
Solution Methods for
Distributed Parameter Systems

Fredrik Mikal Hjelmeland Rygg
NTNU

July 2005

Chapter 1

Introduction

Due to efficient solution methods for system of partial differential equations,
PDEs, distributed parameter systems have occupied an important place in
control and system theory. The states of a control problem that is described
by PDEs, depends not only on time, but also space. The classical theory of
PDE is well developed, but still new mathematical techniqes emerge. One
such techniqe, of value for a control-engineer, is the theory of model reduc-
tion. Model reduction is not presented here due to time restrictions 1 . If the
reader is interested in model reduction, we recommend the course material
from a course on model reduction, thought by Dr Weiland at the university
of Eidhoven.
It was the intention to provide a simulation example of a distributed control
system, thid turned out to be difficult. First it was wery hard in the begin-
ning to understand the examples that i found in the literature, second when
all the practical schemes required, for the author, non-familiar solution meth-
ods. From the authors opinion, and experience, it is essential to understand
numerical linear algebra, especially solution methods for sparse sytems, in
order to solve a distributed control system. For example the discretization of
poissons problem on a 81× 81 grid with a five-point formula results in 6400
equations, which is a modest problem. in three diemnsions this rises to 803.
The Poisson problem is simple, for a combustion problem depending on, say,
14 parameters the number of equations are 14 × 803 = 7168000 equations.
The cost of finding the solution with the familiar Gaussian elimination is
O(d3) for a d×d system, and this renders it useless of size such as the above.
This is the reason why we choose to focus on efficient methods for solving

1I admit that this document is somewhat incomplete. As usual i ended up in a hurry
as the time limit dangerously approached. I have not read through this document, and im
not suprised if it contains a lot of errors. I hope it is not to painful to read. Also i remark
that the notation is not always consistent

2

large, and sparse systems. We mention for the inerested reader [26] contains
several examples of distributed control problems, and algorithms to solve
them. Also of interest are the siam books in the series Advances in Design
and Control.

2

2I borrowed this book ones, and started to simulate a Stefan-like (moving boundary)
control problem. Unfourtunately i had to deliver the book at the library before i could
finish. I tried to borrow it again, but the book is not available in Norway, it had to be
imported from USA. Im still waiting for the book to arive.

3

Chapter 2

Finite-Difference
Approximations

2.1 Finite Differences

The main idea in the classical theory of finite differences is to replace deriv-
atives with linear combination of discrete function values, thus reducing a
differential equation to an algerbraic system.
We wish to find the numerical solution by finite differences of a general linear
PDE

∂u

∂t
= Lu + f x ∈ Ω ⊂ Rn, t ≥ 0, (2.1)

Bu = φ x ∈ ∂Ω ⊂ Rn−1 (2.2)

u(x, 0) = g(x) x ∈ Ω (2.3)

where φ = φ(x, t) is the boundary data, g(x) is the initial data, and f =
f(x, t) is a known source term. L is a linear differential operator.

L =
∑

i1+i2+...+in≤r

ai1,i2,...,in

∂i1+i2+...is

∂xi1
1 ∂xi2

2 ...∂xin
n

.

Similarly B is a linear operator on the boundary.

Bu = α + β
∂u

∂n

where n is the outward normal. Let Ωh be a computational grid over Ω,
and let Lh be an approximation to the derivative Lu at the grid points.

4

A approximation at the boundary nodes is also necessary if the solution is
unknown there. This result in a linear system of difference equations

Lhuh = fh xh ∈ Ωh

Bhuh = φ xh ∈ ∂Ωh

To be useful the FD solution must resemble the true solution as the node
diststance h→ 0. We say that the method is consistent if

Lhuij
h→0−→ Luij for all xh ∈ Ω

Bhuij
h→0−→ Buij for all xh ∈ ∂Ω

The method is pointwise convergent if

Uij
h→0−→ uij, for all xh ∈ Ω.

2.1.1 Taylor Expansion

We commence by finding consistent finite differece formulas for the dervia-
tives. It is common practice to obtain a difference approximation by means
a Taylor expansion. The forward difference approximation

u′(x) ≈ u(x + h)− u(x)

h

is derived from the Taylor expansion of u(x + h):

u(x + h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

6
h3u′′′(ξ1)

In a similar manner the backward difference approximation

u′(x) ≈ u(x)− u(x− h)

h

is derived from the Taylor expansion of u(x− h):

u(x− h) = u(x)− hu′(x) +
1

2
− 1

6
u′′′(ξ2).

If we subtract u(x + h) from u(x − h) and solve for u′(x), we obtain the
centered difference approximation

u′(x) ≈ u(x + h)− u(x− h)

2h
. (2.4)

5

Supposing that u has a second derivative, the forward and backward differ-
ences are first order accurate. If the third derivative of f exist, the centered
difference is second order accurate.
The centered difference approximation of the second derivative is obtained
by adding u(x + h) to u(x− h), and then solve for u′′(x):

u′′(x) =
u(x + h)− 2u(x) + u(x− h)

h2
+

1

12
h2u(η)

where x−h ≤ η ≤ x+h. When u has a fourth derivative, the approximation

u′′(x) ≈ u(x + h)− 2u(x) + u(x− h)

h2
(2.5)

is second order accurate.

2.1.2 Taylor Tables

A simple and convenient way of forming a difference scheme of any order is
to constuct a Taylor table. The Taylor table is best explained by an exam-
ple. Consider the Taylor table for a 3-point backward differencing operator
reprecenting a first derivative with h = ∆x.

(
∂u
∂x

)
j
− 1

∆x
(a2uj−2 + a1uj−1 + a0uj) = ?

uj ∆x
(

∂u
∂x

)
j

∆x2
(

∂2u
∂x2

)
j

∆x3
(

∂3u
∂x3

)
j

∆x4
(

∂4u
∂x4

)
j

∆x
(

∂u
∂x

)
j

1

−a2 · uj−2 −a2 a2 · 2 −a2 · 2 a2 · 4
3

−a2 · 2
3

−a1 · uj−1 −a1 a1 −a1 · 1
2

a1 · 1
6

−a1 · 1
24

−a0 · u0 −a0

At the top of the table the unknown error of an approximation is displayed.
Our goal is to find the constants in the error to maximize the order of ac-
curacy. In each row you find the coefficients of the Taylor expansion of the
leftmost term. For example, the second row in the table corresponds to the
Taylor series expansion of −a2 · uj−2

−a2uj−21 = −a2uj − a2 · (−2) ·∆x
(∂u

∂x

)
j
− a2 · (−2)2 · 1

2
∆x2

(∂2u

∂x2

)
j

−a2 · (−2)3 · 1
6
·
(∂3u

∂x4

)
j
− a2 · (−2)4 · 1

24
∆x4

(∂4u

∂x4

)
−

6

There are thre unknow a2, a1 and a0. To get a method with second order
accuracy, the first three columns must sum to zero −1 −1 −1

2 1 0
−4 −1 0

 a2

a1

a0

 =

 0
−1
0


which gives [a2, a1, a0] = 1

2
[1,−4, 3]. Thus a second-order backward difference

approximation to the first derivative is(∂u

∂x

)
j
=

1

2∆x
(uj−2 − 4uj−1 + 3uj) +O(∆x2) (2.6)

The truncation error ert is found from the first non-vanishing column sum.
In this case the fourth column provides the leading truncation error term

ert =
1

2∆x

[8a2

6
+

a1

6

]
∆x3

(∂3u

∂x3

)
j
=

∆x2

3

(∂3u

∂x3

)
j

2.1.3 Matrix Difference Equations

The difference relation

(δx)j =
1

2∆x
(uj+1 − uj−1) (2.7)

(δxx)j =
1

2∆x
(uj+1 − 2uj + uj−1) (2.8)

defines point difference operators since they give an approximation to the
derivative at grid points in terms of surrounding points. We recognize (2.7)
and (2.8) as the three-point centered difference approximations for the first
and second derivatives. They correspond to (2.4) and (2.5) derived previ-
ously. However, point operators dont tell us how other points in the mesh
are differenced, or how boundary conditions are enforced. Now the matrix
operator comes to rescue. It is best explained by an example. Let us derive
the the matrix representation of (2.8) on a four-point mesh with boundary
points a and b, and Dirichlet boundary conditions, u(0) = ua, u(1) = ub. If
we write down the point difference formula for every interior point we arive
at the system of equations

(δxx)1 =
1

∆x2
(ua − 2u1 + u2)

(δxx)2 =
1

∆x2
(u1 − 2u2 + u3)

(δxx)3 =
1

∆x2
(u2 − 2u3 + u4)

(δxx)4 =
1

∆x2
(u3 − 2u4 + ub)

7

In matrix notation this becomes

δxxu = Au + bc

where

u =


u1

u2

u3

u4

 , bc =
1

∆x2


ua

0
0
ub

 and A =


−2 1
1 −2 1

1 −2 1
1 −2


The matrix representation of (2.7) can be obtained in a similar manner.

Thus the matrix operators representing the three-point central difference
approximations (2.7)and (2.8) on a four point mesh with Dirichlet boundary
conditions are

δx =
1

2∆x


0 1
−1 0 1

−1 0 1
−1 0

 , δxx =
1

∆x

2


−2 1
1 −2 1

1 −2 1
1 −2

 (2.9)

The structure of these matrix operators are important. They are sparse and
banded. A matrix A is sparse if each variable is coupled to just a few other
variables. It is banded with bandwidth s if ak,l = 0 for every k, l ∈ {1, 2, ..., N}
such that |k − l| > s. Here N denotes the number of interior points. A
practical notation for a banded matrix is

B(N : a−1, a0, a1) =


a0 a1

a−1 a0 a1

. . .

a−1 a0 a1

a−1 a0

 (2.10)

Use of the matrix dimension N is optional. The illustration is given for a tridi-
agonal matrix although any number of bands is a posibility. A tridiagonal
matrix without constants along the band can be expressed as B(a−1, a0, a1.
The arguments for a banded matrix are always odd in number, and the cen-
tral one always refers to the central diagonal.

2.2 Difference Operators at Boundaries

Each line of a matrix difference equation is derived from a point operator,
but the point operators can differe from point to point. For instance, a point

8

operator near the boundary might differe from one in the strict interior due
to imposed boundary conditions. To illustrate how different point operators
affect the matrix operator, we replace the right Dirichlet condition u(1) = ub

with a Neumann boundary condition(∂u

∂x

)
x=1

=
(∂u

∂x

)
b

(2.11)

specified at j = N + 1. The interior operator is again

(δxxu)j =
1

∆x2
(uj+1 − 2uj + uj−1) (2.12)

At node N we cant simply use (2.2) as it stand, because uN+1 is undefined.
However the Neumann condition can be put to use. We seek an operator at
node N in the following form:

(δxxu)j =
1

∆x2
(auN−1 + buN) +

c

∆x

(∂u

∂x

)
N+1

(2.13)

where a, b and c are constants to be found. From the Taylor table

(
∂2u
∂x2

)
j
−
[

1
∆x2 (auj−1 + buj) + c

∆x

(
∂u
∂x

)
j+1

]
= ?

uj ∆x
(

∂u
∂x

)
j

∆x2
(

∂2u
∂x2

)
j

∆x3
(

∂3u
∂x3

)
j

∆x4
(

∂4u
∂x4

)
j

∆x2
(

∂2u
∂x2

)
j

1

−a · uj−1 −a a −a · 1
2

a · 1
6

−a · 1
24

−b · uj −b

−∆x · c ·
(

∂u
∂x

)
j+1

−c −c −c · 1
2

−c · 1
6

we see that the method is second order accurate if −1 −1 0
1 0 −1
−1 0 −1

 ·
 a

b
c

 =

 0
0
−1


Solving for a, b and c, we obtain the following point operator

(δxxu)N =
1

3∆x2
(2uN−1 − 2uN) +

2

3∆x

(∂u

∂x

)
N+1

(2.14)

9

What about the truncation error? From the fourth column sum we obtain

∆x2
(∂2u

∂x2

)
j
− 1

∆x2
(2uN−1−2uN)− 2

3∆x

(∂u

∂x

)
j
= −2

9
∆x3

(∂3u

∂x3

)
j
+O(∆x4)

Thus the operator is first-order accurate, however, this dont destroy the
overall secod-order accuracy. With (δxx)N at hand the matrix operator reads

δxxu =
1

∆x2
B(a−1, a0, 1)u + bc, (2.15)

where

a−1 = [1, 1, ..., 2/3]T

a0 = [−2,−2,−2, ...,−2/3]T

bc =
1

∆x2
[ua, 0, 0, ...,

2∆x

3
(
∂u

∂x
)b]

T .

We can also obtain the point operator (2.14) using space extrapolation. If
we approximate the Neumann condition with the backward-difference (2.6),
then (∂u

∂x

)
N+1

=
1

2∆x
(uN−1 − 4uN + 3uN+1) +O(∆x2).

Solving for uM+1 gives

uN+1 =
1

3

[
4uN − uN−1 + 2∆x

(∂u

∂x

)
b

]
+O(∆x3)

Sustituting this into (uxx)N yields

(δxxu)N =
1

∆x2
(uN+1 − 2uN + uN−1)

=
1

3∆x2

[
3uN−1 − 6uN + 4uN − uN−1 + 2∆x

(∂u

∂x

)
b

]
=

1

3∆x2
(2uN−1 − 2uN) +

2

3∆x

(∂u

∂x

)
b
,

which is identical to (2.15).

2.3 Poisson’s Equation in One Dimension

We can now approximate a differential equation using finite differences. Con-
sider the one-dimensional Poisson equation.

−d2u(x)

d2x
= f(x) 0 < x < 1 (2.16)

10

To converte the differential equation (2.16) to a difference equation, we
discretize the problem by computing approximate solutions at N + 2 evenly
spaced points xi = ih between 0 and 1, where h = 1

N+1
, and 0 ≤ i ≤ N + 1.

We then apply the centered difference scheme for the second derivative (2.5).
This yield the difference equation

−ui−1 + 2ui − ui+1 = h2fi + h2τi

where τi is the truncation error. If we impose the Dirichlet conditions, u0 =
uN+1 = 0, we obtain N equations in N unknowns u1, u2, ..., uN :

TN ·


u1
...
...

uN

 =


2 −1

−1
.
. −1
−1 2

 ·


u1
...
...

uN

 = h2


f1
...
...

fN

+ h2


τ1
...
...

τN


(2.17)

It is convenient to use the notation B(a−1, a0, a1) for a tridiagonal matrix
with constants along the bands. In the new notation the banded matrix
equation (2.17) becomes

B(−1, 2,−1)u = f + h2τ

2.3.1 TST Matrices

The matrix operator TN plays a central role in the analysis of discretized
PDEs, and in the computation of fast solutions to the Poisson equation. Our
friend TN is symmetric and and tridiagonal, with constants on the diagonals.
A N×N matrix A = (ai,j)

N
k,l=1 is said to be Toeplitz if it is constant along its

diagonals, in other words, if there exist numbers τ−N+1, τ−N+2, ..., τ0, ..., τN−1

such that
ak,l = τk−l, k, l = 1, 2..., n.

The matrix TN is a Toeplitz matrix with

τ−N+1 = ... = τ−2 = 0, τ−1 = 1, τ0 = −2, τ1 = 1, τ2 = ... = τN−1 = 0.

We say tha a matrix is TST if it is Toeplitz, symmetric and tridiagonal.
Therefore, A is TST if

τj = 0, |j| = 2, 3, ..., N − 1, τ−1 = τ1.

We are interested in the eigenvalues and eigenvectors of a TST matrix.

11

Lemma 2.1 Let A be a N × N TST matrix and α := a0, β := a−1 = a1.
Then the eigenvalues of A are

λj = α + 2β cos
(πj

N + 1

)
, j = 1, 2, ..., N, (2.18)

each with corresponding orthnormal eigenvector, qj, where

qj,l =

√
2

N + 1
sin
(πjl

N + 1

)
, j, l = 1, 2, ..., N. (2.19)

Proof Suppose that λ is an eigenvalue of A with corresponding eigenvector
q, in other words, Aq = λq. Letting q0 = qN+1 = 0, we arrive at the
equations

βql+1 + (a− λ)ql + βql−1 = 0, l = 1, 2, ..., N

This is a difference equation with the general sloution

ql = aηl
1 + bηl

2 l = 0, 1, ..., d + 1,

where ηi, i = 1, 2 are zeros of the characteristic polynomial

βη2 + (α− λ)η + β = 0.

The constraint q0 = qN+1 = 0 determine the constants a and b. The first
condition yields a + b = 0, hence ql = a(ηl

1 − ηl
2), where a 6= 0 is arbitrary.

The second condition is fulfilled when

ηN+1
1 = ηN+1

2

hence

η1 = η2 exp
(2πij

N + 1

)
, j = 0, 1, ..., N (2.20)

The case j = 0 corresponds to the trivial eigenvector ql = 0, and can be
discarded. We insert the roots η1, η2 into (5) and multiply by exp[−πij/(N +
1)],(
λ−α

√
(λ− α)2 − 4β2

)
exp

(−πij

N + 1

)
=
(
λ−α−

√
(λ− α)2 − 4β2

)
exp

(πij

N + 1

)
Using the Euler identity, we obtain√

(λ− α)2 − β2 cos
(πj

N + 1

)
= (λ− α)i sin

(πj

N + 1

)
.

12

We square this equation on both sides, and solve for the eigenvalues

λ = α± 2β cos
(πj

N + 1

)
.

Taking the plus sign we recover (2.18), while the minus repats λ = λN+1−j.
The eigenvectors are found by inserting the eigenvalues (2.18) into the roots
of the characteristic polynomial

η = cos
(πj

N + 1

)
± i sin

(πj

N + 1

)
= exp

(±πij

N + 1

)
,

therefore

qj,l = a(ηl
1 − ηl

2) = 2ai sin
(πjl

N + 1

)
, j, l = 1, 2, ..., N.

The vectors qj, j = 1, 2, ..., N are orrhogonal, they are also normal if

N∑
l=1

q2
j,l = 1

It can be shown that

N∑
l=1

sin2
(πjl

N + 1

)
=

1

2
(N + 1).

Using this to eliminate a we obtain the eigenvectors in (2.19) 2

We return to the matrix TN . From (2.18)and (2.19) we conclude that the
eigenvalues and the corresponding eigenvectors of TN are given by

λj = 2− 2 cos
(πj

N + 1

)
qj,l =

√
jkπ

N + 1
sin
(jkπ

N + 1

)
Figure (2.3.1) is a plot of the eigenvalues for N = 21. The largest

eigenvalue is λN = 2(1 − cos πN
N+1

) ≈ 4. The smallest eigenvalue is λ1 =
2(1−cos π

N+1
) ≈ (π

N+1
)2. Thus TN is positive definite with condition number

λN/λ1 ≈ 4(N + 1)2/π2 for large N . The eigenvectors are sinusoids with
lowest frequency at j = 1 and highest at j = N . Some of the eigenvectors
are shown in figure (2.3.1).

13

Figure 2.1: Eigenvectors of T21

Figure 2.2: Eigenvalues of T21

14

To prove that the difference approximation is consistent we provide a bound
on the error ‖u− uh‖

‖u− uh‖ ≤ h2‖T−N 1‖2‖τ‖2 ≈ h2 (N + 1)2

π2
‖τ‖2 = O(‖τ‖2) = O

(
h2‖d

4u

dx4
‖inf

)
.

This shows that the error goes to zero proportionally to h2, provided the
solution is smooth enough.
It turns out that the eigenvalues and eigenvectors of h−2TN also approxi-
mate the eigenvalues and eigenfunctions of the differential equation, in other
words, the error in Fourier space goes to zero. The eigenvalues and eigen-
functions of the continuous problem must satisfy the eigenvalue equation

−d2q

dx2
= λq u(0) = u(1) = 0

The eigenvalues are iπ and the eigenvectors are sin(iπx). Thus the eigenvec-
tors are precisely equal to the eigenfunction q evaluated at the sample points
xj = jh when scaled by

√
2h. For the low modes λi = (ihπ)2 +O(h2). The

high modes however, are not resolved properly.

2.4 Poisson’s Equation in Two Dimensions

The Poisson equation is perhaps the most important PDE, it is also one
of the simplest. Solutions of stationary conduction, and diffusion problems
satisfy the Poisson equation, so does the potential of a magnetic or electric
field. In two dimension it reads

∆u = f, (x, y) ∈ Ω (2.21)

where

∆ =
∂2

∂x2
+

∂2

∂y2

We consider the discrete Poisson equation on the unit square
Ω = {(x, y) : 0 < x, y < 1} with Dirichlet boundary conditions

−∆huh = fh (xi, yj) ∈ Ωh

uh = φh (xj, yj) ∈ Γh = ∂Ωh

Here ∆h is an approximation to the Laplace operator We assume an equi-
spaced grid with spacing h in x and y. Then

xi = ih yj = jh h =
1

N + 1
, n ∈ N

15

where N is the number of internal nodes in each direction. We abbreviate
uij = u(ih, jh) and fij = f(ih, jh).
Now apply the centered scheme (2.5) to approximate ∆u. We know that

−∂2u(x, y)

∂x2

∣∣∣
x=xi,y=yi

≈ 2ui,j − ui−1,j − ui+1,j

h2
and

−∂2u(x, y)

∂y2

∣∣∣
x=xi,y=yj

≈ 2ui,j − ui,j−1 − ui,j+1

h2

Adding these approximations gives us

−∆u(x, y)|x=xi,y=yi
=

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
− τij (2.22)

where the truncation τij is bounded by O(h2).
A pictorial representation of the discretization is given by the stencil, also
known as the computational molecule. A stencil represents a grid operator,
and acts on grid functions rather than vectors. A stencil has the representa-
tion

[sκ1κ2]h =


...

...
...

· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...


h

. sκ1κ2 ∈ R

If wh : Ωh −→ R is a grid function, the operator represented by the stencil
is defined by

[sκ1κ2]hwh(x, y) =
∑

(κ1,κ2)

sκ1κ2wh(x + κ1hx, y + κ2hy)

To avoid confusion with the matrix notation, there is an alternative notation.
For example, for a five-point and a nine-point operator the notation is

16

We mention before a point-operator, represented by a stencil may have to
be modified for near boundary nodes. To solve a difference problem, it is not
enough to specify a point operator. An implementation always commence by
inscribing a grid into the domain of interest, then a point operator is chosen
for each node. In our case we imose on Ω a square grid Ω∆h, with an equal
spacing of h in both spatial directions.
For an internal node the five point stencil yields

1

h2

 −1
−1 4 −1

−1


h

ui,j = fi,j

For (xi, yj) ∈ Ωh adjent to a boundary we have

1

h2

 −1
0 4 −1
−1


h

ui,j = fi,j +
1

h2
φi−1,j

For (xi, yj) ∈ Ωh in a (here: the north-west) corner we have

1

h2

 0
0 4 −1
−1


h

ui,j = +fi,j+
1

h2
[φi−1,j+φi,j−1]

For this model problem, the Dirichlet BC are eliminated. For more compli-
cated BC, or domains, numerical boundary schemes are preferred. To show

17

that the five-point formula is consistent, we define the local truncation error
at a point p ∈ Ωh

τp = Lhup − fp

Application of the the five point-formula to the Laplace equation gives the
local truncation error

τij =
ui,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
− f(xi, yj)

The expanison of the Taylor series around (xi, yj) gives

τi,j = uxx + uyy − f +
h2

12
(u4x + u4y) +O(h4),

thus the method is second order accurate. The method is also consistent
since τi,j

h→0−→ 0.

2.4.1 The Matrix Difference Equation

The five point operator for the poisson problem is

δxxu + δyyu =
ui,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
(2.23)

We seek the matrix operator. It is helpful to think of the unkonwns uij as
occupying an N -by-N matrix U with entries uij and the right-hand sides
h2fij as similarly occupying an N -by-N matrix h2F . The trick is to write
the matrix with (i, j) entry 4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 in a simple
way in terms of TN and U . Since premultiplication with a matrix rearange
rows, and postmultiplication rearange columns,

2uij − ui−1,j − ui+1,j = (TN · V)ij (2.24)

2uij − ui,j−1 − ui,j+1 = (V · TN)ij (2.25)

so adding these two equations yields

(TN · U + U · TN)ij = 4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = h2fij = (h2F)ij

or
TN · V + V · TN = h2F (2.26)

This is a matrix equation, but it is not in the usual ’Ax = b’ format. The
matrix TN · U + U · TN is a N -by-N matrix, so is the right hand side h2F .
The eigenvalues and eigenvectors are the same as for the unerlying matrix

18

A, because ’Ax = λx’ is equivalent to ’TN · U + U · TN = λU . If TNzi = λizi

and TNzj = λjzj are any two eigenpairs of TN , and let V = ziz
T
j . Then

TNV + V TN = (TNzi)z
T
j + zi(z

T
j TN)

= (λizi)z
T
j + zi(z

T
j λj)

= (λi + λj)ziz
T
j

= (λi + λj)V, (2.27)

so V = ziz
T
j is an eigenvector/eigenmatrix and λi + λj is an eigenvalue. A

second way to write the matrix operator is to write the unknowns uij as a
single long N2-by-1 vector. This requires us to choose an order for them.
The sparsity of the matrix operator depends on the ordering. For a column-
wise or row-wise ordering of the nodes, also called lexicographical or natural
ordering ordering, and with eliminated Dirichlet boundary conditions, the
resulting matrix is block tridiagonal

TN×N =
1

h2


TN + 2IN −IN

−IN
.
. −IN

−IN TN + 2IN

 (2.28)

To see how this matrix came along, we consider the case N = 3. For
N = 3, with row-wise ordering, the solution is a column 9-by-1 vector
u = [u1, u2, ..., u9]

T If we number f accordingly, we arive at the equation



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4





u1

u2

u3

u4

u5

u6

u7

u8

u9


=



f1

f2

f3

f4

f5

f6

f7

f8

f9


Each line of the matrix equation correspond to a point operator. The −1’s
imediately next to the diagonal corresponds to subtracting the left and right
neighbors −ui−1,j − ui+1,j, The −1’s N = 3 steps from the diagonal corre-
spond to subtracting the top and bottom neighbors −ui,j−1 − ui,j+1. The

19

elimination of the Dirichlet boundary conditions explains the rows in the
difference matrix with only two or thre entries.
In the red-black ordering the red nodes are considered first, then the un-
knowns are at the black points. The difference matrix is now a block matrix
with blocks Arr, Arb, Abr, Abb. Arr represent the connection of the red points

Figure 2.3: Lexicographic ordering Figure 2.4: red-black ordering

to the red points, Arb the connection of the red points to the black points,
Abr the conection of black points to red points, and Abb the conection of black
points to black points. With this notation the difference matrix reads

Ah =

[
Arr Arb

Abr Abb

]
(2.29)

The five point formula for ∆u gives diagonal matrices for the blocks Arr

and Abb, with 4/h2 as diagonal elements. The blocd matrix Arb = AT
rb is

Arb =
1

h2



−1 0 −1
−1 −1 0 −1
−1 0 −1 −1 −1

−1 0 −1 0 −1
−1 0 −1 0 −1

−1 −1 −1 0 −1
−1 0 −1 −1

−1 0 −1


(2.30)

2.4.2 Expressing Poisson’s Equation with Kronecker
Products

The Kronecker product, sometimes called the tensor product, gives a system-
atic way to compute eigenvalues and eigenvectors of the Poisson matrix in
any dimension. This survey relies on some new notation.

20

Definition 2.1 Let X be m-by-n. Then vec(X) is defined to be a column
vector of size m ·n made of the columns of X stacked atop one another from
left to right.

Note that a N2-by-1 vector u derived from a lexicographical ordering can be
written as vec(V).

Definition 2.2 Let A be an m-by-n matrix and B be a p-by-q. Then A⊗B,
the Kronecker product mA and B, is the (m · p)-by-(n · q) matrix a1,1 ·B . . . a1,n ·B

...
...

am,1 ·B . . . am,n ·B


The following lemma tells us how to rewrite the Poisson equation in terms
of Kronecker products and the mathrmvec(·) operator.

Lemma 2.2 Let A be m-by-m, B be n-by-n, and X and C be m-by-n. Then
the following properties holds

1. vec(AX) = (In ⊗ A) · vec(X).

2. vec(XB) = (BT ⊗ Im) · vec(X).

3. The Poisson equation TNV + V TN = h2F is equivalent to

TN×N · vec(V) := (IN ⊗ TN + TN ⊗ IN) · vec(V) = vec(h2F). (2.31)

Proof We prove part 3. Vectorization of the Poisson matrix equation yields

vec(TNV + V TN) = vec(TNV) + vec(V TN) = vec(h2F).

By part 1 of the lemma

vec(TNV) = (IN ⊗ TN)vec(V).

By part 2 of the lemma and the symmetry of TN ,

vec(V TN) = (T T
N ⊗ IN)vec(V) = (TN ⊗ IN))vec(V).

Adding the last two expression completes the proof of part 3 2

In matrix notation the expression for TN×N is

TN×N = IN ⊗ TN + TN ⊗ IN

=


TN

. . .
. . .

TN

+


2IN −IN

−IN
.
. −IN

−IN 2IN


21

The computation of the eigenvalues and eigenvctors for the Poisson matrix
can be done in several ways. A general and convenient way uses the properties
of Kronecker products.

Lemma 2.3 The following facts about the Kronecker product hold:

1. Assume that the products A · C and B · D are well defined. Then
(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

2. If A and B are invertible, then (A⊗B)−1 ⊗B−1.

3. (A⊗B)T = AT ⊗BT .

Proposition 2.1 Let TN = ZΛZT be the eigendecomposition of TN , with
Z = [z1, ..., zN] the orthogonal matrix whose columns are eigenvectors, and
Λ = diag(λ1, ..., λN). Then the eigendecomposition of TN×N = I⊗TN +TN⊗I
is

I ⊗ TN + TN ⊗ I = (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T . (2.32)

I⊗Λ+Λ⊗I is a diagonal matrix whose (iN +j)th diagonal entry, the (i, j)th
eigenvalue of TN×N , is λi,j = λi + λj . Z ⊗Z is an orthogonal matrix whose
(iN + j)th column, the corresponding eigenvector, is zi ⊗ zj.

Proof From part 1 and 3 of Lemma 2.3 it is easy to verify that Z ⊗ Z) is
orthogonal since (Z⊗Z)(Z⊗Z)T = (Z⊗Z)(ZT⊗ZT) = (Z ·ZT)⊗(Z ·ZT) =
I ⊗ I = I. We can now verify (2.32):

(Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T

= (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (ZT ⊗ ZT)

= (Z · I · ZT)⊗ (Z · Λ · ZT) + (Z · Λ · ZT)⊗ (Z · I · ZT)

= I ⊗ TN + TN ⊗ I = TN×N

From the definition of the Kronecker product, it is easy to verify that I ⊗
Λ + Λ ⊗ I is diagonal, with (iN + j entry given by λj + λi, and that the
corresponding eigenvector is the iN + j column of Z ⊗ Z. 2

2.4.3 Implementation

It is always good practice to run computer progams to get a better ’feel’ for
what we are trying to say in our mathematical formulations. In this spirit

22

we apply the five-point operator (2.23) to the Dirichlet problem on the unit
square

∆u = (1− π

4
) sin

(πx

2

)
exp(y), 0 ≤ x, y ≤ 1

subjec to the boundary conditions

u(x, 0) = sin
(πx

2

)
u(x, 1) = sin

(πx

2

)
exp(1) 0 ≤ x ≤ y

u(0, y) = 0 u(1, y) = exp(y) 0 ≤ y ≤ 1

Figure 2.5: The solution of the Dirichlet problem and the Numerical error

2.4.4 Eigenvalues and Eigenvectors of the five-point
Operator

It is instructive to see how the eigenvalues and eigenvectors of TN × N are
related to the eigenvalues and eigenfunctions of the Laplace operator ∆ in
the unit square. The function v is said to be an eigefunction of ∆ in a domain
Ω if

∆v = λv x, y ∈ Ω

v = 0 x, y ∈ ∂Ω

23

% Solution of the Poisson equation on the unit

% square. Use row wise ordering of vectors

N=30; h=1/(N+1); x=[h:h:1-h]’; y=x;

% Boundary conditions

gb=sin(0.5*pi*x); gt=sin(0.5*pi*x)*exp(1);

gl=zeros(N,1); gr=exp(y);

% The Poisson matrix

TN=2*eye(N)-diag(ones(N-1,1),1)-diag(ones(N-1,1),-1);

TNxN=kron(eye(N),TN)+kron(TN,eye(N));

A=-gallery(’poisson’,N);

% Form rhs

f=zeros(N*N,1);

for i=1:N

for j=1:N

f(i+N*(j-1))=sin(0.5*pi*x(i))*exp(y(j));

end

end

f=h^2*(1-0.25*pi^2)*f;

% Include boundary conditions

for i=1:N

f(i)=f(i)-gb(i); f((N-1)*N+i)=f((N-1)*N+i)-gt(i);

end

for j=1:N

f((j-1)*N+1)=f((j-1)*N+1)-gl(j); f(j*N)=f(j*N)-gr(j);

end

% Find the solution

U=-1*TNxN\f; U=reshape(U,N,N); U=U’;

% Add the boundary values

x=[0;x;1]; y=[0;y;1]; Unew=zeros(N+2,N+2);

Unew(2:N+1,2:N+1)=U; Unew(1,2:N+1)=gb’; Unew(N+2,2:N+1)=gt’;

Unew(1:N+2,N+2)=exp(y); [x,y]=meshgrid(x,y);

% Plot results

figure(1); mesh(x,y,Unew,’EdgeColor’,’black’);

title(’Numerical Solution’); xlabel(’x’); ylabel(’y’);

figure(2); Uexact=sin(0.5*pi*x).*exp(y);

mesh(x,y,abs(Uexact-Unew),’EdgeColor’,’black’);

title(’error’); xlabel(’x’); ylabel(’y’);

format short e; error=max(max(abs(Uexact-Unew)));

24

It is easy to verify that the function v(x, y) = sin(απx)sin(βπx), x, y ∈ [0, 1]
satisfy ∆v = −(α2 + +β2)π2v Thus v is an eigenfunction, and λ = −(α + β)
is the corresponding eigenvalue. It can be proved that all eigenfunctions of
∆ in (0, 1)2 have this form.

25

Figure 2.6: Three-dimensional and contour plots of the first four eigenvectors
of the 10-by-10 Poisson equation

The eigenvalues and eigenvectors of the five-point operator is given by
Proposition 1.1. The eigenvalues are

λα,β = (λα + λβ) α, β = 1, 2, ..., N

= 2

{
1− cos

(πα

N + 1

)}
+ 2

{
1− cos

(πβ

N + 1

)}
= −4

{
sin2

[
απ

2(N + 1)

]
+ sin2

[
βπ

2(N + 1)

]}
, (2.33)

and the eigenvectors are

vk,l = sin
(kαπ

N + 1

)
sin
(lβπ

N + 1

)
, k, l = 0, 1, ..., N + 1 (2.34)

The eigenvectors of the discrete operator is equal to the eigenfuntions evalu-

ated at the points
{(

k
N+1

, l
k+1

)}
k,l=0,1,...,m+1

(for α, β = 1, 2, ...,m only, the

matrix TN×N , unlike ∆, is finite-dimensional!). If we expand the eigenvalues

26

in a power series and bearing in mind that (N +1)∆x = 1, we readily obtain

λα,β

∆x2
= −4

({[
απ

2(N + 1)

]2

− 1

3

[
απ

2(N + 1)

]4

+ ...

}

+

{[
βπ

2(N + 1)

]2

− 1

3

[
βπ

2(N + 1)

]4

+ ...

})
= −(α2 + β2)π2 +

1

12
(α4 + β4)π4(∆x)2 +O((∆x4)).

Thus we see that (∆x2)λα,β is a good approximation to −(α2+β2)π provided
α and β are small in comparison with m.

2.5 Higher-order methods for Deltau = f

The Labplace operator ∆ is an elliptic operator, but it is important to evo-
lutionary problems as well. To mention just two, it plays a key role in the
parabolic diffusion equation

∂u

∂t
= ∆u, u = u(x, y, t),

and the hyperbolic wave equation

∂2u

∂t2
= ∆u, u = u(x, y, t).

The importance of the Laplace operator motivates a analysis of higher-order
schemes. We commence by defining the following point-operators

the shift operator,

the forward difference operator,

the backward difference operator,

the central difference operator,

(Ez)k = zk+1;

(∆+z)k = zk+1 − zk;

(∆−z)k = zk − zk−1;

(∆0z)k = zk+ 1
2
− zk− 1

2
;

The last operation is not a operator when it acts alone since grid functions
are defined only at grid points. The sequence z = {zk}∞−∞ orginates in the
sampling of a function z at equispaced points h. Futher, we define

the differntial operator (Dz)k = z′(kh).

It can be verified that all these operators are linear, that is, given that

T ∈ {E , ∆+, ∆−, ∆0,D}

27

and that w, z ∈ RZ, a, b ∈ R, it is true that

T (aw + bz) = aT + bT

The differnce operators are related, they are all functions of the shift operator
E . Note that ∆+ = (E − I) and ∆− = (I − E−1) where I is the identity. If
we interprete E1/2 as a ’half shift’, then E−1/2 + E1/2. Finally, to express D
in terms of E we do the following Taylor expansion

Ez(x) = z(x + h) =
∞∑

j=0

1

j!

[
djz(x)

dxj

]
hj =

[
∞∑

j=0

1

j!
(hD)j

]
z(x) = ehDz(x),

and we deduce E = ehD. Formal inversion yields

hD = ln E (2.35)

Because all operators are functions of E they commute. In consequence we
need not bother with the order of their action whenever they are superposed.
Let us express the differential operator D in terms of the other point oper-
ators. The relation E = I + ∆+ = (I − ∆−)−1 is obvious. The expression
∆0zk = E1/2zk − E−1/2 yields the quadratic quadratic relation

(E1/2)2 −∆0E1/2 − I = 0

with two solutions, 1
2
∆0±

√
1
4
∆2

0 + I. Since Ez(x) = z(x+h) it follows that

(E − I)z(x) = O(h). From this we deduce that the correct formula is

E =

(
1

2
∆0 +

√
I +

1

4
∆2

0

)2

From these expressions, and equation (2.35), the following relations hold

hD = ln (I + ∆+) (2.36)

hD = − ln (I + ∆−) (2.37)

hD = 2 ln

(
∆0 +

√
I +

1

4
∆2

0

)
. (2.38)

These relations allow us to approximate the differential operator D and it
powers (which correspond to higher derivatives). For example, expanding
(2.36) we obtain

D =
1

h
ln(I + ∆+) =

1

h
[∆+ −

1

2
∆2

+ +
1

3
∆3

+ +O(∆4
+)]

=
1

h
(∆+ +

1

2
∆2

+ +
1

3
∆3

+ +O(h3)), h→ 0.

28

To get an expression for the that approximates dsz(kh)/dxs, we operate s
times

Ds =
1

hs
[∆s

+ −
1

2
∆s+1

+ +
1

24
s(3s + 5)∆s+2

+] +O(h3)

Similarly to (2.5 we can use (2.37) to approximate the differential operator
using only grid points wholly to the left,

Ds =
(−1)s

hs
[ln(I + ∆−)]s =

1

hs
[∆s

− −
1

2
∆s+1
− +

1

24
s(3s + 5)∆s+2

−] +O(h3)

Central difference operators usually leads to more tractable linear systems
because the grid points used in the approximation are close to the central
node, hence reducing the bandwidth of the matrix operator. To writ the
differential operator D in terms of the central difference operator ∆0, we
make use of Taylor series expansion of the function g(ξ) := ln(ξ +

√
1 + ξ2.

By the generalized binomial theorem,

g′(ξ) =
1√

1 + ξ2
=

∞∑
j=0

(−1)j

(
2j

j

)
(
1

2
ξ)2j,

where
(
2j
j

)
is the binomial coefficient equal to (2j)!/(j!)2. Since g(0) = 0 and

the Taylor series converges uniformly for |ξ| < 1, integration yields

g(ξ) = g(0) +

∫ xi

0

g′(τ)dτ = 2
∞∑

j=0

(−1)j

2j + 1

(
2j

j

)
(
1

4
∆0)

2j+1.

Letting ξ = 1
2
∆0, we thus deduce from (2.38) the formal expansion

D =
2

h
g(

1

2
∆0) =

4

h

∞∑
j=0

(−1)j

2j + 1

(
2j

j

)
(
1

4
∆0)

2j+1. (2.39)

Unfortunately odd powers of ∆0 are undefined. Even powers of are defined
because ∆2s

0 = (∆2
0)

s = (zn−1− 2zn + zn+1)
s. Thus raising (2.39) to an even

power yields

D2s =
1

h2s
[(∆2

0)
s − 1

12
(∆2

0)
2+1 +

1

45
(∆2

0)
s+2] +O(h6)

With the differential operator approximations available, we start our discus-
sion of higher order methods. A popular approximation to ∆u = f at the
(k, l)th grid point is given by the nine-point formula

1

(∆x)2
(∆2

0,x + ∆2
0,y +

1

6
∆2

0,x∆
2
0,y)uk,l = fk,l (2.40)

29

The computational stencil for the nine-point operator is

Let us analyse the error. Recall that ∆0 = E1/2 − E−1/2 and that E = e∆xD.
Thus the Taylor expansion of ∆0 is

∆2
0 = E − 2I + E−1 = e∆xD − 2I + e−∆xD

= h2D2 +
1

12
(∆x)4D4 +O((∆x)6).

Substituting this into (2.40) yields

1

(∆x)2
(∆2

0,x + ∆2
0,y +

1

6
∆0, x

2∆0, y
2)

= (D2
x +D2

y) +
1

12
(∆x)2(D2

x +D2
y)

2 +O((∆x)4)

= ∆ +
1

12
(∆x)2∆2 +O((∆x)4) (2.41)

It follows that the nine-point operator is an approximation of order O((∆x)4)
to the equation

[∆ +
1

12
(∆x)2∆2]u = f (2.42)

In the case f = 0, corresponding to the Laplace equation, the nine point
formula bears an error O(∆x)4). This follows from (2.41) and the identity
∆u = ∆2u = 0. Let us define the operatorM∆x := I + 1

12
(∆x)2∆. Suppose

that ∆x > 0 is small enough, so thatM−1 exists, and act with this opearator
on both sides of (2.42). A new Poisson equation arise for which the nine-
point formula produces an error proportional to ∆x4

∆u =M−1
∆xf,

The trick now is to replace f in the original equation with the modified
function f̃

f̃(x, y) = f(x, y) +
1

12
∆f(x, y) +O((∆x)4)

= [I +
1

12
∆]f +O((∆x)4).

30

Thus M−1f̃ = f + O((∆x)4). In other words, the nine-point operator,
when applied to ∆2u = f̃ , yields an O((∆x)4) approximation to ther origi-
nal Poisson equation ∆u = f with the same boundary conditions. We can
approximate the function f̃ as follows

f̃ = [I +
1

12
(∆2

0,x + ∆2
0,y)]fk,l

which we also can write as

This method is reffered to as a fourth order method in [1]. 1

1Im not sure this is correct since [I+ 1
12 (∆2

0,x+∆2
0,y)]f = f(x, y)+∆f(x, y)+O((∆x)2).

For the method to be fourth order accurate the approximation of ∆f should be fourth
order accurate. The method is however fourth order accurate if we know ∆f

31

Chapter 3

Evolutionary Equations

It is often useful to clasify partial differential equations into steady-state and
evolutionary equations. The Poisson equation is an example of a station-
ary problem. Evolutionary equations, however, model systems that undergo
change, such as wave dynamics, diffusion, and other transport phenomena.
Linear PDEs are traditionally classified as elliptic, parabolic, or hyperbolic
equations. We remark that elliptic equations are of the steady-state type,
while parabolic and hyperbolic PDEs are evoultionary. Hyperbolic equations
are coservative in that the ’energy’ of the system is conserved over time. They
are analogous to a system of ODEs whose matrix has purely imaginary eigen-
values, yielding a oscillatory solution that neither grows or decay with time.
Parabolic PDEs are dissipative in that the ’energy’ of the solution diminishes
over time. Parabolic PDEs are analogous to linear systems of ODEs whose
matrix has only eigenvalues with negativel real parts, yielding an exponen-
tially decaying solution. Another characteristic feature that differe is the
propogation speed. Hyperbolic PDEs propogate information at finite speed
(wawe-solutions), whereas parabolic PDEs propagate information instanta-
neously (but the information decays exponentially). The differences between
the types of PDEs has important theroretical and practical implications. For
example, for a hyperbolic problem, it is desired that the numerical scheme is
non-disspiative. But it is not enough to ensure a non-dissipativive scheme,
the phase error is just as inportant. Hyperbolic can be wery difficult, espe-
cialy the treatment of the nonlinear phenomena that can occure (shock and
rarefecation waves). Since hyperbolic problems are conservative, they are, in
principle, reversible in time. Parabolic PDEs has a smoothing effect. Even
nonsmooth initial conditions becomes smooth with time. It is not possible to
determine the history of a parabolic equation from its current state. That is,
you cannot determine the initial temperature from its current temperature
distribution by integrating the heat equation backwards in time, that is, the

32

heat equation integrated backward in time is ill-posed. The challanges in
solving parabolic or hyperbolic PDEs numerically are analogous to those in
solving ODEs that are stiff because of eigenvalues with large negative real
parts (parabolic) or large imaginary parts (hyperbolic).
A linear parabolic equation takes the form

σ
∂u

∂t
= Lu (3.1)

where L is a elliptic operator. To solve the problem we must be provided
with initial and boundary values.

3.1 The Diffusion Equation

Our model problem for a parabolic equatoin is the heat equation in one, or
two, dimensions. It is also known as the diffusion equation. In one dimension
it is given by

∂u

∂t
=

∂2u

∂x2
0 ≤ x ≤ 1, t ≥ 0 (3.2)

The accompanying boundary conditions are,

u(0, t) = φ0(t), u(1, t) = φ1(t), t ≥ 0 (3.3)

and the initial condition is

u(x, 0) = g(x), 0 ≤ x ≤ 1 (3.4)

Our quest is to approximate the heat equation on the strip

{(x, t) : x ∈ [0, 1], t ≥ 0}

We let ∆h = 1/(1 + N) be the steplength in the x-direction and k the
steplength in the t-direction such that

tn = n · k, n = 0, 1, 2, ...

xi = i · h, i = 0, 1, ..., N + 1

The approximation of u(i · h, n · k) is denoted by un
i . Replaceing the second

derivative with the second-order point operator δxx and the time derivative
with the forward difference results in

un+1
i − un

i

k
=

un
i+1 − 2un

i + un
i−1

h2

33

rearanging yields

un+1
i = un

i + r(un
i+1 − 2un

i + un
i−1), i = 1, ..., N, k = 0, 1, ...M. (3.5)

where the ration

r =
k

h2

is the Courant number. The recursive relation (3.5) is refered to as the ex-
plicit Euler method. There are two important considerations when choosing
a time marching method. Stability and accuracy. We consider the numerical
accuracy now, and stability later on.
The local truncation error is derived by inserting the exact solution into the
approximation scheme

τn
i =

u(x, t + k)− u(x, t)

k
− u(x− h, t)− 2u(x, t) + u(x + h, t)

h2

=
∂u

∂t
− ∂2u

∂x2
+

1

2
k
∂2u

∂t2
+

1

12
h2∂4u

∂x4
+O(k2 + h4)

=
1

2
k
∂2u

∂t2
+

1

12
h2∂4u

∂x4
+O(k2 + h4)

Since τn
i = O(h2) + O(k) we say that the method is of order (2, 1). The

method is consistent since
τn
i

h,k→0−→ 0

Let (ih, nk) be a grid-node and G = {(ih, nk) : i = 0, ..., N + 1 k = 0, ...M}
be a computational grid. We refer to a method as convergent if,

un
i

h,k→0−→ u(ih, nk) (ih, kn) ∈ G

and we say that un
i

h,k→0−→ u(ih, nk) for all (ih, kn) ∈ G if

max
0≤n≤M

max
0≤i≤N+1

|en
i |

h,k→0−→ 0,

where en
i = u(ih, nk) − un

i is the global error. Let ũn
i = u(ih, nk). We have

that

un+1
i = un

i + r(un
i+1 − 2un

i + un
i−1)

ũn+1
i = ũn

i + r(ũn
i+1 − 2ũn

i + ũn
i−1) + kτn

i

such that

en+1
i = (1− 2r)en

i + ren
i+1 + ren

i−1 + kτn
i

with e0
i = 0, en

0 = eN + 1n = 0.

34

Assume that r ≤ 1
2
, and that |τn

i | ≤ C(k+h2). Therefore, by the triangle
inequality

|en+1
i | ≤ (1− 2r)|en

i |+ r(|en
i+1|+ |en

i−1|) + C(k2 + kh2)

≤ max
i=0,...,N+1

|en
i |+ C(k2 + kh2)

Let En = maxi=0,...,N+1 such that

En+1 ≤ En + C(k2 + kh2)

≤ En−1 + 2A(k2 + kh2)

≤ ... ≤ E0 + (N + 1)C(k2 + kh2)

Hence En ≤ nkC(k + h2) = tnC(k + h2), and we can conclude that the
solution of the Euler scheme converges to the true solution if r ≤ 1/2.
The restriction on r is painfull. It means that,each time we refine h, we need
to amend k such that the ratio r = k/h2 remains constant, which means that
k is likely to be considerably smaller than h. For example, if N = 19 and
r = 1

2
, then h = 1/20 and k = 1/800, leading to a very large computational

cost.
There are methods that converge for all r ≥ 0. The implicit Euler method
is obtained if we use the the backward difference to approximate the time
derivative, and the thre-point δxx at (ih, (n + 1)k)

un+1
i − un

i

k
=

un+1
i+1 − 2un+1

i + ui−1n + 1

h2

or

−run+1
i+1 + (1 + 2r)un+1

i − run+1
i−1 = un

i , i = 1, ..., N (3.6)

with un+1
0 = φ0(k ∗ (n + 1)) and un+1

N+1 = φ1(k ∗ (n + 1)). The implicit Euler
method is like its relative, the explicit Euler method, only first order accurate
in time. A method that is second order accurate in time, and convergent for
all r ≥ 0 is the Crank-Niclolson method

un+1
i − un

i

k
=

1

2

[
un+1

i+1 − 2un+1
i + un+1

i−1

h2
+

un
i+1 − 2un

i + un+1
i−1

h2

]
An alternative expression is

1

2
run+1

i+1 +(1+r)un+1
i − 1

2
run+1

i−1 =
1

2
run

i+1 +(1−r)un
i +

1

2
run

i−1 i = 1, ..., N

(3.7)

35

We mention that all the time-marching methods mentioned so far are special
cases of the θ-method

un+1
i − un

i

k
= θ

un+1
i+1 − 2un+1

i + un+1
i−1

h2
+ (1− θ)

un
i+1 − 2un

i + un
i−1

h2

for 0 ≤ θ ≤ 1.

3.1.1 The Thomas Algorithm

When we approximate the time-derivative with a implicit method, we have
to solve a linear system of equation at each time step. Why then bother to
use a implicit method, when a explicit method is available, with the same
accuracy. The answer is stability. One might have to use very small time
steps for a explicit method to converge. This fact was demonstrated with
the explicit Euler method. Due to their superior stability properties, the
restriction on the time step is determined by accuracy alone.
Consider the Crank-Nicolson mehtod applied to the diffusion equation

1

2
run+1

i+1 +(1+r)un+1
i − 1

2
run+1

i−1 =
1

2
run

i+1+(1−r)un
i +

1

2
run

i−1, i = 1, ..., N.

with the Dirichlet boundary conditions un+1
0 = un+1

N+1 = 0. This system of
equations can be rewritten as

a0 a1

a−1
.
. a1

a−1 a0

 ·


un+1
1
...
...

un+1
N

 =


b1
...
...

bN


Thus we have to solve a tridiagonal B(a−1, a0, a1) = f at each time step.
This can be done with a tridiagonal solver. The matrices L and U of the LU
factorization of a general tridiagonal matrix B(a,b, c are bidiagonal matrices
of the form

L =


1
β2 1

.

βn 1

 U =


α1 c1

α2
. . .
. . . cn−1

αn


The coefficients αi and βi can be computed from the relation

α1 = a1, βi =
bi

αi−1

, αi = ai − βici−1, i = 2, ..., n.

36

% Solve the 1D heat equation with the Crank-Nicolson method

alpha=1; N=48; L=1; h=L/(N+1); u=zeros(N+2,1); unew=zeros(N+2,1);

u_init=u; x=(0:h:(N+1)*h)’-L/2; u=exp(-5*x.^2); tend=0.5;

k=alpha*h^2; nsteps=ceil(tend/k); nplots=25; iplot=1;

plotsteps=ceil(nsteps/nplots);

% Time stepping

a=(alpha/2)*ones(N+2,1); b=(1+alpha)*ones(N+2,1); c=a;

a(1)=0; c(N+2)=0; B=spdiags([-a,b,-a],[-1,0,1],N+2,N+2);

for i=1:nsteps

f=(alpha/2)*u(1:N)+(1-alpha)*u(2:N+1)+...

(alpha/2)*u(3:N+2);

f1=(1-alpha)*u(1)+(alpha/2)*u(2);

fNp2=(alpha/2)*u(N+1)+(1-alpha)*u(N+2); f=[f1;f;fNp2];

unew=B\f; u=unew;

if(rem(i,plotsteps)<1)

tempplot(:,iplot)=u(:); tplot(iplot)=i*k;

iplot=iplot+1;

end

end

figure(1);mesh(x,tplot,tempplot’,’EdgeColor’,’black’);

xlabel(’x’); ylabel(’t’); zlabel(’Temperature’);

title(’Heat conduction with Dirichlet bc’);

To solve the system Bu = LUu = f we solve Ly = f by forward elimination,
then Ux = y by backward substitution. This direct method is known as the
Thomas algorithm. For the solution to be well posed we require that B is
diagonally dominant, that is, we require that bj > aj + cj. This is clearly the
case here since (1 + r) > r/2 + r/2. Lets do another computer experiment.
Let us solve the heat equation with Dirichlet boundary conditions using the
Crank-Nicolson method.

∂u

∂t
=

∂2u

∂x2
, −0.5 ≤ x ≤ 0.5

u(x, 0) = exp(−5x2)

37

Figure 3.1: Model problem solved with the Crank-Nicolson method

3.2 Semi-Discrtization

Given a initial/boundary value problem

∂u

∂t
= Lu, 0 ≤ x ≤ 1

u(x, 0) = g(x), u(0, t) = φ0(t), u(1, t) = φ1(t)

Let vi(t) ≈ u(xi, t), i = 1, ..., N , and v0(t) = φ0(t), vN+1 = φ1(t), then a
semi-discretization reduces our PDE to the following system of ODEs

dvi

dt
= Lvi i = 1, 2, ..., N

vi(0) = g(xi)

For example, a semidiscretization of the heat equation is given by

dvi

dt
=

1

h2
(vi+1 − 2vi + vi−1), i = 1, ..., N (3.8)

where we have replaced Lu(ih, t) with the point operator approximation
(δxxv)i. We can solve (3.8) using an ODE solver. If the PDE is parabolic,

38

the resulting sytem is particulary stiff, so we need a method for solving stiff
equations. If we use the trapezoid 1 rule to evaluate the the time derivative
we arive at

un+1
i = un

i +
k

2h2
(un+1

i+1 − 2un+1
i − un+1

i−1) +
k

2h2
(un

i+1 − 2un
i + un

i−1)

which we recognize as the Crank-Nicolson method. If we have a Neumann
boundary condition, we also have to solve a differential equation at the
boundary node.

3.2.1 Stability

let un = [un
1 , u

n
2 , ..., u

n
N] be the numerical solution at time kn For a two-level

scheme we can write the difference approximation as

Aun+1 = Bun + cn (3.9)

where cn contains the source function, and known boundary values. This
scheme can also be written as

un+1 = Qun + qn (3.10)

Q = A−1B, qn = A−1c

Definition 3.1 The difference equation wn+1Q = Qwn is stable with respect
to the norm ‖ · ‖ if there exist a constant L ≥ 0 independent of h, k, and n,
such that

‖wn‖ ≤ L · ‖w0‖ for all n ≤ T

h
(3.11)

no matter choice of w0.

Lemma 3.1 The difference equation wn+1Q = Qwn is stable if ‖Qn‖ ≤ L

Proof Assume that ‖Qn‖ ≤ L. Then

‖wn‖ = ‖Qnw0‖ ≤ ‖Qn‖ · ‖w0‖ ≤ L · ‖w0‖.

Assume that ‖wn‖ ≤ L · ‖w0‖, that is, assume that the difference equation
is stable. Since w0 can be chosen arbitrary, choose w0 such that

‖Qnw0‖ = ‖Qn‖ · ‖w0‖ = ‖wn‖ ≤ L · ‖w0‖.

This implies that ‖Qn‖ ≤ L. 2

1If we integrate a differential equation u̇ = f(u) from tn to tn+1 using the trapezoid
rule, we obtain the following equation for u(tn+1): un+1 = un + 1

2k(f(un) + f(un+1)

39

Lemma 3.2 (Sufficent conditon for stability) If there exist a constant
c ≥ 0, independent of h, k and n such that ‖Q‖ ≤ 1+ ck, then the difference
equation is stable

Proof We prove that ‖Qn‖ ≤ L

‖Qn‖ ≤ ‖Q‖n ≤ (1 + ck)n ≤ (1 + ck)T/k

≤ [exp(ck)]T/k = exp(cT) = L

2

Lemma 3.3 (Necessary condition for stability) For a differnce equa-
tion (3.10) to be stable the iteration matrix must satisfy ρ(Q) ≤ 1 + µk
for some constant µ ≥ 0, where ρ(Q) denotes the spectral radius of Q.

Proof Assume that L ≥ 1. Since ρ(Qn) = (ρ(Q))n ≤ ‖Q‖n ≤ L and
n = T/k we have that

ρ(Q) ≤ L1/n = Lk/T =
[
exp

(
ln L

)]k/T

= exp
(ln L

T
k
)

= 1 + k
ln L

T
exp

(ln L

T
θk
)
, 0 ≤ θ ≤ 1

And since k ≤ T , we deduce that ρ(Q) ≤ 1 + µk. If Q = QT , then ρ(Q) ≤
1 + µK is a necessary and sufficient condition for stability. 2

Let us illustrate the theory with a example. If we apply the θ- method
to the heat equation, we get

(I − θrB)un+1 = (I + (1− θ)rB)un + cn

where B = B(1,−2, 1). B is symmetric, it has orthogonal eigenvectors, and
the eigenvalues are

λi = −4 sin2
(iπ

2(N + 1)
, i = 1, ..., N

If Λ = diag(λi), and P is a matrix whose columns are the eigenvectors of
B. Then PP T = I and B = PΛP T is the spectral decomposition of B. We
recognize the iteration matrix Q from the θ-method

Q = (I − θrS)−1(I + (1− θ)rS)

= [P (I − θrΛ)P T]−1P (I + (1− θ)rΛ)P T

= P (I − θrΛ)P T)]−1P T P (I + (1− θ)rΛ)P T

= PDP T

40

where D is a diagonal matrix with the elements

di =
1 + (1− θ)rλi

1− θrλi

A sufficient condition for stability in ‖ · ‖ or ‖ · ‖ is

max
i
|di| ≤ 1 + µk µ ≥ 0

Let µ = 0, then we have

di =
1− (1− θ)r4 sin2

(
iπ

2(N+1)

)
1 + θr4 sin2

(
iπ

2(N+1)

)
We always have di ≤ 1. The condition −1 ≥ di is satisfied when

−
[
1 + 4rθ sin2

[
iπ

2(N + 1)

]]
≤ 1− 4r(1− θ) sin2

[
iπ

2(N + 1)

]
=⇒ 2− 4r(2θ − 1) sin2

[
iπ

2(N + 1)

]
≥ 0

This condition is always satisfied when θ ≥ 1
2
. If θ ≤ 1

2
. Using the inequality

0 < sin2
(

iπ
2(N+1)

)
< 1 yields

2− 4r(1− 2θ) ≥ 0

We can conclude tha the θ-method is stable when

θ ≥ 1

2
or when

θ <
1

2
and r ≤ 1

2(1− 2θ)

3.3 Fourier Analysis

The error given by the truncation error is of limited use, we wish to analyse
the error futher using Fourier series.
Assume that we have an inititial-value problem

∂u

∂t
= Lu, − inf < x < inf (3.12)

u(x, 0) = g(x)

41

For time dependent problem to be stable, we require that

‖u‖ ≤ L‖u0‖ (3.13)

for some finite L ∈ R, and u0 = u(x, 0). It is, however, not easy to find
a bound on the solution, or equivalently, the error, for a coupled system
of equations. Luckily we are not totally lost. If the linear system has a
complete set of eigenvectors, then we can use the discrete Fourier transform
to uncouple the equaitons. From the Parsevals identity,

‖û‖2 = ‖u‖2

it follows that ‖û‖2 ≤ L‖û0‖2 is equivalent to (3.13).For the Fourier stability
analysis to be accurate we require an infinite or periodic grid (no influence
from boundary values) and a uniform mesh.
An arbitrary complex function ω̂(θ), θ ∈ [0, 2π] has the Fourier expansion

ŵ(θ) =
∞∑

m=−∞

wme−imθ (3.14)

where i :=
√
−1, and

wm =
1

2π

∫ 2π

0

ŵ(θ)eimθdθ (3.15)

To illustrate the use of Fourier series, consider the difference equation

un+1
j = un

j + r(un
j+1 − 2un

j + un
j−1)

with r = k/h2. From the definition of the Fourier transform it follows that

ûn+1 =
∞∑

j=−∞

un+1
j exp(−ijθ)

=
∞∑

j=−∞

[run
j+1e

−ijθ + (1− 2r)un
j e−ijθ + run

j−1e
−ijθ]

= r
∞∑

j=−∞

un
j e−i(m−1)θ + (1− 2r)

∞∑
j=−∞

un
j e−ijθ + r

∞∑
j=−∞

un
j e−i(m+1)θ

= reiθûn(θ) + (1− 2r)ûn(θ) + re−iθûn(θ)

= (1− 2r + 2r cos θ)ûn(θ) = (1− 4r sin2 θ

2
)ûn

42

Let ρ(θ) = 1− 4r sin2 θ
2
. Then

ûn = ρ(θ)nû0(θ)

Clearly the method is stable if |ρ(θ)| ≤ 1. In our example this is true when-
ever −1 ≤ 1 − 4r sin2 θ

1
2 ≤ 1. The last inequality is always true. The first

implies

r sin2 θ

2
≤ 1

2
,

which is true for all θ if r. This is a neccesary and sufficient condition for
stability.
To determine if a method is stable or not, it is sufficient to study ρ(θ), de-
fined by the relation ûn+1 = ρ(θ)ûn. One finds ρ(θ) by taking the DFT of
all terms in the difference expression.
Another way of determing the stability is to express u in terms of its fre-
quency components. From the inverse DFT we have

uj =
1

2π

0∑
k=0

eikxj ûk =
1

2π

0∑
k=0

ρneikxj û0, j = 1, ..., N

If we guess a solution un
j = ρneijθ, and insert this into the difference equation

we obtain an expression for ρ.

3.3.1 Lax Equivalence Theorm

The connection between convergence, consistency and stability is given by
Lax2 equivalence theorem

Theorem 3.1 (Lax Equivalence Theorem) A consistent, two level dif-
ference scheme for a well-posed linear initial-value problem is convergent if
and only if it is stable.

In other words

consistency + stability⇔ convergence

Let us prove that consitency and stability implies convergence. Assume we
have the following two level scheme

vn+1 = Qvn + kGn

2Peter D. Lax was born in Budapest in 1926. His family moved to New York in 1941,
where Lax studied applied mathematics under John von Neumann and Richare Courant.
Because of his mathematicall skills he was sendt to Los Almos to work on the Manhattan-
project (the atomic bomb). He later returned to New York. Lax received the Abel prize
in 2005 for his contributions to applied mathematics

43

If u = u(x, t) is the exact solution of the initial-value problem, then the
difference scheme is accurate of order (p, q) if

un+1 = Qun + kGn + ktaun

with ‖τn‖ = O(hp) + O(kq) and un is the solution at the grid points. The
method is consistent with respect to the norm ‖ · ‖ if

‖τn‖ h,k→0−→ 0.

In addition we know that the method is stable with respect to the norm ‖ · ‖
if and only if there exist a constand L independent of k, h and n such that
‖Qn‖ ≤ L for all n. Define the error en = un − vn. From this definition and
the definition of the difference scheme it follows that

en+1 = Qen+kτn = Qne0+k
N∑

j=0

Qjτn−j ≤ (N+1)kLC(∆hp+∆kq) = O(hp+kq)

Thus the method is convergent of order (p, q). This proves the following
theorem

Theorem 3.2 (Lax Theorem) If a two-level difference scheme

vn+1 = Qvn + kGn

is accurate of order (p, q) in the norm ‖ · ‖ to a well-posed linear initial-value
problem and is stable with respect to the norm ‖ · ‖, then it is convergent of
order (p, q) with respect to the norm ‖ · ‖

44

Chapter 4

Split and Factored Forms

Implisit Euler and Crank-Nicolson gives unconditionally stable schemes, but
not for free. Each time step requires the solution of a large and sparse sytem
of equations. This can be avoided with split and factor forms. Split and
factored forms provide efficient solvers for practical multidimensional appli-
cations, they are especially useful for the derivation of practical algorithms
that use implicit methods

4.1 The Concept

A general system of ODEs resulting from the semi-discrete approximation to
a PDE is

du

dt
= Au− f

A splitting of the matrix A result in

du

dt
= [A1 + A2]u− f

where A = [A1 + A2]. If we use the forward difference approximation to the
time-deivative we can express new data un+1 in terms of old un

un+1 = [I + kA1 + kA2]u
n − kf +O(k2) (4.1)

or its equivalent

un+1[[I + kA1][I + kA2]− k2A1A2]u− kf +O(k2)

If we dropp higher order terms we obtain

un+1 = [I + kA1][I + kA2]u− kf +O(k2) (4.2)

45

The methods (4.2) and (4.1) has the same formal order of accuracy, However,
their stability properties differe. For a method to be useful it should be
accurate and stable. Stability analysis of split and factored forms can be
found in [2].

4.2 Factoring Physical Representations

Suppose we semi-disretize a convection diffusion equation, then a possible
representation of the system of equations is

du

dt
= Acu + Adu + bc (4.3)

with Ac and Ad representing convection and diffusion terms, respectively. If
we again rely on the forward difference approximation to approximate the
time derivative, the time marching difference equation becomes

un+1 = [I + kAd + kAc]u
n + hbc +O(k2). (4.4)

Now consider the factored form

un+1 = [I + kAd]
(
[I + kAc]u

n + kbc
)

= [I + kAd + kAc]u
n + kbc︸ ︷︷ ︸

original unfactored terms

+ k2Ad

(
Acu

n + bc
)

︸ ︷︷ ︸
higher-order terms

(4.5)

and we se that (4.5) and the original unfactored form (4.4) have identical
orders of accuracy in the time approximation. We can write (4.5) as a
predictor-corrector sequence

ũn+1 = [I + kAc]u + bc

un+1 = [I + kAd]ũ
n+1 (4.6)

Another way to approximate (4.3) is given by the expression

un+1 = [I − kAd]
−1
(
[I + kAc]u

n + kbc
)

= [I + kAd + kAc]u
n + kbc︸ ︷︷ ︸

original unfactored terms

+O(k2) (4.7)

46

where in this approximation we have used the fact that

[I − kAd]
−1 = I + kAd + k2A2

d + ...

if k · ‖Ad‖ < 1. This can be expressed as a predictor corrector sequence

ũn = [I + kAc]u
n + hbc

[I − kAd]
−1 un+1 = ũn+1. (4.8)

The convection operatro is applied explicitly, as before, but the diffusion op-
erator is now implicit, requiring a tridiagonal solver if the diffusion term is
central differenced. Since numerical stiffness is generally much more severe
for the diffusion process (parabolic), than for the convection process (hy-
perbolic), this factored form would appear to be supperior to the explicit
method provided by (4.6). However, the important aspect of stability has
yet to be discussed. An alternative derivation of the factored form (4.8) is
obtained if we apply the following implicit time-marching method

un+1 − un

k
= Acun + Adun+1 + bc +O(k2).

If we reorder this equation we get

[I − kAd]u
n+1 = [I + kAc]u

n + kbc

which is identical to (4.8).

4.3 Factoring Space Matrix Operators in 2D

Let us analyze how to apply a factored form to the model diffusion problem
in two dimensions. The diffusion equation is, as before, given by

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(4.9)

To illustrate the concepts, we disretize this PDE on a rectangular 3×4 point
mesh.

� � � �
Ny � 13 23 33 43 �
k � 12 22 32 42 �
1 � 11 21 31 41 �

� � � �
1 j . . . Nx

47

Here the numbers represent the location in the mesh corresponding to the
variable bearing the same index. For example, the variable associated with
j = 3 and k = 2 is u32. Mx and My is the number of intrior x and y points,
respectively.

4.3.1 Ordering of Unknowns

The representation and storage of data is crucial for an efficient computer
code. PDE code is no exception. In the following the data-base referre to the
storage of a dimensioned array. We consider two row-wise, and column-wise
ordering of the unknowns. We refer to each row or column group as a space
vector The space vector is labeled U (x) for a row wise ordering, and similar,
U (y) for a column ordering. The dimension of U is [Nx · Ny, 1] where Nx is
the number of internal x points, and Ny is the number of internal y points.
The space vectors U (x) and U (y)are related by a permutation matrix Pxy

defined by
U (x) = PxyU

(y) U (y) = PyxU
(x), (4.10)

where
Pyx = P T

xy = P−1
xy

We commence with a spatial discretization of our model problem (4.9) using
the centered three-point operator for both directions. The matrix represen-
tation of the model problem can be expressed as

dU

dt
= Ax+yU + bc (4.11)

where the structure of Ax+y depends on the ordering of U , they are however
related by the permutation matrix

A
(x)
x+y = PxyA

y
x+y · Pyx. (4.12)

4.4 Space Splitting and Factoring

The matrix Ax+y is can be split into two matrices. For row-wise ordering
yields

A
(x)
x+y = A(x)

x + A(x)
y . (4.13)

Similarily, for column-wise ordering

A
(y)
x+y = A(y)

x + A(y)
y (4.14)

48

A
(x)
x+y · U (x) =



• x | o |
x • x | o |

x • x | o |
x • | o |

o | • x | o
o | x • x | o

o | x • x | o
o | x • | o

| o | • x
| o | x • x
| o | x • x
| o | x •



·



u11

u21

u31

u41

−−
u12

u22

u32

u42

−−
u13

u23

u33

u43


Figure 4.1: Elements in two dimensional, central-difference, matrix operator,
Ax+y, for 3 × 4 mesh. Data-base composed of My x-vectors stored in U (x).
Entries for x→ x, for y → 0, for both → •

A
(y)
x+y · U (y) =



• o | x | |
o • o | x | |

o • | x | |

x | • o | x |
x | o • o | x |

x | o • | x |

| x | • o | x
| x | o • o | x
| x | o • | x

| | x | • o
| | x | o • o
| | x | o •



·



u11

u12

u13

−−
u21

u22

u23

−−
u31

u32

u33

−−
u41

u42

u43


Figure 4.2: Elements in two dimensional, central-difference, matrix operator,
Ax+y, for 3 × 4 mesh. Data-base composed of Mx y-vectors stored in U (x).
Entries for x→ x, for y → 0, for both → •

49

A(x)
x · U (x) =



x x | |
x x x | |

x x x | |
x x | |

| x x |
| x x x |
| x x x |
| x x |

| | x x
| | x x x
| | x x x
| | x x



· U (x)

A(x)
y · U (x) =



o | o |
o | o |

o | o |
o | o |

o | o | o
o | o | o

o | o | o
o | o | o

| o | o
| o | o
| o | o
| o | o



· U (x)

Figure 4.3: The splitting of A
(x)
x+y

50

A
(y)
x+y · U (y) =



x | x | |
x | x | |

x | x | |

x | x | x |
x | x | x |

x | x | x |

| x | x | x
| x | x | x
| x | x | x

| | x | x
| | x | x
| | x | x



· U (y)

A(y)
y · U (y) =



o o | | |
o o o | | |

o o | | |

o o	
o o o	
o o	

	o o
	o o o
	o o

| | | o o
| | | o o o
| | | o o



· U (y)

Figure 4.4: The splitting of A
(y)
x+y

51

The splittings in (4.13) and (4.14) can be combined with factoring.
Recall the semidiscrete equation

dU

dt
= Ax+yU + bc =

dU (x)

dt
= [A(x)

x + A(x)
y]U (x) + bc.

If we approximate the time derviative with the implicit Euler method we
obtain

U
(x)
n+1 = U (x)

n + k
[
A(x)

x + A(x)
y

]
U

(x)
n+1 + kbc +O(k2)

or [
I − kA(x)

x − kA(x)
y

]
U

(x)
n+1 = U (x)

n + kbc +O(k2). (4.15)

Factoring this yields[
I − kA(x)

x

] [
I − kA(x)

y

]
U

(x)
n+1 = U (x)

n + kbc +O(k2). (4.16)

The corresponding predictor-corrector formulation is given by[
I − kA(x)

x

]
Ũ (x) = U (x)

n + kbc[
I − kA(x)

y

]
U

(x)
n+1 = Ũ (x)

We can reduce the bandwidth of the last equation with a permutation of
the data-base. Note that the permutation relation also holds for the split
matrices, so

A(x)
y = PxyA

(y)
y Pyx

and
A(x)

x = PxyA
(y)
x Pyx.

Inserting this into the previous predictor-corrector equation yields[
I − kA(x)

x

]
Ũ (x) = U (x)

n + kbc[
I − kA(y)

y

]
Uy

n+1 = Ũ (y) (4.17)

4.5 Second-Order Factored Implicit Methods

A second order approximation in time can be obtained if we apply the trape-
zoidal method to (4.11) where the matrix operator have been split as in
(4.13) or (4.14). The result is[

I − 1

2
kAx −

1

2
kAy

]
Un+1 =

[
I +

1

2
kAx +

1

2
kAy

]
Un +kbc+O(k3). (4.18)

52

Factor both sides to obtain[[
I − 1

2
kAx

] [
I − 1

2
kAy

]
− 1

4
k2AxAy

]
Un+1

=

[[
I +

1

2
kAx

] [
I +

1

2
kAy

]
− 1

4
k2AxAy

]
Un + kbc +O(k3)

The cross term 1
4
[AxAy](Un+1−Un is proportional to k3 and can be canceled

without loss of accuracy. The split and factored scheme now reads[
I − 1

2
kAx

] [
I − 1

2
kAy

]
Un+1 =

[
I +

1

2
kAx

] [
I +

1

2
kAy

]
Un + bc (4.19)

This is a particular case of the classical ADI (alternating direction implicit)
method, usually written as[

I − 1

2
kAx

]
Ũ =

[
I +

1

2
kAy

]
Un +

1

2
Fn[

I − 1

2
kAy

]
Un+1 =

[
I +

1

2
kAx

]
Ũ +

1

2
kFn+1 +O(k3) (4.20)

The difference between (4.19) and (4.20) is the introduction of a time
dempendent source.
It is time to do a numerical simulation. We consider a two-dimensional
heat conduction problem with Dirichlet or Neumann boundary condition.
The solver is our new friend ADI. Recall that for a Dirichlet problem the
centered three-point matrix operator is given by

∆2
0x =

1

∆x2
B(1,−2, 1) + bc

Thus, if we use the three-point operator to approximate spatial derivatives
we can write (4.20) as[

I − 1

2
αx∆

2
0,x

]
Ũ =

[
I +

1

2
αy∆

2
0,y

]
Un[

I − 1

2
αy∆

2
0,y

]
Un+1 =

[
I +

1

2
αx∆

2
0,x

]
Ũ +O(k3) (4.21)

where αx = k
∆x2 and αy = k

∆y2 . The initial condition is given by a double-
Gaussian profile

u(x, y, 0) = exp

{
−100

[
(x +

Lx

4
)2 + (y − Ly

4
)2

]}
+

1

2
exp

(
− 100

[
x2 + y2

])
53

Figure 4.5: Initial conditions

Figure 4.6: Temperature profile at t = [0.001, 0.005, 0.01, 0.05]

54

% ADI demonstration

clear;

nx=48; ny=nx; Lx=1; Ly=Lx; hx=Lx/(nx+1); hy=Ly/(ny+1);

alphax=1; alphay=alphax*(hx/hy)^2;k=alphax*hx^2;

x=(0:nx+1)*hx-Lx/2; y=(0:ny+1)*hy-Ly/2;

xdiff1=x+Lx/4; ydiff1=y-Ly/4; xdiff2=x; ydiff2=y;

% d_squared is an nx by ny matrix containing the distance

% squared from the origin to each of the nx by ny points.

d_squared=(xdiff1.^2)’*ones(1,ny+2)+ones(nx+2,1)*(ydiff1.^2);

u=exp(-100*d_squared);

d_squared=(xdiff2.^2)’*ones(1,ny+2)+ones(nx+2,1)*(ydiff2.^2);

u=u+0.5*exp(-100*d_squared); uplot=1;

figure(1); mesh(x,y,u’,’EdgeColor’,’black’);

for tend=[0.001 0.005 0.01 0.05]

uhalf=u; unew=u; iplot=1; nsteps=ceil(tend/k);

nplots=25; plotsteps=ceil(nsteps/nplots);

% Set up the arrays for the ADI method

ahalf=-(alphax/2)*ones(nx,1); bhalf=(1+alphax)*ones(nx,1);

chalf=ahalf; ahalf(1)=0; chalf(nx)=0;

A1=spdiags([ahalf,bhalf,chalf],[-1,0,1],nx,nx);

afull=-(alphay/2)*ones(ny,1); bfull=(1+alphay)*ones(ny,1);

cfull=afull; afull(1)=0; cfull(ny)=0;

A2=spdiags([afull,bfull,cfull],[-1,0,1],ny,ny);

% Solve the system of equations

for istep=1:nsteps

for j=2:ny+1

fhalf(1:nx)=(alphay/2)*u(2:nx+1,j-1)...

+(alphay/2)*u(2:nx+1,j+1)+(1-alphay)*u(2:nx+1,j);

utemp=A1\fhalf’; uhalf(2:nx+1,j)=utemp’;

end

for i=2:nx+1

ffull(1:ny)=(alphax/2)*uhalf(i-1,2:ny+1)...

+(alphax/2)*uhalf(i+1,2:ny+1)+...

(1-alphax)*uhalf(i,2:ny+1);

utemp=A2\ffull’; unew(i,2:ny+1)=utemp;

end

u=unew; uhalf=u;

end

figure(2); subplot(2,2,uplot); uplot=uplot+1;

mesh(x,y,u’,’EdgeColor’,’black’);

end

55

For a Neumann problem we have to alter the matrix difference operators
∆0,x and ∆0,y. At the right boundary we use a first-order point operator

(∆2
0,x)N =

1

3∆x2
(2uN−1 − 2uN) +

2

3∆x

(∂u

∂x

)
N+1

.

At the left boundary the point operator reads

(∆2
0,x)1 =

1

3∆y2
(−2u1 + 2u2)−

2

3∆x

(∂u

∂x

)
0

If we use a similar approximation at the top and bottom we obtain the
following matrix operators

Ax =
1

∆x2
B(a,b, c) Ay =

1

∆y2
B(a,b, c)

where

a = [1, 1, ..., 2/3]T

b = [−2/3,−2,−2, ...,−2/3]T

c = [2/3, 1, 1, ..., 1]T

Here we have assumed zero flux at all boundaries. The initial condition
corresponds to a uniform temperature with superimposed hot and cold spots.

u(x, y, 0) = 1 + 2 exp

{
−10

[
(x +

Lx

2
)2 + (y − Ly

4
)2

]}
− exp

{
−100

[
(x− Lx

4
)2 + (y +

Ly

4
)2

]}
For stiff equations, where implicit methods are required to permit reasonably
large time steps, the use of factored forms becomes a very valuable tool for
realistic problems. For example, for the unfactored trapezoidal method given
by [

I − 1

2
hAx+y

]
Un+1 =

[
I +

1

2
hAx+y

]
Un + hbc

To find Un+1 requires the solution of a sparse, but very large system of equa-
tions. Futhermore, if we solve this equation with a direct method, the en-
tries between the main and outermost diagonal are filled with nonzero values.
This is not desired, because more nonzero values implies more computing and
more storage. The ADI method inherit the stability properties of the Crank
Nicolson method, but instead of solving one large spase system of equation

56

at each iteration it solves several tridiagonal systems. For higher dimensions
this strategy is more efficient. The predictor step involves the solution of Ny

tridiagonal systems, each of size Nx. The corrector step involves the solution
of Nx tridiagonal systems each of size Ny. By way of contrast, the Crank-
Nicolson solves pentadiagonal system of size NxNy at each time step (Ax+y

is a NxNy ×NxNy matrix).

4.6 Analysis of Split and Factored Forms

To estimate the stability and steady-state properties of split and factored
forms the spectral decomposition is introduced. The results found from the
analysis is not necessary or sufficient to guarantee stability. It only indicates
the behaivour of practical, or not so practical methods. Stability analysis
is usually done under the assumption of a infinite domain, which implies
that the boundary values has no influence on the analysis. Alternatively the
boundary conditions are periodic. From a physical point of view, a periodic
boundary condition indicates a solution that repats itself. Periodic boudary
conditons leads to circulant matrix difference operators.
A general d× d circulant matrix is a matrix whose jth row, j = 2, 3, ..., d, is
a ’right-rotated’ (j − 1)th row

C(κ) =


κ0 κ1 κ2 . . . κd−1

κd−1 κ0 κ1 . . . κd−2

κd−2 κd−1 κ0 . . . κd−2
...

...
κ1 κ2 κ3 . . . κ0


Two properties of the circulant matrix are essential for the stability and con-
vergence analysis of time-marching schemes. Circulant matrices commute,
and have a common set of eignvectors. This is the conclusion of the following
lemma.

Lemma 4.1 The eigenvalues of C(κ) are κ(ωj
d), j = 0, 1, ..., d− 1, where

κ(z) :=
d−1∑
l=0

κlz
l, z ∈ C

and ωd = exp(2πi/d) is the dth primitive root of unity. To each λj = κ(ωj
d)

57

Figure 4.7: Initial conditions

Figure 4.8: Temperature profile at t = [0.0010.0050.010.05]

58

there corresponds the eigenvector

ωj =


1

ωj
d

ω2j
d
...

ω
(d−1)j
d

 , j = 0, 1, ..., d− 1.

Proof We show directly that C(κ)ωj = λjωj for all j = 0, 1, ..., d−1. Observe
that the mth component of C(κ)ωj can be written as

d−1∑
l=0

cm,lωj,l

m−1∑
l=0

κd−m+lω
jl
d +

d−1∑
l=m

κl−mωjl
d .

Since wd
d = w−d

d = 1 we can rewrite this as follows

d−1∑
l=0

cm,lωj,l =
d−1∑

l=d−m

κlω
j(l−d+m)
d +

d−1−m∑
l=0

κlω
j(l+m)
d

=

(
d−1∑
l=0

κlω
jl
d

)
ωjm

d = λjωj,m, m = 0, 1, ..., d− 1.

We conclude that the ωj are indeed eigenvectors corresponding to the eigen-
values κ(ωj

d), j = 0, 1, ..., d − 1, respectively. We note that the eigenvectors
depends only on the dimension d of the matrix, hence all d× d circulant ma-
trices share the same eigenvectors, hence all such matrices commute. Also,
the eigenvector matrix [

ω0 ω1 . . . ωd−1

]
is unitary since it is trivial to prove that

〈ωj, ωl〉 = ω̄T
j ωl = 0, j, l = 0, 1, ..., d− 1, j 6= l

Therefore each and every circulant matrix is normal. 2

Consider the following semi-discrete equation

du

dt
= A1u + A2u− f

where A1 and A2 are circulant matrices. Since A1 and A2 are circulant they
have the same complete eigensystem. To uncouple the equations we do a

59

spectraldecomposition. Premultiply with the left eigenvector matrix X−1

and use the identity XX−1 = I to obtain the relation

X−1du

dt
= X−1A1X ·X−1u + X−1A2X ·X−1u−X−1f

= Λ1X
−1u + Λ2X

−1u−X−1f (4.22)

Finally, define the variables w and g such that

w = X−1u, g = X−1f

Then equation (4.22) can be written as

dω

dt
= Λ1ω + Λ2ω − g (4.23)

The mth component of this equation is ω̇m = (λ1 + λ2)mωm− gm(t), and the
corresponding solution is given by

ωm(t) = cme(λ1+λ2)mt + P.S

where P.S is the particular solution. Physically ωm(t) is the evolution of the
mth frequency mode. This frequency or wave solution is related to the real
space solution: For any circulant system the following holds:

ω = X−1u is a discrete Fourier transform from real space to wave
space (or eigenspace)

u = Xω is a discrete Fourier synthesis from wave space back to real
space.

Now consider the linear convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
. (4.24)

Let the semi-discrete approximation be

du

dt
= − a

2∆x
Bp(−1, 0, 1)u +

ν

∆x2
Bp(1,−2, 1)u (4.25)

where Bp is a circulant matrix operator. When the standard three-point
central-differencing operators for the first and second derivative are used
they take the form

B(−1, 0, 1)p =
1

2∆x


0 1 −1
−1 0 1

. . .

−1 0 1
1 −1 0


60

and

B(1,−2, 1)p =
1

∆x2


−2 1 1
1 −2 1

. . .

1 −2 1
1 1 −2


From the results in lemma 4.1 it can be shown that the eigenvalues λc and
λd of the convection and diffusion matrix is given by

(λc)m =
ia

∆x
sin(θm)

(λd)m = − 4ν

∆x2
sin2 θm

2
.

In these equations, θm = 2mπ/N , and m = 0, 1, ..., N−1, so that θm ≤ θm ≤
2π.
Hopefully, we are now fit to do stability analysis of split and factored forms.
First we scrutinize the explicit-implicit method

ũn+1 = [I + kBp(−1, 0, 1)]un + hbc

[I − kBp(1,−2, 1)]un+1 = ũn+1.

Using the shift operator E we can write this equation as(
[I − kBp(1,−2, 1)]E − [I + kBp(−1, 0, 1)]

)
un = hbc

A spectral decomposition of this equation yields the characteristic polynom

P (E) = (1− kλd)E − (1 + kλc)

whose principal σ-root is given by

σ =
1 + i ak

∆x
sin θm

1 + 4 kν
∆x2 sin2 θm

2

The principal σ-root is the numerical approximation to eλh. There is always
one σ-root for every λ-root, in addition, the numerical approximation might
produce spurious σ-roots. Spurious roots arise if a method uses data from
time level n− 1 or earlier to advance the solution from time level n to n + 1.
In other words, if the numerical approximation produces a characteristic
polynomial of higher degree than the actual characteristic polynomial, there
will be spurious roots. Spurious roots has nothing to do with the ODE being

61

solved.
If we introduce the dimensionless numbers

Cn = ak∆x, Courant number

R∆ =
a∆x

ν
, mesh Reynolds number

we can write the absolute value of σ as

|σ| =
√

1 + C2
n sin2 θm

1 + 4 Cn

R∆
sin2 θm

2

, 0 ≤ θm ≤ 2π.

When θm is near zero, |σ| has a maximum. We are interested in the
condition on Cn and R∆ that makes |σ| ≈ 1, thus we have the relation

[1 + C2
n sin2 ε] =

[
1 + 4

Cn

R∆

sin2 ε

2

]2

.

As ε→ 0 this gives the stability region

Cn <
2

R∆

A Similar analysis of the explicit-explicit method

ũn+1 = [I + kBp(−1, 0, 1)] + hbc

un+1 = [I + kBp(1,−2, 1)]ũn+1

reveals the following absolute value of the σ-root.

|σ| =
√

1 + C2
n sin2 θm

[
1− 4

Cn

R∆

sin2 θm

2

]
, 0 ≤ θm ≤ 2π.

The critica values of θm are 0 and π. The conditions on Cn and R∆ that
makes |σ| ≈ 1 are

Cn <
1

2
R∆ for R∆ ≤ 2

Cn <
2

R∆

For more on the analysis of split and factored forms [2] is an excellent
reference.

62

% Program to solve the heat conduction problem

% with Neumann BC.

nx=48; ny=48; Lx=1; Ly=1; hx=Lx/(nx+1); hy=Ly/(ny+1);

alphax=1; alphay=alphax*(hx/hy)^2;

k=alphax*hx^2; x=(0:nx+1)*hx-Lx/2; y=(0:ny+1)*hy-Ly/2;

xdiff1=x+Lx/4; ydiff1=y-Ly/4; xdiff2=x-Lx/4; ydiff2=y+Ly/4;

% d_square is an nx times ny matrix containing the distance

% squared from the origin to each of the nx by ny points

d_squared=(xdiff1.^2)’*ones(1,ny+2)+ones(nx+2,1)*(ydiff1.^2);

u=1+2*exp(-10*d_squared);

d_squared=(xdiff2.^2)’*ones(1,ny+2)+ones(nx+2,1)*(ydiff2.^2);

u=u-exp(-100*d_squared);figure(1);mesh(x,y,u’,’EdgeColor’,’black’);

uhalf=u; unew=u; iplot=1; tend=0.05; uplot=1;

for tend=[0.001 0.005 0.01 0.05]

nsteps=ceil(tend/k); nplots=25; plotstep=ceil(nsteps/nplots);

% Set up the arrays for the ADI method

ahalf=-(alphax/2)*ones(nx+2,1); bhalf=(1+alphax)*ones(nx+2,1);

bhalf(1)=1+(alphax/3); bhalf(nx+2)=1+(alphax/3); chalf=ahalf;

ahalf(nx+1)=-(alphax/3); chalf(2)=-(alphax/3);

A1=spdiags([ahalf,bhalf,chalf],[-1,0,1],nx+2,nx+2);

afull=-(alphay/2)*ones(ny+2,1); bfull=(1+alphay)*ones(ny+2,1);

bfull(1)=1+(alphay/3); bfull(ny+2)=1+(alphay/3);

cfull=afull; cfull(2)=-(alphay/3); afull(ny+1)=-(alphay/3);

A2=spdiags([afull,bfull,cfull],[-1,0,1],ny+2,ny+2);

%Solve equations at nsteps time steps

for istep=1:nsteps

for j=2:ny+1

fhalf=(alphay/2)*u(1:nx+2,j-1)...

+(alphay/2)*u(1:nx+2,j+1)+(1-alphay)*u(1:nx+2,j);

utemp=A1\fhalf; uhalf(1:nx+2,j)=utemp;

end

% Solve equation for the insulated boundary y=-Ly/2

fhalf=(alphay/2)*u(1:nx+2,2)...

+(1-(alphay/2))*u(1:nx+2,1);

utemp=A1\fhalf; uhalf(1:nx+2,1)=utemp;

% Solve equation for the insulated boundary y=Ly/2

fhalf=(alphay/2)*u(1:nx+2,ny+1)...

+(1-(alphay/2))*u(1:nx+2,ny+2);

utemp=A1\fhalf; uhalf(1:nx+2,ny+2)=utemp;

63

% Solve equation at interior points

for i=2:nx+1

ffull=(alphax/2)*uhalf(i-1,1:ny+2)...

+(alphax/2)*uhalf(i+1,1:ny+2)+...

(1-alphax)*uhalf(i,1:ny+2);

utemp=A2\ffull’; unew(i,1:ny+2)=utemp’;

end

% Solve equation for the insulated boundary x=-Lx/2

ffull=(alphax/2)*uhalf(2,1:ny+2)...

+(1-(alphax/2))*uhalf(1,1:ny+2);

utemp=A2\ffull’; unew(1,1:ny+2)=utemp’;

% Solve equation for the insulated boundary x=Lx/2

ffull=(alphax/2)*uhalf(nx+1,1:ny+2)...

+(1-(alphax/2))*uhalf(nx+2,1:ny+2);

utemp=A2\ffull’; unew(nx+2,1:ny+2)=utemp’; u=unew; uhalf=u;

end

figure(2); subplot(2,2,uplot); mesh(x,y,u’,’EdgeColor’,’black’);

uplot=uplot+1;

end

64

Chapter 5

The Fast Fourier Transform

For a positive integer n, the complex numbers {1, ω, ω2, ..., ωn−1}, where

ω = e2πi/n = cos
2π

n
+ i sin

2π

n

are called the nth roots of unity because they represent all the solutions to
zn = 1. Geometrically, they are the vertices of a regular polygon of n sides
as depicted in figure 5 for n = 3 and n = 6. The roots of unity are cyclic

Figure 5.1: Roots of unity

in the the sense that ωk = ωk(mod n) where k(mod n) denotes the remainder
when k is divided with n. For example, when n = 6, ω6 = 1, ω7 = ω, ...
The numbers {1, ξ, ξ2, ..., ξn−1} , where

ξ = e−2πi/n = cos
2π

n
− i sin

2π

n
= ω̄

are also the nth roots of unity, but they are now numbered clockwise as
depicted in figure

We now derive two identities that will be useful in our derivation of the
FFT. If k is an integer, then 1 = |ξk|2 = ξkξ̄k implies that

ξ−k = ξ̄k = ωk. (5.1)

65

Figure 5.2: Roots of unity

Furthermore, the fact that

ξk
(
1 + ξk + ξ2k +. .. + ξ(n−2)k + ξ(n−1)k

)
= ξk + ξ2k + ... + ξ(n−1)k + 1

implies (1 + ξk + ξ2k + ... + ξ(n−1)k)(1− ξk) = 0 and, consequently,

1 + ξk + ξ2k + ... + ξ(n−1)k = 0 whenever ξk 6= 1 (5.2)

Definition 5.1 (Fourier Matrix) The n × n matrix whose (j, k)-entry is
ξjk = ω−jk for 0 ≤ j, k ≤ n− 1 is called the Fourier Matrix of order n, and
it has the form

Fn =


1 1 1 . . . 1
1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξn−2

...
...

...
. . .

...
1 ξn−1 ξn−2 . . . ξ


The Fourier matrix is a special case of the Vandermonde matrix. If we

take the inner product of any two columns in Fn, say, the rth and sth, there
results

F∗∗,rF∗,s =
n−1∑
j=0

ξ̄jrξjs =
n−1∑
j=0

ξ−jrξjs =
n−1∑
j=0

ξj(s−r) = 0.

This follows from the equaitons (5.1) and (5.2). In other words, the columns
in F are mutually orthogonal. Furthermore, each column iFn has norm

√
n

because

‖F∗k‖22 =
n−1∑
j=0

|ξjk|2 =
n−1∑
j=0

1 = n,

66

Consequently (1/
√

n)Fn is a unitary matrix. Since it is also true that FT
n =

Fn, we have (1√
n
Fn

)−1

=
(1√

n

)∗
=

1√
n
F̄n,

and therefore F−1
n = F̄/n. Since equation (5.1) says that ξ̄k = ωk, it

follows that

F−1
n =

1

n
F̄n =

1

n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 . . . ω


5.1 The Discrete Fourier Transform

Given a vector xn×1 the product Fnx is called the discrete Fourier transform
of x, and F−1 is called the inverse Fourier transform of x. The kth entries
in Fnx and F−1

n x are given by

[Fnx]k =
n−1∑
j=0

xjξ
jk and [F−1

n x]k =
1

n

n−1∑
j=0

xjω
jk. (5.3)

An algorithm that computes the discrete fourier transform of a vector x can
also be used to compute the inverse transform of x. Let us call such an
algorithm FFT. Since

F−1
n x =

F̄nx

n
=

Fnx̄

n

FFT will return the inverse transform of x by executing the following three
steps

1. x←− x̄ (computex̄)

2. x←− FFT(x) (compute Fnx̄).

3. x←− (1/n)x̄ (compute n−1Fnx̄ = F−1
n x).

To perform a discrete Fourier transform of order 2n by standard matrix-
vector multiplication requires 4n2 scalar multiplications. It was not until
1965 that two the two Americans, J. Cooley and J. W. Tukey, came up with
the ingenious fast Fourier transform (FFT), an algorithm that requires only
on the order of (n/2) log2 n scalar multiplications to compute Fn. The magic

67

of the fast Fourier transform algorithm emanates from the fact that if n is a
power of two, then a discrete Fourier transform of order n can be executed
by performing two transforms of order n/2. To illustrate this note that when
n = 2r we have (ξj)n = (ξ2j)n/2, so

{1, ξ, ξ2, ξ3, ..., ξn−1} = the nth roots of unity

if and only if

{1, ξ2, ξ4, ξ6, ..., ξn−2} = the (n/2)th roots of unity.

This means that the (j, k)-entries on the Fourier matrices Fn and Fn/2 are

[Fn]jk = ξjk and [Fn/2]jk = (ξ2)jk = ξ2jk. (5.4)

If the columns of Fn are permuted so that columns with even subscripts
are listed before those with odd subscript, and if PT

n is the corresponding
permutation matrix, then we can partition FnP

T
n as

FnP
T
n = [F∗0F∗2...F∗n−2|F∗1F∗3...F∗n−1] =

[
An

2
×n

2
Bn

2
×n

2

Cn
2
×n

2
Dn

2
×n

2

]
By using equation (5.4) together with the fact that

ξnk = 1 and ξn/2 = cos
2π(n/2)

n
− i sin

2π(n/2)

n
= −1

we see that the entries in A, B, C, and G are

Ajk = Fj,2k = ξ2jk = [Fn/2]jk,

Bjk = Fj,2k+1 = ξj(2k+1) = ξjξ2jk = ξj[Fn/2]jk,

Cjk = Fn
2
+j,2k = ξ(n

2
+j)2k = ξnkξ2jk = ξ2jk = [Fn/2]jk,

Gjk = Fn
2
+j,2k+1 = ξ(n

2
+j)(2k+1) = ξnkξn/2ξjξ2jk = −ξjξ2jk = [Fn/2]jk.

In other words, if Dn/2 is the diagonal matrix

Dn/2 =


1

ξ
ξ2

. . .

ξ
n
2
−1


then

FnP
T
n =

[
Fn/2 Dn/2Fn/2

Fn/2 −Dn/2Fn/2

]
(5.5)

68

The decomposition in (5.5) says that a discrete Fourier transform of order
2r can be accomplished by two Fourier transfoms of order n/2 = 2r−1, and
this leads to the FFT algorithm. To illustrate how the FFT works, consider
the case when n = 8. If

x8 =
[

x0 x1 x2 x3 x4 x5 x6 x7

]T
,

then

P8x8 =
[

x0 x2 x4 x6 | x1 x3 x5 x7

]T
=

 x
(0)
4

−
x

(1)
4


so

F8x8 =

[
F4 D4F4

F4 −D4F4

][
x

(0)
4

x
(1)
4

]
=

[
F4x

(0)
4 + D4F4x

(1)
4

F4x
(0)
4 −D4F4x

(1)
4

]
(5.6)

But

P4x
(0)
4 =


x0

x4

−
x2

x6

 =

 x
(0)
2

−
x

(1)
2

 and P4x
(1)
4 =


x1

x5

−
x3

x7

 =

 x
(2)
2

−
x

(3)
2


so

F4x
(0)
4 =

[
F2 D2F2

F2 −D2F2

][
x

(0)
2

x
(1)
2

]
=

[
F2x

(0)
2 + D2F2x

(1)
2

F2x
0
2 −D2F2x

(1)
2

]
(5.7)

and

F4x
(0)
4 =

[
F2 D2F2

F2 −D2F2

][
x

(2)
2

x
(3)
2

]
=

[
F2x

(2)
2 + D2F2x

(3)
2

F2x
2
2 −D2F2x

(3)
2

]

Now, since F2 =

[
1 1
1 −1

]
, it is trivial to compute the terms

F2x
(0)
2 , F2x

(1)
2 , F2x

(2)
2 , F2x

(3)
2 .

To actually carry out the computation, we need to work backward through
the preceding sequences of steps. That is we start with

x̃8 =
[

x
(0)
2 | x

(1)
2 | x2

2 | x
(3)
2

]T
=

[
x0 x4 | x2 x6 | x1 x5 | x3 x7

]T
69

and use the equations (5.6) and (5.7) to work downward in the following
three.

F2x
(0)
2 F2x

(1)
2 F2x

(2)
2 F2x

(3)
2

↘ ↙ ↘ ↙
F4x

(0)
4 F4x

(1)
4

↘ ↙

↘ ↙
F8x8

In order to work downward through this tree, we cannot start directly with
x8, we must start with the permutation x̃8. The entries in x̃8 where obtained
by first sorting the xjs into two groups-the entries in the even were separated
from those in the odd positions. Then each grop was broken into two more
groups by again separating the entries in the even position from those in the
odd positions (

0 1 2 3 4 5 6 7
)

↙ ↘(
0 2 4 6

) (
1 3 5 7

)
↙ ↘ ↙ ↘(

0 4
) (

2 6
) (

1 5
) (

3 7
)

(5.8)

In general, this even-odd sorting process (sometimes called a perfect shuffle)
produces the permutation necessary to initiate the algorithm. A clever way
to do perform a perfect shuffle is to use binary representations and observe
that the first level of sorting in (5.8) is determined according to wether the
least significant bit is 0 or 1, the second level of sorting is determined by the
second least significant bit, and so on.

Natural order First level Second level
0↔ 000 0↔ 000 0↔ 000
1↔ 001 2↔ 010 4↔ 100
2↔ 010 4↔ 100 2↔ 010
3↔ 011 6↔ 110 6↔ 110
4↔ 100 1↔ 001 1↔ 001
5↔ 101 3↔ 011 5↔ 101
6↔ 110 5↔ 101 3↔ 011
7↔ 111 7↔ 111 7↔ 111

But all intermediate levels in this sorting process can be eliminated because

70

something very nice occurs. Examination of the last column in Table 5.1
reveals that the binary bits in the perfect shuffle ordering are exactly the
reversal of the binary bits in the natural ordering. In other words, to generate
the perfect shuffle of the numbers 0, 1, 2, ..., n − 1, simply reverse the bits
in the binary representation of each number. We can summarize the fast
Fourier transform as follows: For a given input vector x containing n = 2r

components, the discrete Fourier transform Fnx is the result of successively
creating the following arrays.

X1×n ←− rev(x) (bit reverse the subscripts)

For j = 0, 1, 2, ..., r − 1

D←−


1

e−πi/2j

e−2πi/2j

...

e−2j−1)πi/2j


j+1×1

X(0) ←−
(
X∗0 X∗2 X∗4 ...X∗2r−j−2

)
2j×2r−j−1

X(1) ←−
(
X∗1 X∗3 X∗5 ...X∗2r−j−1

)
2j×2r−j−1

X←−
[

X(0) + D×X(1)

X(0) −D×X(1)

]
× denotes entry-by- entry product

5.2 Fast Poisson solvers

We now show how the FFT can be used to solve the discretized Poisson
equatoin. In the pressent section we assume that the Poisson equation with
Dirichlet boundary coditions is solved with in a rectangle with either the
five-point formula

1

(∆x)2
(∆2

0,x + ∆2
0,y)uk,l = fk,l (5.9)

or the nine-point operator

1

∆x2
(∆2

0,x + ∆2
0,y +

1

6
∆2

0,x∆
2
0,y)uk,l = fk,l, (5.10)

or, for that matter, the modified nine-point operator

1

(∆x)2
(∆2

0,x + ∆2
0,y +

1

6
∆2

0,x∆
2
0,y)uk,l = [I +

1

12
(∆2

0,x + ∆2
0,y)]fk,l. (5.11)

71

In either case we assume that the equations have been assembled in natural
ordering.
The resulting linear system Ax = b can be written in a block-TST form. For
a m1 ×m2 grid there results

S T O . . . O

T S T
. . .

...

O
. O

...
. . . T S T

O . . . O T S




x1

x2
...

xm2

 =


b1

b2
...

bm2

 , (5.12)

For a column-wise ordering xl and bl correspond to the variables and to the
portion of b along the lth column of the grid, respectively:

xl =


u1,l

u2,l
...

um1,l

 , bl =


b1,l

b2,l
...

bm1,l

 l = 1, 2, ...,m2

Both S and T are themselves m1 ×m1 TST matrices:

S =


−4 1 0 . . . 0

1 −4 1
. . .

...

0
. 0

...
. . . 1 −4 1

0 . . . 0 1 −4

 and T =


1 0 . . . 0

0 1
. . .

...
...

. 0
0 . . . 0 1



for the five-point formula and

S =


−10

3
2
3

0 . . . 0
2
3
−10

3
2
3

. . .
...

0
. 0

...
. . . 2

3
−10

3
2
3

0 . . . 0 2
3
−10

3

 and T =



2
3

1
6

0 . . . 0
1
6

2
3

1
6

. . .
...

0
. 0

...
. . . 1

6
2
3

1
6

0 . . . 0 1
6

2
3


in the case of the nine-point formula. We rewrite (5.12) in the form

Txl−1 + Sxl + Txl+1 = bl, l = 1, 2, ...,m2, (5.13)

72

where x0,xm2+1 := 0 ∈ Rm1 . We know that the eigenvalues and eigenvectors
of a TST matrix depends only on its dimension. In particular, the spectral
decomposition of S and T are given by

S = QDSQ, T = QDT Q, (5.14)

where

qj,l =

√
2

m1 + 1
sin
(πjl

m1 + 1

)
, j, l = 1, 2, ...,m1

This follows directly from Lemma (2.1), and the fact that Q is orthogonal
and symmetric (S = QDSQ−1 = QDSQT = QDSQ). The m1 ×m1 matrices
DS and DT are diagonal and their entries contain the eigenvalues of S and
T respectively. We substitute (5.14) into (5.13) and premultiply with Q =
Q−1. The outcome is

DTyl−1 + DSyl + DTyl+1 = cl, l = 1, 2, ...,m2, (5.15)

where
yl := Qxl, cl := Qbl, l = 1, 2, ...,m2.

We observe that we now have a diagonal matrices rather than TST, matrices.
We also observe that the bandwidth is m1. We can reduce the bandwidth of
this matrix. Let us consider the first equation in each of the m2 blocks

λ
(S)
1 y1,1 + λ

(T)
1 y1,2 = c1,1

λ
(T)
1 y1,l−1 + λ

(S)
1 y1,l + λ

(T)
1 y1,l+1 = c1,l l = 2, 3, ...,m2 − 1,

λ
(T)
1 y1,m2−1 + λ

(S)
1 y1,m2 = c1,m2 .

If we reorder the yl and the cl by rows,

ỹj :=


yj,1

yj,2
...

yj,m2

 , c̃j :=


cj,1

cj,2
...

cj,m2

 , j = 1, 2, ...,m1

then we can write 

λ
(S)
1 λ

(T)
1 0 . . . 0

λ
(T)
1 λ

(S)
1 λ

(T)
1

. . .
...

0
. 0

...
. . . λ

(T)
1 λ

(S)
1 λ

(T)
1

0 . . . 0 λ
(T)
1 λ

(S)
1


73

Likewise, the equation for the jth row can be written as

Γjỹj = c̃j j = 1, 2, ...,m1, (5.16)

where

Γj :=



λ
(S)
j λ

(T)
j 0 . . . 0

λ
(T)
j λ

(S)
j λ

(T)
j

. . .
...

0
. 0

...
. . . λ

(T)
j λ

(S)
j λ

(T)
j

0 . . . 0 λ
(T)
j λ

(S)
j


, j = 1, 2, ...,m2.

Hence, switching from column-wise to row-wise ordering cuncouples the (m1m2)×
(m1m2) system (5.15) into m2 systems, each of dimension m1 ×m1. The
matrices Γj are also TST , and the each of the m2 linear systems (5.16) can
be solved with a banded LU factorization at the cost of O(m1) operations.
Having solved the tridiagonal systems for the vectors ỹ1, ỹ2, ..., ỹm1 , which we
then permute back to ỹ1, ỹ2, ..., ỹm2 . Finally, we obtain xl from the matrix-
vector product xl = Qyl, l = 1, 2, ...,m2. This product can be obtained at
by use of the FFT.
Let us summarize by reviewing the stages in the fast Poisson sollver

• To start with we have the vectors b1,b2, ...,bm2 ∈ Rm1 and we form
the products cl = Qbl, l = 1, 2, ...,m2. This costs O(m1m2

2
log2 m1)

operations if the FFT is used.

• Change the ordering from column-wise to row-wise. That is, rearrange
the columns cl ∈ Rm1 , l = 1, 2, ...,m2, into the row vectors c̃j =∈
Rm2 , j = 1, 2, ...,m2. This reordering is just a change of notaion, and,
in principle, free of any computational cost.

• The tridiagonal systems Γjỹj = c̃j, are solved by banded LU factoriza-
tion at the cost of O(m1m2) operations.

• Reorder the vectors once again. This time we rearrange rows into
columns, i.e ỹj ∈ Rm2 , j = 1, 2, ...,m1 into yl ∈ Rm1 , l = 1, 2, ...,m2

• Solve the system of equations xl = Qyl, l = 1, 2, ...,m2. If the FFT is
hired the cost is O(fracm1m22 log2 m1 operations

Now that we know the theory, it is good practice to run a few simple pro-
grams. Our first test problem is the Laplace equation ∆u = 0 on the unit

74

square 0 ≤ x, y ≤ 1. The boundary conditions are

u(x, 0) = 0, u(x, 1) =
1

(1 + x)2 + 1

u(0, y) =
y

1 + y2
, u(1, y) =

y

4 + y2

The exact solution of this problem is u = y
(1+x)2+y2 .

Figure 5.3: Error of the five-point (first row) and nine-point (second row)
scheme applied to the the Laplace equation when m = [11, 23, 47]. Note that
the five-point scheme caonveges at a rate O(h2) while the nine-point scheme
converges at a rate O(h4)

Next we consider the Poisson equation ∆u = exy, 0 ≤ x, y ≤ 1 wit the
boundary conditions

u(x, 0) =
1

2
sin(6πx) u(x, 1) = sin(π2x)

u(0, y) = 5(y2 − y) u(1, y) = −y(y − 1)4

75

Figure 5.4: The solution of the poisson equation using a modified nine-point
scheme and m=60.

And finally we solve the poisson problem ∆u = x2+y2 with the boundary
conditions

u(x, 0) = 0 u(x, 1) =
1

2
x2

u(0, y) = sin πy u(1, y) = eπ sin πy +
1

2
y2

The exact solution of this problem is eπx sin πy + 1
2
(xy)2. From the plots

we see that the error associated with the five-point and nine-point scheme
decays by roughly four with each halving of h. The error costant is however
less for the nine-point scheme. The modified scheme decays roughly with 64
whenever h is halved, which correspond to a accuracy of O(h4)

Figure 5.5: The exact solution of the second test problem

76

Figure 5.6: The error for the five-point, nine-point, and modified nine-point
schemes

77

% Fast poisson solver in a square with

% continuous Dirichlet bc.

clear; endpt=1; N=9; splot=4;

% mxm internal nodes. endpt is the endpoint of x and y.

% N=5 for the five-point scheme. N=9 and N=10 for

% the 9 and modified 9-point scheme respectively.

for m=[11 23 47]

h=endpt/(m+1); x=0:h:endpt; y=x;

[gb,gt,gl,gr]=dirichletBc(x,y);

[x,y]=meshgrid(x,y); f=ffunc(x,y); [Gamma]=formGamma(m,N);

b=formRhs(m,h,f,gb,gt,gl,gr,N); bFourier=fastSineTransform(m,b)’;

% Reorder c by rows. Find the Fourier modes by solving

% a tridiagonal system of equations

BFourier=reshape(bFourier,m,m); BFourier=BFourier’;

bFourier=BFourier(:); uFourier=bandSolve(Gamma,bFourier);

% Reorder uFourier by columns. reshape is a Matlab function

UFourier=reshape(uFourier,m,m); UFourier=UFourier’;

uFourier=UFourier(:); u=fastSineTransform(m,uFourier)’;

% Rearange x into matrix format, add boundary values,

% and plot solution

for j=1:m

Unew(1:m,j)=u((j-1)*m+1:(j-1)*m+m);

end

Unew=[gb(2:length(gt)-1);Unew;gt(2:length(gb)-1)]; Unew=[gl’,Unew,gr’];

%figure(1); mesh(x,y,Unew,’EdgeColor’,’black’);

%figure(2); mesh(x,y,Uexact,’EdgeColor’,’black’);

%xlabel(’x’); ylabel(’y’); zlabel(’Solution, u ’);

Uexact=y./((1+x).^2+y.^2); figure(1); subplot(2,3,splot)

mesh(x,y,abs(Unew-Uexact),’EdgeColor’,’black’); splot=splot+1;

end

78

function s=fastSineTransform(m,p)

const=-sqrt(2/(m+1));

for k=1:m

% Take the kth vector from the long vector, p,

% and set it to q. Take the 2m+2 fft of [0;q];

q=p((k-1)*m+1:k*m); w=const*(fft([0;q],2*m+2));

% Take the imaginary part of w. We dont need

% the first element and last m+1 elements

s((k-1)*m+1:k*m)=imag(w(2:m+1));

end

% rhs of the Poisson problem

function f=ffunc(x,y)

f=exp(x.*y);

% Sparse LU solver of Ax=b

function [x]=bandSolve(A,b)

[m,n]=size(A); % Square matrix for simplicity

if m~=n

error(’Matrix not square’);

end

% Find the band of A

for i=1:n

if A(m,i)~=0

s=n-i; break;

end

end

% Do the sparse LU decomposition for a matrix of band s

for j=1:m

if j>=m-s

L(j:m,j)=A(j:m,j)./A(j,j);

U(j,j:m)=A(j,j:m);

A(j:m,j:m)=A(j:m,j:m)-L(j:m,j)*U(j,j:m);

else

L(j:j+s,j)=A(j:j+s,j)./A(j,j);

U(j,j:j+s)=A(j,j:j+s);

A(j:j+s,j:j+s)=A(j:j+s,j:j+s)-L(j:j+s,j)*U(j,j:j+s);

end

end

L=sparse(L); U=sparse(U); y=L\b; x=U\y;

79

function b=formRhs(m,h,f,gb,gt,gl,gr,N)

g=f(2:m+1,2:m+1); len=length(g(:));

% fbc is the correction vector we will subtract

% from f due to boundary conditions

if N==5

fbc=gl(2:length(gl)-1);

fbc(len-m+1:len)=gr(2:length(gr)-1);

for k=1:m

fbc((k-1)*m+1)=fbc((k-1)*m+1)+gb(k+1);

fbc(m*k)=fbc(m*k)+gt(k+1);

end

fbc=fbc’;

elseif N==9 | N==10

fbc=zeros(len,1);

for k=1:m

fbc(k)=(1/6)*gl(k)+(2/3)*gl(k+1)+...

(1/6)*gl(k+2);

fbc(len-m+k)=(1/6)*gr(k)+(2/3)*gr(k+1)+...

(1/6)*gr(k+2);

end

for k=1:m

fbc((k-1)*m+1)=fbc((k-1)*m+1)+...

(1/6)*gb(k)+(2/3)*gb(k+1);

fbc(m*k)=fbc(m*k)+(1/6)*gt(k)+...

(2/3)*gt(k+1)+(1/6)*gt(k+2);

end

fbc(1)=fbc(1)-(1/6)*gl(1);

fbc(m)=fbc(m)-(1/6)*gl(m+2);

fbc(len-m+1)=fbc(len-m+1)-(1/6)*gr(1);

fbc(end)=fbc(end)-(1/6)*gr(end);

end

f=modifyRhs(f,m,N);

b=(h^2).*f-fbc;

80

function [Gamma]=formGamma(m,N)

for j=1:m

for k=1:m

Q(j,k)=sqrt(2/(m+1))*sin(pi*j*k/(m+1));

end

end

if N==9 | N==10

S=diag((-10/3)*ones(m,1))+diag((2/3)*ones(m-1,1),1)+...

diag((2/3)*ones(m-1,1),-1);

T=diag((2/3)*ones(m,1))+diag((1/6)*ones(m-1,1),1)+...

diag((1/6)*ones(m-1,1),-1);

elseif N==5

S=diag((-4)*ones(m,1))+diag((1)*ones(m-1,1),1)+...

diag((1)*ones(m-1,1),-1);

T=diag((1)*ones(m,1));

elseif N==11

S=diag((2/3)*ones(m,1))+diag((1/12)*ones(m-1,1)+...

diag((1/12)*ones(m-1,1),-1));

T=diag((1/12)*ones(m,1));

end

lambdaS=diag(Q*S*Q); lambdaT=diag(Q*T*Q);

Gamma = sparse(zeros(size(Q)));

for j=1:m

temp=(j-1)*m+1;

Gamma(temp:j*m,temp:j*m)=diag(lambdaS(j)*ones(m,1))...

+diag((lambdaT(j))*ones(m-1,1),1)+...

diag((lambdaT(j))*ones(m-1,1),-1);

end

Gamma=sparse(Gamma);

81

function f=modifyRhs(f,m,N)

if N==5|N==9

f=f(2:m+1,2:m+1); f=f(:);

elseif N==10 % Modified step for rhs

Gamma=formGamma(m,11);

% Remove boundaries of f since we will apply a

% five-point stencil to it

fbot=f(1,1:end); fleft=f(1:end,1); ftop=f(end,1:end);

fright=f(1:end,end);

% After removing boundaries, make f one long vector

f=f(2:m+1,2:m+1); f=f(:); len=length(f);

% As in 5-point stencil, make a new vector of

% boundary points.

fbc=fleft(2:length(fleft)-1);

fbc(len-m+1:len)=fright(2:length(firght)-1);

for k=1:m

fbc((k-1)*m+1)=fbp((k-1)*m+1)+fbot(k+1)

fbc(m*k)=fbc(m*k)+ftop(k+1);

end

c=fastSineTransform(m,f)’;

% Reorder c by rows

C=reshape(c,m,m); C=C’; c=C(:); v=Gamma*c;

% Reorder v by columns

V=reshape(v,m,m); V=V’; v=V(:);

f=fastSineTransform(m,v)’; f=f+(1/12).*fbc;

end

% Boundary Condition for poisson.m

function [gb,gt,gl,gr]=dirichletBc(x,y)

gb=zeros(1,length(x)); gt=1./(2+2*x+x.^2);

gl=y./(1+y.^2); gr=y./(4+y.^2);

82

Chapter 6

Solution by Iteration

If the coefficient matrix is sparse and large, direct methods might not be
the most efficient equation solver. Direct methods requires large amount of
memmory, and they will destroy the sparsity pattern. Even though A = LU
is sparse, the individual factors L and U may not be as sparse as A.
After spatial discretization of a PDE, a linear, or nonlinear system of ODE
equations arise

du

dt
= F (u, t).

The classical schemes such as point-Jacobi, Gauss-Seidel, and SOR (succes-
sive over-relaxation are fixed-point iterations. To analyze fixed-point equa-
tions we need the Banach fixe-point theorem

6.1 The Banach Fixed-Point Theorem

Fixed point operator equations take the form

u = T (u), u ∈ K

Here, K is a subspace of the Banach space V , and T : K → V is an operator
defined on K. A natural numerical approximation is defined by the iteration
formula

un+1 = T (un), n = 0, 1, ...

If the operator T is contractive, the itertion converge according to the Banach
fixed-point theorem

83

Theorem 6.1 (Banach Fixed-Point Theorem) Assume that K is a non-
empty closed set in the Banach space V , and further, that T : K → K is
a contractive mapping with contractivity constant α, 0 ≤ α < 1. Then the
following result hold.

1. Existence and uniquness: There exists a unique u ∈ K such that

u = T (u)

2. Convergence and error estimates of the iteration: For any u0 ∈ K, the
sequence {un} ⊆ K defined by un+1 = T (un), n = 0, 1, ..., converges to
u:

‖un − u‖V → 0 asn→ inf

For the error, the following bounds are valid:

‖un − u‖V ≤ αn

1− α
‖u0 − un‖V ,

‖un − u‖V ≤ α

1− α
‖un−1 − un‖V ,

‖un − u‖V ≤ α‖un−1 − u‖V

Proof Since T : K → K, the sequence un is well-defined. From the
contractivity of T it follows that un is a Cauchy sequence

‖un+1−un‖V = ‖T (un)−T (un−1)‖V ≤ α‖un−un−1‖V ≤ ... ≤ αn‖u1−u0‖V .

Then for any m ≥ n ≥ 1,

‖um − un‖V ≤
m−n−1∑

j=0

‖un+j+1 − un+j‖V

≤
m−n−1∑

j=0

αn+j‖u1 − u0‖V

≤ αn

1− α
‖u1 − u0‖V

Since α ∈ [0, 1), ‖um − un‖V → 0 as n → inf. Thus {un} is a Cauchy
sequence; and since K is a closed set in the Banach space V , {un} has a
limit u ∈ K. As n→ inf in un+1 = T (un) we obtain the fixed point equation
u = T (u).
To prove uniqueness assume that u1, u2 ∈ K are fixed points of T , then

84

‖u1 − u2‖ = ‖T (u1)− T (u2)‖V ≤ α‖u1 − u2‖V
which is a contradiction unless u1 = u2. We now prove the error estimates.
The first one is allready proved, the third follows from the fixed point prop-
erty of T

‖un − u‖V = ‖T (un−1)− T (u)‖V ≤ α‖un−1 − u‖V .

The second follows from the third estimate together with

‖un−1 − u‖V ≤ ‖un−1 − un‖V + ‖un − u‖V

We recgonice the last inequality as a generalized triangular inequality

6.1.1 Classical Iteration methods for Linear Systems

When devising iterative methods it common practice to use a matrix splitting

A = N −M

By doing so, we can reformulate the system of equations Ax = (N−M)x = b
as a fixed point equation

x = N−1Mx + N−1b,

and the corresponding iterative approximation

xn+1 = N−1Mxn + N−1b.

The matrix G = N−1M is called the iteration matrix, it determines the
the convergence rate of the method. To see this we write down the error
equation

x− xn = G(x− xn−1) = Gn(x− x0)

Unfortunately the error en = x−xn is not available unless the exact solution
is known. However, if the system of equations are well conditioned, the
residual rn = b−Axn is a good measure of how well xn approximate the true
solution x. We have the following important relation between r and e:

Ae = r

We call this relation the residual equation, or the deffect equation.
For spatial discretization it is appropriate to write A as

A = D + L + U

85

Figure 6.1: Convergence rate for the Jacobi and Gauss-Seidel scheme applied
to the 2D Poisson equation

where D is the diagonal of A, U and L are the strict upper and lower tri-
angular parts. If we let N = D and M = −(L + U) we obtain the matrix
representation of the Jacobi method

Dxn+1 = b− (L + U)xn.

In component form the equation is expressed as

xn+1
i =

1

ai,i

(
bi −

∑
j 6=i

aijx
n
)
.

The Gauss-Seidel iteration is defined by

(D + L)xn+1 = b− Uxn

This corresponds to N = D + L. The equivalent component form is

xn+1
i =

1

ai,i

(
bi −

i−1∑
j=1

aijx
n+1
j −

m∑
j=i+1

aijx
n−1
j

)
We see that contrary to the Jacobi iteration, the Gauss-Seidel iteration in-
clude updated values for x as they become available. A close relative to the

Gauss-Seidel method is the SOR method. The method of SOR is usually
exprssed in two equations. First a Gauss-Seidle iteration is made, then a
weighted average is computed

zn+1 = D−1[b− Lxn+1 − Uxn],

xn+1 = ωzn+1 + (1− ω)xn

86

Figure 6.2: The convergence rate for the SOR scheme on the 2D Poisson
problem with overrelaxation parameter ωopt

where ω ∈ (1, 2]. This splitting is obtained by settingn

N =
1

ω
D + L, M =

1− ω

ω
D − U.

The component formula of the SOR method is

xn+1
i = xn

i + ω
(
bi −

i−1∑
j=1

aijx
n+1
j −

m∑
j=i+1

aijx
n
j

)
, 1 ≤ i ≤ m

The convergence rate of Jacobi and Gauss-Seidel scheme is shown in figure
6.1.1. Note that the error drops rapidly the first few iterations, but altogether
the convergence is very slow. Also note that Gauss-Seidel converges about
twice as fast as Jacobi. The convergence of SOR depends crusially on the
overrelaxation parameter ω. Convergence is slow relative to Gauss-Seidel if
ω < 1 while the scheme is unstable if ω > 2 On a square, uniform n× n grid
it can be shown that the best choice of ω is

ωopt =
2

1 + sin π
n

With this choice for ω SOR converges much faster than Jacobi and Gauss-
Seidel on the Poisson problem.

For a more comprehensive introduction of classical iterative methods,
their convergence properties, and parameter dependence, consult [1], [2],
[3], or your favourit numerical analysis book.

87

function x=wjac(A,b,x0,niter,omega)

D=diag(diag(A)); LU=-(tril(A,-1)+triu(A,1)); x=x0;

for n=1:niter

x=omega*(D\(LU*x+b))+(1-omega)*x;

end

function x=sor(A,b,x0,niter,omega)

DL=diag(diag(A))+tril(A,-1); U=-triu(A,1); x=x0;

for n=1:niter

u=omega*(DL\(U*x+b))+(1-omega)*x;

end

6.1.2 Implementation

The matrix formulation of the classical iteration methods can be used to
create a vectorized algorithm in Matlab. The following code implements SOR
and the ω-damped Jacobi method. The GS and JAC method is obtained by
setting ω = 1 in SOR and ω-JAC respectively

88

Chapter 7

Multigrid

If we apply the weighted-Jacobi or Gauss-Seidel method to solve the Poisson
equation, or perhaps another PDE, the error becomes smooth after a few
iterations. The norm of the residual drops dramatically the first iterations,
but then stalls. This smooth residual can be approximated on a coarser grid,
without any essential loss of information. These observations provides a
clue about how to accelerate iterative schemes for linear algebraic equations.
Multigrid methods build on two basic principles, namely, smoothing and
coarse grid approximation. To illustrate these principles, let us consider the
Fourier expansion of the approximation error

eh(x, y) =
n−1∑
k,l

αk,l sin kπx sin lπy x, y ∈ Ωh.

The fact that this error becomes smooth after some iteration steps means
that the high frequency components becomes small after a few iterations
wheras the low frequency components hardly change. To be more specific,
we look at the discrete Poisson equation on a fine grid Ωh with mesh size
h = 1/N, N ∈ Z, and on a coarser grid ΩH , where H = 2h. It is also assumed
that N is an even number. For (x, y) ∈ Ωh, the functions

qk,l
h (x, y) = sin kπx sin lπy k, l = 1, ..., N − 1

are the discrete eigenfunctions of the discrete five-point operator 1
h2 (∆

2
0,x +

∆2
0,y). For a given pair (k, l), we consider the four eigenfunctions

qk,l, qN−k,N−l, qN−k,l qk,N−l

On the coarse grid Ω2h these functions conicide in the following sence:

qk,l(x, y) = −qN−k,l(x, y) = −qk,N−l(x, y) = qN−k,N−l(x, y) for x, y ∈ Ω2h

89

Figure 7.1: High and low frequency modes for N=8

This means that these four eigenvalues cannot be distinguished on Ω2h, a
phenomenon known as aliasing. This gives rise to the following definition of
low and high frequencies

Definition 7.1 The function qk,l, k, l = 1, 2, ..., N − 1 is said to be a low
frequency component if max(k, l) < N/2 and a high frequency component if
N/2 ≤ max(k, l) < N

The low frequencies can be represented on the coarse grid Ω2h, but the high
frequencies are invisible since they coincide with low frequency modes at the
grid nodes. This is illustrated in figure 7

7.1 From Two Grids to Multigrid

If N , the number of grid spacings, is a power of 2 meaning that h = 2−p.
Then we can from the grid sequence

Ωh, Ω2h, Ω4h, ..., Ωh0

by doubling the mesh size successively. The coarsest grid Ωh0 might con-
tain only one interior grid point as shown in figure 7.1 The error can be
decomposed into high and low frequencies On Ωh there results

N−1∑
k,l=1

αk,lq
k,l

N/2−1∑
k,l=1

αk,lq
k,l +

N−1∑
k,l

N/2≤max(k,l)

αk,lq
k,l

A similar distinction is made between high and low frequencies on Ω2h, Ω4h,
The terms ’high frequency’ and ’low frequency’ are related to the grids that

90

Figure 7.2: A sequence of coarser grids

we consider. For example, the high frequency components on Ω2h, derived
from the low frequency components on Ωh, is not vissible on Ω4h.
If a few iteration steps with a smoother is performed on the finest grid Ωh,
the high frequency error becomes small. The remaining low frequency com-
ponents are visible on Ω2h and can thus be approximated there. Now apply
the smoother on Ω2h to filter out the high frequency components there. We
continue this procedure until we arive at the coarsest grid. This travel down
the hierarchy of successively coarser grid is reffered to as coarsening. There
is also a opposite travel, ascending from a coarser to a finer grid. This is
known as refinement. A typical multigrid algorithm travel up and down the
grid hierarchy until sufficiently many frequency components of the error are
determined.
It appears that many standard iterative methods possess the smoothing prop-
erty. As we know, most classical relaxation schemes suffer in presence of
smooth components of the error. These smooth components are however os-
cillatory on a coarser grid, also, relaxation on a coarser grid is less expensive
because there are fewer unknowns to update.

7.1.1 Smoothing Properties of Relaxation Schemes

To illustrate the smoothing properties of some common smoothers the follow-
ing computer program performs a few iterations on a model problem. The
user can select weighted Jacobi, Gauss-Seidel or Red-Black Gauss-Seidel as
the smoother.

91

Figure 7.3: Smoothing properties of weighted Jacobi

%function demo1_run(smoother,iter)

iter=6; smoother=1

N=23; h=1/(N+1);NN=N*N; [A]=sp_laplace(N); xt=2*rand(NN,1)-1;

b=A*xt; x=zeros(NN,1); error=xt-x; ERROR=reshape(error,N,N);

figure(1); subplot(3,2,1); mesh(ERROR,’EdgeColor’,’black’);

hold on; title(’Initial error, Physical Space’)

hold off; ERROR_COEF=sint2(ERROR);

subplot(3,2,2); mesh(ERROR_COEF,’EdgeColor’,’black’);

hold on; title(’Initial error, Fourier Space’); hold off;

92

% Weighted Jacobi

if smoother==1 D=0.95*diag(diag(A));

% Gauss Seidel

elseif smoother==2 L=tril(A);

% Red Black Gauss Seidel

elseif smoother==3

red=[1:2:NN]; black=[2:2:NN]; NR=length(red);

NB=length(black);p=[red,black]; ip=zeros(NN,1);

for i=1:NN, ip(p(i))=i; end

R=A(red,red); B=A(black,black); C=A(red,black);

b_p=b(p); br=p_p(1:NR); bb=b_p(NR+1:NN);

xr=zeros(NR,1); xb=zeros(NB,1);

end

j=0;

while j<iter

j=j+1;

if smoother==1 x=x+D\(b-A*x);

elseif smoother==2 x=x+L\(b-A*x);

elseif smoother==3 xr=R\(br-C*xb);

xb=B\(bb-C’*xr); x=x_p(ip);

end

error=xt-x; ERROR=reshape(error,N,N);

subplot(3,2,3); mesh(ERROR,’EdgeColor’,’black’); hold on

if smoother==1

title([’Physical Space’,num2str(j),’ iters, weighted Jacobi.’]);

elseif smoother==2

title([’Physical Space’,num2str(j),’ iters, Gauss Seidel.’]);

elseif smoother==3

title([’Physical Space’,num2str(j),’ iters RB Gauss Seidel’]);

end

hold off

ERROR_COEF=sint2(ERROR); subplot(3,2,4);

mesh(ERROR_COEF,’EdgeColor’,’black’);

93

hold on

if smoother==1

title([’Fouirer Space’,num2str(j),’ iters weighted Jacobi.’]);

elseif smoother==2

title([’Fourier Space’,num2str(j),’ iters Gauss Seidel.’]);

elseif smoother==3

title([’Fourier Space’,num2str(j),’ iters RB Gauss Seidel.’]);

end

hold off

j=j+1;

if smoother==1, x=x+D\(b-A*x);

elseif smoother==2, x=x+L\(b-A*x);

elseif smoother==3, xr=R\(br-C*xb);

xb=B\(bb-C’*xr); x_p=[xr;xb]; x=x_p(ip);

end

error=xt-x; subplot(3,2,5); ERROR=reshape(error,N,N);

mesh(ERROR,’EdgeColor’,’black’); hold on;

if smoother==1;

title([’Physical Space,’,num2str(j),’iters, weighted Jacobi.’]);

elseif smoother==2

title([’Physical Space,’,num2str(j),’ iters Gauss Seidel.’]);

elseif smoother==3

title([’Physical Space,’,num2str(j),’ iters, RB Gauss Seidel’]);

end

hold off

ERROR_COEF=sint2(ERROR); subplot(3,2,6);

mesh(ERROR_COEF,’EdgeColor’,’black’);

if smoother==1

title([’Fourier Space,’, num2str(j),’ iters weighted jacobi’]);

elseif smooterh==2

title([’Fourier Space’, num2str(j),’ iters Gauss Seidel’]);

elseif smoother==3

title([’Fourier Space,’,num2str(j),’ iters RB Gauss Seidel’]);

end

hold off; hold off

pause(4)

end

hold off

94

function [A]=sp_laplace(N)

T=2*eye(N)-diag(ones(N-1,1),1)-diag(ones(N-1,1),-1);

A=kron(eye(N),T)+kron(T,eye(N));

% SINT Sine transform

% Returns the sine transform of vector X. The length of X must

% be one less than the power of two.

% If X is a matrix, the SINT operation is applied to each

% column

function sx=sint(x)

[m,n]=size(x); y=zeros(2*(m+1),n);

y(2:m+1,1:n)=x; z=fft(y); sx=-imag(z(2:m+1,1:n));

function W=sint2(U)

% See fft2. Does a non-Hermitian transpose

W=sint(sint(U.’).’);

7.2 Two-Grid Cycle

The question we want to answer now is. How do we travel up and down the
grid hierarchy? We start out with a linear system of equations

Au = f

Let us repeat some important definitions. For any approximation v of the
solution u, the error is given by e = u − v, and the residual (or deffect) is
given by r = f − Av. Also recall that the residual equation is given by

Ae = r (7.1)

If we define an iteration operator by

vn+1 = Gvn −H−1f

where H depends upon the iterative method, and G = I + H−1A it follows
that

en+1 = Gen

From this we deduce that rn+1 = AGA−1rn. Note that the role of the
iteration operator is not to solve the system of equations, but to smooth the

95

error
Suppose we are solving the equation Ahvh = fh on the fine grid. To smooth
the error a few iterations with the iteration operator is performed, this is
known as relaxation. Next the resulting residual rh = Avh − fh needs to
be translated into the coarser grid. This is done by means of a restriction
operator

I2h
h : G(Ωh)→ G(Ω2h)

where OG(Ωh) denotes the linear space of grid functions on Ωh. On the
coarser grid Ω2h we seek the solution of the equation Ae2h = r2h. Once an
approximation is made, we need to prolongate (or interpolate) the coarse-
grid error to the fine grid. This mapping is done in terms of the prolongation
operator

Ih
2h : G(Ω2h)→ G(Ωh)

Altogether, a combination of smoothing and coarse grid correction result in a
two-grid correction scheme (calculating vh

n+1 from vh
n). It proceeds as follows

• Relax ν1 times on Ahvh = fh on Ωh

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the
coarse grid by r2h = I2h

h rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by e2 = Ih
2he

2h and
correct the fine grid approximation by vh = vh + eh.

• Relax ν2 times on Ahvh = fh.

This two-grid correction scheme depends crusially uppon the the relax-
ation (or smoothing) procdure, the numbers ν1 and ν2 of pre and post smooth-
ing steps, the restriction operator I2h

h , the coarse grid approximation A2h and
the prolongation operator Ih

2h These procedures are complementary. Relax-
ation on the fine grid eliminates high frequency components. This smooth
error can be approximated on a coarser grid, but, assuming the residual
equation can be solved accurately on Ω2h, it is still important to transfer the
error accurately back to the fine grid. To eliminate high frequency compo-
nents caused by prolongation, postsmoothing is performed at the end of the
cycle.

96

7.2.1 Multigrid Components

Having learnt the principles of multigrid, we now need to specify the multigrid
components. The coarse grid operator A2h is usually obtained by restricting
the difference approximation to the coarse grid. The simplest restriction
procedure is known as injection,

v2h
j,l = vh

2j,2l, j, l = 1, 2, ...,m

but a popular alternative is full weighting

v2h
j,l =

1

4
vh

2j,2l +
1

8
(vh

2j−1,2l + vh
2j,2l−1 + vh

2j,2l−1 + vh
2j+1,2l + v2j,2l+1)

+
1

16
(vh

2j−1,2l−1 + vh
2j+1,2l−1 + vh

2j−1,2l+1 + vh
2j+1,2l+1), j, l = 1, 2, ...,m.

The latter can be rendered as a computational stencil in the form

The transfer of grid functions from a coarse to a fine grid is done by inter-
polation. For two-dimensional problems the component of vh = Ih

2hv
2h are

given by

vh
2j−1,2l−1 = v2h

j,l , j, l = 1, 2, ...,m;

vh
2j−1,2l =

1

2
(v2h

j,l + v2h
j,l+1), j = 1, 2, ...,m− 1, l = 1, 2, ...,m;

vh
2j,2l−1 =

1

2
(v2h

j,l + v2h
j+1,l), j = 1, 2, ...,m, l = 1, 2, ...,m− 1;

v2j,2l =
1

4
(v2h

j,l + v2h
j,l+1 + v2h

j+1,l + v2h
j+1,l+1), j, l = 1, 2, ...,m− 1;

Since we are dealing with residuals, the error along the boundary

7.3 The Multigrid Cycle

An ituitive approach to solve the coarse grid equation A2he2h = r2h is to
smooth the high frequency components on Ω2h and then restrict the resulting

97

residual to a coarser grid Ω4h. We continue this procedure until we reach the
coarsest grid. On the coarsest grid the residual equation is solved using, for
example, a direct method. Note that the dimension of A on the coarses grid
is low, ideally just one. Next we travel up the grid hierarchy, correcting the
residual on our way. After each prolongation, a smoother is used to remove
added high frequency components.
The structure of a multigrid method depends on the the number of recursive
calls µ on each grid level. In practice, µ is one or two. The V-cycle is obtained
when µ is set to one. The W-cycle is obtained when µ is set to two.

Figure 7.4: Structure of a V-cycle and a W-cycle for a four-grid method.
•, smoothing; ◦, exact solution; \, fine-to-coarse; /, coarse-to- fine transfer;

The recursive definition of the V-Cyle is as follows

V-Cycle Scheme vh ← V h(vh, fh)

1. Relax ν times on Ahvh = fh

2. If Ωh = coarsest grid, then go to step 4.
Else

f2h ← I2h
h (fh − Ahvh,

v2h ← 0,

v2h ← V 2h(v2h, f2h).

3. Correct vh ← vh + Ih
2hf

2h.

4. Relax ν2 times on Ahvh

Note that here the residual r2h is replaced with the vector f2h, and e2h is
replaced with v2h. The V-cycle scheme belongs to a family of multigrid
schemes known as the µ-cycle method.

98

Figure 7.5: Schedule of grids for a five level FMG scheme

µ-Cycle Scheme vh ←Mµh(vh, fh).

1. Relax µ1 times on Ahvh

2. If Ωh = coarsest grid, then go to step 4. Else

f2h ← I2h
h (fh − Ahvh)

v2h ← 0,

v2h ← Mµ2h(v2h, f2h) µ times

3. Correct vh ← vh + Ih
2hv

2h.

4. Relax ν2 times on Ahvh = fh

An obvious Achilles heel of all iterative methods is the choice of the starting
vector x[0]. An initial approximation for iterative solvers, like multigrid, can
be obtained with nested iteration. The idea is to approximate the initial
conditons on a coarse grid , perform a few relaxation iterations, and then
interpolate to obtain an improved initial guess on a finer grid. In general
this is not sufficient since interpolation leads to nonnegligible high and low
frequency components, thus we have to revisit the coarser grid to remove the
low frequency components.
The combination of nested iteration and the V -cycle (correction-scheme)
result in the full multigrid (FMG) method.

To get an idea of how multigrid code work, we make use of available
code at MGNET.org [4]. MGLab is a public domain set of Matlab func-
tions written by James Bordner and Faisal Saied. MGLab can solve two
dimensional elliptic partial differential equations using finite differences and

99

includes several built-in problems (Poisson, Helmholtz, discontinuous coef-
ficient problems, and nonselfadjoint problems). The GUI might not work
on newer versions of Matlab, but it might be an exercise to make it work.
Note that the matrices for the model problems are assembled with for loops.
Matlab runs faster if you vectorize the for loops (if possible), and use build
in sparse-matrix utilities. The function multigrid_setup.m assemble the
modle-problem matrix for each level (the coarsest level here is 5) explicitly.
Another approach is to use a loop (or vectorized loop) to assemble the matri-
ces at each level, and store each of them in a cell structure. This approach is
used in the multigrid/finite-element demo [5]. As an example we use MGLab
to solve the Poisson problem on a 49× 49 mesh with an initial guess of low
and high frequencies. This demonstration uses a two-level V-cycle algorithm
with ν1 = 2 presmoothings, and ν2 = 2 postsmoothings.

To use more than two levels set the global variable coarse_level to the
desired level, but make sure that the dimension of the grid satisfy 2k, k ∈ Z
so that the coarser grids are defined. If you want to solve another problem,
for example the Helmholtz equation, change the problem_flag variable to
HELMHOLTZ. Similarly, if you want to change some of the component functions,
set the corresponding flag in the file set_globals.m. The code necessarry to
perform a simple two-level V-Cycle on the Poisson problem is included here
(several files are not included here, including the FMG code). If you are
interested in multigrid algorithms you can download MGLab and do your
own experiments, perhaps with a different model problem.

100

101

102

% demo2_run

clear;

include_globals; include_flags;

set_defaults;

coarse_level=2; % Two grid Algorithm

nx1=49; ny1=nx1;

smooth_flag=GAUSS_SEIDEL; nu1=0; nu2=4; % No pre-smoothing

%solver_flag=VMG;

prob_args=[10];

[A1,N1]=get_matrix(nx1,ny1); generate_matrix=0;

%if(solver_flag==VMG|precon_flag==MG_CYCLE)

multigrid_setup;

%end

b1=get_rhs(nx1,ny1); h=1/(nx1+1);

[X,Y]=meshgrid([h:h:(1-h)]);

U_TRUE=sin(pi*X).*sin(pi*Y);

INIT_ERROR=sin(10*pi*X).*sin(10*pi*Y)+...

sin(20*pi*X).*sin(20*pi*Y)+sin(30*pi*X).*sin(30*pi*Y)+...

sin(40*pi*X).*sin(40*pi*Y);

init_error=reshape(INIT_ERROR,N1,1); u_true=reshape(U_TRUE,N1,1);

b1=A1*u_true; generate_rhs=0;

level=1;

u_rand=2*rand(nx1*nx1,1)-1;

u_in=u_true-init_error+0.5*u_rand; u_out=u_in;

RELRES=[];

jj=4;

for iter=1:jj

u_out=demo2_Vcycle(level,b1,u_out,u_true,nx1,iter);

relres=norm(b1-A1*u_out)/norm(b1); RELRES=[RELRES;relres];

fprintf(’Relative residual=%g, at iteration %g\n’,relres,iter);

end

logrho=(1/(jj-2))*log10(RELRES(jj)/RELRES(2));

rho=10^logrho;

fprintf(’Average residual reduction factor=%g.\n’,rho);

hold off
103

% Multigrid V-Cycle Algorithm

function u_out=demo2_Vcycle(level,b,u_in,u_true,nx,iter)

% Use the zero vector for u_in as the default

if level==1 & iter ==1

subplot(1,1,1), hold off, cla

e=u_true-u_in; E=reshape(e,nx,nx);

subplot(1,2,1), hold off, mesh(E); hold on;

title([’Initial error’]); subplot(1,2,2), hold off;

surf(abs(sint2(E))); hold on;

title([’Absolute value of initial error in Fourier space’]);

pause(4)

end

if nargin==2

u_in=zeros(size(b));

end

if level==coarsest(level)

u_out=coarse_grid_solve(level,b);

else

u=smooth(level,b,u_in,’pre’); r=residual(level,b,u);

b_c=restrict(level,r); u_c=demo2_Vcycle(level+1,b_c,...

zeros(size(b_c)),u_true,nx,iter);

correct=interpolate(level,u_c); u=u+correct;

if level==1

e=u_true-u; E=reshape(e,nx,nx); figure(iter+level);

subplot(2,2,1), hold off, surf(E); hold on,

title([’Error after coarse grid correction, iter= ’,num2str(iter)]);

subplot(2,2,2), hold off, surf(abs(sint2(E))); hold on

title(’Absolute value of error in Fourier space’);

pause(3)

end

u_out=smooth(level,b,u,’post’);

if level==1

e=u_true-u_out; E=reshape(e,nx,nx);

subplot(2,2,3), hold off, surf(E); hold on

title([’Error after post-smoothing, iter =’, num2str(iter)])

subplot(2,2,4), hold off, surf(abs(sint2(E))); hold on

title(’Absolute value of error in Fourier space’);

pause(3)

end

end 104

% INCLUDE FLAGS Flag variables defining current settings in MGLab

%

% Available problems

global problem_flag

POISSON=101; HELMHOLTZ=102; CONVECT_DIFFUSE=103;

POISSON_BOLTZMAN=104; CUT_SQUARE=105;

% Available interpolation operators

global interp_flag

CUBICINT=201; LINEAR=202; EXPLICIT_BILINEAR=203;

OPERATOR_BASED=204;

% Availabel restriction operators

global restrict_flag

INJECTION=301; HALF_WEIGHTING=302; FULL_WEIGHTING=303;

BILINEAR_ADJOINT=304;

% Available Smoothers

global smooth_flag

WEIGHTED_JACOBI=401; GAUSS_SEIDEL=402; RB_GAUSS_SEIDEL=403;

% Available preconditioners

global precon_flag

NONE=500; JACOVI=501; MG_CYCLE=502; ILU=505; SSOR=506;

BLOCK_JACOBI=507;

% Available solvers

global solver_flag

DIRECT=600; VMG=601; FMG=602; PCG=603; BICG_STAB=604;

GMRES=605; SMOOTHER=606; CGS=607; TFQMR=608; SOR=609;

% Available coarsenings

global coarsening_flag

STANDARD=701; GALERKIN=702; AVERAGING=703;

% Available coars grid solvers

global coarse_solver_flag

% Rhight hand side

global rhs_flag

% Available plotting axes

global x_axis_flag y_axis_flag

ITERATIONS=801; TIME=802; MFLOPS=803; RESIDUAL=804;

PRCON_RESIDUAL=805; ERROR=806;

% Available cylces

global cycle_flag

V_CYCLE=901; W_CYCLE=902; HALF_V_CYCLE=903;

105

% This M-file initializes global variables in

% include_globals.m, include_flags.m, and

% include_figs.m to their default values

include_globals; include_flags; %include_figs;

% Mesh parameter defaults

nx1=15; ny1=15; % Set fine mesh size

coarse_level=3; % max number of levels

% Problem parameter defaults

prob_args=[0 0];

% Smoother parameter defaults

nu1=1; nu2=1; % number of pre and post-smoothings

wt=0.95; % set smoother weight

% Selection flag defaults

problem_flag=POISSON; % Select continuous problem

rhs_flag=1; % Select right-hand side

smooth_flag=WEIGHTED_JACOBI; % Select smoother

restrict_flag=HALF_WEIGHTING; % Select restriction operator

interp_flag=CUBICINT; % Select interpolation operator

solver_flag=VMG; % Select solver

precon_flag=MG_CYCLE; % Select preconditioner

cycle_flag=V_CYCLE; % Select MG cycle

coarsining_flag=0; % Select coarsening

coarse_solver_flag=DIRECT; % Select coarse grid solver

% Method parameter defaults

rtol=0; % Set stopping tolerance on weighted residual

prtol=1e-4; % Set stopping tol. on weighted pseudo-resid.

max_it=5; % Set maximum number of iterations

max_time=0; % Set maximum number of seconds

max_mflop=0; % Set maximum number of mfplops

num_runs=1; % Set number of experiments to run

restart=5; % Set GMRES restart parameter

% Linear system defaults

generate_matrix=1; % Must generate the matrix initially

generate_rhs=1; % Must generate the right hand side initially

matrix_type=[]; % Matrix properties initially unknown

% Figures

%param_fig=0;

%main_position=[390,310,750,550]; param_position=[10 455 370 400];

106

% MULTIGRID_SETUP Generate the linear systems for the

% coarse multigrid levels

% Accesses global variables in "include_flags"

% Accesses global variables in "include_globals"

function multigrid_setup

include_flags; include_globals;

[X1,Y1]=meshgrid([0:nx1+1]/(nx1+1),[0:ny1+1]/(ny1+1));

ARRAY1=zeros(nx1+2,ny1+2);

if coarse_level>=2

nx2=(nx1+1)/2-1; ny2=(ny1+1)/2-1;

[A2,N2]=get_matrix(nx2,ny2);

[X2,Y2]=meshgrid([0:nx2+1]/(nx2+1),[0:ny2+1]/(ny2+1));

if interp_flag==EXPLICIT_BILINEAR

ARRAY1=sp_prolong(nx1,ny1,nx2,ny2);

else

ARRAY2=zeros(nx2+2,ny2+2);

end

end

if coarse_level>=3

nx3=(nx2+1)/2-1; ny3=(ny2+1)/2-1; [A3,N3]=get_matrix(nx3,nx3);

[X3,Y3]=meshgrid([0:nx3+1]/(nx3+1),[0:ny3+1]/(ny3+1));

if interp_flag==EXPLICIT_BILINEAR

ARRAY2=sp_prolong(nx2,nx2,nx3,nx3);

else

ARRAY3=zeros(nx3+2,ny3+2);

end

end

if coarse_level >=4

nx4=(nx3+1)/2-1; ny4=(ny3+1)/2-1; [A4,N4]=get_matrix(nx4,ny4);

[X4,Y4]=meshgrid([0:nx4+1]/(nx4+1),[0:ny4+1]/(ny4+1));

if interp_flag==EXPLICIT_BILINEAR

ARRAY3=sp_prolong(nx3,ny3,nx4,ny4);

else

ARRAY4=zeros(nx4+2,ny4+2);

end

end

if coarse_level >=5

nx5=(nx4+1)/2-1; ny5=(ny4+1)/2-1; [A5,N5]=get_matrix(nx5,nx5);

[X5,Y5]=meshgrid([0:nx5+1]/(nx5+1),[0:ny5+1]/(ny5+1));

if interp_flag==EXPLICIT_BILINEAR

ARRAY4=sp_prolong(nx4,nx4,nx5,nx5);

else

ARRAY5=zeros(nx5+2,ny5+2);

end

end

107

% Generate a discrete linear operator

% [A,N]=get_matrix(NX,NY) generates the matrix A of

% order N for the problem defined by the global flag

% problem_flag and global parameters prob_args

function [A,N]=get_matrix(nx,ny)

include_flags; include_globals

tic

fprintf(’Generating %g by %g matrix...’,nx*ny,nx*ny)

if(problem_flag==POISSON)

[A,N]=sp_laplace(nx,ny);

elseif(prolem_flag==CUT_SQUARE)

val=prob_args(1); [A,N]=sp_cutsq2d(nx,ny,val);

elseif(problem_flag==HELMHOLTZ)

lambda=0; sigma=prob_args(1); [A,N]=sp_convdiff(nx,ny,lambda,sigma);

elseif(problem_flag==CONVECT_DIFFUSE)

lambda=prob_args(1); sigma=prob_args(2);

[A,N]=sp_convdiff(nx,ny,lambda,sigma);

end

toc1=toc; fprintf(’%g seconds.\n’,toc1)

% Solve the coarse grid system

%

% coarse_grid_solve(level,b) solves the linear system at

% the grid level level with the right hand side b. How the

% system is solved depends on the global variable

% "coarse_solver_flag"

%

% DIRECT -Sparse Gaussian elimination

% SMOOTHER -A constant number of applications of the smoother

% PCG -The PCG method

% BICG_STAB

% GMRES

function u_out=coarse_grid_solve(level,b)

include_flags; include_globals;

if(coarse_solver_flag==DIRECT)

eval([’u_out=A’, num2str(level), ’\b;’]);

elseif(coarse_solver_flag==SMOOTHER)

u_out=smooth(level,b,b,’coarse’);

%elseif(coarse_solver_flag==PCG)

end

108

% Coppy global variables associated with a given grid level

% to local variables

% Get FINE and COARSE array grids

cmd_str=[’FINE=ARRAY’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’COARSE=ARRAY’,num2str(level+1),’;’]; eval(cmd_str);

% Get X_f, Y_f, X_c, Y_c mesh point locations

cmd_str=[’X_f=X’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’Y_f=Y’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’X_c=X’,num2str(level+1),’;’]; eval(cmd_str)

cmd_str=[’Y_c=Y’,num2str(level+1),’;’]; eval(cmd_str)

% Get nx_f, ny_f, nx_c, ny_c

cmd_str=[’nx_f=nx’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’ny_f=ny’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’nx_c=nx’,num2str(level+1),’;’]; eval(cmd_str)

cmd_str=[’ny_c=ny’,num2str(level+1),’;’]; eval(cmd_str)

% Get N_f, N_c

cmd_str=[’N_f=N’,num2str(level),’;’]; eval(cmd_str)

cmd_str=[’N_c=N’,num2str(level+1),’;’];eval(cmd_str)

% INTERPOLATE Transfer correction from the coarse grid to the

% current grid.

% Accesses global variables in "include_flags" and "include_globals"

function correct=interpolate(level,u_c_out)

include_flags; include_globals; extract_globals;

IX_c=2:(nx_c+1); IY_c=2:(ny_c+1); IX_f=2:(nx_f+1); IY_f=2:(ny_f+1);

if interp_flag==LINEAR

COARSE(IX_c,IY_c)=reshape(u_c_out,nx_c,ny_c);

FINE=interp2(X_c,Y_c,COARSE,X_f,Y_f);

correct=reshape(FINE(IX_f,IY_f),N_f,1);

elseif interp_flag==CUBICINT

COARSE(IX_c,IY_c)=reshape(u_c_out,nx_c,ny_c);

FINE=interp2(X_c,Y_c,COARSE,X_f,Y_f,’cubic’);

correct=reshape(FINE(IX_f,IY_f),N_f,1);

%elseif interp_flag==EXPLICIT_BILINEAR

% eval([’PROLONG=ARRAY’,num2str(level),’;’]);

% correct=PROLONG*u_c_out;

109

% This is a modified file (Assume that nx=ny)

function [A,N]=sp_laplace(nx,ny)

N=nx;

T=2*eye(N)-diag(ones(N-1,1),1)-diag(ones(N-1,1),-1);

A=kron(eye(N),T)+kron(T,eye(N));

N=nx*ny;

% SINT Sine transform

% Returns the sine transform of vector X. The length of X must

% be one less than the power of two.

% If X is a matrix, the SINT operation is applied to each

% column

function sx=sint(x)

[m,n]=size(x); y=zeros(2*(m+1),n);

y(2:m+1,1:n)=x; z=fft(y); sx=-imag(z(2:m+1,1:n));

% SINT Sine transform

% Returns the sine transform of vector X. The length of X must

% be one less than the power of two.

% If X is a matrix, the SINT operation is applied to each

% column

function sx=sint(x)

[m,n]=size(x); y=zeros(2*(m+1),n);

y(2:m+1,1:n)=x; z=fft(y); sx=-imag(z(2:m+1,1:n));

% RESIDUAL Compute the residual at the given level

% R=RESIDUAL(LEVEL,B,U) returns the residual R of the

% system Au=b at the given grid level

function r=residual(level,b,u)

include_globals

eval([’r=b-A’,num2str(level),’*u;’]);

% Get the rhs of a linear system

% B=get_rhs(nx,ny) generates a vector B of order nx*ny

% defined by the global flag rhs_flag

function b=get_rhs(nx,ny)

include_flags; N=nx*ny; [XB,YB]=meshgrid([1:nx]/(nx+1),[1:ny]/(ny+1));

B=sin(pi*XB).*sin(pi*YB).*sin(sqrt(2)*pi*XB).*sin(sqrt(3)*pi*YB);

b=reshape(B,N,1);

110

% INCLUDE GLOBALS Global matrices, vector and scalars

% Global variables associated with the MG meshes

global coarse_level

global nx1 ny1 N1 A1 ARRAY1 X1 Y1 b1

global nx2 ny2 N2 A2 ARRAY2 X2 Y2

global nx3 ny3 N3 A3 ARRAY3 X3 Y3

global nx4 ny4 N4 A4 ARRAY4 X4 Y4

global nx5 ny5 N5 A5 ARRAY5 X5 Y5

% Global parameters for the problems

global prob_args

% Global parameters for the solvers

global rtol prtol max_it max_time max_mflop num_runs...

restart SOR_omega

% Global parameters for the smoother

global nu1 nu2 wt

% Global parameters for the linear system

global generate_matrix generate_rhs matrix_type dimensions

111

Chapter 8

Krylov Subspace Methods

A stationary iterative methods replace Ax = b with x = Gx + c, where G is
a constant matrix. Ifx(0) = 0, then

x(1) = c

x(2) ∈ spanc, Gc

x(3) ∈ spanc, Gc, G2c

x(k) ∈ spanc, Gc, G2c, ..., Gk−1c

≡ Kk(G, c)

and we call Kk(G, c) a Krylov subpspace 1 Note that Kk(G, c) = Kk(Ḡ, c) if
Ḡ = I − G. Note also that we expand the subspace K at each iteration.
This means that after at most n iterations, Krylov subspace terminate with
the true solution. This might sound good, but for large n (thousand, mil-
lions,etc.) this is not accetable. We can’t afford more than a few hundred
iterations.
The only way to make the iteration practical is to make a very clever choice
for K. If we use c, Gc,G2c, ..., then after just a few iterations, our algorithm
will lose accuracy. Instead of updating x with a staionary scheme, we can
use the variational approach: Choose x(x) ∈ Kk to minimize

‖x− x∗‖Z

where ‖y‖2Z = yT Zy and Z is a symmetric positive definite matrix. Or
we can use the Galerkin approach: Choose x(k) ∈ K to make the residual

1Aleksei Nikolaevich Krylov (1863-1945) showed in 1931 how to use sequences of the
form b, Ab,A2b, ... to construct the characteristic polynomial of a matrix. Krylov was
a Russian applied mathematican whose scientific interests arose from his early training
in naval science that involved the theories of buoyancy, stability, rolling and pitching,
vibrations, and compass theories.

112

r(k) = b − Ax(k) orthogonal to every vector in Kk for some choice of inner
product.

8.1 Basis for the Krylov Space

An orthonormal basis for K makes the iteration practical. We say that a
vector v is B-orthogonal to a vector u if

uT Bv = 0 (8.1)

where B is a symmetric positive definite matrix. Similarly we define ‖u‖B =
uT Bu.. The common way to construct a orthonormal basis is by the proceess
of Gram-Schmidt orthogonalization. It proceed as follows. Let the first basic
vector be p(0) = c/‖c‖B. Now suppose that we have j + 1 basis vectors
p(0), ..., p(j) for Kj+1(Ĝ, c), and that we have some vector r /∈ Kj+1(Ĝ, c).
The next basis vector is defined as

pj+1 = (r − h0,jp
(0) − ...− hj,jp

(j))/hj+1,j (8.2)

where hi,j = p(i)T Br, i = 0, ..., j, with hj+1,j chosen so that p(j+1)T Bp(j+1) =

1. Note that r ∈ Kj+1(Ĝ, c) and that p(j) and p(k) are B-orthogonal, or

conjugate if j 6= k. Ofent we let r = Ĝp(j) ∈ Kj+1(Ĝ, c). In matrix form we
can express this relation as

Ĝp(j) = [p(0)p(1)...p(j+1)]


h0,j

h1,j
...

hj+1,j

 , (8.3)

so after k steps we have
ĜPk = Pk+1Hk (8.4)

where Hk is a (k + 1)× k matrix with entries hij (zero if i > j + 1) and Pk

is n× k and contains the first k basis vectors as its columns. If n iterations
are performed we obtain the following factorization of Ĝ

Ĝ = PnHnP
−1
n

Therefore, the matrix Hn is closely related to Ĝ -it has the same eigenvalues.
In fact, the leading k×k piece of Hn (available after k steps) is in some sense
a good approximation to Ĝ. This is the key principle behind algorithms
Krylov algorithms for

113

• solving linear systems of equations involving Ĝ.

• finding approximations to eigenvalues and

eigenvectors of Ĝ
We have just constructed the Arnoldi algorithm, an algoritm constructing an
orthogonal basis for a Krylov space.

[P, H] = Arnoldi(k, Ĝ, B, p(0=)
Given a positive integer k, a symmetric definite matrix B, a matrix Ĝ, and
a initial vector p(0) with ‖p(0)‖ = 1.

for j = 0, 1, ..., k − 1,

p(j+1) = Ĝpj

for i = 0, ..., j,

hij = p(i)T Bp(j+1)

p(j+1) − hijp
(i)

end

hj+1,j = (p(j+1)T Bp(j+1))1/2

p(j+1) = p(j+1)/hj+1,j.

end

In practice B is either the identity matrix (then the Gram-Schmidt proce-
dure return orthogonal vectors). The Arnoldi algorithm perform one matrix-
vector by Ĝ per iteration, after k iterations we have done O(k2) inner prod-
ucts of length n each, and this work becomes significant as k increases. If
BĜ is symmetric, then so is Hk, so all but two of the inner products at step j
are zero. In this case we, can let the loop index j = j− 1 : j and the number
of inner products drops to O(k). Then the Arnoldi algorithm is called Lanc-
zos tridiagonalization. Now that we have a orthogonal basis for the Krylov
space, let us find the next iteratate x(k). Following the variational approach
we need to solve the minimization problem

minimize ‖x− x∗‖Z
subject to x(k) ∈ Kk (8.5)

Let x(k) = Pky
(k) be the expansion of x(k) with respect to the basis Kk. Then

‖x(k) − x∗‖2Z = (Pky
(k) − x∗)T Z(Pky

(k) − x∗).

Differating with respect to the components of y(k), and setting the derivative
to zero yields the necsessary condition for a minimum

P T
k ZPky

k = P T
k Zx∗ (8.6)

114

Since y(k) and x∗ are both unknown, we usually can’t solve this. But we can
if we are clever about our choice of Z. Let Z = ĜT BĜ (This is symmetric,
and positive definite if Ĝ is nonsingular). Then from equation (8.4) and the
identity Ĝx = (I −G)x = c it follows that

P T
k Zx∗ = P T

k ĜT BĜx∗ = P T
k ĜT BĜx∗ = P T

k ĜTBc = HT
k P T

k Bc,

which is computable. From the B-orthogonality of the basis vectors we have
that Pk+1BPk+1 = Ik+1. We can use this to simplify the left-hand side of
equation (8.6)

P T
k ZPk = P T

k ĜT BĜPk = HT
k P T

k+1BPk+1Hk = HT
k Hk

So we need to solve
HT

k Hky
(k) = HT

k P T
k+1Bc. (8.7)

This algorithm is called GMRES (generalized minimum residual), due to
Saad and Schultz in 1986, and is probably the most often used Krylov
method. If Ĝ is symmetric and positive definite a more efficent Krylov
method is available, namely the CG (concjugate gradient method, due to
Hestenes and Stiefel in 1952. It is the most often used Krylov method for
symmetric problems. The derivation of the CG algorithm is similar to the
derivation of the GMRES algorithm. Let Z = BĜ. Then

P T
k Zx∗ = P T

k BĜx∗ = P T
k Bc

is computable. The left hand side of (8.6) also simplifies

P T
k ZPk = P T

k BĜPk = P T
k BPk+1Hk = H̄k

where H̄k contains the first k rows of Hk. Thus we need to solve

H̄ky
(k) = P T

k Bc (8.8)

In general, we need to save all of the old vectors in order to accomplish the
projection of the residual. For symmetric positive definite matrices, as those
arising from the discretization of self-adjoint elliptic PDEs, we only need a
few old vectors.
The CG method can also be thought of as a minimization algorithm. If we
set B = I, then

minimize ‖x− x ∗ ‖Z = minimize ‖x− x ∗ ‖A

To solve the linear system Ax = b is equivalent to finding the minimum of

‖x− x ∗ ‖A =
1

2
xT Ax− xT Ax∗ +

1

2
x∗T Ax∗ (8.9)

115

For a minimum to exsist, we need A to be positive definite. In addition,
the CG algorithm is derived under the assumption that A is symmetric. We
leave the constant in (8.9) behind and introduce the function

q(x) =
1

2
xT Ax− xT Ax∗ =

1

2
xT Ax− bT x

which gives the same minimum as (8.9). We wish to find a sequence xk, k =
1, 2, ..., such that

q(x0) > q(x1) > q(x2) > ...

If we for each xk choose a direction pk and let xk+1 be at the minimum of
q(xk + αkpk) where αk is the steplength. Then the sequence qk, k = 1, 2, ... is
descending provided p is a descent direction. We have that

q(xk + αkpk) =
1

2
(xk + αpk)

T A(xk + αkpk)− bT (xk + αkpk)

= q(xk)− αk(b− Axk)
T pk +

1

2
α2

kp
T
k Apk

The miniumum is found from the condition

dq

dt
= −rT

k pk + αkp
T
k Apk = 0

where rk = b− Axk is the residual. So the steplength is given by

αk =
rT
k pk

pT
k Apjk

(8.10)

With this value of αk vi get

q(xk + αkpk) = q(xk)−
1

2

(rT
k pk)

2

pT
k Apk

≤ q(xk) (8.11)

since A is spd. But how do we find pk. We can for example choose the
steepest descent direction pk = −gradq(xk) = rk. This leads to the steepest
descent algorithm

[r, x] = steepestDescent(x0, b, A)

Givenx0, r0 = b− Ax0

fork = 0, 1, 2, ...

αk = rT
k rk/r

T
k Ark

xk+1 = xk + αkrk

rk+1 = b− Axk+1 = rk − αkArk

end

116

The steepest descent method converges if A is symmetric and positive defi-
nite, but it converges slowly. We try another the conjugate gradient direction
instead (why the steepest descent direction converges slowly, and why the
conjugate direction is a good choice is explained in [31].) The conjugate
direction for a symmetric positive definite problem can be writen as

pk = rk + βk−1pk−1

Note that contrary to the Gram-Schmidt procedure performed by the arnoldi
algorithm, pk is found from the rk and the previous value of pk. Thus, we
dont need to store the all the basis vectors to find a new one.
We now have

xk+1 = xk + αkpk,

rk+1 = rk − αkApk,

pk+1 = rk+1 + βkpk

with αk given by (8.10). Note that

pT
k rk+1 = pT

k rk − αkp
T
k Apk = 0

that is rk+1 ⊥ pk. Similarly

pT
k+1rk+1 = rT

k+1rk+1 + βkp
T
k rk+1 = ‖rk+1‖22

If we choose p0 = r0, then yields

pT
k rk = ‖rk‖22 for k ≥ 0

This means that

αk =
‖rk‖22
pT

k Apk

, q(xk+1) = q(xk)−
1

2

‖rk‖42
pT

k Apk

We now choose βk so that pT
k Apk gets as small as possible.

pT
k Apk = (rk + βk−1pk−1)

T A(rk + βk−1pk−1)

= rT
k Ark + 2βk−1r

T
k Apk+1 + βk−1p

T
k−1Apk−1

Thus

βk−1 = − rT
k Apk−1

pk−1Apk−1

, k ≥ 1

Now we are done, but we can still simplyfy the expression for βk. Note that

pT
k+1Apk = rT

k+1Apk + βkp
T
k−1Apk = 0,

117

[x, r] = cg(x, b, A, ε, kmax)

r = b− Ax, ρ0 = ‖r‖22, k = 1.

do while
√

ρk−1 ≥ ε‖b‖2 and k < kmax

if k = 1 then p = r

else

β = ρk−1/ρk−2 and p = r + βp

w = Ap

α = ρk−1/p
T w

x = x + αp

r = r − αw

ρk = ‖r‖22
k = k + 1

So pT
k+1Apk = 0, k ≥ 0, in other words pk and pk+1 are A-conjugate. Futher

pT
k+1Apk+1 + βkp

T
k+1Apk

So pT
k+1Apk+1 = rT

k+1Apk+1, and

rT
k+1rk = rT

k − αkp
T
k Ark

= rT
k rk − αkp

T
k Apk = 0

In other words rk ⊥ rk+1, k ≥ 0. At last we have that

rT
k+1rk+1 = rT

k+1rk − αkr
T
k+1Apk

= −αkr
T
k+1Apk

Using these equations yields the following formula for βk:

βk = −
rT
k+1Apk

pT
k Apk

=
1

αk

rk+1rk+1

pT
k Apk

=
‖rk+1‖22
‖rk‖22

The covergence of the CG method depends on the condition number κ2 =
λ1/λN where λ1 and λN corresond to the largest and smallest eigenvalue,
respectively. It can be shown i.e in [32] that

‖b‖2
‖r0‖2

‖b− Axk‖2
‖b− Ax0‖

≤
√

κ2(A)
‖xk − x∗‖A
‖x∗ − x0‖A

118

[x, r] = pcg(x, b, A, M, ε, kmax)

r = b− Ax, ρ0 = ‖r‖22, k = 1

Do while
√

ρk−1 > ε‖b‖2andk < kmax

z = Mr

τk−1 = zT r

ifk = 1thenβ = 0andp = z

else

β = τk−1/τk−2, p = z + βp

w = Ap

α = τk−1/p
T w

x = x + αp

r = r − αw

ρk = rT r

k = k + 1

For a ill conditioned problem a preconditioned CG algorithm will perform
much beetter.

Our next task is to understand what a preconditioned problem is, and
why we might need it. To improve the performance one might try to replace
Ax = b by another problem with the same solution, but with a condition
number that is closer to one. It is important that the modified problem
preserve the spd (symmetric positive definite) property of A. This can be
done with a two-sided preconditioner. We can express the preconditioned
problem in terms of B, where B is spd, A = B2, and by using a two-sided
preconditioner, S ≈ B−1. Then the matrix SAS is spd and ith eigenvalues
are clustered near one. Morover the preconditioned system

SASy = Sb

has the solution y∗ = S−1x∗, where Ax∗ = b. Hence x∗ can be recovered
from y∗ by multiplication by S. It is however not necessary to compute S. If
ŷk, rk, p̂k are the iterate, residual, and search direction applied to SAS and
we let

xk = Sŷk, rk = S−1r̂k, pk = Sp̂k

then we obtain the preconditioned CG method (8.1) with M = S2.
For futer analysis of CG, GMRES, and other iterative methods we reffer to

119

[32]. This reffernce also contains matlab code on its internet page, in fact you
can download the whole book if you want. Among the simulation examples
is the 2D convection diffusion equation.

120

Bibliography

[1] Arieh Iserles, A first Course in the Numerical Analysisof Differential
Equations, Cambridge University Press, 2002.

[2] Harvard Lomax, Thomas H.Pulliam David W.Zing, Fundamentals of
Computational Fluid Dynamics, Springer, 2001.

[3] A.A. Samarskii, P.N. Vabishchevich, Computational Heat transfer voume
1, Wiley, 1995

[4] James Bordner, Faisal Saied. MGLab 1995

[5] Bernd Flemisch, Multigrid for Scalar Linear Elliptic PDEs, 2004

[6] Creating Graphical User Interfaces version 7 2002. Matlab

[7] Partial Differential Equation Toolbox version 1 2002. Matlab

[8] Peter Knabner, Lutz Angermann. Numerical Methods for Elliptic and
Parabolic Partial Differential Equations, 2003, Springer

[9] Serge Lang , Linear Algebra, Third Edition, 1987, Springer

[10] James W. Demmel, Applied Numerical Linear Algebra, 1997, Siam

[11] LIoyd N. Trefthen, Spectral Methods in Matlab, 2000, Siam

[12] Stig Larsson, Vidar Thome’e, Partial Differential Equations with Nu-
merical Methods, 2003, Springer

[13] Kendall Atkinson, Weimin Han, Theoretical Numerical Analysis, 2001,
Springer

[14] C. T. Kelly, Solving Nonlinear Equations with Newton’s Method 2003,
Siam

[15] Pablo Pedregal, Introduction to Optimaization , 2003, Springer

121

[16] James F. Epperson An Introduction to Numerical Methods and Analysis,
2001, Wiley

[17] W.E.Schiesser, C.A Silebi, Computational Transport Phenomena, 1997,
Cambridge

[18] Claes Johnson, Numerical solution of partial differential equations by the
finite element method, 1988, Cambridge

[19] David Kincaid, Ward Cheney, Numerical Analysis, 2001, Brooks/Cole

[20] Ulrich Trottenberg, Cornelis Oosterlee, Anton Achuller, Multigrid, 2001,
Academic Press

[21] Carl D. Meyer, Matrix Analysis and Applied Linear Algebra

[22] Robert McOwen, Partial Differential Equations, 1995, Prentic-Hall.

[23] Jorge Nocedal, Stephen J. Wright, Numerical Optimization, 1999,
Springer

[24] H K Versteeg, W Malalasekera, An introduction to Computational Fluid
Dynamics, 1995, Prentic-Hall.

[25] Anne Kvrn, lecture notes, Numerical solution of PDE with the Difference
method

[26] V. Arnautu, Pekka Neittanmaki, Optimal Control from Theory to Com-
puter Programs , 2003, Springer

[27] LIoyd N. Trefethen, Numerical Linear Algebra 1997, Siam

[28] William L.Briggs, Van Emden Henson, Steve F. McCormick, A Multigrid
Tutorial, Second Edition, 2000, Siam.

[29] Mark S.Gockenbach, Partial Differential Equations: Analytical and Nu-
merical Methods, 2002, Siam.

[30] R. Barret, M. Berry, T. F. Chan, J.Demmel, J. Donato, J. Dongara,
V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the
solution of Linear Systems: Building Blocks for Iterative Methods, 1993
Siam (found at http://www.netlib.org/templates/index.html)

[31] Jonathan Richard Shewchuck, An Introduction to the Conjugate Gra-
dient Method Without the Agonizing Pain, 1994, Thecnical Report from
Carnegie Mellon University

122

[32] C. T. Kelly Iterative Methods for Linear and Nonlinear Equations, 1995,
Siam.

123

