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Abstract

This thesis is a part of the SSETI (Student Space Exploration Technology Initiative)
project, where students from several universities around Europe work together with
the European Space Agency (ESA) with designing, building, testing and launching
an Earth-Moon satellite orbiter (European Student Moon Orbiter (ESMO).

A satellite model with reaction wheels placed in tetrahedron was deduced in a
preliminary study together with an extended Kalman filter to estimate the attitude
from star measurements.

The stability and convergence properties of this system are studied in this the-
sis. Previous studies on the convergence of extended Kalman filter are presented
and a proof of exponentially convergence of a system with extended Kalman filter
is given and used to prove that ESMO with the extended Kalman filter converges
exponentially.

The most recent work and different methods to apply a nonlinear separation prin-
ciple is presented. Three feedback controllers with proof of global asymptotic sta-
bility (GAS) is then introduced and implemented on ESMO. Based upon the global
asymptotic stability of the feedback controllers, and the proof that the extended
Kalman filter works as an exponentially observer, a nonlinear separation principle
is deduced. The closed loop system can then be stated globally asymptotically sta-
ble based upon the deduced separation principle.

The closed loop with the three different controllers is then simulated in Simulink
for varying gains and different reference steps. The three controllers show stable
characteristic as the theory implies. The robust controller shows best tracking and
estimation properties, it is very accurate, simple, robust and adaptable to envi-
ronmentally changes, and is therefore proposed as the most suitable controller for

ESMO.
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Chapter 1

Introduction

This thesis is a study of attitude determination using extended Kalman filter, sta-
bility and feedback control for the ESMO satellite, in co-operation with SSETT edu-
cational program in ESA. The main subject is to continue the work done previously
on attitude determination by implementing feedback control and prove stability of
the feedback loop.

1.1 SSETI Project

The European Space Agency (ESA) decided in 2000 to create a project that would
make students around Europe actively involved in real space missions. The result
was the Student Space Exploration and Technology Initiative (SSETI). Since then,
the association has grown and involves more than 21 different Universities across
Europe in 12 different nations.

The main goal of the SSETT is to motivate today’s students to work in the fields of
science and space technology, by giving them hands on experience with real space
missions.

The satellite projects with SSETI are being designed, modeled, constructed and
tested at a distributed level. This means that every university participating get
responsibility for the construction of one subsystem. ESA contributes with the co-
ordination between all the participants by offering news and ftp servers and IRC
meetings. They also arrange two workshops every year where all the teams meet up
presents their work and discuss further action, as well as getting valuable advices
and inputs from experts at ESA.

The mission structure for the SSETT program is given:
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Mission 0 SSETI Express Launching: 2005
Mission 1 ESEO - Earth Orbiter Launching: 2008
Mission 2 ESMO - Moon Orbiter Launching: 2011

Mission 3 ESMR - Moon Rover  Launching: unknown

e

Jualification

Figure 1.1: Project plan

So far, the SSETT Express is the only one launched, and the mission proved to be
successful. The ESEQO is already come very far in the design and construction, and
is planned launched late 2008. The ESMO satellite is still only in a very early design
stage.

1.1.1 SSETI Express and ESEO

The SSETI Express was almost a rescue operation for the whole SSETI project.
Both motivation and ambition started slowly to fade as the complexity of the ESEQ’s
submodules proved to be time consuming, and progressed very slowly. By taking
advantage of all the work done so far, the SSETI Express was created and launched
only eighteen months after the birth of the project. The success of SSETI Express
motivated the students and once again the enthusiasm for student space community
rose. All the experience gained from this mission is used in the ESEO and ESMO
and all future student satellite projects.

The SSETI Express had several task to employ on its flight. Three educational
student CubeSat pico-satellites from Japan, Germany and Norway were brought as
passengers, and released in low-earth orbits. This is the first time in the history
that a spacecraft is used to place other satellites into earth orbit. The other mission
objectives for this flight was to take picture of the earth and function as a radio
transponder for global amateur radio community, and at the same time, act as a
test-bed and demonstrator for the ESEO hardware.

The SSETT Express was launched 27th of October 2005. The mission had a prema-
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ture ending, most likely a failure in the electrical power system on board prevented
the spacecraft from re-charging its batteries. The project was still concluded a
success as two of its main missions were fulfilled successfully.

Figure 1.2: SSETI Express

The ESEO (European Student Earth Orbiter) is still under construction and is
scheduled to be launched in late 2008. It is far more complex then the previous
SSETI Express and the mission objectives for this satellite are more extensive than
that for the Express. The plan is to launch ESEO directly into a geo-stationary orbit
using the Ariane 5 launch vehicle. This is called a piggyback launch as the satellite
starts the journey with one main passenger and up to seven other micro satellites.
This method is used to limit and spread the enormous cost of a spacecraft launch
over several participants. The nominal mission shall end 28 days after separation
from launcher. ESEQO is suppose to test a propulsion system for orbit manoeuvres.
It is also going to deploy integrated radiation dosimeters within OBDH nodes and
central PC Box to monitor radiation dosage during mission, and take picture of the
moon to increase the enthusiasm for the third and fourth SSETT missions to the
moon.

1.1.2 ESMO - European Student Moon Orbiter

ESMO is the 3rd SSETI satellite mission and is also a big milestone in the his-
tory of space missions, as it will be the first student satellite orbiting the moon.
It is only in the early design stages, but by using previous knowledge from ESEO
and SSETT Express, it will hopefully be able to meet the launch date set in late 2011.

The mission objectives for this satellite are as before to give students the opportu-
nity to get hands-on experience on actual spacecrafts and educate young people to
a career in the European space industry. The more technical assignments during its
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life in orbiting the moon, will be to take picture of the moon, 3D mapping of lunar
surfaces and measure variation in lunar radiation and gravity.

1.1.3 ESMR - European Student Moon Rover

The ESMR is SSETTI biggest dream and ambition as it one day hopes to be able
to successfully land on the moon. The vehicle is planned to be a rover capable of
moving around on the moon surface.

1.2 Previous work done on ESMO

The ESMO mission is SSETT’s third student satellite mission and is only in its start-
ing face yet. The Norwegian team has responsibility for the control system, and a
few studies on this has already been performed.

Both Lund and Simonsen (Narvik 06) studied the dynamics and attitude deter-
mination for the ESMO satellite. In [1], a very good mathematical model based
upon values from ESEO, is derived for the ESMO satellite. While in [2], this model
is linearized and used together with a discrete Kalman filter to determine attitude
for the ESMO satellite. Although some assumptions are made, a good and to some
degree realistic result is achieved where the KF removes noise from the measure-
ments and estimate the state with high accuracy.

In the preliminary studies to this thesis [3], attitude determination is taken one
step further by implementing extended Kalman filter on the previous derived ESMO
model. The accuracy of the attitude determination is here tested for one and two
star sensors and for different sampling frequencies. The result from the simulations
here, shows that double star sensor with highest possible sampling frequency gives
the most accurate response, although more computational power is needed. Even
so, for single star sensor and medium frequency, the error in estimated state is still
within the required accuracy of 0.01°.

1.3 Motivation and goals

The motivation for this thesis is to be a part of a larger team, designing, building,
testing and then launching a real satellite moon-orbiter. The ESMO is the third
and so far most complex and challenging mission for the SSETI. The demand for
an accurate and robust determination and control system to decide and control the
attitude is huge as to be able to manoeuvre the satellite into desired working points

The goal for this thesis is to implement a feedback controller on the previous devel-
oped attitude determination system, and thereafter prove that the overall closed-
loop system is globally asymptotically stable. Since the system is nonlinear and
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depending on state estimation from an extended Kalman filter, the main objective
for this thesis will be to prove that a nonlinear separation principle yields for the
system.

1.4 Outline of this thesis

Chapter 2

In this chapter, mathematical background and notation is given, followed by a sec-
tion where the satellite dynamics of ESMO is derived. Discretizing of the nonlinear
model is also done here, together with linearizing and a short presentation of the
extended Kalman filter with the filter equation in discrete form are presented. All
the work in this chapter was also derived in the preliminary studies to this thesis.

[3]

Chapter 3

Three feedback controllers are introduced here, a short presentation of PD control,
both nonlinear and linear case and a robust controller are shortly presented, followed
by a brief discussion.

Chapter 4

In chapter 4 basic nonlinear stability notation and terms are given. Different types
of stability are briefly presented followed by the most important Lyapunov stability
tool used later in the thesis.

Chapter 5

The linear separation principle is proved generally in this chapter together with
stability analysis of the linearized ESMO attitude determination system given in

12].

Chapter 6

Quite a lot of work is done previous in establishing a nonlinear separation principle,
and some of the most important work is presented in this chapter. Also, the most
evident work done on stability and convergence of the extended Kalman filter is
introduced here.

Chapter 7

In this chapter the convergence of the extended Kalman filter proposed for ESMO
is established. It is also seen here that EKF can behave as an exponential observer
for ESMO.
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Chapter 8

Proof of stability of the proposed controllers can be found in this chapter. Based
upon this and the exponentially convergent observer, a nonlinear separation prin-
ciple for the feedback loop combining ESMO dynamics, EKF and controller is pro-
posed her as the main result of this thesis.

Chapter 9

Implementation and simulation of the feedback loop is carried out in this chapter.
All the controllers are being simulated for different gains and its properties are
discussed corresponding with the needs of ESMO.

Chapter 10

Conclusion, recommendations and further work are proposed her.



Chapter 2

Attitude determination on ESMO

2.1 Notations and definitions

To be able to study the arts of attitude determination, there are some basic defini-
tions and notations which are important to be familiar with. In this section some
ways of representing satellite motion and attitude as vectors, reference frames and
rotation matrices will be illustrated. The symbols and definitions presented in this
section will be used extensively throughout this thesis.

2.1.1 Vectors

Vectors are used to represent forces, torques, velocity and accelerations. The vector
can be represented by its magnitude and its direction; this is called a coordinate free
vector representation. The vector can also be expressed in terms of coordinates in
different reference frames, i.e. in the Cartesian coordinate frame. If the Cartesian
coordinate frame is defined by three orthogonal unit vectors i, j and k along the z1,
2o and x3 axis. The vector can be represented as:

17: 111;4— Ugj—i— ’Uglg (21)

And further on as a coordinate vector:

U1
v® = |vg (2.2)
U3
The subscript a denotes the coordinate frame v is expressed in.

There are some mathematical definitions that are quite useful to be familiar with

7
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when using vectors in representing attitude. The scalar or dot product in terms of
coordinate vectors:

Uy
U-U= [vl Uy Ug] Uy | = uyv + ugvs + uzvy = ul'v (2.3)
Uus

The vector cross product with reference to the Cartesian i, j, k frame:

; j ]g . . . U2V3 — VU3

UXT = Up U U3| = (UQ’Ug—’UgUg)i+(U1Ug—U1U3)j+(U1’U2—’U1U2)k’ = | V1u3z — U1V3
U1 U2 U3 ULVy — V1Ug

(2.4)

The skew-symmetric form of the vector u is introduced by [4] as:

0 —Uus U9
uw'=Su)=|u 0 —wy (2.5)
—U2 Ul 0

2.1.2 Rotation matrices
Vector Coordinate Transformation

As showed earlier in this section, vectors can be represented in different coordi-
nate frames. In order to work with several vectors presented in different frames, a
method for transforming a vector into different coordinate frames is needed. This
is achievable by using rotation matrix:

v® = RV’ (2.6)
where R} is the rotation matrix from a to b.

The rotation matrix is therefore a tool to transform vector represented in one frame
to another while preserving the vector length. It also describes the orientation be-
tween two reference frames and rotates a vector within a reference frame. Some
properties about the rotation matrix are important to mention.

e R'R) =1< R} = (R)™!
o detRy =1

e R|R € R3*®



Presentation of ESMO 9

All these properties need to be fulfilled for the matrix to be a rotation matrix.

It can also be useful to know the differential equation of the rotation matrix.

Ry = Ry S(wiy) = Ry x wiy (2.7)
Where the S(-) denotes the skew symmetric matrix.

Composite rotations are rotations between several frames. A rotation from frame a
to frame c is performed by a rotation from a to b, and then b to c.

v* = RiR;,

Simple rotations

A plane or a simple rotation is a single rotation about a fixed axis. There are a
total of three simple rotations. Rotation ¢ around x-axis, # around the y-axis and
1 around the z-axis.

1 0 0
R.(¢p) =0 cosp —sing (2.8)
0 sing coso

cosd 0 sinb
R,(0) = 0 1 0 (2.9)

—sinf 0 cosf

cosyp —sinyp 0
R.(¢) = | siny cosyp O (2.10)
0 0 1

Angle axis

The rotation matrix Rj can be described as a rotation 6 about a unit vector k.
This is referred to as angle axis parameterization. The rotation matrix will then be
expressed as:

RY = Ry, = cosOI + k*sinf + kk” (1 — cosb) (2.11)
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2.2 Attitude

There are two main representations used in attitude determination which are im-
portant to be familiar with in order to analyse the mathematics behind attitude
determination and control. These two representations are Euler angles and Euler
parameters or quaternions.

2.2.1 Euler angles

It is possible to use the rotation matrix Ry to describe the attitude of a spacecraft
through the unit vectors of the body attached to it. A total of nine parameters will
come out of it (3x3 matrix). Because of the demand for orthogonality in the matrix,
six constraint needs to be fulfilled, leading to only three independent parameters
describing the rotation. The Euler angles represent a set of these three parameters
that can be used to describe the attitude of a rigid body. The Euler angles consist
of three independent-simple rotations that take the fixed frame and make it coincide
with the body. The rotation matrix is then given as a composite of rotations about
the x, y and z- axis. The composite of rotations is not fixed; there are several
combinations that work well. I.e the roll, pitch and yaw composite also known as
the Bryan’s angles which is combined of a rotation 1 around the z-axis, rotation 6
around the y-axis and rotation ¢ around the x-axis. This can also be described as
a 3 2 1 rotation matrix. Other examples of combinations are the Cordan angles (1
2 3) and the original Euler angle combination (3 1 3). An example of the Bryan
angles is shown below:

R = R.(¢)R,(0)R.(¢) (2.12)

where the R, (v), R,(6) and the R,(¢) is given by equation (2.8), (2.9) and (2.10)
which leads to

chcp  sOsps) — cpsyh  sOepey) + spsi
Ry = |cOsy  sOspcy) + cocyp  sOcopsyp — spcy (2.13)
—s0 clsp cOco

There are some pro’s and con’s with this representation. The positive aspects are
that it is physically intuitive and there are no redundant parameters. On the nega-
tive side, Euler angles suffers from singularities at given orientations. I.e the Bryan
angles is singular at § = 90 deg and creates a gimball lock at this angle, or in other
words, one of the angles will be cancelled out so that only two independent angles
remains.

2.2.2 Euler parameters and Quaternion

Euler parameters where introduced by Euler in 1770 and is basically the same as
what Hamilton devised as quaternion in 1843, they only differs in notation. A
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quaternion is by definition a complex number with one real part and three imaginary
parts. The real part in Euler angles is denoted by n, while the complex number is
given by a vector of three €. n and € is defined by an angle axis parameter # and a
vector k.

N = cos= (2.14)

0
€= k:sz'n§ (2.15)
The rotation 6 around the axis is given by the unit vector k. Extension to the
complex numbers (7, €1, €2, €3) is bounded by the constraint:

6 6
772—|—e-e:n2+eTGZCOSQ§+sm2§:1@6f+e§+6§+n2:1 (2.16)

By representing the attitude in this manner, it will not suffer from singularities, as
with the Euler angles representation. It gives a rational expression of the rotation
matrix as opposed to the angle-axis representation which is in trigonometrical terms.

By using some trigonometrical tricks and the above definition of Kuler parameters,
we can deduce a rotation matrix based on Euler parameters. Note that:

g 0

sinf = 282’7150035 (2.17)
6 7 6 7

cos) = cos®~ — sin*~ = 2cos’~ — 1 =1 — 2sin®~ (2.18)
2 2 2 2

By using this in equation (2.11)

6 0 0 6
R, = (200525 - DI+ 23in§cos§ kX + 25in2§kkT (2.19)

Next step is to apply the definition of Euler parameter in the above equation. It is
used that

n? = cos’?, €'e = sin*%, ne* = sinbcost
the rotation matrix can now be expressed as
R(n,€) = (20 — 1)I + 2ne* + 2€”€ (2.20)

=1+ 2ne* + 2€*€* 2.21
n
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The total rotation matrix on component form will then be:

n+e —es—e2  2ee—ne) 2(e1€3 + nea)
R(n,e) = | 2(erea+mez) n*—e+e2—e2  2(exe3 — ney) (2.22)

2(e1€3 — Mer) 2(e2e3 +1m€1) NP — € — €5+ €3

it is possible to use all the

By defining the Euler parameter as quaternions () = Z

mathematical tools for quaternions on the system. I.e the quaternion product:

o-[jefi-[r2]

€ € —%e

Q"Q=n"+ee=1 (2.24)

Rotations by quaternion are done in [4].If R = R.(n, €) is the rotation matrix corre-
sponding to the Euler parameters n and €. v € R3. Rv is then either the coordinate
vector of the vector v in some other frame, or the rotation of vector v. The trans-
formation Rv can then be achieved with Euler parameters and quaternion product:

0 [ 0
= )2 ) 029
nelv —nel'v — el'eXv

= ] (2.26)

_772V + 20X v + el v + XeXv

0
(I 4+ 2neX 4 2e*eX)v (2.27)
n

2.3 Coordinate, Reference frames and Transfor-
mation between frames

A reference frame is a coordinate system in which a system is observed. It consists
of a set of axis, relative to which an observer can measure position and motion of all
points in a system, in addition to the orientation of all objects in the frame. There
are basically two types of reference frames: inertial and non inertial.

2.3.1 Reference Frames
Inertial reference frames

The inertial reference system is a coordinate system in which Newton’s first and
second laws are valid. It can translate at a constant velocity, but it does not rotate,
and its origin moves with constant velocity along a straight line. An object within
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the frame only accelerates when a physical force is applied. The earth is usually
used as an inertial reference frame, but the sun or the moon could also be treated
as inertial systems. By defining the moon as an inertial reference system, the origin
of the frame will coincide with the centre of the moon. The axes will be placed as
shown in the figure 2.1.

Non - inertial reference frames

Non inertial reference frames accelerates and/or rotates without appropriate force
applied. Newton’s second law does not hold in non inertial reference frames. There
are several frames worth mentioning in this section.

Earth centred Earth fixed frame / Moon centred Moon fixed

As with the Inertial frame, this frame has its origin at the centre of the earth, but
the axis rotates relative to the inertial frame with an angular rotation w, which is
equal the rotation of the whole inertial system (Earth rotation when it is fixed to
earth).

Orbital moving frame The orbital reference frame rotates in a polar orbit over
the geographical poles of the earth (or in this case the moon) with an angular ve-
locity wy relative to the chosen inertial frame. The z-axis points toward the origin
of the inertial frame, x-axis points toward the tangent of the orbit while the z-axis
is orthogonal with the orbit and completes the right hand rule. The attitude is now
described by the roll, pitch and yaw angles around the x, y and z axis respectively,
and relative to the orbit frame. Denoted by O.

Body frame

The body frame is also a moving reference frame but in contrast to the two other
moving frames, this frame is fixed to the vessel. The origin of the frame is placed in
the centre of mass of the vehicle or object. The z-axis still points toward the origin
of chosen inertial frame, while x and z-axis are defined according to the right hand
coordinate system along the symmetrical axis. The deviation between the orbit
frame and the body frame describes the satellite attitude. Denoted by B. See figure
2.1.

2.3.2 Frame transformation

In this section, the frames and transformations used in this thesis will be provided.
It should be noted that one assumption that will be applied for the satellite system
is that it is not influenced by any other gravity forces than the one from the moon.
[.e. it is assumed that the influence of gravity from moon and sun is neglectable
compared to the moon gravity. The moon will also be looked upon as a non ac-
celerating isolated system. This makes it possible to view the moon as a inertial
reference frame for the satellite. Instead of the well known term of ECI and ECEF
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b
- = . m
/ 7 #% BoDy
A
/o X
i . o \ \ g W Body frame .HL\
e / ; < : .l

zo

Earth centered - Earth i_-];d_.l"
Moon centered - IMoon fixed

Figure 2.1: Reference frames

(Earth centred inertial and Earth centred earth fixed), MCI (Moon centred inertial)
and MCMF (moon centred, moon fixed) description will be used, where each of the
new terms have the same characteristics as respectively ECI and ECEF.

Non inertial to inertial (MCMF to MCI)

The MCMF has as explained earlier, most of the same properties as the MCI, but
since its axis are fixed to the moon, it will rotate with the moon with the angular
velocity:

Moons rotational period = 27.32166days/rev = 2.66199626 - 10 °rad /s

2
= Wi = - =2.6617- 10 %rad 2.28
Yie = 5 66199626 - 106 rad/s (2.28)

and therefore it is not an inertial reference frame. There is a time varying rotation
« = wj.t around the z; axis, the transformation from moon fixed reference to inertial
will therefore be

cosae —sinao 0
R! = R.;(a) = |sina  cosa 0 (2.29)
0 0 1

Inertial to orbital frame (MCI to orbit)

The transformation from inertial coordinates to orbital coordinates is depending on
the satellites orbit. It is decided that the ESMO shall be in a polar radius, but the
altitude is still not decided but will be assumed to be 200km. In this transformation
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there will be a time varying rotation about wy about the y; axis and a 180° constant
rotation about the z; axis. The rotation matrix from inertial frame to orbit will
therefore be

cospp —1  sinp
Rl=R,r - Ry,=1 0 —1 0 (2.30)

sinp 0 —cosp

where p = [y + wot, By is the drop angle and the t is the time since last 0° passing.

wy is given by looking at the forces acting on the satellite. There are centripetal
acceleration and gravitational acceleration. For the satellite to maintain orbit, these
accelerations needs to be equal.

Ve _ GMm , GM

: o , GM
the orbit velocity is Vy = woR = (Rwp)” = = (2.32)
GM

Orbital to body

It is the body coordinates that is the final goal in the frame transformation as the
attitude measurements and reference values will be defined in this reference system.
The rotation matrix in Euler angles given in equation (2.13) can be used to express
this transformation, but because of problems with singularities it is advisable to use
the Euler parameters instead, and the rotation matrix is therefor given as

"€l —e—e 216y —1es) 2(e1€3) + nea

Rﬁ = R(U, €) = 2(6162 - 7763) 772 - G% + E% - 6% 2(6263) + ney (2.34)

2(e163 — ne) 2(eze3) +ner NP — €] — €3 + €3

the colonnes in (2.34) are the directional cosines. R? = [¢} b c§].

2.4 Sensor

The sensors are the satellite tools for getting information from the environment
around. They use information from stars, sun, earth, magnetic field or a combina-
tion, to determine the attitude of the satellite. These sources are used as reference
points for the satellite, and thus give the satellite attitude relative to the chosen
reference sources or reference vectors. Since attitude determination is independent
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of the position, the magnitude of this vector will not be important. The attitude
sensors measure the orientation of given reference vectors in a frame referenced to
the satellite.

2.4.1 Star Sensor

The stars are available all over the sky and hence provide orbit independent and
always available references and therefor, the stars are superior to any other available
attitude reference in space. A star sensor measure star coordinates in the satellite
frame and compare these coordinates with an on board star catalogue, which then
provide well defined 3-axis attitude representation. The attitude can be determined
within arc seconds. The Euler parameters are most often used as representation
when using star sensor. These are directly comparable with the satellite attitude
and therefore no extra modeling is required.

There are three main types of star sensors; scanner, gimball and fixed head tracker.
The star scanner uses the vehicle motion to search the sky for known stellar config-
uration. The gimball star tracker is a mechanical device to search for stars while the
fixed head star tracker apply an electronic searching device, tracking and identifying
stars over a limited field of view (FoV). For this configuration it is very important
with some kind of sun shading to avoid the sun from interfering with the search.

The star sensor is the most accurate attitude sensor, but it is also known to have
some major disadvantages. It is complex and in great need of a powerful computer
processing unit. This makes the sensor both heavier and more expensive. It is also
known to have very poor operation range and unable to operate as the operating
rate becomes larger than about 10 deg/min. These huge disadvantages have to
some extend been overcome in the recent years. The Danish Technical University
developed in 2001 a new and very much improved star sensor called pASC. It is
a development from the previous and at that time revolutionary Advanced Stellar
Compas (ASC). The pASC is both small, light and has an operating range that
exceeds all previous attempts on developing star sensors.

2.4.2 Star sensor modeling

The star sensor can easily be modeled by using the true attitude from a satellite
model with added noise. 5]

Astar = 4 @ dp, (235)

where q is the actual attitude taken from a nonlinear model, and q, is star sensor
noise represented as FEuler parameters. The sensor noise can be modeled by using
random function in Matlab with limitation parameters, and it is possible to use
several star sensors to see how the estimation is affected by several measurements,
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though for simplicity, only one star sensor will be used in this thesis.

It will be assumed that the pASC are used in the sensor modeling. The prop-
erties of the sensor are therefor; mass 450gr, accuracy of 1 arc sec, attitude rate up
t0 99.999% and a update rate of max 20Hz. One arcsecond equals 0.000278° which
in turns gives us following Euler parameters

1
2.4-107¢
9™ 124107 (2:36)
2.4-107°
This is used further on to model the star sensor as [6]
2
an = | V1~ llel (2.37)
€n
€n is Gaussian white noise with expected value
E [efm} = afm ,fori=1,2,3 (2.38)
where
ol =24-107° (2.39)

It can be useful to model the measurement noise as additive and this can be ex-
pressed on component form as [6]

T

o np, —€ €—10
Vstar = |:77€ + € + S(E)Cn . 6:| (240)

from (2.40) the covariance matrix can be calculated

2 7 _ 2 nE ;) — el —n
B 0] = b = |yl s el 240
By assuming that 7, = \/1 — ||,||? & 1 = E [n?], (2.41) can be reduced to
T2
2 e [en]
= " 2.42
o = [orafs S 1) 242
The measurment noise matrix will then be given as
Ry, = diag(os,, , o5, 00, ) (2.43)
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2.5 Mathematical Model of ESMO

2.5.1 Eulers equation of motion

The second fundamental law of rigid body dynamics states that the time derivative
of angular momentum is equal to the applied torque. The Euler equation of motion
gives the total moment applied to the body B from the external environment

I(,:}b + wp X (Iwb) = Mb (244)

Where M, is the applied torque on the body, the gravity torque and the actua-
tor/reaction wheel torque. Total equation of motion will then be on the form

10}, = —wj, x (Iwh,) + Tb + 77 (2.45)

Where 7' represents the torque applied to the satellite because of gravity and the
70 will be the torque applied by the controllers i.e actuators and reaction wheels.

It is necessary to express the equation of motion in reference to the orbit frame
instead of the inertial frame. To do this, some transformation between frames must
be performed.

Wiy = Wi, + why = Row;, + wy (2.46)

0o~"10

R? is the rotation matrix from orbit to body frame expressed in equation (2.34) ,
w?, is the angular velocity vector of the body frame relative the orbit frame and the
w? is the constant rotation of the orbit relative the inertial frame given by

W =1[0 —wy 0]" (2.47)

wp is defined in equation (2.33).

The derivative of equation (2.46) will also be useful

o
By = o (RYt, + why) = (RAwf, +0ly) =y — S(uhy Y, (2.48)
By using this in the equation of motion (2.45), the motion can now be expressed in

body relative to orbit frame.

why = (I°) 7' [ (S(why + Riwy, )IP(why, + Riws,)) + 70 + 70] +S(wh,)Rows, (2.49)

OZO O’LO OZO
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2.5.2 Actuator Dynamics

The control torque applied to the satellite in this thesis will be generated by reac-
tion wheels. The reaction wheels are assumed placed in a tetrahedron structure as
investigated by [1] for the ESMO satellite. In this structure, the reaction wheels are
placed in the vertexes of a tetrahedron shape as can be seen in fig 2.2.

The advantages of placing the reaction wheels in this configuration is that it in-
troduce redundancy to the system, i.e, if one wheel fails, the other three wheels will
still be running and keeping the satellite three-axis stable. Also, by having four
wheels working at the same time, the total torque will be greater and the angular
velocity on each wheel can be reduced. This will then give expanded lifetime for
each reaction wheel because of reduced wear.

| }

L | ——
L.
Figure 2.2: Tetrahedron configuration
According to [6] the resulting torque can be derived
b= —S(Wh) AT, (w, + ATwWh) (2.50)
Wy = (I,) 'y — ATGY (2.51)

Equation (2.46) inserted in (2.50) and the derivative from (2.48) in (2.51) leads to

7o = —S(Row}, + wy) Al (w, + AT (Rowf, + wy)) (2.52)
Wy = (L)1 — AT (W, — S(wey) Row?,) (2.53)

2.5.3 Gravity Gradient

The satellite will at all times be influenced by the gravity of the planets nearby,
mostly the sun, earth and the moon. The gravity influence of the moon will though
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be very much larger than the gravity influence by both sun and earth which therefor
can be neglected.

Newtons laws states that a mass M in a distance R from a mass m, where p = MG,
attracts each other with a force

—

m
F = jiyps R (2.54)

The gravitational force dF; acting on a mass element dm; located at a position R;
from the body center of the satellite is [5]

Gravity torque about the satellites geometric center due to the force dF; at position
r; relative to the geometric center of the satellite is

which leads to following expression for the gravity torque

70 = 3wjCy x ICy (2.57)

where Cj5 is the third column of the rotation matrix in equation (2.34) and wy is
given in equation (2.33).

2.5.4 Kinematics

The kinematic part of the model describing rotation of rigid body, gives the time
derivative of the parameterization of the rotation matrix as a function of angular
velocity. The kinematic differential equations are exact models with no uncertainties
and no approximations involved [4]. The kinematic differential equation for the
Euler parameters are

1
n=——€ew’ (2.58)

€ = —(nI + S(e))’, (2.59)
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2.6 Overall mathematical model

The mathematical model of the nonlinear system can be summarized to [6]
i
x=|.5 | =f(x,7w,t) + Ew (2.60)
Wop
Wy

where w is process noise, E is process noise matrix and f(x, 7y, t) is given as

T, ,b
__6 wob

5(n1 £ S(€))u
(Ib)71<_(s( ob+Ro zo)Ib<wob+Rg zo)) +T +T - Tw) +S( )Rg io
(L) ' — AT (g — S(w )Rb o)

O ©0

f:

(2.61)

where 7' and T is
b= —S(RMw? + wh)) AL, (w, + AT (RS + wh)) (2.62)
70 = 3wiCs x I"Cy (2.63)
T, = control torque (2.64)

A is the wheels configuration/allocation matrix, I, is the reaction wheels inertia
given in Appendix A, Cj is the third column of the rotational matrix R%, 2.34.

2.7 Linearization

A linearization of the nonlinear satellite model is necessary for use in an extended
Kalman filter. The states to be determined are the angular velocity w?, and the
quaternions q. The linearizartion is done by [6] and [5]. The liner matrix Fj, can
be separated into attitude and velocity such that Fj is on the form

g sy
|:Fatt:| . ox1 * 7 dxr
)

Fk - Fvel wzb 5(&)2 (265>
ox1 7 dxmr

T L e
?WZ"”” 1, b 2 ob Ewo%y 5177 §163 _1562
?wib’ f}o%z 1 9; 2 “oba _1563 5177 51‘El

= | 3Wob: T3Woby 3Woba 0 3€2 —3€1 37 (2.66)
b1 12 bis bi4 bis bis bi7
ba1 bao bas by bas bas ba7

| b3 b32 b3 b4 bss b3s ba7 -
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All the elements b;; can be found in Appendix A.

Linearization of the system with respect to the input gives us the B matrix.
0
B, = {—(Ib)_l} (2.67)

2.8 Discrete system

The system matrix on discrete form will be

Zey1 = f(2r, 21) + Epwy (2.68)
Y — h(Zk) + Gkvk (269)
wy and vy, is process and measurement noise respectively. h(zg) is in this case

only a linear function of the measurement matrix,while the system state f(zx,xy)
is approximated by a Taylor expansion the linearised system matrix Fj and I’

1 1
op =1 + FRAT + §F,§A2 + 517,3 . (2.70)
1
I = (IAt + 5FﬁAt?)Bk (2.71)
so that the discrete system is on the form
[z, 2k) = Okze + LTk (2.72)

With a state estimator (in this case extended Kalman filter) given as

Zer1r = f(Z, o) + Ki(ye — () (2.74)

fGrs o) = drZk + TiTui (2.75)
Estimation error is defined as

§p = 2K — 2k (2.76)

this will then give

Ektl = Zht1 — 2kl
= (f(zk, zx) + Exwy) — (f (Zr, 21) + Ki(yr — h(21)))
= ¢pzr + Eywy — ¢rzr — Kip(Hyzi, — Hi 2 + Dyvg)
1 1
= (I + F, AT + §F,§AT2 + GF,?AT3 )2k — Z) — HiCr(zi — 21)

+ Ekwk - KkaUk
= (Fy — KiHp)&k + o2k, 21, 1) + Epwy, — K Dyvy, (2.77)
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with the functions

1 1
O(2n, 2y i) = (1 + 5F,EATQ + EF,S’ATQ o)z — Z) (2.78)

X(2k, 2r) = 0 since h(z) is linear. (2.79)

2.9 Extended Kalman Filter on ESMO

The Linearized Kalman filter (LKF) and the extended Kalman filter (EKF) where
introduced as approximations to the optimal linear estimation in order to derive a
filter for nonlinear systems. LKF and EKF work in quite a similar way, the only
difference being that LKF linearize the system matrices around a nominal prede-
termined trajectory while the EKF linearize around the filter’s estimated trajectory
which is update for every time step. It is the extended Kalman filter which will be
the center of attention in this analysis.

The EKF constructs a linear system that approximates the nonlinear system near
the current best estimate, it is assumed that process and observations are linear on
the scale of the error in the estimated state. The validity of this assumptions are
secured by re-linearization about each new state [7]. The filter equations are given
as

Ky = Py HF (Hy P, HE + Ry) ™ (2.80)
Py = (I — KuHy) Py (I — K Hy)" + Ky R K} (2.82)
in = Opig + DiTwk (2.83)
Py, = ®P0f + ByQuET (2.84)
where
1
), = P A T+ FLAL + iF,iAR (2.85)
1
[y = ("2 —)F,'B; ~ (IAt + §F§At2)Bk (2.86)

Ry, is the measurement noise matrix given by (2.43) and Ej and @y are constant
modelling and processing noise matrix given in (A.6) and (A.5).

The EKF cannot as the linear KF, guarantee optimality or convergence, but it has
still proved to be very useful and solve many nonlinear problems successfully.

When using EKF, the nonlinearity can be either in the process model, the ob-
servation model or both. The recursive loop is divided into the same phases as for
the simple KF, but introduces some complexities in addition. See Figure 2.3
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Time Update (*Predict™)

Measurement Update (**Correct™)

(1) Project the state ahead

@ — flz,ug. fiat # — #4q, subject to the

Solution of the nonlinear differential equation
Ty u A e
initial condition r = Frat = f

(2) Project the error covariance ahead

Py, = 3 P87 + WiQ W]

}

Ig - Prior/initial estimate
Fy” - Error covariance

(1) Compute the Kalman gain
Ky =Py HI (H P H + ViR, V)1
(2) Update estimate with measurement z;
T = ;f?; + Kip(Zy — Hg-;f?;)
(3) Update the error covariance

Py = (I — KyHy)P;

Figure 2.3: Extended Kalman filter loop



Chapter 3

Introduction to Feedback control
and controllers

3.1 Controllers for ESMO

To control ESMO, active control around the z-axis is feasible. The control torque
acting on the satellite is generated from change in spin of the reaction wheels.

3.1.1 PD Controller

One simple stabilizing controller is a regular PD controller. The impact a PD -
controller has on the system is that for high frequencies, it lifts the phase and hence
stabilizes the system and raise the bandwidth, wich in turn quickens the control
of the system. For low frequencies, the PD - controller acts as a regular P-gain
controller.

The PD-controller, proposed for ESMO with the estimated state as input to the
controller, is given as

up = k(2) = T = KyA°Aé + K ACAQL,
~b b ~b
A(’uob = Wob,ref — Wob

Aé = oy — ¢

e
S W N
N— e S N

A°® is the pseudo inverse of A given by A° = AT(AAT)~!. Its purpose is to distribute
the calculated input to the four reaction wheels.

Reference value for w? ref = 0 such that Acb, = —@P, this is because it is de-

sirable that the angular velocity goes toward zero after the desired attitude is reach.
Derivative and proportional gains are found through simulations and testing.

25
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3.1.2 Model Dependent PD controller

It is also possible to derive a model dependent PD - control law for the satellite.
The reason for this is to provide both good tracking performances also in the cases
where high gains are not possible. This is done by incorporating the structure of
the model in the control law. A suggestion to a model dependent controller is given
in [8] as

dw?

T = kpe — kjAw + Iﬁ + why x Twh, (3.5)

3.1.3 Robust controller

Many of today’s controllers are theoretically excellent and gives optimal response
in shielded environment and when not interpreted by disturbance, modelling errors
or changes in the system or the environment. They are engineered to give the
best possible performance for the least possible cost. The emphasis on optimality
often overshadows the robust aspects and the controller will fail as soon as noise or
changes in the environment or system appears. Robust control makes sure that the
controller work well even if the system differs from the employed model and tolerate
errors in system model. An robust controller is given by [9] as

u:—%[(exe—i—nI)Gp—i—y(l—n)I]e—er (3.6)

G, and G, are 3 x 3 symmetric positive definite matrices and v is a positive scalar.

3.2 Discussion

There are some properties worth mentioning for the above controllers. The PD -
controller generally introduce a stabilizing affect on system because of the phase
lift, the controller can therefore be characterized as a stable controller. When the
PD controller is applied independent of the system model it stabilizes the system in
general, but it does not always provide good response for systems when high gains
cannot be applied. For these cases it is necessary to incorporate some structure
from the system model in the control law.

The equilibriums and stability characteristic are not mentioned in this chapter as it
will be thoroughly investigated in later chapters. Generally, what can be mentioned
about stability for system where quaternion are used to represent attitude is that
it is difficult to prove global stability as there necessarily will be two equilibrium
points. When ¢ = 0 both n = £1 will make R = I. These equilibrium points have
different stability properties which need to be analyzed. The convergence will be
local to one of the two, and the issue in establishing global stability will be to decide
or force the system to only one of the equilibriums, if not, only local stability can
be determined.



Chapter 4

Basic stability theory for
nonlinear systems

In this chapter some basic but very important theorems, tools and definition for
nonlinear stability analysis will be presented. The theory is taken from [10] and will
be used extensively throughout the rest of this thesis.

4.1 Notation and basic terms

Some basic terms and notations need to be introduced.

4.1.1 Norms and spaces

The term space or Euclidean space is often used in control system analysis. The
definition of an Euclidean space is a space in which Euclid’s axioms and definitions
apply; a metric space that is linear and finite-dimensional. It consists of all numbers
denoted by R. The set of all n-dimensional vectors z = [wl To ... xn] where the
elements of x are real numbers defines the n-dimensional Euclidean space denoted

by R™.
Vector and matrix norms are other definition that needs to be introduced before

any stability theorems can be presented. The norm ||z|| of a vector x is a real
valued function with the following properties

- ||z]| >0V x e R and ||z|| =0 only if x =0
-z +y| < ||zl + ly| V 2,y € R triangle inequality
- ezl = lafllz]| v a € R, z € R

The P norm is equal to

27
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lzllp = (jeaP + - + |zal?) " 1< p <00 (4.1)
The most common p-norms are the
e Infinity norm: ||z||. = max; |z
e One norm: ||z||; = |z1| + -+ - + |z,
1/2

e Euclidean norm: [|z]|s = (|21*> + -+ + |2,]?)

The last important properties for vector norms is known as Holders Inequality

Tyl < llzllpllylly, 5 + 5 =1Vz,y € R

The norms of matrices can also be convenient to be familiar with. If a matrix A of
real numbers defines a linear mapping Y = Ax from R™ — R™ the following norms
will yield

A
o P nomn: [[All, = sup, o 12l = maxyyy, Azl
e One norm: [|All; = max; Y .-, |ag]

e Euclidean norm: [|Al|; = [)\maX(ATA)}l/Q

o Infinity norm: ||Afle = max; Y7, |aj]

4.1.2 Definiteness and uniqueness

A few definitions need to be considered before stability can be studied. One of the
most important tools used in the stability proof in the following sections are the
definitions of Positive definite functions and matrices.

Definition 4.1.1 Positive Definite Function: A scalar function f(x), is said
to be positive definite if f(x) >0V x and f(x) =0 if and only if z = 0.

Definition 4.1.2 Positive Semi Definite Function: A scalar function f(x),
is said to be positive semi definite if f(x) > 0V z and f(z) = 0 if and only if x = 0.

Definition 4.1.3 Negative Definite Function: A scalar function f(x), is said
to be negative definite if —f(x) is positive definite.

Positive definite matrices are another property very valuable in control system the-
ory.
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Definition 4.1.4 Positive Definite Matriz: A nxn matriz, Q = QT is positive
definite if, for all z € R", the function f(x) = zTQux is positive definite. A positive
definite matrixz has the following properties:

1. All eigenvalues are positive real
2. Figenvectors are orthogonal
3. Can be Cholesky factorized to Q = PTP for some matriz P.

The Lipschitz condition ensures existence and uniqueness of a function and is used
in many theorems and proof. A function is Lipschtiz if f(¢, x) satisfies the inequality

1f () = f(t )l < Lz =y (4.2)
for alle (¢, z) and (¢, y) in some neighborhood of (t¢, o)

4.2 Types of stability and convergence

There are several types of stability for both linear and nonlinear systems. In this
section a short introduction to requirements of each of the typical stability classes in
nonlinear system theory will be given. For a feedback loop system, convergence only
imply that the error between reference and output goes to zero, it does not guaran-
tee anything of the behaviour of the response before reaching steady state. Stability
on the other hand, implies both convergence to zero and predicted behaviour of the
overall response. A stable system error will stay within the set for all times, while
when only convergence is established, the error might move outside the bounded set
at some point before converging. Stability implies convergence, while convergence
does not imply stability. It should also be mentioned that in most cases convergence
will be a satisfactory result for the system as the only requirement is for the steady
state error to be zero.

Since satellite attitude determination is dependent of time, it is natural to present
the stability requirements for non autonomous systems in the following subsections.
Nonlinear system stability is basically studied in a Lyapunov sense, where Lya-
punov’s methods are used to determine behaviour of the system. With Lyapunov
analysis, the systems are being studied by looking at the stability behaviour of the
systems equilibrium points. There are several useful methods and many constraints
that must be fulfilled to state the different kinds of stability. The system is said to
be:

e Stable if for each € > 0 there is a § = d(¢,ty) > 0 s.t

|z (to)]| < 8 = |la(t)]| < e V> to >0 (4.3)
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e Uniformly stable if for each € > 0 there is a = §(¢) > 0 independent of ¢y s.t
|lz(to)]] <= |lz(t)]| <e, VE>1r>0 (4.4)

e Unstable if it is not stable

e Asymptotically stable if it is stable, and there exists a positive constant ¢ =
c(to) s.t x(t) — 0 as t — oo V||x(tp)|| <O

e Uniformly asymptotically stable if it is uniformly stable and there exists a
constant ¢ independent of ¢y such that for all ||z(t)|| < ¢, z(t) — 0 as t — oo
uniformly in t5. That is, for each n > 0 there is a T = T'(n) s.t

[} <n, ¥, £ = to+T(n), ¥ |z(to)]| <0 (4.5)

e Globally uniformly asymptotically stable if it is uniformly stable, §(e) can be
chosen to satisfy lim. .., d(¢) = oo and for each pair of positive constants
n,c, 3T =T(n,c) > 0s.t

[z} <, VE=to+T(n,c) V [la(t)l <c (4.6)

e Exponentially stable if there exist positive constants ¢, k and X s.t

lz(®)]l < klla(to)lle™ ", ¥ ||z (to) ]| < ¢ (4.7)

Globally exponentially stable if (4.7) is satisfied for any initial state x(ty).

4.3 Stability tools and Theorems

The main tool for testing stability of nonlinear systems is Lyapunov’s theorems. It is
more general than other test as it does not depend on testing roots or eigenvalues,
but the behaviour of the system. Lyapunov’s direct and indirect methods are of
Lyapunov’s most famous stability tests and a short description of these methods
follows in the next sections.

4.3.1 Direct Lyapunov

The direct Lyapunov method involves finding a positive definite function, somehow
depending on the system that satisfies certain criteria. The most difficult part of
Lyapunov’s direct method is finding this function.

Theorem 4.3.1 Lyapunovs Direct method: Let x = 0 be an equilibrium point
of # = f(x) and D C R" be a domain containing x = 0. Let V : D — R be a
continuously differentiable function such that

V(0) =0 and V(x) >0 in D — {0}

V(z) <0 inD
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Then, x = 0 is stable. Moreover if

V(z) <0in D — {0} (4.10)
then z=0 is asymptotically stable.

The condition V(m) < 0 implies that when a trajectory crosses a Lyapunov surface
V(z) = ¢, it moves inside the set 2. = {z € R"|V(x) < x} and can never come out
again. When V < 0 the trajectory moves from one Lyapunov surface to an inner
surface with smaller c. When V(x) < 0 there are no guarantees that the trajectory
will approach the origin, but it can be concluded that the system is stable as the
trajectory will remain inside a closed surface.

To ensure global Lyapunov stability, another constraint is added to the direct Lya-
punov method. From before

1. the function V(x) must be positive definite

2. the time derivative of the function V(x) must be negative definite

and the last property to ensure global stability is

3. the function V(x) must be radially unbounded. I.e V(z) — oo as z — 0.

The last condition makes sure that no matter how far away from the origin you are,
the system will converge to the origin.

4.3.2 Indirect Lyapunov

The second method of Lyapunov is the indirect Lyapunov method. In this method
conditions are given for establishing stability of the origin as an equilibrium point
for nonlinear system by investigating the stability of the linearized system. This
method does not require a Lyapunov function, which as mentioned previously, often
can be very difficult to find.

Theorem 4.3.2 Lyapunov’s indirect method: Let x=0 be an equilibrium point
for the nonlinear system

T = f(x) (4.11)
where f : D — R"™ is continuously differentiable and D is a neighborhood of the
origin. Let

af
A — a_x(x) (412)

=0
Then,
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1. The origin is asymptotically stable if ReA; < 0 for all eigenvalues of A.

2. The origin is unstable if ReX\; > 0 for one or more of the eigenvalues of A.

What should be noted is that this theorem does not say anything about the case
where Re)\; = 0. In this case the linearization fails to determine the stability.

Another theorem states exponential stability of non autonomous systems based on
the above indirect Lyapunov method

Theorem 4.3.3 FExponential stability: Let x = 0 be an equilibrium point for the
nonlinear system

i = f(t,z) (4.13)

where f: [0,00) x D — R" is continuous differentiable, D = {x € R"|||x|2 < 1},
and the Jacobien matrixz [0f /0x] is bounded and Lipschitz in D, uniformly in t. Let
of

széﬂtwgﬂ (4.14)

Then, the origin is an exponentially stable equilibrium point for the nonlinear system
if it is an exponentially stable equilibrium point for the linear system

&= At)z (4.15)

4.3.3 Theorems and tools
Region of attraction

The region of attraction is a term that indicates how far from the origin the trajec-
tory can be, and still converge to the origin as ¢t — oo. Let ¢(¢,x) be a solution that
starts at xg = 0, t = 0, then the region of attraction will be the set of all points x
s.t ¢(t, z) is defined V ¢ > 0 and limy ., ¢(t,x) =0

Invariant set

M is an invariant set with respect to f(z) if (0) € M V t € R makes z(t) € M.
If a solution belongs to M at some time instant, then it belongs to M for all future
and past time. A solution is positive invariant if it is invariant for all ¢ > 0.

La Salle’s Invariance Principle

Let Q C D be a compact set that is positive invariant with respect to f(x). Let
V : D — R be continuously differentiable function s.t V(x) < 0 in Q. Let E be the
set of all points in © where V(z) = 0. Let M be the largest invariant set in E. Then
every solution starting in {2 approaches M as t — oo.
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Corollary 4.3.4 Let x = 0 be an equilibrium point. LetV : D — R be a continuous
differentiable radially unbounded, positive definite function s.t V(x) < 0 for all
x € R*. Let S = {z € R"|V(z) = 0} and suppose that no solution can stay
identically in S other than the trivial solution x(t) = 0. Then the origin is globally
asymptotically stable.

Corollary 4.3.5 Let x = 0 be an equilibrium point. Let V : R® — R be a con-
tinuous differentiable positive definite function on a domain D containing x = 0
st V(z) <0in D. Let S = {x € D|V(z) = 0} and suppose that no solution can
stay identically in S other than the trivial solution x(t) = 0. Then the origin is
asymptotically stable.

This principle relaxes the negative definiteness constraint on the Lyapunov function
as it extends Lyapunovs results in three different directions

- Estimate of the region of attraction
- Can be used when there is an equilibrium set instead of equilibrium point

- V(x) does not have to be positive definite

Barbalat’s Lemma

The above invariance theorem shows that the trajectory approaches the largest
invariant set in E, where E is the set of all points in 2 where V(z) = 0. This is a
very good theorem for autonomous systems, but come to nonautonomous system it

can be very difficult to find a set E for the system as V (¢, x) is a function of both x
and t. This would be easier to state if it can be shown that

Vit,r) < -W(z) <0

The set E can be defined as the set of points where W (z) = 0. The Barbalat lemma
is both used in proof for theorem that states this, and on its own

Lemma 4.3.6 Barbalat: Let ¢ : R — R be an uniformly continuous function
on [0,00). Suppose that lim;_, fot ¢(T)dr exists and is finite. Then, ¢(t) — 0 as
t — 0.






Chapter 5

Stability for linear KF and
feedback control

5.1 In general: Separation principle

The closed loop of a system does not necessarily apply the same properties as the
open loop system, it is therefor necessary to design a feedback law that stabilizes
the closed loop. When the system output states cannot be measured, an observer
can be applied to estimate these states. When combining a feedback loop and an
observer, the system properties might change. It is therefor important to properly
investigate the overall characteristic of the system when either closing a loop or
combining observer and feedback in a loop, to assure that the system remains sta-
ble. For linear system this can be done quite simply by applying the principle of
separation.

The principle of separation, also known as the certainty equivalence principle or
separation theorem, states that for a controller designed by using an observer and a
constant-gain state feedback matrix, the observer gain and the state-feedback gain
can be designed separately. The overall closed loop system eigenvalues are the union
of the observer eigenvalues and the state-feedback eigenvalues alone, and each part
can therefore be designed separate.

In other words, if a model is constructed by designing an observer and feeding
back the state estimate through a constant matrix, the closed loop eigenvalues are
those of the observer along with those that would have been present if no observer
where used and the feedback had been applied to the actual plant states.

5.1.1 Proof of the separation theorem for linear systems

Given the system

35
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t=Ax+ Bu+w (5.1)
y=Cx+v

with the simple feedback law controller
u=—Ki(t) (5.3)

where #(t) is the estimated states from an observer designed as a Kalman filter,
given by

&= AZ + Bu+ L(y — Ci)
L=%CTR™
AY + AT + Qo — XOTR;'CY =0

The system can now be written as

x A —BK x

{4_[M7A—BK—L4'E} (5:7)
To prove system stability of the combined Kalman filter and feedback loop gain, the
eigenvalues of (5.7) must be in the left hand plane. This is not obvious from the

matrix. By state space transforming the system it is possible to look at the system
in a different way.

=

x:PH,P:I”_O”],P:P—1 (5.8)

H A R 59

By using & = x —  in equation (5.7), a new representation of the closed loop state
space will be

{ﬁ] - {/1<_0Z3}( /iifgﬁij]- {;} (5.10)

With this new representation, two important facts are worth mentioning

1. The system eigenvalues are invariant during a state transformation. That
means, the eigenvalues of (5.7) are equal the eigenvalues of (5.10).

2. The system matrix in (5.10) is block-triangular (the elements of the matrix
are matrices).
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The characteristic of a block-triangular matrix is that the eigenvalues of the matrix
are equal the eigenvalues of the matrices along the diagonal. This means that the
eigenvalues of the closed loop system will be the union of the observer eigenvalues
(Kalman filter poles) (A - LC) and the controller poles (A - BK) which can be
designed independently. The feedback gain K is a design parameter and the poles
of the controller can therefore be chosen arbitrary and the Kalman filter gain L
is the optimal observer gain and thereby always stable, and hence, the separation
principle is proved and system stability can be guaranteed.

5.2 Stability of linear ESMO model with feedback

A linear model of ESMO was presented in section by Simonsen in [2] where the
discrete model is as follows

X = AXk,1 + ]_))u]€ + W1 (511)

The Kalman filter gives following equation for the estimate of the state

K} is the Kalman filter gain which minimizes the mean-square estimation error.
A simple control law u, = —LZj,_1 is used as feedback controller for the system. By
applying this control law to the (5.11) and (5.13), the system becomes

T | A —BL Tl—1

LJ = [KkH A-BL- KkH} [@k_l} (5.14)
By using the transformation illustrated in (5.9), the system matrix can be rearranged
to the more convenient block-triangular shape

Tl A— BL —BL Th—1

-1 Tk B 629
For the linearized ESMO model with feedback, the eigenvalues of (5.15) needs to be
in the LHP to be stable. Since the system matrix is block triangular, the eigenvalues
of the overall system is equal the eigenvalues of the matrices on the diagonal which

is the eigenvalues of the feedback controller and the Kalman filter respectively. The
eigenvalues are then determined by

det(\I — (A — BL)) = 0 (5.16)
det(\ — (A — K,H)) =0 (5.17)
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where
(1 T 0 0 0 0 T
—4wio, 1 0 0 0 wo(l —o,)T
A 0 0 1 T 0 0
N 0 0 —3wio, T 1 0 0
0 0 0 0 1 T
0 —wo(1 —0,) 0 0 —wio,T 1 |
[ 1 0.02 0 0 0 0 ]
—4.6e — T 1 0 0 0 le—5
B 0 0 1 0.02 0 0
- 0 0 —15e—7 1 0 0
0 0 0 0 1 0.02
0 —1.16e — 5 0 0 65e—8 1 |
[0 0 07 [0 0 0
s 00 0.0025 0 0
a_ |0 0 0] _| 0 0 0
— |0 % 0| 0 0.0022 0
0 0 0 0 0 0
o o Z] [ o 0 0.0029]

L is the control gain which is chosen arbitrary so that det(A —(A— BL)) = 0 gives
eigenvalues in LHP and therefore stable. L is chosen in [2] by pole placement with
following stable poles p = [-1 -0.5 -1 -0.5 -1 -0.5], and gives following control gain
matrix

60000 1400 0 0 0 0.0040
L = 0 0 68182 1591 0 0
0 —0.0040 0 0 51724 1207

H =T and K} is the Kalman filter gain. According to [11], the solution of the
Kalman filter equation is uniformly asymptotically stable no matter what the initial
conditions are as long as the system is stochastically controllable and observable.
The Kalman filter gain is calculated from the Riccati equation and given by

P, = AP, 1 AT + Qy (5.18)
Py=(I-KyH)P; (5.19)
Ky =P H' (HP  H" + Ry)™* (5.20)

Bounded Q, R and A will guarantee stochastic controllability and observability for
the system.

Stability by use of separation principle is thereby proved for the linear ESMO case.



Chapter 6

Stability of EKF and nonlinear
Separation Principle

6.1 Separation Principle for nonlinear systems

It is an easy task to show that the separation principle holds for linear systems. The
overall closed loop system eigenvalues will be the union of the observer eigenvalues
and the state-feedback eigenvalues, and hence a stable closed loop system can be
developed by choosing proper observer and controller separately.

The task of applying a separation principle for nonlinear systems is not as straight
forward as for the linear case. The problem being the fact that there are no assurance
that the control algorithm, obtained by combining a nonlinear state feedback law
with an observer will result in a closed-loop system with satisfactory performance.
However, the separation principle has been extended to nonlinear systems in many
applications and has often proved to be a successful and stable design method. The
problem has been to prove theoretically, that a nonlinear separation principle holds
for any nonlinear system. Quite a lot of research has been done on the matter, and
nonlinear separation principle has been proved for certain cases, although not in
general.

6.1.1 Previous work and methods on nonlinear separation
principle

In [12] an observer based control structure for a standard nonlinear model of poly-
merization reactors is developed. The problem is solved by designing an exponen-
tially converging observer, where the equations are close to those of the extended
Kalman filter. The system is proved to stabilize the polymerization reactors by
providing a nonlinear separation principle for the case. In this paper, exponential
convergence of the estimation error is a key point in the separation principle proof.
The separation principle only holds when combining a globally asymptotically stable
nonlinear feedback controller, admitting the physical invariant bounded set, with an

39
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exponentially converging high-gain observer. The controlled state then remains in
a bounded set. It can be rather difficult to find a globally asymptotically stabilizing
controller for the systems, as the sign ambigiouty often cause problems.

In [13] and [14], Khalil and Atassi have thoroughly evaluate the separation principle
for stabilization of a class of nonlinear systems. It is proved that the performance
of a globally bounded partial state feedback controller of a certain class of nonlinear
systems can be recovered by a sufficiently fast high gain observer. The goal for the
research is to find a nonlinear separation theorem independent of the state derived,
under the least restrictive assumptions possible. Previous results are extended to
allow model uncertainties, performance recovery yields asymptotic stability as well
as recovery of the region of attraction and trajectories. This distinguish the research
from that performed by Teel and Praly [15].

The results in [15] is quite remarkable as it is shown that global stability by state
feedback and observability imply semi global stabilizability by output feedback. In
contrast to Khalil and Atassi’s work, the result of [15] does not allow model uncer-
tainties and only recovery of the asymptotic stability and semi global stabilization
property are shown.

The class of system represented in [13] is on the form

&= Ax + Bo(x, z,u) (6.1)

2=z, z,u) (6.2)

y=cx (6.3)

¢=q(z,z) (6.4)
where

u e U C R™ control input

y € Y C RP measured output
¢ € R’ measured output

x € X C R" state vector

z € Z C R state vector

and the system satisfying the following assumptions

Assumption 1: The functions ¢: X x Z xU — RP and ¢: X x Z xU — R!
are locally Lipschitz in their arguments over the domain of interest. In addition,

Qb((), 07 0) = 07 90(07 07 O) =0 and Q(O, O) = 0.
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This assumption guarantees that the origin is the equilibrium of the open loop
system. It is also used that if the nonlinear system

has a vector relative degree (rq,--- ,7,), then the system can be transformed into

é = A§ + B [f1(€7z) +g1(§,z)u]
z= f2(€7z7u)
y=0C¢

The controller is assumed to be on the form

J=T(0,z,¢) (6.5)

Assumption 2:

1. T" and 7 are locally Lipschitz functions in their arguments over the domain of
interest, I'(0,0,0) = 0 and 7(0,0,0) =0

2. I' and ~ are globally bounded functions of x.

3. The origin (z =0, z = 0, ¥ = 0) is an asymptotically stable equilibrium point
of the closed-loop system.

A high-gain observer is used

& = A+ Boo(i, &, u) + H(y — Ci)

Assumption 3: ¢o(Z,&,v(0, 2, ) is locally Lipschitz in its arguments over the do-
main of interest and globally bounded in x and ¢,(0,0,0) = 0.

The performance recovery can be stated in three points. First, the origin of the
closed loop system under feedback is asymptotically stable. Second, the output
feedback controller recovers the region of attraction of the state feedback controller
in the sense that if R is the region of attraction under state feedback, then for any
compact set S in the interior of R, and any compact set ) C R", the set S x @)
is included in the region of attraction under output feedback control. Lastly, the
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trajectory of (z, z,9) under output feedback approaches the trajectory under state
feedback as € — 0. In other word, it is boundedness, ultimate boundedness, trajec-
tory of convergence and thereby recovery of asymptotic stability of the origin. This
is all proved in [13].

In [14] Khalil and Atassi extend their work on separation principle theory for nonlin-
ear systems. In this study, the attention is on achieving boundedness of trajectories
without necessarily convergence with an equilibrium point. It is shown that for a
nonlinear system, same as in [13] with the same requirements for globally bounded
control law and high gain observer, the output feedback recovers the performance
of the state feedback controller. Moreover it renders a compact set of interest pos-
itively invariant and asymptotically attractive. Any compact subset of the region
of attraction under state feedback can be included in the region of attraction under
output feedback. The trajectories also converge to those under state feedback as
the observer gain approaches infinity.

Jo and Seo also study the separation principle for nonlinear systems in [16]. In-
stead of assuming the existence of a Lyapunov function for the observation error,
it is assumed existence of a state observer which asymptotically estimates the true
state. They show that under the assumption that a nonlinear system has asymp-
totically stable zero dynamics and is locally detectable, an asymptotic tracking by
output feedback control can be achieved. Hence a local separation principle is de-
duced. This implies that for a nonlinear system, it guarantees that an asymptotically
convergent observer can be used with a stabilizing controller to locally stabilize the
system. This result is presented under the local detectability condition.

In [17] Cerny and Hrusak present another way of solving the separation problem
for nonlinear systems based on dissipative system theory. The dissipative normal
is combining two methods. In the first method, the closed loop system structure is
represented in a dissipative normal form; a controller is thereafter chosen to fulfill
the required closed loop behaviour in order to solve the stabilizing problem for non-
linear systems. In the second method, the error system structure is represented in
the dissipative normal form, to solve the state reconstruction problem. The solu-
tion of the separation principle problem for nonlinear system can then be found by
means of integrating the stabilization and state reconstruction described above. It
is embodied in compensation function that guarantees asymptotic stability of the
resulting closed loop system.

Assuming a nonlinear system
#(t) = f[z(t), u(t)] (6.10)
y(t) = hlx(t)] (6.11)

The dissipative normal form involves transforming the system so that a function
W [x(t)] fulfills the following conditions
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wla(t)] = (=) (6.12)
Lefwlz@®)]} =By®)] <0 (6.13)

Ly is the Lie derivation and w [z(t)] is a measure of the signal energy stored in the
system at time t.

Structural asymptotic stability can be imposed by representing the system on the
form

©®1 [Jfl(t)] k’g 0 . 0

—ko (R :
(t) = 0 —ks 0| z(t) (6.14)

0 . 0 —k, O
y(t) = afzi(t)] (6.15)
where kg, -+ k, # 0 € R are constants and the nonlinear functions ¢ [x1(t)] < 0

for z1(t) # 0,3a ! [y(¢)] and a [z;(¢)] = 0 < z41(t) = 0.

The only equilibrium state . = 0 will be asymptotically stable and the correspond-
ing W [z(t)] fulfils the conditions for dissipative normal form (6.12) and (6.13) for
any ¢ [x1(t)] , a[z;(t)] and kg, -+, k,. The proof can be viewed in [17].

The next step in this method is to design an observer, based on dissipative nor-
mal form, which generates the asymptotic estimate z(¢) of the state x(t) based on
input and measurement, such that the following demands are satisfied

B(t) = FLE(), (), 2(8), u(t), y(t)] = F[F(t)] (6.16)
where
z(t) = x(t) — 2(t) (6.17)

and the state error convergence condition

lim z(t) = lim [z(t) — 2(t)] =0 (6.18)

t—o0 t—o0

The system must be presented on the dissipation normal form

SlEml 6 0 .0

' —6 0 & .
FO=w| 0 =& . . 0|#F0 (6.19)

5

0 .0 =& 0
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where 67 [77(t)], wo, d5,---,0; are design parameters with a Lyapunov function
V*[z*(t)] = [|Z*(t)||* related to (6.19) and fulfils

L A[Z @]} = Ly {12 (017} = 2w03" ()07 [27(¢)] (6.20)

If the design parameters are properly chosen, the state error system will converge
to zero. If wy > 0 and &7 [Z7(t)] < 0 VZ{(¢), then the error system will be globally
asymptotically stable.

The next aim is to propose a controller u(t) = L [z(t)] so that the closed loop
system

#(t) = f{x(t), L [x(t)]} (6.21)
y(t) = hz(t)] (6.22)

is asymptotically stable.

Again the dissipative form is crucial for the presentation, and therefore the closed
loop system must be transformed to

filz@l f5 00 .0
—fs o 5 -
T (t) = v 0 -fF . .0 x*(t) (6.23)
. . . R
0 .0 —f 0
y(t) = 1(t) (6.24)
where fy [x5(t)], v, f5,---, [ are the design parameters. Further suppose that the

original open loop system can be transformed to

— : = : (6.25)

y(t) = z1(2) (6.26)

where p [Z(t), u(t)] is a nonlinear function. Then the controller u(t) = L [x(t)] can
be derived by using and equivalence relation

ut) = Lx(t)] = p {z(t), n[z()]} (6.27)

n[z(t)] = Ly [#1(1)], for 2™ ()T [2(t)] (6.28)
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Based on the above steps, a separation principle for nonlinear systems on dissipative
form can be presented. A short description of this proof is presented beneath, the
full proof can be viewed in [17].

Assume the input control to be

A

u(t) = L{z(t)] lsy=s) = L [2()] = n" {2(8),n [2(1)] } (6.29)

which gives following representation of the closed loop system with observer and
feedback control

— : = : (6.30)

y(t) = T (t) (6.31)

where v [Z(t), 2(t)] = p{z(t), p = {Z(t),n [2(¢)] } }. Then, if the previous described
methods are combined, the closed loop system can be transformed to dissipation
normal form

l"{gtg ST =1 )] 21(E) + f325(1)
dfmO ) + fane):
@l T a0+ Frn(t) 632
R QEM()) ¢ lzr(t), 2 (1)]]
y(t) = zi(¢) (6.33)
The system above is the dissipation normal form if and only if
ey iy~ SO E®] L L
¢ lz*(t),2°(t)] = ; WLf* [z1(t)] + il [z(t)] + 7 ()]
=~ f (0 (6.34)

for #(t) = T [a*(#)] and &(t) = T [#*(1)].

This condition can only be confirmed if the following assumptions holds

1. The original open loop system in (6.10) and (6.11) can be transformed into
the dissipation normal form

T*(t) = a” [z (t)] + 0" [z7(t)] u(t) (6.35)
y(t) = " [a1(1)] (6.36)
ai [#1()] a3 0 0
—aj 0 a3 .
a* [z*(t)] = 0 —aj 0 (6.37)
0 () —ay Ué)n
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2. fy=afy=az,- - [y = ag

3. The compensation function

v [3(1)] = —aiﬂz E0) (6.38)
(6.39)

where
e [2(6)] = m [2(1)] = L. [21(1)] (6.40)

for x*(t) = T [%(t)] and Z(t) = Z(t), is added to the proposed controller
u(t) = L[z(t)] +v [z(1)] (6.41)

If the above assumptions hold so that the condition given in (6.34) is fulfilled, then
asymptotic stability of the closed loop system is guaranteed, and hence a nonlinear
separation principle is proved. The method is exact and does not require any system
linearization. Comparing this method with [13],[14] it is an analytic method as no
numerical approach is used, but it is also very tedious and depending on having a
system that can be transformed to the desired form.

In the work of Loria and Morales [18], another way of approaching the nonlin-
ear separation principle is proposed, based on stability results for cascade systems.
Sufficient conditions are given so that an asymptotically stabilizing state feedback
controller, implemented using state estimate, implies global asymptotically stability
of the closed loop system. The systems having to be transformable into a form affine
in the unmeasurable variable. The proof of this relies in a sufficient condition stated
in the concept of persistence of excitation. The condition imposed on the globally
stabilizing feedback is that it be bounded by a function of order at least 0. It does
not vanish asymptotically for large values. The available state feedback need not be
bounded. The result yields for time-varying systems and the separation principle is
based on analysis results from cascade systems.

Two tools are used to present the main result in the article. First of all, the persis-
tency of excitation is used to prove exponential convergence of the observer error.
Second, view the overall closed loop system as a cascade systems on the form

21 . él = fl(tvgl) + g(tv g)a(tv g) (642)
2o 52 = fi(t, &) (6.43)

where all functions satisfies the BRA (Basic regularity assumptions) and & = 0
implies that a(t,§) = 0Vt,&. This give ground to the following theorem
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Theorem 6.1.1 Assume that & = f1(t,&) and & = fo(t, &) are UGAS (Uniformly
globally asymptotically stable) and that the cascade system is forward complete and
the following assumptions hold

Assumption 6.1.2 There is a Lyapunov function V (t,£1), cq, e € Ko and a pos-
itive semi definite function W (&) s.t

a1 ([61]) S V(t,61) < ax(|é]) (6.44)
ov oV
B + 8_&f<t’ &) < -W(&) (6.45)

Assumption 6.1.3 There exists A, > 0 s.t for each t,&
oV
&l >n= |a—€19(t,§)| < AW (&) (6.46)

Assumption 6.1.4 There exists a 0 € k s.t
la(t, &) < 0(]&]) (6.47)
then all the solutions of (6.42) are uniformly bounded and the cascade is UGAS.

Considering an affine nonlinear closed loop system on the form

where the functions satisfies BRA condition

Standing Assumption 6.1.5 There exists a time varying state feedback u = k(t, x)
where k(-,-) satisfies the BRA s.t

T = f(t,x)+ g(t,x)k(t, x) (6.50)
is UGAS

Standing Assumption 6.1.6 There exists a matric C € R™*" s.t defining the
measurable output y = Cx, the system (6.48) is transformable into the form:

&= A(t,y)z + b(t, u,y,x) (6.51)

where the function b(t,u,y,-) satisfies

|b(t,u,y,x) — b(t,u,y, )| < ky|Z| (6.52)

wherez :==x—axVr,t € R"Vt>0,uec R andy € R™.
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This leads to following important fact

Theorem 6.1.7 There exist a C' function V(t,x), class k functions ay,as and
W (x) positive definite s.t

ay(|z]) < V(E,2) < as|z])

NV V(b 2) + gt )kt )] < —W ()

ot T or

‘— < afl|z])

and without loss of generality, it can also be assumed that a(|-|) is of the same order
of growth as V' (t,-) for each t.

The observer proposed for in the article [18] is a persistence of excitation based
observer.

T = A(t,y)& — L(t,y)C(z — &) + b(t,u,y, %) (6.53)

L(-,-) satisfies BRA. And the estimation error dynamics is represented by

T = A(tv y):i' o L(ta y)cj + b(ta U, Y, l’) o b(ta U, Y, jj) (654)

~

where T = 7 — x.

Next assumption on the observer gain guarantees that the estimation state error
is globally exponentially stable uniformly in y.

Assumption 6.1.8 There exists a globally bounded positive definite matrix function
P(:) s.t, defining

A(tv yt) = A(tv yt) - L(t7 yt)C
Q(tye) = Alt,y) " P(t) + P()TA(t, ye) + P(1) (6.55)

following yields for allt > 0,1y, € R™

2. There exist p and T > 0 s.1
t+T
/ —Q(1,yr)dr > pl >0 (6.56)
t

3. There exists a qpr > 0 s.t qu > |Q(t, y1)|

This leads to following proposition
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Proposition 6.1.9 The estimation error dynamics,
v = A(t,y)T + b(t,u,y, T + &) — b(t,u,y, &) (6.57)

is exponentially stable, uniformly in y, u, t and & if Assumption (6.1.8) holds with
sufficiently large p > 0.

(Proof can be viewed in [18].)

What this proposition actually implies is that the observer error dynamics is expo-
nentially stable uniformly in trajectories y; = y(t) if the matrix Q(¢, y;) is sufficiently
output persistence excitation. It is now possible to propose a separation principle
for the closed loop system. By applying the control law u = k(t, Z) the closed loop
system in (6.48) gets a cascade structure and becomes

&= f(t,x) + g(t, 2)k(t, x) + g(t, x) [k(t, &) — k(t, )] (6.58)

Further on, the overall closed loop system can be rewritten to

T =F(t,z)+ g(t,x)a(t,z, x) (6.59)
F = Alt,y(0)7 + blt, u(t), y(1), 2(1)) — b(t,u(t), y(0), 7 — () (6.60)
where a(t,z, %) := [k(t,T + x) — k(t,z)] and F(t,x) := f(t,z) + g(t, z)k(t, x)

The standing assumption 6.1.5 implies that & = F'(¢, z) is UGAS, in light of Proposi-
tion 6.1.9 the overall closed loop system of (6.59),(6.60) is globally exponentially sta-
ble uniformly in the trajectories y(t) and u(t). Thereafter, by defining £ := col [x, Z]
the trajectories of the overall system can be written on the cascade form proposed
earlier in (6.42).

51 (71
& = Fo(t, &

where G(t,€) = g(
Fo(t, 52) (t7 y(t

+ G(t,&)a(t,§) (6.61)

&)
) (6.62)

t,8), a(t, &) = alt, &, &) and
))Z +b(t, u(t), y(t), x(t)) — b(t, u(l), y(t), T — x(t)).

The BRA assumption on g¢(-,-) and k(-,-) gives the existence of two nondecreas-
ing functions s.t

l9(t, z)| < Op(|z[)Ve € R (6.63)
[k(t, 2) = k(t, y)| < Ok(lz = y)Vz,y € R") (6.64)

because of this, for each r > 0 then |G(t,&)a(t, §)| < 0k(r)0,(|&1]). Further on, this
leads the main theorem of Loria and Morales work [18].
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Theorem 6.1.10 If there exists a Lyapunov function V(-,-) for the system given
in (6.50) satisfying the bounds of theorem 6.1.7 with W (x) < 0 and constants ¢ > 0,
c1,c0 >0 s.t

> ds
/ )0 (6.65)
k(1 2)

|2

<e¢, V|z| >,Vt >0 (6.66)

then the system (0.48), under the standing assumptions, in closed loop with u =
k(t,z) and the observer proposed in (6.53) under assumption (6.1.8), is said to be
uniformly globally asymptotically stable (UGAS), and hence the separation principle
for nonlinear system based on cascade structure is presented.

The proof and detailed explanation can be found in [18].

6.1.2 Summary of nonlinear separation principle

The methods presented in the previous chapters are all rather complex and requires
strong conditions for the nonlinear separation principle to hold. Many papers and
a vast amount of research has been done in this area, without luck in finding a
general simple method rule for under what conditions a feedback loop consisting of
a nonlinear system with an observer and feedback controller apply the separation
principle and therefore can be design separately. Methods have been found and
verified for certain cases of nonlinear systems. To sum up the cases presented earlier
where separation principle have been proved is the case where the systems are

applying

e globally asymptotically stable nonlinear feedback controller admitting physical
invariant bounded set combined with an exponentially converging high-gain
observer.

e globally bounded control law combined with a sufficiently high gain observer
when nonlinearities are only found in measurements

e existence of a state observer which asymptotically estimates the true states.
A nonlinear system with asymptotically stable zero dynamics, which is locally
detectable, makes it possible with asymptotic tracking by output feedback
control. Hence a local separation principle which guarantees asymptotic con-
vergent observer and stabilizing control can be proposed, which in turn locally
stabilizes the system.

e observer based on dissipative normal form design combined with a stabilizing
controller on dissipative normal form gives an asymptotically stable closed
loop system
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e cascade structure on overall closed loop system combined with the theory of
persistence of excitation to prove exponential converging observer error leads
to uniformly globally asymptotically stable system if certain conditions are

fulfilled

6.2 EKF stability in general

The Extended Kalman filter was introduced as an approximation of the optimal lin-
ear estimator as it was desirable to develop a filter estimator for nonlinear systems.
The EKF constructs a linear algorithm that approximates the nonlinear system near
the current best estimate. It is assumed that process and observations are linear
on the scale of the error in the estimated state. The validity of this assumption is
secured by re-linearization about each new state. The problem with this extension
of the linear Kalman filter is that optimality of the KF is lost. Although many
applications of the EKF proves to be stable and work properly, stability for the
general case has proved to be very complex and difficult to state theoretical.

In this chapter previous work and research regarding stability of the EKF are pre-
sented, followed by the proof and conditions for the EKF convergence.

6.2.1 Previous work and research on stability for EKF

Since the first successful application on the Apollo program at NASA by the scientist
Dr. Stanley F. Schmidt in 1960, the extended Kalman filter has gained more and
more popularity. A large amount of literature, research and articles can be found
on the theme. The filter have been implemented widely in many areas of signal
processing, control and optimization like; adaptive filtering, estimation, prediction,
robust control, state observation, system identification, target tracking and many
others.

Although the extended Kalman filter has proved superior practical usefulness, the
theoretical and mathematical aspects like stability and convergence of the filter has
not been investigated as thoroughly as the extended use of the filter should imply.
Stability has only been treated for some special cases, like when the state equations
are given in a special form, when used as a parameter estimator for linear systems
and zero noise case. Only recently has researchers been able to prove general conver-
gence and stability for EKF, though, limited by some rather conservative constraib.

In [19] local convergence of the continuous extended Kalman filter was shown for
some very strong conditions. [20] extend this result to yield a larger class of filters
where also the strong uniform detectability requirement are shown to be unnecessary.
[21] presents an analysis for the discrete-time case while [22] presents an important
results which shows the convergence of EKF as an observer for a discrete-time sys-
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tem. It is also shown that by small modification of the filter algorithm, the rate of
convergence can be prescribed by the designer. This result is studied more closely
later in this chapter. [23] investigates the stability for the discrete-time case with
nonlinear state and linear output map and by using the results from [21] it is ex-
tended to include the stochastic case. In late 90’s, an analysis for the general case is
presented by [24] with both nonlinear state and output map. Here it is also proved
that the EKF is stochastically stable under certain conditions. This result is also
more thoroughly presented later in this section. The newest investigation of EKF
stability is done by [25]. Here the results of [24] is brought further, in order to relax
the conservative conditions for which stability can be established. Also these results
will be closer investigated later in this chapter.

Presentation of the most important previous results

In [24], an analysis of the error behaviour for the discrete-time extended Kalman
filter for general systems in a stochastic framework is carried through. It is proved
that the estimation error remains bounded if the system satisfies the nonlinear
observability rank condition and the initial estimation error as well as the disturbing
noise terms are small enough. By combining the stability results for the linear
Kalman filter and stability analysis for more general nonlinear estimation problems,
the error behaviour of the EKF can be analyzed. Suppose a discrete system on the
form

Zni1 = f(zn, xn) + Grwy, (6.67)
Yn = h(zn) + Dypop (6.68)

Zy is the system state while x,, is the system input. v, and w, are uncorrelated
zero-mean white noise processes. A state estimator is presented as

The functions f and h are assumed to be C*-functions and can therefore be expanded
by the Taylor series to

fGnyzn) = f(2n, 2n) = Anlzn — 20) + 0(20, Zn, Tn) (6.70)
h(zn) — h(Z) = Co(2n — 2n) + X (20, Zn) (6.71)

0 oh
n = a_ic(Amxn) , Cn = &(271) (6.72)

The estimation error is defined by

Cn = 2n — Zn (6.73)
and
Cn—i-l = (An - KnCn)Cn + 0+ Sy (674)

Tn = ©(Zn, Zn, Tn) — KnX(2n, Zn), and s, = Gow, — K, D,v, (6.75)
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Applying the following Definitions and Lemmas [24] leads up to the main result of
the article

Definition 6.2.1 The stochastic process (, is said to be exponentially bounded in
mean square, if there are real numbers n, v >0 and 0 < ¥ < 1 s.t

E{lIGI*} < nllol* 9" +v (6.76)
holds for every n > 0.

Definition 6.2.2 The stochastic process is said to be bounded with probability one,
if

Supn>ol|Gall < 00 (6.77)
holds for probability one.

Lemma 6.2.3 Assume there is a stochastic process V,,(¢,) as well as real numbers
v, U0, 0 >0and 0 <a <1 st

Ol Gall® < vn(Ga) <TGl (6.78)
and

E{Voi1(Gua) |G} = Val(Gn) < = aViu(G) (6.79)

are fulfilled for every solution of (6.69). Then the stochastic process is exponentially
bounded in mean square.

Definition 6.2.4 A discrete extended Kalman filter is given by the state estimator
(6.69) and the Riccati differential equation
Poi = AP AL + Qn — Ko\ (CoP,CE + R,)K,] (6.80)

where A, and C,, is given in (6.72) and the Kalman gain

K, = A,P,CT(C,P,CI + R,)™ (6.81)
Q. and R,, are the covariance noise matriz

Qn = GuGY (6.82)
R, = D,D] (6.83)

The main statement are then given
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Theorem 6.2.5 Considering the nonlinear system given in (6.67) and (6.68) with
the extended Kalman filter from 6.2.4. Let the following assumptions hold.

1. There are positive real numbersa,c,p,p > 0 s.t the following bounds on various
matrices are fulfilled ¥Yn > 0:

[An]| <@ (6.84)
ICLl| < ¢ (6.85)
pl < P, <pl (6.86)
q<Qn (6.87)

rl <R, (6.88)

2. A, non-singular ¥ n > 0

3. There are positive real numbers €y, €y, Ky, ky > 0 5.t the nonlinear functions
©, X in (6.75) are bounded by

lo(z, 2, )| < kpllz — 2] (6.89)
Ix(z 21 < kiyllz — 217 (6.90)
for z,2 € RP with ||z — 2| < e, and ||z — 2|| < €, respectively.

Then the estimation error (, given by (6.73) will be exponentially bounded in mean
square and bounded with probability one, provided that the initial estimation error
satisfies

1Goll <€ (6.91)
and the covariance matrices of the noise terms are bounded via

G.GT <51 (6.92)

D, DI <51 (6.93

for some d,€ > 0.

The proof of this theorem can be viewed fully in [24].

What is also presented and proved in the article is that the same result yields
if the system fulfills following conditions regarding observability and rank:

Theorem 6.2.6 Considering a nonlinear autonomous system as previous (exclud-
ing the process noise G, ) with the same Kalman filter presented in Definition 6.2.4.
Assuming there are real numbers r,q > 0 with

ql <Qn (6.94)
rl <R, (6.95)

forn >0 and a compact subset k of R, s.t the following conditions hold
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1. The nonlinear system satisfies the observability rank condition for every z, €
K.

2. The nonlinear functions f and h are twice continuously differentiable and
%(2) # 0 holds for every z € K

3. The sample paths of z, are bounded with probability one, and k contains these
sample paths as well as all points with distance smaller than €, from these
sample paths, where €, > 0 is a real number independent of n.

Then the estimation error (, given by (6.73) will be exponentially bounded in mean
square and bounded with probability one, provided that the initial estimation error
satisfies

1ol < € (6.96)
and the covariance matrices of the noise terms are bounded via

D, DI <51 (6.97)
for some 9,¢€ > 0.

From this important article, the conclusion is that the estimation error is bounded
in mean square and with probability one, if the initial estimation error as well as
the disturbances, are small enough. The nonlinearities must be continuous and also
the solution of the Riccati equation must remain positive definite and bounded.
For autonomous systems it is also shown that the condition on the solution of the
Riccati equation can be reduced to a nonlinear observability rank conditions, which
can be checked off line.

In [26] convergence analyses of the extended Kalman filter used as an observer
for nonlinear deterministic discrete-time systems are carried out. Sufficient condi-
tions for local asymptotic convergence are established here, combined with a method
of enlarging the domain of attraction hence improving convergence of EKF by de-
signing the arbitrary matrices in a certain way. By introducing some instrumental
matrices o and Sy to evaluate the linearity of the model, stability and convergence
of the EKF can be controlled in a more accurate way.

The analysis from [26] is taken one step further in [22], where stability is evalu-
ated when EKF is used as an exponential observer for general nonlinear systems.
By applying the Lyapunov method, it is proved that under certain conditions the
dynamics of the estimation error is exponentially stable. This result is very im-
portant when it is desirable to obtain a nonlinear separation type property in the
context of feedback stabilization for nonlinear systems as will be investigated in
later chapters of this thesis. This article is a continuance of Reif and Unbehauens
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previous article on Stochastic stability of the discrete-time EKF. The same system
as in their previous article is used, but some new definitions are presented.

Zng1 = f(2n, Tn) (6.98)
Yn = h(2n) (6.99)

Definition 6.2.7 The different equation (,v1 = An(I — K,Cp)Cy + 1 (given in
(6.69)) has an exponential stable equilibrium point at 0 if there are positive real
numbers e,n >0, and 6 > 1 s.t

1Gall < mllColl6~° (6.100)

holds ¥ n > 0 and every solution of ¢, with (y € B, where B. = {v € RY|||v|| < €}.
Definition 6.2.8 The observer

i = f(37 wn) (6.101)

5= + Kalyn — h(2)) (6.102)
(z2. and 2T are the a priori and a posteriori respectively) is an exponential observer
if the differential equation (6.69) has an exponentially stable equilibrium at zero.

Definition 6.2.9 The deterministic discrete-time EKF is closely related to the one
presented in Definition 6.2.4, but taking the a priori and a posteriori states into
account, the filter becomes

Time update:

Lo = (27, 20) (6.103)
P = AP AT+ Q (6.104)
Linearization:
0
A, = a—i(é’ﬁ[,xn) (6.105)
oh
C,=—(2" 6.106
) (6.106)

Measurement updates:

5=+ Ky — M(ZY)) (6.107)
Pr=(I-K,C,)P; (6.108)

Kalman gain:

K, =P, CC,P;CI + R)™* (6.109)
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where Q and R are symmetric positive definite matrices and a > 1 is a real number.
When a = 1 the usual EKF is obtained, else it gives the EKF exponential data
weighting. Q and R are usually the covariance noise matrices for the noise term,
but when applied as a nonlinear deterministic observer, Q and R are chosen arbi-
trary symmetric positive definite. The full proof that this system is an exponential
observer is shown in [22] by establishing a bound for r,, before applying a well-known
formula for matrix inversion and lastly verifying a useful matrix inequality concern-
ing the solution of (6.104) and (6.108).

This leads to the concluding theorem of this article

Theorem 6.2.10 Consider the discrete-time extended Kalman filter as presented
above, which fulfill the assumptions

1. There are positive real numbersa,c,p,p > 0 s.t the following bounds on various
matrices are fulfilled ¥Yn > 0:

[Anl <@ (6.110)
1G]l < (6.111)
pl <P <pl (6.112)
pl <Py <pl (6.113)
(6.114)

2. A, non-singular ¥ n >0

3. There are positive real numbers €,, €y, Ky, ky > 0 5.t the nonlinear functions
©, X in (6.75) are bounded by

(2, 2%, 2)|| < Kllz = 27 (6.115)
(2, 27| < mixllz = 27|17 (6.116)

for z,Z%, 27 € RP with ||z — 21| <€, and ||z — 27| < ¢, respectively.

Then the extended Kalman filter is an exponential observer. In other words, the
constant 0 for the exponential error decay in (6.100) satisfies 0 > a.

This theorem is proved by employing a standard Lyapunov-function technique for
differential equations.

In his doctoral thesis from 2004, Knut Rapp did a quite thoroughly investigation of
the EKF stability problem. The aim of this thesis was to take the previous stability
proofs even further by easing the conditions under which the Kalman filter can be
proved stable. The results of his investigation states that stability can be proved

without requiring the matrix Hy, = % 2=% 1 1O be bounded in norm, provided that

the Hessian % s=5,,_, is bounded Vz € R. [25] This is valid as long as
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- Lower and upper bounds of Kalman gain matrix K} and the matrix (I — Ky Hy)
are as tight as possible

- When choosing filter tuning matrix @)y stability properties must be taken into
consideration. This is crucial for obtaining theoretical stability of EKF.

- Since approximation in EKF is only valid locally, the initial error must be
bounded.

What has been proved earlier in the studies of EKF stability are that the results
are very conservative. The stability properties are dependent on initial error and
noise processes, which have proved to be very small. Knut Rapp [25] comes to the
same conclusion in his thesis, but he also states that the results can be improved
significantly by proper choice of filter tuning matrix QQ and by applying tight upper
bounds on the Kalman gain and (I — K} Hy) matrix. This yields also for the general
nonlinear case, although the system gets more vulnerable for noise, or more sensitive.

In the next section the stability proof of [25] are presented.

6.2.2 General stability proof of EKF

The model used in this analysis has nonlinear terms in both state and output com-
bined with white zero mean process noise w; and measurement noise v, and covari-
ance matrices E [wyw]| = Q) and E [vzvl] = Ry.

Ye = h(zy) + v (6.118)

The extended Kalman filter has the form

Tpp = Trp—1 + K [yr — M(Tpp-1)] (6.119)
Py = [l — KpHg] Py (6.120)
oh
Hy = |2 |
k [83@} B (6.121)
C=Tk k—1

with the time update

Tpp-1 = f(Tr14-1) (6.122)

Peror=Fe P B+ Qu (6.123)
of

F,= |+ 6.124

’ [855] i=dk ) ( )

where F}, is non-singular V& > 0 and the filter gain matrix is as usual given by

-1
Ky, = Pyj1H{ [HiPox-1Hy. + Ry] (6.125)
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Ry, and @y are assumed bounded from below throughout the analysis, where 71 < Ry,
and g < Qr Yk > 0, where 7,7 > 0.

The error in filtered state and predicted state can as before be represented by

ek = Tp — Ti ks (6.126)

€k k-1 = Tk — Tk k-1 (6.127)

By applying the same method of expansion as before previous and rearranging the
equation it now becomes

€ = Frer-1o-1+ 1k + (6.128)
€kk—1 = Fk_lek_ljk_l + Wg—1 + 9]7 (l’, Zi') (6129)

Where 6 (z, %) is the remainder term at time k — 1 and

Fp=[I — KpHy) Fry (6.130)
ne = [I - Kka] Wr—1 — Kkvk (6131)

The stability proof for this system is based up on the Lyapunov method. The
assumptions presented in [24] are still necessary.

1F:ll < f (6.133)
pil < Py < pal (6.134)
pil < P < gl (6.135)

o(Hy)
<h 1
o(Hf) = (6:130)

(H}) and o(H') denotes the largest and smallest singular value in the H}' matrix.
To prove conditions for stability two lemmas giving some properties of the system
have to be presented

Lemma 6.2.11 Assume that F}, is non-singular Yk > 0 and the conditions above
are fulfilled. Then there exist a real number 0 < v <1 s.t

F'PI'R < (1-9)P2 (6.137)

Lemma 6.2.12 [f the condition given by (6.136) holds, then an upper bound for
the norm of the Kalman gain matriz is given by

[ h% (6.138)
1
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The proof of these lemmas can be viewed in [25]. These Lemmas leads to the main
theorem and proof of EKF stability.

Theorem 6.2.13 Assume that the bounds given above are fulfilled and that fy is
non-singular Vk >, assume further that there exist an € s.t

ler—1p-1] <€ (6.139)
which implies ||z — Tk x—1]| < €1(€), where

€1(€) =ae+w

Moreover, assume that

6(zk, e p—1) || < @llak — Trp® (6.140)
and
10(xr, )| < Ok — Zrpa | (6.141)

holds for ||z — Zg r—1]]* < €1(€) and ||z — Tri||* < €1(€) respectively.
Then there ezists a constant € > 0 s.t the solution of the error model (6.128) is:

1. Locally exponentially stable if the initial error satisfies |lego| <€, W=v=0
2. Bounded by
p b2, _
lexell* < p—2(1 +&) lleaol® = fﬂ(w, v,€) (6.142)
1

if the initial error satisfies |lego|| < € and W, 0 are sufficiently small. Here
¢ € (—1,0) is a constant and p(w,v,€) >0V k >0 is a function to be defined
later.

The proof of this theorem follows underneath is based on Lyapunov stability and is
derived by [25].

Proof Let V: R — R be a positive square Lyapunov function defined by

Vier1) =ei P lier (6.143)
4
1 2 1 2
—ler-1ll” < Vier-1) < —|lexll (6.144)
b2 P1

Then
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AV =e, P,;lek — e;;F_lP;;_llekfl
= (Fek_l + ny + lk)TPlgl(Fek_l +ng + 1) —ef_ Pler
=el |E'P'F, — P | eny + 0l Potng + 15 P (2F ey + 1)
+ 20l PN (Frery + ) (6.145)

Applying Lemma 6.2.11 gives

AV < ’yV(ek 1) + lkp (2Fk€k 1+ lk) + 27”Lk,P (erk 1+ lk) + nkP Nk

(6.146)
By considering the second term, it holds that
10E Pt (2Fver—1 + )|l < 151167 (o, )T [ — KipH]" |1+ (6.147)
16 (2, 2)T K ) (12Fkenall + | [T = K Hy) 05 (2, 2)|| + | Kion(z, 2)]1)
Using [[e k-1l < Oller—1p-1l> + fller—1p-1]l + @ gives
11 P 2F ke -1 k1 + 1)l < Bllex—1h]® + @Wi (w,€) (6.148)
where
P = h**0?q5 (V€ + 4€) + 2hp? o’ (3hp f2qa + Upa)
91]71
+ (2(p20 + 1 f?q20) + 01)2h fa200€ + (AR 21000 + (P2 + hf220)?)E
2
+ —f(pzﬁ + hf2qp)
q1P1
(6.149)
and
1
Wi (w,e) = ” 2h<pe— (Bhqe?(2f€ + 9€%) + fqu + (20 + 3hqa f*¢)e)
101 G
+ R 2‘;2 WH(W + A(IE + fe)) + Ahge? q‘h [f2 + foe(1+ 2 - P2y (6.150)
1 1P

FhgE (PR + )02 4 1)

The Lyapunov inequality now becomes

AV < —yV(er_1) + Blles—rp1l]* + nE Pot(Frer—1 + l) + @W, (W,€) (6.151)
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for ||ek71,k71H S E.

Choosing

e = min (z, ﬁ@) (6.152)

where ¢ > 1, gives for |jeg_1,-1]] <€

Bllex-rallller-raall® € —=llexrpall® < TV (ex-) (6.153)

~ Ypeo

<2

and this makes

AV (1 —1)
=7y

for |lex—1 k-1 <e.

V(ek_l) + n;ka_lnk + 2ank_1(erk_1 + lk) +wW; (w, E) (6154)

The next terms to consider are the nf P, 'ny and the 2n! P! (Fyer_1 + ;). The
inequalities presented in (6.2.11), (6.134), (6.135) leads to the following inequality

1 1
Ing By gl < (1Bt nwll? < — ([ — KpHyl|w + || Ki][7)? < ——(po + hgo0)?
P ain
(6.155)
and
12nf Py (Fregor + b || < 2[nf Py ||| Fren—1 + U
2> (6.156)
<~ (pa + q2h0) X (F2llexr |l + 92 lexr |2 + hp L [lex i )
q1P1 q1 q1 q1
by substituting for |le—1|| and adding it to the inequalities above
120 Pt (Frer—y + L) || + [ P gl < (9o + hqa) W (w0, 7, €) (6.157)
and
1
Wa(w,v,€) = 5— X [Q(fqge + poe® 4 haap(9?e* + 29
gt (6.158)

+ (20 + A + 2fwe + w?)) + pow + hqyv
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This takes us further in the proof of Theorem 6.2.13 and

(1—4)

AV <7 5 Ven) +p(@.7,0) (6.159)

where

p(w,7,€) = wW, (W, €) + (pow + hqev)Wo(w, 7, €) (6.160)
Since 0 <y < 1land ¢ >1

(1 =)
(0

Using this and the inequality from (6.159) it can be shown that starting at k = 0
gives

¢ = € (—1,0) (6.161)

B

vierr) < (1=8 V(eoo) + Y (1+&)"p(W, 7, €) (6.162)
n=0
This further implies that
Hek,kHZ S %(1 + f)kH€070H2 - %p(wa 67 6) (6163)
1

The condition of (6.140) can be relaxed to ||¢(x, Trx—1)|| < @llok — Tk x—1|| if Input-
to-state stability is assumed. See [25]. This will simplify the W, and W, functions,
although another term pof1Y(2 + hyge/q1) will be included in (6.159). This term
will be small if the nonlinearities are small. This builds-up under the intuitive
conclusions from previous work, which states that the EKF will be stable if the
nonlinearities are small and the filter is initialized reasonably.

6.2.3 Summary of EKF stability

To sum up the all the results and research done on the topic of EKF stability it is
seen that:

1. The estimation error for stochastic discrete-time system is bounded if the
system satisfies
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e the observability rank condition for autonomous systems, otherwise the
solution of the Riccati equations need to remain positive definite and
bounded

e initial estimation error is small
e noise term is small
e continuous nonlinearities

e Jacobie matrix of the output must be bounded although this bound has
been relaxed to only acquire finite ratio between largest and smallest
singular value of Hy as long as the norm of the Hessian matrix of the
function h(xy) are finite for any x € R™

2. The extended Kalman filter is an exponential observer if the assumptions from
Theorem 6.2.5 holds.

3. Local asymptotic convergence can be improved, under mild conditions, when
EKF is used as an observer for nonlinear deterministic discrete-time systems

by

e properly choosing the arbitrary matrix Ry

e introducing instrumental matrices to evaluate the linearity of the model
to control both stability and convergence of the EKF.



Chapter 7

EKF Convergence for ESMO

7.1 Convergence of the extended Kalman filter

In this section the result presented previous from [22] and [24] will be used to analyze
stability properties to the nonlinear ESMO satellite system with extended Kalman
filter. The equations and system matrices are given in (2.61) and Appendix A, the
goal is to prove that the Kalman filter in (2.80-2.86) is exponentially stable accord-
ing to [22]. This result will be used further in this thesis to prove that a nonlinear
separation principle yields for ESMO in order to combine the filter with a stabilizing
feedback controller.

Several properties and assumptions need to be fulfilled for Theorem 6.2.5 to yield
for ESMO. The estimation error & will be exponentially bounded if:

1.
Al <@ (7.1)
ICkll < (7.2)
pl < P, <pI (7.3)
ql < Qy (7.4)
rl < Ry (7.5)

for all time steps k, where @, ¢, p,p > 0 are real numbers.
2. Ay nonsingular for every k > 0.

3. there are positive real numbers €, €y, Ky, Ky, > 0 s.t the nonlinear functions
@, x in (2.78) and (2.79) are bounded by

lo(z, 2%, 2)|| < Kpllz — 27| (7.6)

)
Ix(z, 27 < mylle — 27|

for z, 2%, 27 € RP with ||z — 27| < e, and ||z — 27 || < €, respectively.

65
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provided that the initial estimation error ||| < € and that the noise terms are
bounded via

G,GT <61 (7.8)
D,DI < §1I

for some 9,¢€ > 0.

7.1.1 Constraints on the linearized system matrix

The linearized system matrix Fj, is given in (2.66). The constraints required on this
matrix is that the norm of it must have an upper bound smaller or equal to the
largest singular value in the matrix and in addition the matrix must be non-singular,
but this will be investigated later. The oo-norm of Fy, [[Fyllee = max; Y 7, |fijl-
By studying F} it can be seen that the if all the variable defining the matrix are
bounded for all k, then the matrix norm will be bounded for all k.

The variables in question are:

kg, ky, k.- constants

wo- constant

a;; - constant from reaction wheel allocation matrix

c;j- variable from rotation matrix always within the unit circle
1.~ constant

W~ chosen input, therefor assumed limited

n*- operating point always within the unit circle

€*- operating point always within the unit circle

wl- operating point

From this it can be seen that all the variables of the linearized system matrix are
bounded except for the w’ term. n* and €* are bounded in the unit circle since
they describe angles, and maximum angle will be 360°. The other variables are all
constants and therefore bounded.

The key point in this part will be to prove that w% will be bounded. The prin-
ciple of extended Kalman filter is that it re-linearize the system for every new state
estimate. This means that there will be a new operating point for every new esti-
mate. The angular velocity operating point for every step of the Kalman filter loop
has to be bounded to prove that the norm of F} is upper bounded. The operating
point fed into the linearizing algorithm is depending on the last estimate and the
error between measurement and last estimate, times the Kalman gain. The equation
for this is W’ = wgb’k = wzb,k + Ki(@measured — qx)-From this equation it can be
concluded that as long as the measurement is bounded, and that the Kalman gain
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is bounded and the angular velocity estimate used as the operating point will also
be bounded. And hence, all elements of F; are bounded and therefore it is proved
that [ F3] < f.

The same constraints yields for the output matrix Hy, but as this is assumed linear
and constant for ESMO, no further investigation of boundedness is required.

Figure 7.1 shows graphical values of || F||, and it can be seen here, that the maxi-
mum single value goes toward a constant.

e _________________ e _________________
o T S— S— _________________
| S——— _________________ pm— —
. —— (A _________________ S

05f

Morm of Fk

Qi ey ................. ................. .................
(e ................. ................. ................. .................
02k ................. ................. ................. .................

T Lo ................. ................. .................

i I i
0 a0 100 150 200 250
Time [s]

Figure 7.1: Graphical value of || Fy||

7.1.2 Constraints on the error covariance

The last property from assumption one in Theorem 6.2.5 is that error covariance P
is both upper and lower bounded. To prove this, the result in Lemma 4.1 [24] can
be used:

Consider a solution P, forn > 0 of the Riccati difference equation (given in (6.80))
which gives the error covariance of in the extended Kalman filter, and let the fol-
lowing assumptions hold.

1. There are real numbers q,q,r,7 > 0 such that Qn, R, in (6.80) are bounded by

¢l <Qn,<ql (7.10)
rl <R, <TI (7.11)

2. A,, C, satisfy the uniform observability condition.
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3. Initial condition Py is positive definite.
Then there are real numbers p,p > 0 such that the solution of (6.80) is bounded via
pl <P, <pl (7.12)
for every n > 0.
The first assumption require bounds on the noise matrices Ry and Q. From (A.5)

Q) is given as a constant 6 x 6 matrix, hence Q) is bounded and (7.10) holds. R
is the measurement noise matrix given by

~ 2 2 2
Ry = diag(o,,, |, 0u ) Tupry) (7.13)
where agi ., 1s updated with each new estimate and given by

Tt = [n s S [e;i]] (7.14)

since both n and € are limited by the unit circle, each new estimate ¢, will also apply
the same bound which gives agi ., @ maximum value of [1 2]T, Rj, and minimum

value of [—1 —2]", R, will therefor be both upper and lower bounded and (7.10)
are fulfilled. This result also proves that the bounds assumed in (7.4) and (7.5)

Figure 7.2 shows graphical the lower and upper bounds respectively of R from
simulations.

1 T T T T 1.005
b : 1.0045 s Fer ]
a1 SRS T A f

1.004 |- i S e P s P R S e e
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Min singular value of Rk

il SRR R e L e 1o0ss |

Max singular value of Rk
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: 1002
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E ol -1 SRS, LR RACRITTETIEPRNITS ITPPRTRPPRT L (e e - =i

1 i I i i 1.001 3 ] d i —
0 a0 100 150 200 250 0 a0 100 150 200 250

Time [s] Time [s]

Figure 7.2: Lower and upper bounds on Ry,

The next assumptions says that Fj, H; must satisfy the uniform observability con-
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dition. In other words,
Hj,

HyFy,
Ok = HkaQ (715)

must have full rank for every n > 0.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
Ov=| 0 0 0 0 0 0 0 (7.16)
b 9) T2¥obz afby 3T 36 T
[ 5%Woby  3%ob, 0 —5Wobe —3€3 3N 3€1

By only doing the first two rows of multiplication it can be seen that the linearized
system will be observable for every n > 0 as Oy has full column rank. This is con-
firmed by extensive simulations in Matlab.

The third objective that needs to be fulfilled for P, is that F, is positive defi-
nite. Fy is in this study chosen arbitrarily, and as used in previous simulations, P
is given as

[10-¢ 0 0 0 0 0
0 1076 0 0 0 0
0 0 1006 0 0 0
Fo = 0 0 0 1071 ¢ 0 (7.17)
0 0 0 0 1071
|0 0 0 0 0 10719

One condition for positive definiteness is det(A) # 0. det(Py) = 1.0000e — 048 # 0
and Py is therefor positive definite.

All the conditions for P, to be bounded are thereby complied and the first con-
dition for exponential boundedness of estimation error is fulfilled.

Figure 7.3 shows lower and upper bounds for Py graphical through simulation.
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Figure 7.3: Lower and upper bounds on P

7.1.3 Nonsingular linearized system matrix

F}, nonsingular is another constraint on the system to state exponentially observer
characteristics. In linear algebra, a n-by-n (square) matrix A is called invertible or
non-singular if there exists a n-by-n matrix B such that AB = BA = [y, another
property of a nonsingular matrix is that det(a) # 0 and the rank(A) = n. If one
of these properties are true, then all of them are true and the matrix is nonsingu-
lar. For the ESMO matrix Fj these properties have to yield for all time steps k
and different z*, and can therefore be quite difficult to prove, but by studying the
equations for each element in Fj, it can be seen that the matrix will have full rank
(rank(Fy) = n) for all z* as long as «* # 0 as each row of elements are unique. z*
will never equal zero as n = 1 when € and w = 0.

Because of the very complex Fj matrix, the singularity is also tested and assured
nonsingular through simulations by taking the determinant of the matrix for every
single step in the estimation process. See figure 7.4.

7.1.4 Lipschitz bounded nonlinear functions

The last condition to secure exponentially bounded estimation error, is the assump-
tion that the norm of the nonlinear functions ¢ and x given in (2.78) and (2.79) are
nonlinear limited by some kind of parabola also known as a Lipschitz function. This
can easily be shown for ESMO by applying some mathematical tricks and tools like
the triangle inequality. First we have that

1 1
SFRAR + o F ) (o — &) (7.18)

X(zk, 2k) =0 (7.19)

@(Zk,ék,l'k) = ([ +
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Determinant value of Fk

1 i
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Time [g]

Figure 7.4: Determinant of Fj, for k > 0

since x(zk, 2x) = 0 the bound on x is always fulfilled. Further we investigate the

norm of ¢.

. 1 1 .
lo(an, 26 @)l = (1 + 5 FEAT? + ngZ?AT?’ )z = 2|
1
3!

5 1 2 2 1 3 3
< llaw = Zll (I + IS ECAT + N5 F AT - )

1
< Nl = 2l + SFRAT? + S FRAT |

since

1]} =1
I5FAT = cr - |
|5 FEAT = cs - ||
c1 and ¢y are positive constant, and then using the fact that

| Alloc = max; Z la;j| = constant
J

if all elements of matriz A are bounded.

Then, since F} has been proved bounded for each k > 0

(7.20)
(7.21)

(7.22)

(7.23)
(7.24)

(7.25)

(7.26)
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| F2|| = constant (7.27)
| F2|| = constant (7.28)
(7.29)

and it can be stated that

R 1 1 . R
e = ZelI (] + |!§F;3AT2|! + HgF;f’AT?’II ) = Cllzk = &l < Kollze — 2
(7.30)

where C is a positive constant.

It is thereby proved that the linear function ¢ is bounded by a Lipschitz func-
tion assumed that ||z, — 24| < e, where €, is a real positive number larger than
Zero.

All the constraint of Theorem 6.2.5 is thereby fulfilled.

7.2 Conclusion of convergence for EKF

From the above analysis it is proved that all the conditions mentioned by [24] for the
estimation error &, to be exponentially bounded with probability one are fulfilled.
But this theorem proof is only valid if initial estimation error is smaller than a given
¢ and that the noise terms in the system are bounded by a constant 6. In other
words, noise and initial estimation error must be adequately small. Estimates of the
value for ¢ and € can be found and compared to simulations, these estimates often
turns out to be very conservative.

Although it can be very difficult to prove that initial estimation error and noise
terms are adequately small, these assumptions need not be fulfilled for the filter to
work as an exponential observer. According to [22] it is sufficient that assumption
1, 2 and 3 of theorem 6.2.5 holds. These assumptions are the same assumptions
proved valid for ESMO in the previous segment. It can therefore be concluded that
the extended Kalman filter used on ESMO is an exponential observer.



Chapter 8

Nonlinear Separation Principle on
ESMO

In this chapter the main objective is to apply a nonlinear separation principle on the
closed loop ESMO where the exponentially bounded observer is combined with the
feedback control law. Limited literature and research can be found where extended
Kalman filter is used in a nonlinear separation principle. The properties established
in the previous chapter will be important to prove that a nonlinear separation prin-
ciple can in fact be established, even with an extended Kalman filter as the observer.
The first task will be to investigate stability of the proposed controllers, then an
analysis of the overall characteristics of the system when combining these controllers
with the EKF will be carried through.

8.1 Stability of feedback controllers

Before it is possible to analyze the overall stability, or convergence of the satellite
system, with both feedback controller and exponentially converging controller, it
is crucial to determine the stability characteristic of the feedback controllers. In
this section the proposed controllers from chapter 3.1 are being examined. The
goal is to achieve global asymptotic stability, a state that is very difficult to achieve
for quaternion based attitude controllers because of multiple equilibrium points.
Stability of the same feedback controllers were analyzed in [8] and [9], and the same
methods and strategies will be used in the following subsections to prove GAS of
the proposed feedback controllers for ESMO.

8.1.1 GAS of Model-independent PD controller

In this section the result from [8] is used to show that the PD controller using unit
quaternion is globally asymptotic stabilizing for a class of desired trajectories.

73
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Theorem 8.1.1 : Consider the following PD control law:

T =ky,q — k,Aw (8.1)

where k, and k, are positive scalar constants. Aw = Wb —wl is the angular velocity

error where Wb, is the angular velocity of the body relative the inertial frame given in
body frame notations and Wl is the desired angular velocity relative inertial frame
given in body frame notations. Let

pr = [l + lwi (8.2)
If p1 € Ly ]0,00) N Lo [0,00), then q and Aw — 0 as t — oo.

The theorem yields as long as the desired trajectory is in Ly. In other words, there
are rather large limitations on the controller. But still it will be very useful for
operations where the problem is to move from the initial attitude to a goal attitude
with certain desired transient response or for the case where the set point wg is zero.
For these cases the L, requirement is trivially satisfied and the zero equilibrium will
be GAS.

To prove this theorem the direct Lyapunov method is used, proposing a Lyapunov
candidate based on kinetic energy error, an artificial potential energy and a prod-
uct term of angular momentum and the position error. The proof in short will be
presented beneath, for the full version of the stability proof, see [8].

Proof The proposed Lyapunov candidate

1
V = (k,+ck,)((n—172+e€-€)+ gAw- [Aw —ce- TAw (8.3)
lell 1" 5 [ llel
V> P. =x'. P -x 8.4
- L!Awll] [IIAwH] 54
and

1 [2(k, + ck,) c||]||1
P.== P 8.5
2 [ c|[ 1] Hr (8.5)

pr is defined as in fj,=1v - Iv which is positive. P, will be positive definite if c is
sufficiently small.
V= —chylel® = k|Aw] + (Aw — ce) - (—w, x Twy, — 1)
1 1
—cAw-I(éAw X € — —nAw + wl x €)

2
—ce (Aw x TAw + (w§, x T — Tw}, x)Aw)

= All=[* + pll| (8.6)
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cky %HIHVd ]
c = 8.7
Q= |3l k= 2] 87
. 1
w= s+ i) | 539

p=V1+I(lohl + llwsl*) (8.9)
where 74 = sup,s [|wé | and A = Ay (Q.) which is the minimum eigenvalue of
Q.. P. and Q. in this proof is depending on the constant ¢ to be small enough for
positive definiteness. This ¢ is not implemented in the control law and can therefor
be chosen arbitrarily small enough.

Further on, by taking the integral on both sides, moving some of the components
t t
AAHdﬂﬁk—APQWﬂﬂﬁé% (8.10)

and then applying Schwarz inequality and using assumption that p; € Lo

MlzllZ, < Vo + llollz. Iz, (8.11)

which then gives a bound on the ||z||L,

1 o2\ 172 . lelle
<|= 2 2 12
HxHLQ_[A (v0+ o + (8.12)

From this it is showed that x € L, [0,00) and by substituting (8.12) into (8.10) it
follows that V is uniformly bounded along the trajectory in t. From the satellite
equations of motion, & will also be uniformly bounded, and therefore x is uniformly
continuous. From Barbalat’s Lemma 4.3.6, it can therefore be stated that z(¢) — 0
as t — 0o hence the controller is GAS according to [8].

8.1.2 GAS of Model-Dependent PD controller

Model-dependent controller is taken from [8] and [27] and is very useful when good
tracking performance is crucial, but high gains cannot be used because of constraints
on the system. The control law is described in section 3.1.2 and can be proved
globally asymptotically stable as the model independent PD controller above.

Theorem 8.1.2 :Consider the following controll law
b

d
T = kye — kjAw + I% + Wb x TWh, (8.13)
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If by > vy where vy = |11 and 9 = suppsg | as before, then e(t) — 0 and
Aw — 0 ast — oco. If n — +1, as t — oo, then the convergence is of exponential
rate and the system is globally stable. A sufficient condition for this is

S Aw(0) - TAw(0) < 2k,(1 +7(0)) (8.14)

The proof of this theorem is simular to the proof of Theorem 8.1.1. Considering
the same Lyapunov candidate as given in (8.3). By taking the derivative along the
solution and then substitute in the control law the derivative of V becomes

V< —2'Q.x (8.15)
where @), is

cky avic
. 5.16
? sV Ky —vrva — e (8.16)

If k, now satisfies k, > ;74 , then there exists a range of ¢ sufficiently small so that
Q). is positive definite. Barbalat’s theorem 4.3.6 then states that z(t) — 0 as t — oo.

The next thing is to prove exponential rate of convergence. Here the problem of
multiple equilibriums is treated so that global stability can be stated instead of only
local.

When |le]| — 0, n will go to either +1 or -1. The problem is to figure out which
equilibrium the system tends to, or alternatively, force the system to one of them.
Suppose that 7 — +1, then there exists some finite time T such that n(¢) > 0 for
all T'> 0. Since |n| <1, fort > T

le]>’=1-n">1-n>(1-n)’ (8.17)
Then it can be showed that

(lell* + (1 =m)?) (8.18)

N | —

1 1
el = SlelP + 5 lel> >
and then there will exists a A > 0 for all ¢ > T such that
V<AV (8.19)
and hence , ||€]|, Aw — 0 exponentially.

If on the other hand n — —1, such a conclusion cannot be stated. In this case
as

V — 4(k, + ck,)
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and if
V(0) < 4(ky + cky) (8.20)

the situation with n — —1 cannot occur since V is non increasing. This therefor
gives the condition for V(t) exponentially converging to zero

%AW(O) TAW(0) < ky(4 — (1=n(0))* = [|e(0)[|*) = 2ky(1 +n(0))  (8.21)

8.1.3 Comments to PD controller

It is shown in [8] that the case where n = —1 corresponds to an unstable equilibrium
and is therefore clearly undesirable. Any small perturbation will cause a rotation of
360° to n = +1. But as described previous, this situation is avoided when (8.14) is
satisfied by either choosing k, large enough or Aw = 0. By combining the globally
non-singular parameterization with the global stability analysis tool of Lyapunov’s
direct method, global asymptotic stability is proved for both the model-dependent
and the model-independent PD controller. It is the choice of Lyapunov function
that is most crucial in the proof of the above controllers.

It is important to be aware that the control laws presented above does not cre-
ate a continuous, globally asymptotically stable vector field on SO(3) x R3, as this
is not possible since implementation would require memory as the sign ambiguity in
q cannot be resolved from the attitude kinematic equation. However, on S(3) x R3,
where S(3) is the unit sphere in R* where the quaternion lies, a globally asymptot-
ically stable vector field in the closed-loop can be found. This means that as the
kinematic equation for the system, the unit quaternion representation must be used.

See [8].

8.1.4 GAS of Robust controller

The global asymptotically stable robust controller proposed in section 3.1.3 is ana-
lyzed thoroughly in [9], main results and proofs will be presented in this thesis too,
as it is a very significant part of the overall nonlinear separation principle later in
this chapter.

The control law is given by equation (3.6), where G, is symmetric and positive
definite matrix fulfilling 0 < A,,4.(Gp) < 27y and 7 is a positive constant, then the
overall feedback loop system of ESMO (or any other satellite) has two equilibrium
points at (e = 0,w = 0,7 = 1), and (e = 0,w = 0,7 = —1). Proof of this can be
seen in [9].

By looking at the parameterization where

n = cos(g) (8.22)
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If applying the equilibrium points to (8.22), then n =1 = ¢ = 0, while n = -1 =
¢ = 2m in other words, there is only one equilibrium point in the physical space.
The desired equilibrium space will therefore be (¢ = 0,w = 0,7 = 1). Therefore,
B = (n—1) are defined, to make the origin of the state space converge to the desired
equilibrium space. The system equation for 7 and ¢ in (2.6) can then be rewritten
to

3= —%wTe (8.23)

e=—-(Se)+(B+1))w (8.24)
and the system in (2.6) can now be expressed as

&= f(x,u) , where = (3, €, w’) (8.25)

By using this rewritten model, the initial orientation given by (3(0), €(0)) can al-
ways be defined in such a way that —1 < § < 0 corresponding to 0 < 5(0) < 1,
which is equal to |¢| < 7, and the positive equilibrium point is chosen.

The control law will now be rewritten to

w = —% (e x e+ (B+ 1)I)G, —vBI] € — Gha (8.26)

Now the following theorem establish global asymptotic stability of the physical equi-
librium state

Theorem 8.1.3 Suppose G, and G, are symmetric and positive definite, and that
0 < MnaxGp < 2. Then the closed loop system given by rotational equation of
motion Jo + w X (Jw) = 7, (8.23), (8.24) and (8.26) is globally asymptotically
stable.

Proof Consider the positive definite and radially unbounded Lyapunov function
V =wlJw + eTGpe + 7 53? (8.27)
The derivative of V is

V =2w" [-S(w) x (Jw) +u] + €'Gp(w x €+ (B + 1)w) — 7w’ S(€)
(8.28)

Substituting for u, rearranging and simplifying

V= -20"G,w (8.29)
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which is negative semi definite.

To prove negative semi definiteness it is necessary to investigate the Lyapunov func-
tion at V = 0, this occurs only when w = 0, and therefore two equilibrium points
will be present, namely for e = w =0, =0 and € = w = 0,3 = —2. As before,
these two equilibrium points represents the same physical equilibrium state.

From (8.27) it is verified that any small perturbation in 8 from the equilibrium
point # = —2 (n = —1) will cause a decrease in the value of V. This means that the
equilibrium point with § = —2 corresponds to an isolated equilibrium point such
that V = 0 at that exact point, and V < 0 in the neighbourhood of that point.

Previously it is shown that V is negative everywhere in the feasible state space
except at the two equilibrium points. That is if the initial conditions lies anywhere
in the state space except at the equilibrium corresponding to 7 = —2, then the
system will asymptotically approach the origin. When at the equilibrium point
corresponding to § = —2 at ¢t = 0, the system will stay there for all ¢ > 0. It
can derby be concluded by La Salle’s theorem (4.3.3) that the system is globally
asymptotically stable. [9]

8.2 Stability of overall feedback loop

In the previous section global asymptotic stability of a selection control laws for
ESMO has been explored. In chapter 7, exponentially convergence of the extended
Kalman filter ((2.80)-(2.84)) was proved. The aim of this section is to present the
main result of this thesis, namely a nonlinear separation principle for the combined
closed-loop system of equation of motion and kinematic equations for ESMO (2.61),
the extended Kalman filter proposed for ESMO and the above GAS control laws.

In chapter 6.1, a lot of previous work, methods, constraints, and principles yielding
several special cases of nonlinear separation principle was presented. None of these
presented work has tried to combine an extended Kalman filter with a control law,
but as the filter has proved to be acting like a exponentially observer for the system,
some of the thesis previous derived for other systems may yield.

In [12], stability of polymerization reactors using I/O Linearization and a high gain
observer is presented. Here a nonlinear separation principle is derived, based on
exponentially converging observer combined with a globally asymptotically stable
nonlinear feedback controller admitting the physical state space as a positively in-
variant bounded set. From Theorem 8.1.1, 8.1.2 and 8.1.3 and the following proofs,
it is quite clear that these controllers fulfill the requirement of the controller in [12].
From Chapter 7 the extended Kalman filter is proved exponentially converging and
it is therefore possible to propose a nonlinear separation principle for ESMO based
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upon the work done in [12] transformed into discrete time
Theorem 8.2.1 Nonlinear Separation Principle for ESMO:
For the system =, given by

Zey1 = Qi + Drug
Zha1 = O + Dl + Ki(yn — h(2k))
Ky given by the equations for Kalman gain, depending on Py

If the controller uy is globally asymptotically stable, such that z, in = remains in a
compact set ) for all k > 0, where the compact set § contains the equilibrium point
of the controller uy, and if the estimation error &, = zp — 2. converges exponentially
to zero for all k > 0, (i.e an exponential observer), then, for all initial state values
2o € €, the system = is globally asymptotically stable (GAS) for all zy € Q, V
To € R", VPy > 0. And therefore, the observer and the controller can be designed
separately as long as they fulfil the requirement stated in this theorem.

Proof When an exponential observer like the proposed EKF is used, the estimation
error will tend to zero and is therefore bounded. The error covariance P, which the
Kalman gain K} depends on is given by the Riccati equation and is proved bounded
from above and below in Chapter 7 and hence the state (&, Zx, Px) of = remains in
a compact set along any trajectory.

Let A = {&, 2k, P, k > 0} be a semi trajectory of the closed loop combined system
=. This semi trajectory, laying in a compact set as stated above, has a nonempty w-
limit set. Let (£, 2z, P) be an element of the considered w-limit set of A. Since & — 0
= £=0. Let {0, 2, Py, k > 0} be a semitrajectory starting at k = 0 from (0, z, P).
Since w-limit set is positively invariant (La Salle), it follows that {0, 2, Py, k > 0}
belongs to the considered w-limit set of A. By using the closed-loop stability as-
sumption and exponentially convergence 2, — z; = w(zZ), so there are points at
which & = 0 and 2, = 2; in the w-limit set of A as the set is closed.

Then, let (0,2*, P) be an element of w-limit and again following the same proce-
dure, letting {0, 25, Py, k > 0} be a semitrajectory starting at k = 0 from (0, 2}, P)
belonging to a w-limit set of A. The dynamics of P is given by (2.82) and (2.84)
(which are based upon the Riccati equation. The linearized system is proved to be
observable in section 7.1.2 and therefor knows that P, — P* which is the unique
positive-definite solution of the algebraic Riccati equation. Therefor, (0, z*, P*) be-
longs to the w-limit set of A. It follows , under the assumption of (local) asymptotic
stability of =, that A enters in a finite time into the basin of attraction of (0, z*, P*).

Hence =}, is globally asymptotically stable on Q x RN x P;f

The last part of the proof states local asymptotic stability of =, by letting N be
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the invariant manifold defined by N = {(¢, 2, P)|{ = 0}. The nonlinear dynamics
on N are given by subsystem

En{Zrr1 = ok + Trtie + Ky (yr — h(21))
K} given by the equations for Kalman gain, depending on Py

where the system =y is triangular and both the subsystems are asymptotically sta-
ble. Using the (local) asymptotic stability results of Vidyasagar [28], it is deduced
that the nonlinear dynamics on N are asymptotically stable. Since the estimation
error is exponentially converging, it can be concluded that =y is (local) asymptoti-
cally stable. And hence, it is proved that the overall closed loop system is globally
asymptotically stable.

8.3 Discussion

In this chapter the stability of the proposed controllers in Chapter 3.1 are analyzed
and proved to be GAS. The convergence result from Chapter 7 is then combined
with GAS feedback controllers and GAS stability of the overall feedback-loop com-
bining controller and observer is stated as a nonlinear separation principle.

The nonlinear separation principle proposed is general and holds for all systems
combining GAS control law with an exponentially converging observer as the con-
trolled state always will remain in a bounded set when this requirement are fulfilled.

The theorem and proof is based upon the results presented in [12], where non-
linear separation principle is deduced for the polymerization reactors in continuous
time using a high-gain observer and a GAS feedback law. The main difference in
this thesis is that the theorem is proposed for a satellite system attitude determi-
nation where extended Kalman filter is used as an observer combined with a GAS

feedback law.






Chapter 9

Simulations

The simulation chapter here consists of five sections where simulations with the
three presented controllers are carried out in each section, followed by a section
where response to different steps are compared for the three controllers and then
a discussion of the results. The same Simulink model is used in each section, only
the controller part differs. For simplicity, a single star sensor is used in the simula-
tions for measurements, and the attitude is estimated in the extended Kalman filter
block. Continuing, the estimated states are used as input to the respective feedback
controller. A general wish for attitude determination is accuracy of 0.001° about all
axes and for tracking no upper bound for tracking error is given, but as always best
possible accuracy is to be desired.

Simulations are done with different proportional and derivative gains, to get a rough
picture of how sensitive the controller is and how it behaves when large or small
gains are applied. It is also done simulations for different step sizes, to see how large
steps the controller is capable of following.

9.1 Overall Simulink diagram

The overall simulink model can be seen in Figure 9.1. The model parameters are
given in table 9.1, and is decided from ESMO statement of propose and previous
values used in ESEQO. All the initial values for of EKF is given in table 9.2.

The controller calculates a 3 x 1 torque vector which has to be distributed to the four
reaction wheels in some way. An optimal distribution of control torque is derived
by Fossen [29].

u=rTA° A° = AT(AAT)! (9.1)

A is the allocation matrix given in (A.1) and A® is the Moore - Penrose pseudo
inverse matrix.
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Figure 9.1: Overall feedback loop

’ Parameter H Value ‘
Satellite Inertia diag(22.0, 32.3, 34.7)[kgm?|
Actuator Inertia diag(1, 1, 1, 1)-1072 [kgm?]

Moon radius 1736 [km]
Moon mass 7.35 - 10?2
Universal Gravity Gradient G 6.6742 - 10711 [%532}
Orbit velocity wq 0.9683 - 1073

Table 9.1: Initial satellite values

’ Parameter H Value
AT 0.05
Gnoise 110712
Wnoise 1- 10_8
star,eise 1-10712
Q dlag (qrzzoisw q?wise’ q?wise? w'rzwz'se’ w?wise? w?wise)
R [starneise StATnoise starnm-se]T
H [135303x3]
GG AT - eye(6)
Pro diag(1-1076,1-1075,1-1075,1-1071°,1-10719 1. 1071°)
Qk.0 [5 5 5] [deg] (converted into quaternions)
W0 [0.0005 0.0005 0.0002] [rad/s]

Table 9.2: Initial EKF values

9.2 PD model independent

The PD-controller given in equation (3.5) is simulated in this section. The first
simulations shows tracking error and estimation error when exposed to a 5° step in
reference value. Later sections will have a closer look at tracking qualities.

In figure 9.2 and figure 9.3 the gains are K, = 3-eye(3) and K; = 5- eye(3) and the
figure shows tracking and estimation errors, both overall and zoom on steady state
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Figure 9.3: PD: Estimation error in Euler angles, small gains
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From the figures using small gain it is clear that after the initial oscillations, the
system will soon stabilize the attitude around the reference. The 5° step is happen-
ing at time t = 150sec. Only a small difference at this exact step can be seen on the
graph. A small deviation on about 0.0015° in the steady state can be seen. The es-
timation error is in the neighborhood of 107%°, which is well withing the requirement.

Figure 9.4 and figure 9.5 shows the tracking and estimation error with gains K, =

30 - eye(3) and K4 = 50 - eye(3).
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Figure 9.4: PD: Tracking error in Euler angles, medium gains
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Figure 9.5: PD: Estimation error in Euler angles, medium gains

When increasing the gain ten times, the tracking deviation decreases considerably to
around 10~* and the inital response are slightly smoothed. Estimation error almost
unchanges.

Even larger gains are imposed in figure 9.6 and figure 9.7, here the gains are set to
K, = 60 - eye(3) and K; = 100 - eye(3) which is close to maximum gains, as the
system start to oscillate for larger gains.
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Figure 9.7: PD: Estimation error in Euler angles, large gains

In this last simulations for PD control, the gains are set close to maximum, higher
gains makes the system diverge (tested in simulations). The tracking error is once
more decreased and smoothed, while estimation error remains the same.

9.3 PD model dependent

The model dependent PD controller is a nonlinear controller given in equation (3.5).
When PD-model dependent controller is used, constraints on Sy is applied to force
the system into desired equilibrium point. Sg > a|/I|| - sup,s, |wé||. Sy is therefore
chosen to be two times this constraint. -

Figure 9.8 and figure 9.9 shows the tracking and estimation error with gains .S, = 3
and Sy = 22.2. The figure shows tracking and estimation errors, both overall and
zoom on steady state response.
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Figure 9.9: MdPD: Estimation error in Euler angles, small gains

For the model dependent controller when small gains are used, the initial response
is smoother than for the regular PD controller, although there still is a singularity
(because of Euler angles), before the system settles down at the reference attitude.
The tracking deviation, however, is larger than for the PD controller with one of the
attitude angles settling at 1.2° from the reference. The estimation error is oscillating
in the beginning, but settles down quite nicely in the end.

Larger gains are imposed in figure 9.10 and figure 9.11, here the gains are set to
Sp = 30 and Sg = 222.
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Figure 9.11: MdPD: Estimation error in Euler angles, medium gains

When the gains are increased ten times, the tracking deviation is decreased ten
times to 0.12°, the tracking improves for higher gains. Estimation error is still good.

In figure 9.12 and figure 9.13 the gains are S, = 45 and S; = 333, these gains
are close to maximum gains before the system starts to oscillate.
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Figure 9.13: MdPD: Estimation error in Euler angles, large gains

The tracking error is yet again reduced and is now showing rather good tracking
properties, with only 0.075° deviation. The estimation error remains unchanged
with the gain increase.

9.4 Robust Control

In this section the results from the robust controller in (3.6) are given. This con-
troller is also nonlinear. The constraints for this controller is that A,,..(G),) < 27.

In figure 9.14 and figure 9.15 the gains are G, = 0.5 eye(3) and G, = 2-eye(3) and
A = 1.2 and the figure shows tracking and estimation errors, both overall and zoom
on steady state response.
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Figure 9.15: Robust: Estimation error in Euler angles, small gains

The results when using the robust controller shows a rather good response as the
initial oscillations are reduced from #+180° to only 4+5°. Even for very small gains
the deviation is limited and within 0.01° steady state deviation and the estimation
error response is also much smoother and calmer than for the PD controllers.

Figure 9.16 and figure 9.17 shows the tracking and estimation error with gains
Gp =5-eye(3) and G, =20 - eye(3) and A = 12.

When the gains in the robust controller are increased ten times, the performance of
the controller improves just as much. The initial response is now completely smooth
and nice, and when the step is applied, the system is back to steady state after short
period of time. The estimation error is not as smooth as the tracking error initially,
but looking closer at the graph, the peak error after reference change is 7 - 1073,
which is well within the requirement of 0.01° accuracy.
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Figure 9.17: Robust: Estimation error in Euler angles, medium gains

Larger gains are imposed in figure 9.18 and figure 9.19, here the gains are set to
Gp =20-eye(3) and G, = 80 - eye(3) and A = 48 which is close to maximum gains,
as the system start to oscillate for larger gains.

By increasing the gains close to maximum, the best result is achieved. The steady
state deviation is within 10™*, showing a smooth and relatively quick response. The
estimation error shows even smaller peaks initially and the steady state deviation
is still within 10~* as before.
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Figure 9.18: Robust: Tracking error in Euler angles, large gains
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Figure 9.19: Robust: Estimation error in Euler angles, large gains

9.5 Comparing tracking qualities

The three controllers are here exposed for different reference steps; [20 40 80].
The response, time and steady state deviation are then compared to see which con-
troller have the best properties.

Figure 9.20 shows the result when applying 20° step on system with PD, model-
dependent PD and robust controller respectively. In figure 9.21 the same response
is presented when 40° step is applied, followed by 9.22 where the simulations are
carried out with 80° step.
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Figure 9.20: PD, mPD and Robust controller, reference vs attitude with 20° step
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Figure 9.21: PD, mPD and robust controller, reference vs attitude with 40° step
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Figure 9.22: PD, mPD and Robust controller, reference vs attitude with 80° step

Taking a closer look at the steady state responses for the model dependent PD
controller and the robust controller it is clear that very large step introduce some
problems for the controllers. The model-dependent PD controller shows rather large
deviation and small oscillations, while the robust controller shows sign of marginal
stability as it oscillates around the reference value.
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Figure 9.23: mPD and Robust controller, ref vs attitude with 80° step close up

9.6 Discussion and comparing

The aim for the simulations carried out in this chapter has been to prove that the
theoretically derived results previous in this thesis, also yields in practice. It has
not been the task of this thesis to derive the most successful controller or to get
the best tracking for the satellite, the choice of controllers are based upon stabiliz-
ing qualities in order to prove a nonlinear separation principle. When that is said,
simulations are done with the three controllers to decide which controller fulfills the
requirement of a satellite on a moon mission best. Properties that are important
for a space mission is accurate attitude determination (within 0.001deg), best possi-
ble tracking performance, easy to implement, robust, computational cheap and solid.

It is clear from the above simulation results, that introducing feedback in the atti-
tude determination loop preserve the stability of the open loop system. The attitude
estimation process is unconcerned with the controller choice and produces estimates
well within the requirement for 0.001° for all three controllers. The tracking prop-
erties on the other hand vary to some extent between the three controllers.

The independent PD controller gives good results and it is simple and easy to
implement. It is proved stable and the gain scheduling is done off-line which leads
to small computational cost, it is also the most used controller, and has been used
successfully in countless of operations and systems. As a tracking controller, the
simple PD gives small deviations in steady state, however initially, quite high oscil-
lations occur before settling at the reference. It also look as though the controller
destabilize the system for very high gains, and since it does not incorporate any
system terms it will not react to large changes in the system, and the gains might
be very wrong for the system if this occur. It also had larger problems with high
reference change than the other two controllers.
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The model-dependent PD controller is more complex than the the simple PD con-
troller, but it still results in relatively small tracking error, though larger deviation
than the simple PD controller. It is proved stable as long as the constraint on the
gains are fulfilled and it incorporates the system states which is suppose to give
good response even when high gains cannot be applied to the system. The con-
troller proves that it can handle both high gains and large changes in reference.
Although it is stable when these events occur, the tracking quality is not as good as
for the other controllers. It is on the other hand, robust against changes and would
probably stand better against the harsh environment where ESMO is going than
the PD. On the other hand, it is very computational heavy, even when the gains are
computed offline and will therefore require a much more powerful software system
than the PD controller.

Lastly, the robust controller proves to give by far, the most precise and smooth
attitude tracking. The initial response is smooth and nice and it follows the changes
in reference both fast and exact. The deviation is small even for small gains and it
respond well to large changes in reference, although for 90° it start oscillate slightly,
but still showing stable characteristic. It is also quite simple, though more complex
than the PD controller but this is accounted for by being more resistible and adopt-
able to changes in the model and the environment. The only constraint for stability
is that the gain is smaller than two times a constant .

Based upon the above simulation and discussion, it is clear that the system remains
stable when feedback is incorporated as the theory imply. If choosing a controller
for ESMO based upon the above simulations and discussion, the robust controller
would probably be the best choice as this controller shows the best simulations re-
sult in all the tests, both for small and large gains and small and large changes in
reference. It is also robust and tough, and will probably work well in the harsh and
though environment in space.



Chapter 10

Concluding Remarks and
Recommendations

10.1 Conclusion

Attitude determination for a vehicle in space is a very important element when plan-
ning a space mission. Being able to control the attitude is another very important
part of the attitude subsystem, in order to steer the satellite into desired attitude
and position for the satellite to be able to fulfill its mission objectives. As the con-
troller is introduced, the system is transformed into a closed-loop, which might have
totally different characteristic than the open loop. The needs to study the stability
of the overall system therefor becomes important, especially when combined with
an observer for state estimation.

Three different controllers are proposed for the closed loop system of ESMO. All
three controllers are proved globally asymptotically stable. The extended Kalman
filter is proved exponentially converging and combined with the globally stabilizing
control laws, a nonlinear separation principle is proposed for ESMO. This principle
guarantees that as long as the observer is exponentially converging and the feedback
law is GAS, then the observer and controller can be designed separately and the
total system will still be GAS.

Through simulations, the different controllers are tested and simulated for differ-
ent gains and different steps in reference. The plots show how the tracking and
estimation error reacts to feedback. All the controllers give remarkable good re-
sponse, the estimation error is within 10~ for all three controllers independent of
the gain. The tracking error varies between the controllers, different gains and step
changes. Overall, based on tracking qualities, robustness, computational cost and
implementation issues, the best choice for ESMO, based on the simulation and anal-
ysis in this thesis is the robust controller. It is accurate, cheap, robust, GAS and
resistible to changes, which is suitable for a lightweight, budget space satellite.
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10.2 Further work

As the stability of the closed loop system is established with an extended Kalman
filter as observer, it would be useful to compare the results with other types of ob-
servers to see what implementation have the best characteristics when both cost,
size and accuracy are being considered.

A more thoroughly study on the choice of controller and tuning of these controllers
would also be interesting as to propose the most optimal solution for ESMO.
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Appendix A

System Parameters

A.1 System matrices and paramters

air Qiz2 Qi3 ai4 g g —g —\/T?:
Avheels = |21 Q22 a3 aga| = \/?5 _\/?5 0 0
as1 Gz G33 Q34 0 0 _\/?5 \/?5
zl 0 O 0 10 30 0 0
I _ Z2 10 3 O O
" 0 1073 0
O O O 0 0 1073
I, 0 0 0
[inertia =10 Iy 0f = O 323 0
0 0 L 0 0 347

Measurement matrix can be assumed constant

H; = [I3x3 Osxs]

Noise matrices for the Kalman filter

10712 0 0 0 0 0 ]
0 1072 0 0 0 0
1o 0 1072 0 0 0
Q= 0 0 108 0 0
0 0 0 0 108 0

|0 0 0 0 0 1078

AT 0 0 0 0 0 ]
0 AT 0 0 0 0
oo |0 0 AT 0 0 0
FTlo0 0 0 AT 0 0
0 0 0 0 AT 0

0 0 0 0 0 AT
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A.2

The linearized velocity part

bll b12 b13 bl4 b15 b16 b17

Fuer = |ba1 baa Doz bas bas bog Doy (A7)

bll

b31 b32 b33 b34 b35 b36 b37

= 2k wo(Nwy + €1w;) + 2wy (Nwy — €1w;) + ky(ness — €1c23)

1 .
+ T(2lww0<a21 + a2 + a23 + asa)(—e€3(ai1 + a1z + a1z + aia) — (a1 + aze + ass + as)

1
+ e1(ag1 + asz + asz + aza) + a21ww 1 + ﬂ(wwﬂ + w3 + Wi a))(c32w0 — W)
0

— 2e1wpes + 2iywo(ast + asz + ags + aza)(ez(—ain — a12 — a1z — a14) + N(—a21 — az2 — a2z — a24)
1
—e1(ag1 + ase + ass + asq) + ﬂ(ww,l + azowy 2 + Wiy,3 + Wy 4)) (Wy — C22wp) — 2€awpes)
0
(A.8)

= —2kywo(eswy + €aw,) + 2wp(€aw, — €3wy) + ky(e3c33 — €2c23)

1, .
+ 7(2%0&0(6121 + a9 + ag3 + a24)(—€2(a11 + a12 + a13 + a14) + €1(a21 + a2 + a3 + a4)
xr

1
+ n(as1 + asza + ags + asa) + a21wWy,1 + ﬂ(wwl + w3 + Ww,a)) (W, — c32w0)
0

— 2nwoea + 2i,wo(as1 + aze + ass + asa)(—€a(a11 + a2 + a13 + a1a) + €1(az1 + a2z + asg + asa)

1
+ n(as1 + asz + ags + asq) + ﬂ(wml + w2 + Wi,z + wi.a))(wWy — c2owp) — 2€1wpe3)
0
(A.9)
= 2kywo(e1wy — Nws) + 2wo(e1wy + Nw. ) + kg (e1¢33 + 1c23)

1,
+ 7(2%&00(@21 + a9 + agz + a24)(—n(a11 + a12 + a1z + a14) + €3(a21 + a2 + a3 + az)
xr

1
+ ez(as1 + asz + ags + aza) + a21wy,1 + ﬂ(ww,Q + w3 + Wi a)) Wy — c32w0)
0

+ 2eqwpes + 2iywo(ast + ase + ass + asa)(—n(a11 + a12 + a1z + a14) + €3(a21 + age + ags + ag4)

1
+ e2(agy + asz + asz + azq) + ﬂ(ww,l + w2 + W3 + wywa))(we — c22wo) — 2€swpes)
0
(A.10)

= T(iw(aal(ww,l + a11) + a2 (w2 + a12) + a23(wyw 3 + a13) + a24(Ww,a + a14))(ca3wo — wy)
x

+ (fw(az1 (w1 + a11) + as2(wWy,2 + a12) + ass(wy,3 + a13) + asa(wy 4 + a14)))(wy — c23wp))

(A.11)
1 .
= kyw, — c3owo + T(Zw(an(ww,l + a21) + a2 (wy 2 + ag2) + ass(wy,3 + azs)
+ a24(ww74 + a24))(c32w0 - wz) + (iw(a31(ww,1 + C121) + G32(ww,2 + a22) + a33(ww,3 + a23)
+ aza(ww,a + a24)))(wy — cazwo) + €3) (A.12)

1
I,
+ a24(wy 4 + aza))(csowo — W) + (fw(as1 (w1 + az1) + as2(wy 2 + aze) + ass(wy 3 + ass)
+ a34(Wwa + aza)))(wy — caowo) — €2) (A.13)

= kawy + c20wo + — (tw(a21 (Ww,1 + az1) + a22(ww,2 + a32) + a2s(ww,3 + ass)
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ba1 = 2kywo(€2w, — Nwy) + 2wo(€aw; + Nwg) + ky (€333 — €1¢13)

1.
+ T(Qlwwo(au + a1z + a13 + a1a)(—e3(ar1 + a1z + a13 + a14) — n(a21 + a22 + a3 + a24)

Y

1
+ e1(agy + asz + ass + azq) + ﬂ(ww,l + Wy,2 + W3 T wwa))(w, — caawp)
0

+ 2e1wper + 2iwolast + aze + ass + asa)(—ez(ai1 + a1z + aiz + a14) — N(a21 + aze + as3 + ag4)
1
+ e1(as1 + asz + azs + asa) + ﬂ(wwg + agoWy,2 + Wi,3 + Wy 4))(Wy — C22wo) — 2€swpes)
0
(A.14)

bao = 2kywo(€1w, + €3wy) + 2wo(€3wy — €1wz) + ky(—ncs3 — €ac13)

1,
+ T(%wwo(au + a1z + a13 + a1a)(—e2(a11 + a12 + a13 + a14) + €1(a21 + a2 + a3 + a24)

Yy

1
+ n(as1 + ase + ass + asq) + ﬂ(ww,l + w2 + W3 + wy.a)) (W, — c3awp)
0

+ 2nwoer + 2iywo(ast + as2 + azs + asa)(—e2(a11 + a12 + a1z + a14) + €1(a21 + az2 + as3 + ag4)
1
+ n(as1 + aszz + ass + asa) + ﬂ(ww,l + agowy,2 + W3 + Wy a))(Wy — caowp) — 2€awpes)
0
(A.15)
baz = 2kywo(Nw, + €awy) + 2wo(€awy — Nw;) + ky (€133 + €3¢13)

1 .
+ 7(2%}&10((111 + a12 + a13 + a14)(—€1(a11 + a2 + a1z + a1a) — €2(a1 + aze + asz + az)
y

1
+ e3(as1 + ass + ass + asa) + ﬂ(ww’l + Wy,2 + W3 T wwa))(w; — caawp)
0

— 2eswper + 2iywo(as: + asa + ass + asa)(—€1(a11 + a12 + a1z + a14) — €2(az1 + age + ag3 + az4)
1
+ es(asi + as2 + azs + asa) + ﬂ(ww,l + a3oWy,2 + Wi,3 + Wy a)) (Wy — C20wo) — 2€1wpe3)
0
(A.16)

bay = 2kywo(€3w, — €1wy) — 2wo(€1wy + €3w.) + ky(ne13 — €2¢33)
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(A.17)
1 .
bos = —kyw, + caawo + I—(zw(all(wml +ai) + a12(ww,2 + a12) + a13(ww 3 + a13)
Yy
+ a14(ww,a + a14))(Ws — c30w0) + (T (@31 (Ww,1 + a11) + as2 (w2 + a12) + asz(ww,3 + a13)
+ aza(wy 4 + a14)))(C20wo — wy) — €3) (A.18)
1
bos = T(lw(all(‘*}w,l + a21) + a12(wy,2 + a22) + a13(wWy,3 + a23) + a14(wWy 4 + a24)) (W, — ca3wp)
y
+ (fw(az1 (w1 + a21) + aze(wWy,2 + a22) + ass(wWy,3 + a23) + asa(wWy 4 + a24)))(Caswo — wy))
(A.19)
1
bo7 = —kywy — crowg + T(Zw(all(WwJ + as1) + a12(wy 2 + aze) + a13(wy 3 + ass)
Y

+ Cl14(ww,4 + a34))(wz - C32w0) + (iw(a31(ww,1 + a31) + a32(ww,2 + a32) + a33(ww,3 + CL33)
+ aza(ww,a + asa)))(crawo — wa) + €1) (A.20)



Appendix A 106

b1 = 2k, wo(€2wy — €1wy) + 2wo(€awy + €1wy) + k. (€323 + ne13)
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b3y = 2ksz(61wy + Ezwx) + 2w0(61wy — eng) + kz(63013 - 77023)
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Appendix B

CD Contents

Folder H File H Description
Common for all euler2q.m compute quat. from euler angles
Common for all q2euler.m computes euler angles from quat.
Common for all || glnvProduct.m computes inverse quat. product
Common for all qProduct.m computes quat. product
Common for all Rquat.m computes the rotation matrix
Common for all Sk_matrix.m creates the skew symmetric matrix
Common for all init.m initialisation of the ESMO satellite
Common for all lin.m computes the linearaized F matrix
Common for all nonlin.m computes the nonlinear propagation
Common for all plotter.m plots the tracking and estimation errors
Common for all || initStarEKF.m initalize the single star EKF
Common for all starEKF.m the discrete EKF

PD
M.PD
Robust

PDcontrol.mdl
mPDcontrol.mdl
Robust.mdl

ESMO with PD controller
ESMO with Model dependent PD controller
Simulink model with robust controller
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