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Abstract

This thesis describes the development of attitude determination schemes for a small active stabi-
lized and gravity-gradient stable satellite using the relative positions of the Sun, the Earth, and the
surrounding stars. The systems determines the attitude well within the desired accuracy demands,
and the resulting attitude control meets the accuracy requirement of 0.1o about all axes. The satel-
lite‘s attitude and angular velocity are estimated using either a extended kalman filter (EKF), or a
nonlinear observer, with the attitude represented by Euler parameters to ensure global solutions.

The attitude is determined based on observations made by the star, sun, and earth sensors in four
different configurations. The sensor are modeled as ideal, with performances reflecting available
hardware. The satellite‘s attitude and dynamics model are represented relative to the orbit frame,
and extended to include dynamics of reaction wheels placed in a tetrahedron structure. The lin-
earized model is updated to include the added dynamics. The EKF and nonlinear observer are
designed based on the satellite‘s model and modified, enabling them to determine the attitude from
the sensors.

The satellite equations are implemented in continuous-time, while the determinations are imple-
mented discrete with update rates according to chosen sensor configuration. Attitude control is
using a simple PD-scheme with the estimated states as state feedback. Greatest accuracy is attained
using the sun and earth measurements, at an output rate of 40 Hz, as main sensors, and performing
corrections with two star sensors at every fifth iteration. The determination produces the attitude
within a 0.00002o root-mean square error of the actual values. The nonlinear observer displays best
performances when the determination system is exactly determined or overdetermined, while the
EKF displays best performances when the determination system is underdetermined.
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Chapter 1

Introduction

Small satellites may perform complex tasks as survailance and communication, and are to some
degree in demand of directional attitude control. In order to achieve required attitude control, the
satellite‘s attitude, i.e. it‘s relative orientation in space, must be known to some degree of accuracy.
The control performance is dependent on the accuracy of the attitude determination. Because the
satellite‘s low weight budget and small size, inertial navigation systems (INS) becomes to large and
heavy, and the attitude must be derived from the relative positions of the Sun, Earth, and stars
and the Earth‘s magnetic field.

1.1 Previous work and motivation

This thesis is a part of the ongoing study at Kongsberg Defence and Aerospace (KDA) on cluster
satellites. KDA‘s Missile and Space division is participating in an international study of cluster
satellites, and are responsible for attitude control and determination, and the positioning system.
The satellites are to perform optical and radar measurements in unison, and requires accurately
3-axis directional attitude control executed by reaction wheels. To ensure a control performance
of 0.1o, an attitude determination accuracy of 0.001o is desired. The attitude will be derived from
sensor measuring the relative position of the stars, the Sun, and the Earth. The satellite has a
planed circular polar orbit at 600km altitude.

There exist numerous papers and articles on the problem of attitude determination of spacecrafts,
and extended kalman filters and nonlinear observers are two among many methods presented. Lef-
ferts, Markley and Shuster (1982) introduces spacecraft attitude determination using quaternion
based Kalman filter, while the use of a nonlinear observer is addressed by Salcudean (1991), and
extended by Krogstad (2005) to include reaction wheel dynamics. Employing vector observation in
attitude determination is presented by Shuster (1981).

The satellite is based on the previous studied Norwegian mini-satellites, NSAT-1 and NISSE (Nor-
wegian Ionospheric Small Satellite Experiment). The study is presently extend to the field of cluster
satellites, but attitude determination may be treated as a separate and independent part. A rel-
evant study is the attitude determination for NSAT-1, addressed in Kyrkjebø (2000). The strict
attitude demands of the satellite suggests a study of attainable attitude determination using the
proposed sensors.



2 Introduction

1.2 This thesis

This thesis investigates two attitude determination systems using Star, Sun, and Earth sensors in
various configurations for a small active stabilized and gravity-gradient stable satellite. The sensor
modeling assumes ideal models, with performances reflecting available hardware. The Kalman
filters and nonlinear observers will be designed to treat the attitude case, and allow different sensor
output rates. While the performances of the attitude determinations are investigated with a given
set of satellite parameters, the work presented has an general approach and may be employed to a
large set of similar satellite configurations.

1.3 Outline of this thesis

Chapter 2

Basic definitions and notations used throughout the report are described. The definition of rigid
body attitude represented by Euler angles and Euler parameters are presented.

Chapter 3

The selection of are attitude sensor and their configurations are presented. The sensor models
together with corresponding reference- and noise-models are derived.

Chapter 4

The dynamic model of the satellite‘s attitude is presented and linearized, and a active stabilizing
torque is introduced.

Chapter 5

The extended kalman filter and the nonlinear observer are presented, and according to sensor
configurations modified to determine the satellite‘s attitude.

Chapter 6

The performance of the attitude determination schemes are presented and discussed.

Chapter 7

Conclusions based on the performance analysis are presented, and recommendations for further
work are given.



Chapter 2

Attitude representation

In order to perform attitude determination, knowledge of attitude representing is needed. This
chapter presents the basic notations and definitions used to develope a representation of the attitude
by Euler angles and Euler paramenters.

2.1 Definition and notation

This section introduces the basic notation and definitions used when describing ridgid body motion.

2.1.1 Vectors

Vectors are useful in describing forces, torques, velocities and accelerations because they represent
both magnitude and direction. This characteristic makes the use of vectors eligible when dealing
with ridgid body dynamics and kinematics.

Vector description

Vectors can be described as coordinate-free, or in relation with a coordinate frame. Using a
Cartesian coordinate frame in describing vectors, introduces two alternative vector representa-
tions (Egeland and Gravdahl 2002). First as a vector ~u exspressed as a linear combination of frame
a‘s orthogonal unit vectors ~a1,~a2 and ~a3 by

~u = u1~a1 + u2~a2 + u3~a3 (2.1)

where ui are the uniqe components or coordinates of ~u in frame a. Secondly as a coordinate vector
from where the frame coordinates of the vector are written as a column vector

ua =



u1

u2

u3


 (2.2)

where the superscripted a denotes the coordinate frame in which the vector is expressed. In this
thesis the latter notation will be used.



4 Attitude representation

The vector cross product

The vector cross product × is given by

u × v = S(u)v (2.3)

where S(u) ∈ SS(3) is a skew-symmetric matrix, defined as (Fossen 2002)

S(u) = −S(−u) = −ST(u) =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 (2.4)

and often refered to as the skew-symmetric of vector u.

2.1.2 The rotation matrix

In this section the rotation matrix and its properties are briefly presented (Egeland et.al. 2002).

Coordinate transformation for vectors

As shown in section 2.1.1, a vector may be described by its components in a Cartesian coordinate
frame a with orthogonal unit vectors ~a1,~a2 and ~a3. The dynamic model of the satellite used
troughout this report will incorporate several different coordinate frames, and a way to convert a
vector from one frame to another is thus needed. This can be done by introducing the coordinate
transformation from frame b to frame a given by

va = Ra
bv

b (2.5)

where
Ra

b = {~ai · ~bj} (2.6)

is called the rotation matrix fram a to b. The elements rij = ~ai · ~bj of the rotation matrix Ra
b are

called the direction cosines.

Simple rotations

A rotation about a fixed axis is called a simple rotation. By expressing the vectors in Cartesian
coordinate frames, there are a total of three simple rotations. They are

Rx(φ) =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


 (2.7)

Ry(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 (2.8)

Rz(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 (2.9)

where the notation Rx(φ) represents a rotaion of angle φ about the x axis.
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Properties of the rotation matrix

The Rotation matrix has some useful properties that will be presented in this section. It has been
proven that the rotation matrix is orthogonal and satisfies

Rb
a = (Rb

a)
−1 = (Ra

b )
T (2.10)

The rotation matrix has two interpretations. First it acts as a coordinate transformation matrix
when transformating the coordinate vector vb to va according to (2.5), and secondly as a rotation
matrix when rotating the coordinate vector pa to the coordinate vector qa where qb = pa by

qa = Ra
bp

a (2.11)

The latter interpretation is later used to define the attitude of a ridgid body.

It is also proven that the rotation matrix has a determinant equal to unity, and one defines the
rotation matrix by its includement in the SO(3), which is

SO(3) = {R|R ∈ R3×3, RTR = I and detR = 1} (2.12)

The kinematic differential equation of the rotation matrix is given by the two alternative forms

Ṙa
b = S(ωa

ab)R
a
b = Ra

bS(ωb
ab) (2.13)

where ωb
ab is the angular velocity vector of frame b relative to frame a, given in the b frame.

A rotation matrix can also be described as a composite rotation, i.e. a product of two or more
rotation matrices. In the case of three rotations we have

Ra
d = Ra

bR
b
cR

c
d (2.14)

2.2 Attitude

Attitude of a rigid body is its relative orientation between itself and a reference system, and may
be described by an rotation using either Euler angles or Euler parameters.

2.2.1 Reference frames

Before presenting the attitude representation ,it is convenient to define the various reference frames
that determines the attitude. This section presents the selection of frames that are commonly used
in satellite navigation, (Vallado 2001) and (Fossen 2002). Illustrations are given in appendix A.

Earth-Centered Inertial (ECI) frame

The ECI frame is a non-accelerated reference frame in which Newton‘s laws are valid. The frame is
fixed in space with origin at the Earth‘s center and the z-axis pointing towards the North Pole. The
x-axis points toward vernal equinox, the point where the plane of the Earth‘s orbit about the Sun
crosses the Equator going from south to north, and the y-axis completes the right hand Cartesian
coordinate system. The frame is denoted I.
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Earth-Centered Earth Fixed (ECEF) frame

This frame has also its origin at the Earth‘s center. The coordinate axes are fixed to the earth and
rotates relative to the ECI-frame with a frequency of

ωie ≈ 1 + 365.25cycles
(365.25)(24)h

2πrad/cycle
3600s/h

≈ 7.292115× 10−5rad/s (2.15)

because of the Earth‘s daily rotation and its yearly rotation around the sun (Farrell 1976). Because
of Earth‘s rotation, the ECEF frame is not an inertia reference frame. The z-axis points towards
the North Pole, x-axis points towards the intersection between the Greenwich meridian and the
Equator, and the y-axis completes the right handed orthogonal system. The frame is denoted E.

Orbit frame

The orbit frame moves with the satellite, and is also known as the satellite coordinate system.
Instead of pointing from the Earth, the z axis is here set to always point towards the Earth‘s
center. The x axis points in the direction motion along the orbit trajector and is perpendicular
to the radius vector. The x axis is usually not aligned with the velocity vector except for circular
orbits or for elliptical orbits at apogee and perigee. The y axis is normal to the orbital plane. The
frame is denoted O.

Body frame

The body frame is fixed to the satellite and of practical reasons the origin is placed at the satellite‘s
center of mass. The x- and y-axis are defined according to the right-handed coordinate system
along the the symmetrical axes. As with the orbit frame the body frames z-axis points towards the
Earth‘s center. The body frame is aligned with the body frame when the satellite has an attitude
of 0◦ in roll, pitch and yaw. It is this deviation between the Orbit frame and the Body frame that
describe the satellite‘s attitude. The frame is denoted B.

2.2.2 Euler angles

The Euler angles, Θ = [ φ θ ψ ]T, of the roll-pitch yaw type are commonly used to describe the
motion of rigid bodies that move freely, like satellites (Fossen 2002). Here the satellites attitude is
determined by the rotation between the body frame and the orbit frame. In this description the
rotation from body frame to orbit frame may be considered as a composite rotation consisting of a
rotation ψ about the zb, then a rotation θ about the current (rotated) y axis, and finally a rotation
φ about the current x axis, illustrated in figure 2.1. The resulting rotation matrix becomes

Ro
b = Rz(ψ)Ry(θ)Rx(φ) (2.16)

where Rz(ψ), Ry(θ), and Rx(φ) are given by (2.7), (2.8), and (2.9) which yields

Ro
b(Θ) =



cθcψ sθsφsψ − cφsψ sθcφcψ + sφsψ
cθsψ sθsφcψ + cφcψ sθcφsψ − sφcψ

−sθ cθsφ cθcφ


 (2.17)

where c = cos and s = sin. It is seen from (2.17) that the matrix will be singular at ±90o, an an
alternative representation of the attitude is needed. The singularity can be shifted to other angles
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Figure 2.1: Attitude expressed by Euler angles

by changing the order of rotation, but it is always present in the mathematical description Euler
angle attitude.

2.2.3 Quaternion

A quaternion is defined as a vector

q =
[
α
β

]
(2.18)

of dimension 4 where α is the real part and β = [ β1 β2 β3]T is the vector part.

Unit quaternion

A unit quaternion is a quaternion, (2.18), with unit lenght, i.e. it satisfies

pTp = η2 + εTε = 1 (2.19)

The quaternion product

The quaternion product of two unit quaternions p1 and p2 is a unit quaternion defiend by (Chou
1992)

p := p1 ⊗ p2 =
[

η1η2 − εT
1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
(2.20)
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Euler parameters

Because of the existence of singularities in (2.17), Euler parameters are introduced to represent the
satellite‘s attitude. The Euler parameters are defined by

η = cos
θ

2
, ε = k sin

θ

2
(2.21)

where ε = [ ε1 ε2 ε3 ]T and θ is the rotation about the unit vector k. The vector, p = (η ε)T, of
Euler parameters can be treated as a unit quaternion vector, and therein useful mathematical tools
becomes available.

Rotation by Euler parameters

By using the Euler parameters the rotation matrix, Ro
b , can now be expressed as

Ro
b = Re(η, ε) = I + 2ηS(ε) + 2S(ε)S(ε) (2.22)

Any given rotation will correspond to two sets of Euler parameters as

Re(−η,−ε) = Re(η, ε) (2.23)

and the inverse rotation is given by

Re(η, ε)−1 = Re(η, ε)T = Re(η,−ε) (2.24)

2.3 Transformation between frames

This section presents the rotation matrices between the different frames used in this report.

ECEF to ECI

The rotation of the ECEF frame relative that of the ECI frame is a rotation about the coincident
zi and ze axes. This rotation can be described by a simple rotation of type (2.9), with α = ωiet
where ωie is the Earth‘s rotation, given by (2.15), and t is the time passed since the ECEF and
ECI frames were aligned. Since the rotation, α, is defined as negative right handed, the rotation
matrix from frame e to to frame i becomes

Ri
e = Rzi(−α) =




cosα sinα 0
− sinα cosα 0

0 0 1


 (2.25)

given the fact that cos(−α) = cosα and sin(−α) = − sinα.

ECI to Orbit

The rotation between the ECI frame and the Orbit frame is dependent on the satellite orbit. In
this thesis the orbit is assumed polar and circular at 600km altitude, and the rotation may be
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represented as an rotation consisting of two simple rotations. First a time-varying rotation about
the yi axis, where the rotation velocity is defined as

ωo =
√
µg

R
= 0.001083 rad/sec (2.26)

where µg is the Earth gravitational constant and R is the satellite Earth center distance. The second
rotation is due to the orbit frame‘s z-axis pointing towards the Earth, and may be represented as
an constant rotation of 180o about the xi-axis. The rotation from ECI to orbit frame may now be
represented as the two simple rotations in succession as

Ro
i = Rx,πRy,µ =




cosµ 0 sinµ
0 −1 0

sinµ 0 − cosµ


 (2.27)

where µ is the latitude position of the satellite, given by µ = β0 + ωot, where β0 is the satellite‘s
drop angle, and t is the time since last passing 0o latitude.

Orbit to Body

This is the contrary rotation of the rotation defined by the satellites attitude, Re(η, ε), and is
used to produce measurements and reference values. By computing (2.22) and using the properties
(2.24) and (2.10), Rb

o becomes

Rb
o = [ cb

1 cb
2 cb

3 ] =



η2 + ε21 − ε22 − ε23 2(ε1ε2 + ηε3) 2(ε1ε3 − ηε2)

2(ε1ε2 − ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 + ηε1)
2(ε1ε3 + ηε2) 2(ε2ε3 − ηε1) η2 − ε21 − ε22 + ε23


 (2.28)

where cb
i = [ cbix cbiy cbiz ]T is the directional cosines . This rotation has the property that when

the zo and zb are aligned cb
3 becomes [ 0 0 ± 1] which gives us a quantity of the deviation between

the two frames (Ose 2004).
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Chapter 3

Attitude Sensors

This chapter presents the chosen attitude sensors and configurations. Each sensor is studied and
mathematical models, with conjunction reference models, will be derived. Concluding each sensor
presentation will be investigation of available sensor hardware and their measurement noise.

3.1 Sensor configuration

This thesis deals with attitude determination based on four different sensor configuration. The
sensor configurations will be

• Single star sensor

• Double star sensor

• Star and sun sensor

• Star, sun, and earth sensor

With exception of the first, the configurations define the satellite as a multiple sensor system, i.e.
it has redundant attitude measurements. The combination of information from multiple sensors to
achieve performance exceeding those of individual sensors is referred to as multi sensor fusion or
simply sensor fusion (Rao 2002). By this definition, attitude determination may be; in the case of
overdetermined attitude information, considered as an solution to the sensor fusion problem.

An general sensor model may be represented as

ys = (I + ∆)y + b + w (3.1)

where ∆ is the sensor misalignment, b the sensor bias, and w its random noise. By assuming
bias-free and perfect aligned sensors, the above model is reduced to

ys = y + w (3.2)

Because of its simple form and ability to render the noise representation as additive, the reduced
model desirable when modeling sensors.
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3.2 Star sensor

Stars provide an highly accurate reference to the satellite, and since they are orbit independent,
available anywhere in the sky. They are superior to any other attitude references, and determines
attitude within a few arcseconds of the true attitude.

3.2.1 Sensor model

The star sensor compares pictures of star coordinates in the satellite‘s body frame to a on-board star
catalog. The comparament provides a well defined 3-axis attitude representation, such as the Euler
parameters. The senor may be modeled as the true attitude with added noise (Kyrkjebø 2000).
Because of the required unity of qstar, the model (3.2) is not applicable, and the star sensor may
be modeled as

qstar = q⊗ qn (3.3)

where q is the actual attitude, and qn is the star sensor measurement noise, represented as Euler
parameters.

3.2.2 Star reference model

Since the star sensor produces Euler parameters describing the satellite‘s attitude, it is directly
comparable and no further model is needed.

3.2.3 Hardware

The star sensor is the most accurate attitude sensor, but is also heavier, more expensive, and re-
quire more power than most other attitude sensors. This comes from the fact that star sensors
have extensive computer processing in order to produce their measurements from only a picture.
Several types of star sensor exists, and depending on their method of attitude acquisition they are
star scanners, fixed head star trackers, and gimbaled star tracker.

In the past a main disadvantage of the star sensors has been their operating range and weight.
They had low update rates, and could not operate if the operating rates became to large, usually
10o/min. The Danish technical university, DTU, have developed a star sensor, µASC that has
greatly increased performances (Jørgensen, Denver, Betto and Jørgensen 2001), and this is used to
develop the sensor model. The sensors main technical data is given in table 3.1. Here it is seen
that the presented star sensor is small and light, and has an greatly increased operating range.

3.2.4 Measurement noise

As stated above the chosen star sensor has an accuracy of 1 arcsecond around all axis. Arcseconds
is a alternative measure of angles and one arcsecond is equivalent to 0.000278 degrees. Since the
sensor model produces the attitude as a quaternion, it is convenient to represent the accuracy in the
magnitude of the quaternion. By regarding the individual axis angles accuracies as an composite
rotation, the accuracies may be represented as the unit quaternion, qn, by applying algorithm 2.2



3.2 Star sensor 13

Table 3.1: DTU Star sensor main technical data

Property Value
Dimension: 10x10x4,5 cm
Mass: 400 gr
Accuracy: 1 arcsec
Attitude rate up to 10 deg/sec
Reliability 99.999%
Update rate: 8 Hz

(Fossen 2002) as

Θa =



φa

θa
ψa


 =




0.000278
0.000278
0.000278


 Alg.2.2⇒ qa ≈




1
2.4 · 10−6

2.4 · 10−6

2.4 · 10−6


 (3.4)

By using the result of (3.4), the star sensor measurement noise may now be modeled as

qn =
[√

1− ||εn||2
εn

]
(3.5)

where εn is represented by Gaussian white noise with the properties

E[ε2
n,i] = σ2

εn,i
, for i = 1, 2, 3 (3.6)

where
σεn,i = 2.4 · 10−6 (3.7)

When using the measurement in attitude determination it is sometimes required that the mea-
surement noise is modeled as additive. By representing (3.3) in the form of (3.2), the additive
measurement noise , vstar, may be represented as

vstar = q⊗ qn − q (3.8)

It is seen from the above equation that by representing the sensor model as (3.2), the measurement
noise becomes scaled. By expanding (3.8), the noise model may be represented on component for
as

vstar =
[

ηηn − εTεn − η

ηε + ηnε + S(ε)εn − ε

]
(3.9)

and the noise covariance may then be derived by

E[v2
star] = σ2

vstar
=

[
ηE[η2

n] − εTE[ε2
n] − η

ηE[ε2
n] +E[η2

n]ε + S(ε)E[ε2
n]− ε

]
(3.10)

One may assuming that ηn =
√

1− ||εn||2 ' 1, which implies that E[η2
n] ' 1, and (3.10) may now

be reduced to

σ2
vstar

'
[

εTE[ε2
n]

ηE[ε2
n] + S(ε)E[ε2

n]

]
(3.11)
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3.3 Sun Sensor

The Sun provides an reference when the satellite is in line of view of it. The Suns visibility from
the satellite is dependent on orbit, and in occurrence of eclipse, the reference availability ceases.

3.3.1 Sensor model

In principle the Sun sensor is a measurement of the Sun‘s relative position with respect to the
satellite‘s body frame. This position, expressed as a direction by a vector, is called the Sun vector
measurement, and may be modeled as

sb = Rb
os

o
ref + vsun (3.12)

where Rb
o is the actual rotation matrix, vsun =

[
vsun,1 vsun,2 vsun,3

]T is the measurement noise,
and so

ref is the sun vector reference produced by (3.17).

Figure 3.1: Sun position relative to the Earth

3.3.2 Sun reference model

In order to utilize the Sun vector measurement, knowledge of the Suns position relative to the
satellite‘s orbital position is needed for comparison. The reference model presented in this section
is based on the work done by Svartveit (2003). Here a model simplification is presented by describing
the Sun-Earth related motion as seen from the Earth, i.e. the Sun revolves around the Earth as the
Earth revolves around the Sun, illustrated in 3.1. The elevation of the Sun, εs, varies periodically
through a year and is given by

εs =
23π
180

sin
(

Ts
3652π

)
(3.13)

where Ts is the time given in days, since the first day of spring. By a period of 365 days the Sun‘s
orbit around the Earth is given by

λs =
Ts

365
2π (3.14)
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where λs is called the Sun‘s orbit parameter. The Sun‘s position at a given time relative to the
ECI frame can now be expressed as

si
ref = Ry(εs)Rz(λs)si

0 (3.15)

where
si
0 =

[
1 0 0

]T (3.16)

is the Sun‘s position when the Earth passes vernal equinox, Ry and Rz are the simple rotations
given by (2.8) and (2.9). By using the result of (3.15) and (2.27) the Sun‘s position relative to the
satellite is given by

so
ref = Ro

i s
i
ref (3.17)

Because much of the light detected by the Sun sensor is the Earth albedo, i.e. Sun light reflected
from the Earth‘s surface, a correction of the sun sensor measurement is needed before further use.
The albedo light changes due to the varying reflectivity of the Earth‘s surface, the satellite‘s position
and the Sun‘s position. Because of the usual limited on-board computation power and memory
space on small satellites, it is convenient to model the albedo as a polynomial function. This model
has proven to yield good results in attitude determination (Appel 2004). The albedo effect on
the sun vector measurement may also be compensated for by using certain sensor hardware, as
explained in the next section.

3.3.3 Hardware

There exist numerous ways of measuring the sun vector. A common property is that they have
medium/high accuracy, wide field of view, high reliability, radiation tolerance, small size, and low
mass, all of which are important for use in ADCS of small satellites. Depending on the mission
requirements a number of different types of sun sensors may be used. They range from coarse sun
sensors such as the Sun acquisition sensor(SAS) and attitude anomaly detector(AAD), further to
the analog fine sun sensor such as the quadrant sun sensor(QSS), and finally to the digital fine sun
sensor(DSS).

A DSS has limited field of view, FOV, but is not affected by the Earth albedo unless the Earth
is adjacent to the sun spot (Boldrini and Monnini 2001). Due to these properties and the strict
attitude determination requirement, the DSS is chosen as the Sun sensor in which the model (3.12)
is based on. There are numerous manufactors of a DSS, but the sensor presented by Boldrini et.al.
(2001) is chosen as reference, and it‘s main technical data is given in table 3.2.

3.3.4 Measurement noise

As seen from table 3.2 the accuracy of the sun sensor is 0.02o for all axes. The measurement noise
may be represented by incorporating the sensor error into the rotation matrix in (3.12). As with the
star sensor, the sensor‘s individual angle errors can be combined to represent a composite rotation
Re(ηsn, εsn) by using

qsn =
[√

1− ||εsn||2
εsn

]
(3.18)

110 Hz in sun acquisition mode and up to 100 Hz in sun tracking mode
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Table 3.2: DSS main technical data

Property Value
Dimension: 110x110x50 mm
Mass: 0.425 kg
FOV: 128x128o

Accuracy: <0.02o

Resolution: <0.005o

Update rate: 10/100 Hz1

The sensor model now becomes

sb = Re(η,−ε)Re(ηsn,−εsn)so
ref (3.19)

, and by comparing (3.19) and (3.12), the noise may be represented as additive by

vsun = (Re(η,−ε)Re(ηsn,−εsn) −Re(η,−ε))so
ref = Re(η,−ε)(Re(ηsn,−εsn) − I)so

ref (3.20)

By substituting (2.22) into (3.20), it is reduced to

vsun =Re(η,−ε)(2ηsnS(−εsn) + 2S(−εsn)S(−εsn))so
ref

=Re(η,−ε)(2S(εsn)S(εsn) − 2ηsnS(εsn))so
ref (3.21)

The covariance of the measurement matrix may now be determined by

E[v2
sun ] = Re(η,−ε)(2S(E[ε2

sn])S(E[ε2
sn]) − 2E[η2

sn]S(E[ε2
sn]))so

ref (3.22)

Because the sensor error is represented as an unit quaternion one may assume that the ηsn ' 1,
which further implies that E[η2

sn] ' 1. Equation (3.22) can now be reduced to

E[v2
sun ] ' Re(η,−ε)(2S(E[ε2

sn])S(E[ε2
sn]) − 2S(E[ε2

sn]))so
ref (3.23)

where
E[ε2

sn] = 1.7450 · 10−4 · I3×3 (3.24)

is the covariance of the noise quaternion qsn, generated by Gaussian white noise.

3.4 Earth Sensor

The Earth is always visible for satellites orbiting it, and with the knowledge of the orbit, a reference
may be acquired anywhere.
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Figure 3.2: Satellite‘s orbit and body frame relative to the Earth

3.4.1 Sensor model

An Earth sensor, or horizon scanners as they are also known as, determines the Earth‘s position
relative to the satellite. Because of the approximated circular shape of the Earth, only the roll and
pitch part of the Euler angles can be determines from the measurements. A model of the sensor
can take the form

ye =
[
φe

θe

]
=

[
φ
θ

]
+

[
βxo

βyo

]
+ ve (3.25)

where φ and θ are the true roll and pitch attitude of the satellite, βxo and βyo are the roll and pitch
attitude between the Earth‘s horizon and the orbit frame, and ve is the measurement noise.

3.4.2 Earth reference model

Figure 3.2 shows the xz-crossection of the relative positions of the Earth, orbit frame, and body
frame. The figure applies also to the yz-plane, and under the assumption of a circular Earth, the
relative roll and pitch angle between the orbit frame and the Earth‘s horizon is constant, and be
determined by

βxo = βyo = 90o − sin−1(
Re

Re + h
) (3.26)

where Re is the Earth‘s radius and h is the satellite‘s orbit altitude. When (3.26) is subtracted
from (3.25), the resulting sensor measurement becomes comparable with the roll and pitch attitude
of the satellite.

3.4.3 Hardware

Most Earth sensors determines the horizon angles,φe and θe, by using the infrared domain to detect
the Earth/space transition. EADS Sodern delivers digital optronic sensors with accuracies in the
0.03o region, and outpu data rates of about 1Hz. Goodrich provides two sensor, where one is similar
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to EADS‘s and the other is an analog version. The analog sensor has poorer accuracies but the
measurements may be sampled at any chosen rate. Due to this property the analog sensor, model
13-470-RH, is chosen to represent the horizon sensor, and it‘s main features are given in table 3.3.

Table 3.3: 13-470-RH main data

Property Value
Dimension: 19 cm in diameter,

12.2 cm deep
Mass: 0.190 kg
Operating range: ±10o around nadir
Accuracy: <0.2o

3.4.4 Measurement noise

The chosen horizon sensor has an accuracy of 0.2o, which corresponds to 0.0035 rad. Since the
sensor measurement is also represented in Euler angles the measurement noise may be represented
by Gaussian white noise with the property

E[v2
e,i] = σ2

ve,i
, for i = 1, 2 (3.27)

where
σve,i = 0.0035 (3.28)



Chapter 4

Satellite attitude

This section presents the deduction of the satellite‘s mathematical model. It is derived by using the
model presented by Kyrkjebø (2000) and extending it to include reaction wheel dynamics (Goeree
and Chatel 1999) and (Wiger 2003). The model is the basis for both the Kalman Filter and the
nonlinear observer, and is essential in accurately determining the attitude.

4.1 Dynamic equation of motion

4.1.1 kinetic equations

Derived from elementary mechanics, the satellite‘s inetial kinetic equations of motion is given in
body frame by

ω̇b
ib = (Ib)−1[−S(ωb

ib)I
bωb

ib + τ b + gb] (4.1)

where Ib is the satellite‘s inertia given in the body frame, ωb
ib =

[
ωb

ib,x ωb
ib,y ωb

ib,z

]T
is the angular

velocity of the body frame relativ to the ECI frame given in body frame, τ b is the control torque,
and gb is the gravitation force acting on the satellite.

The control torques, τ b, are generate by the reaction wheels placed in a tetrahedron structure,
(Wiger 2003). The resulting torques are given by

τ b = −S(ωb
ib)AIw(ωw + ATωb

ib) (4.2)

ω̇w = (Iw)−1τw − ATω̇b
ib (4.3)

where ωw =
[
ωw,1 ωw,2 ωw,3 ωw,4

]T are the angular rates of the individual wheels, τw is the
control input, A is the reaction wheels configuration matrix defined as

A =
[
t1 t2 t3 t4

]
= {aji}, j = 1, .., 3, i = 1, .., 4 (4.4)

, and Iw is the diagonal matrix containing the inertias of the reaction wheels about their spin axes
on its diagonal given by

Iw =




i1 0 0 0
0 i2 0 0
0 0 i3 0
0 0 0 i4


 (4.5)



20 Satellite attitude

It is desirable to express the model in reference to the orbit frame in stead of the ECI frame. This
is done using the known relation between the body-orbit and the body-ECI angular velocities as

ωb
ib = ωb

io + ωb
ob = Rb

oω
o
io + ωb

ob (4.6)

where Rb
o is the rotation matrix from orbit to body frame as defined in (2.28),

ωb
ob =

[
ωb

ob,x ωb
ob,y ωb

ob,z

]T
is the angular velocity of the body frame relative to the orbit frame

given in body frame, and ωo
io is the constant rotation of the orbit frame relative to the ECI-frame

given by
ωo

io =
[
0 −ωo 0

]T (4.7)

where ω0 is defined by (2.26).

By using (4.6) and the rotation matrix property (2.13), the derivative of the angular velocity vector
relative to the orbit frame may be derived by

ω̇b
ib =

δ

δt
(Rb

oω
o
io + ωb

ob) = Ṙb
oω

o
io + ω̇b

ob = ω̇b
ob − Rb

oS(ωb
ob)ω

o
io (4.8)

The gravitation torque, gb, acting on the satellite due to the gravitational field of the planets, the
Moon and the Sun is modeled as

gb = 3ω2
oc3 × Ibc3 (4.9)

where c3 is the direct cosine defined in (2.28).

4.1.2 Kinematic equations

The attitude motion of the satellite is described as

ε̇ =
1
2

[ηI + S(ε)]ωb
ob (4.10)

η̇ = −1
2
εTωb

ob (4.11)

4.2 State space models

4.2.1 Nonlinear

By choosing the state vector as
xa =

[
q ωb

ob ωw

]T (4.12)

where a denotes the use of all the states. By substituting (4.6) and (4.8) into (4.1)-(4.3), the
nonlinear state space model becomes

ẋa =




η̇
ε̇

ω̇b
ob

ω̇w


 = f(xa, τw, t) + Ew (4.13)
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where w is the process noise, E is the process noise matrix, and f(xa, τw, t) is defined as

f(xa, τw, t) =




1
2εTωb

ob
1
2 [ηI + S(ε)]ωb

ob

finert + faddinert + frot + fw + fext

f̃inert + f̃addinert + f̃rot + f̃w


 (4.14)

where

finert = −(Ib)−1[−S(ωb
ob + Rb

oω
o
io)(I

b)−1(ωb
ob + Rb

oω
o
io)) (4.15a)

faddinert = −(Ib)−1[−S(ωb
ob + Rb

oω
o
io)(AIw)−1(ωw + AT(ωb

ob + Rb
oω

o
io)) (4.15b)

frot = S(ωb
ob)R

b
oω

o
io (4.15c)

fw = −(Ib)−1Aτw (4.15d)

fext = (Ib)−1gb (4.15e)

f̃inert = −ATfinter (4.15f)

faddinert = −ATfaddinter (4.15g)

f̃rot = −ATfrot (4.15h)

f̃w = −(Iw)−1τw (4.15i)
(4.15j)

4.2.2 Linearized

A linearization of the satellite‘s model is needed in calculating the Kalman gains, section 5.2.1.
The states that are to be determined are the q and ωb

ob, and corresponding dynamics is reduced by
removing the ω̇w from (4.13). The new state vector is now

x =
[
q ωb

ob

]T (4.16)

and the new state space model becomes where f(xa, τw, t) is defined as

ẋ = f(x, τw,ωw, t) =




1
2εTωb

ob
1
2 [ηI + S(ε)]ωb

ob

finert + faddinert + frot + fw + fext


 (4.17)

where the angular rates of the reaction wheels, ωw, are assumed known and now treated as a con-
stant.

The linearization converts the system (4.17) to the form

∆ẋ = F∆x + B∆τw (4.18)

where F is the differentiation of (4.17) with respect to x, and B is with respect to the input τw as

F =
δf(x, τw,ωw, t)

δx
, B =

δf(x, τw,ωw, t)
δτw

(4.19)
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As a simplification of the linearization process, the nonlinear function f(x, τ ,ωw, t) can be divided
into two parts; an attitude part consisting of the Euler parameters and a angular velocity part. By
performing this partition the derived linear system matrix, F, can now be separated in the same
manner by

F =
[
Fatt

Fvel

]
=

[
δq̇
δx1

· · · δq̇
δx7

ω̇b
ob

δx1
· · · ω̇b

ob
δx7

]
(4.20)

The linearized attitude part becomes (Kyrkjebø 2000)

Fatt =
[

0 −1
2(ωb

ob) −1
2εT

1
2ωb

ob −1
2S(ωb

ob)
1
2 [ηI + S(ε)]

]
(4.21)

Before linearizating the angular velocity part, it is convienient to express the dynamics in component
form. As presented above the angular velocity of the satellites is expressed by

ω̇b
ob = finert + faddinert + frot + fw + fext (4.22)

where each part of (4.22) can be expressed in components as presented following. The effect of the
satellites own inertia can now be expressed as

finert =



kx(ωb

ob,2 − c22ωo)(ωb
ob,3 − c32ωo)

ky(ωb
ob,1 − c12ωo)(ωb

ob,3 − c32ωo)
kz(ωb

ob,1 − c12ωo)(ωb
ob,2 − c22ωo)


 (4.23)

where kx = Iy−Iz

Ix
, ky = Ix−Iz

Iy
, and kx = Iy−Ix

Iz
, and the direction cosines, cij , for i = 1, .., 3, j =

1, .., 3, are defined by (2.28). and

finertadd =




1
Ix

(−e2(ωb
ob,3 − c32ωo) + e3(ωb

ob,2 − c22ωo))
1
Iy

(e1(ωb
ob,3 − c32ωo) − e3(ωb

ob,1 − c12ωo))
1
Iz

(−e1(ωb
ob,2 − c22ωo) + e2(ωb

ob,1 − c12ωo))


 (4.24)

where

ej = iw

4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo))), for j = 1, .., 3 (4.25)

is the added inertia to the satellite due to the spinning reaction wheels. The added effect of
expressing the attitude with regards to the orbit frame is

frot =



−ωb

ob,3(ω
b
ob,2 − c22ωo) + ωb

ob,2(ω
b
ob,3 − c32ωo)

ωb
ob,3(ω

b
ob,1 − c12ωo) − ωb

ob,1(ω
b
ob,3 − c32ωo)

−ωb
ob,2(ω

b
ob,1 − c12ωo) + ωb

ob,1(ω
b
ob,2 − c22ωo)


 (4.26)

and the gravitation effect is

fext = 3ω2
o



kxc23c33

kyc13c33

kzc13c23


 (4.27)

The satellites angular velocity model, (4.22), may now be differentiated with respect to the state
vector, (4.16), as

Fvel =
∂finert

∂x
+
∂finertadd

∂x
+
∂frot

∂x
+
∂fext

∂x
(4.28)
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where ∂finert
∂x , ∂frot

∂x , and ∂fext
∂x have been calculated by Kyrkjebø (2000). This leaves ∂finertadd

∂x to be
calculated as

∂finertadd

∂x
=




∂finertadd,1

∂η · · · ∂finertadd,1

∂ωb
ob,3

...
. . .

...
∂finertadd,1

∂η · · · ∂finertadd,1

∂ωb
ob,3


 (4.29)

The computation of ∂finertadd
∂x is performed in appendix C.1, and the linearized velocity matrix, Fvel,

now becomes

Fvel =



b51 b52 b53 b54 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77


 (4.30)

where the components, aij , are defined in appendix C.2.

The Linearization of the system with respect to the input τw may also be separated as

B =
[
Batt

Bvel

]
(4.31)

From (4.17), it is noted that the satellite‘s attitude part is independent on τw, and the corresponding
linearization , Batt, becomes zero. The attitude part is linearized as

Bvel =
∂

∂τw
(finert + faddinert + frot + fw + fext) = −(Ib)−1A (4.32)

4.3 Process noise

The process noise accounts for the differences between the above modeled satellite and the actual
behavior of the satellite. It is assumed that the disturbances only acts on the q and ωb

ob part of
the model and that they are uncorrelated and addictive making

E =
[
I7×7

04×7

]
(4.33)

and
w =

[
w1 w2 w3 w4 w5 w6 w7

]T (4.34)

where w1 thorough w7 are modeled as white Gaussian noise with the property

E[w2] = Q , Q = QT > 0 (4.35)

The process noise can be divided into input noise and parameter noise.

4.3.1 Input noise

Input noise is defines as the disturbances that produces acting torques on the satellite, and the
main factor is due to aerodynamic drag. Aerodynamic drag is caused by the residual atmosphere,
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and is dependent on angular velocity. The individual elements of the disturbance may be assumed
uncorrelated and modeled as white noise with covariance

Qad = diag(σωb
ib,x
, σωb

ib,y
, σωb

ib,z
) (4.36)

Bak (2000) suggested that the aerodynamic drag for a micro-satellite is in the magnitude range of
10−8 to 10−13 Nm.

4.3.2 Parameter noise

Despite the best efforts, the satellite parameters are usually only known to a certain degree. The
main error component is the modeling error related to the moments of inertia, and these can be
represent by introducing noise in (4.1). The noise cannot be directly modeled as Gaussian white
noise, but as a rate noise by (Bak 2000)

Qi = GdQsGT
d + GgQsGT

g (4.37)

where Gd and Gg are the noise input matrices defined as

Gd = diag(ωb
ob,yω

b
ob,z , ω

b
ob,xω

b
ob,z , ω

b
ob,xω

b
ob,y) (4.38)

Gg = diag(−c23c33, −c13c33, −c13c23) (4.39)

and Qs is covariance of the Gaussian white noise defined as

Qs = ksdiag(∆k2
x, ∆k2

y , ∆k2
z) (4.40)

with ks as a tuning parameter.

4.3.3 Stabilizing noise

Truncation of the system by Taylor expansion may introduce errors if the system is highly nonlinear.
There are no physical arguments for introducing stabilizing noise, but when using the truncated
system in a Kalman filter it ensures proper filter behavior. Different scenarios may require different
level of noise, and must therefor be determined empirical.

The accumulate noise model description is now given as

Q =
[

Qq 03×3

03×3 Qi + Qad + Qω

]
(4.41)

where Qq and Qω are the covariance of the stabilizing noise in the Euler parameters and angular
velocity, respectively.

4.4 Position

The satellite‘s attitude is independent on its position, but the position is important in determining
it. The reference sun vector is computed from knowledge of the ECI latitude and longitude position.
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As presented in section 2.3, the ECI position of the satellite is represented as an rotation about
the yi axis, making the longitude position constant at zero. The position model is thus based
on propagating the latitude position, µ, which defines the rotation Ro

i , rather than Keplerian
equations. The presented model is sufficient for simulation purposes, and given by

ri = Ry,µrp (4.42)

where rp is defined as the distance from the center of the Earth to the satellite as

rp =
[
0 0 R

]T (4.43)

and the propagation of the latitude, as presented in section 2.3, is defined as

µ = β0 + ωot (4.44)

4.5 Attitude control

Attitude control is not essential for accurate attitude determination, but when performed it is
necessary to include its effect on the satellite model as done above. Control design is not and
performed in detail and thus not optimum, but it‘s performance is used to illustrate the attitude
determinations effect on the control.

The satellite will be controlled active in azimuth, i.e. around the z-axis, and the control torque
acting on the satellite is generated from the change in spin of the reaction wheels. The change in
spin is driven by the control inputs τw. A simple PD controller is introduced as

τw = KpA†∆̃ε + KdA†∆̃ωb
ob (4.45)

where ∆̃ε and ∆̃ωb
ob are the control errors, and † denotes the use of the pseudo inverse of A defined

as
A† = AT(AAT)−1 (4.46)

For simplicity the reference trajectories are chosen to be zero attitude and zero angular velocity,
s.t. ∆̃ε and ∆̃ωb

ob are exchanged with ε and ωb
ob.



26 Satellite attitude



Chapter 5

Attitude determination

The determination of the satellite‘s attitude may be considered as an optimal nonlinear estimation
problem, and the extended kalman filter and the nonlinear observer may be considered as approxi-
mated solutions to this problem. The topic of this chapter are the approximations assumed and the
following modifications to the two determinations schemes enabling them to produce the attitude
from the sensor measurements.

5.1 Optimal nonlinear estimation

Although the optimal nonlinear estimation problem is well defined, its solution, which relies on
infinite-dimensional description of probability density functions, can generally not be solved ex-
actly (Huster 2003). Combined with the fact that the attitude determination algorithms using
vector measurements are either underdetermined or overdetermined, most solutions to nonlinear
estimation must be considered as approximations, achieved by choosing appropriate approximations
for the particular problem. By considering the noise sources as being driven by white Gaussian
noise and using the presented sensors, suboptimal solutions may be derived.

The solving of the optimal nonlinear estimation problem has been widely discussed in the literature.
Stengel (1994) and Gelb (1974) provides an outline of the problem, while Jazwinski (1970) and
Maybeck (1982) analyze the problem in greater detail.

5.2 Extended Kalman Filter

Since it was introduced by Kalman (1960), the Kalman filter has become a standard design tool
for estimation. Its popularity comes from its flexible approach that can generate good solutions
to a wide range of estimation problems. For linear problems with white Gaussian noise sources,
it generates an optimal solution. For nonlinear problems, many modifications to the Kalman
filter have been developed to generate good, sub-optimal solutions. One such modification is the
extended kalman filter (EKF) (Schmidt 1970), which constructs a linear system that approximates
the nonlinear system near the current best estimate. It must be noted that with the EKF, no
guarantees for optimality or even convergence can be stated as with the Kalman filter. However,
countless nonlinear problems have been solved successfully with the EKF approach.
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5.2.1 Filter theory

The Kalman filter and its extention, the EKF, have been described in countless textbook, including
(Gelb 1974), (Kailath, Sayed, and Hassibi 2000), (Stengel 1994), and (Farrell and Barth 1998).
Before presenting the EKF equations, the discrete implementation of the satellite model must be
derived. The conversion can be done by introducing fictitious samplers and holding devices into the
continuous-time model, and the error introduced by discretization may be made discarded by using
sufficiently small sampling period. Based on continuous system discretization theory, (Chen 1999),
the model may be expressed as

xk+1 = Φkxk + Γkτw,k + Ekwk (5.1a)
yk = Hkxk + vk (5.1b)

where k denotes the sample step, wk =
[
w1,k w2,k w3,k w4,k w5,k w6,k w7,k

]T is the discrete
process noise, vk is the discrete measurement noise, and Ek is the discrete process noise matrix
defined as

Ek = E∆t (5.2)

Φk is the state matrix exponential defined as

Φk = eFk∆t =
∞∑

k=0

Fk∆tk

k!
(5.3)

where ∆t is the step size and Fk is the linearized system matrix, (4.20), at step k, and Γk is the
input matrix defined as

Γk = (eFk∆t − I)F−1
k Bk (5.4)

under the assumption of nonsingular Fk. The two expressions, (5.3) and (5.4), are approximated
by using the first three elements in the series, as

Φk ' I + Fk∆t +
1
2
F2

k∆t
2 (5.5)

Γk ' (I∆t+
1
2
Fk∆t2)Bk (5.6)

The design of the extended Kalman filter is based on the above presented satellite model. The
model is used in the filter to obtain an overview of the measurement to state interactions, and to
predict future outputs. The EKF algorithm for system (4.17) is defined as

Kk = P̄kHT
k [HkP̄kHT

k + Rk ]−1 (5.7a)
x̂k = x̄k + Kk[yk −Hkx̄k] (5.7b)

P̂k = [I− KkHk]P̄k[I− KkHk]T + KkRKT
k (5.7c)

x̄k+1 = Φ̂kx̂k + Γkτw,k (5.7d)

P̄k+1 = Φ̂kP̂kΦ̂T
k + EkQkET

k (5.7e)

where (5.7a) is the calculation of the kalman gain matrix, (5.7b) is the state estimate update,
(5.7c) is the error covariance update, (5.7d) the state estimation propagation, and (5.7e) is the
error covariance propagation. Rk and Qk are design matrices describing the expected covariance
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of the measurement noise, vk, and the process noise, wk. Φ̂k is determined by deriving Fk with
the estimated states.

It is convenient to rewrite (5.7b) into a innovation process and a pure state estimate update as

νk = yb
m,k −Hkx̄k (5.8)

x̂k = x̄k + Kkνk (5.9)

where (5.8) is the innovation process and (5.9) is the state estimate update.

Euler parameters in filter

When employing unit quaternion in representing the attitude it is crucial to maintain the constraint
on the quaternion norm. This suggests the use of a quaternion normalization algorithm (Bar-
Itzhack, Markley and Deutchmann 1991). The quaternion part of the state estimation update and
the state estimation propagation must be normalized in order to maintain the physical content of
the unit quaternion. The normalization in the state estimation propagation can be done as

q̄k+1 =
q̄k+1

||q̄k+1||
(5.10)

Due to numerical round offs, the introduction of (5.10) leads to difficulties in maintaining a singular
covariance matrix, Pk , (Lefferts et.al. 1982). The solution is to reduce the dimension of Pk by one,
and is done by removing η from the state vector, (4.16). The corresponding design model now
becomes

xr,k+1 =
[

εk+1

ωb
ob,k+1

]
= Φr,kxr,k + Γr,kτw,k + Er,kwr,k (5.11a)

yr,k = Hr,kxr,k + vr,k (5.11b)

where r denotes the use of the reduced state vector. Φr,k and Γr,k are now defined as

Φr,k ' I + Fr,k∆t+
1
2
F2

r,k∆t
2 (5.12)

Γr,k ' (I∆t+
1
2
Fr,k∆t2)Br,k (5.13)

and Fr,k and Br,k are the reduced linearized state and input matrices at step k, determined by

Fr,k =
δfr(xr, τw,k,ωw,k, t)

δxk

∣∣∣∣
xr=xr,k

(5.14)

Br,k =
δfr(xr, τw,k,ωw,k, t)

δτw

∣∣∣∣
xr=xr,k

(5.15)

It is important to note that (5.11a) is used in the calculation of the kalman gain matrix, (5.7a),
the error covariance update, (5.7c), and in the error covariance propagation, (5.7e), but not in
calculating the state propagation, (5.7d), where (5.1a) is still used.
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By using the reduced system (5.7a), (5.7b), (5.7c), and (5.7e) can now be expressed as

Kr,k = P̄r,kHT
r,k[Hr,kP̄r,kHT

r,k + Rr]−1 (5.16a)

x̂r,k = x̄r,k + Kr,k[yr,k − Hr,kx̄r,k] (5.16b)

P̂r,k = [I− Kr,kHr,k]P̄r,k[I−Kr,kHr,k]T + Kr,kRrKT
r,k (5.16c)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Er,kQrET

r,k (5.16d)

Becouse of the unit constraint on the quaternion, the above presented filter still contains full state
information, and it may be derived by

x̂k =
[√

1− ||ε̂k||2
x̂r,k

]
(5.17)

The effect of the various sensor configuration on the extended kalman filter will manifest itself in the
innovation process and in the state estimation update. By increasing or decreasing the dimension
of the measurements, ym,k, or altering its physical nature, the measurement matrix, Hk, must be
altered to accommodate these changes and thus maintaining the physical effect of the measurement
on the filter. Altering the measurement matric will in turn change the kalman gain calculation,
error covariance update and propagation in dimension or/and value. Consequently all the presented
kalman filters in this section will utilize (5.7d), (5.16a), (5.16c) and (5.16d), while depending on
the sensor configuration each filter will have different (5.8), (5.9), and measurement covariance, Rr,k.

Consequently, the following presented EKF designs will only treat the design of the innovation
processes and the estimate state updates.

5.2.2 EKF using a single Star sensor

As presented in section 3.2.1, the star sensor measures the attitude of the satellite, represented by
Euler parameters. The estimation error can be interpretended as an rotation, and be used in the
estimation update as

q̂k = q̄k ⊗
[√

1 − ||Kstar,ε,k∆εk||2
Kstar,ε,k∆εk

]
(5.18)

where ∆εk is derived from

∆qk =
[
∆ηk

∆εk

]
= qstar,k ⊗ q̄−1

k (5.19)

where qstar,k is the discrete star sensor measurement defined in (3.3).

While the innovation and state update process for the quaternion part differ from usual practice,
the angular velocity part is done the usual way by the innovation

∆̄εk = εstar,k − ε̄k (5.20)

and the state update as
ω̂b

ob,k = ω̄b
ob,k + Kstar,ω,k∆̄εk (5.21)
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Kstar,ε,k and Kstar,ω,k are the two parts of the kalman gains produced by (5.16a) and defined as

Kstar,k =
[
Kstar,ε,k

Kstar,ω,k

]
(5.22)

The measurements matrix becomes constant and given by

Hstar =
[
I3×3 03×3

]
(5.23)

and the measurement noise covariance matrix is determined by

Rstar,k = diag(σ2
v̄star,2,k

, · · · , σ2
v̄star,4,k

) (5.24)

where
σ2

v̄star,i,k
= E[v̄2

star,i,k] (5.25)

is derived by using the predicted attitude in equation (3.11).

5.2.3 EKF using two Star sensors

This filter is similar to the previous one, distincted by having twice the number of star measure-
ments, qstar1,k and qstar2,k. The innovation processes (5.19) and (5.20) are used on each of the two
measurements, and they are incorporated in the state update as

q̂k = q̄k ⊗
[√

1 − ||Kstar1,ε,k∆εk,1 + Kstar2,ε,k∆εk,2||2
Kstar1,ε,k∆εk,1 + Kstar2,ε,k∆εk,2

]
(5.26)

and
ω̂b

ob,k = ω̄b
ob,k + Kstar1,ω,k∆̄εk,1 + Kstar2,ω,k∆̄εk,2 (5.27)

The kalman gain and measurement matrices are now extended to incorporate two star measurements
as

Kstars,k =
[
Kstar1,ε,k Kstar2,ε,k

Kstar1,ω,k Kstar2,ω,k

]
(5.28)

and

Hstars =
[
I3×3 03×3

I3×3 03×3

]
(5.29)

The predicted measurement noise covariance is also extended to

Rstars,k = diag(σ2
v̄star1,2,k

, · · · , σ2
v̄star1,4,k

, σ2
v̄star2,2,k

, · · · , σ2
v̄star2,4,k

) (5.30)

5.2.4 EKF using Star- and Sun-sensors

The main factor in designing an extended kalman filter with sun and star sensor, is the different
update rates of the two sensors. Seen from table 3.1 and 3.2, the sun sensor produces measure-
ments up to 100 times per second, while the star sensor at 8 times per second. One alternative is
to fashion separate EKF‘s for each sensor, while a more elegant method is to design a combined
filer. The combined filter is strictly speaking an filter using the sun sensor as main measurements
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, and when available, corrected by star measurements.

The sun filter innovation prosess is defined as

νs,k = sb
k − s̄b

k (5.31)

where sb
k is the sun vector measurement defined by (3.12), and s̄b

k is the predicted sun vector derived
from

s̄b
k = R̄e(η̄, ε̄)so

k (5.32)

The innovation process may now be used in updating the states as

q̂k = q̄k ⊗
[√

1 − ||Ksun,ε,kνs,k||2
Ksun,ε,kνs,k

]
(5.33)

and
ω̂b

ob,k = ω̄b
ob,k + Ksun,ω,kνs,k (5.34)

where the kalman gains are

Kr,k =
[
Ksun,ε,k

Ksun,ω,k

]
(5.35)

The predicted sun vector, s̄b
k, is the result of an nonlinear measurement function and Bak (2000)

proposed the following measurement matrix when using vector measurement in kalman filters as

Hsun,k =
∂

∂xr
(s̄b

k)
∣∣∣∣
xr=x̄r

'
[
2S(s̄b

k) 03×3

]
(5.36)

and the measurement noise covariance matrix

Rsun,k = diag(σ2
v̄sun,1,k

, σ2
v̄sun,2,k

, σ2
v̄sun,3,k

) (5.37)

where
σ2

v̄sun,i,k
= E[v̄2

sun,i,k ] (5.38)

The above filter derives the attitude in the time span when only sun measurements are available,
but when star measurements are accessible the filter takes on a little different shape. Firsts the sun
measurement correction of the predicted estimates is performed, followed by the star measurement
correction of the sun corrected estimates, finished by the state propagation. The presented filter
design gives two state update sequences at every iteration the star sensor measurements is available.
The additional equations to the above sun filer is (5.16a), (5.26) , (5.27), and (5.16c).

5.2.5 EKF using Star-, Sun- and Earth sensors

The design of this filter is similar to the previous filter, with the distinction that this uses measure-
ments from both the sun sensor and earth sensor as main sensors, and gets corrections from the
star measurements. The main innovation process is now

νse,k =
[

νsun,k

νearth,k

]
=

[
sb
k − s̄b

k

yb
e − ȳb

e

]
(5.39)
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where ȳb
e and yb

e are the predicted and measured earth‘s horizon angles. The prediction is the Euler
parameter to Euler angle convertation given by the nonlinear equations

ȳb
e =

[
φ̄
θ̄

]
=


 tan−1( 2(ε̄2ε̄3+η̄ε̄1)

η̄2−ε̄21−ε̄22+ε̄23
)

−tan−1( 2(ε̄1ε̄3+η̄ε̄2)√
1−2(ε̄1ε̄3+η̄ε̄2)

)


 (5.40)

The state update is now done according to

q̂k = q̄k ⊗
[√

1− ||Kse,ε,kνse,k ||2
Kse,ε,kνse,k

]
(5.41)

for the quaternion part, and
ω̂b

ob,k = ω̄b
ob,k + Kse,ω,kνse,k (5.42)

for the angular velocety part. The measurement matrix, Hse,k, is defined as

Hse,k =
[

Hsun,k

Hearth,k

]
(5.43)

where Hsun,k is given in the previous section, and Hearth,k is the earth sensor measurement matrix
defined as

Hearth,k =
∂

∂xr
(yb

e)
∣∣∣∣
xr=x̄r

(5.44)

and the linearization is performed in appendix C.3.

5.2.6 Observability

Observability of a system may be achieved in two different ways. The system may exploits static
observability if it is observable at any time, or dynamic observability if it is observable, but does
not satisfy static observability. In this sense, static observability is achieved if the matrix

O =




Hk

HkΦk
...

HkΦn−1
k


 (5.45)

has rank n. Dynamic observability occurs when the system relies on variations in the system
states or time-varying measurement matrices to achieve observability. The criteria for dynamic
observability is obtained if the observability Gramian, defines as

O =
N∑

k=1

ΦT
k HT

k HkΦk (5.46)

is nonsingular (Psiaki, Martel, and Pal 1990)



34 Attitude determination

Satellite observability

Preliminary investigations show that by using one of the presented measurement matrices, Hstar,
Hsun or Hearth, results is an static observable system. If only the quaternion part of the model is
examined, only the star measurement matrix exploits static observability. The two other measure-
ment matrices utilizes the relations between the obsevable quaternion-values, the angular velocities
and the missing quaternion-value to produce static observability, in that order. These relations are
small and may lead to unobservability. The sun measurements and earth measurement must then
rely on their dynamic observability properties to produce an observable system.

5.2.7 Modified EKF

Several researchers have reported poor EKF performance for system that exploits dynamic observ-
ability. It is a significant factor in estimator design when the necessary variations of the system
is slow compared to the rate at which new measurements are acquired, and it implies that long
intervals of subsequent measurements do not generate observability of the complete states. If the
star sensor is not accessible, the resulting filters becomes either a sun filter or a sun and earth filter.
By the above discussion, the resulting filters exploits dynamic observability. Since the sun filter
only has a single vector measurement, it is in addition underdetermined and attitude determination
becomes difficult. The star and earth filter has five measurement parameters available and is thus
overdetermined. This suggests an modification of the filter, performed by combining the sun and
earth measurement to produce a filter exploiting static observability.

By defining a reference vector as

eo
r,k =

[
0 0 1

]T (5.47)

the earth measurements may be represented as a vector measurement by

eb
m,k = (Ry(θe,k)Rx(φe,k))Teo

r,k (5.48)

and be fused with the sun measurement by using the Gauss-Newton algorithm (Marins, Yun,
Bachmann, McGhee, and Zyda 2001). The Gauss-Newton method is a numerical optimization
algorithm that uses line search in minimizing the squared error function, (Nocedal and Wright 1999),
given by

Qo
k = εTε = (yo

r,k − Myb
m,k)

T(yo
r,k −Myb

m,k) (5.49)

where
yo

r,k =
[
so
r,k eo

r,k

]T
(5.50)

are the reference vectors in orbit frame, and

yb
m,k =

[
sb
m,k eb

m,k

]T
(5.51)

are the measured vectors in body frame, and Mk is the total rotation matrix defined as

Mk =
[
Re(η̂g,k, ε̂g,k) 03×3

03×3 Re(η̂g,k, ε̂g,k)

]
(5.52)
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where qg,k is the quaternion defining the attitude. The actual algorithm that minimizing the error
function, and determines qg,k is given by

q̂g,k+1 = q̂g,k −
[
JT(q̂g,k)J(q̂g,k)

]−1
JT(q̂g,k)εo

k(q̂g,k) (5.53)

where q̂g,k is a unit quaternion at sample k, and J is the Jacobian matrix defined as

J = −
[(

∂Mk

∂ηg,k
yb

m

) (
∂Mk

∂εg,1,k
yb

m

) (
δMk

∂εg,2,k
yb

m

) (
∂Mk

∂εg,3,k
yb

m

)]
(5.54)

The convergence of the Gauss-Newton algorithm has undergone comprehensive testing and results
show that the best quaternion is achieved in 3-4 iterations (Marins 2000).

The resulting quaternion from the Gauss-Newton algorithm can now be used in the EKF as the
star sensor measurement is used in the star EKF. The measurement matrix becomes linear as

Hg,k =
[
I3×3 03×3

]
(5.55)

and the measurement covariance matrix

Rg,k = diag(σ2
vg,1

, σ2
vg,2

, σ2
vg,3

) (5.56)

where
σ2

vg,i
= E[v2

g,i] (5.57)

is the covariance of the noise on the quaternion produced by the Gauss-Newton algorithm to be
determined later.

5.3 Nonlinear Observer

Nonlinear observers solve the nonlinear estimation problem in an ad hoc manner. Their design is
performed by proposing an arbitrary filter, with parameters,then tuned according to some criteria.
The most important criteria is convergence, and through Lyapunov analyze it may be proven. The
motivations for choosing nonlinear observers are their ability to find an Lyapunov function that
proves convergens.

5.3.1 Nonlinear observer theory

Consider the nonlinear time-varying system

ẋ = f(x,u, t) (5.58)
y = h(x) (5.59)

where x are the states, u are the inputs, and y are the measurements. A full state observer, under
the assumption that u and y are available, is defined as

˙̂x = f(x̂,u, t) + L(y− h(x̂)) (5.60)

where x̂ are the estimated states and L are the observer gains. Stability of the observer is done by
defining the estimation error dynamics as

ė(t) = ẋ(t) − ˙̂x(t) (5.61)

and analyzing for stability.
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5.3.2 Attitude observer

This section introduces the attitude observer presented by Krogstad (2005). The observer is based
on the work done by Salcudean (1991), but extended to incorporate reaction wheel dynamics. In
presenting this observer it is convienient to represent the satellite‘s equation of motion in a simpler
fashion. The Satellite‘s angular motion in relation to its angular momentum may be described as

hb = Iωb
ob + hb

w (5.62)

where h is the total angular momentum of the satellite and hw is the angular momentum created
by the reaction wheels defined as

hb
w = AIw(ωw + ATωb

ob) (5.63)

By differentiating (5.62) the angular velocity part of (4.14) is obtained. Using the property (5.62)
and a quaternion measurement qm =

[
ηm εm

]T, a discrete nonlinear attitude observer may now
be described by the following dynamics

ĝb = 3ω2
o ĉ3 × Ibĉ3 (5.64a)

˙̂hb = Re(η̂m, ε̂m)[ĝb +
1
2
kp(Ib)−1esgn(e0)] (5.64b)

ĥb
w = AIw(ωw + ATω̂b

ob) (5.64c)

ω̂b
ob = (Ib)−1Re(ηm, εm)T(ĥb − ĥb

w) (5.64d)

˙̂q =
1
2

[
−ε̂T

η̂I + S(ε̂)

]
(ω̂b

ob +
1
2
kvRe(ηm, εm)(Ib)−1Re(ηm, εm)Tesgn(e0)) (5.64e)

where Re(ηm, εm) is the rotation matrix defined by (2.22), and

eo = ηmη̂ + εT
mε̂ (5.64f)

e = η̂εm − ηmε̂ + S(εm)ε̂ (5.64g)

is the quaternion,
[
eo eT

]T, describing the rotation error Re(ηm, εm)Re(η̂, ε̂)T.

5.3.3 Nonlinear observer using star sensors

When using single star measurement the nonlinear attitude observer takes the discrete form of the
above observer with qm exchanged by qs,k as

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (5.65a)

ĥb
k+1 = ĥb

k + Re(ηs,k, εs,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (5.65b)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (5.65c)

ω̂b
ob,k+1 = (Ib)−1Re(ηs,k, εs,k)

T(ĥb
k − ĥb

w,k) (5.65d)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(ηs,k, εs,k)(Ib)−1Re(ηs,k, εs,k)Teksgn(e0,k))∆t (5.65e)

e0,k = ηs,kη̂k + εT
s,kε̂k (5.65f)

ek = η̂kεs,k − ηs,kε̂k + S(εs,k)ε̂k (5.65g)
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When using measurements from more than one attitude sensor the problem of sensor fusion arise.
The measurements from the two star sensor may be combined to produce one quaternion by cal-
culating the mean attitude as

qc,k = qs2,k ⊗

[√
1 − ||12∆εs,k||2

1
2∆εs,k

]
(5.66)

where

∆qs,k =
[
∆ηs,k

∆εs,k

]
= qs1,k ⊗ (qs2,k)−1 (5.67)

By using the combined measurement, qc,k, instead of the single star measurement, qs,k, in (5.65)
the attitude from two star measurements may be determined.

5.3.4 Nonlinear observer using Star- and Sun-sensors

In between the star measurements, only sun measurements are available. The attitude determina-
tion is in this time period underdetermined, and deriving the attitude from the sun measurement
is thus not possible. By using the following observer dynamics, the attitude may be estimated by
the sun vector measurement.

ĥb
k+1 = ĥb

k + Re(η̂, ε̂)[ĝb
k + l1IH

†
kνsun,k ]/Deltat (5.68a)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (5.68b)

ω̂b
ob,k+1 = (Ib)−1Re(η̂, ε̂)

T(ĥb
k − ĥb

w,k) (5.68c)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k + l2IH
†
kνsun,k)∆t (5.68d)

(5.68e)

where l1 and l2 are scalar observer gains, and Hk is based on the epsilon part of the sun measure-
ments matrix ,(5.36), now defined as

Hk = 2S(ŝb
k) (5.69)

where the estimated sun vector, ŝb
k, is

ŝb
k = Re(η̂, ε̂)Tso

ref,k (5.70)

The estimation error ,νsun,k , is defined in a similar fashion as in the EKF, by

νsun,k = sb
k − ŝb

k (5.71)

Since the sun measurement can‘t produce full attitude information, stability or convergence proofs
of just the presented sun observer does not exist. The combined filter must rely on the sun
measurements dynamic observability properties, and its star measurement corrections.
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5.3.5 Nonlinear observer using Star-, Sun- and Earth sensors

The same problem as in the previous section arise here. The nonlinear observer requires the mea-
surements in quaternion form, while the sun and earth sensor produces vector measurements and
non complete Euler angles, respectively. By them selves, they do not contain 3-axis attitude in-
formation, but combined they contain redundant attitude information. This suggests using the
Gauss-Newton method yet again to produce complete attitude information from the two measure-
ments.

The sensor fusion is performed as in section 5.2.7, and the resulting quaternion is utilized by the
nonlinear observer in the same manner as the star sensor measurement, leading to two similar
observers in the form of (5.65), running at different intervals. Since the Gauss-Newton quaternion
is produced from the earth and sun measurements, it is less accurate then the star sensor quaternion
and the respective observer gains must be designed thereafter.



Chapter 6

Performance Analysis

The demands on satellite performance are challenging in terms of attitude determination. The
desired determination accuracy of 0.001o about all axes must be met with th use of either a EKF
or a nonlinear observer with the presented sensor configurations. The determination schemes must
determine the attitude from initially unknown state, and maintain the accuracies during the oper-
ation span.

6.1 Simulation environment

The attitude of the satellite is investigated by simulating the satellite as a gravity-gradient stabi-
lized satellite with active control torque. A block diagram of the simulated system is shown in 6.1.

Figure 6.1: Simulink model overview

The lower left part of the diagram shows the sun reference vector propagation using (3.17). The
upper right part consists of the satellite‘s attitude propagation being driven by the gravitational
force, gb, and the control torque (upper left part), τw. The attitude propagation is done accord-
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ing to the nonlinear model (4.13), and is used as reference when determining the accuracy of the
determination schemes. The bottom right part is according to chosen sensor configuration, one of
the presented attitude determination schemes in chapter 5.

Table 6.1: Satellite parameters

Parameter Value

Inertia matrix diag{4, 4, 3} [kgm2]

Orbit altitude 600 km

Orbit angular velocity - ωo 1.083× 10−3 [rad/s]

Reaction wheels inertia Iw diag{1, 1, 1, 1}× 10−3[kgm2]

R.W. configuration A: t1 = [
√

1
3 ,

√
2
3 , 0]T

t2 = [
√

1
3 ,−

√
2
3 , 0]T

t3 = [−
√

1
3 , 0,−

√
2
3 ]T

t4 = [−
√

1
3 , 0,

√
2
3 ]T

Attitude control: Kp = diag{0.3, 0.3, 0.3}
Kd = diag{1, 1, 1}

Disturbance torque σ = 1 × 10−8 [Nm]

The satellite is simulated in continuous-time, while the attitude determinations are, as they would
in real life, run in discrete-time. The distinction is performed in order to make the simulations as
close to real life as possible, and thus obtain a more actual performance analysis. Since the satellite
is propagated by the ode45 solver, i.e. Runge-Kutta integration (Egeland et.al. 2002), the stability
issues indicated by Kyrkjebø (2000) may be disregarded. According to chosen sensor configuration,
the attitude determination runs at either 8 Hz or 40 Hz, and the discrete sensor models are imple-
mented according to chapter 3. The main simulation parameters are given in table 6.1

To represent the disturbances of aerodynamic drag and solar pressure affecting the satellite, a dis-
turbance torque of covariance σ2 is introduced to the process model. Simulations has shown that
the stabilizing noise representing the quaternion part of the parameter noise may be discarded,
making Qq = 0. No perturbations of the moments of inertia has been exploited in the simulations,
as these are assumed eliminated by in-flight calibration using star sensor measurements.

The initial attitude acquisition of each shembe is investigated by propagating the satellite from a
fixed initial attitude, while the filters and observers believes the attitude to be somewhat differ-
ent. This initial difference is kept small, since attitude acquisition is normally performed shortly
after a computer reset of fault. The initial attitude acquisition, i.e. after satellite de-tumbling
has been performed, is believed to place the satellite in a stable state (Soglo 1994), and by using
either gps-receivers or star sensor measurements as the initial attitude guess, it will correspond to
acquiring the satellite attitude for relatively small deviances. By increasing the assumed process
noise covariance in the filters or increasing the observer gains at start-up, a larger initial deviations
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may be accounted for. The initial values are presented in table 6.2, and an initial drop angle, β0,
of 90o corresponds to an initial ECI position right above the north pole.

Table 6.2: Initial values

Parameter Satellite Determination

attitude Θ [Deg] [10, 10, 10]T [5, 5, 5]T

angular velocity ωb
ob [rad/s] [5, 5, 5]T × 10−4 [2, 2, 2]T × 10−3

Wheel spin ωw [rad/s] [0, 0, 0, 0]T

Position β0 [Deg] 90

The satellite is initially simulated without attitude control for a period of time, thereafter subjected
to control using estimated state feedback the remanding time. This is done to investigate transient
and steady-state performances of the attitude determinations, and display its implications on con-
trol performance. The simulation span is 5000 seconds, which roughly corresponds to one orbit.

Matlab(v7.0) and Matlab/Simulink(v6.0) are chosen as the simulation tool, and all simulation files
are present on the accompanying cd (appendix D). Because of the large number of implemented
determination schemes, their performances are concise presented in form of plots and tables.

6.2 Extended kalman filter

6.2.1 EKF using Star sensors

The star filters determines the attitude at a rate of 8 Hz, and the resulting performances are pre-
sented in the table 6.2(a) and figure 6.2.
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Figure 6.2: Star filters transient errors

The figure presents an graphical representation of the estimation error, Θ̃ = Θ− Θ̂, in the period
after attitude control is applied, and illustrates the transient performances of the filters. The table
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presents the numerical Euler angle and angular velocity estimation errors in the period before and
after the transient period, and illustrates the filters steady-state performances. Table 6.2(b) dis-
plays the attitude control performances when using estimated state feedback. The performance of
the remaining determination schemes will be displayed in the same manner as presented here.

(a) Euler angle estimation errors

Single Double
Conv.: 1.5 sec 1.1 sec

Θ̃ RMS:



2.316
2.480
2.442


 · 10−5



1.974
2.035
1.760


 · 10−5

ω̃b
ob RMS:



4.040
4.308
4.210


 · 10−8



3.820
3.874
3.733


 · 10−8

(b) controller errors

Single Double
Conv.: 87 sec 74 sec

Θ RMS



4.167
0.356
3.656


 · 10−4



4.139
0.334
3.658


 · 10−4

Table 6.3: Star filters steady-state errors

The time after initializing, to the estimation error is contained between ±0.001o, are for the single
star filter and the double star filter respectively 1.5 and 1.1 second. The the root-mean-square
(RMS) estimation error at steady state indicates that the star filters determines the attitude well
within the requirements, with the latter filter showing slightly improved precision.

The transient error of the determination may also be referred to as its tracking error, and is
interpreted as the ability at following changing satellite states. The changes are caused by the
satellite‘s introduction to active control torque, driving the attitude from [51o 12o 24o] to within
0.1o in a time span of 87 and 74 seconds. The faster control convergence in the double star filter case,
is achieved by the transient errors being smaller thus enabling faster converging of the estimates
back to the true attitude. While there exists differences in the control convergence for the two
systems, there are none when considering the steady-state control errors. Even if the latter filter
produces more precise estimates at steady-state, it is not utilized by the presented controller.

6.2.2 EKF using Star-, Sun-, and Earth-sensors

The combined filters determines the attitude at a rate of 40 Hz, where they are corrected by two
star measurements at every fifth iteration. Their performances are presented in table 6.4 and figure
6.3. The combined filter without earth is defined as the star and sun filter presented in section
5.2.4, while the combined filter with earth is the filter presented in section 5.2.5.

Initial attitude acquisition for the combined filters are 1.1 and 1.3 seconds, making them almost
equal to the star filters. The stable-state errors for the combined filters are almost identical, and
both indicate a deterioration of performance from the accuracy observed using only double star
sensor. The reduced performance is caused by the two filters including of either sun sensor or sun
and earth sensors, whom‘s less accurate measurements reduces the filters measurement sensitivity.
The sensitivity reduction is traced back to the combined filters increased measurement covariances.
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Figure 6.3: Combined filters‘ transient errors

(a) Euler angle estimation errors

Without Earth With Earth
Conv.: 1.1 sec 1.3 sec

Θ̃ RMS:




3.098
2.871
2.796


 · 10−5



2.987
2.728
2.679


 · 10−5

ω̃b
ob RMS:




4.818
4.576
4.263


 · 10−8



4.815
4.471
4.260


 · 10−8

(b) controller errors

Without Earth With Earth
Conv.: 62 sec 62 sec

Θ RMS




4.279
0.449
3.844


 · 10−4



4.285
0.436
3.833


 · 10−4

Table 6.4: Combined filters steady-state errors

Even if the combined filters produces less accurate estimates at each timestep compared to the
double star filter, they generate the estimates at 5 times the rate. The gain of increasing the filters
determination rate is illustrated in figure 6.4. Here the discrete roll estimates, φ̂, produced by
the star and sun filter, (dotted), and the double star filter, (dashed), are plotted against their ac-
tual continuous counterpart, φ (solid). By considering the continuous estimation error as the area
between the estimated trajectory and the actual trajectory, the estimation improvement becomes
obvious.

The combined filters transient errors are even smaller than in the case of star filters. Again, this
implies faster error convergence and further on to a faster control convergence, indicated by the
shortened settle time of 62 seconds. By illustrating the control error as in the form of fig 6.4, it is
seen that the combined filters estimates produces the most accurate attitude control.

6.2.3 Modified EKF

The observability properties of the satellite are investigated by calculating the observability Gramian
for each of the measurements at two points in time. First shortly after initialization to inspect the
static observability property, and secondly at the end of the first orbit to examine dynamic observ-
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Figure 6.4: Double star vs. Star and sun filter

ability. Dividing the observability Gramian into four 3×3 submatrices, the upper left part indicates
the attitude observability. Due to the minor relations between the satellite‘s attitude and its angu-
lar velocity, the total Gramian matrices are close to singular after just 5 seconds after initialization.
If only the attitude part is considered, the star measurements Gramian submatrix has condition
number equal to 1, indicating a well defined, nonsingular matrix and thus static observability. The
Sun and Earth measurements produced Gramian submatrices displaying condition numbers in the
magnitude of 104, indicating ill conditioned matrices. This confirms the previous statement of the
system being in practical close to non observable in the static sense.

By evaluating observability at the end of the first orbit, only sun and earth Gramians are of inter-
est. They now produce attitude submatrices with condition numbers 1.8, 31.4 and the combined
2.9, indicating that the attitude is almost fully observable by the sun measurements within one
orbit, but not so observable by the earth sensor. A notable fact is that the combined sun and earth
Gramian observes the attitude worse than just the sun sensor does.

Since the star sensor may become inaccessible due to image smearing, issues concerning the EKF
for systems exploiting dynamic observability must be examined. The problem is illustrated by sim-
ulating a loss of star measurements over a time period of 500 seconds. The loss is examined on the
star, sun, and earth filter, resulting in an determination system exploiting dynamic observability.
The resulting attitude estimation errors is presented in 6.5(a). Here it is seen that the determi-
nation quickly becomes inaccurate and leaves the requirements, with ψ̃ continuing to diverge until
the star sensor is available again.

The main problem of the EKF is that its covariance matrix fails to accurately describe the un-
certainty in the estimates. This uncertainty is included in the calculation of the Kalman gains,
which results in inaccurate state updates. The uncertainties in the covariance matrix is caused
by the application of linear filter equations to the linearized system equations. The sensor fusion
problem suffers from two effects, which combined generate poor EKF performance. First, Hse has
strong dependence on the uncertain states, which promotes the inaccuracy of the covariance matrix.
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Secondly, the accuracy of the covariance matrix is important because it contain information about
previous measurements.
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Figure 6.5: Simulated loss of star measurement

By modifying the star, sun and earth filter according to section 5.2.7, the above presented EKF
issues may be solved. From its performance, figure 6.5(b), it is seen that compared with its tra-
ditional counterpart, the estimation error is more contained in the case of star measurement loss.
It still does not meet the requirements, but more so than the alternative. The improved perfor-
mance of the modified filter comes from the determination now exploiting static observable with
just the sun and earth sensor, and the modified EKF having linear measurement matrix, reducing
the inaccuracies in the covariance matrix.

6.3 Nonlinear observer

6.3.1 Nonlinear observer using Star sensors

As with the star filters, the nonlinear star observers determines the attitude at a rate of 8 Hz, and
their performances are given in table 6.5 and figure 6.6.

The star observer shows similar points of distinctions as the star filters, where the double star
version displays best performances. Compared to the filters, the observers has slower initial attitude
acquisition and greater steady-state and errors. While the errors are greater, the steady-state
control performances are maintained, and the settling times of 59 and 50 seconds indicates faster
determination dynamics.
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Figure 6.6: Star observers transient errors

(a) Euler angle estimation errors

Single Double
Conv.: 12.2 sec 12.1 sec

Θ̃ RMS:




5.501
5.472
6.387


 · 10−5



3.666
3.764
4.325


 · 10−5

ω̃b
ob RMS:




4.181
4.058
6.148


 · 10−8



2.166
2.224
3.414


 · 10−7

(b) controller errors

Single Double
Conv.: 59 sec 50 sec

Θ RMS




4.224
0.429
3.707


 · 10−4



4.183
0.043
3.685


 · 10−4

Table 6.5: Star observers steady-state errors

6.3.2 Nonlinear observer using Star-, Sun- and Earth-sensors

As with the combined filters, the combined observers determines the attitude at a rate of 40 Hz,
where they are corrected by two star measurements at every fifth iteration. The combined observers
does not display the same relative performance as the combined filters, and where the combined
filters indicated similar performances, the combined observers performances greatly differ.
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Figure 6.7: Combined observers transient errors
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The combined observers initial attitude acquisitions are the slowest of all the presented determi-
nation schemes at 65 and 30 seconds. While the star, sun, and earth observers display improved
determination compared to the double star observer, the star and sun observer deteriorates the
determination. The improved and worsened performances of the combined observers are also ap-
parent in the resulting control performance. Considering the increased performances of the star,
sun, and earth observer and its increased determination rate, the resulting performance is superior
to the other presented observers and slightly better than the star, sun, and earth filter.

(a) Euler angle estimation errors

Without Earth With Earth
Conv.: 65 sec 30 sec

Θ̃ RMS:




0.277
1.399
1.842


 · 10−4



2.252
2.401
2.789


 · 10−5

ω̃b
ob RMS:




1.205
7.435
8.217


 · 10−6



0.900
0.940
1.476


 · 10−7

(b) controller errors

Without Earth With Earth
Conv.: 139.6 sec 50.6 sec

Θ RMS




0.0052
0.0003
0.0046






4.198
0.041
3.703


 · 10−4

Table 6.6: Combined observers steady-state errors

The poor performance of the star and sun observer is caused by the observer requiering full attitude
information while the sun sensor only yields underdetermined attitude information. The observer
does not utilize the star measurements dynamic observability property as the EKF does through
its calculation of a covariance matrix.

6.4 Effect of attitude determination

By comparing the performance of the attitude control using the star filters estimates as state-
feedback with the attitude control using sensor measurements directly as state-feedback, the de-
termination effect may be illustrated. Since the controller is dependent on the satellite‘s angular
velocities, ωb

ob, it must be computed directly from the star sensor measurements. By using the
kinematic equations, (4.10), the angular velocities may be calculated as

ωb
ob,k = 2JT(qstar,k)q̇k (6.1)

where

J(qk) =
[

εT
k

ηkI3×3 + S(εk)

]
(6.2)

and the quaternion derivate, q̇k, is computed from knowledge of current and last measurement as

q̇k = qstar,k − qstar,k−1 (6.3)

The differences of using the single star filters estimates versus the measurements directly as state
feedback is presented in figure 6.8.
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Figure 6.8: Satellite propagation simulink overview

Here the controller is turned on within 10 seconds of filter initialization. The control using only star
measurement directly is slow in converging, and at steady-state oscillate with magnitude 2o about
0o. The performance using estimated feedback is discussed in section 6.2.1, and compared with
using the star measurements directly, a far better approach. By using the above calculations to
produce the attitude and angular velocity, it introduces some major errors. The angular velocities
are colored by not compensating for noisy measurements, and thus include the differensiated noise
component. The noise are usually fast changing, and a large error component in the calculation of
the angular velocity is therefor introduced.



Chapter 7

Concluding Remarks and
Recommendations

This thesis develops attitude determination schemes for an active stabilized and gravity-gradient
stable small satellite. Its small size excludes the use of inertial measurements units, and attitude
determination is based on observations of the relative positions of the Sun, the Earth, and the
surrounding stars.

7.1 Conclusion

The attitude determination has desired accuracy demands of 0.001o about each axis, and these
are sought met by employing either an extended Kalman filter or a nonlinear observer. While
the Kalman filter relies on mathematical models of the satellite and sensors, combined with noise
assumptions, the nonlinear observer relies just on the satellite model to estimate the satellite‘s
attitude and angular velocity. Each of the two determination schemes derive the attitude based on
four different sensor configurations.

The accuracy demands of the attitude determination system are easily met by all the presented
determination schemes. Best determination is attained using the sun and earth measurements,
at an output rate of 40 Hz, as main sensors, and performing corrections with two star sensors at
every fifth iteration. Compared to just using the accurate star sensors the resulting determination
displays similar root-mean-square (RMS) errors while generating them at 5 times the rate. Best
determination is achieved with the EKF and by using all available sensors to determine the attitude
with a RMS error of 0.00003o from their true values. Including active attitude control does not
affect attitude determination as its performance is identical before and after control is introduced.

When the attitude determination system is exactly determined or overdetermined, as is the case
using only star sensors or star sensors in combination with sun and earth sensors, the nonlinear
observer gives improved performance compared to the EKF. While producing similar RMS errors
as its counterpart, the advantage is indicated by a shorter settling time of the attitude control.

In the event of an underdetermined determination system, achieved by using star and sun sen-
sors, the EKF shows its strengths and outperforms the nonlinear observer. By storing information
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of previous measurements through the calculation of a covariance matrix, the filter exploits the
dynamic observability property of the sun measurements. The resulting determination produces
attitude estimates with RMS errors of 0.00003o.

7.2 Recommendations

The attitude determination in this thesis does not address implementation issues. Computation
demands of the presented determination schemes should be investigated. If the computations are
proven to be to demanding, lowering the output rates of the sensors and examine the resulting
attitude determination could be explored. A more sophisticated attitude controller, like the LQR,
may be introduced to exactly investigate attainable attitude control based on the presented deter-
mination schemes.

By the implications of this thesis, further development of the nonlinear observer should be per-
formed. Because of their ad hoc design method and simplicity, issues concerning robustness and
optimality should be clarified.
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Appendix A

Reference frames

Figure A.1: ECI, ECEF, and Orbit frame
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Figure A.2: Body, Orbit, and ECI frame



Appendix B

Attitude determination summary

B.1 Extended Kalman Filter

B.1.1 EKF using a single Star sensor

Kstar,k = P̄r,kHT
star[HstarP̄r,kHT

star + Rstar,k]−1 (B.1a)

∆qk = qstar,k ⊗ q̄−1
k (B.1b)

q̂k = q̄k ⊗
[√

1 − ||Kstar,ε,k∆εk ||2
Kstar,ε,k∆εk

]
(B.1c)

∆̄εk = εstar,k − ε̄k (B.1d)

ω̂b
ob,k = ω̄b

ob,k + Kstar,ω,k∆̄εk (B.1e)

P̂r,k = [I−Kstar,kHstar]P̄r,k[I−Kstar,kHstar]T + Kstar,kRstar,kKT
star,k (B.1f)

x̄k+1 = Φ̂kx̂k + Γkτw,k (B.1g)

q̄k+1 =
q̄k+1

||q̄k+1||
(B.1h)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Qr (B.1i)

B.1.2 EKF using two Star sensors

Kstars,k = P̄r,kHT
stars[HstarsP̄r,kHT

stars + Rstars,k]−1 (B.2a)

∆q1,k = qstar1,k ⊗ q̄−1
k (B.2b)

∆q2,k = qstar2,k ⊗ q̄−1
k (B.2c)

q̂k = q̄k ⊗
[√

1 − ||Kstar1,ε,k∆ε1,k + Kstar2,ε,k∆ε2,k||2
Kstar1,ε,k∆ε1,k + Kstar1,ε,k∆ε1,k

]
(B.2d)
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∆̄ε1,k = εstar1,k − ε̄k (B.2e)
∆̄ε2,k = εstar2,k − ε̄k (B.2f)

ω̂b
ob,k = ω̄b

ob,k + Kstar1,ω,k∆̄ε1,k + Kstar2,ω,k∆̄ε2,k (B.2g)

P̂r,k = [I−Kstars,kHstars]P̄r,k[I− Kstars,kHstars]T + Kstars,kRstars,kKT
stars,k (B.2h)

x̄k+1 = Φ̂kx̂k + Γkτw,k (B.2i)

q̄k+1 =
q̄k+1

||q̄k+1||
(B.2j)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Er,kQrET

r,k (B.2k)

B.1.3 EKF using Star- and Sun-sensors

Hsun,k =
[
2S(s̄b

k) 03×3

]
(B.3a)

Ksun,k = P̄r,kHT
sun,k [Hsun,kP̄r,kHT

sun,k + Rsun,k ]−1 (B.3b)

νs,k = sb
k − s̄b

k (B.3c)

q̂k = q̄k ⊗
[√

1 − ||Ksun,ε,kνs,k||2
Ksun,ε,kνs,k

]
(B.3d)

ω̂b
ob,k = ω̄b

ob,k + Ksun,ω,kνs,k (B.3e)

P̂r,k = [I−Ksun,kHsun,k ]P̄r,k[I−Ksun,kHsun,k ]T + Ksun,kRsun,kKT
sun,k (B.3f)

(if star measurement available)

Kstars,k = P̄r,kHT
stars[HstarsP̄r,kHT

stars + Rstars,k ]−1 (B.3g)

∆q1,k = qstar1,k ⊗ q̄−1
k (B.3h)

∆q2,k = qstar2,k ⊗ q̄−1
k (B.3i)

q̂k = q̄k ⊗
[√

1 − ||Kstar1,ε,k∆ε1,k + Kstar2,ε,k∆ε2,k||2
Kstar1,ε,k∆ε1,k + Kstar1,ε,k∆ε1,k

]
(B.3j)

∆̄ε1,k = εstar1,k − ε̄k (B.3k)
∆̄ε2,k = εstar2,k − ε̄k (B.3l)

ω̂b
ob,k = ω̄b

ob,k + Kstar1,ω,k∆̄ε1,k + Kstar2,ω,k∆̄ε2,k (B.3m)

P̂r,k = [I−Kstars,kHstars]P̄r,k[I− Kstars,kHstars]T + Kstars,kRstars,kKT
stars,k (B.3n)

end if

x̄k+1 = Φ̂kx̂k + Γkτw,k (B.3o)

q̄k+1 =
q̄k+1

||q̄k+1||
(B.3p)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Er,kQrET

r,k (B.3q)
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B.1.4 EKF using Star-, Sun-, and Earth-sensors

Hsun,k ==
[
2S(s̄b

k) 03×3

]
(B.4a)

Hearth,k =
∂

∂xr
(yb

e)
∣∣∣∣
xr=x̄r

(B.4b)

Hse,k =
[

Hsun,k

Hearth,k

]
(B.4c)

Kse,k = P̄r,kHT
se,k [Hse,kP̄r,kHT

se,k + Rse,k ]−1 (B.4d)

νse,k =
[

νsun,k

νearth,k

]
=

[
sb
k − s̄b

k

yb
e − ȳb

e

]
(B.4e)

q̂k = q̄k ⊗
[√

1 − ||Kse,ε,kνse,k ||2
Kse,ε,kνse,k

]
(B.4f)

ω̂b
ob,k = ω̄b

ob,k + Kse,ω,kνse,k (B.4g)

P̂r,k = [I−Kse,kHse,k ]P̄r,k[I−Kse,kHse,k ]T + Kse,kRse,kKT
se,k (B.4h)

(if star measurement available)

Kstars,k = P̄r,kHT
stars[HstarsP̄r,kHT

stars + Rstars,k ]−1 (B.4i)

∆q1,k = qstar1,k ⊗ q̄−1
k (B.4j)

∆q2,k = qstar2,k ⊗ q̄−1
k (B.4k)

q̂k = q̄k ⊗
[√

1 − ||Kstar1,ε,k∆ε1,k + Kstar2,ε,k∆ε2,k||2
Kstar1,ε,k∆ε1,k + Kstar1,ε,k∆ε1,k

]
(B.4l)

∆̄ε1,k = εstar1,k − ε̄k (B.4m)
∆̄ε2,k = εstar2,k − ε̄k (B.4n)

ω̂b
ob,k = ω̄b

ob,k + Kstar1,ω,k∆̄ε1,k + Kstar2,ω,k∆̄ε2,k (B.4o)

P̂r,k = [I−Kstars,kHstars]P̄r,k[I− Kstars,kHstars]T + Kstars,kRstars,kKT
stars,k (B.4p)

end if

x̄k+1 = Φ̂kx̂k + Γkτw,k (B.4q)

q̄k+1 =
q̄k+1

||q̄k+1||
(B.4r)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Er,kQrET

r,k (B.4s)
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B.1.5 Modified EKF

J = −
[(

∂M
∂ηg,k

yb
m

) (
∂M
∂εg,1,k

yb
m

) (
δM
∂εg,2,k

yb
m

) (
∂M
∂εg,3,k

yb
m

)]
(B.5a)

q̂g,k+1 = q̂g,k −
[
JT(q̂g,k)J(q̂g,k)

]−1
JT(q̂g,k)εo(q̂g,k) (B.5b)

Kgauss,k = P̄r,kHT
gauss[HgaussP̄r,kHT

gauss + Rgauss]−1 (B.5c)

∆qk = q̂g,k ⊗ q̂−1
k (B.5d)

q̂k = q̂k ⊗
[√

1 − ||Kgauss,ε,k∆εk||2
Kgauss,ε,k∆εk

]
(B.5e)

∆̄εk = εg,k − ε̂k (B.5f)

ω̂b
ob,k = ω̄b

ob,k + Kgauss,ω,k∆̄εk (B.5g)

P̂r,k = [I−Kgauss,kHgauss]P̄r,k[I−Kgauss,kHgauss]T + Kgauss,kRgaussKT
gauss,k (B.5h)

(if star measurement available)

Kstars,k = P̄r,kHT
stars[HstarsP̄r,kHT

stars + Rstars,k]−1 (B.5i)

∆q1,k = qstar1,k ⊗ q̄−1
k (B.5j)

∆q2,k = qstar2,k ⊗ q̄−1
k (B.5k)

q̂k = q̄k ⊗
[√

1 − ||Kstar1,ε,k∆ε1,k + Kstar2,ε,k∆ε2,k||2
Kstar1,ε,k∆ε1,k + Kstar1,ε,k∆ε1,k

]
(B.5l)

∆̄ε1,k = εstar1,k − ε̄k (B.5m)
∆̄ε2,k = εstar2,k − ε̄k (B.5n)

ω̂b
ob,k = ω̄b

ob,k + Kstar1,ω,k∆̄ε1,k + Kstar2,ω,k∆̄ε2,k (B.5o)

P̂r,k = [I−Kstars,kHstars]P̄r,k[I− Kstars,kHstars]T + Kstars,kRstars,kKT
stars,k (B.5p)

end if

x̄k+1 = Φ̂kx̂k + Γkτw,k (B.5q)

q̄k+1 =
q̄k+1

||q̄k+1||
(B.5r)

P̄r,k+1 = Φ̂r,kP̂r,kΦ̂T
r,k + Er,kQrET

r,k (B.5s)
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B.2 Nonlinear Observer

B.2.1 Nonlinear obsever using a single star sensor

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.6a)

ĥb
k+1 = ĥb

k + Re(ηs,k, εs,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (B.6b)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.6c)

ω̂b
ob,k+1 = (Ib)−1Re(ηs,k, εs,k)T(ĥb

k − ĥb
w,k) (B.6d)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(ηs,k, εs,k)(Ib)−1Re(ηs,k, εs,k)Teksgn(e0,k))∆t (B.6e)

e0,k = ηs,kη̂k + εT
s,kε̂k (B.6f)

ek = η̂kεs,k − ηs,kε̂k + S(εs,k)ε̂k (B.6g)

B.2.2 Nonlinear obsever using two star sensors

∆qk =
[
∆ηk

∆εk

]
= qs1,k ⊗ (qs2,k)−1 (B.7a)

qc,k = qs2,k ⊗

[√
1 − ||12∆εk||2

1
2∆εk

]
(B.7b)

e0,k = ηc,kη̂k + εT
c,kε̂k (B.7c)

ek = η̂kεc,k − ηc,kε̂k + S(εc,k)ε̂k (B.7d)

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.7e)

ĥb
k+1 = ĥb

k + Re(ηc,k, εc,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (B.7f)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.7g)

ω̂b
ob,k+1 = (Ib)−1Re(ηc,k, εc,k)

T(ĥb
k − ĥb

w,k) (B.7h)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(ηc,k, εc,k)(Ib)−1Re(ηc,k, εc,k)Teksgn(e0,k))∆t (B.7i)
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B.2.3 Nonlinear obsever using stars and sun sensors

ŝb
k = Re(η̂k, ε̂k)Tso

ref,k (B.8a)

νsun,k = sb
k − ŝb

k (B.8b)

Hk = 2S(ŝb
k) (B.8c)

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.8d)

ĥb
k+1 = ĥb

k + Re(η̂, ε̂)[ĝb
k + l1IH

†
kνsun,k ]∆t (B.8e)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.8f)

ω̂b
ob,k+1 = (Ib)−1Re(η̂, ε̂)

T(ĥb
k − ĥb

w,k) (B.8g)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k + l2IH
†
kνsun,k)∆t (B.8h)

if(star measurement available)

∆qk =
[
∆ηk

∆εk

]
= qs1,k ⊗ (qs2,k)−1 (B.8i)

qc,k = qs2,k ⊗

[√
1 − ||12∆εk||2

1
2∆εk

]
(B.8j)

e0,k = ηc,kη̂k + εT
c,k ε̂k (B.8k)

ek = η̂kεc,k − ηc,kε̂k + S(εc,k)ε̂k (B.8l)

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.8m)

ĥb
k+1 = ĥb

k + Re(ηc,k, εc,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (B.8n)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.8o)

ω̂b
ob,k+1 = (Ib)−1Re(ηc,k, εc,k)

T(ĥb
k − ĥb

w,k) (B.8p)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(ηc,k, εc,k)(Ib)−1Re(ηc,k, εc,k)Teksgn(e0,k))∆t (B.8q)

end if
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B.2.4 Nonlinear obsever using stars, sun, and earth sensors

J = −
[(

∂M
∂ηg,k

yb
m

) (
∂M
∂εg,1,k

yb
m

) (
δM
∂εg,2,k

yb
m

) (
∂M
∂εg,3,k

yb
m

)]
(B.9a)

q̂g,k+1 = q̂g,k −
[
JT(q̂g,k)J(q̂g,k)

]−1
JT(q̂g,k)εo(q̂g,k) (B.9b)

e0,k = η̂g,kη̂k + ε̂T
g,kε̂k (B.9c)

ek = η̂kε̂g,k − η̂g,kε̂k + S(ε̂g,k)ε̂k (B.9d)

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.9e)

ĥb
k+1 = ĥb

k + Re(η̂g,k, ε̂g,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (B.9f)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.9g)

ω̂b
ob,k+1 = (Ib)−1Re(η̂g,k, ε̂g,k)T(ĥb

k − ĥb
w,k) (B.9h)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(η̂g,k, ε̂g,k)(Ib)−1Re(η̂g,k, ε̂g,k)Teksgn(e0,k))∆t (B.9i)

(if star measurement available)

∆qk =
[
∆ηk

∆εk

]
= qs1,k ⊗ (qs2,k)−1 (B.9j)

qc,k = qs2,k ⊗

[√
1 − ||12∆εk ||2

1
2∆εk

]
(B.9k)

e0,k = ηc,kη̂k + εT
c,k ε̂k (B.9l)

ek = η̂kεc,k − ηc,kε̂k + S(εc,k)ε̂k (B.9m)

ĝb
k = 3ω2

o ĉ3,k × Ibĉ3,k (B.9n)

ĥb
k+1 = ĥb

k + Re(ηc,k, εc,k)[ĝb
k +

1
2
kp(Ib)−1eksgn(e0,k)]∆t (B.9o)

ĥb
w,k = AIw(ωw,k + ATω̂b

ob,k) (B.9p)

ω̂b
ob,k+1 = (Ib)−1Re(ηc,k, εc,k)

T(ĥb
k − ĥb

w,k) (B.9q)

q̂k+1 = q̂k +
1
2

[
−ε̂T

k

η̂kI + S(ε̂k)

]
(ω̂b

ob,k +
1
2
kvRe(ηc,k, εc,k)(Ib)−1Re(ηc,k, εc,k)Teksgn(e0,k))∆t (B.9r)

end if
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Appendix C

Linearization

C.1 Added inertia model

∂finertadd,1

∂x
=
∂

∂x
(

1
Ix

(−e2(ωb
ob,3 − c32ωo) + e3(ωb

ob,2 − c22ωo))) (C.1)

=
1
Ix

[− ∂

∂x
(e2)ωb

ob,3 − e2
∂

∂x
(ωb

ob,3) +
∂

∂x
(e2)c32ωo + e2

∂

∂x
(c32)ωo

+
∂

∂x
(e3)ωb

ob,2 + e3
∂

∂x
(ωb

ob,2) −
∂

∂x
(e3)c22ωo − e3

∂

∂x
(c22)ωo]

∂finertadd,2

∂x
=
∂

∂x
(

1
Iy

(e1(ωb
ob,3 − c32ωo) − e3(ωb

ob,1 − c12ωo))) (C.2)

=
1
Iy

[
∂

∂x
(e1)ωb

ob,3 + e1
∂

∂x
(ωb

ob,3)−
∂

∂x
(e1)c32ωo − e1

∂

∂x
(c32)ωo

− ∂

∂x
(e3)ωb

ob,1 − e3
∂

∂x
(ωb

ob,1) +
∂

∂x
(e3)c12ωo + e3

∂

∂x
(c12)ωo]

∂finertadd,3

∂x
=
∂

∂x
(

1
Iz

(−e1(ωb
ob,2 − c22ωo) + e2(ωb

ob,1 − c12ωo))) (C.3)

=
1
Iz

[− ∂

∂x
(e1)ωb

ob,2 − e1
∂

∂x
(ωb

ob,2) +
∂

∂x
(e1)c22ωo + e1

∂

∂x
(c22)ωo

+
∂

∂x
(e2)ωb

ob,1 + e2
∂

∂x
(ωb

ob,1) −
∂

∂x
(e2)c12ωo − e2

∂

∂x
(c12)ωo]

By evaluating (C.1), (C.2), and (C.3) with respect to the kalman states one gets:

∂finertadd,1

∂η
=

1
Ix

[
∂

∂η
(e2)(c32ωo − ωb

ob,3) − 2e2ε1ωo +
∂

∂η
(e3)(ωb

ob,2 − c22ωo) − 2e3ηωo] (C.4)

∂finertadd,2

∂η
=

1
Iy

[
∂

∂η
(e1)(ωb

ob,3 − c32ωo) + 2e1ε1ωo +
∂

∂η
(e3)(c12ωo − ωb

ob,1)− 2e3ε3ωo] (C.5)

∂finertadd,3

∂η
=

1
Iz

[
∂

∂η
(e1)(c22ωo − ωb

ob,2) + 2e1ηωo +
∂

∂η
(e2)(ωb

ob,1 − c12ωo) − 2e2ε3ωo] (C.6)
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where

∂

∂η
(ej) =

∂

∂η
[iw

4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

∂

∂η
(aki(ωb

ob,k − ck2ωo))), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(−aki
∂

∂η
(ck2)ωo)), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i − a1i2ε3ωo − a2i2ηωo + a3i2ε1ωo), for j = 1, .., 3 (C.7)

∂finertadd,1

∂ε1
=

1
Ix

[
∂

∂ε1
(e2)(c32ωo − ωb

ob,3) − 2e2ηωo +
∂

∂ε1
(e3)(ωb

ob,2 − c22ωo) + 2e3ε1ωo] (C.8)

∂finertadd,2

∂ε1
=

1
Iy

[
∂

∂ε1
(e1)(ωb

ob,3 − c32ωo) + 2e1ηωo +
∂

∂ε1
(e3)(c12ωo − ωb

ob,1)− 2e3ε2ωo] (C.9)

∂finertadd,3

∂ε1
=

1
Iz

[
∂

∂ε1
(e1)(c22ωo − ωb

ob,2) − 2e1ε1ωo +
∂

∂ε1
(e2)(ωb

ob,1 − c12ωo) − 2e2ε2ωo] (C.10)

where

∂

∂ε1
(ej) =

∂

∂ε1
[iw

4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(−aki
∂

∂ε1
(ck2)ωo)), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i − a1i2ε2ωo + a2i2ε1ωo + a3i2ηωo), for j = 1, .., 3 (C.11)

∂finertadd,1

∂ε2
=

1
Ix

[
∂

∂ε2
(e2)(c32ωo − ωb

ob,3) + 2e2ε3ωo +
∂

∂ε2
(e3)(ωb

ob,2 − c22ωo)− 2e3ε2ωo] (C.12)

∂finertadd,2

∂ε2
=

1
Iy

[
∂

∂ε2
(e1)(ωb

ob,3 − c32ωo)− 2e1ε3ωo +
∂

∂ε2
(e3)(c12ωo − ωb

ob,1) + 2e3ε1ωo] (C.13)

∂finertadd,3

∂ε2
=

1
Iz

[
∂

∂ε12
(e1)(c22ωo − ωb

ob,2) + 2e1ε2ωo +
∂

∂ε2
(e2)(ωb

ob,1 − c12ωo) − 2e2ε1ωo] (C.14)

where

∂

∂ε2
(ej) =

∂

∂ε2
[iw

4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(−aki
∂

∂ε2
(ck2)ωo)), j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i − a1i2ε1ωo − a2i2ε2ωo + a3i2ε3ωo), j = 1, .., 3 (C.15)
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∂finertadd,1

∂ε3
=

1
Ix

[
∂

∂ε3
(e2)(c32ωo − ωb

ob,3) + 2e2ε2ωo +
∂

∂ε3
(e3)(ωb

ob,2 − c22ωo) + 2e3ε3ωo] (C.16)

∂finertadd,2

∂ε3
=

1
Iy

[
∂

∂ε3
(e1)(ωb

ob,3 − c32ωo) − 2e1ε2ωo +
∂

∂ε3
(e3)(c12ωo − ωb

ob,1)− 2e3ηωo] (C.17)

∂finertadd,3

∂ε3
=

1
Iz

[
∂

∂ε3
(e1)(c22ωo − ωb

ob,2) − 2e1ε3ωo +
∂

∂ε3
(e2)(ωb

ob,1 − c12ωo) − 2e2ηωo] (C.18)

where

∂

∂ε3
(ej) =

∂

∂ε3
[iw

4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(−aki
∂

∂ε3
(ck2)ωo)), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i − a1i2ηωo + a2i2ε3ωo + a3i2ε2ωo), for j = 1, .., 3 (C.19)

∂finertadd,1

∂ωb
ob,1

=
1
Ix

[
∂

∂ωb
ob,1

(e2)(c32ωo − ωb
ob,3) +

∂

∂ωb
ob,1

(e3)(ωb
ob,2 − c22ωo)] (C.20)

∂finertadd,2

∂ωb
ob,1

=
1
Iy

[
∂

∂ωb
ob,1

(e1)(ωb
ob,3 − c32ωo) +

∂

∂ωb
ob,1

(e3)(c12ωo − ωb
ob,1) − e3] (C.21)

∂finertadd,1

∂ωb
ob,1

=
1
Iz

[
∂

∂ωb
ob,1

(e1)(c22ωo − ωb
ob,2) +

∂

∂ωb
ob,1

(e2)(ωb
ob,1 − c12ωo) + e2] (C.22)

where

∂

∂ωb
ob,1

(ej) =
∂

∂ωb
ob,1

[iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

∂

∂ωb
ob,1

(aki(ωb
ob,k − ck2ωo))), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki
∂

∂ωb
ob,1

(ωb
ob,k))), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i + a1i), for j = 1, .., 3 (C.23)

∂finertadd,1

∂ωb
ob,2

=
1
Ix

[
∂

∂ωb
ob,2

(e2)(c32ωo − ωb
ob,3) +

∂

∂ωb
ob,2

(e3)(ωb
ob,2 − c22ωo) + e3] (C.24)

∂finertadd,2

∂ωb
ob,2

=
1
Iy

[
∂

∂ωb
ob,2

(e1)(ωb
ob,3 − c32ωo) +

∂

∂ωb
ob,2

(e3)(c12ωo − ωb
ob,1)] (C.25)

∂finertadd,1

∂ωb
ob,2

=
1
Iz

[
∂

∂ωb
ob,2

(e1)(c22ωo − ωb
ob,2)− e1 +

∂

∂ωb
ob,2

(e2)(ωb
ob,1 − c12ωo)] (C.26)
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where

∂

∂ωb
ob,2

(ej) =
∂

∂ωb
ob,2

[iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki
∂

∂ωb
ob,2

(ωb
ob,k))), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i + a2i), for j = 1, .., 3 (C.27)

∂finertadd,1

∂ωb
ob,3

=
1
Ix

[
∂

∂ωb
ob,3

(e2)(c32ωo − ωb
ob,3) − e2 +

∂

∂ωb
ob,3

(e3)(ωb
ob,2 − c22ωo)] (C.28)

∂finertadd,2

∂ωb
ob,3

=
1
Iy

[
∂

∂ωb
ob,3

(e1)(ωb
ob,3 − c32ωo) + e1 +

∂

∂ωb
ob,3

(e3)(c12ωo − ωb
ob,1)] (C.29)

∂finertadd,1

∂ωb
ob,3

=
1
Iz

[
∂

∂ωb
ob,3

(e1)(c22ωo − ωb
ob,2) +

∂

∂ωb
ob,3

(e2)(ωb
ob,1 − c12ωo)] (C.30)

where

∂

∂ωb
ob,3

(ej) =
∂

∂ωb
ob,3

[iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki(ωb
ob,k − ck2ωo)))], for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i +
3∑

k=1

(aki
∂

∂ωb
ob,3

(ωb
ob,k))), for j = 1, .., 3

=iw
4∑

i=1

aji(ωw,i + a3i), for j = 1, .., 3 (C.31)

C.2 Angular velocity model

By combining the results of the above section with the results form Kyrkjebø (2000), the linearized
angular model can now be expressed as

Fvel =



b51 b52 b53 b54 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77


 (C.32)
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where the components bij are defined as

b51 =2kxωo(ε1(ωb
ob,2 − c22ωo) − η(ωb

ob,3 − c32ωo)) − 6kxω
2
o(ε1c33 + ηc23) + 2(ηωb

ob,3 + ε1ω
b
ob,2)ωo

+
1
Ix

[2iwωo(a21 + a22 + a23 + a24)(−ε3(a11 + a12 + a13 + a14)− η(a21 + a22 + a23 + a24)

+ ε1(a31 + a32 + a33 + a34) + a21ωw,1 +
1

2ωo
(ωw,2 + ωw,3 + ωw,4))(c32ωo − ωb

ob,3)

− 2ε1ωoe2 + 2iwωo(a31 + a32 + a33 + a34)(ε3(−a11 − a12 − a13 − a14) + η(−a21 − a22 − a23 − a24)

+ ε1(−a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + a32ωw,2 + ωw,3 + ωw,4))(ωb

ob,2 − c22ωo)

− 2ηωoe3] (C.33)

b52 =2kxωo(η(ωb
ob,2 − c22ωo) − ε1(ωb

ob,3 − c32ωo)) + 6kxω
2
o(ε1c23 − ηc33) + 2(ηωb

ob,2 − ε1ω
b
ob,3)ωo

+
1
Ix

[2iwωo(a21 + a22 + a23 + a24)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) + a21ωw,1 +
1

2ωo
(ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

− 2ηωoe2 + 2iwωo(a31 + a32 + a33 + a34)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,1 − c22ωo)

+ 2ε1ωoe3] (C.34)

b53 = − 2kxωo(ε3(ωb
ob,2 − c22ωo)− ε2(ωb

ob,3 − c32ωo)) + 6kxω
2
o(ε2c23 − ε3c33) + 2(ε3ωb

ob,3 − ε3ω
b
ob,2)ωo

+
1
Ix

[2iwωo(a21 + a22 + a23 + a24)(−ε1(a11 + a12 + a13 + a14) + ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) + a21ωw,1 +
1

2ωo
(ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

+ 2ε3ωoe2 + 2iwωo(a31 + a32 + a33 + a34)(−ε1(a11 + a12 + a13 + a14) + ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,1 − c22ωo)

− 2ε2ωoe3] (C.35)

b54 =2kxωo(ε3(ωb
ob,3 − c32ωo) − η(ωb

ob,2 − c22ωo)) − 6kxω
2
o(ε2c33 + ε3c23)− 2(ε3ωb

ob,3 + ε2ω
b
ob,2)ωo

+
1
Ix

[2iwωo(a21 + a22 + a23 + a24)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) + a21ωw,1 +
1

2ωo
(ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

+ 2ε2ωoe2 + 2iwωo(a31 + a32 + a33 + a34)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,1 − c22ωo)

+ 2ε3ωoe3] (C.36)
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b55 =
1
Ix

[(iw(a21(ωw,1 + a11) + a22(ωw,2 + a12) + a23(ωw,3 + a13) + a24(ωw,4 + a14)))(c32ωo − ωb
ob,3)

+ (iw(a31(ωw,1 + a11) + a32(ωw,2 + a12) + a33(ωw,3 + a13) + a34(ωw,4 + a14)))(ωb
ob,2 − c22ωo)]

(C.37)

b56 =kx(ωb
ob,3 − c32ωo) − c32ωo +

1
Ix

[(iw(a21(ωw,1 + a21) + a22(ωw,2 + a22) + a23(ωw,3 + a23)

+ a24(ωw,4 + a24)))(c32ωo − ωb
ob,3) + (iw(a31(ωw,1 + a21) + a32(ωw,2 + a22) + a33(ωw,3 + a23)

+ a34(ωw,4 + a24)))(ωb
ob,2 − c22ωo) + e3] (C.38)

b57 =kx(ωb
ob,2 − c22ωo) + c22ωo +

1
Ix

[(iw(a21(ωw,1 + a31) + a22(ωw,2 + a32) + a23(ωw,3 + a33)

+ a24(ωw,4 + a34)))(c32ωo − ωb
ob,3) + (iw(a31(ωw,1 + a31) + a32(ωw,2 + a32) + a33(ωw,3 + a33)

+ a34(ωw,4 + a34)))(ωb
ob,2 − c22ωo) − e2] (C.39)

(C.40)

b61 =2kyωo(ε3(ωb
ob,z − c32ωo) − ε1(ωb

ob,x − c12ωo)) + 6kyω
2
o(ηc13 + ε2c33)− 2(ε1ωb

ob,x + ε3ω
b
ob,z)ωo

+
1
Iy

[2iwωo(a11 + a12 + a13 + a14)(−ε3(a11 + a12 + a13 + a14) − η(a21 + a22 + a23 + a24)

+ ε1(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

+ 2ε1ωoe1 + 2iwωo(a31 + a32 + a33 + a34)(−ε3(a11 + a12 + a13 + a14) − η(a21 + a22 + a23 + a24)

+ ε1(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,2 − c22ωo)

− 2ε3ωoe3] (C.41)

b62 =2kyωo(ε2(ωb
ob,z − c32ωo) − η(ωb

ob,x − c12ωo)) + 6kyω
2
o(ε3c33 − ε1c13)− 2(ηωb

ob,x + ε2ω
b
ob,z)ωo

+
1
Iy

[2iwωo(a11 + a12 + a13 + a14)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

+ 2ηωoe1 + 2iwωo(a31 + a32 + a33 + a34)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,2 − c22ωo)

− 2ε2ωoe3] (C.42)
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b63 =2kyωo(ε1(ωb
ob,z − c32ωo) − ε3(ωb

ob,x − c12ωo)) − 6kyω
2
o(ηc33 − ε2c13) + 2(ε3ωb

ob,x − ηωb
ob,z)ωo

+
1
Iy

[2iwωo(a11 + a12 + a13 + a14)(−ε1(a11 + a12 + a13 + a14) − ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

− 2ε3ωoe1 + 2iwωo(a31 + a32 + a33 + a34)(−ε1(a11 + a12 + a13 + a14) − ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,2 − c22ωo)

+ 2ε1ωoe3] (C.43)

b64 = 2kyωo(η(ωb
ob,z − c32ωo)− ε2(ωb

ob,x − c12ωo)) + 6kyω
2
o(ε1c33 + ε3c13) + 2(ε3ωb

ob,z − ηωb
ob,z)ωo

+
1
Iy

[2iwωo(a11 + a12 + a13 + a14)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,3 − c32ωo)

− 2ε2ωoe1 + 2iwωo(a31 + a32 + a33 + a34)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(ωb

ob,2 − c22ωo)

− 2ηωoe3] (C.44)

b65 = − ky(ωb
ob,z − c32ωo) + c32ωo +

1
Iy

[iw(a11(ωw,1 + a11) + a12(ωw,2 + a12) + a13(ωw,3 + a13)

+ a14(ωw,4 + a14))(ωb
ob,3 − c32ωo) + (iw(a31(ωw,1 + a11) + a32(ωw,2 + a12) + a33(ωw,3 + a13)

+ a34(ωw,4 + a14)))(c12ωo − ωb
ob,1) − e3] (C.45)

b66 =
1
Iy

[iw(a11(ωw,1 + a21) + a12(ωw,2 + a22) + a13(ωw,3 + a23) + a14(ωw,4 + a24))(ωb
ob,3 − c32ωo)

+ (iw(a31(ωw,1 + a21) + a32(ωw,2 + a22) + a33(ωw,3 + a23) + a34(ωw,4 + a24)))(c12ωo − ωb
ob,1)]

(C.46)

b67 = − ky(ωb
ob,x − c12ωo)− c12ωo +

1
Iy

[iw(a11(ωw,1 + a31) + a12(ωw,2 + a32) + a13(ωw,3 + a33)

+ a14(ωw,4 + a34))(ωb
ob,3 − c32ωo) + e1 + (iw(a31(ωw,1 + a31) + a32(ωw,2 + a32) + a33(ωw,3 + a33)

+ a34(ωw,4 + a34)))(c12ωo − ωb
ob,1)] (C.47)
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b71 =2kzωo(ε3(ωb
ob,y − c22ωo) + η(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε1c13 − ε2c23) + 2(ε3ωb

ob,x − ηωb
ob,x)ωo

+
1
Iz

[2iwωo(a11 + a12 + a13 + a14)(−ε3(a11 + a12 + a13 + a14)− η(a21 + a22 + a23 + a24)

+ ε1(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c22ωo − ωb

ob,2)

+ 2ηωoe1 + 2iwωo(a11 + a12 + a13 + a14)(−ε3(a11 + a12 + a13 + a14) − η(a21 + a22 + a23 + a24)

+ ε1(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c12ωo − ωb

ob,1)

− 2ε3ωoe2] (C.48)

b72 =2kzωo(ε2(ωb
ob,y − c22ωo) − ε1(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε3c23 + ηc13) + 2(ε1ωb

ob,x + ε2ω
b
ob,y)ωo

+
1
Iz

[2iwωo(a11 + a12 + a13 + a14)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c22ωo − ωb

ob,2)

− 2ε1ωoe1 + 2iwωo(a11 + a12 + a13 + a14)(−ε2(a11 + a12 + a13 + a14) + ε1(a21 + a22 + a23 + a24)

+ η(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c12ωo − ωb

ob,1)

− 2ε2ωoe2] (C.49)

b73 =2kzωo(ε1(ωb
ob,y − c22ωo) + ε2(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε3c13 − ηc23) + 2(ε1ωb

ob,y − ε2ω
b
ob,x)ωo

+
1
Iz

[2iwωo(a11 + a12 + a13 + a14)(−ε1(a11 + a12 + a13 + a14)− ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c22ωo − ωb

ob,2)

+ 2ε2ωoe1 + 2iwωo(a11 + a12 + a13 + a14)(−ε1(a11 + a12 + a13 + a14) − ε2(a21 + a22 + a23 + a24)

+ ε3(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c12ωo − ωb

ob,1)

− 2ε1ωoe2] (C.50)

b74 =2kzωo(η(ωb
ob,y − c22ωo) − ε3(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε1c23 + ε2c13) + 2(ε3ωb

ob,x + ηωb
ob,y)ωo

+
1
Iz

[2iwωo(a11 + a12 + a13 + a14)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c22ωo − ωb

ob,2)

− 2ε3ωoe1 + 2iwωo(a11 + a12 + a13 + a14)(−η(a11 + a12 + a13 + a14) + ε3(a21 + a22 + a23 + a24)

+ ε2(a31 + a32 + a33 + a34) +
1

2ωo
(ωw,1 + ωw,2 + ωw,3 + ωw,4))(c12ωo − ωb

ob,1)

− 2ηωoe2] (C.51)
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b75 = − kz(ωb
ob,y − c22ωo) − c22ωo +

1
Iz

[iw(a11(ωw,1 + a11) + a12(ωw,2 + a12) + a13(ωw,3 + a13)

+ a14(ωw,4 + a14))(c22ωo − ωb
ob,2) + (iw(a21(ωw,1 + a11) + a22(ωw,2 + a12) + a23(ωw,3 + a13)

+ a24(ωw,4 + a14)))(ωb
ob,1 − c12ωo) + e2] (C.52)

b76 = − kz(ωb
ob,x − c12ωo) + c12ωo +

1
Iz

[iw(a11(ωw,1 + a21) + a12(ωw,2 + a22) + a13(ωw,3 + a23)

+ a14(ωw,4 + a24))(c22ωo − ωb
ob,2) − e1 + (iw(a21(ωw,1 + a21) + a22(ωw,2 + a22) + a23(ωw,3 + a23)

+ a24(ωw,4 + a24)))(ωb
ob,1 − c12ωo)] (C.53)

b77 =
1
Iz

[iw(a11(ωw,1 + a31) + a12(ωw,2 + a32) + a13(ωw,3 + a33) + a14(ωw,4 + a34))(c22ωo − ωb
ob,2)

+ (iw(a21(ωw,1 + a31) + a22(ωw,2 + a32) + a23(ωw,3 + a33) + a24(ωw,4 + a34)))(ωb
ob,1 − c12ωo)]

(C.54)

where e1, e2, and e3 are defined by (4.25).

C.3 Earth sensor measurement matrix

Hearth,k =
∂

∂xr
(yb

e)|xr=x̄r =




∂φ
∂ε1

· · · ∂φ
∂ωb

ob,3
∂θ
∂ε1

· · · ∂θ
∂ωb

ob,3




xr=x̄r

(C.55)

The roll part is linearized as

∂φ

∂xr
=

∂

∂xr
(tan−1(u)) =

1
1 + u2

∂

∂xr
(u) (C.56)

where
u =

2(ε̄2ε̄3 + η̄ε̄1)
η̄2 − ε̄21 − ε̄22 + ε̄23

(C.57)

∂

∂ε1
(u) =

2η(η2 − ε21 − ε22 + ε23) + 2ε1(2(ε2ε3 + ηε1))
(η2 − ε21 − ε22 + ε23)2

(C.58a)

∂

∂ε2
(u) =

2ε3(η2 − ε21 − ε22 + ε23) + 2ε2(2(ε2ε3 + ηε1))
(η2 − ε21 − ε22 + ε23)2

(C.58b)

∂

∂ε3
(u) =

2ε2(η2 − ε21 − ε22 + ε23) − 2ε3(2(ε2ε3 + ηε1))
(η2 − ε21 − ε22 + ε23)2

(C.58c)

∂

∂ωb
ob,1

(u) =
∂

∂ωb
ob,2

(u) =
∂

∂ωb
ob,3

(u) = 0 (C.58d)
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and the pitch part as

∂θ

∂xr
=

∂

∂xr
(tan−1(

v√
1 − v2

)) =
1

1 + ( v√
1−v2

)2
∂

∂xr
(

v√
1 − v2

) (C.59)

where
v = 2(ε1ε3 − ηε2) (C.60)

and

∂

∂ε1
(

v√
1 − v2

) =
2ε3

√
1− v2 − 4ε1ε23

v√
1−v2

1− v2
(C.61a)

∂

∂ε2
(

v√
1 − v2

) =
−2η

√
1 − v2 − 4η2ε22

v√
1−v2

1 − v2
(C.61b)

∂

∂ε3
(

v√
1 − v2

) =
2ε1

√
1− v2 − 4ε21ε3

v√
1−v2

1− v2
(C.61c)

∂

∂ωb
ob,1

(
v√

1 − v2
) =

∂

∂ωb
ob,2

(
v√

1 − v2
) =

∂

∂ωb
ob,3

(
v√

1 − v2
) = 0 (C.61d)
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Folder File Description

common: initSat.m Initializes the satellite

euler2q.m Compute Euler param. from Euler angles

q2euler.m Compute Euler angles from Euler param.

Rquat.m Computes the rotaion matrix from Euler param.

qProd.m Compute the product of two Euler param.

qProdinv.m Compute the inv. product of two Euler param.

nonlinearPropRW.m Computes the nonlin. propagation

linearsystemRRW Computes F

genJacobieD Computes the Jacobiematrix

KF/Star DEKFStar Model of system

KF/Star initFilterStar.m Initializes determination scheme

KF/Star kalmanStar.m Discrete EKF

KF/DoubleStar DEKFDoubleStar Model of system

KF/DoubleStar initFilterDoubleStar.m Init determination scheme

KF/DoubleStar kalmanStar.m Discrete EKF

KF/StarSun DEKFStar Model of system

KF/StarSun initFilterStarSun.m Init determination scheme

KF/StarSun kalmanStar.m Discrete EKF

KF/SunEarthStar EKFSunEarthStar Model of system

KF/SunEarthStar initFilterStar.m Init determination scheme

KF/SunEarthStar kalmanStarSun.m Discrete EKF

KF/SunEarthStar kalmanSunEarthStarMod.m Modified EKF

KF/SunEarthStar EarthLinH.m Lin. earth matrix

Observer/Star ObserverStar Model of system

Observer/Star initObserverStar.m Init determination scheme

Observer/Star ObserverStar.m Discrete observer

Observer/StarDouble ObserverStarDouble Model of system

Observer/StarDouble initObserverStarDouble.m Init determination scheme

Observer/StarDouble ObserverStarDouble.m Discrete observer

Observer/StarSun ObserverStarSun Model of system

Observer/StarSun initObserverStarSun.m Init determination scheme

Observer/StarDouble ObserverStarSun.m Discrete observer

Observer/SunEarthStar ObserverSunEarthStar Model of system

Observer/SunEarthStar initObserverSunEarthStar.m Init determination scheme

Observer/SunEarthStar observerSunEarthStar.m Discrete observer
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