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Summary

Snake robots are a class of biologically inspired robots which are built
to emulate the features of biological snakes. These robots are underactu-
ated, i.e. they have fewer control inputs than degrees of freedom, and are
hyper redundant, i.e. they have many degrees of freedom. Furthermore,
snake robots utilize complex motion patterns and possess a complicated
but highly flexible physical structure. These properties make locomotion
control of snake robots a complicated and challenging control problem.

This thesis considers model-based locomotion control of planar snake
robots. In particular, based on kinematic and dynamic models of the snake
robot locomotion, using different control approaches we derive feedback
control laws in order to solve various control problems. Moreover, through
rigorous mathematical stability analysis, we prove the stability of the con-
trolled system. It is noteworthy to mention that due to the complicated dy-
namical behavior of snake robots which gives rise to a complex dynamic
model, and also the underactuation which is characterized by the lack of
direct and independent control inputs for at least three degrees of freedom
of the snake robot, the vast majority of the previous works on snake robots
and similar multi-link robotic structures use numerical simulations and
experimental results which are obtained using different robotic snakes, as
the main tools to show the performance of the proposed controllers. In
contrast, however, in this work based on nonlinear control theory, we take
a model-based control design approach and we present formal stability
proofs for the closed-loop systems along with numerical simulations and
experimental results. The simulations and experiments are performed for
a snake robot which is composed of N similar links which are serially con-
nected through N − 1 joints. The first N − 1 links are independently ac-
tuated using electric motors, however, the N -th link which we refer to as
the head link of the snake robot is passive. This makes the orientation and
position of the center of mass of the robot underactuated.

The contributions of the thesis are presented in six chapters, and can
be categorized in two types; contributions to modelling and contributions
to control design for snake robots. The contributions and contents of each
chapter are as follows.

In Chapter 1, we discuss the fundamental properties of the snake robot
locomotion, and we investigate the most common types of gait patterns
used by biological snakes. Furthermore, in this chapter we review the
relevant previous works on snake robots and we present the abstracts of
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the academic papers which form the basis of the thesis.
In Chapter 2, we present three different modelling techniques for the

snake robot locomotion on horizontal and flat surfaces. The first dynamic
model is derived based on the Lagrangian approach to modelling me-
chanical systems, and the equations of motion are written in the stan-
dard second-order form. The second dynamic model is derived using the
techniques of differential geometry, and this model contains the effects of
parametric modelling uncertainties on the locomotion of the robot. The
first and the second models which are referred to as the complex model of
the snake robot, are among the contributions of the thesis and to our best
knowledge have not been presented in any previous works. The third
model that we present in Chapter 2 is a simplified model of the snake
robot locomotion which is previously presented in [11]. In this simpli-
fied model, the rotational motion of the joints is mapped to translational
link displacements. Through this mapping, which is shown to be valid for
small joint angles, many of the strong nonlinear terms which are present
in the dynamics of the system are approximated by simpler linear terms,
and these approximations make the resulting simplified dynamic model
more amenable to model-based control design.

In Chapter 3, we consider body shape and orientation control for lo-
comotion of snake robots. In particular, in this chapter we aim to control
the body shape of the robot to a desired gait pattern, and the orientation of
the robot to a reference angle defined by a path following guidance law. To
this end, using the joint torques we stabilize a desired gait pattern among
the directly actuated body shape variables which define the internal con-
figuration of the robot. Furthermore, we use a gait parameter in the form
of a dynamic compensator which controls the orientation of the robot to a
reference angle defined by the path following guidance law. Through nu-
merical simulations and experiments which are performed using a robotic
snake, we show that this control approach makes the robot converge to
and follow a desired geometric path. Moreover, using an input-output sta-
bility analysis we show that the solutions of the controlled system remain
uniformly bounded. Furthermore, in this chapter using sliding mode tech-
niques, we design a body shape and orientation feedback controller which
successfully makes the robot follow a desired path even in the presence of
strong nonlinear terms in the dynamics of the robot arising due to para-
metric modelling uncertainties.

In Chapter 4, we utilize the simplified model of the snake robot loco-
motion to carry out the model-based feedback control design for the robot.
In particular, we use the method of virtual holonomic constraints (VHC) to
address direction following and maneuvering control of the snake robot.
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In the direction following problem, the control objective is to regulate the
linear velocity vector of the snake robot to a constant reference while guar-
anteeing boundedness of the system states. Furthermore, in the maneu-
vering problem, the control objective is to make the robot converge to a
geometric path, and to move along the path according to a desired ve-
locity profile. Using the VHC method, we stabilize the solutions of the
dynamics of the robot to a constraint manifold. The constraint manifold
is defined based on VHC which encode a lateral undulatory gait pattern.
Moreover, this gait pattern is parameterized by the states of two dynamic
compensators which are used to control the forward velocity and orienta-
tion of the robot.

In Chapter 5, we utilize the complex model of the snake robot locomo-
tion in order to address the direction following and maneuvering control
problems. In particular, first we stabilize VHC for the body shape vari-
ables of the system which encode a lateral undulatory gait pattern. The
VHC are composed of a sinusoidal part and an offset term. The sinusoidal
part is employed to induce the lateral undulatory motion and the offset
term is used to reorient the robot in the plane. Furthermore, the VHC are
dynamic in that they depend on the states of two dynamic compensators
which are used in order to control the forward velocity and orientation
of the robot. In particular, using a high-gain feedback on the offset term,
we turn the controlled orientation dynamics of the robot into a singularly
perturbed form, for which we show that the orientation error can be made
arbitrarily small. In addition, we use the frequency of the oscillations of
the snake body, i.e. the frequency of the desired gait pattern, as a virtual
control input which is used to control the forward velocity of the robot.
Using backstepping techniques, we make the forward velocity error arbi-
trarily small and make the normal velocity converge to a small neighbor-
hood of zero. This solves the direction following problem. In order to ad-
dress the maneuvering problem using VHC, we use a hierarchical control
approach based on a reduction theorem for asymptotic stability of dynam-
ical systems presented in [98]. In particular, first we stabilize a constraint
manifold for the robot and then we control the reduced dynamics of the
robot on the constraint manifold using two dynamic compensators. These
dynamic compensators control the forward velocity and the head angle of
the robot to given references. Furthermore, we define the reference head
angle and the reference velocity of the robot such that the convergence of
the path following error to an arbitrarily small neighborhood of the origin
is guaranteed. Extensive numerical simulations are presented which vali-
date the performance of the proposed control strategies.
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Finally, in Chapter 6, we summarize the contributions of the chapters
and present some concluding remarks. Furthermore, we present topics for
possible future works on locomotion control of snake robots.
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CHAPTER1
INTRODUCTION

Snake robots are a class of biologically-inspired robots which are built to
emulate the structural characteristics of biological snakes. In general, the phys-
ical structure of snake robots consists of serially connected joint modules which
have the capability of motion in one or more planes, see Figure 1.1. Robust
crawling locomotion in cluttered environments, capability of traversing narrow
terrains due to the slenderness of the body, and the absence of dedicated loco-
motion organs such as legs and wings, are among the interesting characteristics
of biological snakes. Inspired by these properties, during the last four decades
many robotic researchers have attempted to build snake robots which can emu-
late the features of biological snakes. The resulting biologically-inspired robotic
systems, however, pose many interesting challenges both in terms of theoretical
developments and real-time applications. Proposing various methods for over-
coming these challenges has been the subject of many scientific publications
since the 70’s when the first snake robot was built [1], see Figure 1.1. However,
due to the intricacies in the mechanical structure and dynamical behaviour of
snake robots, locomotion control of these robots is still an active and open area
of research. Furthermore, the complexity in the dynamical behaviour of these
systems has enabled this type of robots to serve as a valuable benchmark ex-
ample for validating the effectiveness of many nonlinear control approaches.
Although control problems for snake robots are challenging, the attractive idea
of using these robots for operations where human presence is unsafe or impos-
sible, or where the traditional types of locomotion tools such as wheels and legs
are not effective, has made the snake robot community dynamic and progres-
sive.

In this thesis, motivated by the lack of model-based feedback control strate-
gies for snake robots, we try to bridge the gap between the nonlinear control
theory and applications for these robots. In particular, based on kinematic and
dynamic models of snake robot locomotion, we will employ various nonlinear
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Characteristics of Snake Robots 2

Figure 1.1: The snake robot ACM III (left), which was the world’s first snake robot
developed by Prof. Shigeo Hirose in 1972. Image source: [1]. The snake robot Uncle
Sam (right) developed at Carnegie Mellon University. Image source: [2]

control design tools, in order to design effective locomotion control strategies
which are verified by formal stability proofs for the corresponding closed-loop
systems. Furthermore, we will validate the proposed control strategies through
extensive numerical simulations and experimental results which are obtained
using a robotic snake.

1.1 Characteristics of Snake Robots

In this section, we investigate some structural characteristics of snake robots,
which are important both for theoretical developments and real-time applica-
tions. Some of the following characteristics have made snake robots an inter-
esting alternative for many applications. However, some of these properties
complicate the locomotion control problems and turn these robots into an inter-
esting benchmark example for theoretical developments on robotic systems.

Small Cross–Section: Snake robots are characterized by a slender body which
enables them to perform tasks in narrow environments. This makes them an
interesting alternative for many practical situations where human presence is
impossible or undesired. Pipeline inspection [3]–[5] and various medical appli-
cations [6]–[9] are examples of areas in which the slender body of snake robots
has made them a potentially useful tool.



3 Characteristics of Snake Robots

Figure 1.2: The snake robot Kulko (above), developed at the NTNU Snake Robot Lab
for motion in cluttered environments.. The snake robot Wheeko (below), developed at
the NTNU Snake Robot Lab for motion on horizontal and flat surfaces. Image source:
[11]

Hyper–Redundancy: Snake robots are a class of hyper-redundant robots which
are characterized by many degrees of freedom, see [90]. As a result, snake robots
are capable of performing many complicated tasks due to the presence of many
degrees of freedom. Moreover, this hyper-redundancy enables them to keep
mechanical stability even during the failure of some their actuators. However,
the presence of a large number of degrees of freedom complicates the dynamic
behaviour of the system and enlarges the resulting state-space for the dynami-
cal system. This makes the control problem challenging.

Underactuation: Snake robots are a class of underactuated mechanical systems
which are characterized by fewer control inputs than degrees of freedom [15].
In particular, a planar snake robot is underactuated with respect to the orienta-
tion and planar position. The underactuated variables of the system can only
be indirectly controlled, for example by exploiting the coupling terms with the
dynamics of the fully-actuated degrees of freedom of the system. Furthermore,
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motion control of underactuated mechanical systems is an active and open area
of research where there are very few general approaches. As a result, under-
actuated snake robots can be considered as a valuable benchmark example for
theoretical developments on underactuated mechanical systems.

Robust Locomotion: Massiveness in the variety of biological snakes on the
planet arises from the fact that snakes can robustly traverse various terrains.
Mimicking the features of biological snakes, snake robots can robustly locomote
on unstructured surfaces and cluttered environments. This superior property
of snake robots has made them an interesting alternative to traditional wheeled
and tracked locomotion systems, which might get tangled up in irregularities
in the terrain.

Vehicle–Manipulator Properties: Snake robots have the capability of being used
both as a vehicle, i.e. they can transport objects from one point to another point,
and as a robotic manipulator. The problem of mobile manipulation can be bro-
ken down into three sub-problems [10]: 1) the robot moves from its initial con-
figuration to a configuration close to the target object, 2) the robot grasps the
object, 3) the robot moves (holding the object) to another configuration which
places the object into its goal configuration. Due to mobility and manipulability,
snake robots are capable of effectively performing all these steps. This simul-
taneous vehicle-manipulator property has made them an interesting potential
agent for many real-time applications.

1.2 Biological Snakes

Snake robots are a class of biologically-inspired robots, i.e. they are built to
emulate the features of biological snakes. In particular, snake robots are in-
spired by structural characteristics of biological snakes, which enable them to
robustly traverse various challenging terrains which might be inaccessible for
many other types of traditional wheeled and legged based locomotion systems.

Throughout this thesis, we derive many parts of our design approaches for
locomotion control of snake robots based on biological observations. Conse-
quently, in this section we briefly review the unique characteristics of biological
snakes. The materials presented here are based on [1], [11], and [12].

1.2.1 Anatomy of Snakes

The skeletal structure of snakes is in general composed of vertebrae, ribs, and a
skull, see Figure 1.3. Snakes have between 130 to 500 vertebrae, and the ribs are



5 Biological Snakes

Figure 1.3: The skeleton of biological snakes consists of vertebrae, ribs, and a skull.
Image source: www.shutterstock.com

attached to each side of every vertebra in order to protect the internal organs of
the animal. The vertebrae constitute a column along the body of snakes, and the
spinal cord runs through a channel along this column. The primary function of
the spinal cord is to transmit neural signals between the brain and the rest of
body. Vertebral column protects the spinal cord.

The neighbouring vertebrae are connected to each other and can perform
quite limited relative rotation (about 10◦to 20◦about the vertical axes and a few
degrees about the horizontal axes). However, the sum of all these small rota-
tions along the snake body gives a superior flexibility to the animal motion.

Snakes use their muscles for periodic body shape changes which lead to
locomotion. In particular, the muscles are diagonally arranged along each side
of the snake’s body, and their terminals are attached to the ribs. These muscles
often connect distant ribs, and sometimes adjacent ribs. Such as other animals,
snakes use contraction and relaxation of these muscles in order to gain different
motion patterns. We discuss these patterns in the next subsection.

The snake body is covered by a skin that is completely coated by scales
which are actually the thickened parts of the skin, see Figure 1.4. When the



Biological Snakes 6

Figure 1.4: The skin of biological snakes is covered by scales. Image source:
www.photography.nationalgeographic.com

snake moves on rough terrains, the scales protect the skin from cutting and
tearing. Furthermore, the scales on the skin play a fundamental role in snake
locomotion by providing anisotropic friction properties, i.e. the friction in the
tangential direction of the body is smaller than the friction in normal direction.
Studies of biological snakes and simulation studies have shown the importance
of this anisotropy in the locomotion of the snakes. In particular, in [28] experi-
mental studies on frictional characteristics of biological snakes skin shows that
the friction coefficient in the tangential direction of the body is smaller than
the friction coefficient in the normal direction. In case of snake robots, in [11]
it is shown that a snake robot which is subject to isotropic friction forces, i.e.
equal friction forces in the tangential and the normal direction of the links of
the robot, is not controllable. Consequently, we consider this anisotropic fric-
tion property as a fundamental assumption for the control designs which are
presented throughout this thesis.

1.2.2 Gait Patterns for Biological Snakes

Such as other animals, snakes use periodic movement of the limbs in order to
achieve locomotion in the plane. These periodic body motions are known as the
”gait pattern”, and are among the diverse and elegant characteristics of each
animal, e.g. walking, running, and galloping. Similar to other animals, snakes
employ different types of locomotion patterns according to the characteristics
of the environments which they are moving in, e.g. a narrow environment or
a sandy surface, or based on the situation that the animal is experiencing, e.g.
preying, searching. In particular, snake robots use the following gait patterns:

• Lateral Undulation: This is the most common locomotion pattern among
biological snakes, see Figure 1.5. During lateral undulation, which is also
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Figure 1.5: Lateral undulation. Image source: The Encyclopaedia of Snakes [12]

Figure 1.6: Concertina locomotion. Image source: The Encyclopaedia of Snakes [12]

known as serpentine crawling, continuous waves are propagated back-
ward along the snake body from head to tail [1]. While these waves are
travelling along the snake body, the animal pushes the sides of its body
against the irregularities of the surface, and consequently moves forward.
Lateral undulation provides the fastest type of locomotion among biologi-
cal snakes. As noted in e.g. [1], each part of a snake body which is moving
based on lateral undulation follows the path traced out by the head.

• Concertina Locomotion: This type of locomotion pattern is often used for
narrow spaces where the possible range of motion is small. The motion is
carried out by first extending the front part of the body forward while the
back part is curved several times to provide an anchor against the narrow
environment [11]. Once the front part of the snake body is completely ex-
tended, it is then similarly employed to provide an anchor so that the back
part of the snake body can be drawn up. The same pattern gets repeated,
see Figure 1.6.

• Sidewinding: This type of locomotion pattern is often used by the snakes
which live on sandy terrains, e.g. desert snakes. Roughly speaking, the
sidewinding motion consists of two parts. In the first part, the snake raises
and moves the front part of its body sideways, while the back part pro-
vides an anchor against the ground, until the front part is again on the
ground. In the second part, the front part provides an anchor against
the ground and the back part is raised and moves sideways. During
sidewinding, the snake moves at about 45◦with respect to its heading and
leaves a trail of characteristic marking in the sand [11], see Figure 1.7.
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Figure 1.7: Sidewinding. Image source: The Encyclopaedia of Snakes [12]

Figure 1.8: Rectilinear Crawling. Image source: The Encyclopaedia of Snakes [12]

• Rectilinear Crawling: In this type of locomotion pattern, the snake em-
ploys the edges of the scales which are located on the underside of its body
as anchor points in order to propel itself forward on an almost straight
line, see Figure 1.8. The operation consists of stretching forward and hook-
ing the edges of the scales over small irregularities, then pulling the body
up to this point [11]. Other parts of the body will perform this pulling and
stretching action simultaneously as well. This type of locomotion pattern
is often used by the snakes which have a heavy body, or in general by
snakes during their approach to a prey to avoid altering it.

1.3 Preliminary Remarks and Literature Review

In this section, we review some of the most important and relevant literature
on snake robots. Early empirical and analytical studies of biological snake loco-
motion were presented in the 1940’s by Gray [13]. Since the 1970’s, a significant
amount of scientific results have been published, which have investigated snake
robots and similar multi-link robotic systems, e.g. eel like or underwater snake
robots. Consequently, in order to present an efficient literature review for snake
robots, first we need to categorize these robots to some sub-classes.

In general, based on the kinematics and dynamics, snake robots can be cat-
egorized into two classes; snake robots which are subject to nonholonomic ve-
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locity constraints, and snake robots which are not subject to any nonholonomic
velocity constraint. Motion control of both classes of snake robots has been con-
sidered in several previous works. Furthermore, many previous works have
derived controllers for snake robots based on various control approaches. How-
ever, due to complexities in the dynamical behaviour of snake robots and un-
deractuation, very few works have presented formal stability proofs for the
closed-loop systems. As a result, a majority of the previous works have val-
idated their controllers using numerical simulations or by performing experi-
ments on robotic snakes.

1.3.1 Holonomic versus Nonholonomic Constraints

In this subsection, based on [14], we briefly review the concepts of holonomic
and nonholonomic constraints for mechanical systems. In particular, the motion
of the constrained mechanical systems is subject to constraints that may arise
from the structure of the mechanism, or from the way in which it is actuated
and controlled [14].

Consider a mechanical system with the configuration vector q representing
the configuration space Q, which is an n–dimensional smooth manifold locally
diffeomorphic1 to the n–dimensional Euclidean space Rn. We denote a trajec-
tory in the configuration space as q(t) ∈ Q. The vector of the generalized veloc-
ities is given by q̇ which takes values in the tangent space TqQ. For this system,
the motion restrictions can be represented by time-independent equality con-
straints of the form

hi(q) = 0, i = 1, . . . , k < n (1.1)

where hi : Q → R are smooth functions, which are called holonomic con-
straints. In general, these constraints are introduced to mechanical systems
through physical connections between different parts. A mechanical system
whose constraints are all holonomic, is called a holonomic system [14]. These
constraints confine the attainable configurations of the system to an (n − k)–
dimensional submanifold of Q. As a result, the configuration of the system on
this submanifold can completely be described by (n − k) variables which are
called degrees of freedom of the system.

Another type of constraints for mechanical systems can be described by ve-
locity dependent equalities of the form

ai(q, q̇) = 0, i = 1, . . . , k < n (1.2)

1There is a smooth and invertible function which maps one smooth manifold to another and
the inverse of this function is smooth as well.
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where ai : TQ → Rn are smooth and linearly independent vector-valued func-
tions, which are called kinematic or velocity constraints. These constraints will
limit the admissible motions of the system by restricting the set of generalized
velocities that can be attained at a given configuration [14]. Velocity constraints
are typically represented in the Pfaffian form, i.e. linear in the generalized veloc-
ities, as

ai(q)
T q̇ = 0, i = 1, . . . , k < n (1.3)

Consider a single velocity constraint in the following Pfaffian form

aT (q)q̇ = 0 (1.4)

We call (1.4) a nonholonomic constraint, if it is not integrable into the holo-
nomic form (1.1). Nonholonomic constraints affect the instantaneous mobility
of the system, but they do not reduce the number of the generalized coordinates.

The class of snake robots that we consider throughout this thesis are not
subject to nonholonomic velocity constraints.

1.3.2 Underactuated Mechanical Systems

The main reason that makes locomotion control problems for snake robots chal-
lenging is the underactuation. An underactuated robot is a robot with fewer
actuators (control inputs) than the number of variables describing its configura-
tion (degrees of freedom) [15]. In general, underactuation may arise due to the
following reasons, see [16]:

• Dynamics: The way in which control forces and torques affect the motion
of the system, i.e. the dynamics of the system. For example, ships, aircraft.

• Design: Presence of flexible components such as gearboxes and springs
in the physical structure of a mechanical system makes it underactuated.
Furthermore, special designs for reducing weight, cost, or energy con-
sumption can make the system underactuated.

• Actuator Failure: If throughout an operation, the robot loses one or some
of its actuators, then the robot can turn into an underactuated system.

• Benchmark Example Robots used for Research: Some robots are artifi-
cially made underactuated, and are used as benchmark examples for the-
oretical developments on underactuated control systems theory. Robots
such as underactuated multi-link pendulums, Pendubot, Acrobot, and
Cart-Pole are examples of these underactuated systems.
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The underactuation leads to a constraint that can be described by acceleration
dependent equalities of the form ai(q, q̇, q̈) = 0. Underactuated systems are thus
also denoted second-order nonholonomic systems. The complexity of control-
ling underactuated mechanical systems is often associated with the fact that it
is challenging to find an appropriate feedback transform and a change of co-
ordinates to rewrite the dynamics in a linear format [103]. An N -link planar
snake robot which moves on a horizontal and flat surface, and is not subject to
nonholonomic velocity constraints, has (N + 2) degrees of freedom. However,
only (N − 1) of these degrees of freedom are directly and independently actu-
ated by motors which are mounted on the joints of the robot. Consequently,
a planar snake robot without nonholonomic velocity constraints has three de-
grees of underactuation. In particular, the position of the center of mass and the
orientation represent the underactuated degrees of freedom of the snake robot.

1.3.3 Snake Robots with Nonholonomic Velocity Constraints

The majority of previous works on snake robot control consider snake robots
with nonholonomic velocity constraints, which is inspired by the world’s first
snake robot developed in 1972, see [1]. The nonholonomic constraints are in
the form of sideslip constraints on the links of the robot, i.e. where each link is
constrained from moving sideways, and are usually introduced to the system
by installing passive wheels along the body of the robot, see Figure 1.9. These
constraints allow the control input to be specified directly in terms of the de-
sired propulsion of the snake robot, something which is employed in [19]–[21]
for computed torque control of the position and heading of snake robots with
nonholonomic velocity constraints. In [22]–[24], by using tools from differential
geometry it is shown how the sinusoidal inputs can induce forward propulsion
on snake robots, and also the controllability properties of snake robots with
passive wheels are investigated. In [25] and [33], position and path follow-
ing controllers are proposed for the case where some, but not all, of the snake
robot links are subject to sideslip constraints. These constrained links can be
lifted from the ground, which gives the system more degrees of freedom that
can be utilized to follow a trajectory while simultaneously maintaining a high
manipulability. Similar approaches are considered in [26], where strategies for
sinus-lifting during the lateral undulatory motion are proposed. In [27], a path
following controller for a snake robot with nonholonomic velocity constraints
is proposed, and Lyapunov analysis is employed in order to analyze the con-
trolled system. In [29], a continuum dynamic model of a 3D snake robot is
derived, where the snake is modelled as a continuous curve that cannot move
sideways. In [30]–[32], path following controllers for snake robots with passive
wheels which move based on lateral undulation are proposed. In particular,



Preliminary Remarks and Literature Review 12

these controllers are derived based on minimizing the lateral constraint forces
on the wheels of the robot. Path following controllers for wheeled snake robots
which are derived using Lie bracket calculations and controllability analysis
are proposed in [34]–[35]. In [36], a biomimetic approach which is based on
the central pattern generator (CPG), i.e. a rhythmical motion generator that can
generate self–induced oscillations, is proposed. Moreover, it is shown that the
locomotion curvature of the robot and the motion velocity can be changed by
adjusting the CPG parameters, and the theoretical results are validated using a
wheeled snake robot.

Remark 1.1 The common approach that is used for locomotion control of snake robots
with nonholonomic velocity constraints is to employ the constrains to establish a con-
nection between the internal body shape changes and the resulting locomotion of the
robot, see e.g. [19,27,30,32,33]. Such approaches are the only known approaches for
motion control of wheeled snake robots which infer some formal and model-based con-
clusions on the motion of the robot [37]. In particular, snake robots with passive wheels
can be controlled at a kinematic level, i.e. control inputs can be derived in the form
of time-differentiable velocities using the connection between the shape changes and
locomotion. Note that even in this case the actual control inputs of the snake robots
are accelerations which are obtained by time-differentiation of the velocities. Moreover,
many of the previous works on wheeled-snake robots use numerical simulations and
experiments for validating their control approaches, i.e. instead of presenting formal
mathematical stability proofs.

1.3.4 Snake Robots without Nonholonomic Velocity
Constraints

Locomotion control of snake robots without nonholonomic velocity constraints
is only considered in a few previous works. This class of snake robots includes
wheel-less snake robots, for which the locomotion mechanisms are more similar
to biological snakes, see e.g. [11]. Furthermore, wheel-less snake robots are in-
teresting for traversing even more challenging environments where the passive
wheels may slip or get tangled up in irregularities in the terrain.

In the previous subsection we stated that snake robots with passive wheels
can be controlled at a kinematic level. However, snake robots without nonholo-
nomic velocity constraints should be controlled in a dynamic level. In partic-
ular, due to the absence of passive wheels, i.e. lack of nonholonomic velocity
constraints, there is no established connection between the body shape changes
and the resulting locomotion of the center of mass of the robot. This can com-
plicate the control design.
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In [39], a control strategy is proposed for sinus-lifting during lateral undu-
lation by solving a quadratic optimization problem. In [40], chain fitting and
wave extraction are used in order to generate a variety of rolling and sidewind-
ing gaits. Annealed chain fitting efficiently maps a continuous backbone curve
describing the 3D shape of the robot by a set of joint angles, while wave extrac-
tion makes the joint angles fit to a sequence of backbone curves and identifies
parameterized periodic functions that produce those sequences. Together, they
allow a gait designer to conceive a motion in terms of three-dimensional shapes
and translate them into easily manipulated wave functions [40]. In [41], path
following control of swimming snake robots is achieved by moving the joints
according to a predetermined gait pattern while introducing an angular offset
in each joint to steer the robot to some desired path, i.e. controls the orientation.
Methods based on numerical optimal control are considered in [42] for deter-
mining optimal gaits during positional control of snake robots. In [43], numer-
ical simulations are used to study the properties of lateral undulation that are
related to the optimality of motion of the snake robot. In [44] cascaded systems
theory is employed to achieve path following control of a snake robot described
by a simplified model. In this simplified model of the snake robot, the motion of
the links is approximated as translational motion instead of rotational motion,
an approximation which is valid for small joint angles. Also it is shown that by
controlling the orientation of the robot to a reference angle defined by a Line-
of-Sight guidance law, the robot converges to and follows a desired straight
path. In [45], controllability and stability analysis of planar snake robot loco-
motion is considered, and the stability results for a path following controller
based on numerical investigations using Poincaré maps are presented. All the
above works consider snake locomotion on flat surfaces. In [91], averaging the-
ory is employed to investigate the velocity dynamics of the snake robot during
lateral undulatory motion, and to show that the average forward velocity will
converge exponentially to a steady state value.

1.3.5 Snake Robots in Cluttered Environments

The idea of obstacle-aided locomotion [46] of snake robots, which is based on
actively utilizing external objects to move forward in cluttered environments
and on irregular surfaces, has been considered in several papers. In partic-
ular, in [46]–[49], hybrid dynamical models of obstacle-aided locomotion of
snake robots are presented. Hybrid dynamical systems are a class of dynam-
ical systems which contain both continuous and discontinuous state evolution,
i.e. the state variables can both flow and jump, see e.g. [50]. A hybrid model
of snake robot locomotion based on a timestepping method, i.e. without track-
ing discrete events, is presented in [46]. In [47], a shape curve-based approach
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Figure 1.9: The snake robot ACM R3 (above) developed at Tokyo Institute of Technol-
ogy. The robot is covered with passive wheels. Image source: [17]. The snake robot
ACM R5 (below) developed at Tokyo Institute of Technology. The robot is covered by
passive wheels and can swim under water. Image source: [18]

to obstacle aided locomotion is presented where new push-points for robot-
obstacle contact are identified online and a corresponding robot shape curve
is calculated. A hybrid model derived based on event-tracking is presented in
[48], where also a hybrid control strategy employing measured contact forces
is proposed which can maintain propulsion while simultaneously preventing
the snake robot from getting jammed between obstacles. The results of [48] are
experimentally validated in [49]. A curve fitting algorithm is proposed in [51],
which determines the shape of the robot with respect to obstacles in the environ-
ment. Moreover, this shape is propagated backwards along the snake body and
this pushes the robot forward. Among the first works on snake robot control in
cluttered environments, in [1] an obstacle avoidance strategy is proposed that
modifies the shape of a snake robot based on contact force measurements along
the snake body to avoid obstacles. In [52], compliant locomotion that adapts
automatically to the robot’s surrounding terrain, is achieved by controlling the
torques exerted by the joints of the robot.
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Figure 1.10: The snake robot Mamba (above) developed at NTNU. The robot is
equipped with contact force sensors along its body. Image Source: [38]. The Snake
Arm (below) without passive wheels, which is a holonomic mechanical system. Image
courtesy of OC Robotics, www.ocrobotics.com.

Figure 1.11: Snake robots can be used for pipeline inspections (left). The snake robot
PIKo (right) developed for pipeline inspection. Image source: www.robotnor.com
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Figure 1.12: Snake robots can be used for fire fighting. Image source: [11].

Figure 1.13: The snake robot Anna Konda developed at NTNU for fire fighting oper-
ations. Image source: [11]
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Figure 1.14: Due to their structural flexibility, snake arms can be used for inspection
tasks where human presence is unsafe or unwanted. Image courtesy of OC Robotics,
www.ocrobotics.com.

Figure 1.15: Snake robots can be used for pipeline inspections. Image: Jiuguang Wang
[58] (below), and D. Rollinson [2] (above)
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1.3.6 Real–Time Applications of Snake Robots

The unique characteristics of snake robots which were discussed in Section 1.1,
such as the small cross section, hyper redundancy and high flexibility of the
body that can be bent in one or more planes, have made these robots an excellent
alternative agent for many real-time applications. In particular, many previous
works focus on fire fighting, search and rescue, medical, pipeline inspection,
and other industrial applications of snake robots.

For fire fighting applications, the idea is to build a self-propelled robotic
fire hose which is inspired by biological snakes that can crawl into a burning
building and extinguish a fire on its own without exposing human fire fighters
to risk. The resulting robotic system works based on being connected to a sta-
tionary water supply through a flexible hose [53], see Figures 1.12–1.13. In [55],
a control algorithm and design of a pipe crawling robot which can be used for
the purpose of earthquake rescue and pipeline maintenance is presented. This
robot is designed such that it can intelligently change its body shape in order to
fit the pipe or tunnel-like voids within rubble.

Snake arm robots, i.e. snake robots mounted on a mobile base, see Figure
1.14, are a class of hyper-redundant manipulators which are basically charac-
terized by their ability to navigate through complex and narrow environments.
In [56], a sequential quadratic programming optimization approach is used to
minimize a set of changes to the configuration of the snake arm that allows the
robot to follow a desired trajectory with minimal error. In [57] and [67], design
and control of a mobile hyper-redundant urban search and rescue robot in the
form of an snake arm is considered. This system is capable of inspecting areas
reachable by the mobile base, besides unreachable areas such as small cracks
and pipes, using the camera and sensors mounted on its end-effector. Cooper-
ation between dogs and snake robots for urban search and rescue missions is
considered in [68].

Medical applications of snake robots and snake arms are reported in some
previous works. In [59]–[62], image-guided surgery using snake robots and
snake arms are considered. Open heart surgery using a snake robot is reported
in [63]. In [64]–[65], the small-cross section and superior flexibility of snake
robots are used for applications in minimally invasive surgeries. In [66], using
Lie algebra, an algorithm for accurate estimation of the shape of a snake robot
inside the body relative to the organs is presented.

Among various potential applications of snake robots in industry, the most
relevant one is probably pipeline inspection, where the slenderness and high
flexibility of the snake robot body is crucial, see Figure 1.15. Researchers at
NTNU have developed a prototype named PIKo [69]–[71], see Figure 1.11, which
is a robot with several identical joint modules that are equipped with motor-
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ized, i.e. active, wheels. The system is designed to handle complex pipe net-
work structures with corners, T-joints, vertical branching and varying diame-
ter. In [72], a method of estimating a snake robot’s motion inside and outside
of straight pipes is presented which only uses the measurements of the robot’s
joint angles. This is done by introducing an approach to constructing a body-
fixed frame for the robot which is aligned with the centerline of the straight
pipe. In [73]–[74], pipe navigator snake robots are developed which employ
planar sinusoidal gaits for moving through pipelines. In [75], development of
an autonomous in-pipe robot is presented which performs online ultrasonic in-
spection for pipe wall thickness, in order to find the location of defect. In [76],
a compliant controller for straight pipes is presented which allows the robot to
automatically adapt to the shape of its environment while doing pipe naviga-
tion. The results of [76] are expanded in [5] to complex pipe networks where the
compliant controller estimates the overall state of the robot in terms of the pa-
rameters of a gait. The controller then commands new gait parameters relative
to that estimated state.

1.4 Scope of the Thesis

The following subjects form the scope of the research work that is presented in
this thesis.

1.4.1 Motion on a Planar and Flat Surface

Throughout this thesis, we consider modelling and locomotion control of snake
robots which move on a horizontal and flat surface. Although snakes in general
move in 3D space, however, the essential principles of locomotion control of
snake robots can be captured in 2D space. Furthermore, the locomotion of snake
robots in 3D consists of a combination of link oscillations in a vertical and a
horizontal surface.

1.4.2 Locomotion without Nonholonomic Velocity Constraints

The long-term goal of this project is to realize broad applications of snake robots
in real-life. These applications mostly include using snake robots in unstruc-
tured environments where the surfaces are not flat. Consequently, in this thesis,
we focus on locomotion control of snake robots without passive wheels, i.e.
without nonholonomic velocity constraints, for which the links can move side-
ways. The application of this class of snake robots thus opens up important step
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further towards real-time applications. Only few previous works have investi-
gated locomotion control problems for this type of snake robots.

1.4.3 Model–based Locomotion Feedback Control

As we stated before, the main objective of this thesis is to contribute to devel-
opment of model-based feedback control design for snake robots. In particular,
based on kinematic and dynamic models of the snake robot locomotion, we
derive solutions for various locomotion control problems, and we present for-
mal stability proofs for the closed-loop systems. In particular, for the class of
snake robots that we consider in this thesis, there have been few model-based
feedback control designs presented so far. Motivated by the lack of analytical
control approaches relying on formal stability proofs, in this thesis we develop
feedback control approaches that are both verified through model-based analy-
sis and simulations plus experiments.

1.4.4 Locomotion based on Lateral Undulation

Throughout this thesis, we will use lateral undulatory locomotion as the de-
sired motion pattern for the snake robot. In particular, after stabilizing this gait
pattern which leads to forward locomotion, we will use the gait parameters as
additional control terms which are used in order to achieve additional control
objectives, e.g. orientation and velocity control. This gait pattern is the most
common form of locomotion among biological snakes. Inspired by this biologi-
cal observation, we base the control designs on this type of snake locomotion.

1.5 Contributions of the Thesis

We titled this thesis as ”Model-based Locomotion Control of Underactuated Snake
Robots”. As the title describes, the main objective of this thesis is to contribute to
further theoretical developments of locomotion control theory for snake robots
based on the dynamic model of the system. Following this main goal, we have
made several contributions to snake robot control that are described in details
below.

Chapter 2

Topic: We derive the dynamic model of the snake robot locomotion which is
used to carry out model-based feedback control design in the subsequent chap-
ters.
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Contributions: In Chapter 2, we present three different dynamic models of
snake robot locomotion. The derivation of the first and the second model are
among the contributions of this thesis. However, the third model which rep-
resents a simplified kinematic and dynamic model of the snake robot, is pre-
viously derived in [11]. In particular, the first contribution of the chapter is to
derive a dynamic model of the snake robot that describes the motion of the sys-
tem in a Lagrangian framework. Using the Lagrangian function, we derive the
equations of motion in the standard second-order form. Furthermore, we inte-
grate the effects of anisotropic friction forces acting on the system by using the
Jacobian matrices of the center of mass of the links. The second contribution of
this chapter is to derive the equations of motion of the snake robot using the
techniques of differential geometry. In particular, using the Riemannian metric,
Christoffel symbols, and Jacobian matrices of the links, we derive the natural
representation of the equations of motion of the robot. Moreover, we add the ef-
fects of parametric modelling uncertainties to these equations. In addition, we
use partial feedback linearization to write this model in a form which is more
amenable to model-based control design.

Chapter 3

Topic: In Chapter 3, we present body shape and orientation controllers which
induce path following on the robot.

Contributions: The first contribution of this chapter is to design a body shape
and orientation controller for the snake robot through a dynamic feedback con-
trol law. In particular, we control the body shape variables which define the
internal configuration of the robot to a desired lateral undulatory gait pattern,
and we choose the gait parameters using a dynamic compensator which con-
trols the head angle of the robot to a reference head angle defined by a path
following guidance law. The second contribution of this chapter is to design a
robust body shape and orientation controller for the snake robot using sliding
mode techniques. In particular, we stabilize sliding surfaces for the solutions of
the joints and the head angle dynamics using sliding mode control techniques,
which guarantee that the body shape and orientation control objectives for the
robot are achieved even in the presence of strong nonlinear terms arising due
to parametric modelling uncertainties. The third contribution of this chapter is
to design a dynamic feedback control law for the body shape and orientation
of the robot which guarantees the uniform boundedness of the states of the dy-
namic compensator which controls the head angle of the robot. In particular,
the proposed control strategy controls the internal configuration of the robot
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according to a desired lateral undulatory gait pattern, and the head angle of the
robot in accordance with a reference angle provided by a path following guid-
ance law. Using numerical simulations and experiments with a robotic snake,
we show that the proposed control strategies in this chapter make the snake
robot converge to and follow a desired geometric path.

Chapter 4

Topic: In Chapter 4, we address various locomotion control problems based on
a simplified model of the snake robot.

Contributions: The first contribution of this chapter is to propose a direction
following controller which is derived based on a simplified model of the snake
robot locomotion. In particular, we solve the direction following control prob-
lem using the method of virtual holonomic constraints. In this method, we first
stabilize the solutions of the dynamics of the body shape variables to a con-
straint manifold. This manifold is defined based on the well-known reference
joint angle trajectories introduced in [1], which induce lateral undulatory lo-
comotion on snake robots. Afterwards, we evaluate the dynamic of the robot
on the exponentially stable constraint manifold where we use the gait param-
eters as two additional control terms which regulate the forward velocity and
orientation of the robot to constant references. The second contribution of this
chapter is a model-based solution to maneuvering control problem for the snake
robot using the method of virtual holonomic constraints. In particular, we sta-
bilize a constraint manifold for the body shape variables of the robot, and we
employ two dynamic compensator which control the orientation and position
of the robot on this manifold. Moreover, we control the orientation to a ref-
erence time-varying angle defined by a path following guidance law, and we
utilize the frequency of the body oscillations, i.e. the gait pattern, as an addi-
tional control term in order to control the position of the robot along a desired
path, and consequently we solve the maneuvering control problem. Extensive
numerical simulations are presented which validate the theoretical control de-
sign approach.

Chapter 5

Topic: In Chapter 5, we address various locomotion control problems based on
a complete dynamic model of the snake robot, which does not require the sim-
plifying assumptions on the model used in Chapter 4.

Contributions: The first contribution of this chapter is to design a direction
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following controller based on the complete dynamic model of the snake robot,
which regulates the head angle and forward velocity of the robot to constant
references. The second contribution of this chapter is to solve the maneuvering
control problem for the snake robot based on the complete dynamic model. In
particular, using the method of virtual holonomic constraints we stabilize a con-
straint manifold for the body shape variables, and we control the reduced dy-
namics of the system evaluated on the constraint manifold using two dynamic
compensators. The maneuvering control problem is solved for general contin-
uously differentiable curved paths. Extensive simulation results are presented
which validate the theoretical approach.

Publications

The materials presented in this thesis are based on several conference and jour-
nal papers which are listed below.

• E. Rezapour, P. Liljebäck, ”Path Following Control of a Planar Snake
Robot with an Exponentially Stabilizing Joint Control Law”, in Proc.
IAV 2013 - IFAC Symposium on Intelligent Autonomous Vehicles, Vol. 8,
Part 1, pp. 28–35, Gold Coast, Australia, June 2013.

This paper considers the problem of path following control of a planar
snake robot without sideslip constraints. We use Lagrangian mechanics to
derive the dynamical equations of motion of the system. The possibility of
controlling the orientation of the robot in the absence of external dissipa-
tive forces is investigated. An exponentially stabilizing joint control law
for the directly actuated shape variables of the robot is presented. We ana-
lytically design a guidance-based path following control law for the snake
robot, and we show that the trajectories of the heading error dynamics are
ultimately bounded with a bound that can be made arbitrarily small. The
efficiency of the control design is shown with numerical simulations.

• E. Rezapour, K. Y. Pettersen, P. Liljebäck, and J. T. Gravdahl, ”Path Fol-
lowing Control of Planar Snake Robots Using Virtual Holonomic Con-
straints”, in Proc. 2013 IEEE International Conference on Robotics and
Biomimetics (ROBIO 2013), pp. 530-537, Shenzhen, China, Dec. 12–14,
2013.

This paper considers path following control of planar snake robots using
virtual holonomic constraints. We first derive the Euler-Lagrange equa-
tions of motion of the snake robot. Moreover, we integrate the effects
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of friction forces into these equations. Subsequently, we define geomet-
ric relations among the generalized coordinates of the system, using the
method of virtual holonomic constraints. These appropriately defined
constraints shape the geometry of a constraint manifold for the system,
which is a submanifold of the configuration space of the robot. In par-
ticular, we show that the constraint manifold can be made invariant by a
suitable choice of feedback. Furthermore, we analytically design a smooth
feedback control law to render the constraint manifold exponentially sta-
ble for the controlled system. We show that enforcing the appropriately
defined virtual holonomic constraints implies that the robot converges to
and follows a desired geometric path. Numerical simulations are pre-
sented to support the theoretical design.

• E. Rezapour, K. Y. Pettersen, P. Liljebäck, and J. T. Gravdahl, ”Differen-
tial Geometric Modelling and Robust Path Following Control of Snake
Robots Using Sliding Mode Techniques”, in Proc. IEEE International
Conference on Robotics and Automation (ICRA 2014), Hong Kong, China,
31 May – 5 June, 2014.

This paper considers straight line path following control of wheel-less
planar snake robots using sliding mode techniques. We first derive the
Poincaré representation of the equations of motion of the robot using the
techniques of differential geometry. Furthermore, we use partial feedback
linearization to linearize the directly actuated part of the system dynam-
ics. Subsequently, we propose an analytical solution to the robust path
following control problem in two steps. In the first step, we use sliding
mode techniques to design a robust tracking controller for the joints of the
robot to track a desired gait pattern. In the second step, we stabilize an
appropriately defined sliding manifold for the underactuated configura-
tion variables of the robot, thereby guaranteeing convergence of the robot
to the desired straight path. The paper presents simulation results which
validate the theoretical approach.

• E. Rezapour, K. Y. Pettersen, J. T. Gravdahl, and P. Liljebäck, ”Body Shape
and Orientation Control for Locomotion of Biologically-Inspired Snake
Robots”, in Proc. 5th IEEE RAS/EMBS International Conference on Biomed-
ical Robotics and Biomechatronics (BioRob 2014), São Paulo, Brazil, Aug.
12–15, 2014.

This paper considers guidance-based motion control of planar snake robots
using a dynamic feedback control law. We first present the Euler-Lagrange



25 Contributions of the Thesis

equations of motion of the robot. Subsequently, we introduce a dynamic
feedback control law for the joints of the robot to track a desired gait pat-
tern. This tracking control law depends on the time evolution of the state
variables of a dynamic compensator which is used for controlling the ori-
entation of the robot. In particular, we employ the dynamic compensator
to practically stabilize a reference head angle defined by a Line-of-Sight
path following guidance law. Using an input-output stability analysis, we
show the uniform boundedness of the solutions of the controlled system.
Furthermore, we use a perturbation analysis to show that the orientation
error is ultimately bounded by an arbitrarily small bound. Simulation re-
sults are presented to validate the theoretical results.

• E. Rezapour, A. Hofmann, K. Y. Pettersen, A. Mohammadi, and M. Mag-
giore, ”Virtual Holonomic Constraints Based Direction Following Con-
trol of Snake Robots Described by a Simplified Model”, in Proc. 2014
IEEE Multi-Conference on Systems and Control (IEEE MSC 2014), An-
tibes, France, Oct. 8–10, 2014.

This paper considers direction following control of planar snake robots for
which the equations of motion are described based on a simplified model.
In particular, we aim to regulate the orientation and the forward velocity
of the robot to a constant vector, while guaranteeing the boundedness of
the states of the controlled system. To this end, we first stabilize a con-
straint manifold for the fully-actuated body shape variables of the robot.
The definition of the constraint manifold is inspired by the well-known
reference joint angle trajectories which induce lateral undulatory motion
for snake robots. Subsequently, we reduce the dynamics of the system to
the invariant constraint manifold. Furthermore, we design two dynamic
compensators which control the orientation and velocity of the robot on
this manifold. Using numerical analysis and a formal stability proof, we
show that the solutions of the dynamic compensators remain bounded.
Numerical simulations are presented to validate the theoretical design.

• E. Rezapour, A. Hofmann, and K. Y. Pettersen, ”Maneuvering Control of
Planar Snake Robots Based on a Simplified Model”, in Proc. 2014 IEEE
International Conference on Robotics and Biomimetics (ROBIO 2014), Bali,
Indonesia, Dec. 5–10, 2014.

This paper considers maneuvering control of planar snake robots, for which
the equations of motion are described based on a simplified model. In par-
ticular, we aim to stabilize a desired straight line path for the position of
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the center of mass of the robot, and to regulate the forward velocity of
the robot along the path to a constant reference velocity. In order to solve
this problem, we first stabilize a desired gait pattern for the fully-actuated
body shape variables of the robot. Furthermore, we choose the parameters
of this gait pattern by means of two dynamic compensators which control
orientation and position of the robot in the plane. In particular, by solving
the maneuvering problem, we control the body shape, orientation, and
planar position of the robot.

• A. Mohammadi, E. Rezapour, M. Maggiore, and K. Y. Pettersen, ”Direc-
tion Following Control of Planar Snake Robots Using Virtual Holo-
nomic Constraints”, in Proc. 53rd IEEE Conference on Decision and Con-
trol (CDC 2014), Los Angeles, CA, Dec. 15–17, 2014.

This paper investigates the problem of direction following for planar snake
robots. The control objective is to regulate the linear velocity vector of the
snake robot to a constant reference while guaranteeing boundedness of
the system states. The proposed feedback control strategy enforces vir-
tual constraints encoding a lateral undulatory gait, parametrized by states
of dynamic compensators used to regulate the orientation and forward
speed of the snake robot.

• E. Rezapour, K. Y. Pettersen, P. Liljebäck, J. T. Gravdahl, and E. Kelasidi,
”Path Following Control of Planar Snake Robots Using Virtual Holo-
nomic Constraints: Theory and Experiments”, Robotics and Biomimetics,
SpringerOpen, 1:3, 2014.

This paper considers path following control of planar snake robots us-
ing virtual holonomic constraints. In order to present a model-based path
following control design for the snake robot, we first derive the Euler-
Lagrange equations of motion of the system. Subsequently, we define ge-
ometric relations among the generalized coordinates of the system, using
the method of virtual holonomic constraints. These appropriately defined
constraints shape the geometry of a constraint manifold for the system,
which is a submanifold of the configuration space of the robot. Further-
more, we show that the constraint manifold can be made invariant by a
suitable choice of feedback. In particular, we analytically design a smooth
feedback control law to exponentially stabilize the constraint manifold.
We show that enforcing the appropriately defined virtual holonomic con-
straints for the configuration variables implies that the robot converges to
and follows a desired geometric path. Numerical simulations and exper-
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imental results which are obtained using a robotic snake are presented to
validate the proposed controllers.

• A. Mohammadi, E. Rezapour, M. Maggiore, and K. Y. Pettersen, ”Maneu-
vering Control of Planar Snake Robots Using Virtual Holonomic Con-
straints”, IEEE Transactions on Control Systems Technology, 2014. Submitted.

This paper investigates the problem of maneuvering control for planar
snake robots. The control objective is to make the center of mass of the
snake robot converge to a desired path and traverse the path with a de-
sired velocity. The proposed feedback control strategy enforces virtual
constraints encoding a lateral undulatory gait, parametrized by states of
dynamic compensators used to regulate the orientation and forward speed
of the snake robot.





CHAPTER2
Modelling Methods for Snake

Robot Locomotion on
Planar Surfaces

In this chapter, we present various modelling techniques for a planar snake
robot without nonholonomic velocity constraints which moves on a horizontal
and flat surface. Since throughout this thesis, we utilize a variety of model-
based feedback control approaches in order to control the locomotion of the
robot, then it is important to carefully analyse the kinematic and dynamic equa-
tions describing the motion of the robot in the plane. In particular, in this
chapter we present three different techniques for modelling the snake robots
which are not subject to nonholonomic velocity constraints. The first technique
is based on the Lagrangian approach for modelling mechanical systems, which
derives the dynamics describing the motion of the robot in the standard second-
order form. The second technique includes the derivation of the equations of
motion of the robot in a differential geometric framework. Moreover, we inte-
grate the effects of parametric modelling uncertainties into the second model
which will then be used for robust control design in the subsequent chapters.
The third technique, which is previously presented in [11], derives a simpli-
fied kinematic and dynamic model of the snake robot locomotion. We will use
these models in the subsequent chapters for presenting various model-based
feedback control approaches for planar snake robot locomotion.

In particular, the first and the second model of the snake robot locomotion
that we present in this chapter contain the complete characteristics of the non-
linear dynamics of the robot. Thus, we refer to these models as the complex mod-
els of the snake robot. In contrast, however, the third model only contains parts
of the complete model which are essential to overall locomotion of the robot.
We refer to this model of the snake robot where some of nonlinear terms are ap-
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proximated by linear terms as the simplified model of the snake robot. In addition,
for all three models we use the technique of partial feedback linearization in or-
der to write the dynamics in a form which is more amenable to model-based
control designs.

In particular, the following three different models of snake robot locomotion
are be presented in this chapter.

Dynamic Model Derived based on the Lagrangian Approach: The first model of the
snake robot locomotion that we present in this chapter will be derived using
a Lagrangian approach. In particular, based on the Lagrangian function of
the robot, we will derive the Euler-Lagrange equations of motion of the robot.
In contrast with the previous works, which derive the equations of motion of
the snake robot mostly using a Newton-Euler formulation, this Lagrangian ap-
proach is simple to follow and is advantageous for complex systems such as
multi-link robots [86]. However, these equations are naturally equivalent to the
equations of motion which were derived based on a Newton’s second law in
many previous works such as [1] and [11].

Dynamic Model of the Snake Robots which are Subject to Parametric Modelling Un-
certainties: The second model of snake robot locomotion which is presented in
this chapter, includes the effects of nonlinear terms arising due to parametric
modelling uncertainties. In particular, we use the techniques of differential ge-
ometry in order to derive the dynamic equations of motion of the robot, and we
integrate the effects of parametric modelling uncertainties into the model. This
model will be used for robust control design for the snake robot in the subse-
quent chapters.

A Simplified Model of the Snake Robot Locomotion: The third model that we present
in this chapter is previously derived in [11], and will be used in order to design
locomotion control approaches in the subsequent chapters. The main idea be-
hind the simplified model of the snake robot dynamics, which we refer to as the
simplified model, is to map the periodic body shape changes to forward propul-
sion, through mapping the rotational joint motion to translational link displace-
ments, cf. Figure 2.2. Since the translational displacements are in general less
complex than rotational motion, this will simplify the resulting dynamic model
of the robot.

Contributions of this chapter: The first contribution of this chapter is to de-
rive the equations of motion of the snake robot in a Lagrangian framework, i.e.
treating the robot as a whole and performing the analysis using a Lagrangian
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function [86], which is simple to follow and better suited for studying advanced
mechanical phenomena such as elastic link deformations [86], which might be
insightful for future research challenges on snake robots. Moreover, we inte-
grate the anisotropic friction forces into these equations using the Jacobian ma-
trices of the links, which give a straightforward mapping of these forces to the
equations of motion. The second contribution of this chapter is to derive a par-
tially feedback linearized Poincaré representation of the equations of motion
of a snake robot without nonholonomic velocity constraints, which gives a de-
tailed mathematical description of the system’s behaviour that can be used for
analysis and model-based control design. In particular, we believe that formu-
lating the equations of motion of the system in a geometric mechanics setting
can be particularly useful for effectively addressing problems regarding the fun-
damental properties of snake robot locomotion. For instance, it is interesting
both for controllability analysis and motion planning algorithms which are de-
rived based on differential geometric approaches to mechanics, see e.g. [87].
To our best knowledge, the only previous work which derives the dynamic
model of unconstrained snake robots in a geometric mechanics framework is
[88]. However, that work employs general affine differential geometry in con-
trast with the particular Poincaré representation in the present work. Further-
more, we add parametric modelling uncertainties due to changes in the friction
coefficients to this model. We also present a partial feedback linearization of the
resulting model that makes it more suitable for model-based control design.

Organization of this chapter: This chapter is organized as follows. In Section
2.1, we present the kinematics of the snake robot. In Section 2.2, we derive a
complete model of the snake robot locomotion using Lagrangian mechanics. In
Section 2.3, we formulate the equations of motion of the snake robot in a differ-
ential geometry framework. In Section 2.4, we present a simplified model of the
snake robot locomotion.

Publications: The results of this chapter are based on the journal paper [84],
and the conference papers [78] and [79].
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Basic Notations

Following the notation in [11], we make use of the following matrices and vec-
tors in presenting the kinematics and dynamics of the snake robot.

A =


1 1

. . .

1 1

 ∈ R(N−1)×N , D =


1 −1

. . .

1 −1

 ∈ R(N−1)×N

e = [1, . . . , 1]T ∈ RN , E =

[
e 0N×1

0N×1 e

]
∈ R2N×2

ē = [1, . . . , 1]T ∈ RN−1, θ = [θ1, . . . , θN ]T ∈ RN

sin θ = [sin θ1, . . . , sin θN ]T ∈ RN , cos θ = [cos θ1, . . . , cos θN ]T ∈ RN

Sθ = diag(sin θ) ∈ RN×N , Cθ = diag(cos θ) ∈ RN×N

θ̇2 =
[
θ̇21, . . . , θ̇

2
N

]T
∈ RN , b = [0, . . . , 0, 1]T ∈ RN−1

H =



1 1 . . . 1

0 1 . . . 1

. . .

0 0 . . . 1

0 0 . . . 0


∈ RN×(N−1), IN =


1

1

. . .

1

 ∈ RN×N

V = AT (DDT )−1A, K = AT (DDT )−1D,

0N−1 = [0, . . . , 0]T ∈ RN−1, SCθ =

[
KTSθ

−KTCθ

]
Furthermore, N denotes the number of links, l denotes the length of the link,

and m and J denote the uniformly distributed mass and moment of inertia of
each link, respectively.
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Figure 2.1: Kinematic parameters of the snake robot

2.1 Kinematics of the Snake Robot

In order to perform control design, we need to write the governing equations
of the system in an implementable way. This is often done by choosing a local
coordinate chart and writing the system equations with respect to these coordi-
nates. According to the illustration of the snake robot in Figure 2.1, we choose
the vector of the generalized coordinates of the N -link snake robot as

q = [φ1, φ2, . . . , φN−1, θN , px, py]
T ∈ RN+2 (2.1)

where φi with i ∈ {1, . . . , N − 1} denotes the i-th joint angle, θN denotes the
head angle, and the pair (px, py) describes the position of the CM of the robot
with respect to the global x − y axes. The joint angles (φ1, φ2, . . . , φN−1) of the
snake robot are directly and independently actuated with motors, and thus rep-
resent the fully-actuated DOF of the system. However, there are no direct and
independent control inputs for the head angle (θN) and the position of the CM
(px, py) of the snake robot, and thus these are underactuated DOF of the system.
Consequently, according to the actuation type, the configuration vector of the
system can be divided into the following vectors

qa = [φ1, φ2, . . . , φN−1]
T ∈ RN−1 (2.2)

qu = [θN , px, py]
T ∈ R3 (2.3)

Since the robot is not subject to nonholonomic velocity constraints, the vector of
the generalized velocities is defined as the time-derivative of (2.1) as

q̇ = [φ̇1, φ̇2, . . . , φ̇N−1, θ̇N , ṗx, ṗy]
T ∈ RN+2 (2.4)
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Using these coordinates, it is possible to specify the kinematic map of the robot.
In this thesis, we denote the firstN elements of the vector q, i.e. (φ1, . . . , φN−1, θN),
as the angular coordinates, and the corresponding dynamics as the angular dy-
namics of the system.

2.1.1 The Geometry of the Problem

The (N + 2)-dimensional configuration space of the snake robot which we de-
note asQ = S ×G, is composed of the shape space S and a Lie group G which is
freely and properly acting on the configuration space. In particular, the shape
variables, i.e. qa = (φ1, φ2, . . . , φN−1), which define the internal configuration of
the robot and which we have direct control on, take values in S. Moreover, the
position variables, i.e. qu = (θN , px, py), which are passive DOF of the system,
lie in G. The velocity space of the robot is defined as the differentiable (2N + 4)-
dimensional tangent bundle ofQ as TQ = TN×RN+4, where TN denotes theN -
torus in which the angular coordinates live. The free Lagrangian function of the
robot L : TQ → R is invariant under the given action of G on Q. The coupling
between the shape and the position variables causes the net displacement of the
position variables, according to the cyclic motion of the shape variables, i.e. the
gait pattern. Note that for simplicity of presentation, throughout this thesis we
consider local representation of TQ embedded in an (2N+4)-dimensional open
subset of the Euclidean space R2N+4.

2.1.2 The Forward Kinematic Map of the Snake Robot

Based on the kinematic parameters of the snake robot given in Figure 2.1, it is
possible to write the coordinate representation of the forward kinematic map.
The map between the absolute link angles θi and the relative joint angles φi is
given by

θi =
N−1∑
n=i

φn + θN (2.5)

The orientation angle of the robot, can be defined as the average of the absolute
link angles as

θ =
1

N

N∑
i=1

θi (2.6)
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The position of the CM of the i-th link with respect to the global x− y axes can
be, respectively, given as

xi = x0 + 2l
i−1∑
j=1

cos θj + l cos θi (2.7)

yi = y0 + 2l
i−1∑
j=1

sin θj + l sin θi (2.8)

where 2l denotes the length of each link, and (x0, y0) denotes the tail position,
cf. Figure 2.1. The linear velocities of the CM of the i-th link with respect to the
global x−y axes can be found by taking the time-derivative of (2.7)–(2.8) which
gives

ẋi = ẋ0 − 2l
i−1∑
j=1

sin θj θ̇j − l sin θiθ̇i (2.9)

ẏi = ẏ0 + 2l
i−1∑
j=1

cos θj θ̇j + l cos θiθ̇i (2.10)

Since all the links have equal length and mass, the position of the CM for the
whole structure of the robot is defined as

(px, py) =

(
1

N

N∑
i=1

xi,
1

N

N∑
i=1

yi

)
(2.11)

To facilitate path following control of the CM of the snake robot, we replace the
tail position (x0, y0) in (2.7)–(2.8) with the position of the CM of the robot (px, py)
using the following change of coordinates

x0 = px −
1

N

N∑
i=1

(
2l

i−1∑
j=1

cos θj + l cos θi

)
(2.12)

y0 = py −
1

N

N∑
i=1

(
2l

i−1∑
j=1

sin θj + l sin θi

)
(2.13)

Substituting (2.12)–(2.13) along with their time-derivatives into (2.7)–(2.10) com-
pletes the derivation of the forward kinematic map of the snake robot with re-
spect to the desired specified coordinate chart (q, q̇).
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2.2 Complex Model of the Snake Robot Locomo-
tion: The Lagrangian Approach

In this section, we present a complete model of the snake robot dynamics by
using the Lagrangian approach.

2.2.1 Euler-Lagrange Equations of Motion of the Snake Robot

The majority of the previous literature on snake robots and similar mobile multi-
links robotic structures, such as eel-like robots, have derived the equations of
motion of these robots with a Newton-Euler formulation, i.e. where the equa-
tions describing the linear and angular motion of individual links are writ-
ten separately, see e.g. [1] and [11]. This is due to the fact that it is usually
not straightforward to integrate the anisotropic external dissipative forces, i.e.
ground friction forces, acting on these complex robotic structures into their
Euler-Lagrange equations of motion. However, ground friction forces have
been proved to play a fundamental role in snake robot locomotion (see e.g.
[11]). In this Section, we derive the equations of motion of the snake robot
in a Lagrangian framework, i.e. treating the robot as a whole and performing
the analysis using a Lagrangian function, which is simple to follow and better
suited for studying advanced mechanical phenomena such as elastic link defor-
mations [86], which might be insightful for future research challenges on snake
robots. Moreover, we integrate the anisotropic friction forces into these equa-
tions using the Jacobian matrices of the links, which gives a straightforward
mapping of these forces for the equations of motion.

Snake robots are a class of simple mechanical systems, where the Lagrangian
L(qa, q̇) is defined as the difference between the kinetic energy K(qa, q̇) and po-
tential energy P(q) of the system [87]. Since the planar snake robot is not subject
to any potential field, i.e. −∇P(q) = 0, we may write the Lagrangian equal to
the kinetic energy, which is the sum of the translational and the rotational ki-
netic energy of the robot:

L(qa, q̇) = K (qa, q̇) =
1

2
m

N∑
i=1

(
ẋ2i + ẏ2i

)
+

1

2
J

N∑
i=1

θ̇2i (2.14)

where m and J denote the uniformly distributed mass and moment of inertia
of the links, respectively. Using the Lagrangian function (2.14), we write the
Euler-Lagrange equations of motion of the control system as

d

dt

[
∂L(qa, q̇)

∂q̇i

]
− ∂L(qa, q̇)

∂qi
= (B(q)τ − τf )i (2.15)
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where i ∈ {1, . . . , N + 2}, B(q) = [ej] ∈ R(N+2)×(N−1) is the full column rank
actuator configuration matrix, where ej denotes the j-th standard basis vector
in RN+2. Moreover, B(q)τ ∈ RN+2 with τ = [τ1, . . . , τN−1]

T ∈ RN−1 stands
for the generalized forces resulting from the control inputs. Furthermore, τf =
[τ 1f , . . . , τ

N+2
f ]T ∈ RN+2 denotes viscous and Coulomb friction forces acting on

(N + 2) DOF of the system. The controlled Euler-Lagrange equations (2.15) can
also be written in the form of a second-order differential equation as

M(qa)q̈ + C (q, q̇) q̇ = B(q)τ − τf (2.16)

where M(qa) ∈ R(N+2)×(N+2) is the positive definite symmetric inertia matrix,
which is given by

M(qa) =

[
HTMθH 0N×2

02×N NmI2

]
∈ R(N+2)×(N+2) (2.17)

where Mθ is given by

Mθ = JIN +ml2SθV Sθ +ml2CθV Cθ (2.18)

and substituting θi according to (2.5). Furthermore, C(q, q̇)q̇ ∈ RN+2 denotes the
generalized Coriolis and centripetal forces, which are given by

C(q, q̇)q̇ =

[
HTWθ diag(H ˙̄φ) ˙̄φ

02×1

]
∈ RN+2 (2.19)

where Wθ and ˙̄φ are given by the following equations, respectively,

Wθ = ml2SθV Cθ −ml2CθV Sθ (2.20)

˙̄φ =
[
φ̇1, φ̇1, . . . , θ̇N

]T
∈ RN (2.21)

and substituting θi according to (2.5). Moreover, the right-hand side terms de-
note the external forces (control forces and friction) acting on the system. The
fact that the inertia matrix is only a function of the directly actuated shape vari-
ables qa, is a direct consequence of the invariance of the Lagrangian function
of the robot (2.14) with respect to the position variables qu. Moreover, since
rank[B(q)] < dim(q) the system is underactuated. This underactuation repre-
sents the lack of direct control on the head angle θN and the position of the CM
(px, py) of the robot.

The standard second-order form of the equations of motion (2.16) perfectly
agrees with the dynamic models of snake robots which are derived based on
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the Newton-Euler formulation in previous works, see e.g. [11]. In order to
validate the model, in the next chapter we present simulation results which
are obtained using the dynamic model (2.16) together with experimental results
for the locomotion of the robot which are obtained using a robotic snake, see
Figure 3.14. The agreement between simulations and experiments shows that
the dynamic model (2.16) accurately represents the motion of the robot.

2.2.2 The Ground Friction Model

In this subsection, both viscous and Coulomb friction models are used for cap-
turing the essential properties of the anisotropic ground friction forces acting
on the robot. For modelling the friction, we first define the rotation matrix for
mapping from the global frame to the local frame of link i, cf. Figure 2.1, as

Ri =

 cos θi − sin θi

sin θi cos θi

 (2.22)

Note that we can map θi 7→ (qa, θN) using (2.5). Using (2.9)–(2.10) and (2.22), the
linear velocities of the links in the local link frames can be written in terms of
the linear velocities of the links in the global frame as

vlink,i =

[
vlink,it

vlink,in

]
= RT

i

[
ẋi

ẏi

]
(2.23)

where vlink,it and vlink,in denote the linear velocity of the CM of the i-th link in
the tangential (along link x-axis) and normal (along link y-axis) direction of the
link, respectively. The total friction force acting on link i is defined as the sum
of the viscous and Coulomb friction forces, which are denoted by fvi and fci ,
respectively, as

f link,i = fci + fvi (2.24)

Assuming equal friction coefficients for all the links, we write the model of the
friction for each individual link i as

fci = mg
[
µtsgn

(
vlink,it

)
µnsgn

(
vlink,in

) ]T
∈ R2 (2.25)

fvi =
[
ctv

link,i
t cnv

link,i
n

]T
∈ R2 (2.26)

where i ∈ {1, . . . , N}, m denotes the mass of a link, g denotes the acceleration
due to gravity, and µt and µn denote Coulomb friction coefficients in the tan-
gential and normal direction of the link, respectively. Furthermore, ct and cn
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denote viscous friction coefficients in the tangential and normal direction of the
link, respectively. Thus, we map the friction force acting on the i-th link to the
global x− y frame as

f link,i
global = Rif

link,i (2.27)

Finally, we can write τf in (2.16) as

τf =
N∑
i=1

J T
i (q)f link,i

global (2.28)

where

J T
i (q) =

[
∂ẋi
∂q̇j

,
∂ẏi
∂q̇j

]
∈ R(N+2)×2, j ∈ {1, . . . , N + 2} (2.29)

denotes the transpose of the Jacobian matrix of the CM of the i-th link.

Remark 2.1 As argued in [11], the motion of a snake robot with anisotropic viscous
ground friction is qualitatively (but not quantitatively) similar as with anisotropic
Coulomb friction. However, a viscous friction model is less complex with respect to
control design and analysis. Accordingly, we employ a viscous friction model for the
control design in this thesis.

2.2.3 Partial Feedback Linearization of the Dynamic Model

A common method for control of mechanical systems is full-state feedback lin-
earization. This approach is not applicable for snake robots due to the under-
actuation. However, it is still possible to linearize the dynamics of the directly
actuated DOF of the robot, which is called collocated partial feedback lineariza-
tion, and can simplify the analysis as well as the control design. A similar ap-
proach is considered in [11] but for the sake of completeness, we present the
approach here. To this end, we separate the dynamic equations of the robot
given by (2.16) into two subsets by taking q = [qa, qu]

T ∈ RN+2, with qa ∈ RN−1

and qu ∈ R3 which were defined in (2.2)–(2.3):

m11(qa)q̈a +m12(qa)q̈u + h1(q, q̇) = ψ ∈ RN−1 (2.30)

m21(qa)q̈a +m22(qa)q̈u + h2(q, q̇) = 03×1 ∈ R3 (2.31)

where m11 ∈ R(N−1)×(N−1), m12 ∈ R(N−1)×3, m21 ∈ R3×(N−1), and m22 ∈ R3×3 de-
note the corresponding sub-matrices of the inertia matrix. Furthermore, vector-
valued functions h1(q, q̇) ∈ RN−1 and h2(q, q̇) ∈ R3 include all the contributions
of the Coriolis, centripetal, and friction forces. Moreover, ψ = [ψ1, . . . , ψN−1]

T ∈
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RN−1 denotes the non-zero part of the vector of control forces, i.e. B(q)τ =
[ψ, 03×1] ∈ RN+2. From (2.31) we have

q̈u = −m−1
22 (h2 +m21q̈a) ∈ R3 (2.32)

Substituting (2.32) into (2.30) yields(
m11 −m12m

−1
22m21

)
q̈a −

(
m12m

−1
22

)
h2 + h1 = ψ (2.33)

For linearizing the dynamics of the directly actuated DOF, we apply the global
transformation of the vector of control inputs as

ψ =
(
m11 −m12m

−1
22m21

)
ϑ−

(
m12m

−1
22

)
h2 + h1 (2.34)

where ϑ = [ϑ1, ϑ2, . . . , ϑN−1]
T ∈ RN−1 is the vector of new control inputs. Con-

sequently, the dynamic model (2.30)–(2.31) can be written in the following par-
tially feedback linearized form

q̈a = ϑ ∈ RN−1 (2.35)

q̈u = D (q, q̇) + C(qa)ϑ ∈ R3 (2.36)

with

D(q, q̇) = −m−1
22 (qa)h2(q, q̇) = [fθN (q, q̇), fx(q, q̇), fy(q, q̇)]

T ∈ R3 (2.37)

Ci(qa) = −m−1
22 (qa)m21(qa) = [βi(qa), 0, 0]T ∈ R3 (2.38)

where Ci denotes the i-th column of C ∈ R3×(N−1). Furthermore, βi(qa) : Q → R
is a smooth scalar-valued function. It can be numerically shown that the value
of βi is negative at any configuration qa ∈ Q. Furthermore, fθN , fx, and fy
denote the friction forces acting on θN , px, and py, respectively (fθN also contains
Coriolis forces besides the friction forces). For the aim of analysis and model-
based control design, we write (2.35)–(2.36) in a more detailed form:

q̈a = ϑ ∈ RN−1 (2.39)

θ̈N = fθN (q, q̇) + βi(qa)ϑ
i ∈ R (2.40)

p̈x = fx(q, q̇) ∈ R (2.41)

p̈y = fy(q, q̇) ∈ R (2.42)

where the summation convention is applied in (2.40), and henceforth, to all
the equations which contain repeated upper-lower indices (i.e. whenever an
expression contains a repeated index, one as a subscript and the other as a su-
perscript, summation is implied over this index [87]). The dynamical system
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(2.39)–(2.42) is in the form of a control-affine system with drift. In particular,
the term

A(q, q̇) =
[
q̇a, q̇u, 0(N−1)×1,D(q, q̇)

]T ∈ R2N+4 (2.43)

is called the drift vector field, which specifies the dynamics of the robot when
the control input is zero. Furthermore, the columns of the matrix

B(qa) =


0(N+2)×(N−1)

IN−1

[β1(qa), . . . , βN−1(qa)]

02×(N−1)

 ∈ R(2N+4)×(N−1) (2.44)

are called the control vector fields, which enable us to control the internal con-
figuration and consequently the orientation and the position of the robot in the
plane.

Remark 2.2 The last two rows of the control vectors in (2.44) are composed of zero
entries. This implies that the control forces have no direct effect on the dynamics of the
position of the CM of the robot, i.e. (2.41)–(2.42). Furthermore, the dynamics of the po-
sition of the CM are coupled with the dynamics of the directly actuated shape variables
qa, i.e. (2.39), only through the friction forces. Accordingly, in the absence of the fric-
tion forces the linear momentum of the robot is a conserved quantity, and the position
of the CM of the robot is not controllable.

Note that this coupling between the dynamics of the CM and the joint angles
through friction forces is the essential mechanism underlying snake locomotion,
and it is what makes the locomotion control problem challenging.

2.2.4 Dynamic Model via Absolute Link Angles

In this subsection, we review the kinematic and dynamic model of a snake robot
presented in [11]. We consider a snake robot with N rigid links each of length
2l. Each link is assumed to have uniformly distributed mass m and moment of
inertia J . We denote the vector of absolute link angles by θ = [θ1, . . . , θN ]T ∈ RN ,
and the CM of the robot in inertial coordinates by p = [px, py] ∈ R2. Figure
2.1 illustrates the kinematic parameters of the snake robot. Following [11], the
dynamic equations of the snake robot can be written as follows

Mθθ̈ +Wθθ̇
2 − lSCT

θ fR(θ, θ̇, ṗ) = DTu (2.45a)

Nmp̈ = ETfR(θ, θ̇, ṗ) (2.45b)
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where u ∈ RN−1 is the vector of actuator torques, fR is the vector of ground
friction forces, and the remaining quantities are defined as follows:

Mθ = JIN +ml2SθV Sθ +ml2CθV Cθ, (2.46a)

Wθ = ml2SθV Cθ −ml2CθV Sθ. (2.46b)

For simplicity, we assumed that the friction forces acting on the robot are vis-
cous. We have:

fR(θ, θ̇, ṗ) =

[
fR,x

fR,y

]
= Qθ

[
Ẋ

Ẏ

]

= Qθ

[
lKTSθθ̇ + eṗx

−lKTCθθ̇ + eṗy

]
= lQθSCθθ̇ +QθEṗ

(2.47)

where X = [x1, . . . , xN ] ∈ RN , Y = [y1, . . . , yN ] ∈ RN are the vectors of inertial
coordinates of the CM of the links of the robot. The matrix Qθ maps the inertial
frame velocities of the CM of the links to the inertial frame viscous friction forces
acting on the links, and it is given by

Qθ = −

[
ct(Cθ)

2 + cn(Sθ)
2 (ct − cn)SθCθ

(ct − cn)SθCθ ct(Sθ)
2 + cn(Cθ)

2

]
, (2.48)

where ct and cn denote the tangential and normal viscous friction coefficients of
the links, respectively.

2.3 Complex Model of the Snake Robot Locomo-
tion: Differential Geometric Approach

In this section, we present the complex model of the snake robot which will be
derived in a differential geometric framework. Furthermore, we integrate the
effects of parametric modelling uncertainties which are due to the changes in
the friction coefficients into this model. We also present a partial feedback lin-
earization of the resulting model that makes it more amenable to model-based
control design.
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2.3.1 Geometry and Kinematics of the Snake Robot

A planar N -link snake robot evolves naturally in the configuration space Q =
S × G, which is composed of a shape space S and a Lie group G. In par-
ticular, the set of variables that define the internal configuration of the robot
take values in S . These are the relative joint angles of the robot which are
equipped with DC motors as actuators, and which in coordinates we denote
by qa = (φ1, φ2, ..., φN−1) ∈ S. Moreover, the position variables which define the
orientation and the position of the robot in the plane, lie in G. These are passive
DOF of the system which in coordinates we denote by qu = (θN , px, py) ∈ G.
Consequently, the total configuration vector of the system is

q = [φ1, φ2, . . . , φN−1, θN , px, py]
T ∈ Q (2.49)

The velocity space of the system is the (2N + 4)-dimensional tangent bundle
of the configuration manifold which we denote by TQ. Since in this thesis we
consider a snake robot without nonholonomic velocity constraints, the velocity
vector of the system has equal dimension to the configuration vector and is
given by the time-derivative of (2.49) as

v =
[
φ̇1, φ̇2, . . . , φ̇N−1, θ̇N , ṗx, ṗy

]T
∈ TQ (2.50)

In the next subsection we will use the techniques of differential geometry in
order to derive the natural representation of the equations of motion of the robot
with respect to (q, v).

2.3.2 Equations of Motion

In this subsection, we derive the Poincaré representation of the equations of
motion of the snake robot. The majority of the previous works on snake robots
have derived these equations based on a Newton-Euler formulation. However,
we believe that formulating the equations of motion of the system in a geometric
mechanics setting can be particularly useful for effectively addressing problems
regarding the fundamental properties of snake robot motion. In particular, it
is interesting both for controllability analysis and motion planning algorithms
which are derived based on differential geometric approaches to mechanics, see
e.g. [87].

Snake robots are a class of simple mechanical control systems, where the La-
grangian function L : TQ → R is defined as the difference between the kinetic
energy with respect to a Riemannian metric and the potential energy of the sys-
tem. For geometric modelling of the system, we first write the kinetic energy of
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the i-th link as the sum of the translational and rotational kinetic energy of the
link

Ki(q, v) =
1

2
m
(
ẋ2i + ẏ2i

)
+

1

2
Jθ̇2i (2.51)

where m and J denote the mass and moment of inertia of the link, respectively.
Thus, the total kinetic energy for the N -link robot is defined as the sum of the
kinetic energy of the individual links as

K(q, v) =
N∑
i=1

Ki(q, v) (2.52)

The kinetic energy of the snake robot defines a Riemannian metric on the con-
figuration space that can be written as

Gij(q) =
∂2K(q, v)

∂vi∂vj
(2.53)

where Gij denotes the (i, j) component of the positive definite matrix-valued
function G. One can derive the Christoffel symbols of the second kind (see e.g.
[87]) associated with the Riemannian metric of the robot in the form

Γkij(q) =
1

2
Gkl

(
∂Gil

∂qj
+
∂Gjl

∂qi
− ∂Gij

∂ql

)
(2.54)

where i,j,k,l ∈ {1, . . . , N+2}, and Gkl denotes the (k, l) component of G−1. Note
that the summation convention is applied in (2.54). Using the Riemannian met-
ric and the Christoffel symbols, it is possible to derive the equations of motion
of the system on the configuration space with respect to (q, v) as

q̇i = vi (2.55)

v̇i = −Γijkv
jvk −Gikτf,k +

N−1∑
a=1

GikF a
k u

a (2.56)

where u = [u1, . . . , uN−1] ∈ RN−1 denotes the vector of control inputs which
take values in the control set U = RN−1. Moreover, τf,k denotes the k-th en-
try of the vector of friction forces τf given by (2.28) which take values in the
cotangent bundle T ∗Q (see e.g. [87]). Furthermore, F = {F 1, F 2, . . . , FN−1} =
{dφ1, dφ2, . . . , dφN−1} is the collection of the input covector fields of the system
onQ. Since the codistribution generated by the (N−1) input covector fields can-
not span T ∗Q, the snake robot is underactuated at any point of the configuration
space. This underactuation reflects the fact that the input forces cannot set ac-
celerations instantaneously in all directions of Q [87]. Note that since the robot
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moves in the horizontal plane orthogonal to the direction of the gravitational
field, there exists no gravitational term in the system dynamics (2.55)–(2.56).
The above Poincaré representation is called the natural representation, and it has
the property that the equations may also be written in the following second-
order form [87]

q̈i + Γijkq̇
j q̇k + Gikτf,k =

N−1∑
a=1

GikF a
k u

a (2.57)

where q̈i = v̇i, and where τf,k denotes the k-th element of the vector of friction
forces given by (2.28).

2.3.3 Partial Feedback Linearization of the Geometric Model

For performing a model-based control design, we would like to write the model
in the simplest possible form. Feedback linearization is a common technique
that can simplify the model by cancellation of the nonlinear terms. However,
due to the lack of direct independent control for some configuration variables of
the system, this technique cannot be directly applied to the snake robot dynam-
ics. Thus, in this case we use partial feedback linearization which linearizes the
dynamics of the fully actuated configuration variables, i.e. dynamics of qa. To
this end, we separate the vector of the generalized coordinates q into two parts,
in the form q = [qa, qu]

T ∈ RN+2, where qa ∈ RN−1 and qu ∈ R3 were defined
in (2.2)–(2.3). Note that for clarity of presentation of the control design, hence-
forth we consider a local parametrization of the configuration space in an open
subset of the Euclidean space. A partially feedback linearized Newton-Euler
formulated model of snake robots was presented in [11], and we here extend it
to a geometric model of the robot that is subject to parametric modelling uncer-
tainties. This new model can be used for model-based robust control design for
snake robots.

The dynamic model (2.57) is not suitable for partial feedback linearization.
This is due to the presence of more than one input force in every scalar sub-
system of (2.57). We note that this is the consequence of multiplying F by G−1

in the right-hand side of (2.57). To obtain a suitable form for partial feedback
linearization, we change the Christoffel symbols of the second kind (2.54), with
those of the first kind using the relation

Γjkl =
N+2∑
i=1

GliΓ
i
jk (2.58)

This changes (2.57) to the following form which is previously derived in [88],
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where the model is called the locomotion dynamics of the snake robot given by

N+2∑
j=1

Gkj q̈
j +

N+2∑
i=1

N+2∑
j=1

Γijkq̇
iq̇j = τk − τf,k (2.59)

where τ = Fu = [ψ1, . . . , ψN−1, 0, 0, 0] ∈ RN+2 denotes the vector of input
torques, in which ψi denotes the control torque provided by the actuator in the
i-th robot joint. The dynamic model (2.59) is consistent with the well-known
second-order Lagrangian equations of motion in the sense that in the left-hand
side the first term is an acceleration related inertia term, the second term repre-
sents the Coriolis and centrifugal forces, and the right-hand side terms stand for
external forces due to the controls and friction [88]. The dynamic model (2.59)
is suitable for the aim of partial feedback linearization, since it can be separated
into actuated and underactuated dynamical subsystems as

N−1∑
j=1

Gmj(qa)q̈
j
a +

N+2∑
p=N

Gmp(qa)q̈
p
u + hm (q, q̇) = ψm (2.60)

N−1∑
j=1

Gkj(qa)q̈
j
a +

N+2∑
p=N

Gkp(qa)q̈
p
u + hk (q, q̇) = 0 (2.61)

where m ∈ {1, . . . , N − 1}, k ∈ {N, . . . , N + 2}, and h(q, q̇) contain all the contri-
butions of the Coriolis, centrifugal and friction forces in (2.59).

Since we are going to use the dynamic model (2.59) in the subsequent chap-
ters to develop a path following controller that is robust with respect to model
uncertainties resulting from different friction properties, we will furthermore
extend the locomotion dynamics model of [88], by adding these uncertainties to
the model. In order to add parametric modelling uncertainties due to changes
in the friction coefficients, we divide the vector function h ∈ RN+2 in accordance
with [qa, qu]

T ∈ RN+2 into two parts as h = [ha, hu]
T ∈ RN+2, and present the fol-

lowing assumption.

Assumption 2.1 The terms ha(q, q̇) and hu(q, q̇) are perturbed with multiplicative
uncertainties in the form

ha = (I1 + ∆1) ĥa ∈ RN−1 (2.62)

hu = (I2 + ∆2) ĥu ∈ R3 (2.63)

where ĥa and ĥu are the estimations of the actual ha and hu, respectively. Moreover, I1 ∈
R(N−1)×(N−1) and I2 ∈ R3×3 are identity matrices. Furthermore, ∆1 ∈ R(N−1)×(N−1)

and ∆2 ∈ R3×3, are measures of parametric modelling uncertainties due to the varying
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friction properties on surfaces.

For partial feedback linearization, we divide the matrix representation of the
Riemannian metric as

G =

 Gaa Gua

Gau Guu

 ∈ R(N+2)×(N+2) (2.64)

where Gaa ∈ R(N−1)×(N−1), Gau ∈ R(N−1)×3, Gua ∈ R3×(N−1), and Guu ∈ R3×3

denote the corresponding sub-matrices. We may now write (2.60)–(2.61) in the
following matrix form:

Gaa(qa)q̈a + Gau(qa)q̈u + ha(q, q̇) = ψ ∈ RN−1 (2.65a)

Gua(qa)q̈a + Guu(qa)q̈u + hu(q, q̇) = 03×1 ∈ R3 (2.65b)

where ψ = [ψ1, . . . , ψN−1]
T ∈ RN−1. From (2.65b) we have

q̈u = −G−1
uu

(
Guaq̈a + (I2 + ∆2) ĥu

)
(2.66)

Inserting (2.66) into (2.65a) yields(
Gaa −GauG−1

uuGua

)
q̈a = ψ + GauG−1

uu (I2 + ∆2)ĥu − (I1 + ∆1) ĥa (2.67)

To cancel out the nonlinear terms in the actuated subsystem of the equations of
motion, we define the control inputs as

ψ =
(
Gaa −GauG−1

uuGua

)
ϑ−GauG−1

uu ĥu + ĥa (2.68)

where ϑ = [ϑ1, ϑ2, . . . , ϑN−1]
T ∈ RN−1 is the new vector of control inputs. Fi-

nally, by inserting (2.68) into (2.67), we obtain the dynamics of the system in the
following control-affine with drift form

q̈a = ϑ+Ga(q, q̇) ∈ RN−1 (2.69)

q̈u = f(q, q̇) +Gu(q, q̇) + g(qa)ϑ ∈ R3 (2.70)

with

f = −G−1
uu ĥu = [fθN (q, q̇), fx(q, q̇), fy(q, q̇)]

T ∈ R3 (2.71)

gi = −G−1
uuGua = [βi(qa), 0, 0]T ∈ R3 (2.72)

Ga = ∆1ĥ1 −GauG−1
uu∆2ĥu = [G1(q, q̇), . . . , GN−1(q, q̇)]

T ∈ RN−1 (2.73)

Gu = −G−1
uu∆2ĥu = [GθN (q, q̇), Gx(q, q̇), Gy(q, q̇)]

T ∈ R3 (2.74)
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where gi denotes the i-th column of g ∈ R3×(N−1) in which βi(qa) : RN−1 → R<0

is a smooth function. Moreover, in dynamic model (2.69)–(2.70), fθN , fx, and fy
denote the friction forces acting on θN , px, and py, respectively. (fθN also con-
tains Coriolis and centrifugal forces besides the friction forces). Furthermore,
Ga and Gu denote the nonlinear terms due to parametric modelling uncertain-
ties in the dynamics of the fully-actuated internal configuration variables and
the dynamics of the underactuated position variables of the robot, respectively.
In particular, the uncertain terms are upper bounded by some known positive-
valued vector function which we denote by

%(q, q̇) = [%1(q, q̇), %2(q, q̇), . . . , %N+2(q, q̇)]
T ∈ RN+2

>0 (2.75)

This implies that the following inequality holds

‖Gi(q, q̇)‖≤ %i(q, q̇) (2.76)

for every i ∈ {1, . . . , N + 2}.
The partially feedback linearized model (2.69)–(2.70) is suitable for analysis

and robust control design for snake robot. For the aim model-based control
design, we write (2.69)–(2.70) in a detailed form

q̈a = ϑ+Ga(q, q̇) ∈ RN−1 (2.77)

θ̈N = fθN (q, q̇) + βi(qa)ϑ
i +GθN (q, q̇) ∈ R (2.78)

p̈x = fx(q, q̇) +Gx(q, q̇) ∈ R (2.79)

p̈y = fy(q, q̇) +Gy(q, q̇) ∈ R (2.80)

where i ∈ {1, . . . , N − 1}. The dynamic model (2.76)–(2.79) which contains the
effects of nonlinear terms due to parametric modelling uncertainties, will be
used for robust control design for the snake robot in the subsequent chapters.

2.4 Simplified Modelling Approach

In this section, we present a simplified model of the snake robot dynamics that
can effectively be used for the model-based control design for snake robots. This
model is previously presented in [11], where it is validated both through numer-
ical simulations and real time experiments. Furthermore, in [11] it is shown that
the fundamental properties of the simplified model such as stabilizability and
controllability, are essentially the same as the more complex models presented
in several previous works, see e.g. [1] and [105].
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2.4.1 An Overview of the Simplified Modelling Approach

In this subsection, we briefly review the simplified modelling approach pre-
sented in [11]. Kinematic and dynamic models of snake robots are previously
derived in several works (see e.g. [1], [84], [105]). All these models share the
same property that they are very complex for analytical investigations. The
derivation of the simplified model of snake robot dynamics in [11] is motivated
by the attractive idea that these complex dynamic models contain some non-
linear dynamics that are not essential to the overall locomotion of the robot.
Moreover, proper approximations of these nonlinear dynamics with simpler
mathematical descriptions can significantly simplify the analysis and model-
based control design for snake robots. In particular, it is seen in [11] that lateral
undulation mainly consists of link displacements which are transversal to the
direction of motion. Moreover, it is this transversal link displacement that in-
duces the forward motion of snake robots, cf. Figure 2.3. The main idea behind
the simplified model of the snake robot dynamics is to map the periodic body
shape changes to forward propulsion, through mapping the rotational joint mo-
tion to translational link displacements, cf. Figure 2.2. Since the translational
displacements are in general less complex than rotational motion, this mapping
will simplify the resulting dynamic model of the robot.

2.4.2 Simplified Kinematics and Dynamics of the Snake Robot

In this subsection, we present the simplified kinematic and dynamic models of
a snake robot without nonholonomic velocity constraints, which moves on a
horizontal and flat surface. The configuration space Q of the snake robot is a
(N + 2)–dimensional smooth manifold, locally diffeomorphic to an open subset
of RN+2. Based on the illustrations of the robot in Figures 2.2–2.3, we choose the
elements of the vector of the generalized coordinates, which represent Q, as

q = [φ1, . . . , φN−1, θ, px, py]
T ∈ RN+2 (2.81)

where φi denotes the i-th joint coordinate, θ denotes the orientation, and (px, py)
denotes the planar position of the CM of the robot. We denote the vector of the
joint coordinates of the robot by φ = [φ1, . . . , φN−1]

T ∈ RN−1. The elements of
φ are called the body shape variables, which define the internal configuration
of the robot. The vector of the generalized velocities is defined as the time-
derivative of (2.81) which we denote as

q̇ =
[
vφ1 , . . . , vφN−1

, vθ, ṗx, ṗy
]T ∈ RN+2 (2.82)
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x

y

(px,py)

q

Figure 2.2: Illustration of two coordinate frames used in the simplified model. The
x− y frame is fixed, and the t− n frame is always aligned with the snake robot.

fi

fi



ui

ui

Direction of 

motion

Figure 2.3: The snake robot is modelled using a series of prismatic joints which move
the robot forward by translational displacements. ui is the exerted torque or force in
the i-th joint of the robot.
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We denote the vector of the joint velocities by vφ = [vφ1 , . . . , vφN−1
]T ∈ RN−1.

Since we aim to control the forward and normal velocities of the robot, we de-
fine the mapping between the inertial velocity of the CM of the robot and the
velocity in the t−n frame which is always aligned with the robot, cf. Figure 2.2,
as

ṗx = vt cos(θ)− vn sin(θ) (2.83)

ṗy = vt sin(θ) + vn cos(θ) (2.84)

where vt ∈ R and vn ∈ R denote the tangential and normal components of the
inertial velocity of the CM mapped into the direction of motion of the robot,
respectively. The simplified dynamic model of the robot with respect to (q, q̇)
can be represented as [11]

φ̇ = vφ (2.85)

θ̇ = vθ (2.86)

ṗt = vt (2.87)

ṗn = vn (2.88)

ṗx = vt cos(θ)− vn sin(θ) (2.89)

ṗy = vt sin(θ) + vn cos(θ) (2.90)

v̇φ = −cn
m
vφ +

cp
m
vtAD

Tφ+
1

m
DDTu (2.91)

v̇θ = −λ1vθ +
λ2

N − 1
vtē

Tφ (2.92)

v̇t = − ct
m
vt +

2cp
Nm

vnē
Tφ− cp

Nm
φTADvφ (2.93)

v̇n = −cn
m
vn +

2cp
Nm

vtē
Tφ (2.94)

where cn ∈ R>0 and ct ∈ R>0 denote the viscous friction coefficients in the
normal and tangential direction of motion of the links, respectively. Note that
cn > ct is a general controllability condition for planar snake robots, see [11],
i.e. the friction in normal direction of motion of the link should in general be
larger than the friction in tangential direction of motion of the link. Further-
more, λ1 ∈ R>0 and λ2 ∈ R>0 are used to describe the mapping from the rota-
tional motion to the prismatic motion (see [11]). These coefficients are chosen
such that the simplified model quantitatively behaves as the complex model of
the snake robot. Furthermore, cp ∈ R>0 is defined as

cp =
cn − ct

2l
. (2.95)
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In order to linearize the dynamics of the fully-actuated degrees of freedom of
the robot, i.e. the joint angles φ, we use the following change of the vector of the
control inputs:

u = m
(
DDT

)−1
(
u+

cn
m
vφ −

cp
m
vtAD

Tφ
)

(2.96)

where u = [u1, . . . , uN−1]
T ∈ RN−1 is the new set of control inputs. Inserting

(2.96) into (2.91), transforms the dynamics of the joint angles into the following
linear form

v̇φ = u (2.97)

The linearized simplified dynamics in (2.85)–(2.97) will be used for locomotion
control of the snake robot in Chapter 4.

2.4.3 Model Transformation

In this subsection, we present a coordinate transformation which can simplify
the model-based locomotion control design for the snake robot. In particular,
we note that the joint angles φ are present in both the dynamics of the angular
velocity vθ and the sideways velocity vn. This coupling complicates the con-
trol design. In order to remove this coupling, we use the following coordinate
transformation [11]

py = py + ε sin(θ) (2.98)

vn = vn + εvθ (2.99)

where
ε = −2(N − 1)cp

Nmλ2
(2.100)

is a negative constant. This change of coordinates transforms the dynamics of
the position of the CM of the system into

ṗy = vt sin(θ) + vn cos(θ) (2.101)

v̇n = Xvθ − Y vn (2.102)

where

X = ε
(cn
m
− λ1

)
(2.103)

Y =
cn
m

(2.104)

The joint angle coupling is removed from the dynamic model, and the result-
ing model is suitable for model-based locomotion control design which is the
subject of the subsequent chapters.



53 Chapter Summary

Chapter Summary

• We presented the kinematic model for the snake robot locomotion in this
chapter.

• In this chapter, we derived three models of the snake robot dynamics
which will be used for model-based feedback control designs in the sub-
sequent chapters.

• The first dynamic model of the snake robot that we derived in this chap-
ter, presented complete characteristics of the snake robot locomotion on
horizontal and flat surfaces. We derived this model using the Lagrangian
approach for modelling mechanical systems, and we integrated the effects
of external dissipative forces into this model using Jacobian matrices of the
links.

• In this chapter, using the techniques of differential geometry, we derived a
dynamic model of the snake robot locomotion which contained the effects
of parametric modelling uncertainties due to varying friction properties
on different surfaces. In particular, this model can effectively be used for
robust model-based feedback control design for the snake robot.

• In the last part of this chapter we presented a simplified kinematic and
dynamic model of the snake robot locomotion which was previously pre-
sented in [11]. In this model, the rotational joint motions are mapped into
translational link displacements, and the resulting dynamics is simpler for
model-based control design.





CHAPTER3
Body Shape and Orientation

Control for Locomotion of
Snake Robots

In this chapter, we investigate model-based feedback control approaches for
body shape and orientation control of snake robots. In particular, based on the
dynamic models of snake robots which were presented in Chapter 2, we design
three different feedback control laws which control the body shape of the robot
to a desired gait pattern. Furthermore, we use the parameters of this desired
gait pattern in order to control the orientation of the robot in the plane. To this
end, we design a dynamic compensator which controls the orientation of the
robot to a reference angle defined by a path following guidance law. Moreover,
using numerical simulations along with experimental results, we show that the
body shape and orientation controllers can make the snake robot move towards
a desired planar path and drive it along this path. Additionally, using an sliding
mode control design, we show that the control goals can be achieved even in the
presence of parametric modelling uncertainties, which arise due to the varying
friction properties on different surfaces. It is noteworthy to mention that the
orientation of the snake robot is an underactuated degree of freedom of the
system. This is due to the fact that for one of the links, the head link of the robot,
there is no direct and independent control input. Consequently, controlling the
orientation of the snake robot is a challenging underactuated control problem.
However, we present formal stability proofs for all the controllers in this chapter
by using various tools from nonlinear and underactuated control theory. To
our best knowledge, the application of model-based motion control approaches
which rely on formal stability proofs for snake robots is very restricted in the
previous literature.
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This chapter, however, considers both body shape and orientation control of
planar snake robots without nonholonomic velocity constraints. In particular,
based on the Euler-Lagrange equations describing the dynamics and kinemat-
ics of the snake robot, we design a guidance-based feedback control strategy
using a dynamic feedback control law. Guidance-based control strategies are
in general based on defining a reference heading angle for the vehicle through
a guidance law, and subsequently designing a tracking controller to track this
angle [89]. The motivation for this guidance-based control strategy is to solve
the path following problem for the snake robot. To our best knowledge, the
only previous work which considers guidance-based path following control of
planar snake robots without nonholonomic velocity constraints is presented in
[44]. In [44], however, the control design is based on the simplified model of the
snake robot which is valid for small joint angles. In the present work we carry
out a model-based control design for the snake robot based on the more accu-
rate model of the robot presented in Section 2.2–2.3 , i.e. the complex model,
which does not consider such simplifying assumptions.

Contributions of this chapter: The first contribution of this chapter is a body
shape and orientation controller for the snake robot, which is designed by use
of dynamic virtual holonomic constraints (VHC), which is a particularly useful
concept for control of oscillations, (see e.g. [92]–[96]). Using this approach, we
constrain the state evolution of the system to an appropriately defined subman-
ifold of the configuration space, which is called the constraint manifold. This
manifold is defined based on the specified geometric relations among the gener-
alized coordinates of the system which are called VHC. The proposed feedback
control law is designed to exponentially stabilize the constraint manifold, i.e. to
enforce the VHC, which allows the convergence of the snake robot to a desired
path. In this chapter we also employ design and analysis tools from finite-gain
L stability which enable us to analytically show that the body shape variables
achieve perfect tracking, the orientation error converges to an arbitrarily small
neighbourhood of the origin, and the states of the dynamic compensator which
controls the underactuated head angle of the robot remain bounded.

The second contribution of this chapter is to design a robust guidance based
controller for the snake robot using sliding mode techniques. In particular, we
will employ the dynamic model subject to parametric modelling uncertainties
which was presented in Chapter 2, in order to derive robust feedback control
laws for the body shape and orientation of the snake robot. To our best knowl-
edge, a robust guidance-based control strategy has never been proposed for
snake robots before.
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Organization of this chapter: This chapter is organized as follows. In Section
3.1, we state the control design objectives for the controllers derived throughout
this chapter. In Section 3.2, we use the method of VHC in order to control the
body shape and orientation of a planar snake robot. In Section 3.3, we design a
robust body shape and orientation controller for the robot using sliding mode
techniques. In Section 3.4, we design a body shape and orientation controller
for the snake robot, and using an input-output stability analysis we show that
the solutions of the dynamic compensator which controls the orientation of the
robot remain uniformly bounded. In Section 3.5, we present simulation results
along with experimental results which are obtained using a robotic snake in or-
der to validate the control approaches of this chapter.

Publications: The results of this chapter are based on the journal paper [84],
and the conference papers [77], [78], [79], and [80].
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3.1 Control Design Objectives

In this chapter, we have two main control design objectives. The first objective
is to control the internal configuration, i.e. the body shape, of the snake robot to
provide a desired gait pattern. The second objective is to control the orientation
of the robot, which is an underactuated degree of freedom.

To achieve these objectives, we first want to stabilize a lateral undulatory gait
pattern for the shape variables of the robot. In particular, we define a tracking
error variable for the i-th joint angle φi of the robot as

φ̃i = φi − φref,i (3.1)

where φref,i denotes the reference trajectory for the i-th joint which provides the
desired gait pattern (the desired gait pattern will be defined in the next section).
We denote the vector of the joint tracking errors as Φ̃ = [φ̃1, . . . , φ̃N−1]T ∈ RN−1.
The first part of the control objective is then defined as asymptotic trajectory
tracking for the joint angles of the robot such that

lim
t→∞
‖φ̃i(t)‖= 0 (3.2)

for every i ∈ {1, . . . , N − 1}.
In order to control the orientation of the robot, we then need to control the

head angle of the robot. Note that according to (2.5), the head angle θN , together
with the joint angles φi, define the orientation of the snake robot through (2.6).
We define the tracking error variable for the head angle of the robot as

θ̃ = θN − θref (3.3)

where θref denotes the reference head angle which will be defined later in this
chapter. Since we only have (N − 1) independent control inputs, which will be
used to control Φ̃, stabilizing the passive degree of freedom (3.3) is challenging.
The second part of the control objective is to asymptotically stabilize the head
angle θN → θref such that

lim
t→∞
‖θ̃(t)‖= 0 (3.4)

Moreover, by choosing a proper reference head angle defined by a path follow-
ing guidance law, we will show that the snake robot converges to and follows
a desired planar path. In particular, we define a desired straight path for the
position of the CM (px, py) of the robot, as a smooth one-dimensional manifold
P ⊂ R2, with coordinates in the x − y plane given by the pair (pxd, pyd), which
are parameterized by a scalar time-dependent variable Θ(t) as

P =
{

(pxd(Θ), pyd(Θ)) ∈ R2 : Θ ≥ 0
}

(3.5)
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We define the vector of the path following error variables for the position of the
CM of the robot as p̃ = [px(t)− pxd(Θ), py(t)− pyd(Θ)]T ∈ R2. Subsequently, the
auxiliary part of the control objectives is defined as practical convergence, see
e.g. [102], of the position of the CM of the robot to the desired path such that

lim
t→∞

sup‖p̃(t)‖≤ εp (3.6)

where εp ∈ R>0 is an arbitrary positive scalar. Moreover, we require that Θ̇(t) ≥
0 and limt→∞Θ(t) = ∞ (forward motion along the path), and boundedness of
the states of the controlled system.

3.2 Virtual Holonomic Constraints Based Body Shape
and Orientation Control of Snake Robots

3.2.1 The idea of Virtual Holonomic Constraints

Throughout this thesis, we frequently use the method of virtual holonomic con-
straints in order to solve the locomotion control problems for snake robots. vir-
tual holonomic constraints are a constructive tool for feedback stabilization that
have previously been used for motion control of mechanical systems in several
works, see e.g. [92]–[96]. In this approach, we confine the state evolution of
a mechanical system to a feedback invariant constraint manifold. This mani-
fold is defined based on specified geometric relationships among the configu-
ration variables of the system, which are called virtual holonomic constraints
(VHC). The VHC are defined such that the controlled system possesses the de-
sired structural properties. These constraints are virtual because they do not
arise from a physical connection between two variables but rather from the ac-
tions of a feedback controller [92]. It is noteworthy to mention that by using
the VHC approach, we completely remove the time-dependence from the feed-
back loop. We do this by confining the time-evolution of the state variables
of the system to state-dependent constraint functions, see e.g. [93]. Enforcing
the specified VHC for the configuration variables of the system implies that in
the kinematic level the system behaves similar to a system which has the same
physical constraints, although the dynamic behaviour of these two systems are
different. This difference is because of the extra power which the controller
needs to inject to the closed-loop system in order to keep the VHC relations
invariant, see [92]. Note that in case of real holonomic constraints which are
typically introduced through physical connections between the variables of the
system, the control system does not need to inject this extra power, i.e. physical
constraints do not work on the system.
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The fundamental theory of VHC are presented in e.g. [92], [93], and [95].
This method is used for stabilizing a curved line path for the position of the CM
of a bicycle in [94]. In [96], VHC are used in order to control the oscillations of
an underactuated double link pendulum. The mathematical definitions of VHC
that we use in this chapter will be presented in the subsequent sections.

3.2.2 Path Following Control with Virtual Holonomic
Constraints

The idea of VHC is particularly a useful concept for control of oscillations (see
e.g. [92]–[96]). In this section, we show how this approach can be used to solve
the path following control problem of snake robots. In particular, we show how
by designing the joint reference trajectories in (3.1) using VHC, and combin-
ing this with VHC which are motivated by Line-of-Sight (LOS) guidance for
the head angle in (3.3), we are able to solve the path following control prob-
lem, i.e. achieving (3.6). Our main motivation for using this approach is the
fact that while performing the gait pattern lateral undulation which consists of
fixed periodic body motions, all the solutions of the snake robot dynamics have
inherent oscillatory behaviour. Moreover, we will show how this behaviour can
be analytically and constructively controlled based on VHC. In particular, we use
the word constructive in the sense that through the feedback action we shape
the dynamics of the system such that it possesses the desired structural proper-
ties, i.e. exponential stability of an appropriately defined constraint manifold.
To this end, we define a constraint manifold for the system, and we design the
control input of the fully-actuated joint angles of the robot to exponentially sta-
bilize the constraint manifold. The geometry of this manifold is defined based
on specified geometric relations among the variables of the system which are
called the constraint functions.

Trajectory Planning by Virtual Holonomic Constraints

VHC are specified through C1 coordinate-dependent functions Φi : Q → R
which are called the constraint functions, in the relations of the form Φi(q) = 0,
which can be enforced through the feedback action. In particular, for the snake
robot we define a vector-valued function

Φ = [φref,1, φref,2, . . . , φref,N−1, θref ]
T ∈ RN (3.7)

in which every entry, i.e. Φi where i ∈ {1, . . . , N}, defines one constraint func-
tion for the corresponding angular coordinate of the system.

To perform trajectory planning using VHC, we augment the state vector of
the system with three new states that in the following will be used in the control
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design. The introduction of these new variables to the state vector of the system,
which will be used as constraint variables, is inspired by the notion of dynamic
VHC [93], i.e. VHC which depend on the solutions of dynamic compensators.
The idea is to make the VHC to depend on the variations of a dynamic param-
eter, which is used for controlling the system on the constraint manifold. The
purpose of these additional states is explained below.

1. We introduce two new states [φo, φ̇o]
T ∈ R2 where the second order time-

derivative of φo will be used as an additional control input that drives the
snake robot towards the desired path by modifying the orientation of the
robot in accordance with a reference angle defined by a path following
guidance law.

2. In the previous section we defined the control objective for the joints and
the head angle of the robot as a trajectory tracking problem. However, it is
known that the holonomic constraints are coordinate-dependent equality
constraints of the form Φi(q) = 0, where Φi : Q → R is a time-independent
function [86]. Thus, we remove this explicit time-dependency from the
reference joint trajectories by augmenting the state vector of the system
with a new variable λ, with λ̇ = 2π/T and λ(0) = 0, where T denotes the
period of the cyclic motion of the shape variables of the robot, i.e. the gait
pattern.

Subsequently, we denote the augmented coordinate vector of the system by

q̂ = [φ1, . . . , φN−1, θN , px, py, φo, λ]T ∈ RN+4 (3.8)

and the corresponding augmented state space by T Q̂.

Virtual Holonomic Constraints for the Joint Angles

A fundamental work in the area of snake robots was presented by Hirose [1].
In this work Hirose considers empirical studies of biological snakes to derive
a mathematical approximation of the most common gait pattern among bio-
logical snakes, known as lateral undulation. In particular, the shape of a snake
conducting lateral undulation can be described by a planar curve (the serpenoid
curve) with coordinates in the x− y plane along the curve at arc length s given
by

x(s) =

∫ s

0

cos (a cos(bz) + cz) dz (3.9)

y(s) =

∫ s

0

sin(a cos(bz) + cz)dz (3.10)
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where a, b, and c are positive scalars. Locomotion of a snake-like structure in
accordance with the serpenoid curve, i.e. lateral undulation, is achieved if the
joints of the robot move according to the reference joint trajectories in the form
of a sinusoidal function with specified amplitude, frequency, and phase shift.
In particular, using the foregoing defined new states, we define a constraint
function for the i-th joint of the snake robot by

Φi = α sin (λ+ (i− 1)δ) + φo (3.11)

where i ∈ {1, . . . , N−1}, α denotes the amplitude of the sinusoidal joint motion,
and δ is a phase shift that is used to keep the joints out of phase. Moreover, φo
is an offset value that is identical for all of the joints. It was illustrated in [11]
how the offset value φo affects the orientation of the snake robot in the plane.
Building further on this insight, we consider the second-order time-derivative
of φo in the form of a dynamic compensator, which will be used to control the
orientation of the robot. In particular, through this control term we modify the
orientation of the robot in accordance with a reference orientation. This will be
done by adding an offset angle to the reference trajectory of each joint. We will
show that this will steer the position of the CM of the robot towards the desired
path. The constraint function (3.11) is dynamic, since it depends on the solution
of a dynamic compensator which will be defined to control the orientation of
the robot.

Virtual Holonomic Constraint for the Head Link Angle

In this subsection, we define a constraint function for the head angle of the
robot. In particular, we use a Line-of-Sight (LOS) guidance law as the reference
angle for the head link. LOS guidance is a much-used method in marine control
systems, (see e.g. [89]). In general, guidance-based control strategies are based
on defining a reference heading angle for the vehicle through a guidance law,
and designing a controller to track this angle [89]. Motivated by marine control
literature, in [44] based on a simplified model of the snake robot, using cascade
systems theory it was shown that if the heading angle of the snake robot was
controlled to the LOS angle, then also the position of the CM of the robot would
converge to the desired path. We will show that a similar guidance-based con-
trol strategy can successfully steer the robot towards the desired path. However,
we perform the model-based feedback control design based on a more accurate
model of the snake robot which does not contain the simplifying assumptions
of [44] which are valid for small joint angles.

To define the guidance law, without loss of generality, we assign the global
coordinate system such that the global x-axis is aligned with the desired path.
Consequently, the position of the CM of the robot along the y–axis denoted by
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py, defines the shortest distance between the robot and the desired path, often
referred to as the cross-track error. In order to solve the path following problem,
we use the LOS guidance law as a VHC, which defines the desired head angle
as a function of the cross-track error as

ΦN = − tan−1
(py

∆

)
(3.12)

where ∆ > 0 is a design parameter known as the look-ahead-distance. The idea
is that steering the head angle of the snake robot such that it is headed towards
a point located at a distance ∆ ahead of the robot along the desired path, will
make the snake robot move towards the path and follow it.

Defining a Constraint Manifold

We collect all the defined constraint functions in the following vector-valued
function

Φ =
[
α sin(λ) + φo, . . . , α sin (λ+ (N − 1)δ) + φo, tan−1

(py
∆

)]T
∈ RN (3.13)

For trajectory planning using VHC, we define the constraint manifold associ-
ated with the constraint functions (3.13) as

Γ =

{(
q̂, ˙̂q
)
∈ T Q̂ : φi = Φi(λ, φo), θN = ΦN (py), φ̇i = λ̇

∂Φi

∂λ
+ φ̇o

∂Φi

∂φo
, θ̇N = ṗy

∂ΦN

∂py

}
(3.14)

where i ∈ {1, . . . , N − 1}. Since there are three different constraint variables, i.e.
(λ, φo, py), then the constraint manifold (3.14) is a 6-dimensional submanifold
of Q̂, . The goal of the control input is to enforce the VHC (3.13), by making Γ
exponentially stable for the closed-loop system, and thereby achieving the con-
trol objectives (3.2) and (3.4). To this end, we define the elements of a controlled
output vector y ∈ RN for the dynamical system (2.39)–(2.42) as the difference
between the angular coordinates, i.e. (φ1, . . . , φN−1, θN), and their correspond-
ing constraint functions as

y = [φ1 − Φ1(λ, φo), . . . , φN−1 − ΦN−1(λ, φo), θN − ΦN(py)]
T ∈ RN (3.15)

We will achieve our control design objectives which we defined in the previ-
ous section, by designing the control inputs ϑ and φ̈o such that (yi, ẏi) → (0, 0)
for all i ∈ {1, . . . , N}. To this end, we first need to ensure that the given rela-
tions in (3.13) are stabilizable, i.e. a suitable choice of feedback can stabilize the
constraint manifold for the closed-loop system. For simplicity of notation, we
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denote the following differentials:

dΦi = λ̇
∂Φi

∂λ
+ φ̇o

∂Φi

∂φo
(3.16a)

dΦN = ṗy
∂ΦN

∂py
(3.16b)

d2Φi = λ̈
∂Φi

∂λ
+ λ̇2∂

2Φi

∂λ2
+ φ̈o

∂Φi

∂φo
+ φ̇2

o

∂2Φi

∂φ2
o

(3.16c)

d2ΦN = p̈y
∂ΦN

∂py
+ ṗ2

y

∂2ΦN

∂p2
y

(3.16d)

where i ∈ {1, . . . , N − 1}. The Lie derivative1 of (3.15) along (2.39)–(2.42) is of
the form

ẏ =
[
φ̇1 − dΦ1, . . . , φ̇N−1 − dΦN−1, θ̇N − dΦN

]T
∈ RN (3.17)

which lacks the control inputs (ϑ, φ̈o). The Lie derivative of (3.17) along (2.39)–
(2.42) is of the form

ÿ =
[
ϑ1 − d2Φ1, . . . , ϑN−1 − d2ΦN−1, fθN + βiϑ

i − d2ΦN

]T ∈ RN (3.18)

which contains the control inputs. Consequently, the controlled output vector
(3.15) yields a well-defined vector relative degree {2, 2, . . . , 2} everywhere on
the configuration space. The VHC satisfying this vector relative degree condi-
tion are called regular, and regular constraints are always feasible [93], i.e. there
exists a smooth feedback such that Γ is positively invariant for the closed-loop
system. Furthermore, regular constraints in parametric form (3.13) are always
stabilizable [93].

The well-defined vector relative degree {2, 2, . . . , 2} on Γ implies that the
system (2.39)–(2.42) with the controlled output function (3.15) is input-output
feedback linearizable. Consequently, we can stabilize Γ with an input-output
feedback linearizing controller.

Output Regulation via Input–Output Linearization

In this subsection, we will derive a control law for the joint angle dynamics
(2.39) such that the constraint manifold (3.14) with the constraint functions de-
fined in (3.13) is globally exponentially stable for the closed-loop system. In
particular, we use input-output linearization to stabilize the constraint mani-
fold. The exponential stability of the constraint manifold Γ implies that the con-
trol objectives (3.2) and (3.4) will be achieved. Furthermore, using numerical

1For the dynamical system ẋ = f(x) + g(x)u, with output function y = h(x), the Lie deriva-
tive of h along f is given by Lfh(x) = ∂h(x)

∂x f(x).
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simulations and experiments on a robotic snake, we show that the exponential
stability of Γ induces path following on the snake robot.

In order to stabilize Φi(λ, φo) for the i-th joint such that (yi, ẏi)→ (0, 0) for all
i ∈ {1, . . . , N − 1}, we define an exponentially stabilizing joint control law. The
second-order time-derivative of the i-th joint tracking error, i.e. the i-th entry of
(3.18), is of the form

ÿi = ϑi − d2Φi (3.19)

We define the control input for the i-th joint in (2.39) as

ϑi = d2Φi − kpyi − kdẏi (3.20)

where kp > 0 and kd > 0 are the joint controller gains. These gains are chosen
similar for all the joints since the links have similar inertial parameters. Insert-
ing (3.20) into (3.19) yields

ÿi + kdẏi + kpyi = 0 (3.21)

The tracking error dynamics of the i-th joint angle (3.21) clearly has a globally
exponentially stable equilibrium at the origin (yi, ẏi) = (0, 0), which implies that
every i-th control input (3.20) exponentially stabilizes the constraint manifold
for the solutions of the dynamics of the i-th joint, and the control objective (3.2)
is achieved.

In continue, we use the dynamic compensator φ̈o in order to stabilize the so-
lutions of the dynamics of the head angle (2.40) to the constraint manifold, such
that (yN , ẏN) → (0, 0). The head angle error corresponds to the N -th element
of the controlled output vector (3.15), and its second-order time-derivative (i.e.
the head angle error dynamics) is given by

ÿN = fθN + βiϑ
i − d2ΦN (3.22)

Inserting ϑi from (3.20) into (3.22) we can obtain the closed-loop dynamics of
the head angle, which gives

ÿN = fθN +
N−1∑
i=1

βi
(
d2Φi − kpyi − kdẏi

)
− d2ΦN (3.23)

By considering the notation which was introduced in (3.16c), we can write (3.23)
in the following equivalent form

ÿN = fθN +
N−1∑
i=1

βi

(
λ̈
∂Φi

∂λ
+ λ̇2∂

2Φi

∂λ2
+ φ̈o

∂Φi

∂φo
+ φ̇2

o

∂2φi
∂φ2

o

− kpyi − kdẏi
)
− d2ΦN

(3.24)
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For simplicity of notation, we denote the constraint function for the i-th joint
angle of the robot by Φi = Si +φo, where Si = α sin (λ+ (i− 1)δ). Subsequently,
based on the specified constraint functions in (3.13), i.e. since λ̈ = 0 and ∂2φi

∂φ2o
= 0,

we can write (3.24) as

ÿN = fθN +
N−1∑
i=1

βi

(
−λ̇2Si + φ̈o − kpyi − kdẏi

)
− d2ΦN (3.25)

In order to stabilize the constraint function ΦN(py) for the head angle, we define
the second-order time-derivative of the augmented coordinate φo in the form of
a dynamic compensator as

φ̈o =

(
N−1∑
i=1

βi

)−1(N−1∑
i=1

βi

(
λ̇2Si + kpyi + kdẏi

)
+ d2ΦN − fθN − kp,θN yN − kd,θN ẏN

)
(3.26)

where kp,θN > 0 and kd,θN > 0 are the head angle controller gains. Notice that
since βi is negative-valued in any configuration, (3.26) is globally well-defined.
For the control design method presented in this section, through numerical sim-
ulations and experimental results we show that the states of the dynamic com-
pensator (3.26), i.e. (φo, φ̇o), remain bounded. However, in Section 3.4, we use
an input-output stability analysis in order to show the boundedness of (φo, φ̇o).
By inserting (3.26) into (3.25), the error dynamics of the head angle takes the
form

ÿN + kd,θN ẏN + kp,θNyN = 0 (3.27)

which clearly has a globally exponentially stable equilibrium at the origin, i.e.
(yN , ẏN) = (0, 0). Consequently, we have that (yN , ẏN) → (0, 0) from any initial
condition, and the control objective (3.4) will be achieved.

Finally, we conjecture that while the output trajectories of the system (2.39)–
(2.42) are evolving on the constraint manifold (3.14), the internal dynamics given
by (2.41)–(2.42), which has the form

p̈x = fx (Φ, px, py, dΦ, ṗx, ṗy) (3.28)

p̈y = fy (Φ, px, py, dΦ, ṗx, ṗy) (3.29)

converge to and follow the desired planar path. Analytically investigating the
convergence of the snake robot position to the desired path is a topic of future
chapters. As a preliminary support of this conjecture, in this chapter we pro-
vide simulation and experimental results which show that the snake robot suc-
cessfully converges to and follows the desired path using the guidance-based
control strategy presented in this section.
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3.3 Robust Locomotion Control of Snake Robots
Using Sliding Mode Techniques

In this section, we extend the results of the previous section to the dynamic
model of the snake robot (2.77)–(2.80) which is subject to parametric modelling
uncertainties. In particular, we show how sliding mode control techniques can
be used in order to control the locomotion of the snake robots which move on
various surfaces. Our main motivation for using this technique for motion con-
trol of snake robots is the fact that these robots often move on different surfaces
with different friction properties. Accordingly, the necessity of developing con-
trol methods for snake robots which are robust with respect to changes in the
environment of the robot is well-justified. To design the sliding mode controller,
we use the dynamic model (2.77)–(2.80), which included the effects of paramet-
ric modelling uncertainties due to varying friction properties on the motion of
the robot. Using this dynamic model, we propose an analytical solution to the
robust path following control problem through the following two steps.

1. In the first step, we use sliding mode techniques to design a robust track-
ing controller for the joints of the robot to track a desired gait pattern.

2. In the second step, using robust dynamic compensation, we stabilize an
appropriately defined sliding manifold for the underactuated head angle
of the robot, thereby achieving the convergence of the robot to the desired
straight path.

The control objectives for this section are same as the previous section which
are given in (3.2), (3.4), and (3.6). In particular, we aim to control the body shape
of the robot to a desired gait pattern, to control the head angle of the robot to
a reference head angle defined by the LOS path following guidance law, and
to make the CM of the robot to converge to and follow a desired geometric
path. However, in the section we use sliding mode techniques to achieve these
goals in the presence of nonlinear terms arising due to the parametric modelling
uncertainties. At the end of this chapter we present simulation results for the
sliding mode controller which validate the theoretical approach.

3.3.1 Sliding Mode Tracking Control of the Joint Angles

In this section, we achieve the control objective (3.2) by defining the reference
trajectories for the joints of the snake robot (i.e. the gait pattern), and by using
sliding mode techniques to design a robust joint angle tracking control law.
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To define the desired gait pattern, we use the reference joint trajectories
(3.11), which induce lateral undulatory locomotion on the robot. Moreover, mo-
tivated by [11], where it is shown how φo can be used to steer the heading angle
of the robot, we use the second-order time-derivative of φo as an additional
guidance control term for the underactuated head angle of the robot.

The powerful feature of sliding mode control is its robustness with respect to
model uncertainties. For snake robots, this robustness is useful for performing
robust control tasks on surfaces with varying friction properties. To design a
robust tracking controller for the joints of the robot, we first define the vector of
the reference joint trajectories as

Φ(t) = [φref,1, φref,2, . . . , φref,N−1]T ∈ RN−1 (3.30)

Thus, the vector of the joint angle tracking errors is defined as

Φ̃(t) =
[
φ̃1, φ̃2, . . . , φ̃N−1

]T
∈ RN−1 (3.31)

where φ̃i = φi − φref,i denotes the i-th joint angle tracking error variable. Based
on the dynamic model (2.77)–(2.80), the dynamics of the joint angles, i.e. qa =
(φ1, φ2, . . . , φN−1) of the robot which is subject to parametric modelling uncer-
tainties is given by

q̈a = ϑ+Ga (q, q̇) ∈ RN−1 (3.32)

where ϑ = [ϑ1, . . . , ϑN−1]T ∈ RN−1 denotes the vector of the joint control inputs
and the vector Ga (q, q̇) ∈ RN−1 denotes the effects of parametric modelling
uncertainties on the dynamics of the joint angles. We define the sliding mode
variable for the joint angles of the robot as

s = ˙̃Φ +KΦ̃ ∈ RN−1 (3.33)

where K = diag{ki}N−1
i=1 ∈ R(N−1)×(N−1) is a diagonal matrix of positive constant

gains. The time-derivative of the sliding mode variable (3.33) is given by

ṡ = ¨̃Φ +K ˙̃Φ ∈ RN−1 (3.34)

The control objective in (3.2) is achieved by stabilizing the sliding manifold s =
0N−1 in finite time, and remaining on the manifold for all future time. To this
end, we select a Lyapunov function candidate for (3.34) as

V =
1

2
sT s (3.35)
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Taking the time-derivative of V along the solutions of (3.34) gives

V̇ = sT ṡ =sT
(

¨̃Φ +K ˙̃Φ
)

=sT
(
q̈a − Φ̈ +K ˙̃Φ

)
= sT

(
[ϑ+Ga (q, q̇)]− Φ̈ +K ˙̃Φ

) (3.36)

The typical structure of a robust controller is composed of a nominal part similar
to a feedback linearizing or inverse control law, and of an additional term aimed
at dealing with model uncertainty [97]. Consequently, we take the joint angle
tracking control law as

ϑ = ϑnom + ϑadd (3.37)

where

ϑnom =
(

Φ̈−K ˙̃Φ
)
∈ RN−1 (3.38)

ϑadd = −γ sgn(s) ∈ RN−1 (3.39)

and where γ = diag{γi}N−1
i=1 ∈ R(N−1)×(N−1) is a diagonal matrix of positive

constants. Moreover, we define sgn(s) = [sgn(s1), . . . , sgn(sN−1)]T ∈ RN−1. Sub-
stituting (3.37) into (3.36) yields

V̇ = sT [−γ sgn(s) +Ga(q, q̇)] (3.40)

We take γi = γ0 + %i(q, q̇), where γ0 > 0 is a constant, and %i(q, q̇) denotes the
upper-bound on the i-th nonlinear term arising due to parametric modelling
uncertainties. We note that the i-th term of V̇ denoted by V̇i is of the form

V̇i =si [−γi sgn(si) +Gi(q, q̇)] ≤
− [γ0 + %i(q, q̇)] si sgn(si) + |si|%i(q, q̇) ≤ −γ0|si|

(3.41)

Consequently2, V̇ = −
∑N−1

i=1 γ0|si| is negative-definite. This implies that the
sliding manifold s = 0N−1 is a positively invariant set for (3.34). The positive
invariance property of s = 0N−1 implies that once the solutions of (3.34) reach
the sliding manifold, they cannot leave it and the motion of the joints will be
restricted to this manifold. To show that the solutions of (3.34) reach the sliding
manifold in finite time we use the comparison lemma, see e.g. [99]. In particular,
we take W =

∑N−1
i=1

√
2Vi =

∑N−1
i=1 |si|. The upper right derivative D+W =∑N−1

i=1 V̇i
1√
2Vi

satisfies the differential inequality

D+W ≤ −(N − 1)γ0 (3.42)

2Note that si sgn(si) = |si|.
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Using the comparison lemma we have that

W (s(t)) ≤ W (s(0))− (N − 1)γ0 (3.43)

which implies that W =
∑N−1

i=1

√
2Vi = 0 must reach Vi = 0 in finite time. Ac-

cordingly, the solutions of (3.34) starting off the positively invariant manifold
s = 0N−1 will reach it in finite time.

We summarize the results of the foregoing arguments in the following theo-
rem.

Theorem 3.1 With the robust joint tracking control law (3.37), the solutions of (3.34)
reach the sliding manifold s = 0N−1 in finite time. The positive invariance of this
manifold, which is shown by (3.41), implies that these solutions will remain on the
sliding manifold for all future time. Moreover, exponential stability of the origin of the
joint tracking error dynamics ˙̃Φ = −KΦ̃ on the sliding manifold, implies that the joint
tracking errors converge exponentially to zero during the sliding phase, see [99], and
the control objective (3.2) will be achieved.

Remark 3.1 The discontinuous sgn(·) function in the sliding mode controller may lead
to issues related to existence and uniqueness of solutions, issues related to the validity
of the Lyapunov analysis, and chattering (see [99]). To avoid these issues, a common
approach is to approximate the (discontinuous) sgn(s) function with a high slope (con-
tinuous) saturation function sat(s/ε). However, with this approximation the best we
can achieve is ultimate boundedness of the tracking errors with an ultimate bound that
can be controlled by the design parameter ε [99]. Also note that in the case that the
nonlinear terms arising due to parametric modelling uncertainties Ga(q, q̇) are non-
vanishing in the origin (Φ̃, ˙̃Φ) = (0N−1, 0N−1), then the origin is not an equilibrium
point that can be made asymptotically stable.

3.3.2 Underactuated Tracking Control via Sliding Mode
Design

In this section, we design a head angle controller for the snake robot in order
to achieve the second control objective (3.4). In particular, we analytically show
that robust tracking control of the head angle can be achieved by using φo as
an additional control term for the underactuated head angle of the robot. To
this end, we use φ̈o as a dynamic compensator which adds a similar extra off-
set angle to the sinusoidal parts of the reference joint trajectories such that the
position of the CM of the robot converges to the desired path. Furthermore, we
use sliding mode techniques to design the dynamic compensator in a way that
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this convergence will be achieved even in the presence of parametric modelling
uncertainties which are due to friction changes.

Sliding Mode Control of the Head Angle

With the gait pattern lateral undulation (3.11), the reference joint trajectories are
composed of non-identical sinusoidal parts, and an identical offset term. Let us
denote Si = α sin(ωt + (i − 1)δ). Thus, the reference trajectory of the i-th joint
can be denoted as

φref,i = Si + φo (3.44)

In (2.78), the head angle dynamics subject to nonlinear terms arising due to the
parametric modelling uncertainties was given by

θ̈N = fθN (q, q̇) +
N−1∑
i=1

βi(qa)ϑi +GθN (q, q̇) (3.45)

The head angle dynamics in closed-loop form can be obtained by substituting
the joint control law (3.37) into the head angle dynamics (3.45), which gives
(arguments are excluded for notational convenience)

θ̈N =fθN +GθN +
N−1∑
i=1

βiϑi =

fθN +GθN +
N−1∑
i=1

βi

(
S̈i + kiṠi − kiφ̇i + φ̈o + kiφ̇o − γi sgn(si)

) (3.46)

The goal of the control design is to make the head angle exponentially converge
to a reference head angle. In the following, we show that this convergence can
be achieved by using the additional control input φ̈o. To this end, we first de-
fine the error variable for the head angle of the robot as θ̃ = θN − θref , where
θref denotes the reference head angle of the robot which was defined by a LOS
guidance law in (3.12). Moreover, we define the sliding mode variable for the
head angle in the form

sθ = ˙̃θ + Λθ̃ (3.47)

where Λ > 0 is a constant gain. The time-derivative of the sliding mode variable
(3.47) is given by

ṡθ = ¨̃θ + Λ ˙̃θ (3.48)

To stabilize the sliding manifold sθ = 0, we select a Lyapunov function candi-
date for (3.48) as

Vθ =
1

2
s2
θ (3.49)
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The time-derivative of Vθ along the solutions of (3.48) gives

V̇θ = sθṡθ = sθ

(
¨̃θ + Λ ˙̃θ

)
= sθ

(
θ̈N − θ̈ref + Λ ˙̃θ

)
(3.50)

By inserting θ̈N from (3.46) into (3.50), we obtain

V̇θ =

sθ

[
fθN +GθN +

N−1∑
i=1

βi

(
S̈i + kiṠi − kiφ̇i + φ̈o + kiφ̇o − γi sgn(si)

)
− θ̈ref + Λ ˙̃θ

]
(3.51)

In order to stabilize the sliding manifold sθ = 0 we define the dynamic compen-
sator as

φ̈o =

1∑N−1
i=1 βi

[
−fθN −

N−1∑
i=1

βi

(
S̈i + kiṠi − kiφ̇i + kiφ̇o + γi sgn(si)

)
+ θ̈ref − Λ

˙̃
θ − γθ sgn(sθ)

]
(3.52)

where γθ > 0 is a constant gain. Since βi is a negative-valued function for all
i ∈ {1, . . . , N − 1}, (3.52) is globally well-defined. For the controller of this
section, through numerical simulations we show that the states of the dynamic
compensator (3.52), i.e. (φo, φ̇o), remain bounded, however, a formal proof of
this boundedness will be presented in the following section. We define γθ =
γθ0 + %N(q, q̇) for some γθ0 > 0. Note that %N(q, q̇) ∈ R>0 denotes the upper-
bound on GθN (q, q̇) ∈ R. Inserting (3.52) into (3.51) yields

V̇θ = sθ (−γθ sgn(sθ)+GθN ) ≤ − (γθ0 + %N(q, q̇)) sθ sgn(sθ)+|sθ|%N(q, q̇) ≤ −γθ0|sθ|
(3.53)

The negative-definiteness of V̇θ implies the positive invariance of the sliding
manifold sθ = 0 for the dynamical system (3.48). This implies that once solu-
tions of (3.48) reach sθ = 0, they will remain there for all future time.

The results of the foregoing arguments is summarized in the following theorem.

Theorem 3.2 Inequality (3.53) along with the comparison lemma, imply that all solu-
tions of (3.48) starting off the manifold sθ = 0, will reach it in finite time, and solutions
on the manifold cannot leave it. Moreover, the exponential stability of the origin of the
head angle error dynamics ˙̃θ = −Λθ̃ on the sliding manifold, implies that during the
sliding phase, the head angle error converges exponentially to zero, and the control de-
sign objective (3.4) will be achieved.
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We conjecture that the proposed guidance-based sliding mode path following
control strategy, steers the position of the CM of the robot towards the desired
path, and drives it along the path even in the presence of parametric modelling
uncertainties. In Section 3.5 we present simulation results which support this
conjecture. However, a formal proof of this conjecture remains a topic of next
chapters.

3.4 Stability Analysis of the Controlled Systems

So far in this chapter, based on the complex dynamic model of the snake robot
locomotion, we have derived two body shape and orientation controllers which
exponentially stabilize a desired gait pattern and a reference orientation angle
for the robot. However, the major drawback of the proposed controllers was
the absence of an analytical proof for the boundedness of the solutions of the
dynamic compensator which was used in order to control the orientation of the
robot. In this section, we propose a controller which guarantees the bounded-
ness of the solutions of the controlled system. In particular, using an input-
output stability analysis we will show that the solutions of the dynamic com-
pensator which controls the head angle of the robot remain uniformly bounded.

Remark 3.2 In Section 3.2, using the method of VHC we derived a body shape and
orientation controller which led to a strong stability result. In particular, by (3.27) we
showed that the orientation controller (3.26) globally exponentially stabilizes θN → θref.
However, this strong stability result for the orientation was obtained using the dynamic
compensator (3.26) which has a drawback. The drawback is that there is no term in
(3.26) to control the solutions of the dynamic compensator so that it guarantees the
uniform boundedness of these solutions. In this section, however, we change the control
design in the way that we add a term to the dynamic compensator which ensures the
boundedness of its solutions. However, this term acts as a non-vanishing perturbing
term for the orientation error dynamics, and consequently we will obtain a weaker sta-
bility result for the orientation angle. Instead, we guarantee that the solutions of the
controlled system remain uniformly bounded.

To perform control design, we first present two realistic assumptions regard-
ing the dynamics of the robot, and then we state a new control design objective
for the head angle of the robot. Subsequently, we design a new guidance-based
control strategy for the snake robot which ensures the boundedness of the so-
lutions of the closed-loop system. In particular, we employ design and analysis
tools from finite-gain L stability which enable us to analytically show that the
body shape variables achieve perfect tracking, the orientation error converges
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to an arbitrarily small neighbourhood of the origin, and the states of the dy-
namic compensator remain bounded.

Assumption 3.1 We assume that
∑N−1

i=1 βi is a negative constant.

Remark 3.2 Both through numerical simulations and experiments, see e.g. Figures
3.2 and 3.15, it can be verified that βi(qa) is negative-valued for all i ∈ {1, . . . , N − 1}
in any configuration of the robot. This follows from the uniform positive-definiteness of
the inertia matrix of the robot. Moreover,

∑N−1
i=1 βi shows oscillations with a very small

magnitude about a negative constant. This negative constant depends on the inertial
parameters of the robot.

We denote the vector of friction forces acting on the underactuated degrees of
freedom of the robot by f = [fθN , fx, fy] ∈ R3, which is used in the following
assumption.

Assumption 3.2 Throughout this section we assume that supt≥0 ‖f (q(t), q̇(t))‖ <∞.

Remark 3.3 Assumption 3.2 is a realistic assumption, since snake robots often move
very slowly, and the external forces due to friction acting on the system will be bounded.

New Control Design Objective for the Head Angle

In order to control the orientation of the robot, we then need to control the head
angle of the robot. Please note that the head angle θN , together with the joint
angles that give the orientation of the links, (θ1, . . . , θN−1), give the orientation
of the snake robot through (2.6). We define the tracking error variable for the
head angle of the robot as

θ̃ = θN − θref (3.54)

where θref denotes the reference head angle defined by (3.12). Since we only
have (N − 1) independent control inputs, which will be used to control the joint
angles, stabilizing the passive degree of freedom (3.54) is challenging. We aim
to achieve practical stability3 (see e.g. [18]) for this degree of freedom. Thus, the
new control objective for the head angle of the robot is to practically stabilize
θN → θref such that

lim
t→∞

sup
∥∥∥θ̃(t)∥∥∥ ≤ εθ (3.55)

3Practical stability means that we can drive the error (3.54) to any arbitrary small neighbour-
hood of zero.
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where εθ ∈ R>0 is any positive constant. We also require that all the states
of the controlled system, i.e. including the solutions (φo, φ̇o) of the dynamic
compensator, remain bounded.

3.4.1 Guidance-based Control Strategy for the Snake Robot

In the following, we will present a guidance-based control strategy in order
to control the CM of the snake robot to a desired path through controlling the
head angle of the robot to the reference angle defined by the LOS path following
guidance law. Furthermore, using an input-output stability analysis, we show
the uniform boundedness of the solutions of the controlled system. Moreover,
we use a perturbation analysis to show that the orientation error is ultimately
bounded by an arbitrarily small bound containing the origin.

Body Shape Control

In this subsection, we define a dynamic tracking control law for the joint angles
of the robot. To this end, we define the tracking error for the i-th joint as

φ̃i = φi − φref,i (3.56)

where the reference i-joint trajectory φref,i is defined based on the work of Hirose
[1] as

φref,i = α sin(ωt+ (i− 1)δ) + φo (3.57)

For the i-th joint we define the tracking control law

ϑi = φ̈ref,i − kd ˙̃φi − kpφ̃i (3.58)

where kp, kd > 0 denote the joint controller gains. By inserting (3.58) into (2.39)4,
the tracking error dynamics for the i-th joint takes the following exponentially
stable form

¨̃φi + kd
˙̃φi + kpφ̃i = 0 (3.59)

which implies that the joint tracking errors converges exponentially to zero from
any initial conditions.

4Note that the partially feedback linearized dynamics of the i-th joint angle in (2.39) was
presented as φ̈i = ϑi.
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Head Angle Control

For the head angle control design, we will use the idea that we presented before;
using φ̈o in the form of a dynamic compensator which reorients the robot in the
plane through adding an appropriately defined offset angle to each link of the
robot. In particular, we design this term to practically stabilize a reference head
angle for the robot, and thereby achieve the control objective (3.55).

For simplicity, by taking Si = α sin(ωt + (i − 1)δ), the reference trajectory of
the i-th joint can be denoted as

φref,i = Si + φo (3.60)

The closed-loop dynamics of the head angle can be obtained by inserting the
control law (3.58) into the head angle dynamics (2.40) which gives (arguments
are excluded for notational convenience)

θ̈N =fθN +
N−1∑
i=1

βiϑi =

fθN +
N−1∑
i=1

βi

(
S̈i + kdṠi + kpSi − kpφi − kdφ̇i

)
+

N−1∑
i=1

βi

(
φ̈o + kdφ̇o + kpφo

)
(3.61)

We choose φ̈o, utilizing that this can be used as an additional control input, in
the form

φ̈o =

1∑N−1
i=1 βi

(
−fθN −

N−1∑
i=1

βi

(
S̈i + kdṠi + kpSi − kpφi − kdφ̇i + 2kpφo + 2kdφ̇o + σ

))
(3.62)

where σ is a new control input which will be defined later in this section. Note
that βi is negative-valued for all i ∈ {1, . . . , N − 1}, which implies that (3.62)
is globally well-defined. The global exponential stability of the origin of the
joint angle error dynamics in (3.59) implies that the joint tracking errors (φ̃i,

˙̃φi)
converge exponentially fast to zero. Consequently, the reduced form of (3.62)
to the invariant manifold where (φ̃i,

˙̃φi) = (0, 0) for all i ∈ {1, . . . , N − 1}, i.e.
where (φi, φ̇i) = (Si + φo, Ṡi + φ̇o), can be written as

φ̈o + kdφ̇o + kpφo = fΦ (3.63)
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where the right-hand side function is of the form

fΦ

(
t, θ̃, ˙̃θ

)
=

1∑N−1
i=1 βi

(
−fθN −

N−1∑
i=1

βiS̈i + σ

)
(3.64)

We denote (3.64) as the Φ–subsystem. Note that the tracking control law (3.58)
then is a dynamic feedback law, in the sense that it depends on the time evolu-
tion of (φo, φ̇o), which are the solutions of the dynamical system (3.63).

In order to control the head angle of the robot, we define the control term σ
in (3.62) as

σ = θ̈ref − kd,θN
˙̃θ − kp,θN θ̃ (3.65)

where kp,θN > 0 and kd,θN > 0 are the head angle controller gains. By inserting
(3.65) into (3.62), and then the resulting equation into (3.61), the reduced form
of the error dynamics equation for the head angle of the robot evaluated on the
invariant manifold where (φ̃i,

˙̃φi) = (0, 0), can be written as

¨̃θ + kd,θN
˙̃θ + kp,θN θ̃ = fΘ (3.66)

We denote (3.66) as the Θ–subsystem, where the perturbing term on the right-
hand side is of the form

fΘ

(
φo, φ̇o

)
= −kpφo − kdφ̇o (3.67)

For the aim of analysis, we divide the input to the Φ-subsystem fΦ given by
(3.64), into two parts. In particular, one part depends on the solutions of the
Θ–subsystem, which are the head angle tracking errors, and the other part in-
cludes uniformly bounded friction forces and time-dependent reference signals.
Consequently, we divide it into

fΦ = fΦ1 + fΦ2 (3.68)

where

fΦ1 =
1∑N−1

i=1 βi

(
−kθ,d ˙̃θ − kθ,pθ̃

)
fΦ2 =

1∑N−1
i=1 βi

(
−fθN −

N−1∑
i=1

βiS̈i + θ̈ref

) (3.69)

Since the input to the Φ–subsystem depends on the solutions of the Θ–subsystem
and vice versa, one may verify that the (Φ − Θ)–subsystems are feedback con-
nected. This interconnection is illustrated in Figure 3.1, and can be represented
as
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Figure 3.1: Illustration of the feedback connection (3.70)

Σint


¨̃θ = −kd,θN

˙̃θ − kp,θN θ̃ + fΘ

(
φo, φ̇o

)
φ̈o = −kdφ̇o − kpφo + fΦ

(
t, θ̃, ˙̃θ

) (3.70)

The feedback connected system Σint is the dynamical system which governs
the interconnection between the actuated and underactuated dynamics of the
robot in closed-loop. In particular, for the Φ-subsystem the objective is to keep
the solutions bounded, while for the Θ-subsystem the objective is to drive the
solutions to a small neighbourhood of the origin, i.e. to make the head angle
error arbitrarily small. To achieve these objectives, in the following we analyze
the conditions under which the feedback connection remains stable.

Input-Output Stability of the Feedback Connected System

The feedback connected system Σint is composed of two subsystems given by

d

dt

[
θ̃

˙̃θ

]
=

[
0 1

−kp,θN −kd,θN

][
θ̃

˙̃θ

]
+

[
0

fΘ

]
(3.71)

d

dt

[
φo

φ̇o

]
=

[
0 1

−kp −kd

][
φo

φ̇o

]
+

[
0

fΦ

]
(3.72)

To investigate the input-output stability of Σint, we introduce the augmented
state vector x̂ = [θ̃, φo,

˙̃θ, φ̇o]
T ∈ R4, and the following augmented linear time-

invariant system

˙̂x = Âx̂+ B̂u (3.73)

y = Ĉx̂ (3.74)
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where Â denotes the following matrix

Â =


0 0 1 0

0 0 0 1

−kp,θN −kp −kd,θN −kd
−kp,θN∑N−1
i=1 βi

−kp
−kd,θN∑N−1
i=1 βi

−kd

 (3.75)

and the input u is given by the following uniformly bounded scalar-valued
function

u = fΦ2 (3.76)

The input matrix B̂ and the output matrix Ĉ are, respectively, given by

B̂ =
[

0 0 0 1
]T

(3.77)

Ĉ =
[

1 1 1 1
]

(3.78)

The following theorem investigates the input-output stability of the augmented
dynamical system (3.73), with the output function (3.74).

Theorem 3.3 The augmented dynamical system (3.73)–(3.74), i.e. the feedback con-
nected system Σint, is finite-gain L2 stable.

Proof : It can be verified that all the eigenvalues of matrix Â have negative real
parts, i.e. that matrix Â is Hurwitz, when kp, kd, kp,θN , kd,θN > 0. Consequently,
by [99, Corollary 5.2], we conclude that (3.73)–(3.74) is finite-gain Lp stable, for
each p ∈ [1,∞], and the finite-gain is given by

γ? =
2λ2

max(P̂ )‖B̂‖2‖Ĉ‖2

λmin(P̂ )
(3.79)

where λmax and λmin denote, respectively, the maximum and minimum eigen-
values of P̂ ∈ R2×2 which is the symmetric positive definite matrix solution of
the Lyapunov equation

ÂT P̂ + P̂ Â = −I (3.80)

where I ∈ R2×2 denotes the identity matrix. �

Remark 3.4 Based on the finite-gain L2 stability of Σint, and uniform boundedness
of the exogenous input fΦ2 , we can conclude that the solutions of Σint are uniformly
bounded by

‖y(t)‖2 ≤ γ? ‖u(t)‖2 (3.81)
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Thus, if we denote the upper-bound on the exogenous input fΦ2 as ζ? = supt≥0{fΦ2(t)},
then we can derive the upper-bound on the solutions Φs = [φo, φ̇o]

T ∈ R2 of the dy-
namic compensator, i.e. the Φ-subsystem, as

ζ = ‖Φs(t)‖2 ≤ γ?ζ? ∈ R>0 (3.82)

This upper-bound will be used in the stability analysis presented in the next subsection.

Theorem 3.3 guarantees the boundedness of the solutions of the feedback con-
nected system Σint, and thus the requirement for the boundedness of the states
of the dynamic compensator is fulfilled. It remains to show that under the
controllers (3.58) and (3.62) the head angle error can be made arbitrarily small,
which is the subject of the next subsection.

Practical Stability of the Head Angle Error Dynamics

We denote the state vector of (3.71) by Θs = [θ̃, ˙̃θ]T ∈ R2, and the state vector of
(3.72) by Φs = [φo, φ̇o]

T ∈ R2. The dynamical system (3.71) with fΘ ≡ 0 denotes
the nominal part of the Θ-subsystem, and the dynamical system (3.72) with
fΦ ≡ 0 denotes the nominal part of the Φ-subsystem. The nominal part of the Θ-
subsystem (3.71), which characterizes the dynamics of the head angle tracking
error, has a globally exponentially stable equilibrium at the origin (θ̃, ˙̃θ) = (0, 0)
because the following matrix is Hurwitz

A =

[
0 1

−kp,θN −kd,θN

]
(3.83)

However, this nominal part is perturbed by the bounded non-vanishing per-
turbation term fΘ. Through the following theorem, we investigate the practical
stability of the origin of (3.71) in the presence of fΘ.

Theorem 3.4 Given the feedback connected system (3.70), the head angle error (θ̃, ˙̃θ) is
uniformly ultimately bounded. Furthermore, it is possible to make the ultimate bound
arbitrarily small by choosing sufficiently large gains (kp,θN , kd,θN ).

Proof: We select a quadratic Lyapunov function in the form

V =
1

2
ΘT
s PΘs (3.84)

where P ∈ R2×2 is the solution of the Lyapunov equation

ATP + PA = −Q (3.85)
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Since the matrixA in (3.83) is Hurwitz, there will always be a unique, symmetric
and positive definite solution P to (3.85) for any positive definite matrix Q [99,
Th. 4.6]. In order to reflect that the convergence rate of the linear system given
by (3.83) will depend on the chosen gain parameters, we choose the following
Q ∈ R2×2 positive definite matrix

Q =

[
kp,θN 0

0 kd,θN

]
(3.86)

We denote the minimum eigenvalue of Q by λmin(Q), which is characterized by
the choice of the head angle controller gains (kp,θN , kd,θN ). By a Converse Lya-
punov Theorem [99], exponential stability of the nominal part of (3.71) implies
that (3.84) satisfies the following inequalities [99, Ch. 9.1]

λmin(P )‖Θs‖2
2≤ V (Θs) ≤ λmax(P )‖Θs‖2

2 (3.87)

∂V (Θs)

∂Θs

AΘs ≤ −λmin(Q)‖Θs‖2
2 (3.88)∥∥∥∥∂V (Θs)

∂Θs

∥∥∥∥
2

≤ 2λmax(P )‖Θs‖2 (3.89)

where λmin(P ) and λmax(P ) denote the minimum and maximum eigenvalues of
P , respectively. Furthermore, we select V as a Lyapunov function candidate for
the perturbed system (3.71). Taking the time-derivative of V along the solutions
of (3.71), and utilizing the properties (3.87)–(3.89), gives

V̇ = − ∂V

∂Θs

AΘs +
∂V

∂Θs

fΘ (3.90)

The first right-hand side term in (3.90) denotes the time-derivative of V along
the solutions of the nominal part of (3.71), and the second right-hand side term
is the effect of the perturbing term fΘ. Using the inequalities in (3.87)–(3.89), we
obtain

V̇ ≤ −λmin(Q)‖Θs‖2
2+2λmax(P )‖Θs‖2‖fΘ‖2 (3.91)

Moreover, from the definition of fΘ in (3.67) and using Cauchy-Schwartz in-
equality, see e.g. [99], we have that

‖fΘ‖2≤
(√

k2
p + k2

d

)
‖Φs‖2 (3.92)

To simplify the analysis, we choose the controller gains as

kp =
k?p

2λmax(P )
, kd =

k?d
2λmax(P )

(3.93)
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where k?p > 0 and k?d > 0. With this choice of the controller gains, and also based
on the upper-bound on the solutions of the dynamic compensator ζ ∈ R>0 in
(3.82), inequality (3.91) takes the form

V̇ ≤ −λmin(Q)‖Θs‖2
2+‖Θs‖2

(√
k?2p + k?2d

)
ζ (3.94)

For the second term in the right-hand side of (3.94), we use Young’s inequality
where we have that

ab ≤ γa2

2
+
b2

2γ
(3.95)

where a, b ∈ R, and γ > 0 is any positive constant [101]. In particular, by taking

a = ‖Θs‖2

(√
k?2p + k?2d

)
, b = ζ (3.96)

one can write (3.94) in the form

V̇ ≤
(
−λmin(Q) + γ

[
k?2p + k?2d

])
‖Θs‖2

2+
ζ2

2γ
(3.97)

With any choice of γ, k?p, and k?d, we can choose the elements ofQ, i.e. (kp,θN , kd,θN ),
sufficiently large, so that

α? =
(
−λmin(Q) + γ

[
k?2p + k?2d

])
(3.98)

is negative. In this case, for a sufficiently small positive constant λ the following
inequality holds

V̇ ≤ −α?‖Θs‖2
2+

ζ2

2γ
≤ −λ

(
λmax(P )‖Θs‖2

2

)
+
ζ2

2γ
(3.99)

Based on the inequality in (3.87), we can also derive the following inequality

−λV ≥ −λ
(
λmax(P )‖Θs‖2

2

)
(3.100)

and using this in (3.99) yields

V̇ ≤ −λV +
ζ2

2γ
(3.101)

Consequently, a straightforward application of the comparison lemma yields

V (t) ≤ e−λtV (0) +
ζ2

2γλ
(3.102)
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From (3.102) we conclude the ultimate boundedness of the head angle error, be-
cause the first term on the right-hand side of (3.102) vanishes as t→∞, and the
second term is uniformly bounded. However, boundedness of the head angle
error is not sufficient to achieve the control objective (3.55). We also need to
show that the ultimate bound can be made arbitrarily small. To this end, we no-
tice that based on (3.102) V converges to a ball of radius ζ2/2γλ. Consequently,
based on the inequality λmin(P )‖Θs‖2

2≤ V in (3.87), we conclude that ‖Θs‖2 also
converges to a ball of radius

r =
ζ√

2λmin(P )γλ
(3.103)

Moreover, we can drive ‖Θs‖2 to any arbitrary small neighbourhood of the ori-
gin εθ, by choosing

γ =
ζ2

2λmin(P )λε2θ
(3.104)

which can be seen by inserting (3.104) into (3.103). Furthermore, from (3.98) it
can be seen that for any value of γ in (3.104), it is always possible to make α?

negative by making λmin(Q) large enough, i.e. by choosing (kp,θN , kd,θN ) suffi-
ciently large. Consequently, an arbitrarily small ultimate bound for the head
angle error can be achieved by properly choosing the gains (kp,θN , kd,θN ), and
the control objective (3.55) is achieved. This completes the proof of Theorem
3.4. �

Remark 3.5 By the result of Theorem 3.3, the feedback connection (3.70) is finite-gain
L2 stable when kp, kd, kp,θN , kd,θN > 0. Furthermore, from (3.93) we see that we need
to choose the gains of the orientation controller (kp,θN , kd,θN ) sufficiently larger than the
gains of the dynamic compensator (kp, kd), in order to guarantee that the head angle
error converges to a small neighbourhood of the origin. This can also be interpreted
based on the fact that (kp, kd) increase the strength of the perturbing term fΘ on the
right-hand side of (3.71). In other words, by decreasing the strength of fΘ and increas-
ing (kp,θN , kd,θN ), any small ultimate bound on the head angle error can be achieved.

Such as previous controllers of this chapter, through numerical simulations
for this controller we will show that the proposed guidance-based control strat-
egy of this section, successfully make the snake robot converge to the desired
path and then drives it along the path.
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3.5 Simulation and Experimental Results

3.5.1 Simulation and Experimental Results for the VHC based
Body Shape and Orientation Controller

In this section, we present simulation and experimental results which illustrate
the performance of the proposed path following controller in Section 3.2. We
considered a snake robot with N = 11 links, m = 1 kg, l = 0.07 m, and J =
0.0016 kgm2. The friction coefficients were cn = 10, ct = 1. The parameters of
the joint constraint functions (3.11) were α = π/6 rad, η = 70πt/180 rad, and
δ = 36π/180 rad. The controller gains in (3.20) and (3.26) were tuned as kp = 10,
kd = 5, kp,θN = 20, kd,θN = 1, and ∆ = 1.4 m. In order to calculate Φ̇N and Φ̈N , we
employed the approach taken in [89] by passing ΦN through a low-pass filter of
the form

d

dt

[
ΦN

Φ̇N

]
=

[
0 1

−ω2
n −2ψfωn

][
ΦN

Φ̇N

]
+

[
0

ω2
n

]
ΦN (3.105)

with natural frequency ωn = π/2 rad, damping ratio ψf = 1, and zero initial
conditions. As seen from the simulation results which are presented in Figures
3.2–3.7, the snake robot successfully converges to and follows the desired path.
In particular, Figure 3.2 shows that the quantity

∑10
i=1 βi is uniformly bounded

away from zero, which implies that (3.26) is globally well-defined. Figure 3.3
shows that the solutions of the dynamic compensator (3.26) remain bounded.
Figure 3.4 shows that the joint angles track the reference angles provided by
the constraint functions (3.11), while the tracking errors converge exponentially
to zero. Figure 3.5 shows that the head angle tracks the reference head angle
provided by the constraint function (3.12), while the tracking error converges to
zero exponentially. Figure 3.6 shows that the CM of the robot converges to and
follows the desired straight path. Moreover, in order to show the performance
of the proposed tracking control law (3.20) in the presence of angular position
measurement noise, we subjected every i-th joint angle φi to an additive noise
by using Matlab function randn() which generates normally distributed pseu-
dorandom numbers that can be considered as measurement noise for the joint
angles. In particular, we added randn(1) to each joint angle φi in each integra-
tion step. The result of simulation is presented in Figure 3.7, which shows that
the joint tracking errors converge to a very small neighbourhood of zero in the
presence of measurement noise.
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Experimental Setup

The experiment was carried out using the snake robot Wheeko, see [11]. The
robot, which is shown in Figure 3.8, has 10 identical joint modules, i.e. N = 11
links. Each joint module is equipped with a set of passive wheels which give
the robot anisotropic ground friction properties during motion on flat surfaces.
The wheels are able to slip sideways, and thus do not introduce nonholonomic
velocity constraints in the system. Each joint is driven by a Hitec servo mo-
tor (HS-5955TG), and the joint angles are measured using magnetic rotary en-
coders. The motion of the snake robot was measured using a camera-based
motion capture system from Optitrack of type Flex 13. The system consists of 16
cameras which are sampled at 120 frames per second and which allow reflec-
tive markers to be tracked on a sub-millimeter level. During the experiment,
reflective markers were mounted on the head link of the snake robot in order
to measure the position (xN , yN) and orientation (θN) of the head. These mea-
surements were combined with the measured joint angles (φ1, . . . , φN−1) of the
snake robot in order to measure the absolute link angles (2.5) and the position
of the CM (px, py) of the robot. In order to obtain the derivatives of the reference
head angle (3.12), we used the same technique as in the simulations, i.e. passing
ΦN through a low-pass filter of the form (3.105). The parameters of the low-pass
filter were set to ωn = π/2 and ψf = 1.

In the following, we elaborate on a few adjustments that were made in the
implemented path following controller in order to comply with the particular
properties and capabilities of the physical snake robot employed in the experi-
ment. We conjecture that these adjustments only marginally affected the over-
all motion of the robot. The successful path following behaviour of the robot
demonstrated below supports this claim. Since the experimental setup only
provided measurements of the joint angles and the position and orientation of
the head link, we chose to implement the joint controller in (3.20) as

ϑi = −kpyi (3.106)

where i ∈ {1, . . . , 10}. We conjecture that eliminating the joint angular velocity
terms from (3.20) did not significantly change the dynamic behaviour of the sys-
tem since the joint motion was relatively slow during the experiment. The main
consequence of excluding the velocity terms from (3.20) is that we potentially
introduce a steady-state error in the tracking of the joint angles. Consequently,
since with the joint control law (3.106) the derivative terms in (3.20) are iden-
tically zero, they need not to be linearized in the head angle dynamics by the
dynamic compensator. As the result, we implemented the dynamic compen-
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sator of the form

φ̈o =

(
N−1∑
i=1

βi

)−1 (
−fθN + d2ΦN − kp,θNyN − kd,θN ẏN

)
− kpφo − kdφ̇o (3.107)

where the controller gains were kp,θN = 20, kd,θN = 1, kp = 10, and kd = 5.
We saturated the joint angle offset φo according to φo ∈ [−π/6, π/6], in order
to keep the joint reference angles within reasonable bounds with respect to the
maximum allowable joint angles of the physical snake robot. Moreover, from
Figure 3.8, it can be seen that the head link of the snake robot does not touch the
ground since the ground contact points occur at the location of the joints. As
a results, we implemented (3.107) with fθN ≡ 0. The solutions of the dynamic
compensator (3.107) were obtained by numerical integration in LabVIEW which
was used as the development environment. We chose the look-ahead-distance
of the path following controller as ∆ = 1.4 m. The initial values for the config-
uration variables of the snake robot were φi = 0 rad, θN = −π/2 rad, px = 0.3
m and py = 1.7 m, i.e. the snake robot was initially headed towards the desired
path (the x-axis), and the initial distance from the CM to the desired path was 1.7
m. Furthermore, the parameters of the constraint functions for the joint angles
(3.11), were α = π/6, η = 70πt/180, and δ = 36π/180, and the ground friction
coefficients were ct = 1 and cn = 10, identical to the simulation parameters.

Experimental Results

The results of the experiments are illustrated in Figures 3.9–3.14. In particular,
Figure 3.9 shows screen shots of the experiments. Figure 3.10 shows that the
solution of the dynamic compensator remained bounded. Figure 3.11 shows
that the joints of the robot tracked the sinusoidal reference angles provided by
the constraint functions (3.11), and that the tracking error converged to a neigh-
bourhood of the origin. As discussed above, this is probably due to the modifi-
cation of the joint controller (3.106) due to the lack of velocity measurements in
the lab. Figure 3.12 shows that the head angle of the robot tracked the reference
head angle defined by the constraint function (3.12), and that the tracking error
converged to a neighbourhood of the origin. Figure 3.13 shows the motion of
the CM of the robot in the x − y plane, which converged to and followed the
desired path. Figure 3.14 compares the motion of the CM during the simulation
and the experiment, which were performed using the same controller parame-
ters in order to obtain comparable results. In particular, from Figure 3.14 it can
be seen that the physical snake and the simulated snake follow almost the same
path. However, due to precise measurement and a more accurate joint control
law for the simulated snake, the path following error converges to a smaller
neighbourhood of the origin.
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Figure 3.2: The term
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i=1 β is bounded away from zero.
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Figure 3.3: The solutions of the dynamic compensator remain bounded, and converge
to a neighbourhood of the origin after compensating for the head angle error.
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Figure 3.6: The simulations verify that the position of the CM of the robot (blue) con-
verges to and follows the desired path (dashed black).
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Figure 3.8: Snake robot Wheeko was used for the experiments.
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Figure 3.9: Screen-shots of the motion of the robot during the experiments, which
shows that the robot converges to and follows the desired path.
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Figure 3.14: Comparison between the motion of the CM of the robot during the simu-
lations (red) and the experiments (blue).

3.5.2 Simulation Results for the Sliding Mode Controller

In this subsection, the simulations results for the sliding mode controller are
presented. For the simulations, the inertial parameters of the N = 11 links
robot were m = 0.5 kg, l = 0.1 m, and J = 0.0016 kgm2. The parameters of the
joint reference trajectory in (3.11) were α = π/6 rad, λ = 80tπ/180 rad/s, and
δ = 2π/3 rad. The sliding mode controller gains were tuned as K = diag{2}3

i=1,
γ = diag{15}3

i=1, Λ = 4, γθ = 10, and ∆ = 2 m. All the initial conditions were
set to zero, except py = 5 meters initial cross-track error. In order to show the
robustness of the proposed feedback control law with respect to the modelling
uncertainties due to friction forces, we assumed that the identified ground fric-
tion coefficients were cn = 10, and ct = 1, while the actual coefficients were
cn = 20, and ct = 2. This implies that exact linearization will not be performed
by the nominal part ϑnom of the sliding mode tracking feedback control law
(3.37). Consequently, the dynamic model will be subject to nonlinear terms
which arise due to this parameter uncertainties. Throughout the simulation
study, we aim to show that the body shape and orientation controller derived
in Section 3.3 will successfully achieve the control objectives (3.2), (3.4), and
(3.6) in the presence of these nonlinear terms. In particular, Figure 3.16 shows
that the states of the dynamic compensator (3.52) remain bounded. Figure 3.17
shows that the joint angles track the reference trajectories (3.11). Figure 3.18
shows that the CM of the robot converges to and follows the desired straight
path, and Figure 3.19 shows the convergence of the head angle error to zero.
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Figure 3.15: The term
∑N−1

i=1 βi is uniformly bounded away from zero, which implies
that the dynamic equation (3.52) is globally well-defined.
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Figure 3.16: The solutions of the dynamic compensator converge to a neighbourhood
of the origin, after compensating for the head angle error
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3.5.3 Simulation Results for the Dynamic Feedback Controller
with Analysis of the Controlled System

In this subsection, we present the results of numerical simulations which illus-
trate the performance of the proposed control design. We considered a snake
robot with N = 4 links and with inertial link parameters m = 0.3 kg, 2l = 0.14
m, and J = 0.0016 kgm2. The friction coefficients were cn = 10, and ct = 1.
The parameters of the reference joint trajectories were α = 30π/180 rad, ω = π
rad/s, and δ = 120π/180 rad. The dynamic feedback controller gains were
tuned as kp = 5, kd = 5, kp,θN = 500, and kd,θN = 500. Note that we have chosen
the gains in accordance with Remark 3.5, such that the system is finite-gain L2

stable, and the orientation error goes to a small neighbourhood of the origin.
The look-ahead-distance was ∆ = 3 m.

As seen from the simulation results, the snake robot successfully tracks the
reference body shape and orientation, and thereby converges to and follows
the desired path. In particular, Figure 3.20 shows that the states of the dy-
namic compensator remain bounded. Figure 3.21 shows that perfect tracking
is achieved for the body shape of the robot, and Figure 3.22 shows the time
evolution of the link angles. Moreover, in Figure 3.22 the head angle tracks the
LOS guidance law, while the tracking error converges to a neighbourhood of
zero as shown in Figure 3.23. Finally, Figure 3.24 shows how the snake robot
successfully converges to and follows the desired path.
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Figure 3.20: The solutions of the Φ-subsystem converge to a neighbourhood of the
origin after compensating for the head angle error.

Time [s]

q̃
i
[r
ad

]

 

 

0 1 2 3 4 5

−0.6

−0.4

−0.2

0

0.2

0.4

q̃1

q̃2

q̃3

Time [s]

q
i
[r
ad

]

 

 

0 2 4 6 8 10

−1.5

−1

−0.5

0

0.5

q1
q2
q3
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verge exponentially to zero (below).
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Figure 3.22: Oscillations in the links of the robot which are induced by sinusoidal joint
motions. The head angle (cyan) tracks the guidance law, and thus does not oscillate.
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Chapter Summary

• We considered body shape and orientation control of planar snake robots
by use of VHC. In particular, we introduced VHC that defined a constraint
manifold for the robot. We designed an input-output feedback linearizing
control law to exponentially stabilize the constraint manifold for the sys-
tem.

• Using sliding mode techniques, and based on the dynamic model which
was subject to nonlinearities that were due to parametric modelling un-
certainties, we designed a robust body shape and orientation controller,
which induced path following on the robot. In particular, we designed a
dynamic compensator to control the head angle of the robot to an angle
defined by a LOS Guidance law.

• We used an input-output stability analysis to show that the solutions of
the dynamic compensator which was used in order to control the head
angle of the robot remain uniformly bounded.
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• A formal proof of the convergence of the position of the CM of the robot
to the desired path remains a topic of subsequent chapters. However, we
presented simulation and experimental results which validated the the-
oretical approach for the controllers in this chapter. In particular, these
results showed that the robot successfully converged to and followed a
desired straight path.



CHAPTER4
Model-based Locomotion Control

Approaches for Snake Robots
Part I: The Simplified Model

In this chapter, we present various control methods for the position of the CM
of the snake robot in the plane. In particular, we use the simplified kinematic
and dynamic model of the snake robot which was presented in Chapter 2, in or-
der to solve two locomotion control problems. These control problems consist
of direction following and maneuvering control of snake robots. In particular,
to address these problems we need to control the body shape, orientation, and
velocity of the snake robot to given references. Note that the orientation and
position of the CM of the snake robot are underactuated degrees of freedom
for which the control design is challenging. For instance, it is often difficult
or even impossible for underactuated systems to find an appropriate feedback
transform along with a change of coordinates in order to write the governing
dynamics of the passive degrees of freedom in a linear format [103]. As a result,
for snake robots which have at least three degrees of underactuation, there are
very few model-based feedback control approaches which rely on formal stabil-
ity proofs. However, in this chapter we utilize the simplified model of the snake
robot locomotion in order to present formal stability proofs for the closed-loop
dynamics of the underactuated position variables of the robot. In particular, we
use the method of virtual holonomic constraints (VHC) to address the direction
following and maneuvering control problems for the snake robot. To this end,
we first stabilize a constraint manifold for the fully-actuated body shape vari-
ables of the robot. The definition of the constraint manifold is inspired by the
well-known reference joint angle trajectories which induce lateral undulatory
motion on snake robots. Moreover, we then will show that the dynamical sys-
tem evaluated on the invariant constraint manifold can effectively be controlled
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using dynamic and static compensators. In particular, we will use the design
freedom that the parameters of the desired gait patterns give, and choose these
parameters by using dynamic and static compensators, which control the ori-
entation and planar position of the robot. Furthermore, we will show that the
solutions of these compensators remain uniformly bounded.

In this chapter, we will investigate two locomotion control problems for
snake robots which move on a horizontal and flat surface. These control prob-
lems consist of direction following, and maneuvering control of snake robots.
The general definitions of these control problems are given below.

• Direction Following: In the direction following problem, the goal is to
regulate the orientation and the forward velocity of the robot to a constant
value, while guaranteeing the boundedness of the states of the controlled
system.

• Maneuvering: The maneuvering problem consists of two tasks (see e.g.
[104]). The first task, which is called the geometric task, is to converge to
and follow a desired geometric path. The second task, which is is called
the dynamic task, consists of satisfying dynamical constraints, e.g. a de-
sired velocity profile, along the desired path.

In the subsequent sections, we will state the mathematical formulations for the
above control problems, and we use nonlinear control theory in order to derive
the controllers. Furthermore, we present formal stability proofs for the con-
trolled systems.

Contributions of this chapter: Using the simplified model, this chapter makes
three contributions to snake robot locomotion control. The first contribution of
this chapter is to propose a direction following controller for the snake robot.
The second contribution of this chapter is to propose a maneuvering controller
for the snake robot along straight paths. In particular, by solving the maneu-
vering problem, we control the body shape, orientation, and planar position of
the robot. The third contribution of this chapter is to propose a maneuvering
controller for the snake robot along general curved paths.

In particular, in this chapter we aim to control the orientation and the for-
ward velocity of the robot to given references (either constant or time-varying),
while guaranteeing the boundedness of all the states of the controlled system.
To this end, we first stabilize a constraint manifold for the fully-actuated body
shape variables of the robot. The definition of the constraint manifold is in-
spired by the well-known reference joint angle trajectories which induce lateral
undulatory motion for snake robots. Subsequently, we reduce the dynamics of
the system to the invariant constraint manifold. Furthermore, we design two
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dynamic compensators which control the orientation and velocity of the robot
on this manifold. Using numerical analysis and a formal stability proof, we
show that the solutions of the compensators remain bounded.

To our best knowledge, similar control problems have never been consid-
ered for snake robots. However, both in terms of theoretical developments and
practical aspects, this is an important step forward for locomotion control of
snake robots. In particular, theoretical control challenges which arise due to the
complicated dynamic model of snake robots, which have at least three degrees
of underactuation, can help to an increased understanding of motion control of
underactuated mechanical systems. Furthermore, for real-time applications of
snake robots, it is crucial to automate the locomotion of the robot in the environ-
ments where the human presence is unsafe or impossible, and also to remove
the necessary communication system with a human operator which can reduce
the cost and sensor equipments.

Using the simplified model, a guidance-based straight line path following
control strategy for the snake robot is previously presented in [44] using a cas-
caded systems theory. However, [44] does not provide any results regarding
the forward velocity vt of the robot, and only assumes that the velocity of the
robot is inside a positive constant range, i.e. vt ∈ [vmax, vmin] where vmax and
vmin denote the maximum and minimum of the forward velocity, respectively.
However, this is a restricting assumption since the velocity can change sign or
go unstable. Furthermore, in order to solve the direction following and the ma-
neuvering control problems, we need to control the velocity and position of the
robot along the general curved paths. In this work, using the method of VHC
we achieve these goals. Moreover, using numerical analysis and formal stabil-
ity proofs we show that all the states of the controlled system remain bounded.

Organization of this chapter: This chapter is organized as follows. In Section
4.1, we solve the direction following control problem for the snake robot us-
ing the method of VHC. In Section 4.2, we will solve the maneuvering control
problem along straight paths using the VHC approach. In Section 4.3, a control
strategy for maneuvering along general curved paths is presented. Finally, in
Section 4.4, simulation results for the proposed controllers of this chapter are
presented which validate the theoretical approaches.

Publications: The results of this chapter are based on the conference papers
[81], and [82].
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Preliminary Theory: Reduction Problem for Asymptotic Stability

Throughout Chapters 4 and 5, we use the reduction theorems for stability of
closed sets given in [98]. In this part, we present for completeness the version
of the reduction theorem that we use in the thesis. This theorem may be used
in applications in which the designer must simultaneously meet control spec-
ifications that can be formulated hierarchically [98]. Consider the dynamical
system

Σ : ẋ = f(x, u) (4.1)
with the state spaceX ⊂ Rn, where f is locally Lipschitz onX , with the solution
φ(t, x0) at time t and initial condition x(0) = x0, and u(x) is a locally Lipschitz
feedback which makes the sets Γ1 ⊂ Γ2 positively invariant for the closed-loop
system. This invariance property implies that for all x0 ∈ Γi, i = 1, 2, and for
all t ≥ 0, φ(t, x0) ∈ Γi. Furthermore, we say that the set Γ1 is (globally) asymp-
totically stable relative to Γ2 for Σ, provided that whenever x0 ∈ Γ2 then Γ1 is
(globally) asymptotically stable. In particular [98, Definition 4] states the defi-
nition of the stability of two sets relative to each other as follows.

Definition 4.1 Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be closed positively invariant sets.
We say that Γ1 is stable relative to Γ2 for Σ if, for any ε > 0, there exists a neighbour-
hood N (Γ1) such that φ(R>0,N (Γ1) ∩ Γ2) ⊂ Bε(Γ1).

Note that in the above definition, Bε denotes the ε-ball given by the set Bε =
{x ∈ X : ‖x‖Γ1< ε}, where ‖x‖Γ1 denotes the point-to-set distance, see [98].

Now suppose that Γ1 ⊂ Γ2 ⊂ . . . ⊂ Γl is a nested sequence of closed subsets
of X which represent hierarchical control specifications. According to [98], we
say that specification 1, . . . , specification l are met when x ∈ Γi, i.e. the states
enter the corresponding set which represents the specification. The property
that Γi ⊂ Γi+1 induces a hierarchy of control specifications, where specification
i is met only if specification i + 1 is met, and thus specification i + 1 has higher
priority than specification i [98].

We state Part a of [98, Proposition 14], and we will use this to carry out parts
of the control design in Chapter 4 and 5 of this thesis.

Proposition 4.1 [98] Consider system (4.1), and assume that there exists a locally
Lipschitz feedback u(x) making the sets Γ1 ⊂ Γ2 ⊂ . . . ⊂ Γl, positively invariant for
the closed-loop system. Let Γl+1 := X . If, for i = 1, . . . , l, Γi is asymptotically stable
relative to Γi+1 for the closed-loop system, and Γ1 is compact, then Γ1 is asymptotically
stable for the closed-loop system ẋ = f(x, u(x)).
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Remark 4.1 For the case of a snake robot, the highest priority is the body shape control
which induces the forward motion on the robot based on a desired gait pattern, and then
the second priority is the orientation control which can drive the robot towards a target
in the plane, and the third priority is the position control which makes the robot move
along the desired path with a desired velocity profile. We will develop a hierarchical
control approach based on these control objective priorities for the snake robot.

Review of the Simplified Model

In this part, we recall the simplified kinematic and dynamic models derived in
[11] that were presented in Section 2.3. In this chapter, this model will be used
for direction following and maneuvering control design for the snake robot.
In particular, using the chosen generalized coordinates which were given as
q = [φ1, . . . , φN−1, θ, px, py]T ∈ RN+2, where φi denotes the i-th joint coordinate,
θ denotes the orientation, and (px, py) denotes the planar position of the CM of
the robot, the dynamic model of the robot is given as

φ̇ = vφ (4.2)
θ̇ = vθ (4.3)
ṗx = vt cos(θ)− vn sin(θ) (4.4)
ṗy = vt sin(θ) + vn cos(θ) (4.5)
v̇φ = u (4.6)

v̇θ = −λ1vθ + λ2

N − 1vtē
Tφ (4.7)

v̇t = − ct
m
vt + 2cp

Nm
vnē

Tφ− cp
Nm

φTADvφ (4.8)

v̇n = −cn
m
vn + 2cp

Nm
vtē

Tφ (4.9)

The simplified model (4.2)–(4.9) includes the essential components of the com-
plex model of the snake robot. Furthermore, due to the approximation of the
many of the nonlinear terms of the complex model with simpler linear terms,
the simplified model is more amenable to the model-based locomotion control
design which will be presented in the following sections.
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4.1 Direction Following Control of Snake Robots
based on a Simplified Model

4.1.1 Control Design Objectives

In this subsection, we present the control design objectives for the direction
following controller which will be derived in this section. In direction following
control (DFC), the objective is to regulate the linear velocity of the snake robot to
a constant reference, while guaranteeing the boundedness of the system states.
According to this definition, we define the following control objectives for the
snake robot.

The first control objective concerns the body shape of the robot. Given the
desired periodic body motions, i.e., a desired gait pattern, which we denote by
φref(t) : R>0 → RN−1, we aim to asymptotically stabilize φ→ φref such that

lim
t→∞
‖φ(t)− φref(t)‖ = 0 (4.10)

Furthermore, we aim to regulate the orientation of the robot to a constant
reference orientation which we denote by θref ∈ R. Thus, the second control ob-
jective is to asymptotically stabilize the orientation of the robot to the reference
orientation such that

lim
t→∞
‖θ(t)− θref‖ = 0 (4.11)

The third control objective concerns the velocity of the robot. In particular,
we aim to practically stabilize (see e.g. [100]) the forward velocity of the robot
to a constant reference forward velocity such that

lim
t→∞

sup ‖vt(t)− vt,ref‖ ≤ εt (4.12)

where εt ∈ R>0 is any arbitrary positive constant. Meanwhile, we aim to drive
the normal velocity to a small neighbourhood of the origin such that

lim
t→∞
‖vn(t)‖ ≤ εn (4.13)

where εn ∈ R>0 is a constant. Finally, we require that all the solutions of the
controlled system remain bounded.

Remark 4.2 Note that because of the oscillations that are necessary in order to con-
trol snake robots [11], the forward velocity of the CM will typically not be constant
but will instead oscillate, and this is the reason why we instead of stabilization aim to
practically stabilize it around the desired forward velocity.



107 Direction Following Control: The Simplified Model

4.1.2 Body Shape Control

In this subsection, we propose a feedback control law for the body shape of the
snake robot. In particular, we stabilize a desired gait pattern for the body shape
variables, which induces lateral undulatory locomotion on the robot.

As we discussed in Chapter 3, it is well-known [1] that the gait pattern lateral
undulation for an N -link snake robot will be achieved if every i-th joint of the
robot moves in accordance with the reference joint trajectory given by

φref,i(t) = α sin(ωt+ (i− 1)δ) + φo (4.14)

where α denotes the amplitude of the sinusoidal joint motion, ω denotes the
frequency of the joint oscillations, and δ denotes a phase shift which is used to
keep the joints out of phase. Furthermore, φo is an offset term which can be used
for controlling the orientation of the robot in the plane.

In [11], based on analytical investigations using the averaging theory, it was
shown that the forward velocity of a snake robot which moves based on the
lateral undulatory gait induced by (4.14), is affected by the gait parameters
(α, ω, δ). Consequently, inspired by the work of [1] and [11], we introduce the
following reference for the joint angles of the snake robot,

φref,i(λ, φo) = α sin (λ+ (i− 1)δ) + φo (4.15)

where λ and φo are the solutions of two compensators which will be defined
later in this chapter. In particular, we will use these compensators in order to
control the forward velocity and orientation of the robot, respectively.

Inspired by the idea of VHC that has effectively been used for motion control
of mechanical systems (see e.g. [92]–[96] for various examples), we consider
(4.15) as a VHC for the body shape variables of the snake robot. Furthermore,
these VHC will be enforced through the control input u in (4.6). In particular,
(4.15) is a dynamic VHC in that it depends on the state-evolution of dynamic
compensators.

Associated with constraint functions (4.15), is the following constraint man-
ifold

Γ =
{(
q, q̇, φo, φ̇o, λ, λ̇

)
∈ R2N+8 : φi = φref,i(λ, φo), vφi

= λ̇
∂φref,i

∂λ
+ φ̇o

∂φref,i

∂φo

}
(4.16)

where i ∈ {1, . . . , N − 1}. Our direction following control design approach for
the snake robot is given in the following two steps:

1. In the first step, we use the control input u in (4.6) to stabilize the solu-
tions of the joint angle dynamics to the constraint manifold (4.16). This
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stabilizes a lateral undulatory gait pattern among the shape variables of
the robot. Consequently, this induces a forward motion based on the gait
pattern lateral undulation for the robot.

2. In the second step, we restrict the dynamics of the system to the invariant
constraint manifold (4.16), where we use λ and φo as two additional con-
trol terms, which will be used to control the velocity and orientation of the
robot, respectively, cf. Figure 4.1.

4.1.3 Enforcing the VHC for the Shape Variables of the Robot

In order to stabilize the shape variables φ to the constraint manifold, we define
the following controlled output vector

φ̃ = [φ1 − φref,1, . . . , φN−1 − φref,N−1]T ∈ RN−1 (4.17)

The controlled output vector (4.17) yields a well-defined vector relative degree
{2, . . . , 2} everywhere on the configuration space. Consequently, we can stabi-
lize the constraint manifold using an input-output linearizing feedback control
law [93]. We define this control law as

u = φ̈ref −Kd
˙̃φ−Kpφ̃ (4.18)

where Kp = diag{kpi
}N−1
i=1 and Kd = diag{kdi

}N−1
i=1 denote the positive definite

diagonal matrices of the joint proportional and derivative controller gains, re-
spectively. By inserting (4.18) into (4.6), the error dynamics equation for the
joint angles of the robot takes the form

¨̃φ+Kd
˙̃φ+Kpφ̃ = 0 (4.19)

which clearly has a globally exponentially stable equilibrium at the origin, i.e.
(φ̃, ˙̃φ) = (0N−1, 0N−1). This implies that joint angle errors converge exponen-
tially to zero, i.e. the constraint manifold is a globally exponentially stable man-
ifold for the dynamical system (4.2)–(4.9), and the control objective (4.10) will
be achieved.

4.1.4 Orientation Control

In this subsection, we control the orientation of the robot by using φ̈o as an
additional control input on the exponentially stable constraint manifold. To
this end, we define the orientation error as

θ̃ = θ − θref (4.20)



109 Direction Following Control: The Simplified Model

Body Shape
Controller

α, δ
Velocity
Controller

Orientation
Controller

vref

θref

φo

λ

Snake Robot
u

φ, φ̇, vt

φ, φ̇, vt

Figure 4.1: The Structure of the direction following controller.

where θref ∈ R denotes the constant reference orientation for the robot. Fur-
thermore, we derive the orientation error dynamics of the robot evaluated on
the constraint manifold. This can be done by writing (4.3) and (4.7) in the error
coordinates (φ̃1, . . . , φ̃N−1, θ̃), and then restricting it to the invariant manifold
where (φ̃, ˙̃φ) = (0N−1, 0N−1). The resulting error dynamics has the form

¨̃θ = −λ1
˙̃θ + λ2

N − 1vtē
TS + λ2vtφo (4.21)

where S ∈ RN−1 denotes a vector-valued function which is composed of the
sinusoidal parts of the reference joint angles (4.15):

S = [α sin(λ), . . . , α sin(λ+ (i− 1)δ)]T ∈ RN−1 (4.22)

Motivated by the work of [11], where φo is used as the control input for the
orientation dynamics of the snake robot, we use φ̈o as a dynamic compensator
which controls the orientation of the robot. In particular, since φ̈o is needed for
the joint control law (4.18), then it is more suitable to use this term rather than φo
as the control input for the orientation. Note that if we choose φo as the control
input, then we need to compute (φ̇o, φ̈o) which are very complex functions of
time, numerically. We take the derivatives of (4.21) until the control input φ̈o
appears. The resulting dynamics is of the form

θ̃(4) = −λ1θ̃
(3) + ψ1 (vt, φo) φ̈o + ψ2

(
vt, vn, φo, φ̇o, λ, λ̇, λ̈

)
(4.23)

where ψ1(·) ∈ R and ψ2(·) ∈ R are two scalar-valued functions. Note that it is
straightforward to derive ψ1(·) and ψ2(·) by taking the time-derivatives of (4.21),
however, for clarity of presentation, we write them in the symbolic form. We
define the input-output linearizing control law

φ̈o = 1
ψ1

(
λ1θ̃

(3) − ψ2 + σ
)

(4.24)
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where σ ∈ R is a new control input which we define as

σ = −k3θ̃
(3) − k2θ̃

(2) − k1θ̃
(1) − k0θ̃ (4.25)

where k0, k1, k2, k3 > 0 denote the orientation controller gains. It can be numer-
ically verified that ψ1 is bounded away from zero except for very small values
of the forward velocity vt, and this agrees well with the fact that the orienta-
tion is not controllable if the forward velocity of the snake robot is zero [45].
We stabilize the origin, i.e. θ̃(i) = 0 for all i ∈ {0, . . . , 4}, of the orientation er-
ror dynamics (4.21) by properly choosing the gains ki, for instance according to
the Routh-Hurwitz stability criterion. Furthermore, we show the boundedness
of the solutions of the dynamic compensator (4.24) for the direction following
controller through numerical simulations. We denote this bound by∥∥∥[φo, φ̇o]∥∥∥ ≤ ε (4.26)

where ε ∈ R>0 is a constant. In particular, we denote the upper-bound on each
i-th reference joint angle, which is composed of a bounded sinusoidal part and
the offset term φo, as

‖φref,i‖ ≤ ε∗ (4.27)
where ε∗ ∈ R>0 is a constant. We will employ these bounds for the stability
analysis of the velocity controller in the next subsection.

Remark 4.3 A formal proof for the boundedness of the solutions of the dynamic com-
pensators which are used in order to control the orientation of the robot and are derived
based on the simplified model of the snake robot remains as a theoretical gap in this the-
sis. However, at the end of this chapter we derive a static compensator for orientation
control of the robot for which we analytically show that the solutions remain bounded.
Moreover, in the subsequent chapter we derive dynamic compensators based on the com-
plex model of the snake robot and we present formal proofs for the boundedness of the
solutions of the dynamic compensator which controls the orientation of the robot.

4.1.5 Velocity Regulation

In this subsection, we use the frequency of the joint oscillations as an additional
control term to regulate the forward velocity vt of the robot to a constant refer-
ence. Furthermore, we show that the normal velocity vn of the robot converges
to a small neighbourhood of the origin. To this end, we define the velocity er-
rors for the normal and tangential components of the velocity of the CM of the
robot as

ṽt = vt − vt,ref (4.28)
ṽn = vn − vn,ref (4.29)
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where vt,ref ∈ R>0 and vn,ref = 0 denote the reference tangential and normal
velocities, respectively. Furthermore, we derive the velocity error dynamics of
the robot evaluated on the constraint manifold by writing (4.8)–(4.9) in the error
coordinates, i.e. (φ̃1, . . . , φ̃N−1, ṽt, ṽn), and then restricting them to the invariant
constraint manifold, i.e. where (φ̃, ˙̃φ) = (0N−1, 0N−1), which yields

˙̃vt = − ct
m

(ṽt + vt,ref) + 2cp
Nm

ṽnē
TΦref + η

(
λ̇C + φ̇oē

)
(4.30)

˙̃vn = −cn
m
ṽn + cp

Nm
(ṽt + vt,ref) ēTΦref (4.31)

where η, C, and Φref denote the following vector-valued functions,

η = − cp
Nm

ΦT
refAD ∈ RN−1 (4.32)

C = [α cos(λ), . . . , α cos(λ+ (i− 1)δ)]T ∈ RN−1 (4.33)
Φref = [φref,1, . . . , φref,N−1]T ∈ RN−1 (4.34)

In the following, we use
uλ = λ̈ (4.35)

as a control input to regulate the linear velocities of the robot [vt, vn]T ∈ R2 to
the constant reference vector vref = [vt,ref , 0]T ∈ R2. In particular, we take

λ̇ = 1
δ1

(
ct
m
vt,ref −

2cp
Nm

ṽnē
TΦref − kλṽt

)
(4.36)

where
δ1(φo, λ) = − cp

Nm
ΦT

refADC = ηC (4.37)

and where kλ > 0 denotes the proportional forward velocity controller gain.
It can be numerically verified that δ1(·) is uniformly bounded away from zero,
and this is because of the phase shift between the link references in (4.15). The
following theorem investigates the stability of the origin of (4.30)–(4.31).

Theorem 4.1 Stability characteristics of the origin of (4.30)–(4.31) are as follows:

(a) The origin of the system (4.30)–(4.31) with λ given by the dynamic compen-
sator (4.35)–(4.37) is stabilized provided that kλ > 0 is chosen sufficiently
high. Furthermore, λ̇ remains uniformly bounded.

(b) The practical stability of the origin ṽt = 0 of (4.30), and convergence of the
normal velocity error ṽn, which is governed by the dynamical system (4.31),
to a neighbourhood of the origin is achieved with the dynamic compensator
(4.35)–(4.37), provided that kλ > 0 is chosen sufficiently high. Further-
more, λ̇ remains uniformly bounded.
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Proof of part (a): In order to prove the arguments of part (a), we iteratively in-
troduce control-Lyapunov functions (CLF) borrowing from the techniques of
backstepping (see e.g. [99]), and in addition including a dynamic compensator.
In particular, we select the first CLF as

V1 = 1
2 ṽ

2
t (4.38)

Taking the time-derivative of (4.38) along the solutions of (4.30)–(4.31) yields

V̇1 =ṽt ˙̃vt

=ṽt
[
− ct
m
vt,ref −

ct
m
ṽt + 2cp

Nm
ṽnē

TΦref + η
(
λ̇C + φ̇oē

)] (4.39)

We take λ̇ defined in (4.36) as a virtual control input that we use to make (4.39)
negative. For simplicity, we denote

δ2 (λ, φo, ṽn, ṽt) = 1
δ1

(
ct
m
vt,ref −

2cp
Nm

ṽnē
TΦref − kλṽt

)
(4.40)

For backstepping, we introduce the error variable

z = λ̇− δ2 (λ, φo, ṽn, ṽt) (4.41)

which we would like to drive to zero. The dynamic equation of the error vari-
able (4.41) is given by

ż = uλ − δ̇2
(
λ, λ̇, φo, φ̇o, ṽn, ṽt

)
(4.42)

Note that it is straightforward to derive an analytical expression for δ̇2(·), how-
ever, for the clarity of presentation we write it in the symbolic form. Further-
more, inserting λ̇ = z + δ2(·) into (4.39) yields

V̇1 = −kλṽ2
t −

ct
m
ṽ2
t + zṽtδ1 + ṽtηφ̇oē (4.43)

We introduce an augmented CLF of the form

V2 = V1 + 1
2z

2 + 1
2 ṽ

2
n (4.44)

Taking the time-derivative of V2 along the solutions of (4.30)–(4.31) gives

V̇2 = V̇1 + zż + ṽn ˙̃vn
= −kλṽ2

t −
ct
m
ṽ2
t + ṽtηφ̇oē+ z

(
uλ − δ̇2 + ṽtδ1

)
+ ṽn ˙̃vn

(4.45)
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We define the control input uλ in (4.45) as

uλ = δ̇2 − ṽtδ1 − kzz (4.46)

where kz > 0 is a constant gain. Inserting (4.46) into (4.45) yields

V̇2 = −kλṽ2
t −

ct
m
ṽ2
t − kzz2 + ṽtηφ̇oē+ ṽn ˙̃vn (4.47)

The last two terms in (4.47) have indefinite signs. In particular, ṽn ˙̃vn is of the
form

ṽn ˙̃vn = ṽn

(
−cn
m
ṽn + cp

Nm
(ṽt + vt,ref) ēTΦref

)
= −cn

m
ṽ2
n + cp

Nm
(ṽnṽt + ṽnvt,ref) ēTΦref

(4.48)

Using the upper-bound (4.27), we can write (4.48) as

ṽn ˙̃vn ≤ −
cn
m
ṽ2
n + 2cp

Nm
(|ṽn| |ṽt|+ |ṽn| vt,ref) (N − 1)ε∗ (4.49)

In (4.49), we apply Young’s inequality [101] where we have that

ab ≤ γa2

2 + b2

2γ (4.50)

where a, b > 0, and γ ∈ R>0 is any positive constant. Using this inequality, we
can write (4.49) as

ṽn ˙̃vn ≤ −
cn
m
ṽ2
n + 2cp

Nm

(
γṽ2

n

2 + ṽ2
t

2γ + γṽ2
n

2 +
v2
t,ref

2γ

)
(N − 1)ε∗ (4.51)

Moreover, using the Young’s inequality for the term (ṽtηφ̇oē) in (4.47) we have
that

ṽtηφ̇oē ≤
∣∣∣∣ cpNmēTADē

∣∣∣∣ εε∗
(
ṽ2
t

2γ + γ

2

)
(4.52)

For simplicity we denote ∣∣∣∣ cpNmēTADē
∣∣∣∣ = ζ (4.53)

where ζ > 0 is a constant. Using the inequalities (4.51)–(4.52) in (4.47), we obtain

V̇2 ≤ −
(
kλ + ct

m
− cp(N − 1)α

Nmγ
− ζ

2γ εε
∗
)
ṽ2
t −kzz2−

(
cn
m
− γcp(N − 1)ε∗

Nm

)
ṽ2
n + ε

(4.54)
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where ε denotes the following constant

ε =
cp(N − 1)ε∗v2

t,ref

Nmγ
+ γζεε∗ (4.55)

In order to make the coefficient of ṽ2
n in (4.54) negative, we need to choose

γ < cnN
cp(N−1)ε∗ . For this choice of γ, we can always choose a sufficiently large

kλ such that the coefficient of ṽ2
t in (4.54) will be negative as well. In this case

we conclude that there exist a sufficiently small positive constant β ∈ R>0 such
that the following inequality holds

V̇2 ≤ −βV2 + ε (4.56)

Consequently, a straightforward application of the Comparison Lemma gives

V2(t) ≤ V2(0)e−βt + ε

β
(4.57)

From (4.57) we conclude that ṽn, ṽt, and z remain bounded. This implies that
the solution exists globally. Moreover, according to (4.41) λ̇ remains uniformly
bounded, i.e. since z and δ2 are bounded. Furthermore, V2 converges to a ball
of radius ε/β. Because of the quadratic form of (4.44), ‖ṽn‖ and ‖ṽt‖ converge to
a ball of radius

r =
√

2ε/β (4.58)

Consequently, by choosing kλ sufficiently high, we can drive ‖ṽn‖ and ‖ṽt‖ to a
neighbourhood of the origin. This completes the proof of part (a) of Theorem
4.1.

So far we have shown that the origin (ṽt, ṽn) = (0, 0) of (4.30)–(4.31) is stable.
However, this is not enough to prove part (b) of Theorem 4.1. To prove part (b),
in the following we will show that not only (ṽt, ṽn) = (0, 0) is stable, but also it is
possible to make ‖ṽt‖ converge to any arbitrary small neighbourhood of the ori-
gin, i.e. to be practically stable, and to make ‖ṽn‖ converge to a neighbourhood
of the origin. We will show that this can be achieved by choosing kλ sufficiently
large.

Proof of part (b): Using the Comparison Lemma, in (4.57) we have shown that
ṽn, ṽt, and z are bounded. We denote these bounds by

‖ṽn‖≤ δvn , ‖ṽt‖≤ δvt , ‖z‖≤ δz (4.59)
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where δvn , δvt , and δz are positive constants. Using these bounds, the time-
derivative of V1 in (4.43) can be rewritten as

V̇1 ≤ −kλṽ2
t −

ct
m
ṽ2
t + δz|ṽt|ε1 +

∣∣∣ṽtηφ̇oē∣∣∣ (4.60)

where ε1 is a positive constant which denotes the upper-bound on δ1. Using
Young’s inequality for (4.60) we have that

V̇1 ≤ −kλṽ2
t −

ct
m
ṽ2
t + (δzε1)2

2γ + γṽ2
t

2 + ζεε∗
(
ṽ2
t

2γ + γ

2

)
(4.61)

By collecting the coefficients of ṽ2
t , (4.61) can be written as

V̇1 ≤ −
(
kλ + ct

m
− γ

2 −
ζεε∗

2γ

)
ṽ2
t + (δzε1)2

2γ + γζεε∗

2

= −β∗V1 + (δzε1)2

2γ + γζεε∗

2

(4.62)

where

β∗ = 2
(
kλ + ct

m
− γ

2 −
ζεε∗

2γ

)
(4.63)

is a positive constant. Consequently, a straightforward application of the Com-
parison Lemma yields

V1(t) ≤ V1(0)e−β∗t + (δzε1)2

2γβ∗ + γζεε∗

2β∗ (4.64)

From (4.64), it can be seen that V1 converges to a ball of radius (δzε1)2

2γβ∗ + γζεε∗

2β∗ .
Because of (4.38), ‖ṽt‖ converges to a ball of the radius

r1 =
√

(δzε1)2

γβ∗
+ γζεε∗

β∗
(4.65)

Furthermore, we can choose kλ sufficiently large to drive ‖ṽt‖ to any arbitrary
small neighbourhood of the origin εt > 0, i.e. by making β∗ sufficiently large.
This completes the proof of part (b) of Theorem 4.1, and the control objectives
(4.12)–(4.13) will be achieved. �

Remark 4.4 It is interesting to note from (4.54) that it is the friction, given by the
parameter cn, that stabilizes the velocity in the normal direction vn. We have no direct
control over vn, as the snake robot is underactuated, and the oscillations (4.15) that are
induced by the (N − 1) actuators, create a sideways velocity vn. Thus, (4.54) indicates
that the friction coefficient cn needs to be sufficiently large for the system to be stable.
This complies with the results concerning controllability of snake robots presented in
[45].
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4.2 Maneuvering Control of Snake Robots along
Straight Paths

In this section, we address the maneuvering control of planar snake robots
based on the simplified dynamic model (4.2)–(4.9). In particular, we aim to
make the robot converge to and follow a desired straight line path, and to reg-
ulate the forward velocity of the robot along the path to a constant reference
velocity. In order to address this problem, we first stabilize the desired lateral
undulatory gait pattern given by (4.15) for the fully-actuated body shape vari-
ables of the robot. Furthermore, we choose the gait parameters (λ, φo) using
two dynamic compensators which control the orientation and the position of
the robot in the plane. In particular, by solving the maneuvering problem, we
control the body shape, orientation, and planar position of the robot along a
straight path.

Model Transformation

For the maneuvering control design, we use the transformed form of the dy-
namics of the CM of the robot which was presented in Section 2.4. In particular,
we use the following coordinate transformation [11]

py = py + ε sin(θ) (4.66)
vn = vn + εvθ (4.67)

where
ε = −2(N − 1)cp

Nmλ2
(4.68)

is a negative constant. This change of coordinates transforms the dynamics of
the position of the CM of the system into the form

ṗy = vt sin(θ) + vn cos(θ) (4.69)
v̇n = Xvθ − Y vn (4.70)

where

X = ε
(
cn
m
− λ1

)
(4.71)

Y = cn
m

(4.72)

This change of coordinates removes the joint angle coupling from the dynamic
model, and the resulting model is suitable for model-based maneuvering con-
trol design which is the subject of the subsequent subsections.
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4.2.1 Control Design Objectives

In this subsection, we formulate the maneuvering control objectives for the pro-
posed controllers in the following subsections. In general, the maneuvering
problem consists of two tasks (see e.g. [104]). The first task is to converge to
and follow a desired geometric path. This task is called the geometric task. The
second task, which is called the dynamic task, consists of satisfying dynamical
constraints, e.g. a desired velocity profile, along the desired path. In order to
solve the maneuvering problem for the snake robot, we need to control the body
shape, orientation, position, and velocity of the robot in the plane.

We start the control design formulation by defining a desired gait pattern,
which is given by the vector function φref(t) : R → RN−1, among the fully-
actuated body shape variables of the robot. In particular, we aim to asymptoti-
cally stabilize φ→ φref such that

lim
t→∞
‖φ(t)− φref(t)‖ = 0 (4.73)

which is equivalent to body shape control of the robot.
The second control objective concerns the orientation of the robot in the

plane. In particular, given a reference orientation θref(t) : R≥0 → R, we aim
to asymptotically stabilize θ → θref such that

lim
t→∞
‖θ(t)− θref(t)‖ = 0 (4.74)

which is equivalent to orientation control of the robot.
The third control objective concerns the planar position and linear velocity

of the CM of the robot, i.e. the maneuvering control. In particular, we aim to
solve the geometric task, i.e. to stabilize the position of the CM of the robot
to a desired planar path. In order to formulate the maneuvering control objec-
tives, we first define a desired straight line path, as a one dimensional manifold
P ⊂ R2, with coordinates in the x − y plane given by the pair (pxd, pyd). These
coordinates are parametrized by a time-dependent variable Θ(t) : R≥0 → R≥0.
Consequently, the desired path is defined as

P =
{

(pxd(Θ), pyd(Θ)) ∈ R2 : Θ ≥ 0
}

(4.75)

Furthermore, without loss of generality, we assume that the global x-axis is al-
ways aligned with the desired straight line path, i.e. pyd(Θ) ≡ 0. Thus, the
geometric task is formulated as the convergence to the desired path such that

lim
t→∞
‖py(t)‖ = 0 (4.76)
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To formulate the dynamic task, i.e. to regulate the linear velocity of the robot
along the desired path to a desired positive constant velocity profile vt,ref ∈ R>0,
we define a reference position along the desired path pt,ref(t) ∈ R with ṗt,ref =
vt,ref . The dynamic task is defined as

lim
t→∞
‖pt(t)− pt,ref(t)‖ = 0. (4.77)

Achieving (4.76)–(4.77) is equivalent to position and velocity control for the
robot. This can also be regarded as an output trajectory tracking objective, but
since we focus on controlling the motion along the path we think that maneuver-
ing control is the most adequate term. Finally, we require that all the solutions
of the controlled system remain uniformly bounded.

Solution Methodology

The blueprint of the maneuvering control design approach for the snake robot
is given in the following four steps:

1. In the first step, we use the control input u in (4.6) to stabilize the solutions
of the dynamics of the body shape variables φ to the constraint manifold
(4.16). This induces a forward motion based on the gait pattern lateral
undulation on the robot.

2. In the second step, we reduce the dynamics of the system to the glob-
ally invariant constraint manifold (4.16), where we use φo as an additional
control term, which will be used to control the orientation of the robot.

3. In the third step, we use the frequency of the periodic body motion, i.e.
the gait pattern, as an additional control term to control forward velocity
of the robot. This solves the dynamic task.

4. In the fourth step, we use the reference orientation such that the conver-
gence of the position of the robot to the desired path is guaranteed. This
solves the geometric task.

4.2.2 Body Shape and Orientaion Control

Body Shape Control

For the body shape control of the snake robot, we use the same control law that
we derived in (4.18). In particular, we consider the VHC defined in (4.15) as the
reference joint angles for the robot. Associated with these VHC is the constraint
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manifold (4.16) which we aim to exponentially stabilize for the solutions of the
joint dynamics (4.6).

Using the control law (4.18), the error dynamics equation for the joint angles
of the robot takes the exponentially stable form (4.19). This implies that joint
angle errors exponentially converge to zero, i.e. the constraint manifold is a
globally exponentially stable manifold for (4.6), and the control objective (4.73)
will be achieved.

Orientation Control

In the following, we control the orientation of the robot to a reference angle
defined a path following guidance law. To this end, we use φo as an additional
control term on the exponentially stable constraint manifold. In particular, we
use the following LOS guidance law to define the reference orientation for the
robot

θref = − atan2
(py

∆

)
(4.78)

where ∆ > 0 is a design parameter that is called the look-ahead-distance. The
idea of the guidance law (4.78) is presented in Figure 4.2. A similar guidance
law for snake robots is previously used in [44] where the path following control
of snake robots is considered. In contrast, here we relax a restricting assumption
in [44] on the forward velocity of the robot by regulating the forward velocity
of the robot by using a dynamic compensator, and we solve the maneuvering
control problem.

In order to control the orientation of the robot to the reference orientation
defined by the LOS guidance law (4.78) we define the orientation error as

θ̃ = θ − θref (4.79)

Furthermore, we derive the orientation error dynamics of the robot evaluated
on the constraint manifold. This can be done by writing (4.3) and (4.7) in the
error coordinates, i.e. (φ̃1, . . . , φ̃N−1, θ̃), and then reducing them to the invariant
manifold where (φ̃, ˙̃φ) = (0N−1, 0N−1). The resulting error dynamics has the
form

¨̃θ = −λ1
˙̃θ − λ1θ̇ref + λ2

N − 1vtē
TS + λ2vtφo − θ̈ref (4.80)

where S ∈ RN−1 denotes the following vector which is composed of the sinu-
soidal parts of the reference joint angles (4.15):

S = [α sin(λ), . . . , α sin(λ+ (i− 1)δ)]T ∈ RN−1 (4.81)

In order to control the orientation of the robot, we use φ̈o as a dynamic compen-
sator. To this end, we take the time-derivatives of (4.80) until the control input
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Figure 4.2: The LOS guidance law

φ̈o appears. The resulting dynamics is of the form

θ̃(4) = −λ1θ̃
(3) + ψ1 (vt, φo) φ̈o + ψ2

(
vt, vn, φo, φ̇o, λ, λ̇, λ̈

)
(4.82)

Note that it is straightforward to derive ψ1(·) and ψ2(·) by taking the time-
derivatives of (4.80), but for clarity of presentation, we write them in the sym-
bolic form. We define the input-output linearizing control law

φ̈o = 1
ψ1

(
λ1θ̃

(3) − ψ2 + σ
)

(4.83)

where σ ∈ R is a new control input which we define as

σ = −k3θ̃
(3) − k2θ̃

(2) − k1θ̃
(1) − k0θ̃ (4.84)

where k0, k1, k2, k3 > 0 denote the orientation controller gains. It can be numeri-
cally verified that ψ1(·) is bounded away from zero except for very small values
of the forward velocity vt, and this agrees well with the fact that the orientation
is not controllable if the forward velocity of the snake robot is zero [45]. We
stabilize the origin, i.e. θ̃(i) = 0 for all i ∈ {0, . . . , 4}, of the orientation error
dynamics by properly choosing the gains ki. Furthermore, we show the bound-
edness of the solutions of the dynamic compensator (4.83) through numerical
simulations. We denote this bound by∥∥∥[φo, φ̇o]∥∥∥ ≤ ε (4.85)

where ε ∈ R>0. In particular, we denote the upper-bound on each i-th reference
joint angle, which is composed of a bounded sinusoidal part and the offset term
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φo, as
‖φref,i‖ ≤ ε∗ (4.86)

where ε∗ ∈ R>0 is a constant.

4.2.3 Maneuvering Control

In this section, we perform the dynamic task of the maneuvering problem by
utilizing the idea of velocity control given in [83]. To this end, we derive a dy-
namic compensator which controls the velocity and position of the robot along
the desired path by using the frequency of the joint oscillations as an extra free-
dom in the control design. Moreover, following [44], we perform the geometric
task by using the look-ahead-distance ∆ in (4.78) as a control term. However,
using our velocity controller we relax the restricting assumption in [44] on the
forward velocity of the robot.

As a preliminary condition for the stability analysis of the maneuvering
controller, we need to show that the normal velocity of the robot is uniformly
bounded, which is the subject of the next theorem.

Theorem 4.2. Under the joint controller (4.18) and the orientation controller (4.83),
the normal velocity vn of the robot is uniformly bounded.

Proof : In order to show the boundedness of normal velocity vn, we select the
Lyapunov function

V = 1
2v

2
n (4.87)

Using (4.70), the time-derivative of (4.87) is given by

V̇ = vnv̇n = vn (Xvθ − Y vn) = Xvnvθ − Y v2
n (4.88)

For the first right-hand side term we apply Young’s inequality which yields

V̇ ≤ −Y v̄2
n + |X|

(
γv2

n

2 + v2
θ

2γ

)
= −

(
Y − γ|X|

2

)
v2
n + |X|v

2
θ

2γ (4.89)

From the stability result of the previous subsection, and assuming that vt has no
finite escape time (we will clarify this assumption in Remark 4.5) we conclude
that the second term in right-hand side of (4.89) is uniformly bounded. We
denote this bound by

|X|v2
θ

2γ ≤ β1 ∀t ≥ 0 (4.90)
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where β1 ∈ R>0 is a constant. By (4.72) Y is positive. Suppose now that we
choose γ sufficiently small so that the coefficient of v2

n is negative. In this case
we conclude that there is a positive constant β2 such that

V̇ ≤ −β2V + β1 (4.91)

Therefore, it is straightforward to conclude from the Comparison Lemma that

V (t) ≤ e−β2tV (0) + β1

β2
(4.92)

From (4.92) we conclude that vn remains bounded, and converges to a ball of
radius

√
2β1
β2

. Since vn = vn + εvθ, and vθ is bounded, this also implies that vn
remains bounded. We denote this bound by ‖vn‖≤ εn. �

We will use this fact in the stability analysis of the forward velocity error in
the following.

Dynamic Task along Straight Paths

In this subsection, we solve the dynamic task by controlling the position and
velocity of the robot along the path. In particular, we use the frequency of the
joint angle oscillations as an additional control term in order to regulate the
forward velocity of the robot to a constant reference. To this end, we define the
tangential position and velocity errors as

p̃t = pt − pt,ref , (4.93)
ṽt = vt − vt,ref (4.94)

Using (4.93)–(4.94), we derive the position and velocity error dynamics evalu-
ated on the constraint manifold (4.16) as

˙̃pt = ṽt (4.95a)

˙̃vt = − ct
m

(ṽt + vt,ref) + 2cp
Nm

vnē
TΦref + η

(
λ̇C + φ̇oē

)
(4.95b)

where η, C, and Φref are defined in (4.32)–(4.34). In the following, we use

uλ = λ̈ (4.96)

as a control input to stabilize the origin (p̃t, ṽt) = (0, 0) of (4.95a)–(4.95b). In the
following, we use the techniques of backstepping by selecting the first CLF of
the form

V1 = 1
2 p̃

2
t (4.97)
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Taking the time-derivative of (4.97) along the solutions of (4.95a)–(4.95b) yields

V̇1 = p̃tṽt (4.98)

We take ṽt as a virtual control input which we utilize to make (4.98) negative. In
particular, we define

ṽt = −kz1 p̃t (4.99)
where kz1 > 0 is a constant gain. We define the error variable

z1 = ṽt + kz1 p̃t (4.100)

that we aim to drive to zero. Thus, we can rewrite (4.98) as

V̇1 = −kz1 p̃
2
t + z1p̃t (4.101)

To perform backstepping for z1, we write the error dynamics for the error vari-
able which has the form

ż1 = ˙̃vt + kz1 ṽt (4.102)
We choose an augmented CLF of the form

V2 = V1 + 1
2z

2
1 (4.103)

Taking the time-derivative of V2 along the solutions of (4.95a)–(4.95b) yields

V̇2 =− kz1 p̃
2
t + z1

(
p̃t + ˙̃vt + kz1 ṽt

)
=− kz1 p̃

2
t + z1(p̃t −

ct
m
z1 + ct

m
kz1 p̃t −

ct
m
vt,ref + 2cp

Nm
vnēΦref + ηCλ̇

+ ηēφ̇o + kz1 ṽt)

(4.104)

We denote
δ1(φo, λ) = ηC (4.105)

It can be numerically verified that δ1(·) is uniformly bounded away from zero,
and this is because of the phase shift between the link references in (4.15). We
take λ̇ as a virtual control input that we use to make (4.104) negative:

λ̇ = 1
δ1

(
−p̃t + ct

m
vt,ref −

ct
m
kz1 p̃t −

2cp
Nm

vnēΦref − kz1 ṽt − kz2z1

)
(4.106)

where kz2 > 0 is a constant gain. For simplicity, we denote

δ2(φo, λ, pt, vt) = 1
δ1

(
−p̃t + ct

m
vt,ref −

ct
m
kz1 p̃t −

2cp
Nm

vnēΦref − kz1 ṽt − kz2z1

)
(4.107)
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We define the second error variable as

z2 = λ̇− δ2 (4.108)

which we aim to drive to zero. Inserting λ̇ = z2 + δ2 into (4.104) yields

V̇2 = −kz1 p̃
2
t −

(
ct
m

+ kz2

)
z2

1 + z1z2δ1 + z1ηēφ̇o (4.109)

To perform backstepping for z2, we write the error dynamics for the error vari-
able z2 which has the form

ż2 = uλ − δ̇2 (4.110)
We choose the augmented CLF in the form

V3 = V2 + 1
2z

2
2 (4.111)

The time-derivative of V3 along the solutions of (4.95a)–(4.95b) is of the form

V̇3 = −kz1 p̃
2
t −

(
ct
m

+ kz2

)
z2

1 + z2
(
z1δ1 + uλ − δ̇2

)
+ z1ηēφ̇o (4.112)

We define the control input uλ as

uλ = −z1δ1 + δ̇2 − kz3z2 (4.113)

where kz3 > 0 is a constant gain. Inserting (4.113) into (4.112) yields

V̇3 = −kz1 p̃
2
t −

(
ct
m

+ kz2

)
z2

1 − kz3z
2
2 + z1ηēφ̇o (4.114)

Only the last term in (4.114) has indefinite sign. For this term, we apply Young’s
inequality and we can write

|z1||ηēφ̇o|≤ ζ

(
γ1

2 + z2
1

2γ1

)
(4.115)

where γ1 > 0 is a constant, and

ζ =
∣∣∣∣− cp
Nm

eTADe
∣∣∣∣ εε∗ (4.116)

is a positive constant. Consequently, (4.114) will be of the form

V̇3 ≤ −kz1 p̃
2
t −

(
ct
m

+ kz2 −
ζ

2γ1

)
z2

1 − kz3z
2
2 + γ1ζ

2 (4.117)
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From (4.117) we conclude that there exists a sufficiently small positive constant
β ∈ R>0 such that

V̇3 ≤ −βV3 + γ1ζ

2 (4.118)

Consequently, a straightforward application of the Comparison Lemma implies
that

V3(t) ≤ V3(0)e−βt + γ1ζ

2β (4.119)

From (4.119) we conclude that V3 converges to a ball of radius

r = γ1ζ

2β (4.120)

Furthermore, because of (4.111), z2, z1, and p̃t converge to a ball of radius
√

2r.
Moreover, because of the boundedness of z2 and δ2(·) in (4.107), λ̇ remains
bounded. In addition, we can drive the position and velocity errors to any arbi-
trarily small neighbourhood of the origin ε∗ ∈ R by taking

γ1 = 2βε∗2
ζ

(4.121)

along with choosing a sufficiently large kz2 , i.e. such that the coefficient of z2
1 in

(4.117) will be negative. This implies that the origin (p̃t, ṽt) = (0, 0) of (4.95a)–
(4.95b) is practically stable, and the control objective (4.77), i.e. the dynamic
task, will be achieved.

Remark 4.5 Under the the controllers (4.18), (4.83), and (4.113), with the augmented
state vector

x =
[
pt, vt, pn, vn, φo, φ̇o, λ, λ̇

]
∈ R2 (4.122)

the closed-loop tangential and normal position dynamics along with the dynamics of the
compensators take the form ẋ = f(x). Since all the functions in the closed-loop were
shown to remain bounded, then it can be verified that

‖f(x)‖ ≤ K (1 + ‖x‖) (4.123)

where K ∈ R>0 is a constant. This linear growth condition implies that any of the
components of the state vector (4.122) have no finite escape time, which validates the
results presented in this section which were derived based on this assumption.
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Geometric Task for Straight Paths

In this subsection, we use the look-ahead distance ∆ as an additional control
term to address the geometric task, i.e. to stabilize the position of the CM of the
robot to the desired path P such that (py, vn) → (0, 0). To this end we define
the position and velocity cross-track errors

p̃y = py (4.124)
ṽn = vn (4.125)

which we would like to drive to zero and thereby achieve control objective
(4.76). This will imply that the robot will converge to the global x-axis which
we defined as the desired straight line path. A similar approach is used in
[44], where cascaded systems theory is used to show that for a properly cho-
sen look-ahead distance ∆, the desired path is globally asymptotically stable
for (4.69)–(4.70). However, [44] does not provide any results regarding the for-
ward velocity of the robot, and only assumes that the tangential velocity of the
robot is inside a positive constant range, i.e. vt ∈ [vmax, vmin] where vmax and vmin
denote the maximum and minimum of the forward velocity, respectively. In the
previous subsection, we designed a dynamic compensator which enables us to
control the forward velocity of the robot, and thus we relax this assumption.
The following theorem is a reformed version of the theorem given in [44].

Theorem 4.3 The controller defined by (4.18), (4.83), and (4.113) globally asymp-
totically and locally exponentially stabilizes the desired straight path P (4.75) for the
dynamical system (4.2)–(4.9), provided that the look-ahead distance ∆ satisfies

∆ >
|X|
|Y |

(
1 + vmax

vmin

)
(4.126)

Proof: The proof of Theorem 4.3 follows from the proof of [11, Th. 8.2], together
with the proof of stabilization of ṽt given in the previous subsection. �

4.3 Maneuvering Control of Snake Robots along
Curved Paths

The principal goal of this section is to design a feedback control law for a snake
robots to converge to and follow a desired continuously differentiable curved
path while satisfying a desired speed profile. To this end, we use the dynamic
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feedback control law (4.18) which controls the body shape of the robot to the
desired gait pattern provided by (4.15). Furthermore, we define the parameters
of this gait pattern using a static and a dynamic compensator which will be used
for controlling the orientation and position of the robot in the plane. In order to
solve the maneuvering control problem along curved line paths, in this section
we use the reduction theory for asymptotic stability of the closed sets from [98]
that we reviewed in the beginning of this chapter.

4.3.1 Control Design Objectives

We start the control objectives formulation by defining a desired gait pattern
given by the vector function φref(t) : R → RN−1, for the fully-actuated body
shape variables of the robot. In particular, we aim to asymptotically stabilize
φ→ φref such that

lim
t→∞
‖φ(t)− φref(t)‖= 0 (4.127)

Achieving (4.127) is equivalent to body shape control of the robot.
The second control objective concerns the orientation of the robot in the

plane. In particular, given a reference orientation θref(t) : R≥0 → R, we aim
to asymptotically stabilize θ → θref such that

lim
t→∞
‖θ(t)− θref(t)‖ = 0 (4.128)

Achieving (4.128) is equivalent to orientation control of the robot.
The third control objective concerns the planar position and linear velocity

of the CM of the robot, i.e. the maneuvering control. In particular, we aim to
solve the geometric task, i.e. to stabilize a desired planar path, for the position
of the robot. In order to formulate the maneuvering control objectives, we first
define a desired path, as a one-dimensional manifold P ⊂ R2, with coordinates
in the x − y plane given by the pair ξ = (pxd, pyd) ∈ R2. These coordinates are
parametrized by a time-dependent variable Θ(t) : R≥0 → R≥0. Consequently,
the desired path is defined as

P =
{

(pxd(Θ), pyd(Θ)) ∈ R2 : Θ ≥ 0
}

(4.129)

where Θ̇ > 0, i.e. forward motion along the path. Thus, the geometric task is
formulated as practical convergence to the desired path such that

lim
t→∞

sup
∥∥∥py(t)− pyd(Θ)

∥∥∥ ≤ εp (4.130)

where pyd = pyd + ε sin θ is the projection of the desired path, which implies that
the normal distance of the position of the CM of the robot with the desired path
is zero.
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Furthermore, we aim to control the velocity of the robot along the path. To
regulate the forward velocity of the robot along the desired path to a desired
velocity profile vt,ref(t) : R≥0 → R≥0, we define a reference position along the
desired path pt,ref(t) : R≥0 → R≥0 with ṗt,ref(t) = vt,ref(t). The dynamic task is
defined as

lim
t→∞
‖pt(t)− pt,ref(t)‖ = 0 (4.131)

Achieving (4.128), (4.130) and (4.131) all together is equivalent to position and
velocity control for the robot. Note that because of (4.128) the robot is aligned
with the path, and because of (4.130) the normal distance of the robot with the
path is zero, and because of (4.131) the robot will move along the path based
on a desired velocity profile, i.e. the tangential position and velocity errors
converge to zero.

Finally, we require that all the solutions of the controlled system remain uni-
formly bounded.

4.3.2 Body Shape and Orientation Control

In this subsection, we control the body shape of the robot to the desired gait
pattern provided by the reference joint angle (4.15). Furthermore, we use the
gait parameter φo as an additional input which will be designed in the form of a
static compensator in order to control the orientation of the robot to a reference
orientation angle defined by a path following guidance law. A similar orienta-
tion controller is used in [11]. However, in contrast with [11], here we present
a stability proof in order to show that the solution of this compensator remains
bounded.

Body Shape Control

In order to control the body shape of the robot to the desired lateral undulatory
gait pattern provided by (4.15), we utilize the exponentially stabilizing joint
control law (4.18). In particular, using this control law, we exponentially stabi-
lize the closed-loop solutions of the joint angles dynamics (4.6) to the constraint
manifold which is defined as

Γ4 =
{(
q, q̇, φo, φ̇o, λ, λ̇

)
∈ R2N+8 : φi = φref,i(λ, φo), vφi

= λ̇
∂φref,i

∂λ
+ φ̇o

∂φref,i

∂φo

}
(4.132)

where i ∈ {1, . . . , N−1}. Exponential stability of the constraint manifold (4.132)
implies that the robot moves based on the gait pattern lateral undulation, and
the control objective (4.127) will be achieved.



129 Maneuvering Control of Snake Robots along Curved Paths

The Path Following Guidance Law

In this part, we define a reference orientation for the robot by using a LOS guid-
ance law. A guidance-based path following control strategy for snake robots is
previously presented in [11] which is valid for straight line paths. The approach
presented in this section is motivated by [11], but in contrast we here solve the
path following problem, i.e. the geometric task, for general curved line paths.
Moreover, we relax a restricting assumption in [11] on the forward velocity of
the robot by controlling the forward velocity by using a dynamic compensator,
and we extend the path following approach to solve the maneuvering control
problem.

To define the LOS path following guidance law, we take the normal distance
between the CM of the robot along the y-axis with the desired path, which is
defined as

p̃y = py − pyd (Θ) (4.133)

We then define the LOS path following guidance law, giving the reference ori-
entation for the robot, as a function of the cross-track error as

θref = − atan2
(
p̃y
∆

)
(4.134)

where ∆ > 0 is a design parameter that will be used as a control term for the
position of the robot in this section.

Stabilizing the Reference Orientation using a Static Compensator

In this part, we control the orientation of the robot by using φo as an additional
control input on the exponentially stable constraint manifold. To this end, we
define the orientation error as

θ̃ = θ − θref (4.135)

Furthermore, we derive the orientation error dynamics of the robot evaluated
on the constraint manifold which has the form

¨̃θ = −λ1
˙̃θ − λ1θ̇ref + λ2

N − 1vtē
TS + λ2vtφo − θ̈ref (4.136)

where S ∈ RN−1 denotes the following vector which is composed of the sinu-
soidal parts of the reference joint angles (4.15):

S = [α sin(λ), . . . , α sin(λ+ (i− 1)δ)]T ∈ RN−1 (4.137)
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We define the following orientation control manifold, which we aim to exponen-
tially stabilize relative to Γ4,

Γ3 =
{(
θ, vθ, φo, φ̇o, vt, λ

)
∈ Γ4 :

(
θ̃, ˙̃θ

)
= (0, 0),

∥∥∥[φo, φ̇o]∥∥∥ ≤ εφ

}
(4.138)

where εφ > 0 is a positive constant. Note that stabilizing Γ3 relative to Γ4 implies
that the orientation error converges exponentially to zero on the constraint man-
ifold, and our control goal with the second priority will be achieved. Further-
more, we will show that the solutions of the static compensator which controls
the orientation of the robot remain uniformly bounded.

In order to stabilize the origin (θ̃, ˙̃θ) = (0, 0) of (4.136), we define the addi-
tional control input φo as

φo = 1
λ2vt

(
− λ2

N − 1vtē
TS + λ1θ̇ref + θ̈ref − kθθ̃

)
(4.139)

where kθ > 0 denotes the proportional orientation controller gain. Note that
on the constraint manifold, where a lateral undulatory gait is stabilized, the
tangential velocity vt is a positive constant and consequently (4.137) is well-
defined. By inserting (4.139) into (4.136), the controlled orientation error dy-
namics of the robot evaluated on the constraint manifold takes the form

¨̃θ + λ1
˙̃θ + kθθ̃ = 0 (4.140)

which clearly has a globally exponentially stable equilibrium at the origin (θ̃, ˙̃θ) =
(0, 0). This implies that the control objective (4.126) will be achieved.

Remark 4.6 Following the approach presented in [89], in order to compute the deriva-
tives (θ̇ref , θ̈ref) of the reference orientation (4.134) we use the low-pass filtering refer-
ence model given by

d

dt

 θref

θ̇ref

 =
 0 1
−ω2

n −2ψfωn

 θref

θ̇ref

+
 0
ω2
n

 θref (4.141)

with natural frequency ωn, and damping ratio ψf . This filter is an input-to-state sta-
ble (ISS) system. Since θref is uniformly bounded, this ISS property implies that the
outputs (θ̇ref , θ̈ref) are bounded. We denote this bound by

∥∥∥[θ̇ref , θ̈ref
]∥∥∥ ≤ εr, where

εr ∈ R>0 is a positive constant.
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Remark 4.7 Assuming that vt has no finite-escape time, see Remark 4.9, and since
the variables (θ̇ref , θ̈ref) are bounded, the solutions of the static compensator (4.139) will
be uniformly ultimately bounded by the following ultimate bound

‖φo‖≤ α + εr (4.142)

where α denotes the amplitude of the reference joint angles (4.15).

Remark 4.8 The second order time-derivative of the control input φo is needed for the
joint control law (4.18). However, φ̇o and φ̈o are complex functions of time that cannot
be easily computed analytically, see [11]. In order to compute this term, we take the
approach given in [89], by using a second order low-pass filtering reference model. In
particular, we compute these time-derivatives by passing φo through a low-pass filter of
the form

d

dt

 φo

φ̇o

 =
 0 1
−ω2

n −2ψfωn

 φo

φ̇o

+
 0
ω2
n

φo (4.143)

This filter is an ISS system, see e.g. [99]. This implies that the output φ̇o remains
bounded. Consequently, for the two other dynamical subsystems which govern the dy-
namics of the position of the CM of the robot, i.e. (4.8)–(4.9), we take φ̇o as a bounded
exogenous signal which will cancelled through the action of a dynamic compensator
given by (4.148) which will be designed to control the position of the robot in the next
subsection.

We collect the results of the arguments presented in this subsection in the fol-
lowing theorem.

Theorem 4.4 The control law governed by the solution of the static compensator (4.139),
asymptotically stabilizes Γ3 relative to Γ4. Furthermore, provided that vt has no finite-
escape time, see Remark 4.9, the solutions of the static compensator (4.139) remain
uniformly ultimately bounded by the ultimate bound (4.142).

4.3.3 Maneuvering Control along Curved Paths:
The Dynamic Task

In this part, we perform the dynamic task of the maneuvering problem by uti-
lizing the idea of velocity control for snake robots given in [83]. To this end, we
derive a dynamic compensator which controls the velocity and position of the
robot along the desired path by using the frequency of the joint oscillations as
an additional control term.
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In particular, we define a velocity control manifold which we aim to exponen-
tially stabilize relative to the constraint manifold Γ4 for the closed-loop system
as

Γ2 = {
(
θ, θ̇, pt, vt, vn, φo, φ̇o, λ, λ̇

)
∈ Γ4 :(

θ̃, ˙̃θ
)

= (0, 0), (p̃t, ṽt) = (0, 0), ‖vn‖≤ εn ,
∥∥∥[φo, φ̇o]∥∥∥ ≤ εφ,

∥∥∥[λ, λ̇]∥∥∥ ≤ ελ}
(4.144)

where εn > 0, εφ > 0, and ελ > 0 are positive constants. Thus, stabilizing
Γ2 relative to the constraint manifold Γ4 implies that the robot will follow the
reference orientation defined by (4.134), and a reference velocity which will be
defined below. Furthermore, the solutions of the static compensator which con-
trols the orientation of the robot remain bounded. Moreover, the solutions of
the dynamic compensator which will be designed in this section to control the
forward velocity of the robot will remain bounded.

Using the same approach as presented in Theorem 4.2, it can be shown that
under the controllers (4.18) and (4.139), the normal velocity of the robot remains
bounded. We denote this bound by ‖vn‖< εn.

Performing the Dynamic Task

In this part, we address the dynamic task by controlling the position and veloc-
ity of the robot along the desired path. In particular, we use the frequency of
the joint angle oscillations as an additional control term in order to control the
forward velocity of the robot to a reference velocity. To this end, we define the
tangential position and velocity errors as

p̃t = pt − pt,ref (4.145)
ṽt = vt − vt,ref (4.146)

Furthermore, we derive the position and velocity error dynamics evaluated on
the constraint manifold (4.132) as

˙̃pt = ṽt

˙̃vt = − ct
m

(ṽt + vt,ref) + 2cp
Nm

vnē
TΦref + η

(
λ̇C + φ̇oē

)
− v̇t,ref

(4.147)

where η, C, and Φref , are given by (4.32)–(4.34). In the following, we use

uλ = λ̈ (4.148)

as the control input to stabilize the origin (p̃t, ṽt) = (0, 0) of (4.147). In order to
use the backstepping techniques, we select the first CLF of the form

V1 = 1
2 p̃

2
t (4.149)
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Taking the time-derivative of (4.149) along the solutions of (4.147) yields

V̇1 = p̃tṽt (4.150)

We take ṽt as a virtual control input which we utilize to make (4.150) negative.
In particular, we define

ṽt = −kz0 p̃t (4.151)
where kz0 > 0 is a constant gain. We define the error variable

z1 = ṽt + kz0 p̃t (4.152)

that we aim to drive to zero. Thus, we can rewrite (4.150) as

V̇1 = −kz0 p̃
2
t + z1p̃t (4.153)

To perform backstepping for z1, we write the error dynamics for the error vari-
able which has the form

ż1 = ˙̃vt + kz0 ṽt (4.154)
We choose an augmented CLF of the form

V2 = V1 + 1
2z

2
1 (4.155)

Taking the time-derivative of V2 along the solutions of (4.147) yields

V̇2 =− kz0 p̃
2
t + z1

(
p̃t + ˙̃vt + kz0 ṽt

)
=− kz0 p̃

2
t + z1(p̃t −

ct
m
z1 −

ct
m
vt,ref + ct

m
kz0 p̃t + 2cp

Nm
vnēΦref + ηCλ̇+ ηēφ̇o

− v̇t,ref + kz0 ṽt)
(4.156)

We denote
δ1(φo, λ) = ηC (4.157)

It can be numerically verified that δ1(·) is uniformly bounded away from zero,
and this is because of the phase shift between the link references in (4.15). We
take λ̇ as a virtual control input that we use to make (4.156) negative:

λ̇ = 1
δ1

(
−p̃t + ct

m
vt,ref −

ct
m
kz0 p̃t −

2cp
Nm

vnēΦref − ηēφ̇o + v̇t,ref − kz0 ṽt − kz1z1

)
(4.158)

where kz1 > 0 is a constant gain. For simplicity, we denote

δ2
(
φo, φ̇o, λ, pt, vt

)
=

1
δ1

(
−p̃t + ct

m
vt,ref −

ct
m
kz0 p̃t −

2cp
Nm

vnēΦref − ηēφ̇o + v̇t,ref − kz0 ṽt − kz1z1

)
(4.159)
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We could have chosen λ̇ to be given by the compensator in (4.158). However,
since (4.158) represents the frequency of the lateral undulation motion given in
(4.15) it is desirable from a practical implementation point of view to smooth
the frequency function. We thus introduce an extra step of backstepping, and
define the second error variable as

z2 = λ̇− δ2 (4.160)

which we aim to drive to zero. Inserting λ̇ = z2 + δ2(·) into (4.156) yields

V̇2 = −kz0 p̃
2
t −

(
ct
m

+ kz1

)
z2

1 + z1z2δ1 (4.161)

To perform backstepping for z2, we write the error dynamics for the error vari-
able z2 which has the form

ż2 = uλ − δ̇2 (4.162)
We choose an augmented CLF in the form

V3 = V2 + 1
2z

2
2 (4.163)

The time-derivative of V3 along the solutions of (4.147) is

V̇3 = −kz0 p̃
2
t −

(
ct
m

+ kz1

)
z2

1 + z2
(
z1δ1 + uλ − δ̇2

)
(4.164)

We define the control input uλ as

uλ = −z1δ1 + δ̇2 − kz2z2 (4.165)

where kz2 > 0 is a constant gain. Inserting (4.165) into (4.164) yields

V̇3 = −kz0 p̃
2
t −

(
ct
m

+ kz1

)
z2

1 − kz2z
2
2 (4.166)

From (4.166) it can be shown that

V̇3 ≤ −β3V3 (4.167)

where β3 ∈ R>0 is a small enough positive constant. This implies that the
origin (p̃t, ṽt) = (0, 0) of (4.147) is exponentially stable, i.e. since we have a
guaranteed rate of convergence to zero, and the control objective (4.131) will
be achieved. Furthermore, since in (4.160) z2 converges to zero and δ2(·) is uni-
formly bounded, then λ̇ remains uniformly bounded. We denote the bound on
the solutions of the dynamic compensator (4.165) by

∥∥∥[λ, λ̇]∥∥∥ ≤ ελ.
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Remark 4.9 Under the the controllers (4.18), (4.139), and (4.165), with the augmented
state vector

x =
[
pt, vt, pn, vn, φo, φ̇o, λ, λ̇

]
∈ R2 (4.168)

the closed-loop tangential and normal position dynamics along with the dynamics of the
compensators take the form ẋ = f(x). Since throughout our stability proof we showed
that all the functions in the closed-loop remain bounded, then it can be shown that

‖f(x)‖ ≤ K (1 + ‖x‖) (4.169)

where K ∈ R>0 is a constant. This linear growth condition implies that any of the
components of the state vector (4.165) have no finite escape time.

We collect the results of the arguments presented in this subsetion in the fol-
lowing theorem.

Theorem 4.5 Under the controllers (4.18), (4.139), and (4.165), the velocity control
manifold Γ2 is asymptotically stable relative to the constraint manifold Γ4.

4.3.4 Maneuvering Control along Curved Paths:
The Geometric Task

So far we have controlled the body shape, orientation, and the position of the
robot along the tangential axis of the t − n frame. The last step of our maneu-
vering control design is to stabilize the normal position py of the robot to the
desired path. Note that this will imply the convergence of the cross-track error
to zero. Also note that we have already proved the boundedness of the normal
velocity vn of the robot in the previous section. For clarity of presentation, we
summarize the stability results that we have established so far in the following:

• Under the joint control law (4.18), the constraint manifold Γ4 is globally
exponentially stable for the solutions of (4.6), i.e. which implies that φ →
φref .

• Under the joint control law (4.18) and the static compensator (4.139), the
orientation control manifold Γ3 is asymptotically stable relative to the con-
straint manifold Γ4, which implies that θ → θref .

• The solution of the static compensator (4.139) remains uniformly ultimately
bounded. The ultimate bound on the solutions is given by ‖φo‖≤ α + εr
where α denotes the amplitude of the joint angle oscillations, and εr > 0
is a constant.
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• Under the controllers (4.18) and (4.139), the normal velocity vn of the robot
remains uniformly bounded. We denoted this bound by ‖vn‖≤ εn where
εn ∈ R>0 is a constant.

• Using the dynamic compensator (4.165), the velocity control manifold Γ2
is asymptotically stable relative to the constraint manifold Γ4, which im-
plies that the tangential position and tangential velocity of the robot con-
verge asymptotically to the reference tangential position and velocity, re-
spectively, i.e. which implies that (pt, vt)→ (pt,ref , vt,ref).

• The solutions (λ, λ̇) of the dynamic compensator (4.165) remain uniformly
ultimately bounded. We denoted this ultimate bound by ‖[λ, λ̇]‖≤ ελ
where ελ > 0 is a constant.

Using the stability results above, we solve the geometric task and we ensure
that the normal position of the robot py converges to the desired path. Also we
define the path following manifold, i.e. the manifold on which the geometric
task is achieved, as

Γ1 =
{(
θ, θ̇, pt, vt, py, vn, φo, φ̇o, λ, λ̇

)
∈ Γ2 : p̃y ≤ εp

}
(4.170)

where εp ∈ R>0 is any positive constant.
In order to stabilize py → pyd, we define the position and velocity cross track

errors as

p̃y = py − pyd (4.171)
ṽn = vn (4.172)

which we would like to drive to zero and thereby achieve the control objective
(4.130). From (4.69)–(4.70), the dynamics of the position of the robot is given by

ṗy = vt sin(θ) + vn cos(θ) (4.173)

which in the error coordinates can be written as

˙̃py = (ṽt + vt,ref) sin(θ̃ + θref) + ṽn cos(θ̃ + θref)− Θ̇∂pyd
∂Θ (4.174)

The reduced dynamics of the position of the CM evaluated on the exponentially
stable manifold Γ2, is of the form

˙̃py = vt,ref sin(θref) + ṽn cos(θref)− Θ̇∂pyd
∂Θ (4.175)
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where ∂pyd

∂Θ is associated with the curvature of the desired path. By using the
relations

sin
(
− atan2

(
p̃y
∆

))
= − p̃y√

p̃
2
y+∆2

(4.176)

cos
(
− atan2

(
p̃y
∆

))
= ∆√

p̃
2
y+∆2

(4.177)

we can rewrite (4.175) as

˙̃py = −
vt,ref p̃y√
p̃

2
y + ∆2

+ ṽn∆√
p̃

2
y + ∆2

− Θ̇∂pyd
∂Θ (4.178)

We select a Lyapunov function candidate of the form

V = 1
2 p̃

2
y (4.179)

Taking the time-derivative of (4.179) along the solutions of (4.178), and utilizing
the stability results above, yields

V̇ =p̃y ˙̃py

=p̃y

− vt,ref p̃y√
p̃

2
y + ∆2

+ ṽn∆√
p̃

2
y + ∆2

− Θ̇∂pyd
∂Θ


≤−

 vt,ref√
p̃

2
y + ∆2

 p̃2
y + εn‖p̃y‖+‖Θ̇‖

∥∥∥∥∥∂pyd∂Θ

∥∥∥∥∥ ‖p̃y‖
≤ −

 vmin√
p̃

2
y + ∆2

 p̃2
y + εn

γp̃2
y

2 + 1
2γ

+ εΘ

γp̃2
y

2 + 1
2γ

∥∥∥∥∥∂pyd∂Θ

∥∥∥∥∥
2


(4.180)

where we used Young’s inequality, and where vmin denotes the minimum de-
sired forward velocity of the robot. Note that according to the results of [45], a
snake robot with zero forward velocity is not controllable, and (4.180) concurs
with this result. Finally, we have that

V̇ ≤

− vmin√
p̃

2
y + ∆2

+ εnγ

2 + εΘγ

2

 p̃2
y + η (4.181)

where

η = εn
2γ + εΘ

2γ

∥∥∥∥∥∂pyd∂Θ

∥∥∥∥∥
2

(4.182)

We investigate two possible scenarios for the time-derivative of the Lyapunov
function candidate given in (4.181).
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1. In the first scenario, it can be seen that for given parameters (vmin,∆, εn, εθ),
we can always choose a sufficiently small γ such that the coefficient of p̃2

y in
(4.181) is negative. In this case, we conclude that there exist a sufficiently
small positive constant β ∈ R>0, such that

V̇ ≤ −βV + η (4.183)

Using the Comparison Lemma, we have that

V (t) ≤ V (0)e−βt + η

β
(4.184)

This implies that V converges to a ball of radius η
β

. Furthermore, because

of (4.179), we can conclude that p̃y converges to a ball of the radius
√

2η
β

.

2. In the second scenario, we assume that we would like to drive the cross-
track error p̃y, to an arbitrary small neighbourhood of zero which we de-
note by εp ∈ R>0 for any positive constant εp, i.e. we seek practical stability
for the origin of (4.178). In this case, we choose

γ ≥ εn + εΘ
2

∥∥∥∥∥∂pyd∂Θ

∥∥∥∥∥
2
β

ε2p
(4.185)

Substituting (4.185) into (4.182) and then (4.184) yields

V (t) ≤ V (0)e−βt + ε2p (4.186)

which implies that p̃y converges to a ball of the radius εp. In this case we
must have the following conditions on the parameters (vmin,∆, εn, εθ) such
that the coefficient of p̃2

y is negative.

(a) The minimum tangential velocity vmin should be sufficiently large.

(b) The look-ahead distance ∆ should be sufficiently small.

(c) The upper-bound on the normal velocity vn should be sufficiently
small. From (4.89) and (4.72), this implies that the friction coefficient
in the normal direction of motion cn must be sufficiently large, i.e. in
order to damp the sideways velocity.

(d) The upper-bound on the curvature of the path should be sufficiently
small. This implies that the desired path is sufficiently smooth.

The above conditions guarantee that the path following error p̃y converges
to an arbitrarily small neighbourhood of the origin, which readily implies that
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Figure 4.3: The structure of the maneuvering controller

we will solve the geometric task. Note that due to the oscillatory motion of the
snake robot, that is necessary in order to achieve forward motion, we cannot
expect the path following error to converge to zero, but rather to a neighbour-
hood of the origin. Figure 4.3 shows the structure of the proposed maneuvering
controller.

Remark 4.10 The path following set Γ1 is a compact set. This is due to the fact that
all the variables

(
θ, θ̇, pt, vt, py, vn, φo, φ̇o, λ, λ̇

)
used to define this set were proved to be

bounded, which implies the compactness of the set.

Finally, we collect all the established stability results in the following theorem,
which states that the proposed maneuvering controller solves the dynamic and
geometric tasks.

Theorem 4.6 (Main Result) Consider the positively invariants sets Γ4, Γ3, and Γ2
and Γ1 in (4.132), (4.138), (4.144), and (4.170), respectively. Note that Γ1 ⊂ Γ2 ⊂
Γ3 ⊂ Γ4 ⊂ Q. The set Γ1 is a compact set. For i = 1 . . . 3, the set Γi was asymp-
totically stable relative to Γi+1. Consequently, according to Proposition 4.1, the set Γ1
is asymptotically stable for the controlled system. This implies that all the control ob-
jectives (4.127)–(4.131) will be achieved, and all the solutions of the controlled system
remain uniformly bounded.
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4.4 Simulation Results

Simulation Results for the Direction Following Controller

In this section, we present simulation results for the proposed direction follow-
ing control approach. We considered a snake robot with N = 10 links of length
l = 0.14 m, and mass m = 1 kg. The ground friction coefficients were ct = 1 and
cn = 3, and the rotation parameters were λ1 = 0.5 and λ2 = 20. The rotation
parameters are chosen such that the simplified model quantitatively behaves
similar to the complex model derived in many previous works such as [1] and
[11]. We chose α = 4.5 cm, and δ = 40π/180. Employing the Routh-Hurwitz
stability criterion, the gains of the exponentially stabilizing joint controller in
(4.18) were set to kp = 20, and kd = 5. The orientation controller gain in (4.24)
were tuned as k0 = 5, k1 = 26, k2 = 39, and k3 = 20. The gains of the dy-
namic compensator which was used to control the velocity (4.46) were tuned as
kλ = 20 and kz = 0.5. The tangential reference velocity was vt,ref = 0.2 m/s, and
the orientation reference angle was θref = π/4. Since on the constraint manifold,
where a lateral undulatory gait is stabilized, vt is positive [11], the initial tan-
gential velocity was chosen as vt(0) = 0.1 m/s, see the arguments after (4.25),
yet all other states are set initially to zero.

The simulation results are shown in Figures 4.4–4.10. In Figure 4.4 the so-
lutions λ̇ and φo of the dynamic compensators are shown. In particular, the
frequency of the joint oscillations converges to a positive constant, which ac-
cording to the work of [1] implies a forward motion for the robot, and φo which
is the state of the dynamic compensator (4.24) which controls the orientation of
the robot, remain uniformly bounded. Figure 4.5 illustrates the motion of the
snake robot in the x− y plane, and how the snake robot follows a path heading
in the direction given by the reference. Figure 4.6 shows the forward velocity
vt converges to the constant reference velocity vt,ref . Figure 4.7 shows that the
normal velocity converges to a small neighbourhood of the origin. In Figure
4.8 it can be seen that the body shape variables follow the reference joint angles
provided by (4.15), while the norm of the error converges exponentially to zero.
Figure 4.9 shows that the proposed orientation controller (4.24) successfully re-
orients the robot in accordance with θref . Finally, Figure 4.10 shows that the
coefficients of the virtual control inputs in (4.24) and (4.36) are bounded away
from zero and consequently the control inputs are globally well-defined.
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Simulation Results for the Maneuvering Controllers

To illustrate the performance of the proposed maneuvering controllers, in this
section we present simulation results for a snake robot which moves along a
straight line path. Note that any shape of path which fulfils the condition (d)
on curvature of the path which was presented in Subsection 4.3.4, can be used
for the proposed maneuvering controller. We considered a snake robot with
N = 10 links of length l = 0.14 m, mass m = 1 kg, and anisotropic ground
friction coefficients ct = 1 and cn = 3. We chose the rotation parameters such
that the simplified model qualitatively and quantitatively behaves similar to the
complex model. In particular, we defined λ1 = 0.5 and λ2 = 20. The gait pa-
rameters were α = 4.5 cm and δ = 40π/180, and the joint controller gains were
kp = 20 and kd = 5. To stabilize the orientation error dynamics we chose the
orientation controller gain in (4.83) as k0 = 5, k1 = 26, k2 = 39, and k3 = 20. The
gains of the position tracking controller were tuned to kz1 = 0.5, kz2 = 0.5 and
kz3 = 0.1. The reference forward velocity was vt,ref = 0.2 m/s, and the position
reference was pt,ref =

∫
vt,refdt. The look ahead distance was chosen as twice the

length of the robot ∆ = 2.8 m. To avoid singularities the the initial tangential
velocity was set to vt(0) = 0.1 m/s, see the arguments after (4.83). All the other
states were set initially to zero.

The results of the simulation are shown in Figures 4.11-4.15. In particular,
Figure 4.11 illustrates the exponential stability of the joint error, hence the joints
move in accordance with the lateral undulatory gait provided by (4.15). The
convergence of the orientation to the reference orientation and the correspond-
ing error can be seen in Figure 4.12. Figure 4.13 shows that the controller reg-
ulates the tangential velocity to the desired constant forward velocity, and the
normal velocity to zero. Figure 4.14 shows that the joint oscillation frequency λ̇
converges to a positive constant and the solution of the orientation controller φo
is bounded and becomes zero when the robot is on the path. Finally, Figure 4.15
illustrates that the snake robot converges to and follows the desired path based
on the desired velocity profile.
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Chapter Summary

• We considered direction following control of planar snake robots using the
method of virtual holonomic constraints, based on a simplified dynamic
model developed for control design and analysis purposes in [11]. We en-
forced virtual holonomic constraints for the body shape variables of the
robot. These constraints were inspired by the well-known reference joint
angle trajectories which induce a lateral undulatory gait pattern on snake
robots. Furthermore, we removed the explicit time-dependence of the ref-
erence joint angles, and rather made them a function of the solutions of
two dynamic compensators. Subsequently, we reduced the dynamics of
the system to the invariant constraint manifold, where we used the dy-
namic compensators to control the velocity and orientation of the robot.

• We considered maneuvering control of planar snake robots along straight
and curved paths. We started the hierarchical control design by enforcing
virtual holonomic constraints for the body shape variables of the robot
which induced lateral undulatory gait pattern on snake robot. Moreover,
we derived the reduced dynamics of the system evaluated on the con-
straint manifold associated with virtual holonomic constraints. Further-
more, we used choose the frequency of the desired gait pattern through
a dynamic compensator which controlled the velocity of the robot, and
we introduced an offset angle through a static compensator to control the
orientation of the robot on this manifold.

• We presented extensive simulation results which showed the performance
of the proposed controllers.



CHAPTER5
Model-based Locomotion Control

Approaches for Snake Robots
Part II: The Complex Model

At the beginning of this thesis, we mentioned the main objective of this work as
bridging the gap between the theory and practice for snake robots by proposing
model-based control approaches which are derived based on formal stability
proofs. These analytical control approaches can rarely be found in the previous
snake robot literature. Actually, underactuation, complex dynamical behaviour,
and strong nonlinearities present in the dynamic model are among the main
reasons of the lack of analytical control approaches for snake robots.

In this chapter, we address locomotion control problems for the snake robot
based on the complex model of the robot which we derived in an Euler-Lagrange
framework in Chapter 2. In particular, we will solve the direction following and
maneuvering control problems for the snake robot. It is noteworthy to men-
tion that similar problems have never been addressed for the snake robot in
the previous literature. This is due to the fact that many challenges arise for
the model-based control design based on the complex model, that make the ap-
plication of analytical control approaches and formal stability proofs for these
robots challenging. However, in this chapter we will provide formal stability
proofs throughout the derivations of control laws based on the complex model,
and we solve the direction following and maneuvering control problems.

In particular, in this chapter we will propose hierarchical control design ap-
proaches, which solve these control problems using the following steps.

1. In the first step, we will stabilize a desired gait pattern for the robot. Con-
sequently, the robot starts locomotion based on the desired gait pattern.

2. In the second step, we use the gait parameters in order to control the orien-
tation and planar position of the robot which leads to solving the direction
following and maneuvering control problems.
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We will provide formal stability proofs for all the arguments given in the forego-
ing two steps, and will show the performance of the proposed control strategies
by using extensive numerical simulations.

We believe that this is an important step forward in locomotion control of
snake robots, which can help to realize the ultimate objectives regarding the
extensive application of these robots in real-time operations. Furthermore, here
we will present the core of the control design approach, and since the arguments
here are derived using mathematical analysis based on the complex model, then
it is straightforward to extend these results to various other control frameworks,
such as robust and adaptive control design approaches.

Contributions of this chapter: The first contribution of this chapter is to solve
the direction following control problem for the snake robot based on the com-
plex model. In particular, we regulate the orientation and forward velocity of
the robot to constant references. To this end, we stabilize a desired lateral un-
dulatory gait pattern among the body shape variables of the robot. Moreover,
we choose the gait parameters using two dynamic compensators which will be
employed to control the orientation and forward velocity of the robot. Further-
more, we show that the solutions of the controlled system remain uniformly
ultimately bounded.
The second contribution of this chapter is to solve the path following control
problem for the snake robot based on the complex model. To this end, after
controlling the body shape, orientation, and the forward velocity of the robot
according to the design steps given above, we will define the reference veloc-
ity for the robot in a way that enables us to practically stabilize general curved
line paths for the position of the CM of the robot. To our best knowledge, path
following control along general curved paths has never been considered for the
snake robots before based on the complex model of the snake robot locomotion.

Organization of this chapter: This chapter is organized as follows. In Section
5.1, we propose a direction following controller for the robot. In Section 5.2, we
solve the path following problem for the snake robot. In Section 5.3 we present
the results of simulations for the controllers proposed in this chapter.

Publications: The results of this chapter are based on the journal paper [85],
and the conference paper [83].



151 Review of the Complex Model

Review of the Complex Model

In this section, we briefly review the complex model of the snake robot which
we derived in Chapter 2. We use this model for the model-based control de-
sign in the subsequent sections. Among the different (and equivalent) repre-
sentations of the complex dynamic model which we presented in Chapter 2, we
choose the dynamic model (2.45a)–(2.45b) for the model-based locomotion con-
trol design in this chapter. This choice is purely due to the notation convenience
in the derivation of the control laws. Consequently, the analytical derivations
and the stability proofs which are derived based on this model can easily be
used for the other models as well. This dynamic model of the N -link robot is
represented as

Mθθ̈ +Wθθ̇
2 − lSCT

θ fR

(
θ, θ̇, ṗ

)
= DTu (5.1a)

Nmp̈ = ETfR

(
θ, θ̇, ṗ

)
(5.1b)

where θ = [θ1, . . . , θN ]T ∈ RN denotes the vector of the absolute link angles,
ṗ = [ṗx, ṗy]

T ∈ R2 denotes the vector of the linear velocities of the CM of the
robot, u ∈ RN−1 is the vector of the actuator torques, and fR is the vector of
ground friction forces. The remaining quantities of the dynamic model (5.1a)–
(5.1b) were defined in Chapter 2, through (2.46)–(2.48). Finally, letting

uθN = [cos θN , sin θN ]T (5.2a)

vθN = [− sin θN , cos θN ]T (5.2b)

we define

vt = uTθN ṗ (5.3a)

vn = vTθN ṗ (5.3b)

The scalars vt and vn defined above are the components of the inertial veloc-
ity of the center of mass parallel and perpendicular to the angle of the head,
respectively.

Lateral Undulation

One of the basic gait patterns through which biological snakes achieve forward
motion is called lateral undulation [11]. During lateral undulation, the snake
undergoes periodic shape changes that resemble a wave traveling backward
along its body, from head to tail. As a result of this motion, the snake body
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traces out a periodic curve on the plane, which Hirose [1] mathematically rep-
resented as a serpenoid. Thinking of a snake robot as a discrete approximation
of a biological snake, researchers (see e.g. [1] and [105]) have observed that the
serpenoid curve can be well-approximated by imposing the sinusoidal refer-
ence signal for the i-th joint angle

φref,i(t) = α sin(ωt+ (i− 1)δ) + φo, (5.4)

where α denotes the amplitude of the sinusoid, ω denotes the frequency of the
joint oscillations, δ denotes the phase shift between two consecutive joints, and
φo is a joint offset used to control the direction of locomotion.

5.1 Direction Following Control of Snake Robots

This section investigates the problem of direction following for planar snake
robots. The control objective is to regulate the linear velocity vector of the snake
robot to a constant reference while guaranteeing boundedness of the system
states. The proposed feedback control strategy enforces virtual constraints en-
coding a lateral undulatory gait pattern. This gait parametrized by states of
dynamic compensators which are used to regulate the orientation and forward
speed of the snake robot.

5.1.1 Control Design Objectives

In this section, we present the blueprint of our control design. We begin by stat-
ing the control specifications.

Direction Following Problem (DFP): Given a desired constant velocity vec-
tor ṗref with polar representation (r, θ) = (vref, θref), design a smooth feedback
controller achieving the following specifications:

(i) Practical stabilization1 of the head angle θN to θref.

(ii) Practical stabilization of the tangential velocity vt = uTθN ṗ to vref.

(iii) Uniform ultimate boundedness of the normal velocity vn = vTθN ṗ with a
small ultimate bound, and ultimate boundedness of the joint dynamics
and all controller states of the controlled system.

1Practical stabilization of a variable means that by a suitable choice of controller parameters
the variable is made to converge to an arbitrarily small neighborhood of its desired value.
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Figure 5.1: The structure of the direction following controller.

The above problem formulation relies on the observation that if θN = θref, then
making ṗ→ ṗref is equivalent to making (vt, vn)→ (vref, 0).

Solution Methodology:
In order to solve the DFP, we stabilize a lateral undulatory gait for the shape

variables of the robot. Our control design approach is given in three stages.

Stage 1: Body Shape Control. We use the controls u in (5.1a) to stabilize a
virtual constraint encoding a lateral undulatory gait similar to (5.4), in which
ωt is replaced by a state λ, and φo affects only the head angle θN . The evolution
of λ, φo is governed by two compensators, φ̈o = uφo and λ̈ = uλ.

Stage 2: Head Angle Control. Inspired by the biological observation that
snakes keep their head pointed towards a target while their body undulates
behind the head, we design uφo to practically stabilize θN → θref while guaran-
teeing that (φo, φ̇o) is uniformly ultimately bounded.

Stage 3: Velocity Regulation. We design uλ to practically stabilize vt → vref

while guaranteeing that vn converges to a small neighborhood of the origin
and λ̇ remains uniformly ultimately bounded.

Figure 5.1 depicts the structure of the proposed direction following con-
troller.
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5.1.2 Body Shape Control

In this section, we stabilize the lateral undulatory gait for the shape variables of
the robot by using the joint control inputs u in (5.1a). In particular, inspired by
the lateral undulatory gait, we stabilize the relations:

θi − θi+1 = α sin(λ+ (i− 1)δ), i = 1, . . . , N − 2, (5.5a)

θN−1 − θN = α sin(λ+ (N − 2)δ) + φo (5.5b)

where (α, δ) are positive constants referred to as the gait parameters and (λ, φo) ∈
S1 × R are the states of two dynamic compensators

λ̈ = uλ, φ̈o = uφo , (5.6)

which will be designed later in order to control the forward velocity and the
head angle of the robot, respectively. The relations (5.5a)–(5.5b) are referred to
as virtual holonomic constraints (VHC), see e.g. [92]–[96], and they have the
property that they can be made invariant through feedback control. These VHC
are dynamic, since they are parametrized by the states of the dynamic compen-
sators (5.6). Note that the difference between the reference joint angles given
in (5.5a)–(5.5b) with the reference joint angles given in the previous chapters is
that here we add the offset term φo only to the last joint’s reference. This im-
plies that the overall motion of the robot will be smoother, since the transient
behaviour of φo does not affect all the joints.

In continue, we denote

Φi(λ) = α sin(λ+ (i− 1)δ), i = 1, . . . , N − 1 (5.7)

and
Φ(λ) = [Φ1(λ), . . . ,ΦN−1(λ)]T ∈ RN−1 (5.8)

Since θ = HDθ+eθN , the relations in (5.5a)–(5.5b) can be expressed in the vector
form as:

θ = eθN +HΦ(λ) +Hbφo. (5.9)

The relations (5.9) can also be written as h(λ, φo, θ) = 0, where

h(λ, φo, θ) = Dθ − Φ(λ)− bφo. (5.10)

If we view h(λ, φo, θ) as an controlled output vector function for system (5.1a)–
(5.1b) augmented with compensators (5.5), then this output vector yields a vec-
tor relative degree {2, . . . , 2} everywhere on the configuration space because we
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have that rank(DM−1
θ DT ) = N − 1. Consequently, the zero dynamics manifold

associated with output (5.10) is the set

Γ =
{(
θ, θ̇, p, ṗ, λ, λ̇, φo, φ̇o

)
∈ R2N+8 : Dθ = Φ(λ) + bφo, Dθ̇ = Φ

′
(λ)λ̇+ bφ̇o

}
.

(5.11)
We refer to Γ as the constraint manifold associated with the VHC (5.5a)–(5.5b).
Stabilizing the VHC (5.5a)–(5.5b) corresponds to stabilizing the set Γ. Further-
more, the vector relative degree {2, . . . , 2} implies that we can stabilize Γ by
using the input-output linearizing control law

u = (DM−1
θ DT )−1{DM−1

θ Wθθ̇
2

−lDM−1
θ SCT

θ fR + Φ
′′
(λ)λ̇2 + Φ

′
(λ)uλ

+buφo −KP [Dθ − Φ(λ)− bφo]
−KD[Dθ̇ − Φ

′
(λ)λ̇− bφ̇o]}, (5.12)

where KD, KP are positive definite diagonal matrices containing the joint con-
troller gains.

After asymptotically stabilizing Γ, we are left with two control inputs, (uλ, uφo)
to solve the direction following problem. In particular, we use the dynamic
compensators to regulate the head angle and the velocity of the robot to desired
values. To this end, we first derive the reduced dynamics of the robot, i.e., we
reduce the system to the invariant manifold Γ. By left multiplying both sides
of (5.1a) by eT , which is a left annihilator of the control input matrix DT , and
evaluating the result on the virtual constraint manifold Γ, the dynamics of the
snake robot on the virtual constraint manifold Γ read as

θ̈N = Ψ1(θN , θ̇N , λ, λ̇, φo, φ̇o, p, ṗ) +

Ψ2(θN , λ, φo)uλ + Ψ3(θN , λ, φo)uφo , (5.13a)

p̈ = Ψ4(θN , λ, φo)ṗ+ Ψ5(θN , λ, φo)θ̇N +

Ψ6(θN , λ, φo)λ̇+ Ψ7(θN , λ, φo)φ̇o, (5.13b)

φ̈o = uφo , (5.13c)

λ̈ = uλ, (5.13d)
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where

Ψ1(·) = −e
TMθHΦ

′′
(λ)

eTMθe
λ̇2 − 1

eTMθe
{Wθθ̇

2 − lSCT
θ fR},

Ψ2(·) = −e
TMθHΦ

′
(λ)

eTMθe
, (5.14a)

Ψ3(·) = −e
TMθHb

eTMθe
, (5.14b)

Ψ4(·) =
1

Nm
ETQθE, (5.14c)

Ψ5(·) =
l

Nm
ETQθSCθe, (5.14d)

Ψ6(·) =
l

Nm
ETQθSCθHΦ

′
(λ), (5.14e)

Ψ7(·) =
l

Nm
ETQθSCθHb. (5.14f)

In the above, each function Ψi(·) is evaluated on the constraint manifold Γ. The
equations in (5.13a)–(5.13d) describe a control system with two inputs, (uφo , uλ).
This system completely describes the motion of the snake once the VHC (5.5)
have been enforced. The control objective for system (5.12) is to stabilize θN to
an arbitrarily small neighborhood of θref; to stabilize vt = uTθN ṗ to an arbitrarily
small neighborhood of vref; and finally, to guarantee that vn = vTθN ṗ converges to
a neighborhood of the origin. Meanwhile, we also require that the solutions of
the dynamic compensators (λ̇, φo, φ̇o) remain uniformly bounded.

In the process of developing controllers for the reduced dynamics system,
we will require some knowledge of each Ψi(·) which is summarized in the fol-
lowing remark.

Remark 5.1 We make some numerical observations that are important in the subse-
quent development of our control laws. It can be numerically verified that for all gait
parameters (α, δ):

(a) Ψ3(·) = −eTMθHb/e
TMθe is bounded away from zero and negative for all θN , λ, φo;

(b) vTθNΨ4(·)vθN ≈ −cn/m for all θN , λ, φo;

(c) There exists γ6 > 0 such that −uTθNΨ6(·) < −γ6 for all θN , λ and small values of
φo and for cn > ct;

(d) There exists ε0 > 0 such that we have |vTθNΨ6(·)|≤ αε0 for all θN , λ, φo where α
denotes the amplitude of sinusoidal joint motion in (5.5a)–(5.5b);
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(e) ||Ψ4(·)||≤ cn/m for all θN , λ, φo;

(f) There exists γ7 > 0 such that ||Ψ7(·)||≤ γ7 for all θN , λ, φo;

(g) |vTθNΨ4(·)uθN |< ct/m for all θN , λ, φo.

Note that the above observations are independent of the parameters N,m, l, J .

5.1.3 Head Angle Control

In this section, we consider the head angle control for the snake robot. In par-
ticular, using the control input uφo , we control the head angle of the robot by
controlling the states (θN , θ̇N , φo, φ̇o) of the constrained system (5.12a)-(5.12d).
In order to do so, we design a high-gain feedback of the form uφo(θN , θ̇N , φo, φ̇o)

that makes (θN − θref, θ̇N) converge to an arbitrarily small neighborhood of the
origin and (φo, φ̇o) uniformly ultimately bounded. We make this analysis inde-
pendent of the choice of the input uλ, by using time scale separation.

Through (5.13a) and (5.13c), the dynamic equations which govern the states
(θN , θ̇N , φo, φ̇o) of the constrained system can be written as

θ̈N = f1

(
θN , θ̇N , λ, λ̇, φo, φ̇o, uλ

)
+ Ψ3(·)uφo ,

φ̈o = uφo .
(5.15)

Proposition 5.1 Consider the following head angle control law for system (5.15)

uφo =
1

ε

[
θ̇N + kN (θN − θref)

]
− k1φo − k2φ̇o. (5.16)

Also, assume that uλ(t), λ̇(t) are defined for all t ≥ 0. Then for any kN , k1, k2 > 0,
there exist ε?, k > 0 such that for all ε ∈ (0, ε?)

lim sup
t→+∞

|θN(t)− θref| = kε (5.17)

lim sup
t→+∞

|θ̇N(t)|= kε. (5.18)

Moreover, the states (φo, φ̇o) are uniformly ultimately bounded.

Remark 5.2 Under the control law (5.15), the head angle error can be made arbitrarily
small provided that ε is chosen to be sufficiently small.
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Remark 5.3 In the next section we define a feedback controller uλ guaranteeing that
for any initial condition, the closed-loop system has no finite escape time (see Remark
5.4). This will guarantee that the above proposition is applicable.

Proof: Viewing the states λ(t), λ̇(t), and the input uλ(t) as exogenous signals,
the control system (5.15) can be viewed as a time-varying system with states
(θN , θ̇N , φo, φ̇o). Under the control input (5.16), the closed-loop dynamics of sys-
tem (5.15) in the standard singular perturbation form become

˙̃θN = ω̃N (5.19a)

ε ˙̃ωN = ε
[
g1

(
t, φo, φ̇o, θN , θ̇N

)
− k1φo − k2φ̇o

]
+ Ψ3(·)

(
ω̃N + kN θ̃N

)
(5.19b)

where θ̃N = θN − θref denotes the head angle error, and where

g1

(
t, φo, φ̇o, θN , θ̇N

)
= f1

(
θN , θ̇N , λ(t), λ̇(t), φo, φ̇o, uλ(t)

)
. (5.20)

Here we use time-scale separation to make the analysis independent of the
choice of uλ. Note that (5.19a)–(5.19b) is a singularly perturbed system with
reduced dynamics

˙̃θN = −kN θ̃N (5.21)

and the boundary-layer dynamics is given by

dy

dτ
= Ψ3(·)y (5.22)

where y = ω̃N + kN θ̃N . The origin is an exponentially stable equilibrium point
of the reduced system. Also, the origin is an exponentially stable equilibrium
point of the boundary-layer system because, by Remark 5.1, for some γ0 > 0,
Ψ3(·) ≤ −γ0 < 0 uniformly in t. According to the singular perturbation the-
orem on an infinite interval (see Th. 11.2 in [99]), for all θ̃N(t0), y(t0) ∈ R and
t0 ≥ 0, the singularly perturbed system (5.19a)–(5.19b) has a unique solution(
θ̃N(t, ε), ω̃N(t, ε)

)
such that

θ̃N(t, ε)− exp (−kN(t− t0)) θ̃N(t0)

= O(ε), (5.23a)

ω̃N(t, ε) + kN exp (−kN(t− t0)) θ̃N(t0)

− exp

(∫ t/ε

t0

Ψ3(·)dτ

)
y(t0) = O(ε), (5.23b)
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for all t ∈ [t0,∞). This proves the first part of the proposition. For the second
part, note that the closed-loop dynamics governing the states (φo, φ̇o) become

φ̈o + k2φ̇o + k1φo =
1

ε

(
ω̃N(t, ε) + kN θ̃N(t, ε)

)
︸ ︷︷ ︸

fN (t,ε)

. (5.24)

From (5.23a)–(5.23b), it can be seen that fN(t, ε) is uniformly bounded and of
order O(1). Since the unforced system φ̈o + k2φ̇o + k1φo = 0 is an LTI system and
has a globally exponentially stable equilibrium point at the origin (φo, φ̇o) =
(0, 0), the system (5.24) is input-to-state stable. This proves the second part of
the proposition. �

5.1.4 Velocity Regulation

Consider the reduced dynamics (5.13a)–(5.13d). In the previous section, we con-
trolled the states (θN , θ̇N , φo, φ̇o). Now, we are left with the states (p, ṗ, λ, λ̇). The
map ṗ 7→ (vt, vn) is a diffeomorphism so for velocity control we may consider
the subsystem with states (ṽt, vn, λ, λ̇), where ṽt = vt − vref denotes the forward
velocity error. In order to obtain the tangential and normal velocity dynam-
ics, we take the time derivatives of equations (5.3a)–(5.3b), which using (5.13b)
yields

v̇t = uTθNΨ4(·)uθNvt + uTθNΨ4(·)vθNvn + θ̇Nvn +

uTθNΨ5(·)θ̇N + uTθNΨ6(·)λ̇+ uTθNΨ7(·)φ̇o (5.25a)

v̇n = vTθNΨ4(·)uθNvt + vTθNΨ4(·)vθNvn − θ̇Nvt +

vTθNΨ5(·)θ̇N + vTθNΨ6(·)λ̇+ vTθNΨ7(·)φ̇o. (5.25b)

Thus, the velocity error dynamics have the form

˙̃vt = f2

(
θN , θ̇N , λ, λ̇, φo, φ̇o, ṽt, vn

)
+

uTθNΨ6(·)λ̇ (5.26a)

v̇n = f3

(
θN , θ̇N , λ, λ̇, φo, φ̇o, ṽt, vn

)
+

vTθNΨ4(·)vθNvn (5.26b)

λ̈ = uλ (5.26c)

In order to stabilize the solutions of (5.26a)–(5.26b) to a neighborhood of the ori-
gin (ṽt, vn) = (0, 0), we iteratively introduce control-Lyapunov functions (CLF)
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using the techniques of backstepping [99]. To this end, we start by defining the
first CLF in the form

V1 =
1

2
ṽ2
t , (5.27)

and taking its time derivative along the solutions of (5.26a)–(5.26c) to obtain

V̇1 = ṽt ˙̃vt = ṽt

(
uTθNΨ6(·)λ̇+ f2(·)

)
. (5.28)

We use λ̇ as a virtual control input which we employ to make (5.28) negative.
In particular, we define

λ̇ = −kλṽt (5.29)

where kλ > 0 is a constant. We introduce the error variable

z = λ̇+ kλṽt, (5.30)

that we would like to drive to zero, and rewrite (5.28) as

V̇1 = −kλuTθNΨ6(·)ṽ2
t + ṽtu

T
θN

Ψ6(·)z + ṽtf2(·). (5.31)

To perform backstepping for z, we define a composite CLF of the form

V2 = V1 +
1

2
z2 +

1

2
v2
n. (5.32)

Taking the time derivative of (5.32) along the solutions of (5.26a)–(5.26c), we
have

V̇2 = −uTθNΨ6(·)kλṽ2
t + z

(
uλ + kλ ˙̃vt + ṽtu

T
θN

Ψ6(·)
)

+ vTθNΨ4(·)vθNv2
n + vn

(
f3(·)− vTθNΨ6(·)λ̇

)
+ vnv

T
θN

Ψ6(·) (z − kλṽt) .

(5.33)

In order to achieve the velocity control objective, we define the feedback con-
troller

uλ = −kλ
{
f2(·) + uTθNΨ6(·)λ̇

}
︸ ︷︷ ︸

˙̃vt

−Kzz

− ṽtuTθNΨ6(·)− vnvTθNΨ6(·).

(5.34)

where Kz > 0 is a constant gain. The following remark investigates the bound-
edness of the solutions of the controlled system.
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Remark 5.4 Consider the state vector x = [vt, vn, λ, λ̇, φo, φ̇o]
T . Under the control

laws (5.34) and (5.16), we have ẋ = f(x) for the closed-loop system. Because of the
uniform bounds on Ψi, i = 2, . . . , 7, it can be seen that

‖f(x)‖ ≤ B (1 + ‖x‖) (5.35)

for some constant B. Because of this linear growth condition, there is no finite escape
time and the signals λ̇(t), uλ(t) are defined for all t ≥ 0 as required by Proposition 5.1.

We have the following proposition regarding the velocity control system.

Proposition 5.2 Consider the control system (5.26a)–(5.26c) under the controller (5.34).
If the ultimate bound on φo from Proposition 5.1 is small enough such that uTθNΨ6(·) is
bounded away from zero, then for all ε > 0, there exists a controller gain kλ > 0 and
positive constants α?, c? such that, for all α ∈ (0, α?) and all cn − ct > c?, the set

Γ
′
=
{(
λ, λ̇, vt, vn

)
| |ṽt| < ε

}
(5.36)

is asymptotically stable. Moreover, λ̇ and vn are uniformly ultimately bounded.

Remark 5.5 Under (5.34), the velocity error ṽt can be made arbitrarily small provided
that the gain kλ is chosen to be sufficiently large.

Proof: Substituting (5.34) into (5.33) yields

V̇2 = −uTθNΨ6(·)kλṽ2
t −Kzz

2 + vTθNΨ4(·)vθNv2
n

+vn

(
f3(·)− vTθNΨ6(·)λ̇

)
− kλvnvTθNΨ6(·)ṽt (5.37)

Therefore, by parts (b) and (c) of Remark 5.1, for small enough φo, we have

V̇2 ≤ −γ6kλṽ
2
t −Kzz

2 − cn
m
v2
n

+ vn

(
vTθNΨ4(·)uθN ṽt + vTθNΨ7(·)φ̇o + vTθNΨ4(·)uθNvref

)
︸ ︷︷ ︸

f3(·)−vTθNΨ6(·)λ̇

− kλvnvTθNΨ6(·)ṽt

(5.38)

By Proposition 5.1, φ̇o is uniformly ultimately bounded by a positive constant
δφ̇o > 0. By parts (d), (e), (f), (g) of Remark 5.1, we have ||Ψ4||≤ cn/m, ||Ψ7||≤ γ7,
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|vTθNΨ4uθN |< ct/m, and |vTθNΨ6(·)|≤ αε0, and thus

V̇2 ≤ −γ6kλṽ
2
t −Kzz

2 − cn
m
v2
n

+
ct
m
|vn||ṽt|+γ7|vn||φ̇o|+

cn
m
vref|vn|+kλε0α|vn||ṽt|. (5.39)

Using the fact that, for any γ > 0, ab ≤ (γ/2)a2 + (1/2γ)b2, we have

V̇2 ≤ −
[
kλγ6 −

1

2

( ct
m

+ kλαε0

)]
ṽ2
t −Kzz

2

−
[
cn
m
−
( ct
m

+ kλαε0

) 1

2
− γ7γ

2
− cnγ

′

2m

]
v2
n +

γ7

2γ
δ2
φ̇o

+
cn

2mγ′
v2

ref,

(5.40)

where γ and γ′ are arbitrary positive numbers. Pick α < γ6/ε0 and kλ > ct/(mγ6).
Then, the coefficient pre-multiplying ṽ2

t in (5.40) is negative. Moreover, if cn >
(ct/2)+mkλγ6, then for sufficiently small γ, γ′ > 0, the coefficient of v2

n in (5.40) is
also negative. Consequently, for sufficiently large cn−ct and kλ, and sufficiently
small α, there exists β > 0 such that

V̇2 ≤ −βV2 +
γ7

2γ
δ2
φ̇o

+
cn

2mγ′
v2

ref, (5.41)

from which it follows, by the Comparison Lemma [99], that

V2(t) ≤ V2(0) exp (−βt) +

(
γ7
2γ
δ2
φ̇o

+ cn
2mγ′

v2
ref

)
β

. (5.42)

This implies that the solutions of (5.26a)–(5.26c), i.e., ṽt, vn, λ̇, remain bounded,
V2 converges to a ball of radius

r2 =

(
γ7
2γ
δ2
φ̇o

+ cn
2mγ′

v2
ref

)
β

(5.43)

and therefore ||[ṽt, vn, λ̇]T || converges to a neighborhood of the origin given by

r =

√√√√( γ72γ
δ2
φ̇o

+ cn
2mγ′

v2
ref

)
2β

. (5.44)
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Moreover, we can use the first CLF, i.e., V1 = 1/2ṽ2
t , to show the practical

stability of the tangential velocity. Taking its time derivative along the solu-
tions of (5.26a)–(5.26c) given in (5.28) and using the fact that uTθNΨ6 is uniformly
bounded we have

V̇1 ≤ −kλγ6ṽ
2
t + Υ6|ṽt||z|+|ṽt||f2(·)| (5.45)

By the previous argument, |z| is ultimately bounded. We denote the ultimate
bound by δz > 0. Also, there exists δ2 > 0 such that ||f2(·)||< δ2, so that

V̇1 ≤ −
(
kλγ6 −

Υ6

2
− 1

2

)
ṽ2
t +

Υ6

2
δ2
z +

1

2
δ2

2︸ ︷︷ ︸
d

. (5.46)

For sufficiently large kλ, there exists β > 0 such that

V̇1 ≤ −2βV1 + d, (5.47)

from which we get

V1(t) ≤ exp(−2βt)V1(0) +
1

2β
d, t ≥ 0. (5.48)

Therefore, ṽt converges to a ball of radius
√

1
β
d. Since β = kλγ6− Υ6γ

2
− 1

2
, choos-

ing kλ large enough makes the ultimate bound of ṽt less than ε for any desired
ε > 0. This completes the proof for practical stability of the origin ṽt = 0 of the
tangential velocity error dynamics (5.26a) under the control law (5.34) with a
sufficiently large controller gain kλ. �

Remark 5.6 Note that cn/m must be sufficiently large to dominate the positive term.
The physical interpretation of this inequality is that it is only the friction that damps
out the normal velocity component. No active control is used here. And this normal
friction coefficient must be large enough (w.r.t. the mass m) in order to dominate the
velocity increasing contribution that comes from the excitation that the sinusoidal gait
pattern gives.
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5.2 Maneuvering Control of Snake Robots

This section investigates the problem of maneuvering control for planar snake
robots. The control objective is to make the CM of the snake robot converge to a
desired path and traverse the path with a desired velocity. The proposed feed-
back control strategy enforces virtual constraints encoding a lateral undulatory
gait, parametrized by states of dynamic compensators which are employed to
regulate the orientation and position of the snake robot.

5.2.1 Control Design Objectives

In this subsection, we present the blueprint of our maneuvering control design
for the snake robot. We begin by stating the control specifications which we aim
to achieve throughout the control design.

Velocity Control Problem (VCP): Given a desired velocity vector µ(p) with po-
lar representation (r, θ) = (vref(p), θref(p)), design a smooth feedback controller
achieving the following specifications:

(i) Practical stabilization of the head angle θN to θref(p).

(ii) Practical stabilization of the tangential velocity vt = uTθN ṗ to vref(p).

(iii) Uniform ultimate boundedness of the normal velocity vn = vTθN ṗ with a
small ultimate bound, and ultimate boundedness of the solutions of the
joint dynamics and all controller states.

The above problem formulation relies on the observation that if θN = θref(p),
then making ṗ→ µ(p) is equivalent to making (vt, vn)→ (vref(p), 0).

Path Following Problem (PFP): Given a desired continuously differentiable
planar curve γ ⊂ R2 with implicit representation {p ∈ R2 : h(p) = 0} with
dhp 6= 0 on γ, design a smooth feedback controller achieving the following spec-
ifications:

(i) Path stabilization: make p(t)→ γ.

(ii) Velocity control: make ||ṗ||= v on γ, where v is the desired velocity on the
path γ.

The first control specification, i.e., the VCP, will be used to achieve the sec-
ond control specification, i.e., the PFP.
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Figure 5.2: The structure of the path following controller.

Solution Methodology:
In order to solve VCP and PFP, we create a hierarchy of three control speci-

fications, and therefore our control design unfolds in three stages.

Stage 1: Body Shape Control. We use the controls u in (5.1a) to stabilize VHC
encoding a lateral undulatory gait similar to the well-known reference joint tra-
jectories (5.4), in which (ωt) is replaced by a state λ, and φo affects only the head
angle θN . The evolution of λ, φo is governed by two dynamic compensators,
φ̈o = uφo and λ̈ = uλ, which will be used to control the orientation and position
of the robot, respectively.

Stage 2: Velocity Control. This stage unfolds in two substages:

• Head Angle Control. Inspired by the biological observation that snakes
keep their head pointed towards a target while their body undulates be-
hind the head, we design uφo to practically stabilize θN → θref(p) while
guaranteeing that (φo, φ̇o) is uniformly ultimately bounded.

• Speed Control. We design uλ to practically stabilize vt → vref(p) while
guaranteeing that vn converges into a small neighborhood of the origin
and λ̇ is uniformly ultimately bounded.

Stage 3: Path Following Control. We design µ(p) such that making |ṗ− µ(p)|
sufficiently small solves the PFP.

Remark 5.7 Achieving shape control, head angle control, and velocity regulation solves
the DFP, making |ṗ− µ(p)| sufficiently small.

Figure 5.2 depicts the structure of the proposed path following controller.
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Remark 5.8 As discussed at the beginning of this chapter, snake robots move forwards
by tracing out a periodic curve. Because of this oscillatory motion, the head angle and
velocity tangential and normal to the snake motion will not be constant, but rather
oscillate around their steady state values. This is the reason why practical stability is
sought, as opposed to asymptotic stability of constant values which is not a feasible
control objective for the snake robot locomotion.

5.2.2 Body Shape Control

As we discussed above, the first stage of our path following control design ap-
proach is to control the body shape of the snake robot by controlling the joint
angles to given references given by the following VHC

θi − θi+1 = α sin(λ+ (i− 1)δ), i = 1, . . . , N − 2, (5.49a)

θN−1 − θN = α sin(λ+ (N − 2)δ) + φo (5.49b)

Associated with the given VHC is the constraint manifold

Γ3 =
{

(θ, θ̇, p, ṗ, λ, λ̇, φo, φ̇o) ∈ R2N+8 : Dθ = Φ(λ) + bφo, Dθ̇ = Φ
′
(λ)λ̇+ bφ̇o

}
.

(5.50)
Stabilizing the VHC (5.49a)–(5.49b) corresponds to stabilizing Γ3. To this end,
we use the input-output linearizing control law (5.12), which asymptotically
stabilizes the constraint manifold Γ3 for the dynamical system (5.1a)–(5.1b).

Reduced Dynamics on the Constraint Manifold

After asymptotically stabilizing Γ3, we are left with two control inputs, (uλ, uφo)
to solve the VCP. As described in Section 5.1, we will use the dynamic compen-
sators to regulate the head angle and the velocity of the robot to desired values.
To this end, we first derive the reduced dynamics of the robot, i.e. we reduce
the system to the invariant manifold Γ3. By left multiplying both sides of (5.1a)
by eT , which is a left annihilator of the control input matrix DT , and evaluating
the result on the virtual constraint manifold Γ3, the dynamics of the snake robot
on the virtual constraint manifold Γ3 read as

θ̈N = Ψ1

(
θN , θ̇N , λ, λ̇, φo, φ̇o, p, ṗ

)
+

Ψ2 (θN , λ, φo)uλ + Ψ3 (θN , λ, φo)uφo , (5.51a)

p̈ = Ψ4 (θN , λ, φo)ṗ+ Ψ5(θN , λ, φo) θ̇N +

Ψ6 (θN , λ, φo) λ̇+ Ψ7 (θN , λ, φo) φ̇o, (5.51b)

φ̈o = uφo , (5.51c)

λ̈ = uλ, (5.51d)
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where the scalar-valued functions Ψi(·) for all i ∈ {1, . . . , 7} were defined in
(5.14a)–(5.14f). Note that each Ψi(·) is evaluated on the constraint manifold Γ3.
In the process of developing controllers for the reduced dynamics system, we
use the knowledge of each Ψi(·) that we described in Remark 5.1. The equations
in (5.51a)–(5.51d) describe a control system with two inputs, (uφo , uλ). This sys-
tem completely describes the motion of the snake once the VHC (5.49a)–(5.49b)
have been enforced. For system (5.51a)–(5.51d), the control objective is to stabi-
lize θN to an arbitrarily small neighborhood of θref; to stabilize vt = uTθN ṗ to an
arbitrarily small neighborhood of vref; and finally, to guarantee that vn = vTθN ṗ
converges to a neighborhood of the origin. Meanwhile, we also require that the
solutions of the dynamic compensators (λ̇, φo, φ̇o) remain bounded.

5.2.3 Velocity Control

According to the solution methodology given above, we solve the velocity con-
trol problem in two steps. In the first step, we control the head angle of the
robot to a reference head angle which points towards the target point on the
path. In the second step, we use the frequency of the periodic body motions, i.e.
the gait pattern, as an additional control term in order to control the velocity of
the robot to a reference velocity.

Head Angle Control

In this section, we consider the head angle control for the snake robot. Using the
control input uφo , we control the head angle of the snake robot by controlling
the states (θN , θ̇N , φo, φ̇o) of the constrained system (5.51a)–(5.51d). To this end,
we design a high-gain feedback uφo(θN , θ̇N , φo, φ̇o) that makes (θN − θref(p), θ̇N −
θ̇ref(p)) converge to an arbitrarily small neighborhood of the origin and (φo, φ̇o)
uniformly ultimately bounded. This analysis is made independent of the choice
of uλ, using time scale separation.

By (5.51a) and (5.51c), the dynamic equations governing the states (θN , θ̇N , φo, φ̇o)
of the constrained system can be written as

θ̈N = f1

(
θN , θ̇N , λ, λ̇, φo, φ̇o, uλ

)
+ Ψ3(·)uφo ,

φ̈o = uφo .
(5.52)

In the next proposition, we consider the head angle control for the robot using
a high-gain feedback control law.
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Proposition 5.3 Consider the head angle control law for the system (5.52) defined as

uφo =
1

Ψ3(·)

{
1

ε

(
˙̃θN + kN θ̃N

)}
− k1φo − k2φ̇o. (5.53)

where θ̃N = θN−θref(p) denotes the head angle error. Also, assume that uλ(t), λ(t), λ̇(t)
are defined for all t ≥ 0. Then for any k1, k2, ε1 > 0, there exist ε, kN , ε2 > 0 and a
positive definite function V (φo, φ̇o) such that the set

Ω? =
{(
θN , θ̇N , φo, φ̇o

)
|
∥∥∥(θ̃N , ˙̃θN + kN θ̃N

)∥∥∥ ≤ ε1, V
(
φo, φ̇o

)
≤ ε2

}
(5.54)

is asymptotically stable. Then for any kN , k1, k2 > 0, there exist ε?, k > 0 such that for
all ε ∈ (0, ε?)

lim sup
t→+∞

∣∣∣θ̃N(t)
∣∣∣ = kε (5.55)

lim sup
t→+∞

∣∣∣ ˙̃θN(t)
∣∣∣ = kε. (5.56)

Moreover, the states of the dynamic compensator (φo, φ̇o) are uniformly ultimately
bounded.

Remark 5.9 In the next section we define a feedback controller uλ guaranteeing that
for any initial condition, the closed-loop system has no finite escape time (see Remark
5.11). This will guarantee that the above proposition is applicable.

Remark 5.10 The result of Proposition 5.3 can be interpreted as follows. Under (5.53),
the head angle error can be made arbitrarily small provided that ε is chosen to be suffi-
ciently small. Also, φo and φ̇o remain uniformly ultimately bounded.

Proof: Viewing the states λ(t), λ̇(t), and the input uλ(t) as exogenous signals,
the control system (5.52) can be viewed as a time-varying system with states
(θN , θ̇N , φo, φ̇o). Under the control input (5.53), the closed-loop dynamics of the
system (5.52) in the standard singular perturbation form become

˙̃θN = ω̃N , (5.57a)

ε ˙̃ωN = ε
[
θ̈ref + g1

(
t, φo, φ̇o, θN , θ̇N

)
+ Ψ3(·)

(
k1φo + k2φ̇o

)]
−
(
ω̃N + kN θ̃N

)
,

(5.57b)

where
g1

(
t, φo, φ̇o, θN , θ̇N

)
= f1

(
θN , θ̇N , λ(t), λ̇(t), φo, φ̇o, uλ(t)

)
. (5.58)
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Here we use time-scale separation to make the analysis independent of the
choice of uλ. Note that (5.57a)–(5.57b) is a singularly perturbed system with
reduced dynamics

˙̃θN = −kN θ̃N (5.59)

and boundary-layer dynamics
dŷ

dτ
= −ŷ (5.60)

where ŷ = ω̃N + kN θ̃N . The origin is an exponentially stable equilibrium point
of the reduced system. Also, the origin is an exponentially stable equilibrium
point of the boundary-layer system. According to the singular perturbation the-
orem on an infinite interval (see Theorem 11.2 in [99]), for all initial conditions
θ̃N(t0), ŷ(t0) ∈ R and t0 ≥ 0, the singularly perturbed system (5.57a)–(5.57b) has
a unique solution (θ̃N(t, ε), ω̃N(t, ε)) such that

θ̃N(t, ε)− exp (−kN(t− t0)) θ̃N(t0)

= O(ε), (5.61a)

ω̃N(t, ε) + kN exp(−kN(t− t0))θ̃N(t0)

− exp

(
− t
ε

)
ŷ(t0) = O(ε), (5.61b)

for all t ∈ [t0,∞). Note that the closed-loop dynamics governing the states
(φo, φ̇o) become

φ̈o + k2φ̇o + k1φo =
1

Ψ3(·)

{
1

ε

(
˙̃θN + kN θ̃N

)}
︸ ︷︷ ︸

fN (t,ε)

. (5.62)

From (5.61a)–(5.61b), it can be seen that fN(t, ε) is uniformly bounded and of or-
derO(1). Since the unforced system φ̈o+k2φ̇o+k1φo = 0 is an LTI system and has
a globally exponentially stable equilibrium point at the origin (φo, φ̇o) = (0, 0),
the system (5.62) is input-to-state stable. Therefore, there exists an ISS Lya-
punov function V (·) and ε2 such that the set {V (φo, φ̇o) ≤ ε2} is asymptotically
stable. Now, we consider the change of variable ŷ = ω̃N+kN θ̃N . The closed-loop
dynamics become

˙̃θN = ŷ − kN θ̃N , (5.63a)

ε ˙̂y = ε
[
θ̈ref + g1

(
t, φo, φ̇o, θN , θ̇N

)
+ Ψ3(·)

(
k1φo + k2φ̇o

)
+ kN

(
ŷ − kN θ̃N

)]
− ŷ,

(5.63b)
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Next, we consider the Lyapunov function candidate

V1 =
1

2
θ̃2
N +

1

2
ŷ2 (5.64)

Taking the time-derivative of V1 along the trajectories of (5.63a)–(5.63b) yields

V̇1 = θ̃N ŷ − kN θ̃2
N + ŷ ˙̂y (5.65)

It can be shown that there exists L3 > 0 such that ŷ ˙̂y ≤ −(1/2ε)ŷ2 + L3ŷ (see
proof of Th. 11.1 in [99]). We have

V̇1 ≤ θ̃N ŷ − kN θ̃2
N −

1

2ε
y2 + L3ŷ (5.66)

Completing the square, we get

V̇1 ≤ −
(
kN −

1

2

)
θ̃2
N −

(
1

2ε
− 1

)
ŷ2 +

1

2
L2

3 (5.67)

For kN > (1/2)(L2
3/4ε

2
1 + 1) and ε < 1/(L2

3/4ε
2
1 + 2) we have

V̇1 ≤ −
L2

3

4ε21
V +

1

2
L2

3 (5.68)

By the comparison lemma, we get

V1(t) ≤ V1(0) exp

(
− L

2
3

4ε21
t

)
+ 2ε21 (5.69)

This implies that ||[θ̃N , ŷ]T || converges to a neighborhood of the origin given by
ε1. Therefore, the set {||[θ̃N , ŷ]T ||≤ ε1} is asymptotically stable. Note that ε1 is a
design parameter that we can choose arbitrarily. This completes the proof. �

Speed Control

Consider the reduced dynamics (5.51a)–(5.51d). In the previous section, we
controlled the states (θN , θ̇N , φo, φ̇o). Now, we are left with the states (p, ṗ, λ, λ̇).
The map ṗ 7→ (vt, vn) is a diffeomorphism so for velocity control we may con-
sider the subsystem with states (ṽt, vn, λ, λ̇), with ṽt = vt − vref(p) denotes the
tangential velocity error. In order to obtain the tangential and normal velocity
dynamics evaluated on the constraint manifold, we take the time derivatives of
Equations (5.3a)–(5.3b), which using (5.51b) yields

v̇t = uTθNΨ4(·)uθNvt + uTθNΨ4(·)vθNvn + θ̇Nvn +

uTθNΨ5(·)θ̇N + uTθNΨ6(·)λ̇+ uTθNΨ7(·)φ̇o (5.70a)

v̇n = vTθNΨ4(·)uθNvt + vTθNΨ4(·)vθNvn − θ̇Nvt +

vTθNΨ5(·)θ̇N + vTθNΨ6(·)λ̇+ vTθNΨ7(·)φ̇o. (5.70b)
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Thus, the velocity error dynamics have the form

˙̃vt = f2

(
θN , θ̇N , λ, φo, φ̇o, ṽt, vn

)
+

uTθNΨ6(·)λ̇− (dvref)pṗ, (5.71a)

v̇n = f3

(
θN , θ̇N , λ, λ̇, φo, φ̇o, ṽt, vn

)
+

vTθNΨ4(·)vθNvn, (5.71b)

λ̈ = uλ. (5.71c)

In order to stabilize the solutions of (5.71a)–(5.71b) to a neighborhood of the
origin, we use the following control input

uλ = −Kz

(
λ̇+Kλṽt

)
−Kλ

[
f2(·) + uTθNΨ6(·)λ̇− (dvref)pṗ

]
.

(5.72)

where Kλ > 0 and Kz > 0 are positive constant controller gains. Note that
uTθNΨ6(·) is bounded away from zero by part (c) of Remark 5.1 provided that the
ultimate bound on φo from Proposition 5.1 is small enough.

Remark 5.11 Consider the state vector x = [vt, vn, λ, λ̇, φo, φ̇o]
T . Under the control

laws (5.53) and (5.72), we have ẋ = f(x) for the closed-loop system. Because of the
uniform bounds on Ψi, i = 2, . . . , 7, it can be seen that

‖f(x)‖≤ B (1 + ‖x‖) (5.73)

for some constant B. Because of this linear growth condition, there is no finite escape
time and the signals λ̇(t), uλ(t) are defined for all t ≥ 0 as required by Proposition 5.3.

We have the following proposition regarding the forward velocity control sys-
tem.

Proposition 5.4 Consider the control system (5.71a)–(5.71c) under the controller (5.72)
with cn > ct. If the ultimate bound on φo from Proposition 5.3 is small enough that
uTθNΨ6(·) is bounded away from zero, then for all ε3 > 0 and for sufficiently large con-
troller gain Kλ > 0, there exists ε4 > 0 such that the compact set

Λ1 =
{(
λ, λ̇, ṽt, vn

)
: |ṽt|≤ ε3, λ̇ = −Kλṽt, |vn|≤ ε4

}
(5.74)

is asymptotically stable.
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Remark 5.12 The result of Proposition 5.4 can be interpreted as follows. Under (5.72),
the velocity error ṽt can be made arbitrarily small provided that the gain Kλ is chosen
sufficiently large. Also, the normal velocity vn remains uniformly ultimately bounded.

Proof: The control law (5.72) is a feedback linearizing controller for system
(5.71a) with output z = λ̇+Kλṽt, and it makes the set

Λ3 =
{(
λ, λ̇, ṽt, vn

)
: λ̇ = −Kλṽt

}
(5.75)

asymptotically stable. On the set Λ3, the subsystem (5.71a) becomes

˙̃vt = f2(·)−Kλu
T
θN

Ψ6(·)ṽt − (dvref)pṗ (5.76)

Now, we find a positively invariant set

Ω =
{(
λ, λ̇, ṽt, vn

)
: |ṽt|≤ V̄1, |vn|≤ V̄2

}
, (5.77)

such that
∣∣∣f2(θN , θ̇N , λ, φo, φ̇o, ṽt, vn)

∣∣∣ is uniformly bounded on Ω. Note that (φo, φ̇o)

have been proven to be uniformly ultimately bounded in Proposition 5.3. There-
fore we need to show boundedness of ṽt, vn. We pick V̄1 arbitrary and deter-
mine K3 such that |f3(·)|≤ K3. Note that K3 depends on V̄1. Next, we pick
V̄2 > K3/Kn. Finally, we choose

Kλ >
K1 +K2V̄2

γ6V̄1

. (5.78)

We claim that Ω is positively invariant. Note that

−Kλγ6ṽt −K1 −K2|vn|≤ ˙̃vt ≤ −Kλγ6ṽt −K1 +K2|vn|, (5.79)

and

−Knvn −K3 ≤ v̇n ≤ −Knvn +K3. (5.80)

On ṽt = V̄1, we have

˙̃vt ≤ −Kλγ6V̄1 +K1 +K2|vn|≤ −Kλγ6V̄1 +K1 +K2V̄2 ≤ 0 (5.81)

On ṽt = −V̄1, we have

˙̃vt ≥ Kλγ6V̄1 −K1 −K2|vn|≥ Kλγ6V̄1 −K1 −K2V̄2 ≥ 0 (5.82)

On vn = V̄2, we have
v̇n ≤ −KnV̄2 +K3 ≤ 0. (5.83)
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On vn = −V̄2, we have
v̇n ≥ KnV̄2 −K3 ≥ 0 (5.84)

The inequalities above prove that on ∂Ω, the vector field given by (5.71a)–(5.71b)
points inside Ω. Therefore, by Nagumo’s theorem [111], the set Ω is positively
invariant. For all initial conditions inside the set Ω, we have |f2(·)|≤ γ2 = K1 +
K2V̄2, i.e. the function f2(·) is bounded. Now, we employ the Lyapunov function
candidate

V1 =
1

2
ṽ2
t , (5.85)

for which we have V̇1 < −Kλγ6ṽ
2
t + γ2ṽt. Therefore we have

V̇1 < −
(
Kλγ6 −

1

2

)
ṽ2
t +

1

2
γ2

2 . (5.86)

Using the Comparison Lemma, we have, for all t ≥ 0

V1(t) ≤ exp

(
−(Kλγ6 −

1

2
)t

)
V1(0) +

1

2
(
Kλγ6 − 1

2

)γ2
2 (5.87)

Therefore, ṽt converges to a ball of radius

rt =

√
γ2

2(
Kλγ6 − 1

2

) (5.88)

Choosing Kλ large enough makes the ultimate bound of ṽt less than ε3 for any

desired ε3 > 0. Letting ε3 =
√
γ2

2/(Kλγ6 − 1
2
), the set

Λ2 =
{(
λ, λ̇, ṽt, vn

)
∈ Λ3 : |ṽt|≤ ε3

}
(5.89)

is asymptotically stable relative to Λ3. On the set Λ2, the dynamics are described
by subsystem . The function f3(·) is uniformly bounded on Λ2, namely, there
exists γ3 > 0 such that ‖f3(·)‖≤ γ3 on Λ2. Employing the Lyapunov function
candidate

V2 =
1

2
v2
n (5.90)

and using part (b) of Remark 5.1 yields

V̇2 ≤
−cn
m

v2
n + γ3vn ≤ −

cn
m
v2
n +

γ

2
v2
n +

1

2γ
γ2

3 , (5.91)
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where γ is some positive constant and we have used Young’s inequality, ab ≤
(γ/2)a2 + (1/2γ)b2. We conclude that there exists a sufficiently small positive
constant β such that

V̇2 ≤ −βV2 +
1

2γ
γ2

3 . (5.92)

Using the Comparison Lemma, we have, for all t ≥ 0,

V2(t) ≤ exp(−βt)V2(0) +
1

2γβ
γ2

3 . (5.93)

Therefore, vn converges to a ball of radius

rn =

√
γ2

3

γβ
(5.94)

Letting ε4 =
√
γ2

3/(γβ), the set

Λ1 =
{(
λ, λ̇, ṽt, vn

)
∈ Λ2 : |vn|≤ ε4

}
(5.95)

is asymptotically stable relative to Λ2. This set is compact because λ ∈ S1, which
is a compact set and on Λ1, |ṽt|≤ ε3, and λ̇ = −Kλṽt. In the above analysis, Λ1 ⊂
Λ2 ⊂ Λ3. Also, Λi is asymptotically stable relative to Λi+1 for the closed-loop
system for i = 1, 2. On the other hand, Λ1 is a compact set. Using Proposition
4.1, we conclude that the set Λ1 is asymptotically stable. �

5.2.4 Path Following Control of Snake Robots

In this section we study the path following control of snake robots. Thus far we
have developed a velocity controller that asymptotically stabilizes the direction
following manifold

Γ2 = {(θ, θ̇, p, ṗ, λ, λ̇, φo, φ̇o) ∈ Γ3 :

‖(θ̃N , ˙̃θN + kN θ̃N)‖≤ ε1, V (φo, φ̇o) ≤ ε2

|vt − vref(p)|≤ ε3, |vn|≤ ε4, λ̇ = −Kλṽt}
(5.96)

We also define the path following manifold as follows

Γ1 =
{(
θ, θ̇, p, ṗ, λ, λ̇, φo, φ̇o

)
∈ Γ2 : |h(p)| ≤ ε5

}
(5.97)

The following remark investigates the compactness of the path following man-
ifold. According to Proposition 4.1, this compactness property is a necessary
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condition for the reduction theory that we are using to prove the asymptotic
stability of the path following manifold in this section.

Remark 5.13 The set Γ1 is compact. The reason is that the inequality |h(p)|≤ ε5
implies that p is bounded because h(·) is a continuous function. Since θref(·) and vref(·)
are continuous functions, θref(p) and vref(p) are bounded. Therefore, θN and vt are
bounded. Since vt and vn are bounded, ṗ is bounded. Since θN and φo are bounded and
θ = eθN+HΦ(λ)+Hbφo on the set Γ1, θ is bounded. Since θ̇ = eθ̇N+HΦ

′
(λ)λ̇+Hbφ̇o,

and θ̇N , λ̇, and φ̇o are bounded, θ̇ is bounded.

We let µ = [vref cos(θref), vref sin(θref)]
T . It can be shown that

ṗ = R∆1µ+ d (vt, vn, θN) (5.98)

whereR∆1 is the rotation matrix with angle ∆1 = θN−θref(p) and ||d(·)||≤ ε3 +ε4.
If we let y = h(p), we want y → 0 to meet specification (i) of the PFP. On the
direction following manifold Γ2, we have

ẏ = dhpṗ = dhpR∆1µ+ dhpd(·) (5.99)

We propose to use the following control law

µ = −
dhTp
‖dhp‖2

Ktranh(p) +

[
0 1

−1 0

]
dhTp

v

‖dhp‖
(5.100)

where Ktran is a positive constant. We have the following proposition regarding
the path following controller.

Proposition 5.5 Consider system (5.99) where |∆1|< ε1. For sufficiently small ε1 the
following property holds: for any ε5 > 0 there existsKtran such that the set {|h(p)|≤ ε5}
is asymptotically stable for (5.99). Moreover, the velocity control specification, i.e.,
‖ṗ‖= v, is approximately met on γ:

∣∣ ‖ṗ‖−v∣∣ ≤ ε3 + ε4.

Proof: Inserting the control input (5.100) into (5.99), the closed-loop equation
is obtained as follows

ẏ = −
dhpR∆1dh

T
p

‖dhp‖2
Ktrany + dhpR∆1

[
0 1

−1 0

]
dhTp

v

‖dhp‖
+ dhpd(·) (5.101)

Now, we consider the Lyapunov function candidate

V =
1

2
y2 (5.102)
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We pick c > 0 and define Ωc = {|y|≤ c}. By assumption, on {p : h(p) = 0}
it holds that dhp 6= [0 0]. Therefore, there exists c > 0 such that dhp 6= 0 for
all p ∈ {p : |h(p)|≤ c}. Let Ωc = {p : |h(p)|≤ c}. We will now show that
for sufficiently large Ktran, Ωc is positively invariant. To this end, it is enough
to show that there exists K? > 0 such that for all Ktran ≥ K?, V̇ ≤ 0 for all
p ∈ ∂Ωc. On ∂Ωc, dhp is bounded. Therefore, |dhpd(·)|≤ K. By continuity, for
small enough ε1 (note that ε1 can be made arbitrarily small by Proposition 5.3),
there exist a1, a2 > 0 such that

−
dhpR∆1dh

T
p

‖dhp‖2
≤ −a1, (5.103)

and ∣∣∣∣∣dhpR∆1

[
0 1

−1 0

]
dhTp

v

‖dhp‖

∣∣∣∣∣ ≤ a2 (5.104)

We have

V̇ = yẏ ≤ −Ktrana1y
2 + a2y + dhpd(·)y ≤ −Ktranc

2 + a2|c|+K|c| (5.105)

Thus, if Ktran ≥ a2+K
|c| , we get V̇ ≤ 0 on ∂Ωc. This means that Ωc is positively

invariant. On Ωc, we have |dhpd(·)|≤ Kc because Ωc is compact. Thus, we get

V̇ ≤ −Ktrana1y
2 + (Kc + a2) |y|≤

−Ktrany
2 +

1

2
y2 +

1

2
(Kc + a2)2 =⇒

V̇ ≤ −
(
Ktran −

1

2

)
y2 +

1

2
(Kc + a2)2 (5.106)

Therefore, by the Comparison Lemma, for Ktran ≥ 1
2
, we have

V (t) ≤ exp

(
(−Ktran +

1

2
)t

)
V (0) +

1
2
(Kc + a2)2

Ktran − 1
2

(5.107)

Therefore, y converges to a ball of radius

ry =

√
1
2
(Kc + a2)2

Ktran − 1
2

(5.108)

Choosing Ktran large enough makes the ultimate bound of y less than ε5 for
any desired ε5 > 0. Therefore, the path γ is practically stable with domain of
attraction containing Ωc. On the path γ, h(p) = 0, and we have

ṗ = R∆1

[
0 1

−1 0

]
dhTp

v

‖dhp‖
+ d (5.109)
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Consequently, we have that

v − ‖d‖≤ ‖ṗ‖≤ v + ‖d‖=⇒ |‖ṗ‖−v| ≤ ‖d‖≤ ε3 + ε4 (5.110)

Thus, we have approximate velocity control on γ. This completes the proof. �

Main Result

For the snake robot model (5.1a)–(5.1b), we proposed the following control law

u =
(
DM−1

θ DT
)−1 {DM−1

θ Wθθ̇
2

−lDM−1
θ SCT

θ fR + Φ
′′
(λ)λ̇2 + Φ

′
(λ)uλ

+buφo −KP [Dθ − Φ(λ)− bφo]

−KD

[
Dθ̇ − Φ

′
(λ)λ̇− bφ̇o

]
}, (5.111)

where φo, φ̇o, λ, and λ̇ are the states of the following dynamic compensators

λ̈ = uλ, φ̈o = uφo , (5.112)

and the control input uφ0 is given by

uφo =
1

Ψ3(·)

{
1

ε

(
˙̃θN + kN θ̃N

)}
− k1φo − k2φ̇o, (5.113)

where θ̃N = θN − θref(p). Also, the control input uλ is given by

uλ = −Kz

(
λ̇+Kλṽt

)
−Kλ

[
f2(·) + uTθNΨ6(·)λ̇− (dvref)pṗ

]
, (5.114)

where Kλ > 0 and Kz > 0 are constants. The reference signals θref(p) and vref(p)
in (5.113) and (5.114) are defined by the following path following control law

µ = −
dhTp
‖dhp‖2

Ktranh(p) +

[
0 1

−1 0

]
dhTp

v

‖dhp‖
(5.115)

where Ktran is a positive constant. Note that

µ(p) = [vref(p) cos(θref(p)), vref(p) sin(θref(p))] (5.116)

We have the following theorem regarding the snake robot control system.
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Theorem 5.1 [Main Result] Consider the snake robot model (5.1a)–(5.1b) with feed-
back (5.111), (5.113), (5.114), and (5.115). Suppose that the ultimate bound on φo
from Proposition 5.3 is small enough such that uTθNΨ6(·) is bounded away from zero.
For any ε5 > 0, there exist a sufficiently small ε in (5.113), a sufficiently large Kλ

in (5.114) and Ktran in (5.115) such that the path following manifold Γ1 in (5.97) is
asymptotically stable and the velocity of the snake robot satisfies the asymptotic bound
lim sup

∣∣ ‖ṗ‖−v∣∣ ≤ ε3 + ε4.

Proof: Consider the sets Γ1, Γ2, Γ3 defined in (5.97), (5.96), (5.50) and note that
Γ1 ⊂ Γ2 ⊂ Γ3. Also, by Proposition 5.5, Γ1 is asymptotically stable relative to Γ2

and by Propositions 5.4 and 5.3, Γ2 is asymptotically stable relative to Γ3 for the
closed-loop system. On the other hand, Γ1 is a compact set (see Remark 5.13).
Using Proposition 4.1, we conclude that the set Γ1 is asymptotically stable.

5.3 Simulation Results

Simulation Results for the Direction Following Controller

In this part, we present the simulation results which illustrate the performance
of the proposed direction following controller. We considered a snake robot
with N = 10 links with 2l = 0.14 m, m = 1 kg, and J = 0.0016 kg.m2. The
friction coefficients were ct = 0.1 and cn = 1. The parameters of the VHC
were chosen to be α = 30π/180 rad, and δ = 72π/180 rad. We would like to
regulate the velocity of the CM of the robot to [−0.0354 − 0.0354]T , i.e., the
reference head angle is taken to be −π/4 rad and vref = 5 cm/s. The controller
parameters were chosen to be Kp = 100, Kd = 10 in (5.12), ε = 10−4, kN =
10, k1 = 1, k2 = 1 in (5.16), and kλ = 1000, Kz = 1000 in (5.34). Note that ε
determines the ultimate bound on heading angle error. Also, kN determines
the rate of convergence of θN to θref. The gains k1 and k2 have influence on the
ultimate bound of φo. Finally, kλ and Kz determine the rate of convergence and
ultimate bound of ṽt. The simulation results show that the snake robot follows
the desired direction while the forward and normal velocities converge to small
neighbourhoods of the desired values. Figure 5.3 depicts the snake robot at
t = 0, 30, 60 seconds, respectively. Figure 5.4 depicts the dynamic variable φo.
Figure 5.5 depicts the dynamic variable λ̇. Figure 5.6 depicts the shape variable
error. Figure 5.7 depicts the tangential and normal velocities. Finally, Figure 5.8
depicts the head angle of the snake robot. Note that the VHC error in Figure
5.6 and the head angle in Figure 5.8 converge faster to their steady state values
because they are the first control specifications that we enforce.
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Figure 5.3: Plots of the snake robot with 10-links.

Figure 5.4: The dynamic variable φo which controls the head angle of the robot
remains uniformly ultimately bounded.
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Figure 5.5: The dynamic variable λ̇ remains uniformly ultimately bounded.

Figure 5.6: The lateral undulatory gait (5.5a)–(5.5b) is stabilized among the
shape variables of the snake robot.
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Figure 5.7: Tangential and normal velocities.

Figure 5.8: The head angle of the robot.
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Simulation Results for the Maneuvering Controller

In this part, we present the simulation results which illustrate the performance
of the proposed maneuvering controller. For the simulations, we considered a
snake robot with N = 10 links with length 2l = 0.14 m, mass m = 1 kg, and
moment of inertia J = 0.0016 kg.m2. The ground friction coefficients were ct =
0.5 and cn = 3. The parameters of the VHC (5.49a)–(5.49b) were chosen to be
α = 30π/180 rad, and δ = 72π/180 rad. We would like to follow a circular path
with radius 2m. The controller parameters were chosen to be kp = 10, kd = 10
in (5.111), ε = 10−1, kN = 10, k1 = 1, k2 = 1 in (5.113), Kz = 50 and Kλ = 50
in (5.114), and Ktran = 0.6, v = 0.05 in (5.115). We ran the simulation for 600
seconds.

As it can be seen from (5.115), when the path following error ‖h(p)‖ is large,
the reference speed ‖µ‖= vref will be large. Tracking such a large reference speed
will require very fast oscillations of the snake robot and large control torques.
In order to avoid such large initial oscillations and joint control torques, we
set vref = 0.05 while the path following error ‖h(p)‖ was greater than 0.3. For
‖h(p)‖< 0.3, we let the reference speed vref to be determined by (5.115). Note
that ε determines the ultimate bound on head angle error. Also, kN determines
the rate of convergence of θN to θref. The gains k1 and k2 have influence on the
ultimate bound of φo. The gains Kλ and Kz determine the rate of convergence
and ultimate bound of ṽt. Finally, Ktran controls the path following error. In
order to show the performance of the proposed control scheme in the presence
of angular position measurement noise, we subjected every i-th link angle θi to
an additive noise by using Matlab function randn() which generates normally
distributed pseudorandom numbers that can be considered as measurement
noise for the joint angles.

The simulation results show that the snake robot follows the desired path
in the presence of measurement noise, while the states of the compensators in
(5.112) remain uniformly ultimately bounded. Figure 5.9 depicts the snake robot
and the trajectory of the CM of the robot. Figure 5.10 depicts the path following
error. Figure 5.11 shows the time evolution of the dynamic variable φo. Figure
5.12 depicts the time evolution of the dynamic variable λ̇, and thus gives the
frequency of the undulatory motion. Figure 5.13 depicts the shape variable er-
ror. Figure 5.14 depicts the actual and the reference tangential velocities. Figure
5.15 depicts the head angle tracking error. Finally, Figure 5.16 depicts the norm
of the control torque vector, from which we can see that the control torques are
within the physical limitations/saturation values of the existing snake robots at
the NTNU snake robotics laboratory.
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Figure 5.9: Plots of the snake robot with 10 links.

Figure 5.10: The path following error.
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Figure 5.11: The dynamic variable φ0 remains uniformly ultimately bounded.

Figure 5.12: The dynamic variable λ̇ remains uniformly ultimately bounded.
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Figure 5.13: The lateral undulatory gait (5.49a)–(5.49b) is stabilized among the
shape variables of the snake robot.

Figure 5.14: Reference and actual tangential velocities.
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Figure 5.15: The head angle tracking error.

Figure 5.16: Norm of the control torque vector.
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Chapter Summary

• We addressed the problems of direction following and maneuvering con-
trol for a planar snake robot. We defined N − 1 constraint functions for
directly actuated shape variables of the robot. These constraint functions
were dependent on the variations of the states of dynamic compensators
which were used to control the head angle and the forward velocity of the
robot on the constraint manifold.

• Extensive simulations results were presented which showed the perfor-
mance of the proposed direction following and maneuvering control de-
sign approaches.





CHAPTER6
Conclusions and Future

Challenges

Motivated by the lack of analytical feedback control approaches relying on for-
mal stability proofs, in this thesis, we proposed various model-based feedback
control strategies for the snake robot. In particular, the main distinguished char-
acteristic of this work with respect to the previous literature on snake robots,
is the derivation of control laws based on the kinematic and dynamic models
along with presenting formal stability proofs for the closed-loop systems. Due
to complexities in the dynamic behaviour of snake robots, and due to the under-
actuation which is characterized by the lack of direct and independent control
inputs for some degrees of freedom of the system, model-based control design
for these robots is a challenging task. We hope that the analytical approaches to
snake robot control which were carried throughout this thesis, can contribute to
further developments of control theory of snake robots.

Our approach to locomotion control of snake robots was primarily based on
some biological observations, along with mathematical descriptions of biologi-
cal snake locomotion. In particular, in this thesis we used the most common gait
pattern (i.e. fixed periodic body motions) used by biological snakes, known as
lateral undulation. In this type of gait pattern, a wave-like motion travels back-
ward along the body of snakes, from head to tail. As a result of this motion, the
snake body traces out a periodic curve on the plane, which Hirose [1] mathemat-
ically represented as a serpenoid. Hirose [1] along with some other researchers
(e.g. [105]) figured out that the serpenoid curve can be well-approximated by
imposing the sinusoidal reference trajectory for the i-th joint angle of the snake
robot as

φref,i(t) = α sin(ωt+ (i− 1)δ) + φo (6.1)

where α denotes the amplitude of the sinusoid, ω denotes the frequency of the
joint oscillations, δ denotes the phase shift between two consecutive joints, and
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φo is a joint offset used to control the direction of locomotion.
The dynamic model of the snake robot includes strong nonlinear terms which

make the control design challenging. Furthermore, the configuration of a snake
robot can be completely described by the shape variables which define the in-
ternal configuration of the robot, along with the position variables which define
the orientation and planar position of the robot with respect to some inertial
frame. The shape variables are directly and independently actuated by motors
located in the joints of the robot. However, there is no direct and independent
control input for the position variables of a snake robot. In addition, the angle
of the N -th link, or equivalently the orientation of the snake robot, has no direct
control input. This makes the robot underactuated. The motion of the fully-
actuated shape variables can be shaped arbitrarily, as long as the dynamical
constraints of the system are not violated. In turn, the position and orientation
should be indirectly controlled to given references. In particular, the motion of
the joints of the robot can only affect the position of the CM of the robot through
the anisotropic friction forces. This means that in the absence of anisotropic fric-
tion forces, the joints of the snake robot cannot accelerate the CM and the robot
is not controllable. The above challenges are among the main reasons that make
locomotion control of snake robots an interesting and open area of research.

Throughout this thesis, we have dealt with these challenges by employing
various techniques from nonlinear control theory. To this end, we utilize the
dynamic model of the snake robot in order to derive a dynamic feedback control
law which controls the motion of the joints of the snake robot to the following
reference joint angle

φref,i(λ, φo) = α sin(λ+ (i− 1)δ) + φo (6.2)

The major difference between the reference joint angles (6.1) and (6.2) is that in
the latter one rather than using a constant frequency ω for the periodic body
oscillations, we put a feedback on λ̇ which employs this frequency in order to
control the forward velocity of the robot to a given reference forward velocity.

In particular, the relation (6.2) is a virtual holonomic constraint which we
enforce for the joint angles of the robot through the actions of an input-output
linearizing feedback controller. Associated with the virtual constraints defined
by (6.2), is a constraint manifold which we asymptotically stabilize for the sys-
tem. Subsequently, we reduce the dynamics of the system to the globally in-
variant constraint manifold, where we employ the offset term φo along with the
frequency of the gait pattern λ̇ as two additional control inputs which we use to
control the orientation and velocity of the robot, respectively. In particular, we
employ the following dynamic compensators

uφo = φ̈o, uλ = λ̈ (6.3)
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and based on the dynamic model of the snake robot we derive feedback laws
which control the orientation and velocity to given references. In the last stage
of our hierarchical control approach for the snake robot locomotion, we use the
reference orientation and velocity as additional control terms such that the robot
converges to and follows any given contentiously differentiable path. More-
over, by using Lyapunov functions, we show that all the solutions of the con-
trolled system including the states of the dynamic compensators (6.3) remain
uniformly ultimately bounded.

Along with presenting rigorous mathematical proofs, we also have performed
extensive simulation studies and real-time experiments in the snake robots lab
at NTNU, which show the effectiveness of the proposed control strategies.

6.1 Summary of the Chapters

In this part, we present the conclusive remarks on each chapter of the thesis.

Summary of Chapter 1

In Chapter 1, we stated the main objective of the thesis as bridging the gap
between control theory and practice for snake robots. This objective was fol-
lowed throughout the remaining chapters of this thesis. Moreover, we briefly
discussed the locomotion mechanism in biological snakes, and we investigated
various challenges arising in locomotion control of snake robots. Furthermore,
we presented a literature review for snake robot control. In addition, some pre-
liminary mathematical discussions on the constraints of the snake robot were
presented in this chapter.

Summary of Chapter 2

In Chapter 2, we presented several kinematic and dynamic models for snake
robot locomotion. Since the major contribution of this thesis is to present model-
based control approaches for snake robots, then deriving accurate mathematical
descriptions of the behaviour of the system is an important task. In this chapter,
we presented three different models of a snake robot without nonholonomic ve-
locity constraints. The first model was derived in a Lagrangian framework, and
the effects of anisotropic friction forces were integrated into the dynamic model
by using the Jacobian matrices of the CM of the links. The second model that we
presented in this chapter was derived based on the techniques of differential ge-
ometry. Furthermore, we introduced nonlinear terms arising due to parametric
modelling uncertainties in the dynamic equations of motion, that modelled the



Summary of the Chapters 192

effects of varying friction properties on different surfaces. This model was later
used for robust locomotion control of the snake robot. The third model that we
presented in Chapter 2 was a simplified model of the snake robot locomotion
which was previously derived in [11]. In this simplified model, the motion of
the links were approximated as translational motion rather than rotational joint
motion. Since in general translational motion is less complex than rotational
motion, the resulting model was simpler and more amenable to model-based
control design and analysis.

Summary of Chapter 3

In Chapter 3, we considered model-based body shape and orientation control
for locomotion of snake robots. First, using the method of virtual holonomic
constraints, we defined reference joint angle and head angle trajectories for the
snake robot. In particular, for an N–link snake robot we defined N constraint
functions in the following form

Φi = α sin(λ+ (i− 1)δ) + φo, i = 1, . . . , N − 1 (6.4)

ΦN = −atan2
(py

∆

)
(6.5)

The first N − 1 constraint functions were inspired by the reference joint trajec-
tories (6.1) which induce lateral undulatory locomotion on snake robots. These
virtual constraints were stabilized for the joint angles of the snake robot us-
ing the control torques provided by motors mounted on each joint. The last
constraint function which was stabilized for the head link was inspired by the
Line-of-Sight (LOS) path following guidance law, where py denotes the shortest
normal distance from the CM of the robot to the desired path, and ∆ denotes the
look-ahead-distance. This constraint function was stabilized using a dynamic
compensator which was defined through φ̈o. Using numerical simulations and
real-time experiments we showed that stabilizing the constraint functions (6.4)–
(6.5) induces path following on the snake robot.

In the second part of Chapter 3 we proposed a robust generalization for the
controller derived in the first part. In particular, we assumed that the robot
moves on different surfaces with different friction properties. This makes the
robot subject to parametric modelling uncertainty. Furthermore, we used slid-
ing mode techniques in order to derive robust body shape and orientation con-
trol laws which could make the robot converge to and follow the desired path
in the presence of these modelling uncertainties. The approach for deriving this
robust control laws were similar to the previous case. In particular we defined
the i-th joint angle control law ϑi in the form

ϑi = ϑi,nom + ϑi,add (6.6)
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where the nominal part ϑi,nom was defined in an input-output feedback lin-
earizing form, and the additional part ϑi,add was defined in a discontinuous
form which was used to deal with the model uncertainties. Through the robust
control law (6.6), we stabilized the solutions of the joint angle dynamics to an
appropriately defined sliding manifold. The same approach applies to the dy-
namic compensator φ̈o which controls the head angle of the robot to an sliding
manifold in the presence of modelling uncertainties.

Both of the foregoing body shape and orientation control approaches share a
common theoretical gap which was bridged in the third part of this chapter. In
particular, in the third part of Chapter 3 we used an input-output stability anal-
ysis in order to prove the boundedness of the solutions of the dynamic compen-
sator φ̈o which controls the orientation of the robot. Furthermore, we presented
a Lyapunov based stability proof which showed the practical stability of the
origin of the orientation error dynamics.

In the last part of this chapter, we presented simulation results along with
the results of real-time experiments on mechanical snakes which showed the
effectiveness of the proposed guidance-based path following control strategies
in this chapter.

Summary of Chapter 4

In Chapter 4, we employed the simplified model of the snake robot locomotion,
in order to derive model-based direction following and maneuvering control
laws for the robot. In particular, we introduced (6.2) as the reference joint an-
gle for the snake robot. The direction following control objective was defined
as regulating the orientation and forward velocity of the robot to constant ref-
erences, while guaranteeing the boundedness of the solutions of the controlled
system. To achieve these objectives, we followed a hierarchical control design
approach given in the following steps:

1. In the first step, we used the control torques in the joints of the robot to sta-
bilize the solutions of the joint angle dynamics to the constraint manifold.
This stabilizes a lateral undulatory gait pattern among the fully-actuated
shape variables of the robot. Consequently, this induces a forward motion
based on the gait pattern lateral undulation for the robot.

2. In the second step, we evaluated the dynamics of the system on the invari-
ant constraint manifold, where we used λ and φo as two additional control
terms, which were employed to control the velocity and orientation of the
robot, respectively.
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In the second part of this chapter, we tackled the maneuvering control prob-
lem in which the control objective is to stabilize a desired path for the CM of
the snake robot and to control the robot along the path to a desired dynamic
profile. In order to solve the maneuvering control problem we used a similar
hierarchical control approach as in the direction following problem. However,
there were two major differences between these approaches. The first difference
was that we used the dynamic compensator φ̈o to control the orientation of the
robot to a time-varying reference orientation defined by a path following guid-
ance law, rather than a constant orientation angle. This guidance law allowed
the robot to converge to and follow a planar path. The second difference was
that we derived a more complex dynamic compensator φ̈o which controlled the
position of the robot along with its forward velocity as in the direction following
control design.

In the third part of this chapter, we considered the maneuvering control
along general curved paths.

In the last part of Chapter 4, we presented the simulation results for the con-
trollers derived in this chapter which showed the performance of the proposed
control approaches.

Summary of Chapter 5

In Chapter 5, we developed model-based feedback control approaches for the
snake robot based on the complex model of the snake robot dynamics. In par-
ticular, we solved the direction following and maneuvering control problems
for the robot using the method of virtual holonomic constraints. The main idea
for locomotion control of snake robot in this chapter is same as the approach
given in Chapter 4; we first stabilize the motion of the joints to the constraint
functions similar to (6.2) which induce lateral undulation motion on the robot,
and then we control the constrained dynamics of the system by using the two
dynamic compensators similar to (6.3).

In order to solve the direction following problem, we first stabilize a con-
straint manifold which is associated with the virtual holonomic constraints (6.2).
Then we use the constrained dynamics of the system in order to control the dy-
namics of the underactuated degrees of freedom of the robot on the invariant
constraint manifold. In particular, we design a high-gain feedback law for φ̈o
which regulates the head angle to a constant reference, and we use backstep-
ping in order to design a feedback control law for λ̈ which regulates the tan-
gential velocity of the robot to a constant reference through regulating λ̇ to a
required frequency of the body oscillations which provides this velocity for the
robot.
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For solving the maneuvering control problem in Chapter 5, we used sim-
ilar design steps, however, rather than regulating the tangential velocity and
head angle to constant references, we controlled these variables to time-varying
references. In particular, we used these references as additional control terms
which were defined such that the convergence of the path following error to an
arbitrarily small neighbourhood of the origin was guaranteed.

6.2 Future Challenges in Snake Robot Control

In this section, we investigate the future challenges in motion control of snake
robots. Throughout this thesis, we tried to contribute to some of these chal-
lenges by proposing model-based feedback control approaches for these com-
plex robotic structures. However, complexity and variety of snake robot lo-
comotion implies that there still remain many interesting open challenges for
these robots that can be topics of future work. In the following, we list some of
these open challenges:

Experimental Verification of the Presented Control Strategies: Throughout this
thesis, we presented various feedback control approaches which were derived
based on different dynamic models for the snake robot. In particular, we val-
idated all the presented approaches through extensive numerical simulations
which were performed based on realistic parameters for the snake robot. How-
ever, for complex robotic structures such as snake robots, it is very important to
validate theories through experiments. We have already presented experimen-
tal verification for the body shape and orientation controller that we derived in
Chapter 3. Experimental verification of the rest of the proposed control strate-
gies in this thesis, remains as a topic of future work.

From 2D to 3D: All the methods that we presented in this thesis considered
a snake robot moving in 2-dimensional Euclidean space. However, many real-
time applications of snake robots need motion in 3-dimensional space. Conse-
quently, it will be very interesting, and useful, to generalize the proposed strate-
gies to the 3D Euclidean space. A rough explanation of the idea of generalizing
these approaches to 3D space can be given as follows. In order to build a snake
robot which is able to move in 3D space, we need to build two set of modules
for the robots. In one set of these modules, the links oscillate in the x − y plane,
and in the other set, the links oscillate in the x − z plane. Suppose that we sta-
bilize the relations (6.2) for both these sets. Then we can use the corresponding
offset term φo and the frequency λ̇ of each of these sets in order to stabilize a
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given orientation and velocity for the robot.

Motion in Unstructured Environments: In this thesis, we considered snake robots
which move on a horizontal and flat surface. However, the long term goal for
the snake robotic community is to use the benefits of these interesting robotic
structures for industrial, medical, search and rescue, and other relevant real-
time applications. In the majority of these applications, snake robots are subject
to unstructured environments which are characterized by non-flat and cluttered
surfaces. Consequently, it will be very interesting to generalize the proposed
control strategies to unstructured environments, for which the equations of mo-
tion of the robot should be presented as a hybrid dynamical system. This is
due to the presence of impacts with the obstacles in the workspace of the robot
which make the states of the system discontinuous. However, with a careful
analysis of the stability of the hybrid controlled system, it is possible to gener-
alize the given approaches to hybrid dynamic models of the snake robot.

Swimming Snake Robots: Swimming snake robots are a class of snake robots
which move inside a fluid, see e.g. [106]–[110]. These robots share many simi-
larities, and few differences with on land snake robots. The similarities lie in a
common physical structure, identical motion patterns, and analogous underac-
tuation in the orientation and planar position of the robot. However, since the
robot moves inside a fluid, then there are differences in environmental forces
acting on the robot, e.g. fluid drag rather than friction forces. We believe that
the similarities in the physical structure and also the motion of these robots with
on land snake robots, makes the application of the proposed control strategies
for these robots promising. In particular, since in the proposed control strate-
gies in this thesis, we cancelled the effects of the environmental forces through
the actions of feedback controllers, then if the hydrodynamic coefficients for
swimming snake robots can be precisely determined, then it should be possi-
ble to extend our results to swimming snake robots which are characterized by
similar physical structure and different external forces acting on them.
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[91] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, ”Stability
analysis of snake robot locomotion based on averaging theory”, 49th IEEE
Conf. on Decision and Control, Atlanta, GA, USA, 2010.

[92] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Mor-
ris, ”Feedback control of dynamic bipedal robot locomotion”, Boca Raton:
CRC press, 2007.

[93] M. Maggiore, and L. Consolini, ”Virtual Holonomic Constraints for Euler-
Lagrange Systems”, IEEE Transactions on Automatic Control, 58(4):1001–
1008, 2013.

[94] L. Consolini, and M. Maggiore, ”Control of a bicycle using virtual holo-
nomic constraints”, Automatica 49.9, pp. 2831-2839, 2013.

[95] A. Shiriaev, J. W. Perram, and C. Canudas-de-Wit, ”Constructive tool
for orbital stabilization of underactuated nonlinear systems: Virtual con-
straints approach”, IEEE Transactions on Automatic Control, 50.8:1164-1176,
2005.

[96] L. Freidovich, A. Robertsson, A. Shiriaev, and R. Johansson, ”Periodic mo-
tions of the Pendubot via virtual holonomic constraints: Theory and ex-
periments”, Automatica, 44(3):785-791, 2008.



207 Bibliography

[97] J. J. Slotine, and W. Li, ”Applied nonlinear control”, Prentice-Hall, NJ,
1991.

[98] M. I. El-Hawwary, and M. Maggiore. ”Reduction theorems for stability of
closed sets with application to backstepping control design”, Automatica,
49.1 pp:214–222, 2013.

[99] H. Khalil, ”Nonlinear Systems”, Third edition. Prentice Hall, 2000.

[100] X. Yang, ”Practical stability in dynamical systems”, Chaos, Solitons and
Fractals, vol.11 no.7, pp:1087–1092, 2000.

[101] V. I. Arnol’d, ”Mathematical methods of classical mechanics”, Vol. 60.
Springer, 1989.

[102] D. B. Dacic, D. Nesic, A. R. Teel, and W. Wang, ”Path following for non-
linear systems with unstable zero dynamics: an averaging solution”, IEEE
Transactions on Automatic Control. 56:880-886, 2011.

[103] A. De Luca and W. Book, ”Robots with Flexible Elements,” in Springer
Handbook of Robotics, Berlin/Heidelberg: Springer-Verlag, pp. 287–319,
2008.

[104] R. Skjetne, ”The maneuvering problem”, PhD–thesis, NTNU, 2005.

[105] M. Sato, M. Fukaya, and T. Iwasaki, ”Serpentine locomotion with robotic
snakes,” IEEE Control Systems Magazine, vol. 22, no. 1, pp. 64–81, 2002.

[106] E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, ”A waypoint guidance
strategy for underwater snake robots,” in Proc. IEEE Mediterranean Con-
ference of Control and Automation, pp. 1512–1519, June 2014.

[107] E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, ”Modeling of underwater
snake robots moving in a vertical plane in 3D,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 266–273, Chicago, USA, September
2014.

[108] E. Kelasidi, K. Y. Pettersen, J. T. Gravdahl, and P. Liljebäck, ”Modeling
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