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Abstract

This thesis proposes and compares experimentally two algorithms for indoor pedestrian
navigation using a foot-mounted tri-axis gyroscope, accelerometer and magnetometer. The
algorithms estimate the pedestrians’ position using magnetic field simultaneous localisation
and mapping (Mag-SLAM).

The zero-velocity aided Extended Kalman filter (the ZUPT-aided EKF) for navigation
using a foot-mounted accelerometer, magnetometer and gyroscope were proposed for indoor
pedestrian navigation by [1]. Recently, a computationally tractable algorithm using a Rao-
Blackwellized particle filter to perform Mag-SLAM on the three-component magnetic field
was proposed by [2]. The first proposed algorithm in this thesis uses the output of the
ZUPT-aided EKF as an input to a Rao-Blackwellized particle filter to perform Mag-SLAM
using magnetic field norm measurements from a foot-mounted sensor. This is an example
of loosely coupled sensor fusion. The second algorithm uses a joint stochastic state-space
model for the system and applies a single Rao-Blackwellised particle filter to the joint
estimation problem. This is an example of tightly coupled sensor fusion.

Both algorithms are tested experimentally. The experimental results demonstrate that the
algorithms remedies drift in the position estimate compared to the ZUPT-aided EKF. The
performance of the two algorithms also illustrates how tightly coupled sensor fusion can
be beneficial for the estimation of Mag-SLAM in a foot-mounted sensor.



Sammendrag

I denne oppgaven utformes to algoritmer for innendørs personavigasjon ved hjelp av fot-
festet aksellerometer, gyroskop og magnetometer. Algoritmene konstruerer et kart over
variasjoner i magnetfeltet innendørs, samtidig som de bruker magnetfeltmålinger til å nav-
igere i kartet.

Den første algoritmen bruker to tilgjengelige metoder som byggesteiner. Den første meto-
den er et Kalmanfilter for estimering av innendørs posisjon ved hjelp av fotfestet aksellerom-
eter og gyroskop. Den andre metoden er et marginalisert partikkelfilter for samtidig å lage
et kart over magnetfeltanomalier og navigere i kartet. Metoden bruker gaussiske pros-
esser, tilnærmet med metoder fra funksjonalanalyse for å unngå at kjøretid skaleres med
antall målinger. Ved å modelere posisjonsestimatet fra Kalmanfilteret som en usikker
informasjonskilde om endring i posisjon, anvendes et marginalisert partikkelfilter for å
oppnå samtidig navigasjon og kart-konstruksjon av variasjoner i magnetfeltet. Den første
algoritmen er et eksempel på løst koblet sensorfusjon. Den andre algoritmen bruker de
matematiske modellene som byggesteinene i den første algoritmen er basert på. Disse
modellene gir til sammen et estimeringsproblem som kan løses av et enkelt marginalisert
partikkelfilter. Den andre algorithmen er et eksempel på tett koblet sensorfusjon.

Begge algoritmene testes eksperimentelt, og vises å fjerne effekten av drift i eksisterende
personnavigasjon ved bruk av fot-montert aksellerometer ved passering av tidligere kart-
lagte områder. Algoritmene oppnår sammenlignbar presisjon i tre dimensjoner som ek-
sisterende metoder for navigasjon ved hjelp av fotfestet magnetometer, aksellerometer og
gyroskop oppnår i to dimensjoner. Resultatene illustrerer også hvordan tett koblet sensor-
fusjon kan være fordelaktig for samtidig magnetfeltkartlegging og navigasjon ved bruk av
fotfestet sensor.
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Introduction

This chapter first presents the motivation for the research done in this thesis. Secondly,
previous research indoor pedestrian navigation using foot-mounted accelerometer and gy-
roscope is briefly discussed. Thirdly, related research into pedestrian navigation using
accelerometer, gyroscope and magnetometer measurements is summarised. At the end of
the chapter, the contributions of this thesis are introduced and compared with existing
work.

1.1 Motivation for research

Firefighters and other first responders have reported that disorientation and being lost
inside a building is a common reason for traumatic injuries, as well as a contributing
factor to firefighter deaths [3]. Currently, most common navigation methods for firefighters
are a combination of burning flashlights to mark exits, ropes to mark safe ways out of
the dangerous area, and alarms connected to wearable sensors that go off if a firefighter
does not move for a specific amount of time [3]. Location and navigation is essential in
emergency response scenarios [4]. In most of these situations, complete building plans are
not available [5].

A common way to estimate the position of a pedestrian outdoors is to combine accelerom-
eter, gyroscope and global navigation satellite system (GNSS) signals. Indoors, the GNSS
signals are usually not strong enough to improve the position estimate [6]. Accelerometers
and gyroscopes can still be used to give information about the acceleration and angular
velocity of a pedestrian. The use of only on-board accelerometer and gyroscope data to es-
timate the position and orientation of an object is called inertial navigation [7]. For sensors
that are rigidly attached to some part of a pedestrian, the most straightforward approach
to inertial navigation is called dead reckoning integration. Dead reckoning integration es-
timates orientation and position by the integration of the gyroscope measurements and
acceleration measurements corrected for gravity [7]. Dead reckoning integration is not a
sufficient approach alone for indoor pedestrian navigation, because the orientation and
position estimates from dead reckoning have errors that grow over time (drift) [8]. More
accurate orientation estimates can be obtained by using extended Kalman filter methods.
The extended Kalman filters typically incorporate the assumption that the measured ac-
celeration is mostly caused by the gravitational force and therefore can be used to reduce
drift in orientation estimate by indicating which way is down [8]. When this assumption
holds, the extended Kalman filter methods can eliminate orientation drift except for ori-
entation deviations parallel to the gravity field [8]. The variance of the velocity estimate
obtained from integrating the acceleration from the extended Kalman filter will increase
linearly with time. The variance of the position estimate given by integrating this velocity
will increase quadratically with time [7].

1 Frida Viset



Chapter 1

For a sensor that is placed on the foot, more accurate position and orientation estimates
can be obtained [1]. These sensors require no external infrastructure, and they are cheap,
lightweight and precise [9]. The position and orientation estimates from a foot-mounted
sensor are more accurate because it is possible to use the raw accelerometer and gyroscope
measurements to detect the stationary phase of a step, and then incorporate the assumption
that velocity of the foot is zero during this phase [1]. This is called the zero-velocity
assumption [1]. By using the zero-velocity assumption, orientation drift that is not parallel
with the gravity field can be eliminated [3]. In addition, acceleration drift is eliminated,
velocity drift is eliminated, and the of the position estimation error will increase more or less
linearly with time [10]. As a foot-mounted sensor can be integrated into the heel of a large
shoe, foot-mounted sensors can be used to retrieve measurements for indoor localisation of
firefighters [11]. However, a survey [3] on Location and Navigation Support for Emergency
Responders concludes that pedestrian inertial navigation using a foot-mounted sensor and
the zero-velocity assumption still has a too large position drift to be a feasible strategy in
emergency scenarios.

Recent work has shown that the indoor magnetic field is perturbed by furniture and metal-
lic structures, perturbing the underlying earth magnetic field [12] and that recognising
patterns in these anomalies can be used for indoor navigation [13]. A scalable and compu-
tationally tractable approach for removing drift in three-dimensional pedestrian navigation
by fusing magnetometer readings and a drifting position estimate from a smartphone was
proposed and implemented by [2]. The paper simultaneously creates a three-dimensional
map of the magnetic field potential and uses the map to remove drift in pedestrian position
estimation. Simultaneous localisation and magnetic field mapping on a foot-mounted sen-
sor have been proposed by [14] to remove drift in two-dimensional pedestrian navigation
using a foot-mounted sensor. The method in [14] removes drift from the two-dimensional
position estimate and achieves high accuracy. This thesis investigates how magnetic field
simultaneous localisation and mapping can be implemented using measurements from a
foot-mounted sensor. The research is motivated by the need for drift reduction of in-
door position estimates based on data from a foot-mounted sensor and the reported high
performance of magnetic field simultaneous localisation and mapping for drift reduction.

1.2 Existing work indoor pedestrian navigation using foot-
mounted accelerometer and gyroscope

The zero-velocity aided Extended Kalman filter, proposed by [1], is a computationally
efficient method to obtain accurate, low-drift pedestrian position estimates from a foot-
mounted sensor. The filter fuses measurements from a tri-axis accelerometer and a tri-axis
gyroscope to give an estimate of the foot’s orientation, position and velocity. Also, the
filter uses detection of the stationary phase of the step to compensate for drift in velocity
and orientation, and reduce drift in the position estimate. The assumption is that when
the sensor has low angular velocity, low acceleration, low variance in acceleration and low
variance in angular velocity over a short timeframe, it is an indication that the velocity of
the sensor is zero [9].

The zero-velocity detector is defined as active whenever the sum of the variance and mag-
nitude of the accelerometer and gyroscope measurements over a short time frame is below
a threshold, and inactive when the sum exceeds the threshold [10]. The foot is typically
stationary when the zero velocity detector of a foot-mounted sensor is active [1]. The
zero-velocity aided Kalman filter includes a zero pseudo-measurement of the foot’s velocity
when the zero velocity detector is active. The difference between the expected velocity
and the detection of the velocity being zero is close to linearly affected by the orientation
error. The orientation error changes the estimated direction of the gravitational force,
which changes the estimated acceleration vector, which changes the velocity estimate [15].

2 Frida Viset
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The extended Kalman filter uses the difference between the estimated velocity and the
assumed zero-velocity to correct the orientation relative to the gravity vector. The zero-
velocity aided extended Kalman filter is, therefore, able to compensate for orientation drift
that is not parallel with the gravity field [15]. The drift of the zero-velocity aided extended
Kalman filter was reported by [1] for one experiment to be 2 meters for a 0.15 meter long
walk, using the RMSE of one checkpoint. The same method was later implemented and
tested on multiple datasets by [9], with an approximate observed position estimation error
of 0.15 meters at the end of a 50 meter long walk. The method was also tested by [16],
who observed an estimation error of 0.4− 0.6 meters after a 65 meter long walk. The drift
of the position estimate can increase when the sensor is mounted on the front of the foot
(as is done for the experiments in this thesis) rather than integrated into the heal [3].

The odometry from a foot-mounted accelerometer and gyroscope has also been used to
perform simultaneous localisation and mapping in two dimensions of frequently traversed
paths in an office environment to compensate for drift [14]. The RMSE of this method was
reported in a later publication [17] by the same research team to be in the range of 20-50
cm.

1.3 Existing work pedestrian navigation using accelerometer,
gyroscope and magnetic field measurements

The research team in [17] also performs simultaneous localisation and mapping in two
dimensions using the magnetic field and odometry from a foot-mounted sensor. By using
the magnetic field anomalies, they achieve RMSE errors in the range of 9-22 cm. These
errors were reported on a walk that had a duration of 17 minutes. Given a walking speed of
1.5 m/s, this corresponds to a distance of approximately 1.4 km. Simultaneous localisation
and mapping using magnetic field anomalies have also been used in combination with
various sources of odometry for indoor navigation purposes.

Previous research has investigated multiple approaches to estimate position and orienta-
tion indoors in the presence of magnetic field anomalies. Most of the research acknowl-
edges the significant impact of magnetic field anomalies indoors. Magnetic field anomalies
indoors occur because of the presence of steel structures and furniture with metallic com-
ponents [12]. The magnetic field anomalies are rich in spatial variation [18] and are stable
over long periods of time [19]. Some of the previous research attempts to detect and discard
data with significant disturbances and uses the remaining magnetic field measurements to
estimate the yaw angle ( [20], [21], [22]). In [22], the magnetic field data is fused with
gyroscope measurements using convex optimisation. Convex optimisation gives a robust
heading estimate despite magnetic field disturbances after approximately 75 seconds for a
hand-held device [22]. Other research uses maps of the magnetic field anomalies to improve
position estimates. Navigation in two dimensions in a known magnetic field map stored
as discrete values in a square grid with odometry and magnetic field measurements from
a foot-mounted sensor was found by [19] to give an average pedestrian localisation error
of 7.95 cm. As mentioned in the previous section, a similar approach using Simultaneous
Localisation and mapping with a hexagonal grid for localisation in a two-dimensional plane
and odometry from a foot-mounted sensor has been found by [14] to give a localisation
error of 9-22 cm upon re-visitation of a single checkpoint.

In [2], an algorithm is developed for creating a map of the magnetic field anomalies and
the underlying magnetic field direction on the fly, which makes it possible to both correct
the orientation estimate and the position estimate using the magnetic field map. The
researchers used odometry from a smartphone generated with the phone’s accelerometer,
gyroscope and camera in combination with magnetic field measurements to perform simul-
taneous localisation and magnetic field mapping. They used reduced rank Gaussian process
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regression to create the magnetic field map, and a Rao-Blackwellised particle filter to do
simultaneous localisation and mapping. The reduced rank Gaussian process regression
makes the mapping procedure computationally tractable and is possible in a finite region.
To estimate the position in an arbitrarily large region, the research team build a larger map
from a combination of many hexagonal tiles. The method is, therefore, computationally
tractable and scalable. Combined gyroscope, camera and accelerometer measurements give
a very accurate position estimate, but it requires that the phone is held in hand and used
to film the surrounding environment. Other sources of pedestrian odometry are usually
less accurate. The researchers added a heuristic filter that removed any discontinuous cor-
rections for drift provided by the visual information. The position estimate after applying
this filter was still considerably more accurate compared to dead-reckoning of accelerom-
eter and gyroscope measurements in a hand-held device. The drift in their final position
estimate was comparable to the reported drift from using foot-mounted accelerometer and
gyroscopes. They then showed that their method was able to eliminate the effect of this
drift, indicating that simultaneous localisation and mapping can compensate for drift in
pedestrian navigation methods.

1.4 Contributions

This thesis proposes two algorithms for drift-free three-dimensional position estimate using
only magnetometer, accelerometer and gyroscope data from a foot-mounted sensor. One
algorithm has a more straightforward design and is modular, and the other is more accurate.
The algorithms extend on the open-source Matlab implementation of the ZUPT-aided EKF
published by [23], to overcome the inherent estimation drift present in the filter. Both
algorithms use a magnetic field norm map which reduces the computational complexity
compared to creating a map of all three magnetic field components. The map is built
within the boundaries of a fixed area, but in [2] it was shown that the approach is scalable
to an arbitrarily large area. Additionally, in contrast to the application in [2], the odometry
used in this thesis is only based on an accelerometer, gyroscope and magnetic field data,
without the use of a camera to reduce odometry drift.

It is demonstrated through an experiment on real data collected by revisiting checkpoints
that the proposed methods for Magnetic field SLAM compensate for drift when positions
are revisited. The estimation problem solved in this thesis is similar to the estimation
problem that is solved in [14]. The researchers in [14] combines odometry from a foot-
mounted sensor with magnetic field norm measurements to achieve position estimates in
two dimensions and uses a different method for creating the magnetic field map. This thesis
estimates both the map and position in three dimensions and achieves similar position
estimation accuracy as [14] achieves in two dimensions.
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Chapter 2

Localisation filters

This chapter introduces Bayesian recursive estimation, the linear Kalman filter, the ex-
tended Kalman filter, and the particle filter. The Kalman filter and the Particle filter are
both examples of recursive Bayesian estimation [24], and they will be presented in this
chapter as instances of a general recursive Bayesian filtering algorithm. The ZUPT-aided
EKF is an example of an extended Kalman filter for indoor pedestrian navigation. Parti-
cle filters are a suitable approach to incorporate the magnetic field measurements in the
position estimate [25]. This is because the indoor magnetic field tends to have strong
perturbations [12], and particle filters are a suitable approach when the measurement is a
highly nonlinear function of the state [26]. Many publications also demonstrate how map
information can be used to perform localisation with a particle filter ( [27], [19], [28]).

2.1 Recursive Bayesian estimation

Recursive Bayesian estimation refers to the estimation of a state x(t) using a history of
measurements y(t) from a model of the form

ẋ(t) = f(t,x(t),w(t),u(t)), (2.1)
y(t) = h(t,x(t),v(t),u(t)), (2.2)

where f and h are known functions, u(t) is a known input function, and v(t) and w(t) are
stochastic processes with known distributions [24]. This chapter will investigate Bayesian
recursive estimation methods for a discrete state-space model

xt = f(xt−1,wt−1,ut−1), (2.3)
yt = h(xt) + vt, (2.4)

where the functions f and h are time-independent, the input ut does not affect the mea-
surement directly, the measurement noise vt is additive to the measurement. Also, the
distribution of ut and vt is assumed known and Gaussian, and the two processes are as-
sumed to be uncorrelated. In the remainder of the thesis, a collection of measurements
{yt}Nt=1 = (y1,y2, ...,yN ) will be denoted y1:N for simplicity. It is not generally the case
that the noise processes are uncorrelated (see for example the derivation of the Kalman
filter in [29]), but it holds for all the models used in this thesis. The filtering algorithms
for localisation used in the fields of indoor pedestrian navigation using a foot-mounted sen-
sor and magnetic field anomaly navigation commonly includes Kalman filters and Particle
filters [2].
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Algorithm 1: A general Bayesian recursive estimation algorithm
Data: A measurement sequence y0:N produced by the stochastic state-space model in

equations 2.3 and 2.4, Process noise Qk, and measurement noise Rk. Initial
state estimate x̂0|−1 normally distributed around the true initial state with
covariance P0|−1

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0

for t=0:N do
1. Compute or estimate the posterior distribution using Bayes theorem

p(xt|y0:t) =
p(yt|xt,y0:t−1)p(xt|y0:t−1)

p(yt|y0:t−1)
, (2.5)

where p(yt|y0:t−1) can be computed as a marginalisation of known distributions
according to p(yt|y0:t−1) =

∫
p(yt|xt,y0:t−1)p(xt|y0:t−1)dxt, and the density

p(yt|xt,y0:t−1) = p(yt|xt) is defined implicitly by equation 2.4.
2. Compute or estimate the prior distribution using marginalisation

p(xt+1|y0:t) =

∫
p(xt+1|xt,y0:t)p(xt|y0:t)dxt, (2.6)

where the term p(xt+1|xt,y0:t) = p(xt+1|xt) is defined implicitly by equation 2.3.
end

The probability density p(yt|xt,y0:t−1) is defined implicitly by equation 2.4. As the
stochastic term vt in this equation is additive and Gaussian, the probability density
p(yt|xt,y0:t−1) will also be Gaussian. The probability density p(xt+1|xt) is defined im-
plicitly through equation 2.3. This probability density is not necessarily Gaussian, as the
possibly nonlinear function f takes the noise term wt as an argument. The probability
density can not always be determined analytically, which is an example of how the general
Bayesian recursive estimation problem is an ill-posed problem [24]. Multiple approaches
have been developed to estimate this probability density, which each are useful under dif-
ferent circumstances. The linear Kalman filter is derived for a special case of this model
where the probability density is Gaussian and therefore can be determined analytically.
The extended Kalman filter approximates the probability density with a best-fit Gaussian,
and the Particle filter uses Monte-Carlo sampling to approximate this probability density.

2.2 The linear Kalman filter

The linear Kalman filter estimates the state xt based on all measurements y1:t up until
and including the current timestep, assuming a linear stochastic state-space model

xt = Ftxt−1 + Gtwt−1 + Btut−1 (2.7)
yt = Htxt + Ltvt, (2.8)

where the system matrices Ft,Gt, Bt,Ht and Lt are known. The process and measurement
noise processes vt ∼ N (0,Rt) and wt ∼ N (0,Qt) have known distributions and have zero
correlation to each other. Their joint distribution is

[
wt

vt

]
∼ N

([
0
0

]
,

[
Qt 0
0 Rt

])
, (2.9)
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where the zero-matrices in the upper right and the lower left corner of the joint covariance
matrix indicate the noise processes are uncorrelated.

The version of the Kalman filter that will be described in this section assumes that there
exists an estimate x̂0|−1 of the initial value x0, and that the estimate relates to the initial
state according to

x0 ∼ N (x̂0|−1,P0|−1), (2.10)

where P0|−1 is the variance of the estimate. The subscript 0| − 1 indicates that no mea-
surements are used to construct the estimate. This can alternatively be expressed as a
Gaussian probability density function for the initial state

p(x0) =
1√

(2π)k
∣∣P0|−1

∣∣
exp

(
−1

2
(x0 − x̂0|−1)TP−1

0|−1(x0 − x̂0|−1)

)
, (2.11)

where k is the state dimension of x0, and
∣∣P0|−1

∣∣ is the determinant of the matrix P0|−1. In
the remainder of this thesis, the multivariate Gaussian distribution will be denoted using
the notation

N (y;µ,Σ) =
1√

(2π)k |Σ|
exp

(
−1

2
(y− µ)TΣ−1(y− µ)

)
, (2.12)

where µ is the expected value of the normal distribution, k is the state dimension of µ,
Σ is the covariance matrix, and y is the point where the distribution is evaluated. The
measurement y0 is therefore a linear combination of stochastic variables with Gaussian
distributions, and therefore itself normally distributed. The probability density function
can be computed as

p(y0|x0) = N (y0;Hx0,LT
0 R0L0), (2.13)

by using the property that if z ∼ N (z̄,Σ), then Gz ∼ N (Gz̄,GTΣG). The posterior
density p(x0|y0) can be computed using Bayes’ theorem as

p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
, (2.14)

where p(y0) can be computed by integration of known densities according to p(y0) =∫
p(y0|x0)p(x0)dx0. After insertion of all known terms into equation 2.14, the expression

for the posterior probability density is given by a Gaussian distribution

p(x0|y0) = N (x0; x̂0|0,P0|0) (2.15)

x̂0|0 = x̂0|−1 + (P0|−1HT
0 (L0R0LT

0 + H0P0|−1HT
0 )−1)(y0 −H0x̂0|0−1) (2.16)

P0|0 = P0|0−1 − (P0|−1HT
0 (L0R0LT

0 + H0P0|−1HT
0 )−1)H0P0|−1, (2.17)

7 Frida Viset



Chapter 2

with mean and covariance describing the posterior state estimate. The prior can then be
calculated by marginalizing out the previous state through integration

p(x1|y0) =

∫
p(x1|x0,y0)p(x0|y0)dxt, (2.18)

where the probability p(x1|x0,y0) = p(x1|x0) because of the Markov property of state-
space models [26]. Furthermore, the density p(x1|x0) is defined implicitly by equation 2.8
as

p(x1|x0) = N (x1;Fx0 + B0u0,GT
0 Q0G0) (2.19)

The marginalised probability density of a Gaussian is another Gaussian, and by calculating
the expected value and the covariance of the prior estimate we can find an explicit solution
to equation 2.18

p(x1|y0) = N (x1; x̂1|0,P1|0)

x̂1|0 = F0x̂0|0 + B0u0

P0|0 = FT
0 P0|0F0 + Q0.

(2.20)

When these computational steps are repeated for the general transition from p(xt−1|y0:t−1)
and p(xt|y0:t) to p(xt|y0:t) and p(xt+1|y0:t−1), the result is the linear Kalman filter de-
scribed in Algorithm 2.
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Algorithm 2: A linear Kalman filtering algorithm

Data: A measurement sequence y0:N produced by the stochastic state-space model in
equations 2.7 and 2.8, Process noise Qk, and measurement noise Rk. Initial
state estimate x̂0|−1 normally distributed around the true initial state with
covariance P0|−1

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0

for t=0:N do

1. Compute the posterior distribution using Bayes theorem

p(xt|y0:t) = N (xt; x̂t|t,Pt|t) (2.21)

St = (LtRtLT
t + HtPt|t−1HT

t ) (2.22)

Kt = Pt|t−1HT
t S
−1
t (2.23)

x̂t|t = x̂t|t−1 + Kt(yt −Htx̂t|t−1) (2.24)

Pt|t = Pt|t−1 −KtHtPt|t−1 (2.25)

2. Compute the prior distribution using marginalisation as

p(xt+1|yt) = N (xt+1; x̂t+1|t,Pt+1|t) (2.26)

x̂t+1|t = Ftx̂t|t + Btut (2.27)

Pt+1|t = FtPt|tFT
t + GtQtG

T
t . (2.28)

end

The linear Kalman filter solves the filtering problem for a model that is a special case of the
model in equations 2.3 and 2.4, and the algorithm itself is also a special case of Algorithm
1. As both the posterior probability density and prior probability density functions are
Gaussians, it is natural to choose their expected values x̂t|t and x̂t|t−1 as filtered and
predictive state estimates respectively. The estimate x̂t|t corresponds to the maximum
a-posteriori estimate of the state x̂t, in addition to being the expected value of the state.

KF
meas
update

t =

t+ 1x̂t|t x̂t−1|t−1

x̂t|t−1

yt

KF
dyn

update

Figure 2.1: The linear Kalman filter with uncorrelated process and measurement noise

The working mechanism of the linear Kalman filter can be summarized with the block
diagram in Figure 2.1. The figure shows how the prior is updated using the measurement
to give the posterior estimate, and how the posterior is updated using the dynamic model
to give the prior.

2.3 The extended Kalman filter

The extended Kalman filter described in this section estimates the state xt based on all
measurements y1:t up until and including the current timestep, assuming that the state is a
result of the nonlinear state space model in equations 2.3 and 2.4, and with vt ∼ N (0,Rt)
andwt ∼ N (0,Qt) being known distributions with zero correlation as described in equation
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2.9. As for the linear Kalman filter, it is assumed that an initial state estimate x̂0|−1 of the
initial state x0 is available, where x0 ∼ N(x̂0|−1,P0|−1). When the measurement model in
2.4 gives the measurement y0, the distribution p(y0) is not necessarily Gaussian. Instead of
using the property that if z ∼ N(z̄,Σ), then Gz ∼ N (Gz̄,GTΣG), the extended Kalman
filter uses the approximation that if z ∼ N(z̄,Σ), then g(z) is approximately distributed
according to

g(z) ∼ N
(
g(z̄),

dg
dz

∣∣∣∣
T

z=z̄
Σ

dg
dz

∣∣∣∣
z=z̄

)
. (2.29)

The covariance of the Gaussian is defined as the covariance of the input argument multiplied
on either end with the gradient of the nonlinear function [26]. To simplify the gradient
notation, the system matrices

F̂t =
∂f
∂xt

∣∣∣
xt=x̂t|t

wt=0 , Ĝt =
∂f
∂wt

=
∣∣∣
xt=x̂t|t

wt=0 , (2.30)

Ĥt =
∂h
∂xt

∣∣∣
xt=x̂t|t−1

vt=0 , L̂t =
∂h
∂vt

∣∣∣
xt=x̂t|t−1

vt=0 , (2.31)

defined based on equations 2.3 and 2.4 will be used to describe the function gradients.
Using these definitions and the approximation in equation 2.29, we can approximate the
measurement probability density as

p(y0|x0) = N (y;g(x0,0), L̂
T
t R0L̂t), (2.32)

Based on this approximation, the posterior density p(x0|y0) can be computed in the same
way as in equations 2.15 - 2.16, replacing the matrices H0 and L0 with the matrices Ĥ0

and L̂0, and replacing the term H0x̂0|−1 with the term h(x̂0|−1). The probability density
p(x1|x0) can also be estimated using the approximation in equation 2.29, resulting in the
prior probability density estimate

p(x1|x0) = N (x1; f(x0,u0,0), Ĝ
T
0 Q0Ĝ0), (2.33)

that can be used in equation 2.18 to calculate the prior probability density p(x1|y0).

When these computational steps are repeated for the general transition from p(xt−1|y0:t−1)
and p(xt|y0:t) to p(xt|y0:t) and p(xt+1|y0:t−1), the result is the extended Kalman filter
described in Algorithm 3.
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Algorithm 3: An extended Kalman filtering algorithm

Data: A measurement sequence y0:N produced by the stochastic state-space model in
equations 2.3 and 2.4, process noise Qk, and measurement noise Rk. Initial
state estimate x̂0|−1 normally distributed around the true initial state with
covariance P0|−1

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0

for t=0:N do

1. Compute the posterior distribution using Bayes theorem

p(xt|y0:t) = N (xt; x̂t|t,Pt|t) (2.34)

St = (L̂tRtL̂t
T

+ ĤtPt|t−1Ĥ
T
t ) (2.35)

Kt = Pt|t−1Ĥ
T
t S
−1
t (2.36)

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1,0)) (2.37)

Pt|t = Pt|t−1 −KtĤtPt|−1 (2.38)

2. Compute the prior distribution using marginalisation

p(xt+1|yt) = N (xt+1; x̂t+1|t,Pt+1|t) (2.39)

x̂t+1|t = f(x̂t|t,ut,0) (2.40)

Pt+1|t = F̂tPt|tF̂
T
t + ĜtQtĜ

T
t . (2.41)

end

This extended Kalman filter algorithm solves the stochastic nonlinear filtering problem in
equations 2.3-2.4, but it relies on the assumption that the local linearisations of the model
will give a good approximation of the necessary probability densities. The algorithm itself
is a special case of Algorithm 1. The expected values x̂t|t and x̂t+1|t are used as filtered and
predictive state estimates, respectively. These values will also correspond to the maximal
likelihood arguments of the posterior and prior probability densities.

2.4 The particle filter

The particle filter, like the extended Kalman filter, estimates the state xt based on all mea-
surements y0:t up until and including the current timestep. The particle filter described in
this section is based on the assumption that the state is a result of the nonlinear stochastic
state-space model in equations 2.3 and 2.4. Additionally, it is based on the assumption
that the process and measurement noise are white noise processes with covariances Qt and
Rt, and zero covariance between the two noise processes. It is assumed that the state has
a known initial distribution of p(x0). However, this distribution does not necessarily have
to be Gaussian.

The initialisation of the particle filter is performed by creating a particle cloud
{
xi
t|t

}M

i=1

with M corresponding weights
{
wi

t

}M
i=1

, where M is the number of particles. A particle
cloud can be described as a set of guesses at what the state is. The weights give information
about how likely each estimate is, given the incoming measurements at each timestep. The
cloud is generated by Monte-Carlo sampling from the initial known distribution p(x0), so
that the initial particles follow the distribution xi

0|−1 ∼ p(x0). For each of the particles,
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the probability p(y0|xi
0|−1) can be computed as an Gaussian with the expected value from

equation 2.4 and covariance Rt. This probability density is used to calculate the weights
according to

wi
0 = p(y0|xi

0|−1), (2.42)

so that each weight reflects the likelihood of the particle being the state to produce the
observed measurement. In addition, the weights are normalised so that

∑n
i=1w

i
−1 = 1

is true. The particle filter again uses sequential Monte-Carlo sampling to estimate the
posterior probability density. This is called the resampling step [30], as it samples a
set of new particles based on a constructed posterior probability density function. The
posterior probability density is often approximated by a discrete distribution, where the
probability of the new particle is equal to any of the old particle values is proportional to
the corresponding weight [31]. This reflects the decomposition of the posterior according
to Bayes’ theorem in equation 2.14. After resampling, the particles will be instances of the
distribution

xi
0|0 ∼

p(y0|x0)p(x0)

p(y0)
, (2.43)

because the particles are instances of the distribution

xi
0|0 ∼ wi

0(xi
0|−1) ∝ p(y0|xi

0|−1)p(xi
0|−1) ∝ p(y0|x0)p(x0)

p(y0)
, (2.44)

where the normalisation of the weights reflects the scaling 1
p(y0) . This can be observed

from the notion that
∑M

i=1w
i
0 is an approximation of p(y0), as

∑M
i=1w

i
0 is a Riemann-sum

that approximates the integral
∫
p(y0,xi

0|−1)dxi
0|−1 as M tends to infinity.

Resampling in the particle filter makes sure that less likely particles are discarded, and
that more particles are generated in positions of the most likely particles. If resampling
is performed when the weights are very similar, it can over time unnecessarily destroy
information in the particle cloud [26]. A typical adaptation of the resampling step to avoid
premature resampling of the particle cloud is so-called selective resampling [26]. Selective
resampling is performed by only executing the resampling when the number of samples
with a high particle weight becomes small. As the weight difference between the particles
increases, a coefficient Meff called the effective number of samples, defined as

Meff =
1

∑M
i=1(wi

t|t)
2
, (2.45)

will decrease [26]. Selective resampling is implemented by only resampling when the co-
efficient Meff is smaller than some threshold Meff,t (typically chosen as some constant
between 0 and 1 multiplied with the true number of particles M) [26].

After the particle filter measurement update, the prior density is estimated using Monte-
Carlo sampling, according to the distribution

xi
1|0 ∼ p(xi

1|0|xi
0|0), (2.46)
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which is performed by simulating a white-noise process with the same distribution as w0,
and evaluate the function

xi
1|0 = f(xi

0|0,ut,w0) (2.47)

from the dynamic model in equation 2.3. Repeating these steps for the entire measurement
sequence results in Algorithm 4.

Algorithm 4: A particle filter

Data: A measurement sequence y0:N produced by the stochastic state-space model in
equations 2.3 and 2.4, process noise Qk, and measurement noise Rk. An initial
probability density for the state p(x0)

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0

for t=0:N do

Initialise the particle cloud by sampling xi
0|−1 ∼ p(x0)

1. Estimate the posterior distribution through the particle cloud by using Bayes
theorem. Start by calculating the particle weights

wi
t = p(yt|xi

t|t−1), (2.48)

then normalise the particle weights so that
∑n

i=1w
i
t = 1, and perform re-sampling

of the particles according to

xi
t|t ∼ wi

t(x
i
t|t−1). (2.49)

Each particle is now a sample from the posterior density xi
t|t ∼ p(xt|y0:t).

2. Estimate the prior distribution through the particle cloud by using Monte-Carlo
samples of the noise wt and calculate the effect on each particle according to

xi
t+1|t = f(xi

t|t,ut,wt). (2.50)

Each particle is now a sample from the prior density xi
t+1|t ∼ p(xt+1|y0:t).

end

As the particle filter allows for prior and posterior probabilities that are non-Gaussian,
it is normal to use the highest-weight particle before resampling as the posterior state
estimate x̂t|t [32]. Picking the particle with the highest corresponding weight corresponds
to picking the prior estimate of the previous step that has the highest likelihood given
the last observed measurement. As the evaluation of the particle weights combined with
the resampling transforms the particle cloud from an estimate of the prior density to an
estimate of the posterior density, it will be referred to in this thesis as the "Particle filter
measurement update". These steps are illustrated in the leftmost block of the diagram
showing the Particle filter function in Figure 2.2.

The working mechanism of the particle filter can be summarised by the block diagram
in Figure 2.2. Similarly to the linear Kalman filter in Figure 2.1, the prior particles are
updated using the measurement to give the posterior particle cloud, and the posterior
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PF
meas
update

t =

t+ 1{xit|t}Ni=1 {xit−1|t−1}Ni=1

{xit|t−1}Ni=1

yt

PF
dyn

update

Figure 2.2: Working mechanism of the particle filter when process and measurement noise are
uncorrelated

particles are then updated using the dynamic model of the system to give the new prior
particle cloud.

A range of the research into pedestrian navigating in a known magnetic field uses a particle
filter to estimate the pedestrians’ position, see for example [33], [19], [25] and [28]. The
particle state is usually given by the pedestrians pose [33], [19], [25]. The weights in the
particle filter can be evaluated by comparing information about the magnetic field and
its distribution in the particles’ positions with the magnetic field measurement [33]. The
function for evaluating the weights is a normal distribution with a known expected value
and variance if the magnetic field map is estimated using Gaussian process regression [33].
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Chapter 3

Gaussian process regression for
magnetic field norm mapping

Gaussian process regression is a popular tool for estimating the indoor magnetic field for
robot and pedestrian navigation ( [13], [33], [2]). Gaussian process regression is generally
regarded as powerful tools for accurate prediction given little knowledge about the nature
of the function that is predicted [32]. They are, however, computationally demanding.
The computational complexity grows cubically with the number of available magnetic field
measurements [27]. By using Hilbert-space methods for reduced-rank Gaussian process
regression to create a map of the magnetic field, the computational complexity can be
reduced to a constant [27]. This chapter summarises how the magnetic field norm can
be interpolated and predicted in new locations using Gaussian process regression with a
squared exponential kernel. It also introduces how the predictions can be made compu-
tationally tractable by using Hilbert-space methods for Reduced Rank Gaussian process
regression.

3.1 Gaussian process regression with a squared exponential
kernel for magnetic field norm mapping

The magnetic field norm ‖H(p)‖ is a map from a three dimensional position to a one-
dimensional field, ‖H(p)‖ : R3 → R . Gaussian process regression is a maximum a posteri-
ori estimate based on the assumption that all measurement data arises from a measurement
model on the form

y = f(x) + vk

vk ∼ N (0, σ2
y)

f(x) ∼ N (0, κ(·, ·)),
(3.1)

where y ∈ R is the measurement, x ∈ Rm is a known input associated with the measure-
ment, κ(·, ·) : Rm × Rm → R is a known kernel function defining and f : Rm → R is an
unknown linear function. Although the value of f is not know, it is an infinite-dimensional
stochastic variable with a known distribution. The kernel function is a map from each input
pair x1,x2 to the covariance between the corresponding function evaluations f(x1), f(x2).
A common choice for modeling magnetic field anomalies is the the squared exponential
kernel function
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κSE(x1,x2) = σ2
SE exp

{
−‖x1 − x2‖22

2l2SE

}
, (3.2)

where σSE and lSE are hyperparameters of the Gaussian process prior [34]. The shape of
kernel function for all possible combinations of inputs from a piece of the real number line
is illustrated in Figure 3.1. This figure shows that the kernel function is higher when the
inputs are closer on the real number line. The squared exponential kernel causes prediction
at a new point in input space to be more similar to magnetic field measurements in positions
that are close.

Figure 3.1: The squared exponential kernel function, illustrated with a one-dimensional input
vector as the input argument. The hyperparameters of the kernel function approximation is σSE = 1
and lSE = 1

For a set of observed measurements {yi}Ni=1 at positions {xi}Ni=1, from here on denoted by
the vectors y and x respectively, Gaussian process regression can be used to predict an
unknown output y∗ given a known input x∗. The distribution of the stochastic variable
y∗ can be derived by taking the marginal distribution of the Gaussian process in equation
3.1. As the marginal distribution of a Gaussian is another Gaussian, it is uniquely defined
by it’s expected value and covariance

E[y∗] = K(x∗,x1:N )(K(x1:N ,x1:N ) + σ2
yIN )−1y1:N , (3.3)

E[(y∗ − E[y∗])2] = K(x∗,x∗) (3.4)

−K(x∗,x1:N )(K(x1:N ,x1:N ) + σ2
yIN )−1K(x1:N ,x∗) + σ2

y , (3.5)

where K(x1:N ,x1:N ) denotes the matrix of evaluations of the kernel function at all combi-
nations of input points in the input vectors. The Gaussian process regression can be used
to predict the magnetic field given a set of positions {pt}Nt=1 as input values, and a cor-
responding set of magnetic field measurements {ym,t}Nt=1 as output values. The predicted
magnetic field is then given by equation 3.3, and the variance is given by equation 3.5.

3.2 Reduced Rank Gaussian process regression with the squared
exponential kernel using Hilbert space Methods

The matrix sizes involved in the predictive calculations in traditional Gaussian process
regression grows with O(N2) with the number of observed samples, which means that the
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required matrix inversion operations has a computational complexity of order O(N3) [27].
Reduced Rank Gaussian Process regression reduces the computational complexity of tra-
ditional Gaussian process regression. By approximating the Kernel function as a linear
combination of Hilbert space basis functions, the computational complexity can be re-
duced to O(N3

m) [2].

The Gaussian process regression presented in the previous section aims to estimate a
function f : Rn → R that is a realisation of the Gaussian process prior in equation 3.1.
If we instead limit the problem to estimating a function f : Ω → R, where Ω ⊂ Rn is a
compact domain, and where f(x) = 0, ∀x ∈ δΩ, the assumed underlying Gaussian process
regression for all x ∈ Ω can be rewritten as

f(x) ∼ N (0, κSE(·, ·)|f(x) = 0,∀x ∈ δΩ), (3.6)

where δΩ is the edge of the domain. The utility of this assumption is that this Gaussian
process regression is on a form that can be approximated using Hilbert space methods [27].
The Hilbert-space methods can be used to derive that the Gaussian process prior in equa-
tion 3.6 is equivalent to the Gaussian process prior

f(x) ∼ N (0,

∞∑

k=1

SSE(λk)φk(x1)φk(x2)), (3.7)

where the functions φk(x) are the ordered eigenfunctions of the negative Laplace operator,
and SSE(λk) is the spectral density of the squared exponential kernel evaluated at the
corresponding eigenvalues. In other words φk(x) are solutions to the equation

{
−∇2φk(x) = λkφk(x), x ∈ Ω

φk(x) = 0, x ∈ ∂Ω
, (3.8)

ordered by decreasing magnitude of their corresponding eigenvalue λk [27]. SSE is the
Fourier transform of the squared exponential kernel [27]

SSE(ω) =

∫
kSE(x1 − x2)e−iω

T (x1−x2)d(x1 − x2), (3.9)

which in three dimensions evaluates to

SSE(ω) = σ2
SE

(
2πl2SE

) 3
2 exp

(
−ω

2l2SE
2

)
, (3.10)

using the hyperparameters from equation 3.2 [35].

At points x1, x2 not too close to the domain edge δΩ, the kernel function k(x1,x2) can be
approximated by a finite sum

kSE(x1,x2) ≈
Nm∑

k=1

S(λk)φk(x1)φk(x2), (3.11)
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where the approximation becomes more accurate the more terms Nm are included in the
series [27]. This convergence property of the kernel function is illustrated with an example
domain Ω in one dimension in Figure 3.2. Similarly to the illustration in Figure 3.1, the
kernel function approximation is evaluated for all combinations of inputs from the one-
dimensional domain Ω = [0 10]. The eigenfunctions φ(x) are defined generally by equation
3.8, independent of the dimension of the state vector x, and the chosen domain. The
consequence is that for a one-dimensional state space vector, all possible domains will be
some finite piece of the real number line. In two dimensions, arbitrary shapes can be
chosen [36], as long as the domain is connected [37].

Figure 3.2: The squared exponential kernel function approximation
∑Nm

k=1 S(λk)φk(xi)φk(xj)
approximating the kernel function in Figure 3.1. The kernel function is displayed with increasing
number of basis functions Nm. The hyperparameters of the kernel function approximation is σSE =
1 and lSE = 1

When this approximation is used, the Gaussian process regression prior reduces to

f(x) ∼ N (0,

Nm∑

k=1

SSE(λk)φk(x1)φk(x2)), , (3.12)

for inputs in the domain Ω. This is the prior for reduced-rank Gaussian process regression
using Hilbert space basis functions. As the covariance matrix K is defined by

K({x1,i}ni=1 , {x2,j}mj=1) =



κ(x1,1,x2,1) · · · κ(x1,1,x2,m)

...
. . .

...
κ(x1,n,x2,1) · · · κ(x1,n,x2,m)


 , (3.13)

it can be factorised as

K({x1,i}ni=1 , {x2,j}mj=1)

=




∑Nm
k=1 S(λk)φk(x1,1)φk(x2,1) · · · ∑Nm

k=1 S(λk)φk(x1,1)φk(x2,m)
...

. . .
...∑Nm

k=1 S(λk)φk(x1,n)φk(x2,1) · · · ∑Nm
k=1 S(λk)φk(x1,n)φk(x2,m)




=



φ1(x1,1) · · · φNm(x1,1)

...
. . .

...
φ1(x1,n) · · · φNm(x1,n)






S(λ1) · · · 0

...
. . .

...
0 · · · S(λNm)






φ1(x2,1) · · · φ1(x2,m)

...
. . .

...
φNm(x2,1) · · · φNm(x2,m)




.
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(3.14)

This matrix can be expressed more compactly by defining the operator

Φ(x1:n) = Φ({xi}ni=1) =



φ1(x1) · · · φNm(x1)

...
. . .

...
φ1(xn) · · · φNm(xn)


 , (3.15)

and the matrix

Λ =



S(
√
λ1) · · · 0
...

. . .
...

0 · · · S(
√
λNm)


 , (3.16)

which results in

K(x1,1:n,x2,1:m) = Φ(x1,1:n)ΛΦ(x2,1:m)T (3.17)

being a factorisation of the matrixK(x1,1:n, x2,1:m). As the GP prediction is given by equa-
tions 3.3-3.5, inserting the approximation of K(x1,1:n, x2,1:m) gives the following reduced-
rank Gaussian process predictions

E[y∗] = Φ(x∗)(σ2
yΛ
−1 + Φ(x1:N )TΦ(x1:N ))−1Φ(x1:N )Ty1:N (3.18)

E[(y∗ − E[y∗])2] = σ2
yΦ(x∗)

(
Φ(x1:N )TΦ(x1:N ) + σ2

yΛ
−1
)−1

Φ(x∗)T + σ2
y (3.19)

The reduced-rank Gaussian process regression can be expressed as a series of recursive
Kalman filter measurement updates of a state mt with a covariance Pm [2]. The magnetic
field prediction in any given point is then given as

E[y∗] = Φ(x∗)mt (3.20)

E[(y∗ − E[y∗])2] = Φ(x∗)PtΦ(x∗)T + σ2
y (3.21)

These recursive Kalman filter update equations are described in Appendix A.2. The
Kalman filter estimating the magnetic field map corresponds to the estimation of

mt+1 = mt, (3.22)

yt = Φ(xt)mt + vt, vt ∼ N (0, σ2
y), (3.23)

by considering the combination of magnetic field basis functions as a state vector [2]. As
the state vector of a linear stochastic model can be estimated with a Kalman filter, the
magnetic field map state m and its covariance Pm can also be estimated with a Kalman
filter (see section A.2 for a detailed description of the Kalman filter). To reconstruct the
magnetic field map and its covariance from this linear state vector and its covariance, some
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algebraic manipulation to the expressions in equations A.10-A.10 outlined in section A.2
gives that

E[y∗] = Φ(x∗)mt (3.24)

E[(y∗ − E[y∗])2] = Φ(x∗)PtΦ(x∗)T + σ2
y (3.25)
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Figure 3.3: A reproduction of an illustrative example of reduced rank Gaussian process regression
estimating a function f : R → R similar to an illustration made by Solin and Särkkä [27]. The
example shows the estimation of a nonlinear function sampled from a Gaussian process prior with
a squared exponential function with parameters σ2

SE = 1, lSE = 0.1, comparing the mean and
covariance from a standard and a reduced-rank Gaussian process with 25 basis functions. The
domain of the reduced rank Gaussian process regressions is defined as Ω = [−1, 1].

(a) Standard GP estimate (b) Reduced-rank GP estimate

Figure 3.4: Comparing the estimates of standard and reduced-rank Gaussian process regression
estimating a function f : R2 → R based on 100 samples drawn from a Gaussian prior defined
by a squared exponential kernel with parameters σSE = 1 and lSE = 0.1. The positions of the
measurements in R2 are marked by red circles. The color corresponds to the estimated function
value, and the opacity is inversely proportional with the standard deviation of the function value
estimate at each location. The domain of the reduced rank Gaussian process regression here is
Ω = [−1, 1]× [−1, 1].

In Figures 3.3 and 3.4 simulation results comparing the estimated function value of a
reduced-rank Gaussian process and a standard Gaussian process are displayed. The results

20 Frida Viset



Chapter 3

illustrate how the reduced rank Gaussian process estimate goes to zero at the boundaries,
and the variance of the reduced rank GP also goes to zero near the boundaries. At the same
time, in the middle of the domain, it approximates the result of the standard Gaussian
process. As long as the domain is large enough, a reduced-rank Gaussian process may
be used in place of a standard Gaussian process, which will reduce the computational
complexity from O(N3) to O(N3

m) [2]. It is necessary to pick a large enough amount
of basis functions to use a reduced-rank Gaussian process approximation with a squared
exponential kernel to approximate the actual Gaussian process predictions successfully.
The necessary number of basis functions depends on the size and dimensions of the region
to be mapped and on the length scale parameter lSE of the Gaussian process.
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Chapter 4

Magnetic field simultaneous
localisation and mapping

Magnetic field simultaneous localisation and mapping (Mag-SLAM) uses the magnetic field
map to improve the position estimate, and the position estimates to build a magnetic field
map [13]. The process is illustrated in Figure 4.1. The input called odometry in the
top left corner of the figure is a measurement of the change in position. The trajectory
estimate is used together with the magnetic field measurements to create a magnetic field
map. The magnetic field map estimate is then used to improve the estimate of the position
trajectory. As was explained in Chapter 2, a magnetic field map can be used to improve
position trajectory estimates by using a particle filter. In chapter 3, it was explained how
a magnetic field map can be estimated using Kalman filter measurement updates. It is a
popular strategy in magnetic field simultaneous localisation and mapping to use a Rao-
Blackwellized particle filter to perform both localisation and magnetic field mapping in
one filter [13], [38], [2]. A Rao-Blackwellized particle filter is a combination of a particle
filter and a Kalman filter. It uses a particle filter to estimate part of the states and
uses a Kalman filter to estimate the remaining states for each particle. For the purposes
of simultaneous localisation and mapping, the Rao-Blackwellized particle filter is usually
applied by using a particle filter to estimate the trajectory and to estimate the magnetic
field map for each particle with a Kalman filter [13], [38], [2]. In particular, [2] uses reduced-
rank Gaussian process regression to estimate the magnetic field map’s of each particle with
a linear Kalman filter.

Odometry

Magnetometer
measurement

Localisation
Trajectory estimate

Magnetic field
map estimate

Magnetic field
mapping

Magnetometer
measurement

Figure 4.1: Principle of magnetic field simultaneous localisation and mapping

This chapter gives an introduction to the working mechanisms of two variants of the
Rao-Blackwellized particle filter. Both of these filters are special-cases of filters described
in [31]. The first filter uses a mathematical model on a diagonal form. The second uses a
mathematical model on a triangular form. Following the convention in [31], the two filters
are therefore referred to as the diagonal Rao-Blackwellized particle filter and the triangular
Rao-Blackwellized particle filter respectively in the remainder of this thesis.
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4.1 The diagonal Rao-Blackwellized particle filter

Rao-Blackwellized particle filters aim to increase the accuracy of an estimate by using the
expected value of a state rather than the Monte Carlo estimate wherever it is possible [39].
This corresponds to using the linear Kalman filter to estimate the linear states, and a
particle filter to estimate states with nonlinear dynamics [31]. The Rao-Blackwellized
particle filter can be used to perform simultaneous localisation and magnetic field mapping
using Gaussian process regression [13].

The Rao-Blackwellized particle filter presented in this section will estimate a state xt that
can be split into a linear and a nonlinear part according to

xt =

[
xn
t

xl
t

]
, (4.1)

where the states xn
t encompasses all states that have nonlinear dynamics, or that affect

the measurement nonlinearly. These states are estimated with nonlinear particle filter
techniques. The states xl

t describes the states that both have linear dynamics and that
linearly affect the measurement. These states are estimated using a linear Kalman filter
for each particle. The Rao-Blackwellized particle filter presented in this section can be
applied to systems that have a model that can be expressed as

xn
t+1 = ft(xn

t ) + Gn
t w

n
t , (4.2)

xl
t+1 = Ftxl

t + Gl
tw

l
t, (4.3)

yt = ht(xn
t ) + Htxl

t + vt, (4.4)

where the white noise processes wn
t , wl

t arise from a white noise process with distribution



wn

t

wl
t

et


 ∼ N





0
0
0


 ,



Qn

t 0 0
0 Ql

t 0
0 0 Rt




 , (4.5)

where Qn
t , Q

l
t and Rt are known [31].

The prior and posterior probability density functions of the states in equations 4.2-4.4 can
be estimated with the particle filter in Algorithm 4. If the state vector has many compo-
nents; this solution quickly becomes computationally intractable, due to the large number
of particles required to represent a many-dimensional probability density function [31].
This motivates the desire to use Kalman filter methods to estimate the linear part of the
state vector, and Particle filter updates to estimate the nonlinear part. By using Bayes’
theorem, the joint probability density is then simply the product of the linear and nonlinear
probability density function

p(

[
xn
t

xl
t

]
| y1:t) = p(xn

t | y1:t)p(x
l
t | xn

t ,y1:t) (4.6)

The prior and posterior nonlinear state distributions can, in this case, be derived analyt-
ically in the same way as for the linear Kalman filter. To prior and posterior nonlinear
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state distributions can be estimated using the particle filter. Joining these two methods
gives the Rao-Blackwellized particle filter described in Algorithm 5.
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Algorithm 5: The triangular Rao-Blackwellized particle filter

Data: A measurement sequence y0:N produced by the stochastic state-space model in
equations 2.3 and 2.4, process noise Qk, and measurement noise Rk. An initial
probability density for the state p(x0)

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0 in the form of marginalized particle clouds,
represented by a set of particles {xi,n

t }Ni=1 with corresponding linear states
{x̂i,l

t }Ni=1 and covariances for each linear state {Pi
t}Ni=1

for t=0:N do

Initialise the particle cloud by sampling xi,n
0|−1 ∼ p(xn

0 ), and initalise all states and

covariances to xi,l
0|−1 = x0, Pi

0|−1 = P0

1. PF measurement update: Evaluate the particle weights

wi
t = p(yt|xi,n

t|t−1, x̂
i,l
t|t−1,P

i
t|t−1)

= N (ht(x
i,n
t|t−1) + Htx̂t|t−1,HtPi

t|t−1H
T
t + Rt)

∣∣∣
yt

,
(4.7)

then normalise the particle weights so that
∑n

i=1w
i
t = 1. Perform re-sampling of

the particles according to equation 2.49.

2. KF measurement update: For each particle, calculate the posterior state x̂i,l
t|t

and covariances Pi
t|t using

Si
t = Rt + HtPi

t|t−1H
T
t ) (4.8)

Ki
t = Pi

t|t−1H
T
t (Si

t)
−1 (4.9)

x̂i,l
t|t = x̂i,l

t|t−1 + Ki
t(yt − ht(x

i,n
t|t )−Htx̂

i,l
t|t−1) (4.10)

Pi
t|t = Pi

t|t−1 −Ki
tHtPi

t|t−1 (4.11)

The state and covariance uniquely describes the Gaussian marginal posterior
distribution p(xl

t|y0:t,x
n,i
1:t) = N (x̂i,l

t|t,P
i
t|t)
∣∣∣
xl
t

3. PF dynamic update: Calculate the prior particle cloud particle cloud
{x̂i,l

t+1|t}Ni=1 by using Monte-Carlo samples of the noise wi,n
t ∼ N (0,Qn

t ) and
calculate the effect on each particle according to equation 4.2. The prior particle
cloud are then samples from the distribution xi,n

t+1|t ∼ p(xn
t+1|y0:t)

4. KF dynamic update: For each particle, calculate the prior state x̂i,l
t+1|t and

covariance Pi,n
t+1|t using

x̂i,l
t+1|t = Ftx̂

i,l
t|t (4.12)

Pi
t+1|t = FtPi

t|tF
T
t + GtQtG

T
t . (4.13)

The prior state and covariance uniquely describes the Gaussian marginal prior
probability density p(xl

t+1|y0:t,x
i,n
0:t) = N (x̂i,l

t+1|t,P
i
t+1|t)

∣∣∣
xl
t+1

end
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KF
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t =

t+ 1
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Figure 4.2: The triangular Rao-Blackwellized particle filter

The working mechanism of the Rao-Blackwellized particle filter is illustrated in Figure 4.2.
The illustration shows the interplay between the particle filter and the linear Kalman filter
component of the Rao-Blackwellized particle filter. The Rao-Blackwellized particle filter
uses the particle filter estimate as a parameter in the linear Kalman filter updates, and the
linear Kalman filter estimates as parameters in the particle filter updates. Magnetic field
simultaneous localisation and mapping uses the position estimate to create a map of the
indoor magnetic field anomalies and uses the map of the indoor magnetic field anomalies
in the estimation of the position. For indoor pedestrian simultaneous localisation and
mapping using the magnetic field, the Rao-Blackwellized particle filter has previously been
used by letting the particle filter estimate the position and orientation as the nonlinear
states [2]. The magnetic field map was estimated in [2] as conditional linear states given
the position and orientation of each particle. The use of the map as the linear state is
only possible when the magnetic field map can indeed be estimated with a linear model.
The magnetic field map can be estimated with recursive Bayesian estimation when the
reduced-rank Gaussian process regression introduced in the previous chapter is used to
create a map of the magnetic field [27].

4.2 The triangular Rao-Blackwellized particle filter

Bayes’ theorem can be used to derive combinations of the Rao-Blackwellized particle filter
that apply to much more general models compared to the model in equations 4.2-4.4 [31].
For this thesis, it is desirable to consider a model that also includes the possibility of the
linear state being a (linear) argument to the dynamic equation of the nonlinear state

xn
t+1 = ft(xn

t ) + Fn
t x

l
t + wn

t (4.14)

xl
t+1 = Fl

tx
l
t + Gtwl

t (4.15)
yt = ht(xt) + Htxt + vt (4.16)

Augmenting the model in this way means that the prior and posterior values of a particle
xi,n
t+1|t and xi,n

t|t can be combined in equation 4.4 to give a perceived measurement of the

state xi,l
t [31]. This additional information can be included by an extra Kalman filter

measurement update, after the Kalman filter dynamic update in step 4 in Algorithm 5 [26].
In addition, the state estimate xi,l

t|t is considered an input noise with known distribution
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N (xi,l
t|t,P

i,l
t|t) in step three of Algorithm 5. This means that in addition to using Monte-Carlo

samples of the noise wn
t ∼ N (0,Qn

t ), the particle filter dynamic update step uses Monte-
Carlo samples of the linear state xi,l

t = N (xi,l
t|t,P

i,l
t|t). The full particle filter algorithm

including this generalisation is defined in Appendix A.5. This filter is a special case of the
triangular Rao-Blackwellized particle filter described in [31].

4.3 Rao-Blackwellised particle filters applied to Mag-SLAM

Previous research applies the diagonal Rao-Blacwellised particle filters using a range of
magnetic field mapping techniques and sources of position odometry ( [40], [38], [2]).

The magnetic field map is generally stored on a format that makes it appropriate to
estimate it with Kalman filter updates [38], [40], [2]. The magnetic field map, therefore,
is estimated as the linear state xl in the Rao-Blackwellized particle filter. The specific
implementations of this linear update vary between different sources. The variant that is
used in this thesis most closely resembles the version in [2], where the magnetic field map
is also created using reduced-rank Gaussian process regression. An important difference
between the implementation in this thesis and the one in [2] is that this thesis only makes
a map of the magnetic field norm, while [2] makes a map of the magnetic field potential,
and estimates all three components of the magnetic field as the gradient of this potential.
This approach is based on knowledge about the physics of the magnetic field described
in detail in [34]. The magnetic field reduced rank Gaussian process regression can, in
both cases, be performed recursively as linear Kalman filter measurement updates. The
Kalman filter measurement updates estimate a magnetic field state vector with dimension
equal to the number of basis functions. This vector is equal to the linear states in the
Rao-Blackwellized particle filter in [2]. In [38], the linear states are defined as the three
components of the magnetic field in the corners of a grid. The values in the corners are
updated with Kalman-filter measurement updates when a magnetic field measurement is
made in a square tile adjacent to a corner [38].

Both [38] and [40] uses position and orientation of a robot as the nonlinear states xn in a
Rao-Blackwellized particle filter to perform Mag-SLAM.In [2], odometry from a phone’s
accelerometer, gyroscope and camera are used to estimate pedestrian position with Mag-
SLAM. In [2], the diagonal Rao-Blackwellized particle filter in Algorithm 5 is used to
estimate the position and orientation as the nonlinear states. The researchers evaluate the
weights of the particles by comparing the gradient of the magnetic field potential with the
measured magnetic field in body frame. Because the orientation of the sensor affects the
magnetic field measurement, the likelihood of the orientation can be evaluated from the
magnetic field measurement. If only a magnetic field norm map is used, the orientation
of the particle will not influence the weight, as it is not an argument to the measurement
function.
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Chapter 5

Methods

In this chapter, the previously proposed ZUPT-aided EKF is summarised, and two algo-
rithms for magnetic field simultaneous localisation and mapping on a foot-mounted sensor
are proposed. The first algorithm estimates the position of the foot-mounted sensor using
a loosely coupled sensor fusion algorithm. The second algorithm estimates the position
with a tightly coupled sensor fusion algorithm.

The first algorithm proposed in this thesis applies the diagonal Rao-Blackwellized particle
filter in a way that closely resembles previous research using a Rao-Blackwellized particle
filter for Mag-SLAM ( [2], [40], [38]). The second algorithm proposed in this thesis applies
the triangular Rao-Blackwellized particle filter to perform Mag-SLAM on the foot-mounted
sensor. The next chapter is devoted to describing these algorithms.

ZUPT-
aided
EKFyacc,t

yω,t

ym,t

∆pt
Diagonal
model
RBPF

q̂t

v̂t

p̂t

m̂t

(a) Loosely coupled algorithm

Triangular

model

RBPFym,t

yacc,t

yω,t

q̂t

v̂t

p̂t

m̂t

(b) Tightly coupled algorithm

Figure 5.1: Simultaneous localisation of foot-mounted sensor and magnetic field mapping

Loosely coupled sensor fusion is the practice of using multiple filters in cascade or parallel
to estimate the state. In contrast, tightly coupled sensor fusion aims to use a single filter
on data that is minimally processed [41]. The loosely coupled algorithm presented in this
section uses the ZUPT-aided EKF implementation by [23] to calculate position odometry
and then uses the diagonal Rao-Blackwellized particle filter to perform Mag-SLAM. The
tightly coupled algorithm is designed by viewing all the models of the foot-mounted sensor
and magnetic field used by [23] and [2] as a single state-space model, with a state that can
be estimated with a single filter. The full state-space model is a version of the triangular
the Rao-Blackwellized particle filter in section 4.2. The tightly coupled sensor algorithm
applies Algorithm 10 to measurements from the foot-mounted sensor directly, and from that
information producing a magnetic field map and position estimate. Both algorithms use
reduced-rank Gaussian process regression for the magnetic field maps in cubical domains.
The analytic solutions for the basis functions for a cubical domain centred at the origin
are given in [27]. In Appendix A.6, it is explained how the analytic basis functions can
be shifted to an arbitrary cubical domain, and the ordering of the analytic basis functions
and eigenvalues are discussed.
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In this chapter, both algorithms will be presented in detail. The first algorithm has the
advantage that it is more modular. Hence, the Mag-SLAM filter presented can also be
applied to position odometry from other sources. On the other hand, tightly coupled
sensor fusion typically gives more accurate state estimates [41]. The second algorithm has
the advantage of giving position estimates that more closely resemble realistic movement
of the foot, as is demonstrated by the experimental results in chapter 6.

5.1 The zero-velocity aided extended Kalman filter

The zero-velocity aided extended Kalman filter was proposed by [1], and later implemented
as an open-source project by [23]. The filter is a version of the extended Kalman filter
presented in section 2.3. This section describes the model [23] used to derive the zero-
velocity aided extended Kalman filter for indoor localisation.

The first-order discretisation of the foot-mounted sensor the zero-velocity aided extended
Kalman filter in [23] is based on a kinematic motion model in the navigation frame. The
model can be expressed as

ṗw(t) = vw(t) (5.1)

v̇w(t) =
(
R(qwb(t))fb(t)− gw

)
(5.2)

q̇wb(t) =
1

2

[
0
ω(t)

]
� qwb(t), (5.3)

where pw is the position displacement from the initial position in world frame w, vw is
the velocity, qwb(t) is the unit quaternion encoding the rotation from world frame to the
body frame b, R(·) is the operator mapping a rotation represented by a unit quaternion
to the corresponding rotation matrix, gw is the gravity vector in world frame, ω is the
rotational velocity, and fb(t) is the specific acceleration [42]. A first-order discretization of
this equation gives [9]



pw
t

vw
t

qwb
t


 =




pw
t−1 + Tvw

t−1

vw
t−1 + T (R(qwb

t−1)fbt − gw)

qwb
t−1 � expq(

ωtT
2 )


 . (5.4)

See page 22 in [43] for a definition of the expq() operator, and the chapter 3.2 in [43] for
a detailed introduction to the rotation parametrisation notation used in this thesis. The
gyroscope measurement model used in [9] is defined as

yb
ω,t = ωt + eω,t, (5.5)

where yb
ω,t is the gyroscope measurement, ωt is the angular velocity, eω,t is an additive

measurement noise arising from the white noise process eω,t ∼ N (0,Rω,t). The accelerom-
eter measurement model is defined as

yb
acc,t = abt − gb + eacc,t, (5.6)

where yb
acc,t is the accelerometer measurement, at is the acceleration of the sensor, eω,t is

an additive measurement noise arising from the white noise process eacc,t ∼ N (0,Racc,t).
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Inserting the measurement functions into the motion model gives



pw
t

vw
t

qwb
t


 =




pw
t−1 + Tvw

t−1

vw
t−1 + T (R(qwb

t−1)(yb
acc,t − eacc,t)− gw)

qwb
t−1 � expq(

(yb
ω,t−eω,t)T

2 )


 , (5.7)

which is a nonlinear process on the same form as the dynamic model in equation 2.3, if we
consider the position pw

t , the velocity vw
t and the orientation qwb

t as the state vector xt,
and the measurements yb

acc,t and yb
ω,t as the input vector ut, and the measurement noise

eω,t and eacc,t as the process noise. This model is therefore used as the dynamic model in
the extended Kalman filter.

The measurement model for the zero-velocity aided EKF depends on the activation of the
zero-velocity detector. If the detector is inactive, it is treated as if no measurement is
available. If the detector is active, the measurement model is defined as

yw
v,t = 0 = vw

t + ev,t, (5.8)

that is equal to zero and affected by a measurement noise from the distribution ev,t ∼
N (0,Rv,t). The zero-velocity aided extended Kalman filter is given by applying the ex-
tended Kalman filter described in Algorithm 3 on the state-space model given by equation
5.7 when the zero velocity detector is inactive, and on the state-space model given by equa-
tions 5.7 and 5.8 when the zero velocity detector is active. The details of the algorithm
can be found in section A.3.

5.2 Loosely coupled Mag-SLAM for foot-mounted sensor

The loosely coupled approach to Mag-SLAM for the foot-mounted sensor is inspired by
implementations in [2] and [38]. The zero-velocity aided EKF gives estimates of position,
orientation and velocity [9]. The magnetic field norm is a function of position only, meaning
that only an estimate of the particles’ positions is necessary to meaningfully perform a
particle filter measurement update based on the magnetic field norm measurement. It
is possible to use the position estimate from the ZUPT-EKF to calculate the estimated
perturbation in position from each timestep to the next. The variance of the position
estimate from the ZUPT-aided EKF has been shown to increase linearly in time [23]. The
variance from integrating odometry with an additive white noise will also increase linearly
in time [7]. This motivates the choice to model the estimated position displacement ∆p̂w

t

as a sum of a true position displacements ∆pw
t = pw

t −pw
t−1 and an additive white noise wt.

The model is given on recursive form in equation 5.9. Combining this dynamic odometry
model with the magnetic field linear stochastic model presented in Appendix A.2 gives the
full state-space model for the loosely coupled Mag-SLAM

pw
t = pw

t−1 + ∆p̂w
t + wt, (5.9)

mt+1 = mt, (5.10)
ym,t = Φ(pt)mt + em,t, (5.11)

where pw
t is the position, mt+1 is the magnetic field vector, ym,t is the magnetic field norm

measurement, and the noise has joint distribution
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[
wt

em,t

]
∼ N (

[
0
0

]
,

[
Qt 0
0 σ2

y

]
), (5.12)

where Qt and σ2
y are assumed to be known. A similar odometry model has previously been

used on measurements from a smartphone, for simultaneous localisation and mapping of
all three components of a three-dimensional magnetic field [2]. The approach presented in
this thesis does not gain the benefit in accuracy and heading drift correction obtained from
an approach that models all three components of the magnetic field [2]. On the other hand,
it is less computationally demanding, as the nonlinear state only has three dimensions (to
describe the position) as opposed to seven (to describe the position and orientation using
a quaternion). The combined structure of the ZUPT-aided extended Kalman filter, and
the Rao-Blackwellized particle filter is displayed in figure 5.1 (a).

The RBPF in algorithm 5 can be used as it is in this case, as the model in equations
5.9-5.11 is a special case of the model in equations 4.2-4.4. The resulting loosely coupled
Mag-SLAM method is described in algorithm 6.
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Algorithm 6: Loosely coupled Mag-SLAM on foot-mounted sensor

Data: Noisy position odometry {∆p̂w
t }Nt=0, a sequence of magnetic field

measurements {ym,t}Nt=0

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0 in the form of marginalized particle clouds,
represented by a set of particles representing the positions {p̂w,i

t }Ni=1 with
corresponding linear states {m̂i

t}Mi=1 and covariances for each linear state
{Pi

t}Mi=1 representing the magnetic field map of each particle.

for t=0:N do

Initialise the particle cloud by setting pw,i
0|−1 = 0, mi

0|−1 = 0, Pi
0|−1 = Λ

1. PF measurement update: Use the evaluation of the particle weights according
to

wi
t = p(ym,t|p̂w,i

t|t−1, m̂
i
t|t−1,P

i
t|t−1)wi

t−1

= N (ym,t; Φ(pw,i
t|t−1)mi

t|t−1, σ
2
y),

(5.13)

then normalise the particle weights so that
∑M

i=1w
i
t = 1. Perform selective

resampling of the particles according to equation 2.49, with criterium Meff <
2
3M .

If particles are resampled, set weights wi
t = 1

M .

2. KF measurement update: For each particle, calculate the posterior state m̂i
t|t

and covariances Pi
t|t using

Si
t = Φ(pi

t|t)P
i
t|t−1Φ(pw,i

t|t )T + σ2
y

Ki
t = Pt|t−1Φ(pw,i

t|t )TSi
t
T

m̂i
t|t = m̂i

t|t−1 + Kw,i
t (ym,t − Φ(pi

t|t)m̂
i
t|t−1)

Pi
t|t = Pi

t|t−1 −Ki
tΦ(pi

t|t)P
i
t|t−1

(5.14)

The state and covariance uniquely describes the Gaussian marginal posterior
distribution p(mt|ym,0:t,p

w,i
1:t ) = N (m̂i

t|t,P
w,i
t|t )

3. PF dynamic update: Calculate the prior particles {p̂w,i
t+1|t}Ni=1 by using

Monte-Carlo samples of the noise ŵi
t ∼ N (0,Qt) and calculate the effect on each

particle according to equation 5.9. The prior particle cloud are then samples from
the distribution p̂w

t+1|t ∼ p(pw
t+1|ym,0:t).

end

The Kalman filter dynamic update has been omitted because the map is assumed con-
stant [35]. Equation 5.10 shows that the magnetic field is assumed to be stationary, mak-
ing the dynamic matrix Ft in step 2 in algorithm 2 equal to the identity matrix, and the
process noise term GTQtG in the same equation equal to zero. cancelling out the effects
of the Kalman filter dynamic update on the state and covariance.

As the target of the particle filter is to do simultaneous localisation and mapping, it does
not make any difference where the first position of the pedestrian is on the map. Any set of
position and map estimates that are shifted relative to each other from the starting point
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will be equivalent, as the map is only defined relative to the position of the pedestrian, and
the position of the pedestrian is only defined relative to the map. All the initial position
particles of the pedestrian are therefore defined to be pw,i

0 = 0.

The reduced-rank Gaussian process regression gives estimates of the expected value and
variance of the magnetic field measurements in the location of the particle. If the particle
has position pw,i

t|t−1, then the estimated magnetic field in this position is given by

µi,t = E[ym,t] = Φ(pw,i
t|t−1)mi

t, (5.15)

σ2
i,t = E[(ym,t − E[ym,t])

2] = Φ(pw,i
t|t−1)Pi

tΦ(pw,i
t|t−1)T + σ2

y , (5.16)

where mi
t, P i

t are the linear states estimated by the Kalman filter formulation of the
reduced-rank Gaussian process regression for particle i at time t. What this implies is
that each particle estimates a magnetic field map, and evaluates the likelihood of future
observations based on this map [2]. Based on the prediction, the probability density of the
observed measurement can be evaluated from a Gaussian distribution

p(ym,t|pw,i
1:t , ym,1:t) =

1

(
√

2π)σi,t
exp

(
−(ym,t − µi,t)2

2σ2
i,t

)
, (5.17)

where pw,i
1:t is the position trajectory of the particle, and ym,1:t is the history of magnetic

field measurements that were used to build the magnetic field map. This probability is
proportional to the likelihood of the measurements. Evaluating the probability at the
position of each particle gives the weight of each particle.

5.3 Tightly coupled Mag-SLAM for foot-mounted sensor

The zero-velocity assumption was previously integrated using an extended Kalman fil-
ter [1], while magnetic field SLAM has been used as part of a Rao-Blackwellized particle
filter. This section combines the models used by both approaches and applies a triangular
Rao-Blackwellized particle filter to perform tightly coupled sensor fusion of the available
measurements. The tightly coupled algorithm uses the accelerometer, magnetometer and
gyroscope measurements and gives estimates of the position pw

t , the velocity vw
t , the ori-

entation qw,i
t and the magnetic field map represented by its state vector mt. The interface

of the filter is illustrated in figure 5.1 (b).

By assuming that the magnetic field measurement noise is uncorrelated with the accelerom-
eter and gyroscope measurement noise, the joint nonlinear stochastic state-space model for
the sensor dynamics, the pseudo zero-velocity measurement and the magnetic field repre-
sentations become

pw
t = pw

t−1 + Tvw
t−1, (5.18)

vw
t = vw

t−1 + T (R(qwb
t−1)(yb

acc,t − eacc,t)− gw), (5.19)

qwb
t = qwb

t−1 � expq(
(yb

ω,t − eω,t)T

2
), (5.20)

mt+1 = mt, (5.21)
yv,t = vw

t + ev,t (5.22)

ym,t = Φ(pw
t )mt + em,t, (5.23)
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with a joint noise distribution




eacc,t
eω,t

ev,t
em,t


 ∼ N







0
0
0
0


 ,




Racc,t 0 0 0
0 Rω,t 0 0
0 0 Rv,t 0
0 0 0 σ2

m,t





 , (5.24)

where Racc,t, Rω,t, Rv,t and σ2
m,t are assumed to be known quantities.

The zero-velocity aided extended Kalman filter as implemented in [23] estimates position,
orientation and velocity. As was explained in section 2.3, the extended Kalman filter
applies a linear Kalman filter to the linearised state-space model. The linearisation is
performed around an orientation deviation state ηwt . The orientation deviation is defined
as the difference between the prior estimate and the true orientation [43]

qwb
t = expq

(
ηwt
2

)
� q̂wb

t|t−1. (5.25)

To achieve the accurate velocity and orientation estimates that are accomplished by the
Kalman filter updates to the linearised model in [9], the dynamic models of the velocity
and orientation in equations 5.19-5.20 are linearised. The linearisation makes it possible to
include the orientation and the velocity as parts of the linear state in a Rao-Blackwellized
particle filter. The lower the state-dimension of the nonlinear part of the particle filter,
the fewer particles are required for the filter to converge [26]. When fewer particles are
needed, the computational complexity of each filter iteration is lower [26]. By taking the
first-order Taylor expansion of equations 5.19-5.20 about the orientation deviation, the
proposed tightly coupled system model is given by

pw
t = pw

t−1 + Tvw
k−1 (5.26)

[
vw
t

ηwt

]
=

[
v̂w
t−1|t−1 + T (R(q̂wb

t−1|t−1)yb
acc,t − gw)

η̂wt−1|t−1

]
(5.27)

+ Ft

([
vw
t−1

ηwt−1

]
−
[
v̂w
t−1|t−1

η̂wt−1|t−1

])
+ Gt

([
eacc,t
eω,t

])
, (5.28)

qnb
t = expq

(
ηwt
2

)
� q̂wb

t|t , , (5.29)

yv,t = Ht

[
vw
t

ηwt

]
+ ev,t, (5.30)

yt = Φ(pw
t )mt + vt, (5.31)

with system matrices
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Ft =

[
I3 T [yw

acc,t×]

0 I3

]
, (5.32)

Gt =

[
R(q̂wb

t−1|t−1)T 0
0 −R(q̂wb

t−1|t−1)T

]
, (5.33)

Ht =
[
I3 0

]
, (5.34)

and joint noise distribution defined in equations 5.24. The tightly coupled system model
is a special case of the general system model used by the Rao-Blackwellized particle filter
with a triangular state-space model described in section 4.2, if the nonlinear states are
chosen as xn

t = pw
t , and the linear states are chosen as xl

t =
[
vwb
t qwb

t mt

]
. The tightly

coupled Mag-SLAM algorithm resulting from applying the triangular Rao-Blackwellized
particle to the model in equations 5.26-5.32 is defined in algorithm 7.

By choosing the velocity and orientation as linear states, the Kalman filter measurement
update when the zero-velocity detectors become active are equivalent to the measurement
updates in the ZUPT-EKF applied only to the velocity and orientation. By reducing the
state-space vector, an equivalent filter can be designed for estimating the orientation and
velocity only. The details of a zero-velocity aided EKF estimating only orientation and
velocity are given in Appendix A.4.

In applying algorithm 5 to the state-space model in equations 5.26-5.34, a modification has
been made to give an algorithm that can perform convergent and computationally tractable
SLAM on data from a foot-mounted sensor. The particle filter measurement update given
the pseudo zero-velocity measurements are omitted. The particle filter measurements were
found to reduce the spread of the particle cloud so much that the filter no longer converged.
What this means for the final algorithm, is that the zero-velocity pseudo measurement is
not used to distinguish which particles are more likely. The weights of the particles are
only evaluated by investigating the magnetic field. The zero-velocity pseudo measurement
is still used to update the velocity and orientation of each particle, using a Kalman filter
measurement update on the linearized model.
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Algorithm 7: Tightly coupled Mag-SLAM for foot mounted sensor

for t=0:N do

Initialise the particle cloud by setting all initial positions pw,i
0|−1 = 0, velocities to

v̂w,i
0|−1 = 0, orientations to q̂wb,i

0|−1 = q0, velocity+orientation covariances to
Pi

0|−1 = P0, initial magnetic field vector m̂i
0|−1 = 0, and the magnetic field

covariance Pi
m,0|−1 = Λ.

if zero velocity detector is active then
KF measurement update: For each particle, perform the measurement
update as defined in step 1 in algorithm 9 to calculate the posterior states
q̂wb,i
t|t , v̂w,i

t|t and covariances Pi
t|t.

end
1. PF measurement update: Identical to step 1 in algorithm 6.

2. KF measurement update: Identical to step 2 in algorithm 6.

3. PF dynamic update: Draw Monte-Carlo samples of the velocity, using the
distribution of the Kalman filter estimate

v̂w,i
t ∼ N (v̂w,i

t|t ,Pv,v,t|t−1), (5.35)

Use the estimated velocity to update the position of the particle according to

pw,i
t+1|t = pi

t|t + T v̂w,i
t|t (5.36)

4. KF dynamic measurement update: Use the prior position estimate of the
particle to update the posterior linear state estimates according to

Li
t = T 2HtPi

t|tH
T
t (5.37)

Ki
t ← Pi

t|tH
T
t TL

i
t
−1 (5.38)

[
v̂w,i
t|t
η̂w,i
t|t

]
←
[
v̂w,i
t|t
η̂w,i
t|t

]
+ Ki

t

(
pw,i
t+1|t − pw,i

t|t − v̂w,i
t|t

)
(5.39)

Pi
t|t ← Pi

t|t −Ki
tL

i
tK

i
t (5.40)

Relinearise using

q̂wb,i
t|t ← expq

(
η̂w,i
t|t

2

)
� q̂wb,i

t|t (5.41)

and by setting η̂w,i
t|t ← 0.

5. KF dynamic update: For each particle, perform the dynamic update as defined
in step 2 in algorithm 9 to calculate the prior states q̂w,i

t+1|t, v̂
w,i
t+1|t and covariances

Pi
t+1|t.

end
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Chapter 6

Results

6.1 Simulation results Mag-SLAM for pedestrian navigation

This section shows simulation results for Mag-SLAM using Reduced-Rank Gaussian process
regression and a Rao-Blackwellized particle filter on pedestrian odometry with magnetic
norm field measurements.

The movement of a pedestrian is simulated inside a room of dimensions 8m×10m×2m. The
pedestrian is assumed to move in the shape of a rectangle at a constant speed v = 1.4ms−1.
The position vector is then sampled at a frequency of 10Hz. Simple odometry is simulated
by assuming that a noisy and biased measurement of the displacement from each timestep
to the next is available according to

∆pw
t = pw

t+1 − pw
t + wt + b, (6.1)

where the bias is b = [0, 0.005, 0], and the noise wt is normally distributed as wt ∼
N (0, σ2

pI3), with a variance σp = 0.01. The dead-reckoning integration of this odometry
leads to the drifting position estimate displayed together with the simulated ground truth
trajectory in figure 6.3.

The magnetic field is assumed to be a realisation of a Gaussian process prior with a squared
exponential kernel. This simulation uses the hyperparameters σSE = 1, lSE = 0.3, and
σy = 0.1. The magnetic field can then be simulated as a Monte-Carlo sample from the
multivariate distribution

‖H(p1:t)‖ ∼ N (0,K(p1:t,p1:t)) , (6.2)

and the magnetic field norm measurements can be simulated by adding a Monte-Carlo
sampled measurement noise to the magnetic field norm in each position

ym,t = ‖H(p1:t)‖+ em,t, em,t ∼ N (0, σ2
y). (6.3)

The simulated magnetic field in the sampling locations is plotted in Figure 6.1, together
with the simulated magnetic field measurements. As the simulated pedestrian motion
revisiting the same positions in four laps, the magnetic field measurements in this plot
have a pattern that repeats for each of the four simulated laps.
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Figure 6.1: The black line shows the simulated magnetic field norm in the position of the pedes-
trian at time t, and the blue crosses show the simulated magnetic field norm measurements

(a) t = 1s (b) t = 19s

(c) t = 38s (d) t = 56s

Figure 6.2: The back trajectory show the current highest weight particle, and the positions of all
the particle are marked with black dots. The red line show the ground truth trajectory. The colour
correspond to the magnetic field norm estimate of the highest weight particle, and the opacity is
inversely proportionate with the variance of the estimate.

The domain of the reduced-rank Gaussian process regression is chosen as the smallest cube
with edges that are at least 2 meters away from any position in the correct trajectory. This
is a larger margin than two times the length-scale lSE , and the domain is therefore suffi-
ciently large [27]. The domain is also small enough so that 2000 basis functions successfully
approximate the true GP regression results.

The performance of the RBPF on these simulated data shows that drift removal is likely
to be possible using only the magnetic field norm. In Figure 6.2, the estimated trajectories
at the end of each of the four laps is displayed together with the trajectory of the highest
weight particle. The RMSE of the position estimate of the noisy odometry is 0.8, while
the RMSE of the position estimate from the RBPF is 0.2. To avoid premature resampling
of the particle cloud, selective resampling with a criterion that Meff > 2/3M is included.
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Figure 6.3: Comparing the estimated trajectories using simulated noisy odometry (blue line) and
Magnetic field simultaneous localisation and mapping (black line) with the ground truth (red line)

6.2 Experimental Setup

Measurements were collected using an Xsens MTi 10 inertial sensor. Figure 6.4 (a) shows
the experimental setup on the foot. Checkpoints were marked with tape on the floor in the
indoor environment where the measurements were collected, as shown in Figure 6.4 (b).
The root mean squared error of the position estimate was then calculated by detecting the
difference in position estimates when revisiting the checkpoints.

The position estimation results are compared with the position estimation from an open-
source implementation of the ZUPT-aided EKF [23] run on the same measurements. The
parameters for the ZUPT-aided EKF were chosen to give as good position estimates as
possible given the test subjects walking patterns. As the sensor is front-mounted, the
position estimate drifts more compared to what is reported for heel-mounted sensors [10].
This drift can be used to demonstrate visibly in a small experiment how the Mag-SLAM
algorithm can compensate for drift. Front-mounted sensors are also easily available off-the-
shelf compared to sensors integrated in the heel of a boot. The parameters for the zero-
velocity detector were kept to their original values from the open-source implementation,
except for the threshold γ, that was set to 3 · 105. The accelerometer and gyroscope
covariance matrices were set to Racc,t = σ2

aT I with σa = 0.12ms−3/2 and Rgyr,t = σ2
ωT I

with σω = 0.006◦s−1/2, respectively. The initial covariance for the position, velocity and
orientation was set to P0 = 0.12T I. The zero-velocity parameters, the gyroscope and the
accelerometer measurement noise, were given the same values in the proposed Mag-SLAM
algorithm.

(a) Sensor Mount (b) Checkpoint markers

Figure 6.4: Experimental setup
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Figure 6.5: Position estimate using the ZUPT-aided extended Kalman filter. The estimated
positions at the checkpoints are marked with red circles.

When the ZUPT-aided extended Kalman filter is used to estimate the position, the position
estimate at the known checkpoints drifts over time, as can be seen in Figure 6.5. The root
mean squared error of the ZUPT-aided EKF position estimate at the checkpoints is 1.17
meters for the collected measurements.

6.3 3D magnetic field norm map

The magnetic field norm map in both of the proposed algorithms is created as a function of
the three spatial coordinates. This section aims at isolating and comparing the performance
of the reduced rank Gaussian process regression compared to the ordinary Gaussian process
regression given a set of position estimates and magnetic field measurements.
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Figure 6.6: The measured magnetic field norm ym plotted in the estimated trajectory, by taking
magnetic field norm measurements at a sampling rate of 10 Hz

In simultaneous localisation and mapping, previous measurements are not available. De-
spite this, the proposed algorithms use two preliminary estimates of the magnetic field.
The first estimate is of the average magnetic field norm of the entire measurement series.
The average is subtracted from all incoming magnetic field measurements before using
gaussian process regression to estimate the magnetic field anomalies. As the Xsens MTi
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Figure 6.7: The blue lines show the root mean squared error of Reduced-Rank Gaussian Pro-
cess predictions on 100 test points of a Monte-Carlo sampled function from the magnetic field GP
Prior, for a varying amount of basis functions. The prediction is based on 1000 noisy measure-
ments. The stipulated black line shows the RMSE of Gaussian process regression fit to the same
measurements and predicting the values in the same points. The experiment is repeated for different
hyperparameters σy and lSE, and the parameter σSE was set to 1 for all experiments.

10 gives normalised measurements of the magnetic field, this estimate is likely to be us-
able for the same sensor in different locations. This average aims to estimate how large
the underlying earth magnetic field norm is in terms of the sensors unitless measurements.
The second estimate is a selection of somewhat appropriate hyperparameters for the kernel
by visually inspecting the available magnetic field measurements in a preliminary position
estimate. The visual inspection aims to estimate reasonable hyperparameters for indoor
magnetic field anomalies near the floor in general. The visualisation in Figure 6.6 shows
that the measured magnetic field norm anomalies in the initial position trajectory have a
similar spatial variation as the more thorough measurements in a different indoor environ-
ment made by [18]. The selection of hyperparameters usually occurs by maximising the
log-likelihood of the observed measurements [44]. This method is considered too compu-
tationally demanding to be a viable part of the online implementation proposed in this
thesis.

This section displays the magnetic field norm map found by applying reduced-rank Gaus-
sian process regression to magnetic field norm measurements from the foot-mounted sensor.
A ZUPT-aided EKF estimated the position of each measurement, and manually corrected
for the visible drift. The drift was corrected by adding a correction to each position es-
timate that increases linearly from zero with time. The magnitude of the increase was
chosen so that the trajectory position estimate was correct at the first checkpoint. The
drift correction was done to give a position estimate that was as accurate as possible so
that the magnetic field maps are constructed based on a trajectory close to the ground
truth position.
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(a) z = −1.5m (b) z = −0.5m

(c) z = 0m (d) z = 0.5m

Figure 6.8: Magnetic field norm predictions from a reduced-rank Gaussian process regression on
measurements from a foot-mounted sensor in layers of a three-dimensional domain. The colour
correspond to the predicted magnetic field norm value, and the opacity is inversely proportional
with the variance of the estimate.

The magnetic field map measurement are plotted in the estimated trajectory in Figure 6.6.
In this figure, it can be seen that the magnetic field norm in the indoor environment where
the measurements were collected vary rapidly with changing position. The length-scale of
the Gaussian process regression used in this section is lSE = 0.3m to reflect the length
scale of the magnetic field anomalies in Figure 6.6. The variance parameter is chosen to be
σ2
SE = 1. The chosen variance parameter reflects the magnitude of the same anomalies. As

the measurements noise of the magnetic field sensor is quite low compared to the magnetic
field anomalies, it was chosen as σ2

y = 0.01. The resulting magnetic field norm map in
three dimensions is illustrated using four layers in Figure 6.8.

The layered predicted magnetic field maps in Figure 6.8 illustrate how the Gaussian process
regression interpolate and predict based on the magnetic field norm measurement in Figure
6.6. The confidence of the prediction decreases the further away the position is from any
measurements. In subfigures (b) and (d), it is also possible to see that in the locations
where the foot was positioned for longer (the stationary point of the step), more magnetic
field measurements were collected. Hence, the prediction in and near these locations are
mode confident. To obtain a reasonable magnetic field estimate, 2000 basis functions were
needed. Simulation investigating the necessary amount of basis functions for the reduced-
rank Gaussian to converge to the Gaussian process prediction is shown in Figure 6.7. The
position samples are drawn from the position trajectory estimated by the zero-velocity
aided extended Kalman filter. The cubical domain for the Reduced-Rank Gaussian process
regression is chosen as the smallest cube where the edges are no closer than 2 meters to
any of the positions in the trajectory.
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The results of the simulation show that the Reduced-Rank Gaussian process regression re-
quires more basis functions the smaller the length-scale, as the Reduced-Rank GP predic-
tions converge more slowly to the GP prediction for smaller length-scales. The Reduced-
Rank GP regression also required more basis functions when the measurement noise is
higher. The plot on the second row, the second column tests how many basis functions
are needed for the Reduced-Rank GP prediction to converge to the GP prediction for the
hyper-parameters chosen for this magnetic field. The Reduced-Rank GP prediction con-
verges at approximately 2000 basis functions, so in the remainder of this thesis, Nm = 2000
basis functions are used to create the magnetic field map.

It is worth mentioning that using 2000 basis functions to store the magnetic field in the
particle filter is computationally demanding. This is because each of the M particles has a
magnetic field state vector estimate m̂i

t that has dimension Nm, and a magnetic field state
covariance P i

m that has dimension Nm×Nm. As can be seen from Figure 6.7, the number
of required basis functions reduces dramatically when the length scale of the anomalies lSE
relative to the size of the domain Ω increases. A way to reduce the number of necessary
basis functions is, therefore, to use multiple tiles that each map a smaller domain. This
method was implemented by [2], and the results they present indicate that executing the
Reduced-Rank GP regression for magnetic field mapping as it is done in this thesis in
multiple tiles rather than a single domain covering all of the estimated positions is feasible.
The researchers needed 256 basis functions to map the area in each tile, where they use a
length scale that is about 1/5 the cross-section of each tile.

6.4 Experimental results loosely coupled Mag-SLAM for foot-
mounted sensor

This section presents the results from Algorithm 6 on a set of measurements collected from
a foot-mounted sensor during a walk between marked checkpoints. The algorithm was run
using the same initial orientation estimate q0 as the open-source implementation of the
ZUPT-aided EKF in [23]. The covariance of the additive white noise was chosen as

Qt =




0.0005 0 0
0 0.0005 0
0 0 0.001,


 (6.4)

with a slightly larger noise along the z-direction to compensate for the tendency of the
odometry to drift along the z-direction. The results were obtained using 100 particles.

The trajectory estimated with the loosely coupled Mag-SLAM is based on an abstracted
model with an additive white noise, which makes it less accurate compared to the zero-
velocity aided extended Kalman filter at the beginning of the trajectory. The noisy, but
drift-free trajectory from the loosely coupled Mag-SLAM algorithm is compared with the
smoother, but drifting trajectory from the zero-velocity aided extended Kalman filter in
Figure 6.10. The Mag-SLAM algorithm can, however, be seen to compensate for drift.
Over time the trajectory estimated from Algorithm 6 is closer to the correct trajectory,
as can be seen, by the fact that the estimated checkpoint locations are much closer in the
trajectory estimated by Algorithm 6 compared to the zero-velocity aided extended Kalman
filter. The RMSE of the revisitation of the checkpoints for the zero-velocity aided extended
Kalman filter for this experiment is 1.68 m. In comparison, the RMSE of the checkpoint
position estimates for the loosely coupled Mag-SLAM is 0.20 m.
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(a) t = 2s (b) t = 19s

(c) t = 38s (d) t = 100s

Figure 6.9: The blue trajectory show the current highest weight particle, and the positions of all
the particle are marked with black dots. The colour correspond to the predicted magnetic field norm
value, and the opacity is inversely proportionate with the variance of the estimate.
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Figure 6.10: Comparison of the position trajectories obtained from the zero-velocity aided ex-
tended Kalman filter and the proposed loosely coupled Mag-SLAM for foot-mounted sensor

6.5 Experimental results tightly coupled Mag-SLAM for foot-
mounted sensor

This section presents the results from running Algorithm 7 on a set of measurements
collected from a foot-mounted sensor during a walk between marked checkpoints.
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Figure 6.11: Estimated positions of checkpoints in the estimated trajectory using loosely coupled
Mag-SLAM

The initial velocity and orientation covariance in the proposed Mag-SLAM algorithm was
set to P0 = 0.12T I, to reflect the initial covariance in the ZUPT-aided EKF.

The estimated trajectory from the tightly coupled Mag-SLAM algorithm is displayed to-
gether with the trajectory from the zero-velocity aided extended Kalman filter in Figure
6.14. The RMSE of the revisitation of the checkpoints for the zero-velocity aided extended
Kalman filter for this experiment is 1.68 m. In comparison, the RMSE of the estimated
checkpoint positions for the tightly coupled Mag-SLAM is 0.16 m. The estimated locations
of the checkpoints are displayed in Figure 6.15. The tightly coupled Mag-SLAM algorithm
can both remove drift, and give realistic estimates of the foot’s movement locally. The
tightly coupled Mag-SLAM is based on a full state-space model, so the information about
the motion model of each particle is integrated into the particle filter algorithm, rather
than abstracted away as it is in the loosely coupled approach. Part of the explanation
why the trajectory looks smoother can, therefore, be found by investigating how the two
algorithms search for viable positions - by looking at how the trajectories of the particle
clouds spread without any incoming magnetic field measurements. The trajectories of 50
particles are displayed for both the loosely coupled and the tightly coupled approach in
Figure 6.12. The spread of the trajectories is similar for both approaches. Still, the tra-
jectory of each particle in the tightly coupled algorithm gives a trajectory that is a more
realistic description of the movement for the foot of a pedestrian.

The loosely coupled approach creates hypothetical new positions for each particle by follow-
ing the simple dynamic model in equation 5.9. This corresponds to adding a white-noise
to the estimated position perturbation. The trajectories of each particle in the loosely
coupled Mag-SLAM algorithm will frequently change position abruptly. This causes the
small, but frequent discontinuities in the loosely coupled Mag-SLAM particle trajectories
in Figure 6.12. The tightly coupled position trajectories are created by first perturbing
the positions of each trajectory, but then also including a correction on the velocity and
orientation of the particle given the new particle position, in step 4 in Algorithm 7. The
initial perturbations are much smaller compared to the loosely coupled algorithm because
the variance of the velocity is small. This causes the spread of the particle cloud to be
smaller initially compared to the loosely coupled approach, as can be seen in Figure 6.12.
By giving a correction to the velocity and orientation of the particle with step 4 in Al-
gorithm 7, the velocity and orientation of each particle will be changed so that they are
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Figure 6.12: This figure illustrates the difference in the dynamic updates of the loosely coupled and
tightly coupled Mag-SLAM algorithms. The grey lines show the beginning of the position trajectories
of 50 particles for each of the two proposed algorithms. The black lines highlight the trajectory of a
single, randomly selected particle trajectory. The position trajectories of the particles in this figure
are estimated without using any incoming magnetic field measurements.

further away from the ZUPT-aided EKF velocity and orientation estimates, but better
explain the position of the particle. On the next timestep, the position of each particle
is affected by its own orientation and velocity and will be moved in a direction that is
further away from the position estimate given by the zero-velocity aided extended Kalman
filter. The perturbations in orientation and velocity then cause an increased spread in the
particle cloud. The trajectories of each particle resemble realistic movement, because they
follow the dynamic model in equation 5.26-5.29 more closely.
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(a) t = 2s (b) t = 19s

(c) t = 38s (d) t = 100s

Figure 6.13: The blue trajectory show the current highest weight particle, and the positions of
all the particle are marked with black dots. The colour correspond to the predicted magnetic field
norm value, and the opacity is inversely proportionate with the variance of the estimate.
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Figure 6.14: Comparison of the position trajectories obtained from the zero-velocity aided ex-
tended Kalman filter and the proposed tightly coupled Mag-SLAM for foot-mounted sensor
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Figure 6.15: Estimated positions of checkpoints in the estimated trajectory using loosely coupled
Mag-SLAM
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Chapter 7

Conclusion and further research

Two algorithms for Mag-SLAM estimating three-dimensional position using Gaussian pro-
cess regression on a foot-mounted sensor has been proposed in this thesis. The loosely
coupled method is more modular, and the tightly coupled method gives more realistic
trajectory estimates. Both methods give position estimates in three dimensions with com-
parable accuracy to a previous method for Mag-SLAM estimating two-dimensional position
in a foot-mounted sensor. The results illustrate how tightly coupled sensor fusion can be
beneficial compared to loosely coupled sensor fusion for improved position estimation in
Mag-SLAM for pedestrian navigation.

Further research could be in the direction of making a map of all three magnetic field
components instead of only the magnetic field norm. It could also investigate whether
it is possible to include the zero-velocity particle filter measurement update in the tightly
coupled sensor fusion algorithm using separate, stricter selective resampling criteria. Alter-
natively, using custom variances in the weight evaluation can be used to avoid premature
loss of information by over-aggressive resampling, as is done in [40]. To make the algorithm
more applicable to realistic scenarios, it can be investigated if the method can be made
tolerant to changes in the magnetic field due to building collapse or extreme temperatures.
Temperatures up 60 degrees Celcius are considered normal working conditions for firefight-
ers, while temperatures in extreme conditions sometimes reach 300 degrees Celcius [45].
Steel starts changing magnetic properties around 200 degrees Celcius, but the changes
don’t become significant until around 400 degrees Celcius [46]. The effects of temperature
on the magnetic field are generally not raised as a concern in articles that discuss the
potential use of magnetic field navigation by firefighters ([3], [47]). As the magnetic field
is caused by metal structures and furniture inside buildings [48], it is likely to change if
parts of the building were to collapse in an emergency scenario. This possibility needs to
be taken into account in further research for a fully integrated positioning system.

Further research could also investigate if maps from multiple sources could be fused to one
map so that in a team of search and rescue workers, the measurements from one worker can
benefit the whole team. The robustness of the algorithms can potentially be improved by
investigating how different movement patterns can be taken into account, such as crawling,
jumping or running. The accuracy of the algorithms can potentially be improved by using
measurements from a heel-integrated sensor, as it would give higher accuracy in the initial
position estimate.
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Appendix A

Appendix

A.1 Using an approximated kernel function to obtain re-
duced rank Gaussian process predictions

This section contains an elaboration of the derivation described in lecture slides from a
lecture on Magnetic Field SLAM given by Manon Kok in May, 2018 [49].

By inserting the approximation in equation 3.17 into the Gaussian process predictions
defined in equations 3.3-3.5, the Gaussian process prediction can be expressed as

E[y∗] = Φ(x∗)ΛΦ(x1:t)
T (Φ(x1:t)ΛΦ(x1:t)

T + σyIN )−1y (A.1)

E[(y∗ − E[y∗])2] = Φ(x∗)ΛΦ(x∗)T

−Φ(x∗)ΛΦ(x1:t)
T (Φ(x1:t)ΛΦ(x1:t)

T

+ σyIN )−1Φ(x1:t)ΛΦ(x∗)T + σ2
y .

(A.2)

As Λ is a matrix where all elements are zero except for elements on the diagonal, a
matrix Λ

1
2 can easily be computed by using the positive square-root of each element on

the diagonal. This matrix has the property that Λ
1
2 Λ

1
2 = Λ. Using this property, the

equations can be factorized as

E[y∗] = Φ(x∗)ΛΦ(x1:t)
T (Φ(x1:t)ΛΦ(x1:t) + σyIN )−1y1:t (A.3)

E[(y∗ − E[y∗])2] = Φ(x∗)Λ
1
2

[
Im −Λ

1
2 Φ(x1:t)(Φ(x1:t)Λ

1
2 Λ

1
2 Φ(x1:t)

T

+ σyIN )−1Φ(x1:t)
TΛ

1
2

]
Λ

1
2 Φ(x∗)T + σ2

y .
(A.4)

The matrix inversion lemma

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1 (A.5)

holds when where P and R are positive definite [50]. Using this for P = Λ, B = Φ(x1:t),
R = σ2

yI gives a reduced-rank expression for the expected value of the Gaussian process
prediction

E[y∗] = Φ(x∗)(σ2
yΛ
−1 + Φ(x1:t)

TΦ(x1:t))
−1Φ(x1:t)

Ty1:t (A.6)
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Using the matrix inversion lemma [51] in equation A.7

σ2(QQT + σ2In)−1 = In −Q(σ2Iq + QTQ)−1QT , (A.7)

with Q = Λ
1
2 Φ(x1:t)

T , n = m, q = N , and σ = σy gives a reduced-rank expression for the
variance

E[(y∗−E[y∗])2] = Φ(x∗)Λ
1
2

[
σ2
y(Λ

1
2 ΦT (x1:t)Φ(x1:t)Λ

1
2 + σ2

yIm)−1
]
Λ

1
2 Φ(x∗)T +σ2

y (A.8)

which can be further rewritten to the final reduced-rank formulation

E[(y∗ − E[y∗])2] = σ2
yΦ(x∗)

(
Φ(x1:t)

TΦ(x1:t) + σ2
yΛ
−1
)−1

Φ(x∗)T + σ2
y (A.9)

A.2 Linear Model from Gaussian process regression

This section performs equivalent derivations defined in lecture slides from a guest lecture
given by Manon Kok in May 2018 [49] for the magnetic field norm measurement model,
in place of the magnetic field potential model. This derivation is not strictly necessary to
achieve the final result, as it is a special case of the results in the lecture slides. However,
the derivation in this appendix may help clarify the equivalence between the reduced rank
gaussian regression and the linear stochastic model used in this thesis.

Given the reduced-rank Gaussian process model

E[y∗] = Φ(x∗)(σ2
yΛ
−1 + Φ(x)TΦ(x))−1Φ(x)Ty (A.10)

E[(y∗ − E[y∗])2] = σ2
yΦ(x∗)

(
Φ(x)TΦ(x) + σ2

yΛ
−1
)−1

Φ(x∗)T (A.11)

It can be observed that the expected value E[y∗] can be factorised into a term Φ(x∗) that
is only a function of the prediction position, and the term (σ2

yΛ
−1 +Φ(x)TΦ(x))−1Φ(x)Ty

which is only a function of the observed positions and measurements. This term can be
represented by a state

mt = (σ2
yΛ
−1 + Φ(x)TΦ(x))−1Φ(x)Ty (A.12)

and a covariance

Pt = σ2
y

(
Φ(x)TΦ(x) + σ2

yΛ
−1
)−1

, (A.13)

that is the result of recursively applying the Kalman filter measurement update

St = Φ(xt)Pt−1Φ(xt)
T + σ2

yI, (A.14)

Kt = Pt−1Φ(xt)
TS−1

t , (A.15)
mt = mt−1 + Kt(yt −Φ(xt)mt−1), (A.16)

Pt = Pt−1 −KtStKT
t , (A.17)
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for each state xt ∈ x and yt ∈ y, using the initial states m0 = 0, and P0 = Λ. It is useful
to keep track of this state and covariance matrix, because combining equations A.10, A.11,
A.12 and A.13, gives

E[y∗] = Φ(x∗)mt (A.18)

E[(y∗ − E[y∗])2] = Φ(x∗)PtΦ(x∗)T + σ2
y (A.19)

This expression shows that the reduced rank GP prediction reduces to a Kalman filter
measurement prediction of a linear-stochastic state space model of the form

mt+1 = mt, (A.20)

yt = Φ(xt)mt + vt, vt ∼ N (0, σ2
y) (A.21)

where xt is not estimated by the Kalman filter measurement update, but assumed to be a
known input. In the full state-space formulation, the state xt is modelled as the nonlinear
state in a Rao-Blackwellized particle filter.

A.3 The ZUPT aided EKF interpreted as a Kalman filter
applied to a linearized model

The ZUPT-aided EKF as defined by Skog et al [9] applies the Kalman filter to the linearized
state-space model



pw
t

vw
t

ηwt


 =




p̂w
t−1|t−1 + T v̂w

t−1|t−1

v̂w
t−1|t−1 + T (R(q̂nb

t−1|t−1)yb
acc,t − g)

η̂wt−1|t−1




+ Ft






pw
t−1

vw
t−1

ηwt−1


−



p̂w
t−1|t−1

v̂w
t−1|t−1

η̂wt−1|t−1





+ Gt

([
eacc,t
eω,t

])
,

(A.22)

qnb
t = expq

(
ηwt
2

)
� q̂nb

t|t, (A.23)

yv,t = Ht



pw
t

vw
t

ηbt


+ ev,t, (A.24)

with system matrices

Fk =



I3 T I3 0
0 I3 Ts[yacc×]
0 0 I3


 , (A.25)

Gk =




0 0
R(q̂nb

k|j)T 0
0 −R(q̂nb

k|j)T


 , (A.26)

Ht =
[
0 I3 0

]
, (A.27)
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and noise distribution



eacc,t
eω,t
ev,t


 ∼ N





0
0
0


 ,



Racc,t 0 0
0 Qω,t 0
0 0 Rv,t




 , (A.28)

which results in the algorithm

Algorithm 8: The ZUPT-aided extended Kalman filter

Data: A series of inputs yacc,t, yω,t and yv,t

Result: Position, velocity and orientation estimates p̂w
t|t, v̂

w
t|t, q̂

nb
t|t.

for t=0:N do

1. EKF measurement update: Calculate the posterior state using

St = Rv,t + HtPt|t−1HT
t (A.29)

Kt = Pt|t−1HT
t S
−1
t , (A.30)



p̂w
t|t

v̂w
t|t
η̂wt|t


 =



p̂w
t|t−1

v̂w
t|t−1

η̂wt|t−1


+ Kt

(
yv,t − v̂w

t|t−1

)
, (A.31)

Pt|t = Pt|t−1 −KtHtPt|t−1, (A.32)

using the matrix Ht defined in equation A.27.
Relinearise using

q̂nb
t|t = expq

(
η̂t|t

2

)
� q̂nb

t|t−1 (A.33)

and by setting η̂t|t ← 0.

2. EKF dynamic update: Calculate the prior state using

p̂w
t+1|t = p̂w

t|t + T v̂w
t|t, (A.34)

v̂w
t+1|t = p̂w

t|t + T (R(q̂nb
t|t)y

b
acc,t − gw), (A.35)

η̂wt+1|t = η̂wt|t, (A.36)

Pt+1|t = FtPt|tFT
t + Gt

[
Racc,t 0
0 Rω,t

]
GT

t , (A.37)

with the system matrices Ft and Gt defined in equations A.25-A.26.
end

A.4 The ZUPT aided EKF for only orientation and velocity
estimation

In this section, a similar filter to the ZUPT-aided EKF that only estimates velocity and
orientation using a subset of the linearised state-space model in equation A.22-A.24 is
defined. After the definition, this section also shows that the velocity and orientation
estimate compared to the standard formulation of the ZUPT-aided EKF are equivalent.
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Starting from the subset of the linearised statespace model for velocity and orientation

[
vw
t

ηwt

]
=

[
v̂w
t−1|t−1 + T (R(q̂nb

t−1|t−1)yb
acc,t − gw)

η̂wt−1|t−1

]

+ Ft

([
vw
t−1

ηwt−1

]
−
[
v̂w
t−1|t−1

η̂wt−1|t−1

])
+ Gt

([
eacc,t
eω,t

])
,

(A.38)

qwb
t = expq

(
ηwt
2

)
� q̂wb

t|t , (A.39)

yv,t = Ht

[
vw
t

ηwt

]
+ ev,t, (A.40)

with system matrices

Ft =

[
I3 Ts[yw

acc,t×]

0 I3

]
, (A.41)

Gt =

[
R(q̂wb

t|t )T 0
0 −R(q̂wb

t|t )T

]
, (A.42)

Ht =
[
I3 0

]
, (A.43)

and the same noise distribution as in equation A.28, the ZUPT-aided EKF for velocity
and orientation estimation is defined in Algorithm 9.
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Algorithm 9: The ZUPT-aided extended Kalman filter for only orientation and ve-
locity estimation

Data: A series of inputs yacc,t, yω,t and yv,t

Result: Velocity and orientation estimates v̂w
t|t, q̂

nb
t|t.

for t=0:N do

1. EKF measurement update: Calculate the posterior state using

St = Rv,t + HtPt|t−1HT
t , (A.44)

Kt = Pt|t−1HT
t S
−1
t , (A.45)

[
v̂w
t|t
η̂wt|t

]
=

[
v̂w
t|t−1

η̂wt|t−1

]
+ Kt

(
yv,t − v̂w

t|t−1

)
, (A.46)

Pt|t = Pt|t−1 −KtHtPt|t−1, (A.47)

using the matrix Ht defined in equation A.43.
Relinearise using

q̂wb
t|t = expq

(
η̂t|t

2

)
� q̂wb

t|t−1 (A.48)

and by setting η̂t|t ← 0.

2. EKF dynamic update: Calculate the prior state using

v̂w
t+1|t = v̂w

t|t + T (R(q̂wb
t|t )yb

acc,t − gw), (A.49)

η̂wt+1|t = η̂wt|t, (A.50)

Pt+1|t = FtPt|tFT
t + Gt

[
Racc,t 0
0 Rω,t

]
GT

t , (A.51)

with the system matrices Ft and Gt defined in equations A.41-A.41.
end
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A.5 Rao-Blackwellized particle filter algorithm for triangular
state-space model

Algorithm 10: A Rao-Blackwellized particle filter using a triangular model

Data: A measurement sequence y0:N produced by the stochastic state-space model in
equations 2.3 and 2.4, process noise Qk, and measurement noise Rk. An initial
probability density for the state p(x0)

Result: Estimates of the prior distributions {p(xt|y0:t−1)}Nt=0 and the posterior
distributions {p(xt|y0:t)}Nt=0 in the form of marginalized particle clouds,
represented by a set of particles {x̂i,n

t }Ni=1 with corresponding linear states
{x̂i,l

t }Ni=1 and covariances for each linear state {Pi
t}Ni=1

for t=0:N do

Initialise the particle cloud by sampling xi,n
0|−1 ∼ p(xn

0 ), and initalise all states and

covariances to xi,l
0|−1 = x0, Pi

0|−1 = P0

1. PF measurement update: Identical to step 1 in Algorithm 5

2. KF measurement update: Identical to step 2 in Algorithm 5

3. PF dynamic update: Calculate the prior particle cloud particle cloud
{x̂i,l

t+1|t}Ni=1 by using Monte-Carlo samples of the noise wi,n
t ∼ N (0,Qn

t ),

Monte-Carlo samples of the state x̂i,l
t ∼ N (x̂i,l

t|t,P
i
t|t) and calculate the effect on

each particle according to equation 4.14. The prior particle cloud are then samples
from the distribution x̂i,n

t+1|t ∼ p(xn
t+1|y0:t)

4. KF dynamic measurement update:
For each particle, perform a pseudo-measurement update on the posterior states
x̂i,l
t|t and covariances Pi

t|t using

Li
t = Gn

t Q
n
t G

n
t
T + Fn

t P
i
t|t−1F

n
t
T (A.52)

K̃
i
t = Pi

t|t−1F
n
t
T (Li

t)
−1 (A.53)

x̃i,l
t|t = x̂i,l

t|t + K̃
i
t(x̂

i,n
t+1|t − ft(x̂

i,n
t|t )− Fn

t x̂
i,l
t|t−1) (A.54)

P̃
i
t|t = Pi

t|t −Ki
tF

n
t P

i
t|t (A.55)

The state and covariance uniquely describes the Gaussian marginal posterior
distribution p(xl

t|y0:t,x
n,i
1:t+1) = N (x̂i,l

t|t,P
i
t|t)
∣∣∣
xl
t

5. KF dynamic update: For each particle, calculate the prior state x̂i,l
t+1|t and

covariance Pi,n
t+1|t using

x̂i,l
t+1|t = Ftx̃

i,l
t|t (A.56)

Pi
t+1|t = FtP̃

i
t|tF

T
t + GtQtG

T
t . (A.57)

The prior state and covariance uniquely describes the Gaussian marginal prior
probability density p(xl

t+1|y0:t, x̂
i,n
0:t+1) = N (x̂i,l

t+1|t,P
i
t+1|t)

∣∣∣
xl
t+1

end
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A.6 Using Hilbert-space based method with analytical basis
functions for reduced-rank Gaussian process regression
in a cubical domain

When Hilbert space methods for reduced-rank Gaussian process regression are used in
a cubical domain, the set of basis functions {φj(x)}Nm

j=1 and eigenvalues {λj}Nm
j=1 can be

found analytically [27]. The analytical solution for a 3-dimensional Cartesian rectangular
domain Ω = [−L1, L1]× [−L2, L2]× [−L3, L3] are

φj1,j2,j3(x) =
3∏

k=1

1√
Lk

sin

(
πjk(xk + Lk)

2Lk

)
(A.58)

λj1,j2,j3 =

3∑

k=1

(
πjk
2Lk

)2

(A.59)

Subtracting an input vector a to input argument x corresponds to shifting the domain to
Ω = [−L1 + a1, L1 + a1]× [−L2 + a2, L2 + a2]× [−L3 + a3, L3 + a3]. This gives the basis
functions

φj1,j2,j3(x) =

3∏

k=1

1√
Lk

sin

(
πjk(xk − ak + Lk)

2Lk

)
, (A.60)

and the equations for the eigenvalues remain the same as in A.59. A domain with arbitrary
limits Ω = [Ll,1, Lu,1] × [Ll,2, Lu,2] × [Ll,3, Lu,3] can always be rewritten on the form Ω =
[−L1+a1, L1+a1]×[−L2+a2, L2+a2]×[−L3+a3, L3+a3], by selecting ak = 1

2(Ll,k+Lu,k)
and Lk = 1

2(Lu,k − Ll,k). Inserting these expressions into A.60 and A.59 gives

φj1,j2,j3(x) =

3∏

k=1

1√
1
2(Lu,k − Ll,k)

sin

(
πjk(xk − Ll,k)

Lu,k − Ll,k

)
, (A.61)

λj1,j2,j3 =
3∑

k=1

(
πjk

Lu,k − Ll,k

)2

, (A.62)

which therefore solves the Laplace equations for a rectangular domain with arbitrary upper
and lower limits along each axis. A corresponding argument can be carried out for the
n-dimensional case.

As these basis functions are used in the reduced-rank approximation by decreasing order
of spectral density of the corresponding eigenvalue, it is necessary to compute the Nm

basisfunctions which eigenvalues have the highest spectral density. The eigenvalues are
indexed by three indices, j1 ∈ N, j2 ∈ N and j3 ∈ N. All possible eigenvalues are determined
by all possible permutations of these indices. To determine which eigenvalue has the
highest spectral density, it is necessary to analytically prove that there is no other possible
permutation of indices that produces an eigenvalue with a higher spectral density. This is
considered outside the scope of this thesis. Instead, it is possible to take advantage of the
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observation that combinations of lower-valued indices generally produce eigenvalues with
higher-valued spectral densities.

By looking at all possible permutations of indices beyond an upper limitNsearch and sorting
them according to the spectral density of their corresponding eigenvalues, the analytical
solutions can be demonstrated to correspond to numerical solutions in a two-dimensional
domain Ω = [Ll,1, Lu,1]×[Ll,2, Lu,2]. The result of this approach for varios values of Nsearch

can be seen in Figure A.1. This figure compares the analytical solutions with a numerical
solution. The numerical solution automatically finds the 16 combination of modes that
has the highest corresponding eigenvalues. In equation A.61 it can be seen that the wave
frequency of the sinusoid along axis xk is multiplied proportional with the index jk. The
index can therefore be seen by the number of wavetops and bottoms along the vertical and
horisontal direction in Figure A.1 respectively. It is therefore possible to visually inspect
the similarity of the numerical solution with the analytical ones to determine weather a
sufficient amount of index permutations have been investigated.

For this small example it is apparent that both Nsearch = 2 and Nsearch = 3 is insufficient,
as the permutations do not investigate enough possible index combinations to suggest 16
different basis functions. By picking Nsearch = 4, enough permutations are investigated to
suggest 16 basis functions. However, by comparing basis function number 14-16 with the
numeric solution, it can be seen that they do not match. This is because basis function
number 14 has 5 wavetops and bottoms along the vertical dimension, and it is therefore
necessary to investigate at least up untilNsearch = 5 to find the correct basis functions. The
analytic basis functions for both Nsearch = 5 and Nsearch = 6 can be seen to correspond
to the numeric basis functions. It is necessary to select Nsearch large enough to investigate
all the needed basis functions, but selecting it too large is neither beneficial nor harmful,
except for the increased computational complexity.

Figure A.1: A comparison of the first 16 eigenfunctions for a rectangular domain Ω =
[−0.9, 0.9] × [−1, 1]. The first 5 sub-figures display the first eigenfunctions found by looking for
modes up until Nsearch. The bottom right figure show the shape of the true eigenfunctions found
from a numerical solution.
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A.7 Draft publication
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Abstract—Magnetic field Simultaneous localisation and map-
ping (Mag-SLAM) for indoor pedestrian navigation simultane-
ously creates a map of indoor magnetic field anomalies and
estimate the position of the pedestrian inside this map. This
paper proposes an algorithm for Mag-SLAM on a foot-mounted
sensor. The algorithm uses a model of the movement of the
sensors, together with a zero-velocity detector and magnetic field
norm measurements. This gives an accurate position estimate
that compensates for drift when positions are revisited. The
algorithm is tested on measurements from a foot-mounted sensor
collected from a walk around a room, and the estimated position
trajectories are compared with estimated position trajectories
from an existing method for position estimation using a foot-
mounted sensor.

I. INTRODUCTION

Indoor location and navigation is essential in emergency
response scenarios [1]. Firefighters and other first responders
have reported that disorientation and being lost inside a
building is a common reason for traumatic injuries, as well as
a contributing factor to firefighter deaths [2]. Currently, most
common navigation methods for firefighters are a combination
of burning flashlights to mark exits, ropes to mark safe ways
out of the dangerous area, and alarms connected to wearable
sensors that go off if a firefighter does not move for a specific
amount of time [2].

A foot-mounted combined tri-axis gyroscope and ac-
celerometer has previously been used to obtain accurate
position estimates by using the zero-velocity update aided
extended Kalman filter (ZUPT-aided EKF), proposed by [3].
A tri-axis accelerometer, gyroscope and magnetometer can be
integrated into the shoe of substantial footwear [4]. A team
of researchers from Sweden implemented the zero-velocity
aided extended Kalman filter in open-source software [5]. The
proposed algorithms build on the open-source software in [5].
The derivation of the zero-velocity aided extended Kalman
filter and the specifics of the implementation is described in an
accompanying publication, see [6]. The position estimate from
the ZUPT-aided EKF is highly accurate for indoor position
estimation [6].

An accelerometer measures the sensor’s acceleration, while
a gyroscope measures the sensors angular velocity. All state es-
timation that relies only on integration of noisy measurements
will have a variance that increases linearly with time [7]. This
phenomenon is often referred to as drift [8]. As accelerometers

and gyroscopes measure acceleration and rotational velocity,
respectively, integration of the measurements is a common
approach to achieving position and orientation estimates [7].
This is commonly referred to as strap-down inertia navigation,
and the variance of this position estimate increases more than
cubically in time if both the accelerometer and gyroscope
measurements are corrupted by white noise [7].

Although the ZUPT-aided EKF is highly accurate compared
to strap-down inertial integration, it still suffers from a small
drift [3]. The A survey [2] on Location and Navigation Support
for Emergency Responders conclude that pedestrian inertial
navigation using a foot-mounted sensor and the zero-velocity
assumption still has a too large position drift to be a feasible
strategy in emergency scenarios.

Mag-SLAM has previously been used to achieve drift-
reduction for foot-mounted position estimates using magnetic
field measurements by [9]. The researchers in [9] combine
odometry from a foot-mounted sensor with magnetic field
norm measurements to achieve drift-free position estimates
in two dimensions and uses a different method for creating
the magnetic field map. Computationally tractable Mag-SLAM
using Gaussian process regression in a Rao-Blackwellized
particle filter was proposed by [10], and shows how on-board
magnetic field measurements can be used to compensate for
position estimation drift in three dimensions.

While the method proposed by [11] is limited to only two
dimensions, the method proposed by [10] is not, but relies on
an accelerometer, a gyroscope and a camera in a hand-held
smartphone for obtaining the underlying pedestrian odometry.

We propose an algorithm for indoor position pedestrian esti-
mation using a foot-mounted tri-axis gyroscope, accelerometer
and magnetometer through magnetic field norm SLAM. We
use the same assumptions that were used by [6] to create a low-
drift position estimate on a foot-mounted sensor and a similar
method for magnetic field mapping that was proposed by [10]
to formulate a state-space model for the simultaneous estima-
tion of the foot-mounted sensors position, velocity orientation
and the magnetic field map, that is able to compensate for drift
in the position estimate when positions are revisited. The new
filter has the advantage of being accurate for shorter trajecto-
ries in a comparable way to the filter implemented by [6], and
it compensates for drift in longer trajectories by recognising
patterns in the magnetic field anomalies in a comparable way



 

 
Fig. 1. Estimated magnetic field norm indoors from measurements from foot-mounted sensor

to the filter implemented by [10]. Our proposed algorithm finds
a position estimate in three dimensions, and achieves similar
accuracy as [9], while only using an accelerometer, gyroscope
and magnetometer.

II. MOTION MODEL

Fig. 2. Foot-mounted sensor

The proposed algorithms estimate the position and orienta-
tion transformation from a world frame w to a sensor frame
s. The sensor frame is attached to the foot-mounted sensor,
with the origin at the sensors centre of mass, and directions
following the orientation of the aligned tri-axis gyroscope and
accelerometer. The sensor frame is illustrated in Figure 2. The

origin of the world frame is equal to the origin of the sensor
frame at time t = 0. The orientation of the sensor frame is
chosen such that the gravitational force on the sensor in the
world frame points down, i.e. gw = [00 − 9.81], where 9.81
is assumed to be the strength of the local gravitational field.
Otherwise, the orientation is chosen such that the yaw angle of
the initial rotation in Euler angles from sensor to world frame
is zero. The angular velocity of the sensor is the derivative of
the change in orientation between the sensor and world frame.
Assuming that the gyroscope provides a measurement of the
angular velocity around each of the three axes, corrupted by
additive white noise, the first-order discretisation of the kine-
matic motion model gives the following recursive expression
for the orientation of the sensor at timestep t

qws
t = qws

t−1 � expq(
(ys

gyr,t − egyr,t)T
2

), (1)

where qws
t is the rotation from world frame to sensor frame

on quaternion form, ys
gyr,t is the gyroscope measurement,

egyr,t ∼ N (0,Σgyr,t) is the white noise corrupting the
gyroscope measurement, Rgyr,t is assumed to be a known
covariance, � is the quaternion product, expq is an opera-
tor transforming rotations on orientation-deviation form to a
quaternion (see [8] for details). The acceleration of the sensor
can be found by subtracting the gravity vector in body frame,
according to

aw
t = R(qws

t)(yw
acc,t − eacc,t)− gw, (2)



where yacc,t is the acceleration measurement, eacc,t ∼
N (0,Σacc,t) is the white noise process corrupting the ac-
celeration measurement, R(·) is an operator transforming
the rotation quaternion to a rotation matrix. The integral of
acceleration gives the velocity, and discretising this equation
gives that

vw
t = vw

t−1 + Taw
t , (3)

where vw
t is the velocity of the sensor in world frame at time

t, and T is the timestep of the discrete-time approximation.
Similarly, the discrete integral of velocity is given by

pw
t = pw

t−1 + Tvw
t (4)

We will refer to Equations 1-4 as the dynamic model. By
substituting egyr,t = 0 and eacc,t = 0 into these equations we
can find the expected value of the position at time t using the
information from the dynamic model. This estimation tech-
nique is commonly referred to as dead-reckoning integration
[7]. Simply the effect of integrating the white-noise of the
acceleration measurement causes an expected variance of the
dead-reckoning position estimate that grows cubically in time
[7]. Ever-growing expected errors are commonly referred to
as drift [8]. The gyroscope measurement will also make the
orientation estimate drift, causing the estimated direction of
the gravitational force to be wrong, which further increases the
variance of the dead-reckoning velocity and position estimates.

During normal walk, approximately 40% of the time, the
front of the foot is stationary [12]. When the front of the foot
is stationary, the acceleration measurement is close to zero
with low variance, and the gyroscope measurement is also
close to zero with low variance [4]. The stance phase of the
step can be detected by investigating when the function

D(ys
acc,t−W−1:t, y

s
gyr,t−W−1:t)

=
1

W

t∑

k=t−1


 1

σ2
acc

∥∥∥∥∥∥
ys
acc,k − g

ȳs
acc,t−W−1:t∥∥∥ȳs
acc,t−W−1:t

∥∥∥
2

∥∥∥∥∥∥

2

2

+
1

σ2
gyr

∥∥ys
gyr,k

∥∥2
2

)
(5)

is below a selected threshold γ [4]. The parameter g is
the magnitude of the gravity field, the ration between σ2

gyr

and σ2
acc needs to reflect the ratio between the gyroscope

and accelerometer variance, and the parameter γ is a tunable
detection threshold, while W is a tunable detection window
[4]. The ZUPT-aided EKF improves upon the dead-reckoning
position, velocity and orientation estimates by incorporating a
pseudo-measurement every time the stance phase of the step
is detected. The pseudo-measurement is modelled by [3] as

yw
v,t = 0 = vwt + ev,t, (6)

where ywv,t denotes the measurement that always is zero,
and is assumed to be equal to the velocity of the foot vwt

plus an additive white noise ev,t ∼ N (0,Σv) with a known
covariance.

III. MAGNETIC FIELD MODEL

The magnetic field norm has rich spatial variation in indoor
environments, which makes it possible to recognise previously
visited areas based on the similarities in the magnetic field
norm anomalies [10]. The magnetic field model used by [10] to
perform simultaneous localisation and mapping use Reduced-
Rank Gaussian process regression for estimation of a nonlinear
function. The magnetic field is a three-component vector field,
often denoted H(p) : R3 → R3, where p is the position vector
[13]. The magnetic field norm can therefore be considered a
nonlinear function ‖H(p)‖ : R→ R3, mapping the position p
to a magnetic field norm. The Gaussian process regression can
be implemented with a squared exponential kernel function

κSE(x1, x2) = σ2
SE exp

−‖x1 − x2‖22
2l2SE

, (7)

to include the assumption that the magnetic field norm
is similar to the magnetic field norm variations in nearby
locations, and variations typically have the magnitude σSE

and length-scale lSE [10].
The magnetic field is measured by a tri-axis magnetometer,

so the magnetic field norm measurement can be found by
taking the euclidean norm of this measurement. We assume
the magnetic field norm measurement is normally distributed
about the true magnetic field norm in the position of the
measurement, according to

ym,t = ‖H(pw
t )‖+ em,t, (8)

where em,t ∼ N (0, σ2
m).

Recursive Reduced-Rank Gaussian process regression using
Hilbert-Space methods can be used to estimate the magnetic
field norm as a scaled sum of basis functions in a finite domain.
The basis functions are defined as solutions to the negative
Laplace operator that is subject to the Dirichlet boundary
condition [14]. The basis functions are denoted φk : R3 → R,
and they solve

{
−∇2φk(pw) = λkφk(pw), pw ∈ Ω

φk(pw) = 0, pw ∈ ∂Ω
. (9)

The Gaussian process regression prediction in a position
pw
t can be approximated using a linear sum of these basis

functions according to

E[ym,t] = Φ(pw
t )mt−d (10a)

E[(ym,t − E[ym,t])
2] = Φ(pw

t )Pt−dΦ(pw
t )T + σ2

m, (10b)

where mt−d and Pt−d are computed recursively using all
available measurements up until time t−d where d is a delay,
{ym,k}t−dk=0 in initial position estimates {p̃w

k}
t−d
k=0 according to



m0 = 0 (11a)
Pm,0 = Λ (11b)

Sk = Φ(p̃w
k )Pk−1Φ(p̃w

k )T + σ2
mI, (11c)

Kk = Pk−1Φ(p̃w
k )T S−1k , (11d)

mk = mk−1 + Kk(ym,k −Φ(p̃w
k )mk−1), (11e)

Pm,k = Pm,k−1 −KkSkKT
k , (11f)

where Φ(p̃w
k ) is the matrix

Φ(x1:n) = Φ({xi}ni=1) =



φ1(x1) · · · φNm(x1)

...
. . .

...
φ1(xn) · · · φNm

(xn)


 , (12)

and Λ is the matrix

Λ =



S(
√
λ1) · · · 0

...
. . .

...
0 · · · S(

√
λNm

)


 , (13)

and the function S(
√
λk) is the spectral density of the

squared exponential kernel [13]

SSE(
√
λk) = σ2

SE

(
2πl2SE

) 3
2 exp(−λkl

2
SE

2
), (14)

with the same parameters σSE and lSE as the Gaussian
process kernel in equation 7. See [15] for details about
magnetic field mapping using reduced-rank Gaussian process
regression.

IV. ALGORITHM

Equations 1-3 are commonly linearised around the current
estimate in order to apply the extended Kalman filter to
include the zero-velocity pseudo measurements [16]. The high
accuracy of the ZUPT-aided EKF confirms that equations 1-
3 can safely be approximated by linearisation. The state of a
nonlinear stochastic process with some linear substructures can
be estimated using a Rao-Blackwellized particle filter [17]. A
Rao-Blackwellized particle filter splits the state-space vector
into a linear and a nonlinear part. The linear part of each
particle’s state is then estimated with a conditional Kalman
filter, given the corresponding nonlinear part of the particle’s
state [18]. Mag-SLAM, in general, is often based on state-
space models with both linear and nonlinear dynamics, and
apply Rao-Blackwellized particle filters to estimate the pose
and the magnetic field map ( [19], [20], [10]). For the foot-
mounted sensor, we consider both the linear and the close
to linear structures as linear substructures in the state-space
model and estimate the magnetic field, the orientation and the
velocity as conditionally linear states given the position of
each particle.

Algorithm 1 Mag-SLAM for foot-mounted sensor

Input:
{

yacc,t, ygyr,t, ym,t

}N
t=1

Output:
{

p̂t|t
}N

t=1

Initialisation :pw,i
0|−1 = 0, v̂w,i

0|−1 = 0, q̂wb,i
0|−1 = q0, Pi

0|−1 =

P0, m̂i
0|−1 = 0, Pi

m,0|−1 = Λ, wi
t

1: for t = 1 to N do
2: if (T (yacc,(t−5):t, ygyr,(t−5):t) < γ) then
3: KF MEASUREMENT UPDATE:

Si
t = Rv,t + HtPi

t|t−1HT
t (15a)

Ki
t = Pi

t|t−1HT
t (Si

t)
−1 (15b)

[
v̂w,i
t|t

η̂w,i
t|t

]
=

[
v̂w,i
t|t−1

η̂w,i
t|t−1

]
+ Ki

t(yv,t − v̂w,i
t|t−1) (15c)

Pi
t|t = Pi

t|t−1 −Ki
tHtPi

t|t−1 (15d)

Relinearise using

q̂wb,i
t|t = expq(

η̂w,i
t|t
2

)� q̂wb,i
t|t−1 (16a)

η̂w,i
t|t ← 0 (16b)

4: end if
5: PF MEASUREMENT UPDATE

wi
t = p(ym,t | pw,i

t|t−1, m̂t|t−1,Pi
m,t|t−1)wi

t−1 (17)

Normalise weights such that
∑N

i wi
t = 1.

6: if Meff >
2
3M then

7: Resample, set wi
t = 1

M
8: end if
9: KF MEASUREMENT UPDATE

Si
t = Φ(pw,i

t|t )Pi
m,t|t−1Φ(pw,i

t|t )T + σ2
m (18a)

Ki
t = Pi

t|t−1Φ(pw,i
t|t )T (Si

t)
T (18b)

10: PF DYNAMIC UPDATE

v̂w,i
t ∼ N (v̂w,i

t|t ,HtPi
t|t−1HT

t ) (19a)

pw,i
t+1|t = pw,i

t|t + T v̂w,i
t (19b)

11: KF DYNAMIC MEASUREMENT UPDATE

Li
t = T 2HtPi

t|tH
T
t (20a)

Ki
t ← Pi

t|tH
T
t T (Li

t)
−1 (20b)

[
v̂w,i
t|t

η̂w,i
t|t

]
←
[

v̂w,i
t|t

η̂w,i
t|t

]
+ Ki

t(pw,i
t+1|t − pw,i

t|t − T v̂w,i
t|t )

(20c)

Pi
t|t ← Pi

t|t − TKi
tHtPi

t|t (20d)

12: KF DYNAMIC UPDATE

v̂t+1|t = v̂w,i
t|t + T (R(q̂w,i)yb

acc,t − gw) (21a)

η̂w,i
t+1|t = η̂w,i

t|t (21b)

Pi
t+1|t = FtPi

t|tF
T
t + Gi

t

[
Racc,t 0

0 Rgyr,t

]
Gi,T

t (21c)

13: end for



The state-space model with equations 1-3 linearised about
each estimate and the magnetic field measurement model, is
a subset of the triangular state-space model that [17] uses
to formulate a Rao-Blackwellized. By applying this Rao-
Blackwellized particle filter algorithm IV is obtained. The
matrices Ht and Ftare given by

Ft =

[
I3 T [ywacc,t×]
0 I3

]
, (22)

Gt =

[
R(q̂wb,i

t−1|t−1)T 0
0 −R(q̂wb,i

t−1|t−1)T

]
, (23)

Ht =
[
I3 0

]
, (24)

where q̂wb,i
t−1|t−1 is the orientation estimate of each particle.

In applying algorithm the Rao-Blackwellized particle filter
to the state-space model in equations 1-3 and the magnetic
field measurement model, we made one modification to give
an algorithm that can perform convergent and computationally
tractable SLAM on data from a foot-mounted sensor. The par-
ticle filter measurement update given the pseudo zero-velocity
measurements are omitted. The particle filter measurements
were attempted included but found to reduce the spread of the
particle cloud so much that all the particles positions were the
same at the end of each footstep. What this means for the
final algorithm, is that the zero-velocity pseudo measurement
is not used to distinguish which particles are more likely. The
weights of the particles are only evaluated by investigating
the magnetic field. This ensures that the spread of the particle
cloud is large enough to discover revisitation of previous
positions.

V. EXPERIMENTAL RESULTS

The experimental results demonstrate how the proposed
Mag-SLAM algorithm for a foot-mounted sensor compensates
for drift by recognising patterns in the magnetic field norm
anomalies in previously visited positions. The results focus
on illustrating the removal of drift in a short trajectory in
a single tile, although the method scales to arbitrary long
trajectories, and it was demonstrated by [10] that the method
can be implemented using multiple tiles to scale to arbitrarily
large areas.

The position estimation results are compared with the
position estimation from an open-source implementation of
the ZUPT-aided EKF [5] run on the same measurements. The
parameters for the ZUPT-aided EKF were chosen to give as
good position estimates as possible given the test subjects
walking patterns. As the sensor is front-mounted, the position
estimate drifts more compared to what is reported for heel-
mounted sensors [4]. This drift can be used to demonstrate
visibly in a small experiment how the Mag-SLAM algorithm
can compensate for drift. Front-mounted sensors are also
easily available off-the-shelf compared to sensors integrated
into the heel of a boot. The parameters for the zero-velocity
detector were kept to their original values from the open-
source implementation, except for the threshold γ, that was

set to 3 · 105. The accelerometer and gyroscope covariance
matrices were set to Racc,t = σ2

aT I with σa = 0.12ms−3/2

and Rgyr,t = σ2
ωT I with σω = 0.006◦s−1/2, respectively.

The initial covariance for the position, velocity and orientation
was set to P0 = 0.12T I. The zero-velocity parameters, the
gyroscope and the accelerometer measurement noise, were
given the same values in the proposed Mag-SLAM algorithm.
The initial velocity and orientation covariance in the proposed
Mag-SLAM algorithm was set to P0 = 0.12T I, to reflect the
initial covariance in the ZUPT-aided EKF.

The domain Ω is chosen as the smallest possible cuboid
where each point is no closer than 2m of an initial position
trajectory estimate. The initial position trajectory estimate is
obtained by running the ZUPT-aided EKF implemented by
[6], and visually correcting for position drift by adding an
incrementally larger position correction to each position esti-
mate. In simultaneous localisation and mapping, there are no
measurements available to optimise Gaussian process hyperpa-
rameters [10]. We, therefore, set the hyper-parameters for the
Gaussian process a-priory. The magnetic field measurements
were normalised, so we expected magnetic field measurements
to have a magnitude of around σ2

SE = 1. As the magnetic
field anomalies tend to rapidly change along the z-direction
close to the floor [21], we set the length-scale lSE = 0.3
quite small to accurately estimate the details of the magnetic
field norm variations in the 3D space the foot-mounted sensor
moves through. The measurement noise was set to σm = 0.01,
slightly higher than the expected measurement noise in the
sensors data-sheet, to compensate for errors in the model. The
magnetic field measurements were down-sampled to 10Hz.
This reduces the number of measurement updates that need
to be executed while still collecting enough measurements to
create a magnetic field map.

Measurements were collected using an Xsens MTi 10 iner-
tial sensor. Figure 2 shows the experimental setup on a foot.
To evaluate the performance of the estimation, checkpoints
were marked with tape on the floor in the indoor environment
where the measurements were collected, as shown in Figure
4. To evaluate the accuracy of the position estimates, the root
mean squared error of the position estimate is calculated by
detecting the difference in position estimates when revisiting
the checkpoints.

To investigate how many basis functions were necessary
to accurately approximate the GP prediction, 200 simulated
magnetic field measurements were drawn from the GP prior
with the squared-exponential kernel with the chosen hyper-
parameters, and the prediction accuracy of the standard GP
in 100 non-overlapping test-positions were compared with the
accuracy of the Reduced-Rank GP prediction in the same 100
test positions. The result of this experiment is displayed in
Figure 3. The Reduced-Rank GP prediction converges to the
true GP prediction at approximately 2000 basis functions, so
Nm = 2000 basis functions is used to create the magnetic
field map. It is worth mentioning that using 2000 basis
functions to store the magnetic field in the particle filter is
computationally demanding. This is because each of the M



0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Fig. 3. The blue line shows the RMSE of a reduced-rank GP prediction
against the number of basis functions Nm that was used to approximate the
true GP prediction. The black dotted line shows the RMSE of the true GP
prediciton.

particles has a magnetic field state vector estimate m̂i
t that

has dimension Nm, and a magnetic field state covariance P i
m

that has dimension Nm ×Nm. The number of required basis
functions reduces when the length scale of the anomalies lSE

relative to the size of the domain Ω increases [10]. A way to
reduce the number of necessary basis functions is, therefore,
to use multiple tiles that each map a smaller domain. This
method was implemented by [10], and the results they present
indicate that executing the Reduced-Rank GP regression for
magnetic field mapping as it is done in this thesis in multiple
tiles rather than a single domain covering all of the estimated
positions is feasible.

Mag-SLAM has previously been demonstrated a usable
tool for drift removal in combination with drifting position
estimates from hand-held cellphones [10], and cleaning robots
[22], that both have smoothly varying movement patterns.
The results in Figure 7 and Figure 6 shows that Mag-SLAM
is also possible for 3D position estimation using a drifting
position estimate from a foot-mounted sensor.

When the ZUPT-aided extended Kalman filter is used to
estimate the position, the position estimate at the known
checkpoints drifts over time, as can be seen in Figure 5.
The root mean squared error of the ZUPT-aided EKF position
estimate at the checkpoints is 1.68 meters for the dataset used
in this figure.

The trajectory and magnetic field norm map of the current
highest-weight particle is displayed for four different times
in figure 6. The magnetic field estimation certainty is visibly
higher near the checkpoints. This is because the checkpoints
mark the location of the stance phase of the foot. In these
locations, more magnetic field measurements are available,
which gives a more confident prediction. The details of the
magnetic field anomalies become more apparent when the
area is visited multiple times, as can be seen by comparing
Figure 6, that shows the magnetic field map estimate after one

Fig. 4. The twelve labelled checkpoints used for collecting measurements

lap, with Figure 6 (d), that shows the magnetic field map at
the end of the six laps around the 12 checkpoints. This fits
with the fact that Gaussian process regression with a squared
exponential kernel predicts the function value more confidently
close to previous measurements [23]. The magnetic field is
visibly rich in spatial variation, which makes it possible for
the particle filter to compensate for drift in the position
estimate, as can be seen in Figure 7. The figure compares the
position trajectory for six laps around the marked checkpoints
with the positions estimated with the ZUPT-aided EKF with
the estimate using the proposed Mag-SLAM algorithm. The
RMSE of the revisitation of the checkpoints for the zero-
velocity aided extended Kalman filter for this experiment is
1.68 m, while the RMSE of the checkpoint position estimates
for the Mag-SLAM method is 0.16 m.
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Fig. 5. Position estimate using the ZUPT-aided extended Kalman filter. The
estimated positions at the checkpoints are marked with red circles.



(a) t = 2s (b) t = 19s (c) t = 38s (d) t = 100s

Fig. 6. The blue trajectory show the current highest weight particle, and the positions of all the particle are marked with black dots. The colour correspond
to the predicted magnetic field norm value, and the opacity is inversely proportionate with the variance of the estimate.
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Fig. 7. Comparison of the position trajectories obtained from the zero-velocity
aided extended Kalman filter and the proposed Mag-SLAM algorithm for foot-
mounted sensor
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Fig. 8. Estimated positions of checkpoints in the estimated trajectory using
Mag-SLAM on a foot-mounted sensor

VI. CONCLUSION

The proposed method for Mag-SLAM on a foot-mounted
sensor remedies the drift in the position estimate from the
ZUPT-aided EKF. It can be extended to scale to an arbitrarily
large area by using multiple tiles, as was demonstrated by
[10]. Further research could be in the direction of making a
map of all three magnetic field components instead of only
the magnetic field norm or investigate if the method can
be made tolerant to changes in the magnetic field due to
building collapse or extreme temperatures. Further research
could also investigate if maps from multiple sources could
be fused to one map so that in a team of search and rescue
workers, the measurements from one worker can benefit the
whole team. Another natural extension is to investigate how
different movement patterns can be taken into account, such
as crawling, jumping or running.
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