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Preface

The purpose of this Master thesis is to develop and simulate linear and nonlinear attitude con-
trol strategies for the micro-satellite European Student Earth Orbiter (ESEO). ESEO is part of
the Student Space Exploration and Technology Initiative (SSETI), which is a project supported
by the Education Office of the European Space Agency (ESA). Work on ESEO started in the
year 2000, and launch is scheduled to 2005. SSETI is also planning a satellite which will orbit
the moon, the European Student Moon Orbiter (ESMO). Work on this satellite is about to begin,
and the first student team to be recruited was the ESMO Attitude Determination and Control
System (ADCS) team. This Norwegian team is based at the Norwegian University of Science
and Technology (NTNU) in Trondheim and Narvik University College (HiN) in Narvik. The
first task of the ESMO ADCS team was to do a case study of ESEO. The work presented in
this thesis is part of this study.

The development of the mathematical model used in this study, is done in cooperation with
Øyvind Hegrenæs, and I would like to thank him for helpful discussions along the way. I
would also like to acknowledge the support from my tutor, Jan Tommy Gravdahl, and I wish
to thank the rest of the ESMO ADCS team in Narvik, especially Jøran Antonsen and Frank
Robert Blindheim, for interesting discussions and support regarding interaction with SSETI.
Lastly, I acknowledge the support of SSETI, and I would like to thank them for letting this
thesis be based on a real space mission.

Trondheim, July 1, 2004

Morten P. Topland
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Abstract

In this Master thesis, attitude control of a spacecraft using thrusters and reaction wheels as
actuators is studied. A nonlinear mathematical model of the spacecraft is developed, based on
the assumption that the satellite is a rigid body. Linearization and Lyapunov theory is used to
derive two linear and four nonlinear controllers. Three of the nonlinear controllers rely on can-
cellation of system nonlinearities, while the fourth is a sliding mode controller. By restricting
the spacecraft inertia, simpler controllers can be found. Except for the controller based on lin-
earization, all controllers can be used to control any spacecraft using thrusters and an arbitrary
number of reaction wheels. Implementation issues regarding the controllers are also discussed.

Several controllers are compared in simulations in MATLAB/SIMULINK. The simulations
use data from the micro-satellite European Student Earth orbiter (ESEO), which has one reac-
tion wheel. A bang-bang controller with dead-zone is used for thruster control. The simulations
show that all controllers obtain a desired accuracy of±1◦ in Euler angles. Some of the con-
trollers do not use the reaction wheel actively to control the satellite’s attitude, but they perform
just as well as the others. Whether or not the reaction wheel is used actively, the Euler angle
which is affected by the reaction wheel converges faster than the other Euler angles, and it is
closer to its desired value. This is due to the presence of the reaction wheel, and it is suggested
that it adds a damping effect to the system. Note that the controllers which use the reaction
wheel actively are nonlinear.

ESEO is a mission of the Student Space Exploration and Technology Initiative (SSETI), which
is supported by the Education Office of the European Space Agency (ESA). Another planned
SSETI mission is the European Student Moon Orbiter (ESMO). The Norwegian SSETI team,
the ESMO Attitude Determination and Control System (ADCS) team, will use ESEO as a case
study to prepare for work on ESMO. This work is part of that study. The ESMO ADCS team
is based in the Norwegian University of Science and Technology (NTNU) in Trondheim and
Narvik University College (HiN) in Narvik.



Chapter 1

Introduction

1.1 Purpose of report

The purpose of this report is to apply nonlinear control methods to control the attitude of a
satellite, and compare their performance with a linear controller. A nonlinear mathematical
model of the satellite is developed, and data for the European Student Earth Orbiter (ESEO) is
used in simulations in MATLAB/SIMULINK. The actuators of this micro-satellite are thrusters
and a reaction wheel. Both of these types of actuators provide challenges for an attitude control
system, which are addressed. Furthermore, implementation issues and reusability of these
control strategies for other satellites are discussed.

1.2 Background

This report is written in cooperation between the Department of Engineering Cybernetics at the
Norwegian University of Science and Technology (NTNU) and the European Space Agency’s
(ESA) educational programme Student Space Exploration and Technology Initiative (SSETI).
The author is a member of the SSETI ESMO ADCS team, together with Øyvind Hegrenæs and
a group of students from Narvik University College (HiN). ESMO ADCS stands for European
Student Moon Orbiter Attitude Determination and Control System. This team will start to work
on ESMO this fall. This spring, the team has performed a case study of ESEO, which this report
is part of, to prepare for work on ESMO. Communication between SSETI and NTNU has been
maintained by weekly chat sessions over the internet, and two workshops which the author
has attended in December 2003 and May 2004 as a team coordinator. In addition, the team
has been present at the Space Technology Education Conference (STEC) in April 2004. This
report is a Master thesis, which means that it contains the work equivalent to one semester of
studies (30 credits). An article based on its contents has been accepted at the 55th International
Astronautical Conference (IAC) in Vancouver in October 2004.

1.3 Outline of report

The two first chapters of this report contain background information. Chapter 2 provides a brief
overview of previous work regarding attitude control of satellites. In addition, there is more
information on SSETI and on technical data for ESEO. The mathematical background for this
report can be found in chapter 3 and in appendix A.1. Chapter 4 and appendix A.2 contain the
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theoretical analysis of this report. Information regarding the simulator and simulation results
are found in chapter 5 and the appendices B and C. A discussion of the results and conclusions
take place in chapter 6.



Chapter 2

Background information

2.1 Previous work

Hughes (1986) and Wie (1998) are standard references on spacecraft dynamics. Concerning
attitude control of spacecraft, Wie, Weiss and Arapostathis (1989) show that a PD controller
stabilizes a spacecraft. They use the classical spacecraft model with no moving parts. Hall
(2000) has studied spacecraft attitude control using several reaction wheels as actuators. Addi-
tionally, Hall (1997) has investigated use of such reaction wheels to store energy. Hall, Tsiotras
and Shen (2001) suggest an attitude control system with thrusters and reaction wheels which
in addition store energy. Hall, Tsiotras and Shen (2002) describe nonlinear attitude control
for a spacecraft with thrusters and an arbitrary number of reaction wheels, where the modi-
fied Rodrigues parameters are used to describe the attitude of the spacecraft. The use of Euler
parameters or unit quaternions in attitude control problems, is treated by Fjellstad and Fossen
(1994), but the results are applied to underwater vehicles. A nonlinear sliding mode controller
is proposed by Lee, Park and Park (1993). Show, Juang and Jan (2003) present a nonlinear at-
titude controller based on a linear matrix inequality method. Song and Agrawal (2001) studies
vibration suppression during attitude control for flexible spacecraft, and present various meth-
ods of transforming a continuous input torque to thruster torque pulses. These methods are
compared with emphasis on vibrations in the spacecraft structure.

At the Norwegian University of Science and Technology (NTNU), Soglo (1994), Kristiansen
(2000), Fauske (2002) and others have studied attitude control of satellites with magnetic coils
and reaction wheels as actuators. Their results are part of the foundation of the NCUBE
projects, where pico-satellites are launched into Earth orbit. For more information on NCUBE,
see Gravdahl, Eide, Skavhaug, Svartveit, Fauske and Indergaard (2003) and Riise, Samuelsen,
Sokolova, Cederblad, Fasseland, Nordin, Otterstad, Fauske, Eriksen, Indergaard, Svartveit,
Furebotten, Sæther, and Eide (2003).

2.2 SSETI

2.2.1 History and organisation structure

The Student Space Exploration and Technology Initiative (SSETI) is a project supported by
the Education Office of the European Space Agency (ESA). It started in the year 2000, and its
objective is stated as follows (SSETI PR team, 2004):
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To create a network of students, educational institutions and organisations (via
the internet) to perform the distributed design, construction and launch of (mi-
cro) satellites and other spacecraft. This objective is reached when a spacecraft
is designed, built and launched by a significant number of European students in a
highly distributed way. The completion of this project objective is independent of
a mission success or failure.

Students from ten different European countries participate in SSETI. ESA’s Education Office
manages the project, and coordinates the efforts from all the European universities involved.
ESA facilitates testing and launch of satellites. Experts from ESA are involved in review ses-
sions where they meet the students to check the quality of their work. Communication between
the SSETI participants is done via weekly internet chat sessions, use of internet newsgroups
and annual workshops at ESTEC in Noordwijk in the Netherlands. For more information on
SSETI, see SSETI PR team (2004).

2.2.2 Planned missions

The SSETI missions (figure 2.1) are part of a layered structure where the aim is to finally land
on the moon. The layers are represented by three missions. The first is an earth orbiter, the
second a moon orbiter and the third a moon lander.

Figure 2.1: SSETI missions (SSETI PR team, 2004)

Development phases

Each mission has to pass several phases in order to be launched. These phases are listed here
(SSETI PR team, 2004):

Phase 0Pre-assessment study

Phase A Feasibility study

Phase B Detailed definition

Phase C Development

Phase D Manufacture, Integration, Test
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Phase E Launch

Phase F Mission Operation

ESEO

The first SSETI mission is the European Student Earth Orbiter (ESEO), and work on this mis-
sion started when SSETI was founded in the year 2000. It is a micro-satellite which will enter
geo-stationary transfer orbit (GTO) in 2005. This orbit is elliptical, and it is an intermediate
stage between a low Earth orbit (LEO) and a geostationary orbit (GSO). Satellites in GSO are
always at the same point in the sky when observed from the same point on the Earth. ESEO
will be launched as an auxiliary structure for Ariane 5, the so called piggyback launch. A pig-
gyback launch is a launch where several small satellites are launched together with a big one.
In other words, ESEO and several other micro satellites will be launched together with a bigger
satellite. The most important objectives of the ESEO mission are (SSETI PR team, 2004):

• Test and qualify the propulsion system for orbit manoeuvres and for the future moon
missions.

• Test a small, low power plasma thruster.

• Test and qualify a star-tracker developed from a commercial device.

• Take pictures of the earth for the public with the help of installed cameras.

• Stay in orbit for at least 28 days.

SSETI Express

Work on SSETI Express started in December 2003, and this satellite will orbit the Earth. SSETI
Express is much smaller than ESEO, and is scheduled to be launched first among the SSETI
missions. It will serve as a precursor to ESEO.

ESMO

The European Student Moon Orbiter (ESMO) is the third SSETI mission. The objective is
to reach moon orbit with a small satellite. Recruitment for this mission has just started. The
ESMO ADCS team was the first recruited team, and they started their work in January 2004.
A case study of ESEO was their first task, and this thesis is part of that team’s contribution.

Moon Rover

The fourth mission involves a moon landing with a vehicle, a Moon Rover. Work on this
mission has not yet begun.

2.3 Technical data for ESEO

2.3.1 Orbital data

According to the SSETI ESEO Mission Analysis (MIAS) team (SSETI ESEO MIAS team,
2003), the most likely orbit of insertion for ESEO is AR5 ECA Standard GTO. Some orbital
parameters for this insertion are listed in table 2.1.
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Apogee altitude 35950 km
Perigee altitude 250 km

Table 2.1: Orbital parameters for ESEO

2.3.2 Inertial data

The maximum weight of ESEO is 120 kg including payload, and the maximum dimensions are
600 mm x 600 mm x 800 mm. Power will be supplied by solar panels. A prototype has not
been built yet, hence accurate inertial data is not available. When modeling and simulating a
satellite, it is important to know the inertia matrix (definition 3.6). Although it may change, in
this thesis we will use the most recent inertia matrix (SSETI ESEO AOCS team, 2004a):

I =

 4.3500 0 0
0 4.3370 0
0 0 3.6640

 (2.1)

2.3.3 Sensors

ESEO will have sun sensors, a horizon sensor, a star tracker and a magnetometer (Trottemant
et al., 2001). The magnetometer uses the International Geomagnetic Reference Field (IGRF)
in modeling the magnetic field.

2.3.4 Actuators

Thrusters

ESEO’s primary actuators are thrusters. The SSETI Propulsion (PROP) team is responsible
for the development of the thruster systems. The thrusters are either on or off, i.e. they cre-
ate a certain torque or no torque at all. It is important to note that thrusters have limited fuel
capacity, which means that they will eventually run out of fuel. The thrusters are divided into
three thruster systems. The Orbit Control System (OCS) uses one powerful thruster to give
enough thrust in order to change ESEO’s orbit. The Reaction Control System (RCS) shall
stabilize ESEO’s attitude while performing a change of orbit with the OCS. The third thruster
system is the Attitude Control System (ACS), which is used to control ESEO’s attitude in orbit.

The focus of this thesis is the ACS thrusters. These thrusters create torques about ESEO’s
body reference frame. For more details on reference frames, see section 3.2. The nominal ACS
torques are given in table 2.2.

x axis 0.0484 Nm
y axis 0.0484 Nm
z axis 0.0398 Nm

Table 2.2: ACS nominal torques (SSETI PROP team, 2003)
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Reaction wheel

A reaction wheel will be included, spinning about they axis of ESEO’s body (SSETI AOCS
team, 2004b). The SSETI Attitude and Orbit Control System (AOCS) team is developing it.
According to them, the reaction wheel’s purpose is to prolong the life of ESEO in orbit by
saving thruster fuel. The wheel will help the thrusters to control the spacecraft. Note that
reaction wheels can go into saturation, i.e. they reach maximum speeds, and can therefore no
longer provide torques. When this happens, it is possible to unload the wheel, i.e. slow it
down, by for instance firing appropriate thrusters. Relevant properties of the reaction wheel are
presented in table 2.3.

Moment of inertia: is = 4 · 10−5 kgm2

Maximum angular velocity: (ωs)max = 5035 rpm = 527.2640 rad/s

Table 2.3: Properties of the reaction wheel (SSETI AOCS team, 2004b)

2.3.5 Attitude Estimation

The SSETI ESEO AOCS team is responsible for developing the attitude estimation system.
ESEO will use two different methods to estimate ESEO’s attitude. The first method is the
Extended Kalman Filter (EKF). This will be the primary method of estimation, since it is
robust. However, it is computationally intensive, and has an initialization problem. Singular
Value Decomposition (SVD) is the other method of choice. It is simple to implement, and does
not need initial conditions to work, as opposed to the EKF. On the other hand, the SVD method
requires at least two independent sets of sensor data in order to produce good estimates. This
is an important disadvantage, and the explanation for preferring the EKF. The initialization
problem of the EKF can be solved by using the SVD to provide initial values. If computer
resources are running low, using the SVD instead of the EKF may prove useful, provided that
enoug sensor data are available. For details on these two estimation methods, see SSETI ESEO
AOCS team (2004c).

2.3.6 Attitude Control

The attitude control system will be developed by the SSETI ESEO AOCS team. The most
important general requirements for the attitude control system are listed below. Requirements
for stability during orbital transfer is omitted, as this is not relevant to this thesis.

• Initial angular rates should be damped within 2 hours after separation from launcher.

• A pointing mode which points to the Earth centre should be provided. The attitude
should be controlled and maintained within a specified accuracy.

ESEO will have several control modes. These are shown in figure 2.2. Some requirements for
the attitude control system will vary according to the active control mode. The SSETI ESEO
AOCS team will develop two controllers for ESEO, a nominal controller and an experimental
controller. Information regarding the experimental controller is not yet available, but analysis
of the nominal controller has begun. It is based on linearization of the physical system of
the spacecraft. The controller is called a modified PD controller, and its block diagram is
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shown in figure 2.3. For more information on linear controllers, see section 4.2. The modified
PD controller has two control loops. The inner loop controls the angular velocity of ESEO,
while the outer loop controls its attitude. The SSETI ESEO AOCS team (2004c) has more
information on ESEO’s attitude control system.

Figure 2.2: Control modes (SSETI ESEO AOCS team, 2004c)
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Figure 2.3: Modified PD controller (SSETI ESEO AOCS team, 2004c)



Chapter 3

Mathematical background

3.1 Keplerian Orbits

The motion of celestial bodies has been studied by Johannes Kepler, and he formulated the
following laws based on his research (Wertz and Larson, 1999):

First Law: The orbit of each planet is an ellipse, with the Sun at one focus.

Second Law: The line joining the planet to the Sun sweeps out equal areas in equal times.

Third Law: The square of the period of a planet is proportional to the cube of its mean dis-
tance from the Sun.

These laws also apply to satellite motion in Earth orbit, i.e. replace the Sun with the Earth and
planet with satellite in the above laws. Figure 3.1 shows a satellite in elliptic Earth orbit. An
explanation to this figure is presented in table 3.1. For further information on Keplerian orbits,
see Wertz et al. (1999).

r position vector of the satellite relative to Earth’s center
V velocity vector of the satellite relative to Earth’s center
φ flight-path-angle, the angle between the velocity vector and a line

perpendicular to the position vector
a semimajor axis of the ellipse
b semiminor axis of the ellipse
c the distance from the center of the orbit to one of the focii
v thepolar angleof the ellipse, also called thetrue anomaly, mea-

sured in the direction of motion from the direction of perigee to
the position vector

rA radius of apogee, the distance from Earth’s center to the farthest
point on the ellipse

rP radius of perigee, the distance from Earth’s center to the point of
closest approach to the Earth

Table 3.1: Explanation to figure 3.1
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Figure 3.1: Elliptic orbit (Wertz et al., 1999)

3.2 Reference frames

To analyze the motion of a satellite, it is necessary to define reference frames which this motion
is relative to. These frames are shown in figure 3.2, and are the same as those used by Fossen
(2002) and Kristiansen (2000).

3.2.1 Earth Centered Inertial frame

The Earth Centered Inertial (ECI) frame, from now on denotedFi, has its origin at the center
of the earth. Its unit vectors arexi, yi, zi, wherezi is directed along the Earth’s rotation axis.
This frame is non-accelerated, i.e. inertial, which means that the laws of Newton apply.

3.2.2 Earth Centered Earth Fixed frame

The Earth Centered Earth Fixed (ECEF) frame, denotedFe, has the same origin asFi. How-
everFe rotates relative toFi with a constant angular velocityωe = 7.2921 · 10−5 rad/s. This
is the same as the angular velocity of the Earth about its rotation axis. The unit vectors ofFe
arexe, ye, ze, whereze is directed along the Earth’s rotation axis.

3.2.3 North East Down frame

The North East Down (NED) frame, denotedFn, is defined as the tangent plane on the surface
of the earth, moving with the spacecraft. Its unit vectors arexn, yn andzn, wherexn points
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Figure 3.2: Reference frames

towards true north,yn points to the east andzn points towards the center of the Earth. The
location ofFn relative toFe is determined by using two anglesl (longitude) andµ (latitude).

3.2.4 Orbit frame

The Orbit (O) frame, denotedFo, is located at the center of mass of the satellite, with the unit
vectorsxo, yo andzo. zo points towards the center of the Earth, whilexo points in the travelling
direction of the satellite, tangent to the orbit.yo is found using the right hand rule.

3.2.5 Body frame

The Body (B) frame, denotedFb, has its origin at the center of mass of the satellite. This frame
is fixed to the satellite body. Its unit vectorsxb, yb andzb are usually chosen to coincide with
the spacecraft’s principal axes of inertia. This simplifies the spacecraft’s equations of motion.
Rotations aboutxb, yb andzb are calledroll , pitchandyawrespectively.

3.3 Rigid body dynamics

The contents of this section is largely based on the corresponding chapter in Egeland and
Gravdahl (2001), hence definitions and equations found there are not referenced.
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3.3.1 Vectors

Notation

A vector~v can be uniquely described in an orthogonal coordinate frameFa. The coordinates
are collected in a column vector, and inFa it is denotedva.

va =

 va1
va2
va3

 (3.1)

Skew-symmetric form

Theskew-symmetric formof a vectorv = [v1, v2, v3]
T is defined as:

v× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (3.2)

The skew-symmetric form of a vector is askew-symmetric matrix, defined in appendix A.4,
which can be used to define the vector cross product inFa:

~w = ~u× ~v ⇔ w = (ua)× va = − (va)× ua (3.3)

3.3.2 Rotation

Rotation matrix

A rotation matrixis a matrixR ∈ SO(3), defined by

SO(3) =
{
R |R ∈ R3×3,RTR = 1, det R = 1

}
, (3.4)

where1 is the identity matrix andSO(3) is the special orthogonal group of order three. The
rotation matrix transforms a coordinate vector from one reference frame to another, for instance
the matrixRb

o transformsvo into vb:

vb = Rb
ov

o (3.5)

The rotation matrix can be parameterized as

Rk,θ = cosθ 1 + k×sinθ + kkT (1− cosθ), (3.6)

wherek is an arbitrary unit vector in an arbitrary reference frame, and the angleθ represents
the rotation aboutk. The parametersk andθ are known asangle-axis parameters. Such a
rotation is called asimple rotation. In a rotation matrixR, each elementcij is a directional
cosine, and these can be arranged into column vectors:
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R =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (3.7)

c1 =

 c11

c21

c31

 , c2 =

 c12
c22
c32

 , c3 =

 c13
c23
c33

 (3.8)

It follows that:

R =
[
c1 c2 c3

]
(3.9)

In fact, these vectors are unit vectors, hence:

cTi ci = 1 (3.10)

A composite rotation is represented by the product of two rotation matrices. The rotation from
Fi toFb can be expressed as follows:

Rb
i = Rb

oR
o
i (3.11)

Angular velocity

Definition 3.1. The angular velocity vector ofFo relative toFb, written inFb is defined by the
corresponding rotation matrix, and its time derivative:

(ωbbo)
× = Ṙb

o(R
b
o)
T (3.12a)

ωbbo = −ωbob (3.12b)

It can be shown that a similar relation exists for the directional cosines (Kristiansen, 2000):

ċi = (ci)×ωbob (3.13)

3.3.3 Euler angles

Simple rotation matrices

The rotation matrices corresponding to simple rotations about thex, y andz-axis are respec-
tively given byRx,φ, Ry,θ andRz,ψ. The anglesφ, θ andψ represent the rotations about the
x, y andz-axis respectively in a rotation from one frame to another. These angles are called
the Euler angles:

Θ = [φ, θ, ψ]T (3.14)
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The rotation matrices are given as follows:

Rx,φ =

 1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 (3.15a)

Ry,θ =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (3.15b)

Rz,ψ =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (3.15c)

Roll-pitch-yaw

The Euler anglesroll , pitchandyaware commonly used to describe the motion of rigid bodies
like aircraft, spacecraft, ships and underwater vehicles. The rotation fromFo toFb is described
by a rotationψ (yaw) about thezo-axis, then a rotationθ about the current (rotated)y-axis
(pitch) and finally a rotationφ about the currentx-axis (roll). Using the notationc(·) = cos(.)
ands(·) = sin(·), the rotation matrix becomes:

Rb
o = Rz,ψRy,θRx,φ =

 cψcθ −sψcθ + cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (3.16)

It must be noted thatRb
o is singular forθ = ±π/2, which means that this representation will

introduce singularities into the mathematical model of a dynamic system. These singularities
can be avoided when the rigid body has limits to its orientation. A satellite however can have
all possible orientations, which means that this parametrization is not ideal.

3.3.4 Euler parameters

Definition of Euler parameters

The Euler parameters, also called unit quaternions, give a representation of the rotation matrix
without singularities. This is done by using four parameters instead of three.

Definition 3.2. The Euler parameters are defined in terms of the angle-axis parameters, and
are given by the scalarη and the vectorε. In coordinate form this is written

η = cos
θ

2
(3.17)

ε = [ε1, ε2, ε3]
T = k sin

θ

2
(3.18)

wherek is a unit vector. The Euler parameters satisfy the following property:

η2 + εT ε = 1 (3.19)
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Rotation matrix in Euler parameters

The rotation matrixRk,θ from (3.6) can be expressed in Euler parameters as:

Rk,θ = Rη,ε = 1 + 2ηε× + 2
(
ε×

)2
(3.20)

A rotation matrixRk,θ corresponds to two sets of Euler parameters:

Rη,ε = R−η,−ε (3.21)

The inverse ofRη,ε is given by:

RT
η,ε = Rη,−ε (3.22)

Using (3.20), the rotation matrixRb
o can be written as:

Rb
o =

 1− 2
(
ε22 + ε23

)
2 (ε1ε2 − ε3η) 2 (ε1ε3 + ε2η)

2 (ε1ε2 + ε3η) 1− 2
(
ε21 + ε23

)
2 (ε2ε3 − ε1η)

2 (ε1ε3 − ε2η) 2 (ε2ε3 + ε1η) 1− 2
(
ε21 + ε22

)
 (3.23)

The column vectors of (3.8) can now be expressed as:

c1 =

 1− 2
(
ε22 + ε23

)
2 (ε1ε2 + ε3η)
2 (ε1ε3 − ε2η)

 , c2 =

 2 (ε1ε2 − ε3η)
1− 2

(
ε21 + ε23

)
2 (ε2ε3 + ε1η)

 , c3 =

 2 (ε1ε3 + ε2η)
2 (ε2ε3 − ε1η)
1− 2

(
ε21 + ε22

)
 (3.24)

Unit quaternions

Definition 3.3. The setQ of unit quaternions is defined as

Q =
{
q | qTq = 1, q =

[
η, εT

]T
, ε ∈ R3 , η ∈ R

}
, (3.25)

whereq is the unit quaternion corresponding toRη,ε. The unit quaternion corresponding to
Rη,−ε is the inverse unit quaternion̄q, and the unit quaternion corresponding to the identity
matrixR1,0 = 1 is the identity quaternionqid. These quaternions are defined by:

q̄ =
[

η
−ε

]
(3.26)

qid =
[

1
0

]
(3.27)

Note that the inverse rotation matrix now can be written as follows (Fjellstad et al., 1994):

R−1 (q) = RT (q) = R (q̄) (3.28)
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Quaternion product

Definition 3.4. The quaternion product between two vectorsq1 =
[
η1, ε

T
1

]T
and q2 =[

η2, ε
T
2

]T
is defined by (Fjellstad et al., 1994):

q1q2 =
[
η1 −εT1
ε1 η11 + ε×1

] [
η2

ε2

]
, (3.29)

whereη1, η2 ∈ R andε1, ε2 ∈ R3. It should be noted that the vectors do not need to be unit
quaternions.

A rotation can be described by the quaternion product. The transformationRη,εv, wherev is
a vector, can be calculated with the following quaternion product:

[
0

Rη,ε

]
=

[
η
ε

] [
0
v

] [
η
−ε

]
(3.30)

As stated in section 3.3.3, successive rotations involves mulitplication of rotation matrices. It
can be shown that (Fjellstad et al., 1994):

R (q1)R (q2) = R (q1q2) (3.31)

3.3.5 Kinematic differential equations

The kinematic differential equations in reference toFa andFb in Euler parameters are given
as:

η̇ = −1
2
εTωbab (3.32a)

ε̇ =
1
2

[
η1 + ε×

]
ωbab (3.32b)

3.3.6 Attitude error

The actual attitude of a spacecraft is given by the rotation matrixR = Rb
i . LetFo be a desired

orientation, represented byRd = Ro
i . This means that we wantFb to coincide withFo, i.e.

R = Rd. Fjellstad et al. (1994) defines the attitude errorR̃ as:

R̃ = R−1
d R = RT

dR (3.33)

When the attitude error is zero, theñR = 1. When using unit quaternions, the error quaternion
q̃ can be written as (Fjellstad et al., 1994)

q̃ = q̄dq =
[

ηd εTd
−εd ηd1− ε×d

] [
η
ε

]
, (3.34)
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whereqd is the desired quaternion. This expression is found by combining (3.28), (3.29) and
(3.31). This can be written on component form as:


q̃1
q̃2
q̃3
q̃4

 =


q1d q2d q3d q4d
−q2d q1d q4d −q3d
−q3d −q4d q1d q2d
−q4d q3d −q2d q1d



q1
q2
q3
q4

 (3.35)

For zero attitude error, the error quaternion has two possible values (Fjellstad et al., 1994):

q = qd ⇔ q̃ =
[
±1
0

]
(3.36)

The attitude error differential equations becomes (Fjellstad et al., 1994)

˙̃η = −1
2
ε̃T ω̃ (3.37a)

˙̃ε = −1
2

[
η̃1 + ε̃×

]
ω̃ (3.37b)

whereω̃ is the error in angular velocity. Note that (3.37) has the same form as (3.32).

3.3.7 Angular velocity error

The error in angular velocitỹω is given in reference to a desired reference frameFd. The error
is zero whenFb andFd have the same angular velocity. An expression for the angular velocity
error can be obtained from the following:

ωbib = ωbdb + ωbid = ωbdb + Rb
dω

d
id (3.38)

We can see from this expression thatωbdb is a representation of the error in angular velocity.
When this is zero,Fb rotates with the same angular velocity asFd. Thus, the angular velocity
error is:

ω̃ = ωbdb = ωbib −Rb
dω

d
id (3.39)

This definition is used in Hall et al. (2002) and Kristiansen (2000).

3.3.8 Momentum, angular momentum and the inertia matrix

Definition 3.5. Themomentumpb of a rigid body with massm, written inFb, is

pb = mvb (3.40)

wherevb is the body’s linear velocity.
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Theangular momentumor spinhb of a rigid body inFb about its center of mass is given by

hb =
∫
b
(rb)×(ωbib)

×rbdm (3.41)

=
∫
b

[
(rb)21− rb(rb)T

]
dm ωbib (3.42)

whererb is the distance from the center of mass to the mass elementdm. This leads to the
definition of the inertia matrix.

Definition 3.6. The inertia matrix about the center of mass of a rigid body is defined as:

I =
∫
b

[(
rb

)2
1− rb

(
rb

)T]
dm (3.43)

Definition 3.7. The angular momentum of a rigid body about its center of mass is given by:

hb = Iωbib (3.44)

3.4 Gyrostat model

3.4.1 Equations of motion

A gyrostat is a rigid body, fixed to one or more spinning wheels (rotors). The wheel can be
inside or outside the rigid body. The equations of motion of a one wheel gyrostat inFb in
reference toFi is given in Hughes (1986) as

pb = mvb − (cb)×ωbib (3.45a)

hb = (cb)×vb + Iωbib + abisωs (3.45b)

ha = isaTωbib + isωs (3.45c)

wherepb is the momentum of the gyrostat,m is its total mass,vb is its linear velocity,cb is a
constant vector,ωbib is the body’s angular velocity,hb is the angular momentum of the gyrostat,
I is the inertia matrix of the entire system,ab is a unit vector giving the axis of rotation of the
rotor, is is the moment of inertia of the rotor,ωs is the rotor’s angular velocity andha is the
angular momentum of the rotor. The time derivatives of these equations are given by

ṗb = −(ωbib)
×pb + f b (3.46a)

ḣb = −(ωbib)
×hb − (vb)×pb + τe (3.46b)

ḣba = τa (3.46c)

wheref b is the external force acting on the gyrostat,τ be is the resulting external torque andτa
is the net torque applied to the rotor.
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This model can be simplified, by placing the origin ofFb in the center of mass of the gy-
rostat (Hughes, 1986). In that case,cb becomes zero, and the translational motion and the
rotational motion become decoupled. This has been done by Hall, Tsiotras and Shen (2002),
who have developed a similar model for anN -wheel gyrostat. By neglecting the translational
motion, the rotational equations of motion for a rigid body, with internal momentum wheels,
can be expressed as

ḣb = (hb)×J−1(hb −Ahba) + τe (3.47a)

ḣba = τa (3.47b)

wherehb is the system angular momentum, which inFb is given by

hb = Iωbib + AIsωs, (3.48)

andhba is theN dimensional vector of axial angular momenta of the rotors:

hba = IsATωbib + Isωs (3.49)

The vectorωs is N dimensional, representing the axial angular velocities of the rotors rela-
tive to the body, whileτe is the 3 dimensional vector of external torques (e.g. thrusters and
gravitation),τa is theN dimensional vector of internal axial torques applied by the rigid body
to the rotors,A is the3 × N matrix containing the axial vectors of theN rotors, andI is
the angular momentum, or inertia matrix, of the system, including the rotors. The matrix
Is = diag {is1, . . . , is} is anN × N diagonal matrix containing the axial moments of inertia
of the rotors. The matrixJ is an inertia-like matrix defined as

J = I−AIsAT (3.50)

and can be interpreted as the inertia matrix of an equivalent system where all the rotors have
zero axial moment of inertia. The angular velocityωbib of the body frame in reference to an
inertial frame, can be written as

ωbib = J−1(hb −Ahba) (3.51)

3.4.2 Kinetic energy

According to Hughes (1986), the kinetic energyEk and its time derivative of a one wheel
gyrostat can be expressed as:

Ek =
1
2
m(vb)Tvb +

1
2
(ωbib)

T Iωbib +
1
2
isω

2
s − vTc×ωbib + isωsaTωbib (3.52a)

Ėk = fTvb + τTe ω
b
ib + τaωs (3.52b)
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3.5 Distubance torques

There are several external disturbance torques affecting a spacecraft. Hughes (1986) include
the gravitational torque, the aerodynamic torque, radiation torques and the magnetic torque.
The aerodynamic torque is only applicable at low altitudes. In this thesis, we will suppose that
all disturbance torques can be neglected, except for the gravitational torque.

3.5.1 Gravity gradient torque

The expression describing the gravity gradient torque is greatly simplified by making the fol-
lowing assumptions (Hughes, 1986):

1. Only one celestial primary is considered (e.g. Earth).

2. The celestial primary possesses a spherically symmetrical mass distribution.

3. The spacecraft is small compared to its distance from the mass center of the celestial
primary.

4. The spacecraft consists of a single body.

Hughes (1986) has shown that by making these assumptions, the expression for the gravity
gradient is

~τg = 3
(
µ

r3c

)
~zo × I~zo (3.53)

whererc is the distance from the center of mass of the celestial primary to the mass center of
the spacecraft. The constantµ = Gmp, whereG is the universal gravitational constant andmp

is the mass of the celestial primary. If the Earth is considered as the celestial primary,G, mp

andµ have the following numerical values:

G = 6.67 · 10−11Nm2/kg2 (3.54)

mp = 5.97 · 1024kg (3.55)

µ = 3.986 · 1014Nm2/kg (3.56)

We will now introduce the following notation:

ω2
c =

µ

r3c
(3.57)

According to Hughes (1986), ”ωcrc is the speed of the spacecraft in a circular orbit of radius
rc”. This means thatωc represents the angular velocity of the orbit frameFo about itsyo axis.
Note thatωc is constant if the orbit is circular, sincerc will be constant. The gravity gradient
written in the body frameFb is

τg = 3ω2
cc3 × Ic3 = 3ω2

c (c3)×Ic3 (3.58)

wherec3 is defined in (3.8). The vectorc3 transforms thezb axis to thezo axis. Since~zb =
[0, 0, 1]T in Fb, the unit vector inFb corresponding to~zo is c3.
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3.5.2 Potential energy

The potential energy of a spacecraft due to gravity is given by (Hughes, 1986):

Ep = −µm
rc

− 1
2
ω2
c (ix + iy + iz) +

3
2
cT3 Ic3 (3.59)

Note that the two first terms are constants if the spacecraft orbit is circular.

3.6 Stability analysis

3.6.1 Linear systems

Stability analysis for linear systems is quite straightforward. The theorem below is sufficient,
and can be found in Khalil (2000) as Theorem 4.6. A linear time-invariant system can be
written as:

ẋ = Ax (3.60)

Theorem 3.1. The equilibrium pointx = 0 of (3.60) is stable if and only if all eigenvalues
λi of A satisfyReλi ≤ 0 and for every eigenvalue withReλi = 0 and algebraic multiplicity
qi ≥ 2, rank (A− λi1) = n− qi, wheren is the dimension ofx. The equilibrium pointx = 0
is (globally) asymptotically stable if and only if all eigenvalues ofA satisfyReλi < 0. If this
is the case,A is called a Hurwitz matrix.

3.6.2 Nonlinear systems

Lyapunov analysis is widely used to prove stability of equilibrium points in nonlinear dynam-
ical systems. The following theorem is also known as Lyapunov’s direct method, and can be
found in Khalil (2000) as Theorem 4.1.

Theorem 3.2. Letx = 0 be an equilibrium point for the systeṁx = f(x) andD ⊂ Rn be a
domain containingx = 0. LetV : D → R be a continuosly differentiable function such that:

V (0) = 0 and V (x) > 0 in D − {0} (3.61)

V̇ (x) ≤ 0 in D (3.62)

Then,x = 0 is stable.x = 0 is asymptotically stable if:

V̇ (x) < 0 in D − {0} (3.63)

The next theorem is known as LaSalle’s theorem. The following two corollaries are useful
consequences of this theorem. They are taken from Khalil (2000), where they are known as
Theorem 4.4, Corollary 4.1 and Corollary 4.2.

Theorem 3.3. (LaSalle) LetΩ ⊂ D be a compact set that is positively invariant with respect
to ẋ = f(x). LetV : D → R be a contiunuously differentiable function such thatV̇ (x) ≤ 0
in Ω. LetE be the set of all points inΩ whereV̇ (x) = 0. LetM be the largest invariant set in
E. Then every solution starting inΩ approachesM ast→∞.
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Corollary 3.1. Let x = 0 be an equilibrium point forẋ = f(x). Let V : D → R be
a continuously differentiable positive definite function on a domainD containing the origin

x = 0, such thatV̇ (x) ≤ 0 in D. Let S =
{
x ∈ D | V̇ (x) = 0

}
and suppose that no

solution can stay identically inS, other than the trivial solutionx (t) ≡ 0. Then, the origin is
asymptotically stable.

Corollary 3.2. Letx = 0 be an equilibrium point foṙx = f(x). LetV : Rn → R be a contin-
uously differentiable, radially unbounded, positive definite function such thatV̇ (x) ≤ 0 for all

x ∈ Rn. LetS =
{
x ∈ Rn | V̇ (x) = 0

}
and suppose that no solution can stay identically in

S, other than the trivial solutionx (t) ≡ 0. Then the origin is globally asymptotically stable.

3.7 Linear control algorithms

3.7.1 Controllability

The linear control problem can be stated as follows (Khalil, 2000):

ẋ = Ax + Bu (3.64)

To be able to control a linear system, it must becontrollable. This property can be verified by
applying the following definition (Balchen, Andresen and Foss, 2001).

Definition 3.8. The system (3.64) is controllable if and only if the rank ofQc = n, wheren is
the dimension ofx, andQc is given by:

Qc =
[
B, AB, A2B, . . . ,An−1B

]
(3.65)

3.7.2 Basic linear controllers

Consider the system (3.64). Choosing the control inputu = −Kpx whereKp > 0 yields:

x = (A−BKp)x (3.66)

This system is globally asymptotically stable if(A−BKp) is Hurwitz (theorem 3.1). This
can be done if (3.64) is controllable (Khalil, 2000). The control law isu = −Kpx is called a
P controller. Linear controllers have the following form:

u = −Kpx−Kdẋ−Ki

∫
x dt (3.67a)

Kp > 0, Kd ≥ 0, Ki ≥ 0 (3.67b)

If all terms are greater than zero, the controller is called a PID controller. The second term
is the D term. It makes the controller work faster at high frequencies (Balchen et al., 2001).
The third (I) term corresponds to integral control. It is used to eliminate steady-state errors
(Balchen et al., 2001).
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3.7.3 Quaternion feedback control

The classical model of a spacecraft as a rigid body is presented below (Wie, 1998):

Iω̇bib = (ωbib)
×Iωbib + τ (3.68)

Wie (1998) suggests the following controller using quaternion feedback to control the attitude
of the rigid spacecraft (3.68)

τ = −Kεε̃−Kωω
b
ib (3.69a)

Kε = [αI + β1]−1 (3.69b)

K−1
ε Kω > 0 (3.69c)

whereτ is the applied torque,̃q =
[
η̃, ε̃T

]T
is the attitude error quaternion vector, andKq

and Kω are constant controller gain matrices. This is essentially a PD controller, sinceq̃
represents the attitude whileωbib is the angular velocity. Note that˙̃q 6= ωbib. The attitude error
quaternion is calculated as in (3.34). We will assume that the desired attitude quaternion equals
the origin, i.e.q̃ = [1, 0, 0, 0]T . There is no loss of generality in this assumption, since all
desired quaternions can be translated to the origin. Note that the quaternion[−1, 0, 0, 0]T is
an equivalent definition of the origin, since this quaternion corresponds to the same orientation
asqd (Wie, 1998). In the following example, we will prove that (3.69) indeed stabilizes (3.68)
using Lyapunov analysis. This proof can be found in Wie, Weiss and Arapostathis (1989).

Example 3.1. The mathematical model of a rigid spacecraft is given by (3.68) and (3.37)

Iω̇bib = (ωbib)
×Iωbib + τ (3.70a)

˙̃η = −1
2
ε̃T ω̃ (3.70b)

˙̃ε = −1
2

[
η̃1 + ε̃×

]
ω̃ (3.70c)

whereτ is given by (3.69a). The desired angular velocity isωbib = 0, which means that̃ω = ωbib.
To use theorem 3.2, a Lyapunov function candidate (LFC) must be chosen. We will use the
following function where the state vectorx =

[
(ωbib)

T , q̃T
]
:

V =
1
2
(ωbib)

TK−1
ε Iωbib + ε̃T ε̃+ (η̃ − 1)2 (3.71)

Note thatV > 0 whenx 6= 0 and for the equilibrium pointx∗ = [0, 0, 0, 1, 0, 0, 0]T ,
V = 0. An important remark is thatV = 0 only if η̃ = 1, not−1, even though̃η = ±1
represents the same orientation. Applying (3.19),V can be rewritten as:

V =
1
2
(ωbib)

TK−1
ε Iωbib + 2 (1− η̃) (3.72)

Assuming thatKεI =
(
K−1
ε I

)T
, we get the following expression foṙV :
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V̇ = (ωbib)
TK−1

ε Iω̇bib − 2 ˙̃η (3.73)

= (ωbib)
TK−1

ε

[
(ωbib)

×Iωbib −Kεε̃−Kωω
b
ib

]
+ (ωbib)

T ε̃ (3.74)

= (ωbib)
TK−1

ε (ωbib)
×Iωbib − (ωbib)

TK−1
ε Kωω

b
ib (3.75)

For stability we requirėV ≤ 0. The second term in the final expression forV̇ is quadratic, and
it is negative ifK−1

ε Kω > 0. We now chooseK−1
ε = αI + β1, whereα ≥ 0, β ≥ 0 and

K−1
ε 6= 0. The first term becomes:

(ωbib)
TK−1

ε (ωbib)
×Iωbib = (ωbib)

T [αI + β1] (ωbib)
×Iωbib (3.76)

= α(Iωbib)
T (ωbib)

×(Iωbib) + β(ωbib)
T (ωbib)

×Iωbib (3.77)

The first term is equal to zero because of the skew-symmetric form (see definition A.4). The
second term involves a vector cross product of the same vector, and is hence zero. The final
expression forV̇ is:

V̇ = −(ωbib)
TK−1

ε Kωω
b
ib ≤ 0 (3.78)

ChoosingKω = kω1 or Kω = kωJ ensures thatK−1
ε Kω > 0. It is now possible to apply

corollary 3.2 to prove global asymptotic stability forx∗. It follows from (3.78) thatωbib → 0.
This implies thatω̇bib → 0, which means thatτ → 0 ⇒ ε̃ → 0 ⇒ η̃ → 1 ⇒ x → x∗. Hence
x∗ is globally asymptotically stable. Note that the orientationq̃ = [−1, 0, 0, 0]T is unstable
although representing the same orientation asq̃∗ = [1, 0, 0, 0]T .

3.8 Nonlinear control algorithms

3.8.1 Control laws from Lyapunov analysis

A common way of designing control laws for dynamical systems, is to perform Lyapunov
analysis, and choose an appropriate control law which yields a stable system by assuring that
theorem 3.2 holds. This is done with a gyrostat in Hall et al. (2002).

3.8.2 Feedback linearization

The following example will illustrate the idea of feedback linearization. The concept is to
cancel nonlinearities to obtain a linear control problem.

Example 3.2. The pendulum equation with a control inputu can be written as (Khalil, 2000)

ẋ1 = x2 (3.79a)

ẋ2 = −g
l

sin x1 −
k

m
x2 + b u (3.79b)

whereg is the gravity constant,l is the length of the rigid rod with zero mass,m is the mass of
the bob,k is a coefficient of friction andc is a constant. These parameters are all positive. If
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we choose the following control law, we will cancel the nonlinear term and introduce a virtual
control inputv:

u =
1
b

(g
l

sin x1 + v
)

(3.80)

Inserting this control law, our system equations become:

ẋ1 = x2 (3.81a)

ẋ2 = − k

m
x2 + v (3.81b)

This system is linear, and it is therefore possible to substitutev with a linear controller to
stabilize the system. Note that canceling nonlinearities to stabilize a system is not always
possible, nor advisable in practice. In practice canceling nonlinearities may lead to unnecessary
large control inputs. To be able to use nonlinearity cancellation, the nonlinear state equation
must have the structure

ẋ = Ax + BG (x) [u−H (x)] (3.82)

whereG (x) is nonsingular. For more details see Khalil (2000).

3.8.3 Sliding mode control

The idea of sliding mode control is to bring the system states to a manifold or surface where the
states stay for all future time. The manifold is designed in such a way that once the system states
are on the manifold, they will converge to the desired states. One of the great advantages of
sliding mode control, is that it is robust to parameter uncertainties. This technique is explained
in the following example, which is the motivating example in Khalil (2000).

Example 3.3. Consider the following system

ẋ1 = x2 (3.83a)

ẋ2 = h (x) + g (x)u (3.83b)

wherex = [x1, x2]
T , h andg are unknown nonlinear functions, andg (x) ≥ g0 > 0 for all x.

To stabilize the origin, we will design a control law that constrains the motion of the system to
a manifold or surface. We will choose this manifolds:

s = a1x1 + x2 = 0 (3.84)

On the above manifold, the motion is governed byẋ1 = −a1x1. Choosinga1 > 0 guarantees
thatx reaches zero. The rate of convergence is controlled by the choice ofa1. We will now
find a way to bring the system states to the manifolds = 0. ṡ is given by:

ṡ = a1ẋ1 + ẋ2 = a1x2 + h (x) + g (x)u (3.85)
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Suppose thath andg satisfy the following inequality

∣∣∣∣a1x2 + h (x)
g (x)

∣∣∣∣ ≤ δ (x) , ∀ x ∈ R2 (3.86)

whereδ (x) represents the uncertainty due to the unknown functionsh andg. We now choose
the LFC

V =
1
2
s2, (3.87)

and find its time derivative:

V̇ = sṡ = s [a1x2 + h (x)] + g (x) su (3.88)

≤ g (x) |s| δ (x) + g (x) su (3.89)

The control input is chosen as:

u = −β (x) sgn (s) (3.90a)

β (x) ≥ σ (x) + β0, β0 > 0 (3.90b)

sgn (s) =


1, s > 0
0, s = 0

−1, s < 0
(3.90c)

This yields:

V̇ ≤ g (x) |s| δ (x)− g (x) [δ (x) + β0] s sgn (s) = −g (x)β0 |s| (3.91)

≤ −g0β0 |s| (3.92)

For s 6= 0, V̇ < 0 ⇒ s → 0. This means that the system states reaches the manifolds = 0 in
finite time, which is known as thereaching phase. When the manifold is reached,x → 0 in the
so calledsliding phase. The manifolds = 0 is called asliding manifoldor asliding surface.
The control inputu = −β (x) sgn (s) is calledsliding mode control. The great advantage
of sliding mode control is that we only need to know the upper boundδ (x), as opposed to
requiring accurate models ofh andg.

A weakness of sliding mode control is the presence ofchattering. Chattering occurs because
of imperfections in switching, which is caused by the functionsgn (s). When implementing a
sliding mode controller, there will always be a delay between the time the sign ofs changes and
the time the control switches. This means that the system states never actually reach the sliding
manifold. Instead they oscillate, as shown in figure 3.3. This results in low accuracy and strain
on mechanical parts. To remedy this, the sign function can be replaced by a saturation function,
i.e. the control law becomes

u = −β (x) sat (s/γ) (3.93a)

sat (s/γ) =
{

s/γ, |s/γ| ≤ 1
sgn (s/γ) , |s/γ| > 1

(3.93b)
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Figure 3.3: Chattering

whereγ is a positive constant. To get a good approximation of the sign function,γ should be
chosen small. Another function which can replace the sign function is the hyperbolic tangent,
as in Fossen (2002), i.e. the control law is chosen as:

u = −β (x) tanh (s/γ) (3.94)

Note that this function is smooth, as opposed to the sign function and the saturation function.
The sign function and its approximations are shown in figure 3.4. Both substitutions can elimi-
nate chattering. The cost is decreased accuracy. The system states never converge to the sliding
manifold, but remains within a boundary layer which depends on the parameterγ, as shown in
figure 3.5.

(a) The sign function (b) The saturation function (c) The hyperbolic tangent

Figure 3.4: The sign function with approximations

Figure 3.5: Boundary layer when using the saturation function
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3.9 Thruster control

ESEO will use thrusters for attitude control. These thrusters are on or off by nature. A reaction
wheel on the other hand can give a continuous torque. This means that a continuous signal of
commanded torques must be translated to pulses which decide whether a thruster should be on
or off. There are several ways to do this, and some of them are presented below.

3.9.1 Bang-bang controller

A bang-bang controller is a simple control scheme where the thrusters are fired if the com-
manded torque is greater than zero (Song et al., 2001), as illustrated in figure 3.6. A problem
with this approach is that the thrusters might fire all the time, thereby consuming a lot of fuel.
A solution to this problem is to introduce a dead-zone, as in figure 3.7. Tuning the size of the
dead-zone, it is possible to emphasize fuel consumption by choosing it large, or place emphasis
on accuracy by having a small dead-zone.

Figure 3.6: Bang-bang controller

Figure 3.7: Bang-bang controller with dead-zone

3.9.2 Schmitt trigger

The Schmitt trigger can be used in the same way as a bang-bang controller. It can be defined as
a relay with a dead-zone and hysteresis (Wie, 1998) as shown in figure 3.8. It can be thought
of as a bang-bang controller with a dead-zone and a feedback loop (figure 3.9). Compared to
the bang-bang controller scheme, the Schmitt trigger has one more tunable parameter, and it is
more complex because of the feedback loop.
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Figure 3.8: Schmitt trigger

Figure 3.9: Alternative representation of the Schmitt trigger

3.9.3 Pulse-Width Pulse-Frequency modulator

The pulse-width pulse-frequency (PWPF) modulator is presented in Wie (1998) and Song et
al. (2001). It produces a pulse sequence to the thrusters by adjusting the pulse width and
pulse frequency. In its linear range, the average torque output of the PWPF modulator equals
the average commanded torque input. The PWPF modulator consists of a first order lag filter,
a Schmitt trigger and a feedback loop, as illustrated in figure 3.10. Compared to the former
methods of thruster control, the PWPF modulator is superior (Song et al., 2001), but difficult to
implement since there are many parameters to tune. In fact the Schmitt trigger must be tuned
together with the lag filter, which yields four parameters to tune. The greatest advantage of the
PWPF modulator, is that it is effective in reducing vibrations in flexible spacecraft structures
(Song et al., 2001). It has been used in several satellite control systems, e.g. the Agena satellite,
INTELSAT V, INSAT and ARABSAT (Wie, 1998).
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Figure 3.10: PWPF modulator



Chapter 4

Theoretical analysis

4.1 Mathematical modelling

4.1.1 Kinematical model

Because of the possibility of singularities in the mathematical model when using Euler angles,
Euler parameters are chosen to describe the orientation of ESEO. This is in accordance with
the ESEO AOCS team, which already has made the same choice. Hence the kinematic dif-
ferential equations are given by the equations in section 3.3.5. Since ESEO will be controlled
in reference to the orbit frameFo, the kinematic differential equations are given in the body
frameFb as:

η̇ = −1
2
εTωbob (4.1a)

ε̇ =
1
2

[
η1 + ε×

]
ωbob (4.1b)

4.1.2 Dynamical model

To derive a mathematical model of ESEO’s dynamics, the model presented in section 3.4 will
be used. Here is a summary of the equations:

hb = Iωbib + AIsωs (4.2a)

hba = IsATωbib + Isωs (4.2b)

ḣb = (hb)×ωbib + τe (4.2c)

ḣba = τa (4.2d)

J = I−AIsAT (4.2e)

It is desirable to obtain a model describing ESEO in terms of its orientation and its angular
velocities. Therefore the above model must be rewritten as a model in angular velocities. Ac-
cording to Hughes (1986), this can be done in the following manner. The equations describing
the gyrostat’s angular momentum can be written in matrix form as:
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[
hb

hba

]
︸ ︷︷ ︸

µ

=
[

I AIs
IsAT Is

]
︸ ︷︷ ︸

Λ

[
ωbib
ωs

]
︸ ︷︷ ︸

ν

(4.3)

It is now sufficient to transform this model fromµ = Λν to ν = Λ−1µ. This is done by
inverting the matrixΛ using (A.10). SinceΛ is a constant matrix, so isΛ−1. The time
derivative of the transformed model is thus:

[
ω̇bib
ω̇s

]
︸ ︷︷ ︸

ν̇

=
[

J−1 −J−1A
−ATJ−1 I−1

s + ATJ−1A

]
︸ ︷︷ ︸

Λ−1

[
ḣb

ḣba

]
︸ ︷︷ ︸

µ̇

(4.4)

Inserting the expressions forḣb and ḣba yields the following model for the dynamics of the
system:

ω̇bib = J−1

[
−

(
ωbib

)× (
Iωbib + AIsωs

)
+ τe

]
− J−1Aτa (4.5a)

ω̇s = −ATJ−1

[
−

(
ωbib

)× (
Iωbib + AIsωs

)
+ τe

]
+

[
ATJ−1A + I−1

s

]
τa

(4.5b)

The complete mathematical model of ESEO consists of the dynamical equations above and the
kinematical equations (4.1). Since the angular velocity of ESEO is given in reference toFo in
(4.1), we need to express the dynamical equations in reference toFo. The angular velocityωbib
and its time derivative can be expressed as:

ωbib = ωbob + ωbio = ωbob + Rb
oω

o
io (4.6a)

ω̇bib = ω̇bob + Ṙb
oω

o
io + Rb

oω̇
o
io = ω̇bob −

(
ωbob

)×
Rb
oω

o
io + Rb

oω̇
o
io (4.6b)

In (4.6b), (3.12) has been used. Inserting (4.6a) and (4.6b) into (4.5) yields:

ω̇bob = J−1

[
−

(
ωbob + Rb

oω
o
io

)× (
I
[
ωbob + Rb

oω
o
io

]
+ AIsωs

)
+ τe

]
− J−1Aτa +

(
ωbob

)×
Rb
oω

o
io −Rb

oω̇
o
io

(4.7a)

ω̇s = −ATJ−1

[
−

(
ωbob + Rb

oω
o
io

)× (
I
[
ωbob + Rb

oω
o
io

]
+ AIsωs

)
+ τe

]
+

[
ATJ−1A + I−1

s

]
τa

(4.7b)

The equations (4.7) and (4.1) represent a complete mathematical model of the system.
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4.1.3 Model assumptions

The model presented in (4.7) and (4.1) will now be simplified, based on several model assump-
tions. These are listed below.

Assumption 4.1. The origin ofFb coincides with the origin ofFo, which is the center of mass
of the rigid body.

Assumption 4.2. Fb is oriented along the principal axes of inertia of the rigid body, which
implies that the inertia matrixI is diagonal:

I =

 ix 0 0
0 iy 0
0 0 iz

 (4.8)

Assumption 4.3. The satellite has one reaction wheel, giving a control torque about they-axis
of Fb. This means thatA = [0, 1, 0]T andIs = is.

Assumption 4.4. The external torquesτe affecting the satellite are thruster torquesτc about all
axes ofFb and the gravity torqueτg. Thus:τe = τc + τg

Assumption 4.5. The angular velocityωoio is assumed constant,ωoio = [0, −ω0, 0]T . This
means thatωc = −ω0 in (3.58).

Assumption 4.6. The reaction wheel has a maximum speed, i.e.|ωs| ≤ σ.

From these assumptions we get the final mathematical model of ESEO, by simplifying (4.7).
We write the complete model as:

ω̇bob = f̂inert + f̂τ + f̂g + f̂add (4.9a)

ω̇s = f̄inert + f̄τ + f̄g (4.9b)

η̇ = −1
2
εTωbob (4.9c)

ε̇ =
1
2

[
η1 + ε×

]
ωbob (4.9d)

The terms in (4.9) are given as

f̂inert = J−1

[
−

(
ωbob − ω0c2

)× (
I
[
ωbob − ω0c2

]
+ Aisωs

)]
(4.10a)

f̄inert = ATJ−1

[(
ωbob − ω0c2

)× (
I
[
ωbob − ω0c2

]
+ Aisωs

)]
(4.10b)

f̂τ = J−1τc − J−1Aτa (4.10c)

f̄τ = −ATJ−1τc +
[
ATJ−1A + i−1

s

]
τa (4.10d)

f̂g = J−1
[
3ω2

0 (c3)
× Ic3

]
(4.10e)

f̄g = −ATJ−1
[
3ω2

0 (c3)
× Ic3

]
(4.10f)

f̂add = ω0ċ2 (4.10g)

whereci is thei’th column vector of the rotation matrixRb
o.
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4.1.4 Linearized model

Our nonlinear model is quite complex. A way to make it much simpler is to linearize it. Note
that a linearized model is only valid close to its operating point. Linearization is done by differ-
entiating the nonlinear system with respect to the total state vectorx =

[
(ωbob)

T , ωs, η, ε
T
]T

,

and the input torque vectoru =
[
τTc , τa

]T
. This results in the following linearized model

about the pointp (Egeland et al., 2001):

∆ẋ = A∆x + B∆u (4.11a)

A =
δẋ
δx

∣∣∣∣
xp, up

, B =
δẋ
δu

∣∣∣∣
xp, up

(4.11b)

Choosing the pointp such thatxp = [0, 0, 0, 0, 1, 0, 0, 0] andup = [0, 0, 0, 0], we get the
following system matrices for the linearized system of (4.9):

A =



0 0 (1− kx)ω0 0 0 −8kxω2
0 0 0

0 0 0 0 0 0 −6kyiyω2
0

ks
0

(kz − 1)ω0 0 0 0 0 0 0 −2kzω2
0

0 0 0 0 0 0 6kyiyω2
0

ks
0

0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0


(4.12a)

B =



1
ix

0 0 0
0 1

ks
0 − 1

ks

0 0 1
iz

0
0 − 1

ks
0 iy

ksis
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(4.12b)

kx =
iy − iz
ix

, ky =
ix − iz
iy

, kz =
iy − ix
iz

, ks = iy − is (4.12c)

Note thatη̇ = 0 in the linearized model, so the number of equations is reduced by one.

4.2 Linear control

In this section we will derive linear controllers for the attitude control of ESEO. When design-
ing controllers, it is common to define an error which will be driven to zero by an appropriate
controller. The attitude error dynamics are given by (3.37):

˙̃η = −1
2
ε̃T ω̃ (4.13a)

˙̃ε = −1
2

[
η̃1 + ε̃×

]
ω̃ (4.13b)
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The angular velocity error is given by (3.39). A mathematical model of the error dynamics as
a function of the error in angular velocity can be derived from (4.2) and (3.39). This results in
the following model:

hb = I
(
ω̃ + Rb

dω
d
id

)
+ AIsωs (4.14a)

hba = IsAT
(
ω̃ + Rb

dω
d
id

)
+ Isωs (4.14b)

ḣb = (hb)×
(
ω̃ + Rb

dω
d
id

)
+ τe (4.14c)

ḣba = τa (4.14d)

J = I−AIsAT (4.14e)

It is shown in appendix A.2.4 that:

Jω̃ = hb −Ahba − JRb
dω

d
id (4.15)

The control objective is to drive the attitude error and the angular velocity error to zero:

ω̃ → 0, ε̃→ 0 (4.16)

We will now apply the assumptions in 4.1.3, except for assumption 4.3. This means that the
number of reaction wheels is arbitrary. Furthermore, we state that the desired frame equals the
orbit frame, i.e.Fd = Fo. Thus:

ω̃ = ωbob (4.17a)

Rb
dω

d
id = −ω0c2 (4.17b)

τe = τc + τg (4.17c)

whereτg is defined by (3.58). From (4.7) and (4.17) we can obtain an expression forJ ˙̃ω in
function ofω̃ andωs:

J ˙̃ω = ω0J(c2)×ω̃ − ω̃×Iω̃ + ω0ω̃
×Ic2 − ω̃×AIsωs + ω0(c2)×Iω̃

− ω2
0(c2)×Ic2 + ω0(c2)×AIsωs + τg + τc −Aτa

(4.18)

4.2.1 Local stabilization

An alternative to trying to prove global stabilization for a controller on a nonlinear system, is
to linearize the system about an operating point. It is then possible to apply linear control laws
to control the system, like the ones described in (3.67). Since the linearized model is only valid
close to the operating point, the control law may not stabilize the system when it is far away
from this point. A way to deal with this problem is to linearize about several operating points,
and switch between them as the system changes states. This kind of control strategy is called
gain scheduling, and is treated in Khalil (2000). In this thesis we will limit ourselves to one
operating point, the origin. Hence, we will use the linearized model given by (4.11) and (4.12).
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Using this model implies that̃ω = ωbob andq̃ = q. We will now rewrite the system since the
control objective is to drivẽω and ε̃ to zero. In addition we will choose∆τa = 0, hence the
input torque vector is∆τc.

∆ ˙̃ω = Aω∆ω̃ + Aε∆ε̃+ B∆τc (4.19a)

∆ω̇s = aε2 + bT∆τc (4.19b)

∆η̇ = 0 (4.19c)

∆˙̃ε =
1
2
ω̃ (4.19d)

From (4.12), we see thatAω, Aε, B, a andb are given by:

Aω =

 0 0 (1− kx)ω0

0 0 0
(kz − 1)ω0 0 0

 (4.20a)

Aε =

 −8kxω2
0 0 0

0 −6kyiyω2
0

ks
0

0 0 −2kzω2
0

 (4.20b)

B =

 1
ix

0 0
0 1

ks
0

0 0 1
iz

 (4.20c)

a =
6kyiyω2

0

ks
(4.20d)

b =
[
0, − 1

ks
, 0,

iy
ksis

]T
(4.20e)

kx =
iy − iz
ix

, ky =
ix − iz
iy

, kz =
iy − ix
iz

, ks = iy − is (4.20f)

To derive a linear controller, we will use Lyapunov analysis. Consider the following Lyapunov
function candidate (LFC)V :

V =
1
2
(∆ω̃)T∆ω̃ + k0∆(ε̃)T∆ε̃ (4.21)

V̇ = (∆ω̃)T (Aω∆ω̃ + Aε∆ε̃+ B∆τc) + k0(∆ω̃)T∆ε̃ (4.22)

We choose the following controller

∆τc = −Kε∆ε̃−Kω∆ω̃ (4.23)

where the constant matricesKε > 0 andKω > 0. Inserting (4.23) into (4.22), we get:

V̇ = (∆ω̃)T (Aω −BKω) ∆ω̃ + (∆ω̃)T (Aε + k01−BKε) ∆ε̃ (4.24)
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We want to remove the second term. Therefore, we make the following choice forKε:

BKε = Aε + k01 (4.25)

Consequently:

V̇ = (∆ω̃)T (Aω −BKω) ∆ω̃ (4.26)

ChoosingKω such that(Aω −BKω) < 0 yields ∆ω̃ → 0 ⇒ ∆ ˙̃ω → 0 ⇒ ∆˙̃ε → 0 and
∆ε̃ → 0. Thus, the controlled system is asymptotically stable. Our linear control law actually
corresponds to a PD controller with respect toε̃, sinceω̃ represents the time derivative ofε̃,
although it is not equal to it. Note thatτa = 0 with this controller. The reaction wheel is not
used by the controller, and is left to spin on its own. In appendix A.2.5, the following gain
matrices are found to stabilize the system:

Kε = kεI (4.27a)

Kω = kω1 (4.27b)

kε >> max
{
8ω2

0, is
}

(4.27c)

kω > 0 (4.27d)

k2
ω > ω2

0

(
iz [2iy − 2ix − iz]− [iy − ix]

2
)

(4.27e)

4.2.2 Global stabilization

We will now analyze how a linear controller can stabilize ESEO globally. To do this, we will
use Lyapunov analysis. We choose the following LFCV :

V =

Va︷ ︸︸ ︷
1
2

[
ω̃T , ωTs

] [
I AIs

IsAT Is

] [
ω̃
ωs

]
−1

2
ω2

0c
T
2 Ic2

+ k0

(
ε̃T ε̃+ [η̃ − 1]2

)
+

3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)

(4.28)

V =
1
2
ω̃T Iω̃ + ωsIsAT ω̃ +

1
2
ωTs Isωs −

1
2
ω2

0c
T
2 Ic2

+ 2k0 (1− η̃) +
3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)
(4.29)

The state vector isx =
[
ω̃T , ωs, q̃T , c12, c32, c13, c23

]T
wherec12, c32, c13 and c23 are

the respective components of the vectorsc2 andc3 defined in (3.8). The desired state vector
is x∗ =

[
03, 0N , 1, 03, 0, 0, 0, 0

]T
. The first three terms (Va) and the fourth term inV

represents the kinetic energy of the satellite, although it is not equal to its total kinetic energy.
Note that the expression forVa has the same structure as the expression for the kinetic energy
of a one wheel gyrostat (3.52). The fifth term comes from the attitude error wherek0 is a
positive constant. These terms represent the same idea as in choosing the LFC in example 3.1,
i.e. a choice which corresponds to the kinetic energy, and a kinematic term. The sixth term



Theoretical analysis 39

represents the potential energy of the satellite (3.59). The last term is constant in order to make
V a true Lyapunov function, i.e.V > 0 andV (x∗) = 0. In fact,V meets these requirements
only wheniy > ix > iz. For details see A.2.1 and A.2.2, or Kristiansen (2000). It is shown in
appendix A.2.3 that the time derivative ofVa is given by:

V̇a = ω̃T τe + ωTs τa − ω2
0ω̃

T (c2)×Ic2 (4.30)

The time derivative ofV along the trajectories of (4.14) thus becomes:

V̇ = V̇a −
1
2
ω2

0c
T
2 Iċ2 − 2k0

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (4.31)

= ω̃T τc + ωTs τa − ω2
0ω̃

T (c2)×Ic2 + 3ω2
0ω̃

T (c3)×Ic3

− ω2
0c
T
2 I(c2)×ω̃ + k0ω̃

T ε̃+ 3ω2
0c
T
3 I(c3)×ω̃

(4.32)

Since all the terms are scalars, they can be freely transposed. The following terms are trans-
posed:

(
−ω2

0c
T
2 I(c2)×ω̃

)T
= ω2

0ω̃
T (c2)×Ic2 (4.33)(

3ω2
0c
T
3 I(c3)×ω̃

)T
= −3ω2

0ω̃
T (c3)×Ic3 (4.34)

Note that the change of signs are due to the skew symmetric matrices defined in A.4. We now
see that term three and five are the same but with opposite signs. The same goes for term four
and six. Thus:

V̇ = ω̃T τc + ωTs τa + k0ω̃
T ε̃ (4.35)

We now choose the following linear controller

τc = −k0ε̃−Cω̃ (4.36a)

τa = Dω̃ −Eωs (4.36b)

whereC, D andE are constant matrices. The control law for the thrustersτc corresponds to
a PD controller with respect to the satellite’s attitude. The control law for the reaction wheels
τa controls the angular velocity of the spacecraft and the spin of the wheels. Combining (4.36)
with (4.35), we get:

V̇ = −ω̃TCω̃ + ωTs Dω̃ − ωTs Eωs (4.37)

= −
[
ω̃T , ωTs

]︸ ︷︷ ︸
ΩT

[
C −D/2

−DT /2 E

]
︸ ︷︷ ︸

P

[
ω̃
ωs

]
︸ ︷︷ ︸

Ω

(4.38)

ChoosingP > 0 will make V ≤ 0. An obvious choice isC = kω1 > 0, E = ks1 > 0 and
D = 0 wherekω andks are constants. However this means that the reaction wheels are not
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used as actuators to control the attitude of the satellite. The wheels control themselves. It is
desirable to see if a linear control law for the wheels which helps to control the spacecraft may
yield an asymptotically stable system. Intuitively, this should be possible by choosingD 6= 0
and choosing the positive definite matricesC andE large enough to makeP > 0. However
choosingD = 0 should makeP ”more” positive definite, and hence the rate of convergence of
Ω would be greater. Showing this analytically is complicated sinceP is a(3 +N)× (3 +N)
matrix. Instead we will use Young’s inequality on the following term:

ωTs Dω̃ = ω̃TDωs ≤ ‖ω̃‖‖Dωs‖ (4.39)

Applying Young’s inequality (A.12) withp = 2, we obtain:

‖ω̃‖‖Dωs‖ ≤
‖ω̃‖2

2
+
‖Dωs‖2

2
(4.40)

The vector norms are given by the 2-norm defined in (A.5), thus:

‖ω̃‖2 = ω̃T ω̃ (4.41)

‖Dωs‖2 = ωTs DTDωs (4.42)

It is possible to use these results to define an upper bound onV̇ :

V̇ ≤ −ω̃TCω̃ +
1
2
ω̃T ω̃ +

1
2
ωTs DTDωs − ωTs Eωs (4.43)

≤ −ω̃T
(
C− 1

2
1
)
ω̃ − ωTs

(
E− 1

2
DTD

)
ωs (4.44)

We now see that choosingD = 0 gives the greatest rate of convergence ofΩ. So choosing
C > 0, E > 0 andD = 0 makesV̇ ≤ 0. ThusΩ → 0 ⇒ Ω̇ = 0, and (4.18) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k0ε̃ (4.45)

Since all of the terms to the right are bounded, there should be a large enough choice ofk0

which makes̃ε = 0 the only solution of (4.45) (Soglo, 1994). The terms are bounded because
ci is a unit vector and‖ε̃‖ ≤ 1. To find this value, we will apply Assumption 4.3 and rewrite
the equation on component form whereε̃ = [ε̃1, ε̃2, ε̃3]

T :

k0ε̃1 = ω2
0 (iy − iz) (c22c32 − 3c23c33) (4.46a)

k0ε̃2 = ω2
0 (iz − ix) (c12c32 − 3c13c33) (4.46b)

k0ε̃3 = ω2
0 (ix − iy) (c12c22 − 3c13c23) (4.46c)

The constantk0 must be chosen in a way such thatk0ε̃i is larger than the maximum value of all
the right hand sides of the above equations. If this is the case, thenε̃ = 0 andck2cl2 = ck3cl3 =
0 are the only solutions. The maximum value of the productckicli is 1/2. This comes from the
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relation (3.10), i.e.c21i + c22i + c23i = 1. If a product of two directional cosines is to have its
maximum value, then the third directional cosine associated with the same vectorci must be
zero. The product will have its largest value when the two directional cosines have the same
value. This value is

√
1/2. Sinceiz is the smallest element inI andiy is the largest, (4.46a)

has the largest right hand side. The largest value is obtained when:

c3 =

 c13
c23
c33

 =

 0√
1/2√
1/2

 (4.47a)

c22c32 = 0 (4.47b)

This problem has several solutions, and is solved in appendix A.2.6. We are interested in the
worst case scenario, i.e. the smallest nonzero solution forε̃1 when the right hand side has its
maximum value. In fact, the solution must be negative. To see this, consider (4.46a) in our
worst case scenario:

k0ε̃1 = −3
2
ω2

0 (iy − iz) (4.48)

The right hand side of the above equation is negative, which means thatε̃1 must be negative.
The smallest negative solution is:

ε̃1 = −0.2706 (4.49)

The solutions are shown in figure A.1. Inserting this value into (4.48), yields:

0.2706 k0 =
3
2
ω2

0 (iy − iz) (4.50)

This expression yields a value fork0. If k0 is chosen greater than this value, then the only
possible solution for (4.46a) is that both sides of the equation are zero, i.e.ε̃1 = 0. Since
(4.46b) and (4.46c) have smaller right hand sides, this choice ofk0 will ensure that̃ε2 = 0 and
ε̃3 = 0. Thus:

k0 > 5.5432 ω2
0 (iy − iz) ⇒ ε̃→ 0 (4.51)

Corollary 3.2 is now applicable, which means that we have global asymptotic stability for the
proposed linear controller.

4.3 Nonlinear control

Using the same model as in section 4.2, we will now find nonlinear controllers to control
ESEO’s attitude.
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4.3.1 Lyapunov controller 1

In the linear controller in section 4.2.2, there was a restriction on the inertia matrix of the
satellite. In case such restrictions are not met by a satellite, we will derive a nonlinear controller
which does not have these restrictions. Consider the following LFC, which is almost the same
LFC as (4.28):

V = Va + 2k1 (1− η̃) (4.52)

wherek1 is a positive constant. The time derivative ofV along the trajectories of (4.14) is
given by:

V̇ = ω̃T τc + ωTs τa − ω2
0ω̃

T (c2)×Ic2 + 3ω2
0ω̃

T (c3)×Ic3 + k1ω̃
T ε̃ (4.53)

We now choose:

τc = −k1ε̃−Cω̃ + ω2
0(c2)×Ic2 − 3ω2

0(c3)×Ic3 (4.54a)

τa = −Eωs (4.54b)

Consequently:

V̇ = −ω̃TCω̃ − ωTs Eωs (4.55)

ChoosingC > 0 andE > 0 makesV̇ ≤ 0. An obvious choice isC = kω1 andE = ks1
wherekω > 0 andks > 0 are constants. Thus̃ω → 0 ⇒ ˙̃ω → 0 andωs → 0 ⇒ ω̇s → 0.
Hence (4.18) becomesk0ε̃ = 0 ⇒ ε̃→ 0. Thus corollary 3.2 states that the system is globally
asymptotically stable.

4.3.2 Lyapunov controller 2

It would be desirable to use the reaction wheels as actuators in the same way as the thrusters.
This motivates an LFC where we omitωs from the state vector, and treat it as an external signal.
Consider the LFC

V =
1
2
ω̃TJω̃ − 1

2
ω2

0c
T
2 Ic2 + 2k2 (1− η̃) +

3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz) (4.56)

wherek2 is a positive constant. The state vector isx =
[
ω̃T , q̃T , c12, c32, c13, c23

]T
, and

the desired state vector isx∗ =
[
03, 1, 03 0, 0, 0, 0

]T
. The first and second term inV

represents the kinetic energy of the satellite, although it is not equal to its total kinetic energy.
The other terms are the same as in the LFC (4.28). This means thatV is a Lyapunov function
if iy > ix > iz. To calculateV̇ , we will use (4.18):
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V̇ = ω̃TJ ˙̃ω − 1
2
ω2

0c
T
2 Iċ2 − 2k2

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (4.57)

V̇ = ω0ω̃
TJ(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃ − ω2
0ω̃

T (c2)×Ic2

+ ω0ω̃
T (c2)×AIsωs + ω̃T τg + ω̃T τc − ω̃TAτa

− ω2
0c
T
2 I(c2)×ω̃ + k2ω̃

T ε̃+ 3ω2
0c
T
3 I(c3)×ω̃

(4.58)

Note that several terms have disappeared sinceω̃T ω̃× = 0. These terms will be transposed:

(
ω0ω̃

TJ(c2)×ω̃
)T

= −ω0ω̃
T (c2)×Jω̃ (4.59)(

−ω2
0c
T
2 I(c2)×ω̃

)T
= ω2

0ω̃
T (c2)×Ic2 (4.60)(

3ω2
0c
T
3 I(c3)×ω̃

)T
= −3ω2

0ω̃
T (c3)×Ic3 (4.61)

Observe that term three and eight are the same but with opposite signs. The same goes for term
five and ten. Thus:

V̇ = ω0ω̃
T (c2)× (Iω̃ − Jω̃ + AIsωs) + ω̃T τc − ω̃TAτa + k0ω̃

T ε̃ (4.62)

= ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
+ ω̃T τc − ω̃TAτa + k2ω̃

T ε̃ (4.63)

We now choose the following control laws, applying the principle of section 3.8.1:

τc = −kε,1ε̃−Cω̃ (4.64a)

Aτa = kε,2ε̃+ Dω̃

+ ω0(c2)×AIs
(
AT ω̃ + ωs

) (4.64b)

whereC andD are constant matrices, andkε,i (i = 1, 2) is a constant. Note that the control
law for τa cancels the nonlinearities iṅV . This is only possible if the reaction wheels are able
to give torques about all three axes of rotation. If this is not the case, the thrusters should be
used. We will get the same result forV̇ , if we choose to cancel them withτc instead. Inserting
(4.64) into (4.63), we get:

V̇ = (k2 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (4.65)

We choosek2 = kε,1 + kε,2, hence:

V̇ = −ω̃T (C + D) ω̃ (4.66)

If (C + D) > 0 then V̇ ≤ 0. An obvious choice which ensures this isC = kω,11 and
D = kω,21 wherekω,i (i = 1, 2) is a constant and(kω,1 + kω,2) > 0. Thus we have proved
thatω̃ → 0 ⇒ ˙̃ω → 0. We will now apply corollary 3.2. Wheṅ̃ω = ω̃ = 0, (4.18) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k2ε̃ (4.67)

The constantk2 must be chosen large enough to makeε̃ = 0 the only possible solution to this
equation. Since this is the same equation as (4.45) choosingk2 > 5.5432 ω2

0 (iy − iz) yields a
globally asymptotically stable system according to corollary 3.2.
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4.3.3 Lyapunov controller 3

In section 4.3.2 there is a restriction on the inertia matrix of the satellite. The next controller
will not have such restrictions. We will consider the following LFCV wherek3 is a positive
constant:

V =
1
2
ω̃TJω̃ + 2k3 (1− η̃) (4.68a)

This LFC is almost the same as (4.56), but two terms are removed.V̇ becomes:

V̇ = ω̃TJ ˙̃ω − 2k3
˙̃η (4.69)

V̇ = ω0ω̃
TJ(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃ − ω2
0ω̃

T (c2)×Ic2

+ ω0ω̃
T (c2)×AIsωs + 3ω2

0ω̃
T (c3)×Ic3

+ ω̃T τc − ω̃TAτa + k3ω̃
T ε̃

(4.70)

Transposing the first term, and using the definition ofJ in (4.14), we get:

V̇ = ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
− ω2

0ω̃
T (c2)×Ic2

+ 3ω2
0ω̃

T (c3)×Ic3 + ω̃T τc − ω̃TAτa + k0ω̃
T ε̃

(4.71)

We now choose the following control laws, applying the principle of section 3.8.1:

τc = −kε,1ε̃−Cω̃ (4.72a)

Aτa = kε,2ε̃+ Dω̃ + ω0(c2)×AIs
(
AT ω̃ + ωs

)
− ω2

0(c2)×Ic2 + 3ω2
0(c3)×Ic3

(4.72b)

whereC andD are constant matrices, andkε,i (i = 1, 2) is a constant. The control law forτa
cancels the nonlinearities iṅV . After inserting (4.72) into (4.71), we get:

V̇ = (k3 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (4.73)

We choosek3 = kε,1 + kε,2, thus:

V̇ = −ω̃T (C + D) ω̃ (4.74)

If (C + D) > 0 thenV̇ ≤ 0. To ensure this, we chooseC = kω,11 andD = kω,21 wherekω,i
(i = 1, 2) is a constant and(kω,1 + kω,2) > 0. Thusω̃ → 0 ⇒ ˙̃ω → 0. We will now apply
corollary 3.2. Wheṅ̃ω = ω̃ = 0, (4.18) becomesk0ε̃ = 0 ⇒ ε̃→ 0. Thus corollary 3.2 states
that the system is globally asymptotically stable.
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4.3.4 Sliding mode controller

The first step in sliding mode control is to design a sliding manifold. Fu, Tsai and Yeh (1999)
suggest the following manifolds = [sx, sy, sz]

T , based on the classic dynamical model of a
rigid body in motion (3.68) where the kinematics are represented by unit quaternions. Define

s = ω̃ + Pε̃ (4.75)

whereP > 0. It is shown in appendix A.2.7 that whens = 0, ε̃ andω̃ tend to zero. We must
now design a control law to reach the sliding manifold. Consider the LFC:

V = sTJs (4.76)

Its time derivative along the trajectories of (4.14) is given as:

V̇ = sT
(
J ˙̃ω + JP ˙̃ε

)
(4.77)

V̇ = sT
(

(hb)× [ω̃ − ω0c2] +
3
2
ω2

0c
T
3 Ic3 + τc −Aτa

+ ω0J(c2)×ω̃ +
1
2
JP

[
η̃1 + (ε̃)×

]
ω̃

) (4.78)

We will now choose a sliding mode control law, where we use the best estimates, or nominal
values, of the system parameters. These values are denoted with a hat(̂·). The control laws are
chosen as:

τc = −τsgn (4.79a)

Aτa = (ĥb)× [ω̃ + ω̂0c2] +
3
2
ω̂2

0c
T
3 Îc3

+ ω̂0Ĵ(c2)×ω̃ +
1
2
ĴP

[
η̃1 + (ε̃)×

]
ω̃ + τsgn,a

(4.79b)

τsgn = [βxsgn (sx) , βysgn (sy) , βzsgn (sz)]
T (4.79c)

τsgn,a = [βa,xsgn (sx) , βa,ysgn (sy) , βa,zsgn (sz)]
T (4.79d)

The sign functionsgn (·) is defined in (3.90c). We will now define the error of a parameterα
to be∆α = α− α̂. Using this notation, and inserting (4.79) into (4.78), we get:

V̇ = sT
(

(∆hb)×ω̃ − (∆(hbω0))×c2 +
3
2
cT3 ∆(ω2

0I)c3

+ ∆(ω0J)(c2)×ω̃ +
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃

− τsgn − τsgn,a)

(4.80)

The details of this calculation is found in appendix A.2.8. To simplify the expression, we will
collect all the parameter error terms in the variableδ = [δx, δy, δz]

T :
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δ = (∆hb)×ω̃ − (∆(hbω0))×c2 +
3
2
cT3 ∆(ω2

0I)c3

+ ∆(ω0J)(c2)×ω̃ +
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃

(4.81)

⇓
V̇ = sT (δ − τsgn − τsgn,a) (4.82)

If we chooseβi + βa,i larger thanδi, i.e.

βi + βa,i ≥ δi + β0,i (4.83)

whereβ0,i > 0 is a constant, we get:

V̇ ≤ − (β0,x |sx|+ β0,y |sy|+ β0,z |sz|) (4.84)

For s 6= 0, V̇ < 0 ⇒ s → 0. Hence, we reach our manifolds in finite time and the system is
globally asymptotically stable.



Chapter 5

Simulation

5.1 SIMULINK model of ESEO

5.1.1 Mathematical model

The mathematical model given by (4.9) and (4.10) has been implemented in SIMULINK. Re-
call that ESEO only has one reaction wheel, which means that the Lyapunov controllers must
be adapted to this situation. Therefore we will define the3 × 3 matrix B which is equal to
the identity matrix if there are no reaction wheels. Then, each column represents the three unit
vectors ofFb. If the reaction wheels can give a torque about an axis ofFb, the corresponding
unit vector inB is zero.B = 0 if the reaction wheels can give torques about all body axes.

A =

0
1
0

 ⇒ B =

1 0 0
0 0 0
0 0 1

 (5.1)

5.1.2 Simulation parameters

For the simulation, we will have a relatively short time frame, i.e. several hundred seconds. A
circular orbit is assumed, which is possible since a segment of an ellipse can be approximated
to be a part of a circle. The altitude of ESEO in this circular orbit will be its altitude at perigee.
The desired position of ESEO at the start of all the simulations is to coincide with the orbit
frameFo. The controllers are tuned to satisfy an attitude accuracy of±1◦. All simulation
results are found in appendix B.

Step simulation with ideal conditions

The first simulation to be performed is a step simulation with ideal conditions, i.e. perfect
measurements of the state vector and correct values of system parameters. After 500 seconds,
there is a step in the desired position. All axes of the body frame of ESEOFb are commanded to
have an angle of30◦ with their respective axes inFo. These angles are the Euler angles. Even
though the simulator uses unit quaternions to calculate ESEO’s attitude, the input attitude and
output attitude are given in Euler angles, since they have a clearer physical meaning. ESEO’s
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initial states are given below wherẽΘ denotes the attitude error in Euler angles.

Θ̃init =

60◦

60◦

60◦

 =

1.0472 rad
1.0472 rad
1.0472 rad

 (5.2a)

ω̃init =

1◦/s
1◦/s
1◦/s

 =

0.0175 rad/s
0.0175 rad/s
0.0175 rad/s

 (5.2b)

ωs,init = 0 (5.2c)

Regarding thruster control, a bang-bang controller with deadzone is used. The deadzone pa-
rameter in figure 3.7 is chosen to be:

On = 0.001 (5.3)

Large initial angular velocity

The second simulation has the same initial states as the first, except for the initial angular
velocity, which is changed to a large value:

ω̃init =

1 rad/s
1 rad/s
1 rad/s

 (5.4)

There is no step in this simulation, and the desired Euler angles ofFb are constantly30◦ with
the respective axes ofFo.

Step simulation with uncertain inertia

This is the same simlation as the step simulation, but the controllers use estimates of the inertial
parameters, rather than the correct ones. The estimates and actual inertial parameters are given
below, where the estimates are denoted with a hat(̂·).

Î =

4.3500 0 0
0 4.3370 0
0 0 3.6640

 (5.5a)

I = 0.8Î (5.5b)

îs = 4× 10−5 kgm2 (5.5c)

is = 0.8̂is (5.5d)

Step simulation with noise

This fourth simulation has the same initial conditions as the first, and the same step is per-
formed. The difference is that white noise is added to the state vector which is fed to the
controllers. The motivation for this simulation, is that ESEO will receive estimates of its state
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vector from an estimator, usually a Kalman filter. These estimates are not necessarily correct,
but should be close to the real values. Secondly, they will not be updated continously, but with
a certain frequency. The added white noise simulates this behavior. More precisely, the white
noise has a frequency of 10 Hz, and the noise vector’s amplitude is approximately 5 percent of
the vectorχ =

[
χTω , χs, χ

T
q

]T
:

χω = ω̃init/2 (5.6a)

χs = 1 rad/s (5.6b)

χq = 1/2 [1, 1, 1, 1]T (5.6c)

5.2 Linear control

The global controller has been proved to stabilize ESEO ifiy > ix > iz. However this
restriction is not met by ESEO, becauseix > iy > iz. Hence only the local controller is
simulated.

5.2.1 Local controller

The controller below is based on the linearized model of ESEO:

τc = −kεIε̃− kωω̃ (5.7a)

τa = 0 (5.7b)

The controller parameters satisfy

kε >> is = 4× 10−5 (5.8a)

kω > 0 (5.8b)

k2
ω > ω2

0

(
iz [2iy − 2ix − iz]− [iy − ix]

2
)

= −1.8597× 10−5 (5.8c)

and the following parameters were chosen for the simulation:

kε = 0.05 (5.9)

kω = 3 (5.10)

The simulation results for this local controller can be found in figure B.1, figure B.5, figure
B.9 and figure B.10. For the noise simulation, the bang-bang dead-zone was changed toOn =
0.007.

5.3 Nonlinear control

Lyapunov controller 2 has been proved to stabilize ESEO ifiy > ix > iz, but this is not the
case for ESEO. Therefore, we will only simulate the performance of Lyapunov controller 1 and
3.
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5.3.1 Lyapunov controller 1

The first Lyapunov controller is given by

τc = −kεε̃− kωω̃ + ω2
0(c2)×Ic2 − 3ω2

0(c3)×Ic3 (5.11a)

τa = −ksωs (5.11b)

where the controller parameters satisfy

kε > 0 (5.12a)

kω > 0 (5.12b)

ks > 0 (5.12c)

They are chosen as:

kε = 0.2 (5.13a)

kω = 3 (5.13b)

ks = 0.001 (5.13c)

The results from the simulations are presented in figure B.2, figure B.6, figure B.9 and figure
B.11. For the noise simulation, the bang-bang dead-zone was changed toOn = 0.006.

5.3.2 Lyapunov controller 3

Since ESEO only has one reaction wheel, the control laws for Lyapunov controller 3 are rewrit-
ten as

τc = −kε,1ε̃− kω,1ω̃ − ω0B(c2)×AIs
(
AT ω̃ + ωs

)
+ ω2

0B(c2)×Ic2 − 3ω2
0B(c3)×Ic3ω̃

(5.14a)

Aτa = kε,2ε̃+ kω,2ω̃ + ω0(c2)×AIs
(
AT ω̃ + ωs

)
− ω2

0(c2)×Ic2 + 3ω2
0(c3)×Ic3

(5.14b)

where the controller parameters satisfy:

kε,1 + kε,2 > 0 (5.15a)

kω,1 + kω,2 > 0 (5.15b)

By introducingB, the thrusters will compensate for the nonlinear terms about thex axis and
thez axis ofFb. For the step simulation, the following parameters were chosen:

kε,1 = 0.2 (5.16a)

kε,2 = 0.2 (5.16b)

kω,1 = 3 (5.16c)

kω,2 = 3 (5.16d)
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The step simulation results for this controller can be found in figure B.3. When simulating with
a large initial angular velocity, the gains were changed because it gave better performance:

kε,1 = 0.1 (5.17a)

kε,2 = 0.1 (5.17b)

kω,1 = 2 (5.17c)

kω,2 = 2 (5.17d)

Figure B.7 shows the results of this simulation. The last two simulations are presented in figure
B.9 and figure B.12. The bang-bang dead-zone was changed toOn = 0.006 in the noise
simulation.

5.3.3 Sliding mode controller

The Lyapunov controllers are not designed to be robust to parameter uncertainties, like the
sliding mode controller. Therefore we will compare the controllers when assuming that the
system parameters are correct. Thus, the nonlinearities are canceled, and the gainsβi andβa,i
can be chosen constant. The rewritten sliding mode controller becomes

τc = −B(hb)× [ω̃ − ω0c2]−
3
2
ω2

0BcT3 Ic3

− ω0BJ(c2)×ω̃ −
1
2
BJP

[
η̃1 + (ε̃)×

]
ω̃

− τsgn

(5.18a)

Aτa = (hb)× [ω̃ − ω0c2] +
3
2
ω2

0c
T
3 Ic3

+ ω0J(c2)×ω̃ +
1
2
JP

[
η̃1 + (ε̃)×

]
ω̃

+ τsgn,a

(5.18b)

τsgn = [βxsgn (sx) , βysgn (sy) , βzsgn (sz)]
T (5.18c)

τsgn,a = [βa,xsgn (sx) , βa,ysgn (sy) , βa,zsgn (sz)]
T (5.18d)

where

βi + βa,i > 0 (5.19)

To avoid chattering, the sign function is replaced with the saturation function (figure 3.4). The
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parameters for the sliding mode controller were chosen as follows:

γ = 0.05 (5.20a)

P = 0.1 1 (5.20b)

βx = 0.2 (5.20c)

βy = 0.1 (5.20d)

βz = 0.2 (5.20e)

βa,y = 0.1 (5.20f)

βa,x = βa,z = 0 (5.20g)

Note that since ESEO only has a reaction wheel about itsy-axis,βa,x andβa,z can be chosen
arbitrarily. This controller’s simulation results can be found in figure B.4, figure B.8, figure
B.9 and figure B.13. For the noise simulation, the bang-bang dead-zone was changed toOn =
0.010.



Chapter 6

Discussion and conclusion

6.1 Discussion

6.1.1 Theoretical analysis

Mathematical model

Regarding the kinematical model in chapter 4, Euler parameters are chosen for the angular
parametrization, since they do not introduce singularities in the model. It is however possible
to use a three parameter representation with singularities. Fossen (2002) suggests using two
representations of Euler angles with different singularities, and switching between them. There
are other possible representations with three parameters, like the Euler-Rodrigues parameters
(Egeland et al., 2001), but four parameters are needed to avoid singularities (Hughes, 1986).
Another advantage of the Euler parameters is that they are computationally efficient (Hughes,
1986). Euler angles can be demanding to compute because of the trigonometric functions as-
sociated with them.

In the mathematical model developed in chapter 4 for the system dynamics, the system states
are chosen as the angular velocities of ESEO and the reaction wheel. An alternative would
have been to use the angular momenta as states. There are several explanations for this deci-
sion. One of them is that angular momenta can not be observed or measured directly. They
must be calculated from the angular velocities. Another reason is that the error dynamics of
such a system would have introduced more equations in the satellite model, as in Hall et al.
(2002). On the other hand, such a model representation would have had simpler equations than
the one used here.

Linear control

The advantage of the linear controllers is that they are easy to implement, and computationally
simple. However, neither the local PD controller nor the global linear controller use reaction
wheels to control the spacecraft’s attitude. The global controller uses the reaction wheels to
control themselves. Thus, if one wishes to use a linear controller, the reaction wheel may
not serve any purpose and can be removed from the spacecraft. This would yield a simpler
mathematical model, i.e. the classical spacecraft model which is treated in example 3.1.
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Nonlinear control

The Lyapunov controllers presented in this thesis are found by canceling nonlinearities, to ob-
tain asymptotic stability. The alternative to this approach is to dominate the nonlinear terms,
i.e. choosing large controller gains to make sure thatV̇ ≤ 0 regardless of the nonlinear term’s
value. This is often possible if the nonlinear terms are bounded. This technique will often
yield simpler controllers, while the advantage of canceling nonlinearities is that it gives greater
freedom when selecting controller gains. A disadvantage of canceling nonlinearities, is that
the technique is vulnerable to parameter uncertainties. Dominating them yields more robust
controllers.

It is important to note, that the sliding mode controller together with Lyapunov controller 2
and 3 are the only controllers which use the reaction wheels actively to control the spacecraft’s
attitude. In fact, they permit to only use reaction wheels for attitude control if the reaction
wheels can produce torques about all axes of the spacecraft body frame. Lyapunov controller
1 cannot control the spacecraft’s attitude without the thrusters.

6.1.2 Simulation

When viewing the simulation results, it is easily seen that the attitude is never exactly equal
to the desired attitude. This is because of the thruster torques generated by the bang-bang
controller with dead-zone. Since the thrusters are not capable of delivering exact torques, the
attitude error never reaches exactly zero. Instead the attitude converges to an interval close
to the desired attitude. Another interesting observation, is that the Euler angle representing
rotation about they-axis converges slightly faster than the two other Euler angles, and it has
a higher degree of accuracy. This applies to all the controllers in the step simulations. Since
Lyapunov controller 3 and the sliding mode controller use the wheel actively to help controlling
θ, it makes sense thatθ converges faster and is closer to the desired value than the other Euler
angles. However, in the simulation with large initial angular velocity,θ is the fastest converging
Euler angle only for the local PD controller and Lyapunov controller 1. Another explanation
is that the reaction wheel has a damping effect on the rotation about they-axis, and this helps
θ to converge. This makes sense, because if the satellite body starts to spin in one direction
about they-axis, the reaction wheel will spin in the opposite direction. It is probable that both
explanations are valid, but when using the reaction wheel actively at large initial spin, other
effects arise.

Step simulation with ideal conditions

In the step simulation with ideal conditions, all the controllers, including the local PD con-
troller, obtain an accuracy of±1◦, and they converge close to the desired attitude after approxi-
mately 100 seconds. Thus, the local PD controller works, even though it does not operate close
to its operating point. From a theoretical point of view this can be explained. It is shown in
appendix A.2.9 that the local PD controller is stable close to the origin, but will never reach it.
The local PD controller is not globally asymptotically stable. We have already observed that
the attitude error converges to an interval because of the thruster controller. It seems that this
interval contains the interval which the local PD controller converges to. Thus, the fact that
the controller does not converge to an attitude error of zero has no effect on the controller’s
performance.
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Concerning the reaction wheel, the local PD controller lets it spin on its own (figure B.1),
while Lyapunov controller 1 makesωs → 0 (figure B.2). The latter seems to be a disadvan-
tage, since this causes a disturbance torque with respect to the attitude control of ESEO. The
reason for this is that the control law for the reaction wheel only cares about the wheel spin,
not the satellite’s other states. Thus, increased thrusting is needed to compensate. Figure B.2
shows that Lyapunov controller 1 has more thruster firings than the other controllers. Lyapunov
controller 3 and the sliding mode controller both use the reaction wheel actively to reach the
desired attitude. When the simulation starts, the desired attitude is far from the actual attitude.
Thus, a large torque is put on the reaction wheel. It quickly reaches saturation, and is then
unable to provide torques, unless it is commanded to spin the other way. From figure B.3 we
see that the wheel stays saturated when Lyapunov controller 3 is used. Thus the reaction wheel
only gives one large torque in the beginning of the simulation. Afterwards, only the thrusters
are used to control ESEO’s attitude. This is not the case for the sliding mode controller. The
reaction wheel delivers a large torque in the beginning, and when the step is performed. Hence,
it can be concluded that the sliding mode controller uses the reaction wheel in at better way
than Lyapunov controller 3.

Large initial angular velocity

As in the former simulation, the controllers converge with the desired accuracy. It is interesting
to see that the local PD controller performs as well as the other controllers. The explanations
are the same as in the preceding section. Although all controllers converge, the sliding mode
controller and Lyapunov controller 3 are about 50 seconds slower than the other controllers. In
addition, they have considerably more thruster firings than the other controllers. It is natural
to assume that this is related to the use of the reaction wheel. Note that when the satellite
rotates several times about its own axes, the P term of the linear controllers and the Lyapunov
controllers, i.e. typically−k0ε̃, changes sign often. What is needed is to reduce the angular
velocity, but the P term will always try to get to a certain point in space, and does not care
about angular velocity. The D term contributes greatly to reduce the rotation, and when it is
reduced considerably, the P term will bring ESEO into its final position. This means that for
a large initial angular velocity, it could be a good idea to have a controller which only slows
down the satellite’s rotation, since the P term actually will accelerate the rotation periodically.
This is the idea behind the modified PD controller in figure 2.3. When the angular velocity is
sufficiently low, one could switch to one of the controllers suggested in this thesis.

Step simulation with uncertain inertia

Figure B.9 shows that differences between the nominal inertial parameters of the satellite and
the actual inertial parameters, yields almost the same results as in the step simulation with ideal
conditions. The only difference is that the spacecraft attitude converges approximately 10 to
30 seconds later. Thus, all controllers seem to be robust with respect to uncertain inertial pa-
rameters. It is known that sliding mode controllers are robust to such uncertainties, but more
surprising that the Lyapunov controllers perform well. These controllers cancel nonlinearities
which are functions of inertial parameters. An explanation to this, might be that the nonlinear-
ities are so small in magnitude that they do not come into play before the system states have
converged to the convergence interval induced by the thruster controller. The local PD con-
troller performs well because it is sufficient thatkεI >> 4.1979 · 10−5 to approach the origin.
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This is shown in appendix A.2.9.

Step simulation with noise

Because of the added noise, all controllers use more thruster firings, which is natural since
the feedback states never converge to constant values. In fact, the deadzone of the bang-bang
controller had to be enlarged, since the controllers fired the thrusters constantly.

6.1.3 Implementation issues

Implementation of the control laws suggested in this thesis depends on two important subjects.
The first is computational resources. The nonlinear controllers require more resources in every
time step to compute the control torques, compared to the linear controllers. Especially the
Lyapunov controllers, since they rely on cancellation of nonlinearities. Regarding the sliding
mode controller, it will often be possible to choose the gainβ constant, like in our simula-
tions, which will make the controller simpler to implement. The second important subject is
the availability of measurements of the system states and the system parameters. System state
measurements will typically be estimates coming from a Kalman filter, which is the case for
ESEO. It is evident that these measurements should be available and as accurate as possible.
Regarding the actual system parameters, the Lyapunov controllers require more parameters to
work than the other controllers because of the nonlinearity cancellation. The linear controllers
do not require such knowledge, and neither does the sliding mode controller if the gainβ can
be chosen constant. The simulation with uncertain inertial parameters shows that all controllers
work well, but if some parameters are unknown, it could be wise to avoid the Lyapunov con-
trollers.

6.2 Conclusion

In this thesis, linear and nonlinear control methods are developed to control the attitude of a
satellite. Except for the local PD controller, the controllers can be used to control any satellite
using thrusters and reaction wheels as actuators. Two linear control laws are developed. The
local PD controller is based on a linearized satellite model of ESEO, which means that it does
not apply to a general spacecraft. It does not use the reaction wheel when controlling ESEO.
The global linear controller stabilizes a spacecraft if its diagonal inertia matrix satisfies the
constraintiy > ix > iz. This controller controls the spin of the reaction wheels to zero. Four
nonlinear control laws have been developed. Three of them, the Lyapunov controllers, have
been found through Lyapunov stability analysis. They are based on different LFCs, and work
by canceling system nonlinearities. The fourth controller is a sliding mode controller. Lya-
punov controller 2 and 3, and the sliding mode controller, use the reaction wheels actively to
control the spacecraft’s attitude. This is not achieved with the linear controllers, nor Lyapunov
controller 1. It is worth noting that the inertia matrix constraintiy > ix > iz simplifies the
Lyapunov controllers.

To simulate the performance of the developed controllers, a nonlinear mathematical model
is developed and implemented in MATLAB/SIMULINK. Data for the micro-satellite ESEO
is used as model parameters in the simulations, and a bang-bang controller with dead-zone is
used for thruster control. The performance of two controllers is not simulated, since ESEO’s
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inertia matrix does not meet the constraintiy > ix > iz. The controllers are tested in four
different simulations. The first is a basic step simulation with perfect measurements of the
state vector. The second is a test of convergence when the spacecraft has a large initial spin.
Controller performance with uncertain inertial parameters is the objective of the third simula-
tion. In the last simulation, noise is added to the measured state vector. The simulations show
that the developed controllers perform well regarding attitude control of ESEO. An important
observation is that the controllers which actively use the reaction wheel of ESEO as an actuator
to control its attitude, does not produce better results than the local PD controller which do not
use it, or Lyapunov controller 1 which controls the reaction wheel spin to zero. The presence
of the reaction wheel seems to help convergence to the origin for these controllers as well. In
fact, the Euler angle representing rotation about they-axis converges slightly faster than the
two other Euler angles, and it has a higher degree of accuracy. This suggests that the reaction
wheel has a stabilizing effect on ESEO, even when it is not used actively.

6.3 Recommendations

A natural suggestion for further work is to develop a model of a Kalman filter to provide the
measured state vector to the controllers, which produces realistic noise and accuracy. The white
noise vectorχ presented here is not chosen from any experimental data.

Regarding thruster control, it would be interesting to see the performance of a PWPF modula-
tor compared to the implemented bang-bang controller. A PWPF modulator should in theory
provide more accurate control, but it poses a tuning problem, since it has several tunable pa-
rameters.

The simulations suggest that using reaction wheels as actuators provides a challenge. It would
be interesting to see if control allocation (Fossen, 2002) could be used to obtain better per-
formance. The idea of control allocation is to first compute a torque to be commanded, and
then find the best way to produce that torque using the available actuators. With this approach,
the reaction wheels could be used actively for attitude control, regardless of control method.
Another challenge regarding the reaction wheels is to develop a control algorithm to unload the
reaction wheels, i.e. to slow them down when they reach saturation, in order to use them again.
They cannot provide any torques while spinning at constant speed.

The controllers presented in this thesis are shown to bring the spacecraft’s attitude to the error
quaternionq̃1 = [1, 0, 0, 0]T which is a stable equilibrium point of the system. The error
quaternionq̃2 = [−1, 0, 0, 0]T represents an unstable equilibrium point, but from the defi-
nition of unit quaternions, it is clear that̃q2 represents the same attitude asq̃1. It would be
interesting to design controllers in such a way that both of these equilibrium points are stable.
This is done for underwater vehicles in Fjellstad et. al (1994).

An important assumption of the development of the controllers in this thesis, is that the gravity
gradient of the Earth is the only external disturbance torque which affects the satellite. This
assumption will be violated if the satellite should go into moon orbit, which is the objective
of the ESMO mission, and hence the controllers using system parameters to calculate control
torques will need to be modified. Secondly, other disturbance torques may become significant
for a satellite far from the Earth. This should be investigated for the ESMO mission.
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Appendix A

Mathematical appendix

A.1 Calculus

A.1.1 Definitions

Definition A.1. A scalar functionV (x) wherex ∈ Rn is said to be positive definite if:

V (x) > 0, ∀ x 6= 0 (A.1a)

V (x) = 0 ⇔ x = 0 (A.1b)

If −V (x) is positive definite, thenV (x) is negative definite.

Definition A.2. A scalar functionV (x) wherex ∈ Rn is said to be positive semidefinite if:

V (x) ≥ 0, ∀ x 6= 0 (A.2a)

V (x) = 0 ⇔ x = 0 (A.2b)

If −V (x) is positive semidefinite, thenV (x) is negative semidefinite.

Definition A.3. A real square matrixA is symmetric ifA = AT .

Definition A.4. A real square matrixA is skew-symmetric ifA = −AT . It has the following
properties:

• The eigenvalues of a real skew-symmetric matrix are all zero.

• If A is real, thenxTAx = 0

Definition A.5. A real square symmetric matrixA is said to be positive definite (A > 0) if:

xTAx > 0, ∀ x 6= 0 (A.3a)

xTAx = 0 ⇔ x = 0 (A.3b)

A is negative definite (A < 0) if −A is positive definite.
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Definition A.6. A real square symmetric matrixA is said to be positive semidefinite (A ≥ 0)
if:

xTAx ≥ 0, ∀ x 6= 0 (A.4a)

xTAx = 0 ⇔ x = 0 (A.4b)

A is negative semidefinite (A ≤ 0) if −A is positive semidefinite.

A.1.2 Vector and matrix norm properties

The norm‖·‖ of a vector or matrix is a scalar, a kind of absolute value. There are several
definitions of the vector and matrix norm (Ogata, 1995), but they all have the same properties.
A widely used vector norm is the 2-norm:

‖x‖2 =
√
〈x,x〉 (A.5)

〈·, ·〉 denotes the inner product of a vector. The inner product ofx andy in Rn is given by
(Ogata, 1995):

〈x,y〉 = xTy = yTx (A.6)

Note that the inner product is a scalar. The matrix 2-norm is defined by (Weisstein, 2004c):

‖A‖2 = max
‖x‖2=1

‖Ax‖2 (A.7)

If A andB are realn × n matrices andx an n-dimensional vector, these properties apply
(Ogata, 1995):

‖x‖ = 0, ∀ x 6= 0 (A.8a)

‖x‖ = 0 ⇔ x = 0 (A.8b)

‖cx‖ = |k|‖x‖, k is a scalar (A.8c)

‖x + y‖ ≤ ‖x‖‖y‖ (A.8d)

|〈x,y〉| ≤ ‖x‖‖y‖ (A.8e)

‖A‖ =
∥∥AT

∥∥ (A.8f)

‖A + B‖ ≤ ‖A‖+ ‖B‖ (A.8g)

‖AB‖ ≤ ‖A‖ ‖B‖ (A.8h)

‖Ax‖ ≤ ‖A‖ ‖x‖ (Schwartz′s inequality) (A.8i)

A.1.3 Matrix inversion

The following formulas for matrix inversion are found in the appendix of Ogata (1995). IfA,
B, C andD are, respectively, ann × n, ann ×m, andm × n, and andm ×m matrix, and
|A| 6= 0 and|SA| 6= 0 whereSA = D−CA−1B, we have:
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[
A B
C D

]−1

=
[
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
(A.9)

Alternatively, if |D| 6= 0 and|SD| 6= 0 whereSD = A−BD−1C, we have:

[
A B
C D

]−1

=
[

S−1
D −S−1

D BD−1

−D−1CS−1
D D−1CS−1

D BD−1 + D−1

]
(A.10)

A.1.4 Inequalities

Schwartz’s inequality

Schwartz’s inequality can be found in Weisstein (2004a), where it is expressed using the inner
product〈·, ·〉 and the real functionsf andg:

|〈f, g〉|2 ≤ 〈f, f〉 〈g, g〉 (A.11)

Young’s inequality

Young’s inequality can be found in Weisstein (2004b). It can be written like this:

ap

p
+
bq

q
≥ ab (A.12a)

1
p

+
1
q

= 1 (A.12b)

a ≥ 0, b ≥ 0, p > 1 (A.12c)

A.2 Theoretical analysis

A.2.1 Positive definiteness ofVr

Consider the functionVr:

Vr = −1
2
ω2

0c
T
2 Ic2 +

1
2
ω2

0iy (A.13)

We will now find the conditions for this function to be positive definite. In component form,
Vr can be written as:

Vr = −1
2
ω2

0

(
ixc

2
12 + iy

[
c222 − 1

]
+ izc

2
32

)
(A.14)

Since thec2 is a unit vector,c212 + c222 + c232 = 1. Inserting this intoVr yields:

Vr =
1
2
ω2

0 (iy − ix) c212 +
1
2
ω2

0 (iy − iz) c223 (A.15)
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Thus:

iy > ix, iy > iz ⇒ Vr > 0 (A.16)

A.2.2 Positive definiteness ofVg

Consider the functionVg:

Vg =
3
2
ω2

0c
T
3 Ic3 −

3
2
ω2

0iz (A.17)

We will now find the conditions for this function to be positive definite.Vg can be written as:

Vg =
3
2
ω2

0

(
ixc

2
13 + iyc

2
23 + iz

[
c233 − 1

])
(A.18)

The directional cosines are unit vectors, i.e.c213 + c223 + c233 = 1. Inserting this intoVg yields:

Vg =
3
2
ω2

0 (ix − iz) c213 +
3
2
ω2

0 (iy − iz) c223 (A.19)

It is now clear that:

ix > iz, iy > iz ⇒ Vg > 0 (A.20)

A.2.3 Time derivative ofVa

Consider the functionVa:

Va =
1
2
ω̃T Iω̃ + ωTs IsAT ω̃ +

1
2
ωTs Isωs (A.21)

To calculateV̇a we need expressions for˙̃ω andω̇s. First we will define:

ν = ω̃×Iω̃ − ω0ω̃
×Ic2 + ω̃×AIsωs − ω0(c2)×Iω̃

+ ω2
0(c2)×Ic2 − ω0(c2)×AIsωs

(A.22)

From (4.18) we obtain:

˙̃ω = ω0(c2)×ω̃ − J−1 (ν + τe −Aτa) (A.23)

ω̇s = ATJ−1ν −ATJ−1τe +
(
ATJ−1A + I−1

s

)
τa (A.24)

The time derivative ofV is given by:

V̇ =

V̇1︷ ︸︸ ︷
ω̃T I ˙̃ω+

V̇2︷ ︸︸ ︷
ω̃TAIsω̇s +

V̇3︷ ︸︸ ︷
ωTs IsAT ˙̃ω+

V̇4︷ ︸︸ ︷
ωTs Isω̇s (A.25)
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Note thatV̇2 has been transposed. Since it is a scalar, transposing it will not change its value.
We will now calculate the time derivativeṡVi (i = 1, . . . , 4) along the system trajectories:

V̇1 = ω̃T I
(
ω0(c2)×ω̃ − J−1ν + J−1τe − J−1Aτa

)
(A.26)

V̇2 = ω̃TAIsATJ−1ν − ω̃TAIsATJ−1τe + ω̃TAIs
(
ATJ−1A + I−1

s

)
τa (A.27)

= ω̃T IJ−1ν − ω̃T IJ−1τe + ω̃T IJ−1Aτa + ω̃TAτa

− ω̃T ν + ω̃T τe − ω̃TAτa
(A.28)

In the last passage, the relationJ = I − AIAT is used. We see that the sum of these two
become:

V̇1 + V̇2 = ω0ω̃
T I(c2)×ω̃ − ω̃T ν + ω̃T τe (A.29)

Continuing with the time derivatives, we have:

V̇3 = ωTs IsAT
(
ω0(c2)×ω̃ − J−1ν + J−1τe − J−1Aτa

)
(A.30)

V̇4 = ωTs IsATJ−1ν − ωTs IsATJ−1τe + ωTs Is
(
ATJ−1A + I−1

s

)
τa (A.31)

= ωTs IsATJ−1ν − ωTs IsATJ−1τe + ωTs IsATJ−1Aτa + ωTs τa (A.32)

The sum of these two expressions become:

V̇3 + V̇4 = ω0ω
T
s IsAT (c2)×ω̃ + ωTs τa (A.33)

Thus:

V̇a = ω0ω̃
T I(c2)×ω̃ − ω̃T ν + ω̃T τe + ω0ω

T
s IsAT (c2)×ω̃ + ωTs τa (A.34)

We now calculate:

ω̃T ν = −ω0ω̃
T (c2)×Iω̃ + ω2

0ω̃
T (c2)×Ic2 − ω0ω̃

T (c2)×AIsωs (A.35)

= ω0ω̃
T I(c2)×ω̃ + ω2

0ω̃
T (c2)×Ic2 + ω0ω

T
s IsAT (c2)×ω̃ (A.36)

Note thatω̃T ω̃× = 0. Hence:

V̇a = ω̃T τe + ωTs τa − ω2
0ω̃

T (c2)×Ic2 (A.37)

A.2.4 Calculation ofJω̃

From (4.14) we have expressions forhb, hba andJ. We start by substituting forIsωs:

hb = I
(
ω̃ + Rb

dω
d
id

)
+ Aha −AIsAT

(
ω̃ + Rb

dω
d
id

)
(A.38)
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SinceJ = I−AIsAT , we get:

hb = J
(
ω̃ + Rb

dω
d
id

)
+ Ahba (A.39)

Jω̃ = hb −Ahba − JRb
dω

d
id (A.40)

A.2.5 Gain selection for linear controller

We recall that to stabilize the linearized system, the gain matrices had to be chosen in the
following way:

BKε = Aε + k01 (A.41)

(Aω −BKω) < 0 (A.42)

The gain matrices will be chosen to be diagonal:

Kε =

 kε1 0 0
0 kε2 0
0 0 kε3

 , Kω =

 kω1 0 0
0 kω2 0
0 0 kω3

 (A.43)

We will start by examining equation (A.41):


kε1
ix

0 0
0 kε2

iy−is 0
0 0 kε1

iz

 =


8ω2

0(iy−iz)+k0ix
ix

0 0

0 6ω2
0(ix−iz)+k0(iy−is)

iy−is 0

0 0 2ω2
0(iy−ix)+k0iz

iz


(A.44)

The constantω0 has its largest value at the spacecraft’s perigee altitude. At perigee,ω0 =
0.0012 ⇒ ω2

0 = 1.3755 · 10−6. The constantis = 4 · 10−5. Choosingk0 much larger than
8ω2

0 andis will make them negligible. This is true becauseix, iy andiz have the same order
of magnitude. Note thatiy >> is. So if we choosek0 >> max

{
8ω2

0, is
}

= is we can
approximate the above matrix equation to:


kε1
ix

0 0
0 kε2

iy
0

0 0 kε1
iz

 =


k0ix
ix

0 0
0 k0iy

iy
0

0 0 k0iz
iz

 (A.45)

This leads to the following choices for the elements ofKε:

kε1 = k0ix (A.46a)

kε2 = k0iy (A.46b)

kε3 = k0iz (A.46c)

Secondly, we will look at equation (A.42). We have:
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(Aω −BKω) =

 −kω1
ix

0 ω0(iz−iy+ix)
ix

0 − kω2
iy−is 0

−ω0(iz−iy+ix)
ix

0 −kω3
iz

 (A.47)

This matrix will be negative definite if the diagonal elements ofKω are chosen large enough.
A negative definite matrix is a matrix with eigenvalues which have negative real parts. To find
how to choose the elements ofKω, we will compute the eigenvalues of the above matrix. The
characteristic polynomial of(Aω −BKω) is:

det (Aω −BKω − λ1) =
−λ (iy − is)− kω2

ix (iy − is) iz

(
ixizλ

2 + [kω3ix + kω1iz]λ

+ kω1kω3 + ω2
0i

2
z − 2ω2

0iziy + 2ω2
0izix

+ω2
0i

2
y − 2ω2

0iyix + ω2
0i

2
x

) (A.48)

=
−λ (iy − is)− kω2

ix (iy − is) iz

(
aλ2 + bλ+ c

)
(A.49)

The eigenvalues of(Aω −BKω) are the solutions with respect toλ of:

det (Aω −BKω − λ1) = 0 (A.50)

The first eigenvalueλ1 is given by

−λ (iy − is)− kω2 = 0 (A.51)

⇓

λ1 = − kω2

iy − is
(A.52)

whereλ1 is negative ifkω2 > 0. The last two eigenvalues are given by the following equation:

aλ2 + bλ+ c = 0 (A.53)

⇓

λ2 =
−b+

√
b2 − 4ac

2a
(A.54)

λ3 =
−b−

√
b2 − 4ac

2a
(A.55)

The square root returns a positive real value or an imaginary value, thus the real part ofλ3 is
negative ifb > 0, sincea > 0. This is ensured ifkω1 > 0 andkω3 > 0. If the square root in the
above expression forλ2 returns a positive real value,λ2 may get a positive real part. To ensure
that the real part ofλ2 is negative, we solve the following equation:
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b >
√
b2 − 4ac (A.56)

b2 > b2 − 4ac (A.57)

⇓
c > 0 (A.58)

⇓
kω1kω3 > ω2

0

(
2iziy + 2iyix − i2z − 2izix − i2y − i2x

)
(A.59)

⇓

kω1kω3 > ω2
0

(
iz [2iy − 2ix − iz]− [iy − ix]

2
)

(A.60)

A.2.6 Solution toc3 =
[
0,

√
1/2,

√
1/2

]T
, c22c32 = 0

From the definition ofc3 in (3.8) applied to the rotation matrix in Euler angles (3.16), we can

obtain an equation set to solve. In Euler angles,c3 =
[
0,

√
1/2,

√
1/2

]T
is written:

sψsφ+ cψcφsθ = 0 (A.61a)

−cψsφ+ sθsψcφ =
√

1/2 (A.61b)

cθcφ =
√

1/2 (A.61c)

The second equation isc22c32 = 0 ⇒ c22 = 0 or c32 = 0. Thus:

cψcφ+ sφsθsψ = 0 (A.62a)

or
cθsφ = 0 (A.62b)

We must now solve the equation set consisting of (A.61) and (A.62a), and the set containing
(A.61) and (A.62b). The first set has no solutions. The equation set (A.61c) and (A.62b) has 4
solutions, and all of these solutions satisfy (A.61). These solutions are given below.

φθ
ψ

 =


 0
π/4
π/2

 ,
 0
−π/4
−π/2

 ,
 π

3π/4
−π/2

 ,
 π
−3π/4
π/2

 (A.63)

These solutions can be converted to quaternions in MATLAB/SIMULINK. The results are
shown in figure A.1 whereq = [η, ε1, ε2, ε3]

T . Note that it should be possible to solve the

equationc3 =
[
0,

√
1/2,

√
1/2

]T
directly in quaternions using the quaternion expression for

c3, but the author was not successful in finding a real solution.
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Figure A.1: Conversion of solutions to quaternions

A.2.7 Convergence of sliding manifold

Consider this sliding manifold, whereP > 0:

s = ω̃ + Pε̃ (A.64)

We will now show that whens = 0, ε̃ andω̃ converge to zero. This proof can be found in Fu et
al. (1999). Whens = 0, we get:

ω̃ = −Pε̃ (A.65)

Thus, the equations describing the motion on the manifolds = 0 are given by the above
expression inserted into (3.37):

˙̃η =
1
2
ε̃TPε̃ (A.66a)

˙̃ε = −1
2

[
η̃1 + (ε̃)×

]
Pε̃ (A.66b)

To show convergence we will use Lyapunov analysis. Choosing the LFC
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Vε = ε̃T ε̃, (A.67)

the time derivativeV̇ε is given by:

V̇ε = −η̃ε̃TPε̃ (A.68)

Sinceη̃2 + ε̃T ε̃ = 1, η̃ has two possible values wheneverη̃ 6= 0, i.e. a positive value and
a negative value. If we choose the positive value,η̃ will remain positive sincė̃η is positive.
Hence,V̇ < 0 if ε̃ 6= 0. Thus, ε̃ → 0 ⇒ η̃ → 1. If η̃ = 0 we cannot conclude, but since
the equilibrium points of the kinematic equations are given byη̃ = ±1 andε̃ = 0, the system
will not stay in this state. This means thatη̃ will not remain equal to zero, and thus the above
conclusions apply. From (A.65), we see thatε̃→ 0 ⇒ ω̃ → 0. Hence, we have convergence to
the origin for the states on the sliding manifolds = 0.

A.2.8 Parameter error terms

The error of a parameterα is defined to be∆α = α − α̂. We will now apply this notation in
calculating several parameter error terms:

(hb)× (ω̃ − ω0c2)− (ĥb)× (ω̃ − ω̂0c2) = (hb)×ω̃ − (hb)×ω0c2

− (ĥb)×ω̃ + (ĥb)×ω̂0c2

(A.69a)

=
(
(hb)× − (ĥb)×

)
ω̃

−
(
(hb)×ω0 − (ĥb)×ω̂0

)
c2

(A.69b)

= (∆hb)×ω̃ − (∆(hbω0))c2 (A.69c)

3
2
ω2

0c
T
3 Ic3 −

3
2
ω̂2

0c
T
3 Îc3 =

3
2
cT3

(
ω2

0I− ω̂2
0 Î

)
c3 (A.70a)

=
3
2
cT3 ∆(ω2

0I)c3 (A.70b)

ω0J(c2)×ω̃ − ω̂0Ĵ(c2)×ω̃ = ∆(ω0J)(c2)×ω̃ (A.71)

1
2
JP

[
η̃1 + (ε̃)×

]
ω̃ − 1

2
ĴP

[
η̃1 + (ε̃)×

]
ω̃ =

1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃ (A.72)

A.2.9 Stability of local PD controller

Consider the LFC used to derive Lyapunov controller 1 and its time derivative along the system
trajectories:
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V = Va + 2k1 (1− η̃) (A.73)

V̇ = ω̃T τc + ωTs τa − ω2
0ω̃

T (c2)×Ic2 + 3ω2
0ω̃

T (c3)×Ic3 + k1ω̃
T ε̃ (A.74)

wherek1 is a positive constant. The local PD controller is given by

τc = −k1ε̃− kωω̃ (A.75a)

τa = 0 (A.75b)

wherekω is a positive constant. Thus:

V̇ = −kωω̃T ω̃ − ω2
0ω̃

T (c2)×Ic2 + 3ω2
0ω̃

T (c3)×Ic3 (A.76)

We will now take a closer look at the following terms:

−ω2
0ω̃

T (c2)×Ic2 = ω2
0c
T
2 I(c2)×ω̃

≤ ω2
0‖(c2)×‖‖I‖‖ω̃‖‖c2‖

(A.77)

3ω2
0ω̃

T (c3)×Ic3 ≤ 3ω2
0‖(c3)×‖‖I‖‖ω̃‖‖c3‖ (A.78)

Applying Young’s inequality (A.12) on‖ω̃‖‖ci‖ with p = 2, we obtain:

‖ω̃‖‖ci‖ ≤
1
2

(
2‖ω̃‖2 +

1
2
‖ci‖2

)
(A.79)

The vector norms are given by the 2-norm defined in (A.5), thus:

‖ω̃‖2 = ω̃T ω̃ (A.80)

‖ci‖2 = cTi ci (A.81)

It is possible to use these results to define an upper bound onV̇ :

V̇ ≤ −kωω̃T ω̃ + ω2
0‖(c2)×‖‖I‖

(
ω̃T ω̃ +

1
4
‖c2‖2

)
+ 3ω2

0‖(c3)×‖‖I‖
(
ω̃T ω̃ +

1
4
‖c3‖2

) (A.82)

V̇ ≤ −
(
kω − ω2

0‖I‖
[
‖(c2)×‖+ 3‖(c3)×‖

])
ω̃T ω̃

+
1
4
ω2

0‖I‖
[
‖(c2)×‖‖c2‖2 + 3‖(c3)×‖‖c3‖2

] (A.83)

V̇ ≤ − (kω − ζ1) ω̃T ω̃ + ζ2 (A.84)

Becauseci is a unit vector, andω0 andI are constants,ζ1 andζ2 are bounded. Hence, choosing
kω > ζ1 will ensure that the quadratic term iñω is negative wheñω 6= 0. However, the presence
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of ζ2 makes sure that the system is not asymptotically stable. We will now calculateζ1 andζ2
for ESEO using the 2-norms for vectors and matrices:

ω0 = 0.0012 ⇒ ω2
0 = 1.3755 · 10−6 (A.85)

‖I‖ = 4.3500 (A.86)

‖ci‖ = 1 (A.87)

‖(ci)×‖ = 1 (A.88)

⇓
ζ1 = 2.3934× 10−5 (A.89)

ζ2 = 5.9835× 10−6 (A.90)

We see that in ESEO’s caseζ2 is close to zero. ThusV < 0 for large values of̃ω, but whenω̃
gets very close to zero,V > 0. Hence,ω̃ never converges to the origin, but stays close to it.
This means that the system is stable. For the rest of the analysis we will assume thatζ2 ≈ 0 in
order to investigate what happens toε̃. Hence, (4.18) becomes:

0 = −ω2
0(c2)×Ic2 + ω0(c2)×AIsωs + 3ω2

0(c3)×Ic3 − k1ε̃ (A.91)

As in section 4.2.2,k1 must be chosen large enough to makeε̃ the only possible solution.
Rewriting this equation on component form for ESEO, yields:

k1ε̃1 = ω2
0 (iy − iz) (c22c32 − 3c23c33)− ω0c32isωs (A.92a)

k1ε̃2 = ω2
0 (iz − ix) (c12c32 − 3c13c33) (A.92b)

k1ε̃3 = ω2
0 (ix − iy) (c12c22 − 3c13c23) + ω0c12isωs (A.92c)

In this situation, the largest possible right hand side depends on the wheel spinωs, and will
be at its maximum whenωs is at its maximum, i.e.ωs = σ. For ESEO (A.92a) will have the
largest right hand side, because(iy − iz) > (ix − iy). (A.92b) has the smallest since it does
not depend on the wheel spin. The maximum value of (A.92a) is:

k1ε̃1 = −3
2
ω2

0 (iy − iz)− ω0c32isσ (A.93)

−3
2
ω2

0 (iy − iz) = −1.3886 · 10−6 (A.94)

ω0c32isσ = −2.9683 · 10−5 (A.95)

⇓
k1ε̃1 = −3.1072 · 10−5 (A.96)

We see that the term from the wheel spin is approximately ten times larger than the other term.
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This maximum value is obtained when:

c3 =

c13c23
c33

 =

 0√
1/2√
1/2

 (A.97a)

c2 =

c12c22
c32

 =

0
0
1

 (A.97b)

This equation set has no solutions. Since the term from the wheel spin is much larger than the
other, we will assume that the other term can be neglected. Thus the largest right hand side of
(A.92a) is:

k1ε̃1 ≈ ω0c32isσ = −2.9683× 10−5 (A.98)

This value is obtained when:

c2 =

c12c22
c32

 =

0
0
1

 (A.99)

From the definition of the directional cosines (3.8) applied to the rotation matrix in Euler angles
(3.16), this equation set can be written:

−sψcθ + cψsθsφ = 0 (A.100a)

cψcφ+ sφsθsψ = 0 (A.100b)

cθsφ = 1 (A.100c)

Four solutions satisfy these equations:

φθ
ψ

 =


π/20

0

 ,
π/20
π

 ,
−π/2π

0

 ,
−π/2π

π

 (A.101)

Figure A.2 shows these solutions converted to unit quaternions in MATLAB/SIMULINK. The
smallest negative nonzero solution forε̃1 is:

ε̃1 = −0.7071 (A.102)

Inserting this into (A.98) yields an expression fork1:

k1ε̃1 ≈ ω0c32isσ (A.103)

⇓
k1 ≈ 4.1979 · 10−5 (A.104)
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Since we have used an estimate for the largest possible right hand side of (A.92a), we should
choosek1 >> 4.1979× 10−5 to ensure that̃ε = 0 is the only solution of (A.91). To conclude,
we have shown that with this choice ofk1, ε̃ → 0 whenω̃ → 0. However,ω̃ only gets close
to the origin. This means that̃ε will approach the origin, but never reach it. This is shown in
figure A.3, where the command torques are continuous instead of being thruster pulses. The
Euler angles converge close to the desired value, but do not reach it.

Figure A.2:c2-solutions in quaternions
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Figure A.3: Convergence of local PD controller with continuous command torques



Appendix B

Simulation plots

This appendix contains all the plots from the simulations. Figure B.1 to B.4 show the plots
from the step simulation with ideal conditions. The results from the simulation with large
initial angular velocity is presented in figure B.5 to B.8. Figure B.9 shows the plots from the
step simulation with inertia uncertainty, and figure B.10 to B.13 present the results from the
step simulation with added white noise.
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(a) Angular velocity (b) Reaction wheel velocity

(c) Euler parameters (d) Euler angles with reference

(e) Control torques (f) Gravity torque

Figure B.1: Step simulation of local controller
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(a) Angular velocity (b) Reaction wheel velocity

(c) Euler parameters (d) Euler angles with reference

(e) Control torques (f) Gravity torque

Figure B.2: Step simulation of Lyapunov controller 1
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(a) Angular velocity (b) Reaction wheel velocity

(c) Euler parameters (d) Euler angles with reference

(e) Control torques (f) Gravity torque

Figure B.3: Step simulation of Lyapunov controller 3
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(a) Angular velocity (b) Reaction wheel velocity

(c) Euler parameters (d) Euler angles with reference

(e) Control torques (f) Gravity torque

Figure B.4: Step simulation of sliding mode controller
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(a) Euler angles with reference (b) Control torques

Figure B.5: Simulation of local PD controller with large initial angular velocity

(a) Euler angles with reference (b) Control torques

Figure B.6: Simulation of Lyapunov controller 1 with large initial angular velocity
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(a) Euler angles with reference (b) Control torques

Figure B.7: Simulation of Lyapunov controller 3 with large initial angular velocity

(a) Euler angles with reference (b) Control torques

Figure B.8: Simulation of sliding mode controller with large initial angular velocity
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(a) Local PD controller (b) Lyapunov controller 1

(c) Lyapunov controller 3 (d) Sliding mode controller

Figure B.9: Simulation of controllers with inertia uncertainty (Euler angles with reference)
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(a) Euler angles with reference (b) Control torques

Figure B.10: Simulation of local PD controller with added white noise

(a) Euler angles with reference (b) Control torques

Figure B.11: Simulation of Lyapunov controller 1 with added white noise
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(a) Euler angles with reference (b) Control torques

Figure B.12: Simulation of Lyapunov controller 3 with added white noise

(a) Euler angles with reference (b) Control torques

Figure B.13: Simulation of sliding mode controller with added white noise



Appendix C

Maple and MATLAB/SIMULINK
input

This appendix contains Maple calculations, MATLAB code and SIMULINK diagrams. It starts
with a Maple calculation which results in the linearized model of (4.9) found in (4.11) and
(4.12). The MATLAB code which follows is the contents ofinit.m where simulator parameters
are initialized. The appendix ends with three SIMULINK diagrams, where the simulator is
presented. In the SIMULINK diagram calledSIMULATOR, an orbit propagator is present. It is
used to simulate an elliptical orbit, and has been developed by Hegrenæs (2004). However, in
this thesis a circular orbit has been assumed. Hence the orbit propagator is not used. The details
of the controller block inSIMULATORis presented in the diagramCONTROLLER. It is in this
block that the various controllers are plugged in. InCONTROLLERthe sliding mode controller
is inserted. The last diagram shows the blocks for the controllers and thruster controllers. In the
accompanying CD, the simulator is located in the fileeseosystem.mdl. Note thatinit.m must be
run before running the simulator. The fileControllersAndModulation.mdlcontains the various
controllers and thruster controllers.



> restart;

MATHEMATICAL MODEL

> with(LinearAlgebra):Ib:=Matrix(3,3,[[ix,0,0],[0,iy,0],[0,0,iz]]);

Ib := 

ix 0 0

0 iy 0

0 0 iz

> A:=Vector(1..3,[0,1,0]);

A := 

0

1

0

> J:=Ib-A*Is.Transpose(A);

J := 

ix 0 0

0 iy - Is 0

0 0 iz

> wbob:=Vector(1..3,[w1,w2,w3]);

wbob := 

w1

w2

w3

> eo:=Vector(1..3,[e1,e2,e3]);

eo := 

e1

e2

e3

> Rbo:=Matrix(3,3,[[1-2*(e2^2 + e3^2),2*(e1*e2 - e3*n),2*(e1*e3 + 
e2*n)],[2*(e1*e2 + e3*n),1-2*(e1^2 + e3^2),2*(e2*e3 - e1*n)],[2*(e1*e3
- e2*n),2*(e2*e3 + e1*n),1-2*(e1^2 + e2^2)]]);

Rbo := 

1 - 2 e2
2
 - 2 e3

2
2 e1 e2 - 2 e3 n 2 e1 e3 + 2 e2 n

2 e1 e2 + 2 e3 n 1 - 2 e1
2
 - 2 e3

2
2 e2 e3 - 2 e1 n

2 e1 e3 - 2 e2 n 2 e2 e3 + 2 e1 n 1 - 2 e1
2
 - 2 e2

2

> c2:=Column(Rbo,2);



c2 := 

2 e1 e2 - 2 e3 n

1 - 2 e1
2
 - 2 e3

2

2 e2 e3 + 2 e1 n

> c3:=Column(Rbo,3);

c3 := 

2 e1 e3 + 2 e2 n

2 e2 e3 - 2 e1 n

1 - 2 e1
2
 - 2 e2

2

> wbib:=wbob-w0*c2;

wbib := 

w1 - w0 2 e1 e2 - 2 e3 n( )

w2 - w0 1 - 2 e1
2
 - 2 e3

2
( )

w3 - w0 2 e2 e3 + 2 e1 n( )

> Jinv:=MatrixInverse(J);

Jinv := 

1

ix
0 0

0
1

iy - Is
0

0 0
1

iz

> tau:=Vector(1..3,symbol=t);

 := 

t1

t2

t3

> taua:=ta;

taua := ta

> fhi:=Jinv.(-CrossProduct(wbib,(Ib.wbib+A*Is*ws))):

> fht:=Jinv.tau-Jinv.A*taua:

> fhg:=Jinv.(3*w0^2*CrossProduct(c3,Ib.c3)):

> dotc2:=-CrossProduct(wbob,c2):

> fha:=dotc2*(w0):

> dotwbob:=fhi+fha+fhg+fht:

> fsi:=Transpose(A).Jinv.(CrossProduct(wbib,(Ib.wbib+A*Is*ws))):



> fst:=-Transpose(A).Jinv.tau + (Transpose(A).Jinv.A + 1/Is)*taua:

> fsg:=-Transpose(A).Jinv.(3*w0^2*CrossProduct(c3,Ib.c3)):

> dotws:=fsi+fst+fsg:

> M1:=Matrix(3,3,shape=identity);

M1 := 

1 0 0

0 1 0

0 0 1

> dote:=1/2*(n*M1.wbob+CrossProduct(eo,wbob)):

> dotn:=-1/2*Transpose(eo).wbob:

LINEARIZATION OF MODEL

> sysvector:=Vector(1..8,[dotwbob[1],dotwbob[2],dotwbob[3],dotws,dotn,do
te[1],dote[2],dote[3]]):

> with(VectorCalculus):jacobisys:=Jacobian(sysvector,[w1,w2,w3,ws,n,e1,e
2,e3]):

Warning, the names &x, CrossProduct and DotProduct have been rebound

Warning, the assigned names <,> and <|> now have a global binding

Warning, these protected names have been redefined and unprotected: *, 
+, ., D, Vector, diff, int, limit, series

> jacobiinput:=Jacobian(sysvector,[tau[1],tau[2],tau[3],ta]):

> n:=1: e1:=0: e2:=0: e3:=0: w1:=0: w2:=0: w3:=0: ws:=0:

> A_sys := eval(simplify(jacobisys));

A_sys := 0, 0, - 
-w0 iz + iy w0 - ix w0

ix
, 0, 0, - 

2 w0 4 w0 iz - 4 iy w0( )

ix
, 0, 0 , 

0, 0, 0, 0, 0, 0, - 
2 w0 -3 ix w0 + 3 w0 iz( )

iy - Is
, 0 , 

-w0 iz + iy w0 - ix w0

iz
, 0, 0, 0, 0, 0, 0, 

2 w0 iy w0 - ix w0( )

iz
, 

0, 0, 0, 0, 0, 0, 
2 w0 -3 ix w0 + 3 w0 iz( )

iy - Is
, 0 , 0, 0, 0, 0, 0, 0, 0, 0[ ], 

1

2
, 0, 0, 0, 0, 0, 0, 0 , 

0, 
1

2
, 0, 0, 0, 0, 0, 0 , 

0, 0, 
1

2
, 0, 0, 0, 0, 0

> B_sys := eval(simplify(jacobiinput));



B_sys := 

1

ix
0 0 0

0
1

iy - Is
0 - 

1

iy - Is

0 0
1

iz
0

0 - 
1

iy - Is
0

iy

iy - Is( ) Is

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

LINEAR CONTROL

> A_w := 
Matrix([[A_sys[1,1],A_sys[1,2],A_sys[1,3]],[A_sys[2,1],A_sys[2,2],A_sy
s[2,3]],[A_sys[3,1],A_sys[3,2],A_sys[3,3]]]);

A_w := 

0 0 - 
-w0 iz + iy w0 - ix w0

ix

0 0 0

-w0 iz + iy w0 - ix w0

iz
0 0

> A_e := 
Matrix([[A_sys[1,6],A_sys[1,7],A_sys[1,8]],[A_sys[2,6],A_sys[2,7],A_sy
s[2,8]],[A_sys[3,6],A_sys[3,7],A_sys[3,8]]]);

A_e := 

- 
2 w0 4 w0 iz - 4 iy w0( )

ix
0 0

0 - 
2 w0 -3 ix w0 + 3 w0 iz( )

iy - Is
0

0 0
2 w0 iy w0 - ix w0( )

iz

> K_e := Matrix([[ke1,0,0],[0,ke2,0],[0,0,ke3]]);



K_e := 

ke1 0 0

0 ke2 0

0 0 ke3

> K_w := Matrix([[kw1,0,0],[0,kw2,0],[0,0,kw3]]);

K_w := 

kw1 0 0

0 kw2 0

0 0 kw3

> B_w := Matrix([[B_sys[1,1..3]],[B_sys[2,1..3]],[B_sys[3,1..3]]]);

B_w := 

1

ix
0 0

0
1

iy - Is
0

0 0
1

iz

> B_w.K_e;

ke1

ix
0 0

0
ke2

iy - Is
0

0 0
ke3

iz

> simplify(A_e+M1*k0);

-8 w0
2
 iz + 8 w0

2
 iy + k0 ix

ix
, 0, 0 , 0, 

6 w0
2
 ix - 6 w0

2
 iz + k0 iy - k0 Is

iy - Is
, 0 , 

0, 0, 
2 w0

2
 iy - 2 w0

2
 ix + k0 iz

iz

> simplify(A_w - B_w.K_w);



- 
kw1

ix
0

w0 iz - iy + ix( )

ix

0 - 
kw2

iy - Is
0

- 
w0 iz - iy + ix( )

iz
0 - 

kw3

iz

> Determinant(simplify(A_w - B_w.K_w - lambda.M1));

- 
1

ix iy - Is( ) iz
 (  iy -  Is + kw2( ) (

2
 ix iz +  ix kw3 + kw1  iz + kw1 kw3 + w0

2
 iz

2
 - 2 w0

2
 iz iy

 + 2 w0
2
 iz ix + w0

2
 iy

2
 - 2 w0

2
 iy ix + w0

2
 ix

2
))

> 
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%******************************************************************
%*                                                                *
%*   init.m                                                       *
%*                                                                *
%*   Author: Oeyvind Hegrenaes and Morten Topland, NTNU 2004      *
%*                                                                *
%*   Initialization of different parameters used in Simulink      *
%*                                                                *
%******************************************************************

% Earth Parameters by means of WGS84
mu = 398600.5;   % [km^3/s^2]
re = 6378137e-3; % Equatorial Radius of the Earth [km]
f = 1/298.257223563; % Flattering of Earth ellipsoid
rp = re - f*re; % Polar Radius of the Earth [km]

% Orbit parameters for circular orbit
ra = 250; % Spacecraft altitude at perigee [km]
rc = (re + rp)/2 + ra; % Distance from Earth center to spacecraft [km]
w0 = sqrt(mu/rc^3); % Angular velocity of orbit frame about y axis.

% SSETI/ESEO Parameters
i_x = 4.35; i_y = 4.337; i_z = 3.664; % AOCS document 02.04.2004 states: i_x = 4.35; i_y 
= 4.337; i_z = 3.664
Ib_hat = [i_x 0 0; 0 i_y 0; 0 0 i_z;]; % Nominal inertia matrix
Ib = 1.2*Ib_hat; % Actual inertia matrix
a_vec = [0 1 0]'; % Normalized axis of relative rotation (reaction wheel)
A = a_vec;
B = [1 0 0; 0 0 0; 0 0 1;];
Is_hat = 4.0e-5; % Nominal moment of inertia of the wheel about a_vec [kg m^2]
Is = 1.2*Is_hat; % Actual wheel inertia
J = Ib - A*Is*A'; % Inertialike matrix
J_hat = Ib_hat - A*Is_hat*A'; % Nominal inertialike matrix

% Saturation in ACS [Nm]
Tau_thrust_nom = [0.0484, 0.0484, 0.0398]'; % Nominal values from PROP document 24.02.200
4 [Nm]
Tau_thrust_min = [0.0306, 0.0306, 0.0252]'; % Minimum values from PROP document 24.02.200
4 [Nm]

% Reaction wheel
Tau_rw_max = 3.7e-3; % Maximum motor torque from AOCS document 04.11.2003 [Nm]
w_s_max = 5035*2*pi/60; % Maximum angular velocity (5035 rpm) from AOCS document 04.11.20
03 [rad/s]

% Pulse-Width Pulse-Frequency Modulator
Kp = 1; % Song and Agrawal (2000) recommends 1 < Kp < 2
Km = 1; % Song and Agrawal (2000) recommends 1 < Km < 6
Tm = 0.5; % Song and Agrawal (2000) recommends 0.4 < Tm < 0.6
Uon = 0.4; % Song and Agrawal (2000) recommends 0.3 < Uon
Uoff = 0.1*Uon; % Song and Agrawal (2000) recommends Uoff < 0.8*Uon

% Schmitt trigger parameters
Son = 0.002;
Soff = 0.2*Son;

% Bangbang control parameter: Dead Zone
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dz = 0.001; 
% Excellent accuracy when dz = 0.001.
% Noise simulation: Good performance for Lyapunov controllers when dz =
% 0.006. PD controller and Sliding Mode controller performs well at dz =
% 0.007 and dz = 0.01 respectively.

whos



SIMULATOR

w_s

w_bob

178

w (argument of perigee) [deg]

0

v (true anomaly) [deg]

raddeg

rad2deg3

raddeg

rad2deg2

rad deg

rad2deg1

rad deg

rad2deg

7

i (inclination) [deg]

0.718

e (eccentricity)

deg rad

deg2rad
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CONTROLLER BLOCK
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Thrust Torque

U U(E)
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CONTROLLERS PULSE MODULATION

Feedback

Ref

h

w0

c2

c3

Thruster Torque

Wheel Torque

Sliding Mode Controller
Cont Torque Pulse Torque

Schmitt trigger

Cont Torque Pulse Torque

PWPF modulator

Feedback

Ref

Thruster Torque

Wheel Torque

PD Controller

Feedback

Ref

w0

c2

c3

Thruster Torque

Wheel Torque

Lyapunov Controller 3

Feedback
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w0

c2

c3

Thruster Torque

Wheel Torque

Lyapunov Controller 1

Cont Torque Pulse Torque

Bangbang control

Cont Torque Pulse Torque

Bangbang & deadzone



Appendix D

Conference and Workshop Documents

This appendix contains a presentation of the SSETI ESMO ADCS team for the Space Tech-
nology Education Conference (STEC), a presentation of this team’s work for the SSETI ESEO
Workshop VII, and an article which summarizes this thesis. The article will be presented on the
55th International Astronautical Congress in Vancouver, which is held from the 4th to the 8th
of October this year. STEC was held from the 14th to the 16th of April 2004. ESEO Workshop
VII took place from the 10th to the 14th of May 2004.



NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU) 
AND NARVIK UNIVERSITY COLLEGE (HIN) 

Attitude Determination and Control System for the European Student Moon 
Orbiter 

 
Abstract: This SSETI chapter is based in Trondheim and Narvik in Norway. It is responsible for 
the Attitude Determination and Control System (ADCS) for the European Student Moon Orbiter 
(ESMO). This work starts with a case study of the European Student Earth Orbiter (ESEO), in 
order to investigate to what extent the ADCS can be reused for the ESMO. Focus will also be on 
stability analysis of the ADCS. 
 
Case study of ESEO 
 
The ESMO ADCS team started their work in 
January 2004, as the first ESMO team. More 
ESMO teams will be recruited for fall 2004. 
This spring, the team is working on a case 
study of ESEO. The main objectives are 
mathematical modeling of the satellite and its 
actuators (thrusters and reaction wheel), 
stability analysis, orbital maneuvering and 
attitude control. The latter includes several 
control schemes, including linear and 
nonlinear control, as well as model predictive 
control (i.e. design of control laws to minimize 
power and fuel consumption). Finally, the 
closed-loop system will be extensively 
simulated in MATLAB and Simulink. 
 
Some of this work has already been completed 
by the ESEO AOCS team. This way, the 
ESMO ADCS team can learn from them, and 
in return help them in areas where the ESEO 
AOCS team may have problems. 
 
Future work 
 
When the case study is finished, the ESMO 
ADCS team will start to work on the ADCS 
for ESMO. 

 
 
 
 

 
 

The Moon 
 
 
Contact: Morten Topland (NTNU) 

(topland@stud.ntnu.no) 
  Joeran Antonsen (HiN) 
  (joraanto@student.hin.no) 
 



1

ESMO ADCS ESMO ADCS -- NorwayNorway

•Located in Trondheim, 3rd largest town in Norway, 
63o North
•40 000 applicants each year - 5 500 are admitted
•20 000 registered students
•2 500 degrees awarded each year
•200 PhD degrees awarded each year
•One person in six in Trondheim is a student

ESMO ADCS ESMO ADCS -- NorwayNorway

ESEO mathematical model

Kinematics:

Dynamics:

Orientation (in
quaternions)

Angular
momenta for
satellite body
and reaction

wheel

ESMO ADCS ESMO ADCS -- NorwayNorway

Dynamics in angular velocity:

Thruster
torque

Gravity
torque

Angular velocity of ESEO in reference to Earth

ESMO ADCS ESMO ADCS -- NorwayNorway

Attitude control

Control objective:

Controllers: •Linear Quadratic Control (LQR) 
•Explicit Model Predictive Control (eMPC)
•Nonlinear Control
•PD Control (no mathematical proof for 
nonlinear system model)

Orientation (quaternion) error

Angular velocity error

ESMO ADCS ESMO ADCS -- NorwayNorway

Nonlinear controller
Applying Lyapunov stability analysis, the

following controller has been found:

Restriction:

ESMO ADCS ESMO ADCS -- NorwayNorway

SIMULINK simulation

•Inital spin of 1 degree/sec about all axes
•Change of desired attitude after 300 sec
•A bangbang controller with deadzone
generates thruster pulses:



2

ESMO ADCS ESMO ADCS -- NorwayNorway

0 100 200 300 400 500 600
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

ωx
ωy
ωz

0 100 200 300 400 500 600
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

E
ul

er
 a

ng
le

s 
(ra

d)

φ
θ
ψ

ESMO ADCS ESMO ADCS -- NorwayNorway

0 100 200 300 400 500 600
420

440

460

480

500

520

540

Time

R
ea

ct
io

n 
w

he
el

 s
pi

n 
(ra

d/
s)

ωs

0 100 200 300 400 500 600
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time

To
rq

ue
s 

(N
m

)

τx
τy
τz
τa

ESMO ADCS ESMO ADCS -- NorwayNorway

Recruitment

•Morten and Oeyvind finish their 
studies at NTNU in June.
•But next year 5 new students will join 
ESMO ADCS in Trondheim.
•And work on ESMO will finally begin!



IAC-04-A.P.12

NONLINEAR ATTITUDE CONTROL OF THE
MICRO-SATELLITE ESEO

Morten Pedersen Topland and Jan Tommy Gravdahl

Department of Engineering Cybernetics and
Norwegian University of Science and Technology

N-7491 TRONDHEIM
NORWAY

July 1, 2004

Abstract

In this paper, attitude control of a spacecraft using
thrusters and reaction wheels as actuators is studied. Lin-
earization and Lyapunov theory is used to derive two lin-
ear and four nonlinear controllers. Three of the nonlin-
ear controllers rely on cancellation of system nonlineari-
ties, while the fourth is a sliding mode controller. By re-
stricting the spacecraft inertia, simpler controllers can be
found. Several controllers are compared in simulations.
The simulations use data from the micro-satellite, Euro-
pean Student Earth orbiter (ESEO).

1 INTRODUCTION

1.1 Background

The micro-satellite ESEO is part of the Student Space
Exploration and Technology Initiative (SSETI), which is
a project supported by the Education Office of the Eu-
ropean Space Agency (ESA). Students from ten differ-
ent European countries participate in SSETI, and more
information on SSETI can be found in [1]. SSETI is
also planning a satellite which will orbit the moon, the
European Student Moon Orbiter (ESMO). Work on this
satellite is about to begin, and the first student team to
be recruited was the ESMO Attitude Determination and
Control System (ADCS) team. This Norwegian team is
based at the Norwegian University of Science and Tech-
nology (NTNU) in Trondheim and Narvik University Col-
lege (HiN) in Narvik. The first task of the ESMO ADCS
team was to do a case study of ESEO. The work presented
in this article is part of this study, and its contents is based
on [2].

1.2 Previous work

A standard reference on spacecraft dynamics is [3].
Concerning attitude control of spacecraft, [4] describe
nonlinear attitude control for a spacecraft with thrusters
and an arbitrary number of reaction wheels, where the
modified Rodrigues parameters are used to describe the
attitude of the spacecraft. The use of Euler parameters or
unit quaternions in attitude control problems, is studied
by [5], but the results are applied to underwater vehicles.
A nonlinear sliding mode controller is proposed by [6].
Vibration suppression during attitude control for flexible
spacecraft is studied in [7], where various methods of
transforming a continuous input torque to thruster torque
pulses is presented.

At the Norwegian University of Science and Tech-
nology (NTNU), [8], [9] and others have studied attitude
control of satellites with magnetic coils and reaction
wheels as actuators. Their results are part of the foun-
dation of the NCUBE projects, where pico-satellites
are launched into Earth orbit. For more information on
NCUBE, see [10] and [11].

2 MODELING

2.1 Reference frames

To analyze the motion of a satellite, it is necessary to de-
fine reference frames, which this motion is relative to.
These frames are the same as those used by [12] and [9].

The Earth Centered Inertial (ECI) frameis denotedFi,
and has its origin at the center of the earth. Its unit vectors
arexi, yi, zi, wherezi is directed along the Earth’s rota-
tion axis. This frame is non-accelerated, that is inertial,
which means that the laws of Newton apply.

The Earth Centered Earth Fixed (ECEF) frameis de-
notedFe, and has the same origin asFi. HoweverFe

rotates relative toFi with a constant angular velocity

1



ωe = 7.2921 · 10−5 rad/s. This is the same as the angular
velocity of the Earth about its rotation axis. The unit vec-
tors ofFe arexe, ye, ze, whereze is directed along the
Earth’s rotation axis.

The Orbit (O) frame, denotedFo, is located at the cen-
ter of mass of the satellite, with the unit vectorsxo, yo

andzo. zo points towards the center of the Earth, whilexo

points in the traveling direction of the satellite, tangent to
the orbit.yo is found using the right hand rule.

The Body (B) frame, denotedFb, has its origin at the
center of mass of the satellite. This frame is fixed to the
satellite body. Its unit vectorsxb, yb andzb are usually
chosen to coincide with the spacecraft’s principal axes of
inertia. This simplifies the spacecraft’s equations of mo-
tion. Rotations aboutxb, yb andzb are calledroll , pitch
andyawrespectively.

2.2 Kinematics

Definition 1 A rotation matrixis a matrixR ∈ SO(3),
defined by

SO(3) =
{
R|R ∈ R3×3,RT R = 1, det R = 1

}
, (1)

where1 is the identity matrix andSO(3) is the spe-
cial orthogonal group of order three. The rotation matrix
transforms a coordinate vector from one reference frame
to another, for instance the matrixRb

o transformsvo into
vb: vb = Rb

ov
o.

The rotation matrix can be parameterized as

Rk,θ = cosθ 1 + k×sinθ + kkT (1− cosθ), (2)

wherek is an arbitrary unit vector in an arbitrary refer-
ence frame, and the angleθ represents the rotation about
k. The parametersk andθ are known asangle-axis pa-
rameters. Such a rotation is called asimple rotation.
The elements of a rotation matrixR are called directional
cosines, and can be arranged into column vectors:

R = [c1, c2, c3] (3)

In fact, these vectors are unit vectors, hencecT
i ci =

1. A composite rotation is represented by the product of
two rotation matrices. The rotation fromFi to Fb can be
expressed asRb

i = Rb
oR

o
i .

Definition 2 The angular velocity vector ofFo relative to
Fb, written inFb is defined by the corresponding rotation
matrix, and its time derivative:

(
ωb

bo

)×
= Ṙb

o

(
Rb

o

)T
(4a)

ωb
bo = −ωb

ob (4b)

The cross product operator is defined by:

v× =

[ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
, ω =

[
ωx

ωy

ωz

]
(5)

It can be shown that a similar relation exists for the di-
rectional cosines:

ċi = (ci)×ωb
ob (6)

The Euler parameters, also called unit quaternions, give
a representation of the rotation matrix without singulari-
ties. These parameters will be used in this paper.

Definition 3 The Euler parameters are defined in terms
of the angle-axis parameters, and are given by the scalar
η and the vectorε. In coordinate form this is written

η = cos
θ

2
(7)

ε = [ε1, ε2, ε3]
T = k sin

θ

2
(8)

wherek is a unit vector. The Euler parameters satisfy
the following property:

η2 + εT ε = 1 (9)

The rotation matrixRk,θ from (2) can now be ex-
pressed in Euler parameters as:

Rk,θ = Rη,ε = 1 + 2ηε× + 2
(
ε×

)2
(10)

As shown in [13], the kinematic differential equations
in reference toFo andFb in Euler parameters are given
as:

η̇ = −1
2
εTωb

ob (11a)

ε̇ =
1
2

[
η1 + ε×

]
ωb

ob (11b)

The actual attitude of a spacecraft is given by the ro-
tation matrixR = Rb

i . Let Fo be a desired orientation,
represented byRd = Ro

i . This means that we wantFb to
coincide withFo, that isR = Rd. In [5] the attitude error
R̃ is defined as

R̃ = R−1
d R = RT

d R (12)

When the attitude error is zero, theñR = 1. When us-
ing unit quaternions, [5] has shown that the attitude error
differential equations becomes



˙̃η = −1
2
ε̃T ω̃ (13a)

˙̃ε = −1
2

[
η̃1 + ε̃×

]
ω̃ (13b)

whereω̃ is the error in angular velocity. Note that (13)
has the same form as (11). The error in angular velocity
ω̃ is given in reference to a desired reference frameFd.
The error is zero whenFb andFd have the same angular
velocity. The angular velocity error is:

ω̃ = ωb
db = ωb

ib −Rb
dω

d
id (14)

This definition is used in [4] and [9].

2.3 Dynamical satellite model

In this paper we will use the model of a rigid satellite with
N reaction wheels as found in [4]. The dynamics can be
written as

ḣb = (hb)×J−1(hb −Ahb
a) + τe (15a)

ḣb
a = τa (15b)

wherehb is the system angular momentum, which in
Fb is given by

hb = Iωb
ib + AIsωs, (16)

andhb
a is theN dimensional vector of axial angular

momenta of the rotors:

hb
a = IsATωb

ib + Isωs (17)

The vectorωs is N dimensional, representing the ax-
ial angular velocities of the rotors relative to the body,
while τe is the 3 dimensional vector of external torques
(e.g. thrusters and gravitation),τa is theN dimensional
vector of internal axial torques applied by the rigid body
to the rotors,A is the3 × N matrix containing the axial
vectors of theN rotors, andI is the angular momentum,
or inertia matrix, of the system, including the rotors. The
matrixIs = diag {is1, . . . , is} is anN ×N diagonal ma-
trix containing the axial moments of inertia of the rotors.
The matrixJ is an inertia-like matrix defined as

J = I−AIsAT (18)

and can be interpreted as the inertia matrix of an equiv-
alent system where all the rotors have zero axial moment
of inertia. The angular velocityωb

ib of the body frame in
reference to an inertial frame, can be written as

ωb
ib = J−1(hb −Ahb

a) (19)

In this paper we will assume that the origin ofFb co-
incides with the origin ofFo, and thatFb is oriented
along the principal axes of inertia of the rigid body, which
implies that the inertia matrix is diagonal, that isI =
diag {ix, iy, iz}.

2.4 Error dynamics

A mathematical model of the error dynamics as a function
of the error in angular velocity can be derived from equa-
tions (14) to (19). This results in the following model
where the control objective is to makeFb coincide with
Fo:

hb = I
(
ω̃ + Rb

oω
o
io

)
+ AIsωs (20a)

hb
a = IsAT

(
ω̃ + Rb

oω
o
io

)
+ Isωs (20b)

ḣb = (hb)×
(
ω̃ + Rb

oω
o
io

)
+ τe (20c)

ḣb
a = τa (20d)

J = I−AIsAT (20e)

Since we are assuming a circular orbit, we will assume
that the angular velocityωo

io = [0, −ω0, 0]. It is shown
in [2] that:

J ˙̃ω = ω0J(c2)×ω̃ − ω̃×Iω̃ + ω0ω̃
×Ic2

− ω̃×AIsωs + ω0(c2)×Iω̃ − ω2
0(c2)×Ic2

+ ω0(c2)×AIsωs + τe −Aτa

(21)

2.5 Disturbance torques

There are several external disturbance torques affecting
a spacecraft. In [3] the gravitational torque, the aerody-
namic torque, radiation torques and the magnetic torque
are studied. The aerodynamic torque is only applicable
at low altitudes. In this paper, we will suppose that all
disturbance torques can be neglected, except for the grav-
itational torque. Assuming circular orbit, [3] has shown
that the gravity gradient written in the body frameFb is

τg = 3ω2
cc3 × Ic3 = 3ω2

0(c3)×Ic3 (22)

wherec3 is defined in (3). It transforms thezb axis
to thezo axis, and since~zb = [0, 0, 1]T in Fb, the unit
vector inFb corresponding to~zo is c3. ω0 is defined by
ω2

0 = µ/r3c whererc is the orbit radius,µ = Gmp =
3.986·1014Nm2/kg,G is the universal gravitational con-
stant andmp is the mass of the Earth.

2.6 Thruster modeling and control

ESEO will use a reaction wheel and thrusters for atti-
tude control. The thrusters are on or off by nature. A
reaction wheel on the other hand can give a continuous
torque. This means that a continuous signal of com-
manded torques must be translated to pulses which decide



whether a thruster should be on or off. We will choose
a bang-bang controller with dead-zone, presented in [7],
where the thrusters are fired if the commanded torque is
greater than a certain threshold value, as illustrated in fig-
ure 1. Tuning the size of the dead-zone, it is possible to
emphasize fuel consumption by choosing it large, or place
emphasis on accuracy by having a small dead-zone.

Figure 1: Bang-bang controller with dead-zone

3 CONTROLLER DESIGN

We will now derive controllers for ESEO, using Lya-
punov’s direct method and Krasovskii-LaSalle’s theorem,
which can be found in [14]. A linear controller based on a
linearized system is presented first. We assume that the
only external torques affecting the satellite are thruster
torquesτc and gravitational torquesτg, thusτe = τc + τg.

3.1 Local PD controller

The control law below is based on the linearized model of
ESEO. The details of the derivation is found in [2].

τc = −kεIε̃− kωω̃ (23a)
τa = 0 (23b)

If the parameterskε andkω satisfy

kε >> is (24a)
kω > 0 (24b)

k2
ω > ω2

0

(
iz [2iy − 2ix − iz]− [iy − ix]2

)
(24c)

it follows that the system (20) is locally asymptotically
stable.

3.2 Global linear controller

We will now analyze how a linear controller can stabilize
ESEO globally. To do this, we will use Lyapunov analy-
sis.

Proposition 4 The linear controller

τc = −k0ε̃−Cω̃ (25a)
τa = −Eωs (25b)

makes the equilibrium of(20) globally asymptotically
stable if iy > ix > iz, whereC > 0 and E > 0 are
constant matrices. An obvious choice isC = kω1 > 0
andE = ks1 > 0 wherekω andks are constants.

Proof. We choose the following Lyapunov function can-
didate (LFC)V :

V =

Va︷ ︸︸ ︷
1
2

[
ω̃T , ωT

s

] [
I AIs

IsAT Is

] [
ω̃
ωs

]
− 1

2
ω2

0c
T
2 Ic2 + k0

(
ε̃T ε̃+ [η̃ − 1]2

)
+

3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)

(26)

V =
1
2
ω̃T Iω̃ + ωsIsAT ω̃ +

1
2
ωT

s Isωs

− 1
2
ω2

0c
T
2 Ic2 + 2k0 (1− η̃)

+
3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)

(27)

The state vector is

x =
[
ω̃T , ωs, η̃, ε̃

T , c12, c32, c13, c23
]T

wherec12, c32, c13 andc23 are the respective components
of the vectorsc2 andc3 defined in (3). The desired state
vector is

x∗ =
[
03, 0N , 1, 03, 0, 0, 0, 0

]T
.

The first three terms (Va) and the fourth term inV repre-
sents the kinetic energy of the satellite, although it is not
equal to its total kinetic energy. The fifth term comes from
the attitude error wherek0 is a positive constant. The sixth
term represents the potential energy of the satellite. The
last term is constant in order to makeV a true Lyapunov
function, that isV > 0 andV (x∗) = 0. In fact,V meets
these requirements only wheniy > ix > iz, which is
shown in [9]. It is shown in [2] that the time derivative of
Va is given by:

V̇a = ω̃T τe + ωT
s τa − ω2

0ω̃
T (c2)×Ic2 (28)

The time derivative ofV along the trajectories of (20)
thus becomes:

V̇ = V̇a −
1
2
ω2

0c
T
2 Iċ2 − 2k0

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (29)

= ω̃T τc + ωT
s τa − ω2

0ω̃
T (c2)×Ic2

+ 3ω2
0ω̃

T (c3)×Ic3 − ω2
0c

T
2 I(c2)×ω̃

+ k0ω̃
T ε̃+ 3ω2

0c
T
3 I(c3)×ω̃

(30)

Since all the terms are scalars, they can be freely trans-
posed. Exploiting the fact that(ω̃×)T = −ω̃× we obtain:



V̇ = ω̃T τc + ωT
s τa + k0ω̃

T ε̃ (31)

Combining (25) with (31), we get:

V̇ = −ω̃T Cω̃ − ωT
s Eωs (32)

SinceC > 0 andE > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω →
0 andωs → 0 ⇒ ω̇s → 0. Hence (21) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k0ε̃ (33)

The terms to the right are bounded becauseci is a
unit vector and‖ε̃‖ ≤ 1. Hence there should be a large
enough choice ofk0 which makes̃ε = 0 the only solu-
tion, as proposed by [8]. In [2] it is shown that choosing
k0 > 5.5432 ω2

0 (iy − iz) ⇒ ε̃ → 0. Thus the equi-
librium point will be globally asymptotically stable by
Krasovskii-LaSalle’s theorem.

3.3 Lyapunov controller 1

In section 3.2 there was a restriction on the inertia matrix
of the satellite. In case such restrictions are not met by a
satellite, we will derive a nonlinear controller which does
not have these restrictions.

Proposition 5 The nonlinear controller

τc = −k1ε̃−Cω̃

+ ω2
0(c2)×Ic2 − 3ω2

0(c3)×Ic3

(34a)

τa = −Eωs (34b)

makes the equilibrium of(20) globally asymptotically
stable, whereC > 0 andE > 0 are constant matrices. A
possible choice isC = kω1 > 0 andE = ks1 > 0 where
kω andks are constants.

Proof. Consider the following LFC, which is almost the
same LFC as (26):

V = Va + 2k1 (1− η̃) (35)

wherek1 is a positive constant. The time derivative of
V along the trajectories of (20) is given by:

V̇ = ω̃T τc + ωT
s τa − ω2

0ω̃
T (c2)×Ic2

+ 3ω2
0ω̃

T (c3)×Ic3 + k1ω̃
T ε̃

(36)

Inserting (34) into (36), we get:

V̇ = −ω̃T Cω̃ − ωT
s Eωs (37)

SinceC > 0 andE > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω →
0 andωs → 0 ⇒ ω̇s → 0. Hence (21) becomesk0ε̃ =
0 ⇒ ε̃ → 0. Thus the system is globally asymptotically
stable according to the theorem of Krasovskii-LaSalle.

3.4 Lyapunov controller 2

The preceding controllers do not use the reaction wheels
directly as actuators for attitude control. It would be de-
sirable to use the reaction wheels as actuators in the same
way as the thrusters. This motivates an LFC where we
omit ωs from the state vector, and treat it as an external
signal.

Proposition 6 The nonlinear control laws

τc = −kε,1ε̃−Cω̃ (38a)

Aτa = kε,2ε̃+ Dω̃

+ ω0(c2)×AIs

(
AT ω̃ + ωs

) (38b)

makes the equilibrium of the system(20) globally
asymptotically stable ifiy > ix > iz, whereC andD are
constant matrices satisfying(C + D) > 0, andkε,1 and
kε,2 are constants satisfying(kε,1 + kε,2) > 0. Obvious
choices which ensure this areC = kω,11 andD = kω,21
wherekω,1 andkω,2 are constants and(kω,1 + kω,2) > 0.

Proof. Consider the LFC

V =
1
2
ω̃T Jω̃ − 1

2
ω2

0c
T
2 Ic2 + 2k2 (1− η̃)

+
3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)
(39)

wherek2 is a positive constant. The state vector is

x =
[
ω̃T , η̃, ε̃T , c12, c32, c13, c23

]T
,

and the desired state vector is

x∗ =
[
03, 1, 03 0, 0, 0, 0

]T
.

The first and second term inV represents the kinetic en-
ergy of the satellite, although it is not equal to its total
kinetic energy. The other terms are the same as in the
LFC (26). This means thatV is a Lyapunov function if
iy > ix > iz. To calculateV̇ , we will use (21):

V̇ = ω̃T J ˙̃ω − 1
2
ω2

0c
T
2 Iċ2 − 2k2

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (40)

V̇ = ω0ω̃
T J(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃

− ω2
0ω̃

T (c2)×Ic2 + ω0ω̃
T (c2)×AIsωs

+ ω̃T τg + ω̃T τc − ω̃T Aτa
− ω2

0c
T
2 I(c2)×ω̃ + k2ω̃

T ε̃+ 3ω2
0c

T
3 I(c3)×ω̃

(41)

Note that several terms have disappeared since
ω̃T ω̃× = 0. Transposing several terms we get:

V̇ = ω0ω̃
T (c2)× (Iω̃ − Jω̃ + AIsωs) + ω̃T τc

− ω̃T Aτa + k2ω̃
T ε̃

(42)

= ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
+ ω̃T τc

− ω̃T Aτa + k2ω̃
T ε̃

(43)



Inserting (38) into (43), we get:

V̇ = (k2 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (44)

Note that the control law forτa in (38) cancels the
nonlinearities inV̇ . This is only possible if the reaction
wheels are able to give torques about all three axes of ro-
tation. If this is not the case, the thrusters should be used.
We will get the same result foṙV , if we choose to cancel
them withτc instead. Choosingk2 = kε,1 + kε,2, we get:

V̇ = −ω̃T (C + D) ω̃ (45)

Since(C + D) > 0, V̇ ≤ 0. Thus, we have proved
that ω̃ → 0 ⇒ ˙̃ω → 0. We will now apply Krasovskii-
LaSalle’s theorem. Wheñ̇ω = ω̃ = 0, (21) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k2ε̃ (46)

The constantk2 must be chosen large enough to make
ε̃ = 0 the only possible solution to this equation.
Since this is the same equation as (33) choosingk2 >
5.5432 ω2

0 (iy − iz) yields a globally asymptotically sta-
ble system according to Krasovskii-LaSalle’s theorem.

3.5 Lyapunov controller 3

In section 3.4 there is a restriction on the inertia matrix
of the satellite. The next controller will not have such
restrictions.

Proposition 7 The nonlinear control laws

τc = −kε,1ε̃−Cω̃ (47a)

Aτa = kε,2ε̃+ Dω̃ + ω0(c2)×AIs

(
AT ω̃ + ωs

)
− ω2

0(c2)×Ic2 + 3ω2
0(c3)×Ic3

(47b)

makes the equilibrium of the system(20) globally
asymptotically stable, whereC andD are constant ma-
trices satisfying(C + D) > 0, and kε,1 and kε,2 are
constants satisfying(kε,1 + kε,2) > 0. Obvious choices
which ensure this areC = kω,11 andD = kω,21 where
kω,1 andkω,2 are constants and(kω,1 + kω,2) > 0.

Proof. We will consider the following LFCV wherek3

is a positive constant:

V =
1
2
ω̃T Jω̃ + 2k3 (1− η̃) (48a)

This LFC is almost the same as (39), but two terms are
removed.V̇ becomes:

V̇ = ω̃T J ˙̃ω − 2k3
˙̃η (49)

V̇ = ω0ω̃
T J(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃

− ω2
0ω̃

T (c2)×Ic2 + ω0ω̃
T (c2)×AIsωs

+ 3ω2
0ω̃

T (c3)×Ic3 + ω̃T τc

− ω̃T Aτa + k3ω̃
T ε̃

(50)

Transposing the first term, and using the definition ofJ
in (20), we get:

V̇ = ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
− ω2

0ω̃
T (c2)×Ic2 + 3ω2

0ω̃
T (c3)×Ic3

+ ω̃T τc − ω̃T Aτa + k3ω̃
T ε̃

(51)

Inserting (47) into (51), we get:

V̇ = (k3 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (52)

The control law forτa in (47) cancels the nonlinearities
in V̇ . We choosek3 = kε,1 + kε,2, thus:

V̇ = −ω̃T (C + D) ω̃ (53)

Since(C + D) > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω → 0,
and the system is globally asymptotically stable according
to the theorem of Krasovskii-LaSalle.

3.6 Sliding mode controller

According to [14] sliding mode controllers are robust to
system parameter uncertainties. Such uncertainties are of-
ten encountered in practice. A good example is change of
a satellite’s inertia when thruster fuel is consumed. We
will define the error of a parameterα to be∆α = α − α̂

where the values denoted with a hat(̂·) are the best esti-
mates, or nominal values, of the system parameters.

Proposition 8 The sliding mode controller

τc = −τsgn (54a)

Aτa = (ĥb)× [ω̃ + ω̂0c2] +
3
2
ω̂2

0c
T
3 Îc3

+ ω̂0Ĵ(c2)×ω̃ +
1
2
ĴP

[
η̃1 + (ε̃)×

]
ω̃

+ τsgn,a

(54b)

τsgn =

[
βxsgn (sx)
βysgn (sy)
βzsgn (sz)

]
, τsgn,a =

[
βa,xsgn (sx)
βa,ysgn (sy)
βa,zsgn (sz)

]
(54c)

makes the equilibrium of the system(20) globally
asymptotically stable, where

βi + βa,i ≥ δi + β0,i,



β0,i > 0 is a constant and the vectorδ = [δx, δy, δz]
T is

given by:

δ = (∆hb)×ω̃ − (∆(hbω0))×c2

+
3
2
cT
3 ∆(ω2

0I)c3 + ∆(ω0J)(c2)×ω̃

+
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃

(55)

The sign functionsgn (·) is defined by:

sgn (si) =

{ 1, si > 0
0, si = 0

−1, si < 0
(56)

Proof. The first step in sliding mode control is to design
a sliding manifold

s = [sx, sy, sz]
T
,

and [15] suggest the following manifold wheres = 0 im-
plies that̃ε andω̃ tend to zero. Define

s = ω̃ + Pε̃ (57)

whereP > 0. We must now design a control law for
the system states to reach the sliding manifold. Consider
the LFC

V = sT Js (58)

Its time derivative along the trajectories of (20) is given
as:

V̇ = sT
(
J ˙̃ω + JP ˙̃ε

)
(59)

V̇ = sT

(
(hb)× [ω̃ − ω0c2] +

3
2
ω2

0c
T
3 Ic3

+ τc −Aτa + ω0J(c2)×ω̃

+
1
2
JP

[
η̃1 + (ε̃)×

]
ω̃

) (60)

Inserting (54) into (60), we get:

V̇ = sT
(
(∆hb)×ω̃ − (∆(hbω0))×c2

+
3
2
cT
3 ∆(ω2

0I)c3 + ∆(ω0J)(c2)×ω̃

+
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃ − τsgn − τsgn,a

) (61)

= sT (δ − τsgn − τsgn,a) (62)

Sinceβi + βa,i ≥ δi + β0,i, we have:

V̇ ≤ − (β0,x |sx|+ β0,y |sy|+ β0,z |sz|) (63)

Fors 6= 0, V̇ < 0 ⇒ s→ 0. Hence, we reach our man-
ifold s in finite time, and the system is globally asymptot-
ically stable.

4 SIMULATION

4.1 Numerical values

The inertia matrix of ESEO is given byI =
diag {4.3500, 4.3370, 3.6640}. ESEO has one reaction
wheel about itsy axis, henceA = [0, 1, 0]T . The wheel
inertia is given byis = 4 · 10−5 kgm2, and the max-
imum angular velocity of the reaction wheel is given by
(ωs)max = 5035 rpm. Table 1 shows the nominal torques
of the thrusters. The altitude is 250 km, which corre-
sponds to ESEO’s planned elliptical orbit at perigee.

x axis 0.0484 Nm
y axis 0.0484 Nm
z axis 0.0398 Nm

Table 1: ACS nominal torques

4.2 Implementation of controllers

Since ESEO only has one reaction wheel, the cancella-
tion of system nonlinearities cannot be done with the re-
action wheel alone. Thus, the control laws are modified
in order to let the thrusters cancel nonlinearities about the
x andz-axes, while the reaction wheel takes care of the
y-axis nonlinearities. Regarding the sliding mode con-
troller, it is discussed in [14] that such controllers suffer
from chattering. This problem can be solved by replacing
the sign function with a saturation function, which leads
to decreased accuracy:

sat (si, γ) =

{ 1, si > γ
0, |si| < γ

−1, si < −γ
(64)

In the implementation of the sliding mode controller,
the saturation function is used instead of the sign function,
and the gainsβi andβa,i are chosen constant, that is:

βi + βa,i = β0,i > δi

4.3 Simulations and results

A simple step simulation is performed, where the satel-
lite has an initial spin. First with ideal conditions, that
is no measurement noise and perfect estimates of system
parameters (figure 2 to 5). Then with a 20 % uncertainty
on the system inertial parameters, and finally with added
white noise and perfect parameter estimates (figure 6 to
9). The second simulation results in approximately the
same results as the first, so these plots are not included.
The only difference is a slighlty slower rate of conver-
gence to the desired attitude. The attitude is presented in
Euler angles where the three anglesφ, θ andψ give the ro-
tation about thex, y andz-axes respectively. The desired
accuracy is±1◦. All Euler angles have the same desired
value.



5 CONCLUSION

In this paper, a variety of nonlinear controllers are devel-
oped to control the attitude of a spacecraft using thrusters
and reaction wheels as actuators. Note that simpler con-
trollers are obtained if the diagonal inertia matrix of the
spacecraft satisfiesiy > ix > iz. Simulations show that
all controllers obtain a desired accuracy of±1◦ in Euler
angles. Some of the controllers do not use the reaction
wheel actively to control the satellite’s attitude, but they
perform just as well as the others. Whether or not the re-
action wheel is used actively, the Euler angleθ converges
faster than the other Euler angles and it has a higher de-
gree of accuracy. This is due to the presence of the reac-
tion wheel, and it is suggested in [2] that it adds a damp-
ing effect to the system. Note that when using the reaction
wheel actively to control the spacecraft’s attitude, the re-
action wheel reaches saturation quickly. It is observed that
added noise to the measured states yields more thruster fir-
ings. This work will be part of a basis for the next SSETI
project, ESMO.
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(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 2: Simulation of local PD controller with ideal
conditions

(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 3: Simulation of Lyapunov controller 1 with ideal
conditions



(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 4: Simulation of Lyapunov controller 3 with ideal
conditions

(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 5: Simulation of sliding mode controller with ideal
conditions



(a) Euler angles with reference

(b) Control torques

Figure 6: Simulation of local PD controller with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 7: Simulation of Lyapunov controller 1 with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 8: Simulation of Lyapunov controller 3 with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 9: Simulation of sliding mode controller with
added white noise
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