But only the sketch of a proof is provided because a formal proof is very difficult. But

one has not to restrict oneself just to analyze known controllers. Another way how the mag-

netic torque of equation (3.7) is controlled may solve the problem of stable robust spacecraft
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attitude stabilization with an easier proof. This on one hand offers of course a lot of new

possibilities but on the other hand complicates the task as one cannot see right away which

path will lead to a result, meaning to a stabilizing controller or to a proof that the chosen

approach does not work, or to a dead end.

If one now no longer sees the system as perturbed according to equation (3.15), but just

analyzes the dynamics with the unknown matrix, the main problem in finding a new stabi-

lizing controller is that the Lyapunov function (3.12) is no longer guaranteed to be positive

definite, because J̃x > J̃y > J̃z won’t hold in general. If it was so, the whole proof in [11] would

still work because all inertia matrices for rigid bodies are positive definite and there is no fur-

ther assumption than the mentioned inequality for the moments of inertia. And this chapter

would be superfluous.

3.4.1 Controller with Attitude Feedback

Beside an unknown inertia the difficulties with the preceding section, that analyzes the con-

troller (3.10) of [11], have their source in the fact that it makes the time derivative of the Lya-

punov function only negative semidefinite because equation (3.12) only has a term for ωb
ob

and no terms for the direction cosines cb
21, cb

31, cb
13 and cb

23. One might just want to include

them in the control torque to make the time derivative negative definite. Unfortunately this

is not so easy.

As already stated several times, magnetorquers can only raise torques perpendicular to

the earth’s magnetic field. To rigorously enforce this the control variable, the magnetic dipole

moment mb , is not chosen at free will but incorporates in any case a cross product with the

surrounding magnetic field. So designing a control law according to the time derivative of

the Lyapunov function (3.12) (first line) begins always with

V̇ =
(
ωb

ob

)T
τb

m =
(
ωb

ob

)T (
−S(Bb)mb

)
=

(
ωb

ob

)T (
−S(Bb)S(rb)Bb

)
(3.21)

=
(
ωb

ob

)T (
−S(Bb)ST(Bb)rb

)

where rb is a free to chose control law. It is now easy to include a term for ωb
ob that makes

V̇ negative semidefinite (as done in the control law of [11]), but one cannot easily add a

term for the direction cosines when considering a general magnetic field. Then the matrix

S(Bb)ST(Bb) is just positive semidefinite and has no inverse.
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That is also an explanation for the requirement (3.14) assumed by [2] that first allows the

averaging method to be applicable. This chapter however aims to analyze robust attitude

stabilization without posing any restricting condition on the earth’s magnetic field.

Projection Method

There is at least a possibility to partially cope with the problem mentioned in the preceding

paragraphs: the projection method. It is widely used and will also be part of the control

algorithm for NUTS, see e.g. [38] and [29].

The logical inclusion of the attitude to the control law (3.10) follows from this extension

to the Lyapunov function (3.11) with the attitude quaternion q =
(
εT η

)T

V = 1

2

(
ωb

ob

)T
J̃ωb

ob +
3

2

(
ω2

0

(
cb

3

)T
J̃cb

3 − J̃z

)
+ 1

2
ω2

0

(
J̃x −

(
cb

1

)T
J̃cb

1

)
+k

(
εTε+ (1−η)2) (3.22)

where k is a scalar that must be large enough to ensure positive definiteness of V even for an

unknown inertia matrix. Note that [29] expresses the Lyapunov function slightly differently

and that the BODY axes x and y are swapped. Expanding the functions into an equation

of scalars shows however that they’re the same. The states to consider now are the angu-

lar velocity vector ωb and the quaternion q which can also substitute the direction cosines

cb
11, . . . , cb

33 according to the attitude representation methods of section 3.2.

The time derivative

V̇ =
(
ωb

ob

)T (
τb

m +kε
)

(3.23)

could be made negative semidefinite with the torque

τb
m =−dωb

ob −kε

that eliminates the attitude and leaves a negative quadratic function of ωb
ob . d and k are

two positive scalars. But this torque can in general not be generated by magnetorquers only.

If it were so the proof for asymptotic stability of the origin of [11] would also work for an

unknown inertia matrix as long as k is sufficiently large to make the Lyapunov function (3.22)

always positive definite.

Combining the time derivative (3.23) with the torque parametrization as done in (3.21)
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yields

V̇ =
(
ωb

ob

)T (
−S(Bb)ST(Bb)rb +kε

)
=

(
ωb

ob

)T
(
− d

‖Bb‖2
S(Bb)ST(Bb)ωb

ob −
k

‖Bb‖2
S(Bb)ST(Bb)ε+kε

)

if one uses the control law for NUTS [38]

mb =− 1

‖Bb‖2
S(Bb)

(
dωb

ob +kε
)

(3.24)

The last two terms in V̇ do not vanish so no statement about the definiteness is possible in

general, but the inclusion of the 1
‖Bb‖2 factor in the control law scales the torque such that a

projection of the ideal torque onto the feasible region, i.e. the plain perpendicular to Bb , is

the same than the torque actually raised by the controller (3.24), see e.g. [24] for a derivation.

One also can see intuitively that the division makes the magnitudes of the last two terms

equal such that their contribution to V̇ is small.

Note also that the control law (3.24) has the same structure than the control law (3.13) of [2],

the first term is also the same than the control law (3.10) of [11] if the gain matrix is chosen

to be H = diag(d ,d ,d).

To summarize the last paragraphs, there is no easy way to include the attitude explic-

itly in the control law in such a way that attitude stabilization is asymptotically stable when

magnetorquers are the only actuators. A rigorous proof, meaning a negative (semi-) definite

Lyapunov function time derivative, is already impossible when there is no assumption about

the properties of the geomagnetic field, even if the inertia matrix is perfectly known. Robust-

ness issues with an unknown inertia are then of course even more difficult. It remains then

only to follow the analysis and assumptions of [2].

Remarks on the Gravity Gradient Torque

Even if the magnitude of the gravity gradient torque is comparable with the torques gener-

ated by the coils on board, it is legitimate to suggest to remove the gravity gradient torque

(3.9) from the analysis. The energy due to it and the potential energy in the Lyapunov func-

tion (3.11) are the reasons why Jx > Jy > Jz must hold (that is the gravity gradient has sta-

bilizing effect), which obviously is difficult to satisfy with an unknown inertia matrix. These

two energies were included in [11] to have terms for four direction cosines in the Lyapunov
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function, thus considering the satellite attitude in the analysis. The extended Lyapunov

function (3.22) however has a positive definite term of the attitude with the last summand

k
(
εTε+ (1−η)2

)
and one can therefore remove the energy due to gravity gradient and poten-

tial without impeding the positive definiteness of the function. In fact it becomes easier.

The reduced function

V = 1

2

(
ωb

i b

)T
J̃ωb

i b +k
(
εTε+ (1−η)2)

is always positive definite for the state vector x =
((
ωb

i b

)T
qT

)T
because every rigid body has

a positive definite inertia matrix and k > 0.

The time derivative using the kinetics (3.3), the known result from [29] and just the magnetic

torque is

V̇ =
(
ωb

i b

)T (
τb

m +kε
)

and thus almost equal to the time derivative (3.23) obtained in the analysis with gravity gradi-

ent. The only difference is that the angular velocity is given with respect to the inertial frame

and not the ORBIT frame. The difference is however marginal when it comes to robustness

of the controller and more a matter of defining what attitude stabilization is.

Anyway one arrives quasi at the same point than earlier or more precise just at the deriva-

tion of [2], where the gravity gradient torque is not considered either.

3.4.2 Sliding Mode Control

Sliding mode control is one of the most prominent nonlinear control design tools. The idea

is to find a manifold in the state space on which all trajectories converge on the equilibrium

and force all states not on the manifold to reach it with an appropriate controller. Thus two

steps are needed to develop the controller: sliding manifold design and sliding condition

design. Sliding mode control in general is explained for example in [19].

The PhD thesis [39] has a chapter where sliding mode control is used to get an attitude

control law for a satellite with magnetorquers only. The papers [27] and [28] extend this ap-

proach. In the following their derivations will be analyzed in the light of this thesis, meaning

the performance of the controller will be inspected for a general earth’s magnetic field and

an unknown satellite inertia matrix.
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Sliding Manifold Design

The sliding manifold is defined as the hyperplane in the state space where the sliding variable

s is zero. For satellite attitude dynamics the definition [39]

s =ωb
ob +kqε (3.25)

has the desired effect that all trajectories where s = 03×1, converge on the equilibrium point

ωb
ob = 03×1 and ε= 03×1 exponentially fast. kq is a positive design constant but can for more

generality be replaced with a positive definite matrix. Note that just the imaginary part ε

of the quaternion is part of the sliding variable (3.25) because the unity requirement of the

quaternion will force the real part η to reach±1 (the desired attitude) on the sliding manifold.

One very nice side of this particular sliding manifold, is that it is robust in the sense of this

thesis. The proof in [39] using Lyapunov theory is independent of the satellite inertia and the

geomagnetic field. In fact for any spacecraft a controller that solely maintains the condition

s = 03×1, will bring the attitude to the equilibrium because just the kinematics (3.2) appear

in the proof. The positive definite Lyapunov function

V = εTε+ (1−η)2 = 2(1−η)

has a negative definite time derivative

V̇ =
(
ωb

ob

)T
ε=−kqε

Tε

on the manifold, where ωb
ob = −kqε. The angular velocity is not explicitly part of the Lya-

punov function but it is of course zero if the attitude does not change.

Sliding Condition Design

Up to this point the three sources, [39], [27] and [28] in chronological order, are equal. But

now each derives an own sliding mode control law that ensures that any solution to the dy-

namical system, starting on the manifold or not, will eventually reach it and thus the equilib-

rium point, which by this way is proven to be globally uniformly asymptotically stable. The

newer sources claim to have better convergence properties than the older ones and provide

simulations to underline this fact.
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The control laws are in chronological order

mb
[39]

= 1

‖Bb‖2
S(Bb)

(
1

‖s‖2

((
τeq −kss

)T s
)

s
)

(3.26)

mb
[27]

= 1

‖Bb‖2
S(Bb)

(
1

‖s‖2

((
τeq −ksI3×3

∣∣∣‖ωb
ob‖−kq‖ε‖

∣∣∣sgn(s)
)T

s
)

s
)

(3.27)

mb
[28]

= 1

‖Bb‖2
S(Bb)

(
τeq −kg

(
ωb

ob +kqε
)
−kssgn(s)

)
(3.28)

τeq = S(ωb
ob +ω0cb

1 )
(
Ĵ(ωb

ob +ω0cb
1 )

)
−3ω2

0S(cb
3 )

(
Ĵcb

3

)
+ω2

0ĴS(cb
1 )ωb

ob

− 1

2
kq Ĵ

(
ωb

obη+S(ωb
ob)ε

)
(3.29)

where τeq aims to cancel the kinetics and kinematics with unknown inertia expressed in

terms of the sliding variable

J̃ṡ =−S(ωb
ob +ω0cb

1 )
(
J̃(ωb

ob +ω0cb
1 )

)
+3ω2

0S(cb
3 )

(
J̃cb

3

)
−ω2

0J̃S(cb
1 )ωb

ob

+ 1

2
kq J̃

(
ωb

obη+S(ωb
ob)ε

)
+τb

m (3.30)

using the estimation Ĵ to the unknown inertia matrix J̃.

Equation (3.29) for τeq is slightly different in all the three sources because of the respec-

tive definitions, here the (notationally harmonized) version of [39] is reproduced because it

uses the same conventions than this thesis. One also recognizes the projection term with the

cross product and scaling with the magnetometer measurement. A second projection is in-

side the large parentheses for the controllers (3.26) and (3.27) where only the desired torque

components parallel to the sliding variable s are retained. The newest controller (3.28) does

not use this because the newer approach integral sliding mode control is used.

There is an important problem with the sliding conditions above, namely that the (un-

known) inertia matrix actually is needed in the τeq term to really cancel out the torque. An

easy workaround is provided by [39]. If Ĵ used in τeq is the best (constant) approximation

of J̃ and the difference ∆J = |J̃− Ĵ| is bounded (e.g. ∆J ≤ λmax(J̃)I3×3 −λmin(J̃)I3×3), then the

control law will stabilize the attitude if

ks >σmax(∆τeq )

whereσmax(∆τeq ) is largest singular value of τeq with∆J instead of Ĵ in equation (3.29). Note

that this only works well if the estimate of the inertia matrix is good, Ĵ and J̃ are of the same
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order of magnitude.

One further advantage of sliding mode control in the eyes of this thesis, is that the analy-

sis with unknown inertia matrix becomes easier as the Lyapunov function

V = 1

2
sTJ̃s (3.31)

always is positive definite. Depending on the controller V̇ = sTJ̃ṡ takes the form

V̇[39] ≤− ks

‖Bb‖2‖s‖2

(
S(Bb)s

)T (
S(Bb)s

)
(3.32)

V̇[27] ≤−kssgn(s)Ts

‖Bb‖2‖s‖2

∣∣∣‖ωb
ob‖−kq‖ε‖

∣∣∣(S(Bb)s
)T (

S(Bb)s
)

(3.33)

where the inequality comes from the fact that the dynamics (3.30) are not compensated ex-

actly by the torque of equation (3.29) but dominated with help of the other term of the con-

troller if ks is sufficiently large.

The question is now if the time derivative of the Lyapunov function is negative definite

to prove asymptotic stability and thus that all trajectories reach the sliding manifold. Clearly

this is not the case in all scenarios for the first two controllers (3.26) and (3.27). The time

derivatives (3.32) and (3.33) are zero not only for s = 03×1, but also when the sliding variable

is parallel to the earth’s magnetic field. In this case the control torque is also zero, hence the

controller makes the equilibrium (at least) uniformly stable but not asymptotically.

To prove asymptotic stability using the controller (3.26) [39] again needs to assume a peri-

odic geomagnetic field along the orbit. In addition kq in equation (3.25), the definition of

the sliding variable, must be quite large or s, and thus the control torque raised by mb , will

become small rapidly, this would harm the convergence properties. But on the other hand a

too high value is not good either and could even lead to instability [39].

This is where [27] intervenes. In the general sliding mode control theory, controllers with

discontinuous (kssgn(s)) terms have better convergence properties than those with contin-

uous (kss) terms, because the control action is not too small for s ≈ 03×1. But a lot of con-

trollers have difficulties to actually do this, because very fast sign changes in the control

action are needed. But magnetorquers can switch very rapidly, instantly if one compares

the fast switching time with the slow attitude dynamics, so a discontinuous controller can

be implemented. However sgn(s) instead of s makes the time derivative (3.32) of the Lya-
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punov function indefinite. This is why [27] adds
∣∣‖ωb

ob‖−kq‖ε‖
∣∣. Now there are no cases

where V̇ > 0 and the convergence properties are better with the controller (3.27) than with

the controller (3.26). However a general surrounding magnetic field is not assumed either, it

still needs to satisfy the known condition (3.14), that for example also [2] assumes.

For the newest paper [28], that uses the integral sliding mode control approach, the time

derivative V̇ = sTJ̃ṡ becomes

V̇[28] =−sT
(
ks

ST(Bb)S(Bb)

‖Bb‖2
sgn(s)−τd

)
(3.34)

where τd summarizes the disturbance torques. This looks similar to the Lyapunov function

derivative (3.12), if one disregards the disturbance torque, with the important difference that

s regroups both the angular velocity and the attitude, and not just the angular velocity as it is

in equation (3.12). This means that the controller (3.28) achieves asymptotic stability of the

equilibrium point if [28]

ks > sup
t

(
max

i

∣∣τdi (t )
∣∣) , t > t0 , i = 1,2,3

i.e. the disturbance torque is bounded and the control gain ks is large enough to make V̇

negative definite.

With this result a solution to the problem inspected in this chapter is found. If the esti-

mated inertia matrix Ĵ in equation (3.29) is close to the real and unknown matrix J̃, the model

error can be seen as a part of the disturbance torques. If the condition above still holds de-

spite the possibly higher disturbance, the controller will make the origin globally uniformly

asymptotically stable in the robust sense assumed here, that is independent of the exact

satellite inertia and with a general surrounding geomagnetic field.

The source provides a simulation that confirms the successful operation of the controller.

And even if the inertia is known perfectly well, this simulation is interesting for this thesis as

the requirement of [11], i.e. Jx > Jy > Jz , is not satisfied. This shows that integral sliding mode

control can stabilize spacecraft where the gravity gradient has destabilizing effect, therefore

it is legitimate to add the equivalent torque of a disturbed inertia matrix in the attitude dy-

namics to the disturbance torque.

To summarize the last paragraphs the three sliding mode controllers that were inspected,

are all somewhat robust to perturbations in the satellite inertia. Obviously these perturba-
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tions should not be too high. This counts especially for the oldest controller (3.26). When

it comes to the properties of the earth’s magnetic field, both [39] and [27] require it to be

periodic. But the newest sliding mode controller presented in [28] satisfies very well the ro-

bustness demands of this thesis. One could even relax other assumptions as nearly every dif-

ference between the idealization in the modelling and the real world results in disturbance

torques. And the controller is actually robust against bounded disturbance torques, where

they originate is of secondary importance. So the controller of equation (3.28) is maybe the

best control law to solve the problem of this chapter with reasonable complexity.

Online Parameter Estimation

The three sliding mode controllers (3.26), (3.27) and (3.28) in first place aim to completely

cancel out the torque (3.29) due to kinetic energy, potential energy and gravity gradient. This

is not perfectly possible when the inertia matrix is unknown. Until now a constant estimate

was considered and the difference to the actual torque added to the disturbances in the hope

that they’re dominated by the other controller terms. Intuitively a better performance is

possible if the estimate Ĵ is not constant but updated based on the states of the system.

These paragraphs just show an idea how this can be implemented, but it is unclear whether

this approach works. The high complexity of the online parameter estimation law makes an

analysis of the convergence properties difficult (if not impossible). In addition the input to

the system, the magnetic dipole moment generated by the coils, may not be sufficiently rich

to satisfy the persistence of excitation requirement.

The estimate of the inertia shall no longer be constant, thus an update law ˙̂J must be

found. Since the unknown parameters do not appear inside the nonlinearities of the system,

a classical approach leads to the update law. The Lyapunov function for the sliding mode

control (3.31) is augmented with the squared differences of the estimated and real values

V = 1

2
sTJ̃s+ 1

2γx
( Ĵx − J̃x)2 + 1

2γy
( Ĵy − J̃y )2 + 1

2γz
( Ĵz − J̃z)2

When the control law is equation (3.28), the time derivative becomes (see equation (3.34))

V̇ =−sT
(
ks

ST(Bb)S(Bb)

‖Bb‖2
sgn(s)−τd

)
+

˙̂Jx

γx
( Ĵx − J̃x)+

˙̂Jy

γy
( Ĵy − J̃y )+

˙̂Jz

γz
( Ĵz − J̃z)

Let now the only disturbance torque be the remains because of the wrong inertia matrix
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in equation (3.29), then

V̇ =−sT
(

ST(Bb)S(Bb)

‖Bb‖2

(
kssgn(s)−S(ωb

ob +ω0cb
1 )

(
(Ĵ− J̃)(ωb

ob +ω0cb
1 )

)
+3ω2

0S(cb
3 )

(
(Ĵ− J̃)cb

3

)
−ω2

0(Ĵ− J̃)S(cb
1 )ωb

ob +
1

2
kq (Ĵ− J̃)

(
ωb

obη+S(ωb
ob)ε

)))

+
˙̂Jx

γx
( Ĵx − J̃x)+

˙̂Jy

γy
( Ĵy − J̃y )+

˙̂Jz

γz
( Ĵz − J̃z)

This time derivative must be resolved in a function just containing scalars, that is the vectors

are broken down into their components, the cross products and the matrix multiplication

with ST(Bb)S(Bb) calculated and finally the dot product sT with the resulting vector carried

out. There are then very long and complicated factors multiplied with ( Ĵx − J̃x), ( Ĵy − J̃y ) and

( Ĵz − J̃z). These terms can be compensated with the update laws that need to be defined

˙̂Jx = γx(. . .) , ˙̂Jy = γy (. . .) , ˙̂Jz = γz(. . .)

such that the sums are zero. The dots stand for the very long factors that consist just of

known variables (angular velocity components, direction cosines and components of Bb).

The gains γx , γy and γz are further positive constants that need to be tuned.

With this online parameter estimation, the sliding mode controller of [28] does not lose

its good properties. On the contrary one can expect τeq with the varying estimate for the

inertia matrix, to cancel out the undesired torque better. This holds however only if the dif-

ference (Ĵ−J̃) converges to zero, this is the condition that requires persistence of excitation of

the system. Unfortunately there is legitimate doubt to this, because the satellite attitude dy-

namics are very slow and the magnetic dipole moment generated by the coils not expected

to change fast either. To make things worse the update laws are very long and errors easily

made during the implementation. The developer also needs again to tune gains. Finally the

states of the system and the flux density of the geomagnetic field must be known and the in-

ertia matrices J̃ and Ĵ diagonal. The latter can change if the principal axes of BODY no longer

are those used in the design phase because of some change in the inertia. Then the update

law becomes even more complicated and the persistence of excitation requirement stronger

because more parameters must be estimated online. So in theory this is an improvement but

the practical use is dubious. Anyway sliding mode control remains one of the best methods

to do robust attitude stabilization with magnetorquers as only actuators.
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3.4.3 Further Strategies

Beside the strategies developed and explained with larger details in the preceding subsec-

tions, some more advanced nonlinear control design techniques have been used for space-

craft attitude stabilization using magnetorquers. They won’t be detailed out here, only some

comments whether they’re suited to solve the present problem, will be given.

Dynamic Neural Network

One of the most advanced techniques for nonlinear control design are neural networks, that

are based on dynamic neural units. They can in general cope with any kind of nonlinearity

and, in short terms, extend conventional adaptive laws for online estimation of unknown

parameters.

Such a network "behind" a more classical attitude controller has very good robustness

properties. Not just for perturbations in the system dynamics, such as a change in the space-

craft inertia, but also for example in case of actuator faults. [6] and [41] are two examples

where a spacecraft with magnetorquers only is stabilized using dynamic neural units.

[41] even explicitly describes its controller as being intended for CubeSats. However once

again the surrounding geomagnetic field is assumed to be periodic along the orbit of the

CubeSat. Another limitation, that also appears in [6], is the higher complexity of the con-

troller. There are a lot of parameters to tune and a lot of calculations to be done by the

ADCS in orbit. Even if the power of modern microcontrollers increased very much in the

past decades and still is increasing, there are doubts whether dynamic neural networks are

suited for CubeSat missions.

So in conclusion while controllers based on dynamic neural networks seem one of the

best methods to solve the present problem, a formal proof is not given and it is questionable

whether the increased complexity compared to the PD controllers mentioned earlier (and

which have proven themselves in the field numerous times), is worth the effort.

Fuzzy Logic

A completely different approach to the control design problem is to use linguistic terms to

classify measurements and control variables of a system as for example "very high", "high",

"normal", "low" and "very low". If-then-rules, i.e. the control laws, state which value must

be applied to the control variable dependent on the classifications of the measurements.
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The process to convert the measurement values to the classes and the process to convert the

classes of the control variables to values are called fuzzyfication and defuzzification respec-

tively. The whole system is called fuzzy logic controller.

Fuzzy logic control has not been investigated much for satellite applications, however

[13] proposes an easy fuzzy controller to stabilize a spacecraft actuated by magnetorquers

only. The simulations indicate good behavior also in presence of a constant disturbance

torque, which could be interpreted as the result of the perturbed inertia matrix.

Unfortunately fuzzy logic controllers, due to their different nature, are difficult to ana-

lyze for stability properties, at least according to the formulation and with the methods of

Lyapunov. But in general it requires quite significant changes in the model parameters to

destabilize the system if the fuzzyfication was well done (which can be a long and difficult

process), because small perturbations won’t change the classification of the measurements.

To summarize, it is doubtful if a fuzzy logic controller has any advantage over the well-

known and proven PD controllers. For this thesis at least they’re not an alternative as formal

stability proofs that are comparable to proofs for the other controllers of this chapter, do not

exist. The only way would be to approximate the fuzzy logic controller with an analytical

expression and insert it into an appropriate Lyapunov function. This is an elaborate task,

just an approximation of the actual controller and would presumably in the end lead to very

similar results than those of the control laws analyzed with more detail.

3.5 Conclusion and further Work

Several conclusions can be taken from this chapter. The most obvious one is that there are

considerable difficulties to formally prove that attitude control of a spacecraft with magne-

torquers works in general. One has to restrict on special cases an assume certain properties

e.g. of for the geomagnetic field. Nonetheless magnetic attitude control has proven itself in

the field and theoretical proofs exist for reasonable models of the spacecraft and surround-

ing field, this thesis adds two more to this list.

The special case this chapter looks at, is described in detail in section 3.2. The attitude

is to be aligned to an outer reference frame of the satellite and this without assuming any

special property for the geomagnetic field and allowing the inertia matrix of the rigid body

to be unknown within upper and lower bounds, these must however be somewhat tight.
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Section 3.3 shows then in its second part that a nonlinear D controller solves the problem.

The approach leading to the solution is to use the stability proof of [11] (where the inertia is

known and has a special form giving stabilizing effect) and to build a new and strict Lyapunov

function. Unfortunately it is too elaborate to find the explicit form of this new Lyapunov

function, but the requirements of a theorem are satisfied and this theorem guarantees that

the function exists and gives bounds. The bounds are sufficient to prove that the controller

stabilizes the spacecraft in the scenario of this chapter.

Nonetheless would it be nice to find a more formal proof for this claim, but this is left as

further work. The main conclusion, namely that the control law (3.10) is robust, is more

important than the actual tight bounds on the tolerance for the unknown inertia matrix.

Section 3.4 shows several attempts to solve the given problem.

The nonlinear PD controller cannot be proven to be robust in the sense of this thesis, how-

ever the paper [2] shows that this controller (equation (3.13)) has very good and robust sta-

bilizing effect if the geomagnetic field takes a property that is fulfilled in a lot of orbits, espe-

cially those with high inclination. Therefore the attitude control law (3.24) for the NTNU Test

Satellite, is a good choice between robustness and ease of implementation and operation.

The sliding mode control approach, especially the integral sliding mode controller of equa-

tion (3.28), is one of the best ways to solve the robust attitude stabilization problem. It prob-

ably works even better for the case of an unknown inertia matrix if this unknown parameter

is estimated with an adaptive control law. However the expectations to this extension are not

very high, because the persistence of excitation requirement for adaptive laws to converge

may not be fulfilled, especially if nine (the inertia matrix may lose its diagonal property un-

der operation) parameters need to be estimated. But the sliding mode control in itself is

robust to almost any kind of perturbation.

Finally an outlook to two other strategies is given which most likely can stabilize the atti-

tude robustly. However these more advanced techniques need considerably more processor

power and are more difficult to implement, the dynamic neural network approach because

of the complex nature of neural networks, the fuzzy logic approach because of the large num-

ber of it-then-rules that need to be defined.

This chapter remained purely theoretical. It would have been an enrichment to extend

the simulations of the sources with variable inertia. This would also have given the opportu-

nity to verify the claims. But the time was to short and this left as further work.
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