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Summary

The vast majority of research in the field of robotics has ¢kerast few decades shifted
from industrial robots—in the sense of robots mounted inwcttired environment such as
a factory floor—to robots operating in unstructured and harslronments. Even though
industrial robotics has become a mature research field wevbahat there is still room
for progress and improvement. In fact, we show this througth bheoretical advances
and experimental results in this thesis. However, the n@ing of most researchers today
has shifted towards autonomous robots and robots in utstagtenvironments, and this
is also the main focus of the work presented here.

This thesis is concerned with the borderline between theimmaechnology that in-
cludes conventional industrial robots and robots opegatirunstructured and harsh envi-
ronments, an area that is still undergoing considerablaramhs. The oil fields of the future
will have to adopt solutions from both mature and evolvinght®logies—including the
borderline between them—and we will use this applicatiorltstrate the practical im-
portance of the theoretical results throughout the th&sseral tasks to be performed by
the robot on the oil fields of the future resemble the taskfopmed by industrial robots
on the factory floor in thousands of factories around the avtmtlay. In this sense we may
consider this a mature and robust technology. At the same ttia robots will have to
work in an unstructured environment with little or no diréetman intervention and au-
tonomous operation is required also for non-routine tabkthis sense, the oil platforms
of the future present us with an interesting case study.

We believe there to be two main issues that need to be addrbs$ere partially or
completely robotised oil platforms will see the light of dajhe first is concerned with
robustness. Robotic solutions will only be applied to tagksre the efficiency, accuracy,
repeatability, and robustness surpass those of the humenatop performing the same
tasks. Remotely located oil platforms, and especially thesdocated in sensitive areas
such as the Barents Sea, are characterised by strict lagistdandards to protect the
environment and the wildlife. Any installation involvingevochemicals such as oil and
gas will have to show for robust and reliable solutions atywtage of the operation.
Thus, any operation involving robots will have to meet veightstandards when it comes
to robustness and fault tolerance. This imposes greatecigab on the oil companies that
are to operate in these areas.

The second issue is concerned with the effectiveness anefficgency of the opera-
tion. An experienced human operator has an incredible diétgab find efficient solutions
to both routine tasks and unexpected occurrences. Theiecslzystem should also strive
to solve any task in an optimal manner. Effective and costiefft operation is vital to
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be able to justify the high investment in research and iladtah related with robotised oil
fields. Thus, for these systems to be interesting for theamiganies the daily operation
should not only be more robust compared to human operatatsould also be more cost
efficient to guarantee that the investment in expensivetiobquipment pays off.

When it comes to remotely located oil fields, effectiveness mnbustness are very
much related. The main economical risk involved with therapien of oil platforms
today is unscheduled shutdowns. Unscheduled shutdowng|kass planned maintenance
shutdowns, should be made as short as possible and if ppasitided. A robust solution
with less chance of failure is thus something the oil comgsusitrive for also with the
economical gain as a motivation.

This thesis is divided into four main parts. Part | is conegrwith a large class of
robotic systems that will play a very important role in theecgtion of remotely located oil
platforms, namely vehicle-manipulator systems. One apfiin of such systems is sub-
sea installations where humans do not have direct accegsusehof robots mounted on
a underwater vehicles is believed to be the on-shore op&ratain tool for surveillance
and operation of these fields. We are mainly concerned wihrtathematical modelling
of a large class of systems, including vehicle-manipulaystems. The main contribution
of this part is the derivation of the dynamics of a genera<laf vehicle-manipulator sys-
tems that also allows for joints that cannot be represeniddgeneralised coordinates.
These types of joints are often subject to singularitieb@representation, but we use Lie
groups and Lie algebras to represent the transformatiomelaet the local and global ve-
locity variables and thus obtain a singularity-free foratidn of the dynamics. The papers
that are published in this part serve as a detailed study litlemanipulator systems
and are also intended to introduce these results to somentleesearch areas where a
singularity-free formulation is not normally adopted. Wew that with our formulation
we obtain a set of dynamic equations with the same complesitthe conventional La-
grangian approach but without singularities. The joints @dassified depending on what
Lie group we use to represent the configuration space so weasily build a library of
joints types for easy implementation in a simulation envinent.

While Part | is mainly concerned with robustness in the sehata suitable mathe-
matical representation is chosen, Part Il deals with rotasst of the manipulator design.
Specifically we address the problem of joint failure, i.e.ewtthe joint loses its actuation
and becomes a passive joint. This is an extremely sericuggtigih as the passive joints in
general cannot be controlled, and external forces, suchaadtygor inertial forces, may
cause the manipulator to collapse. This can result in sed@mage to the robot’s sur-
roundings. Based on a geometric approach, we thus analyssai the effects of joint
failure on serial and parallel manipulators. We find thatsferial manipulators this should
be dealt with in the control of the robot once a joint failuseidentified. For parallel
manipulators, however, this should be dealt with in the glesif the manipulator. We
present a complete set of rules on how to choose the activpassive joints in a parallel
manipulator in order to guarantee fault tolerance.

Maintenance tasks on oil platforms are very important anqmb@ally for platforms
situated in high sea, cold locations, and rough environsiergeneral. The corrosion due
to the salt water is for example very damaging to both thefquiiat construction and the
process area of the platform. High pressure water blagtitigis essential for maintenance
and cleaning of the equipment. High pressure water blagiatpo used for removing ice



and preparing the surfaces to be painted. Painting the hurfgces of the platform with
frequent intervals is another very time consuming task rlegds to be performed by the
robots. In Part lll we show how we can improve efficiency fdoots that are to perform
these tasks by introducing an extended definition of funetioedundancy. All the tasks
above are so called pointing tasks, i.e. tasks where onlyglitleetion of the robot tool
is of concern and not the orientation. We extend this definito also allow a small
error in the orientation of the robot tool. For these tasksalkerror in the orientation
will not affect the quality of the job, but—as we illustraterdligh both theoretical and
experimental results—this allows us to substantially redile time needed to perform
the task. We show how to cast the problem of finding the optoniahtation error into a
convex optimisation problem that allows us to find the solutin real time. This makes
the approach suitable for several tasks performed by tha&imogystems on oil platforms,
but also for spray paint and welding applications in factiostallations.

The process area on an oil platform is very complex and thetsslundant manip-
ulators to get access to every part of the robot is inevitaflee inverse kinematics of
redundant robots, however, is challenging due to the iefinitmber of solutions to the
problem. There are also other robots that do not have a knoatytical solution to the
inverse kinematics problem. One example is robots with dexngeometry, which often
occurs when we put the cables connecting the tool and thedpase inside of the manip-
ulator structure. Similarly to kinematically redundantmipulators there is in this case no
known solution to the inverse kinematics problem, whictsthaeds to be solved numeri-
cally. In Part IV we present a set of iterative solutions te ithverse kinematics problem.
We divide the problem into several sub-problems that candbeed analytically. Due
to the analytical solution of every sub-problem we are abledive the inverse kinemat-
ics problem very efficiently. The approach is also very rolmasnpared to conventional
Jacobian-based methods when the initial point is far froenstblution. We also present
an alternative formulation of the gradient method where wlgesboth the problem of
finding the gradient and the search along the gradient acallyt Even thought our “gra-
dient” is only an approximation of the actual gradient, tippraach is computationally
very efficient and a solution is found very quickly.

This thesis addresses several different topics in rohofitghe results presented can
be applied to off-shore robotics, but there are also othpliGgiions where the results are
indeed applicable. As the project has progressed we havewveired several of these alter-
native applications and in some cases the theory presenjiest as relevant in areas other
than where it was originally intended. We have included ssexamples including space
robotics and industrial spray paint robots to illustrais,tnd we believe this diversity in
terms of applications strengthens the theoretical repodtsented throughout the thesis.
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Chapter 1

Introduction

1.1 Robotic Solutions in Off-Shore Applications

There is a strong consensus that off-shore oil fields arergoniey a fundamental change
in the way they are operated: from mainly human operationd¢orapletely or partially
automated operation where robots perform the differekstaad with humans mainly as
observers and supervisors (Skourup and Pretlove, 20093 chlange has not yet taken
effect, but the increasing interest, both through reseprojects and financial investment
from oil companies and robot manufacturers, suggests tithange will come in the
very near future.

There are two main motivations behind this fundamental ghaifihe first is increased
productivity and cost efficient solutions due to more rdiagolutions, less manpower,
and smaller platforms through the removal of living fa@i The second motivation—
and maybe the most important one—is that the oil fields of theéucannot be built with
today’s technology. Challenges such as deeper water, eclogdtions, and challenging
weather conditions require new technology.

The transition from platforms operated by humans to moreraarhous solutions will
involve many interesting aspects, especially when it camaslising solutions taken from
industrial robots in unstructured and far more challengireps. In this thesis we discuss
several topics in robotics that need to be solved befordrisition can take place.

1.1.1 Oil Fields of the Future

On existing oil fields robatic solutions are already usedstareral tasks, but this is in gen-
eral limited to very specialised niche applications or tblat cannot or are too dangerous
to be performed by humans. One example is the use of remopelsated underwater
vehicles for inspection of subsea processes. This technadonow developed to a level
where it can be considered functional as well as relativebust. For topsideapplica-
tions, however, we have not seen the same interest in deénglogbotic solutions. This is

1Topside means offshore oil and gas installations and shipgeahe water level.
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INTRODUCTION

Figure 1.1: The offshore Statoil Troll A gas platform located in the North Sea. Note tige lasing
facilities on the right, which is required due to the large number of workete®platform. Courtesy
ABB Strategic R&D for Oil, Gas and Petrochemicals.

mainly because, up to today, this has not been cost effigienhas it improved the safety
aspects of the operation.

This has, however, changed over the last decade and newotegkiris believed to
introduce robotic solutions to a wider range of applicasiomhere are many reasons for
this. Firstly, new and cheaper technology has made the usibofic solutions more cost
efficient than flying human operators to distant fields. Thatikely high one-time invest-
ment will pay off due to reduced salaries to human workerg.08@ly, robotic solutions
are more reliable and less error prone than humans and wexpantdewer and shorter
shutdowns. Robots work 24 hours a day seven days a week arahvémysreliably. Hu-
man workers are subject to stress and difficult working ciomal which lead to mistakes
and accidents. Robots thus reduce the probability of unAgld production stops which is
extremely costly for the oil companies. Thirdly, most of Hueessible fields close to shore
have already been explored and future fields are situatedie remote and harsh envi-
ronments where accessibility is low. These fields are tealfigichallenging and require
the development of new technology. Much of this relies onube of robotic solutions.
This is not only due to the extreme costs of safely transpgiiuman workers to these
areas but also because of the extreme working conditionsy Mfthe oil fields that are to
be developed are not suited for human workers due to temperand weather conditions,
as well as the distance to on-shore facilities. For exampéeShtokman field located in
the Barents Sea some 600 kilometres north of the Kola Pdaimsgperiences such ex-
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1.1. ROBOTIC SOLUTIONS IN OFF-SHORE APPLICATIONS

Figure 1.2: The oil platform of the future. The gantry cranes allow the robots to reaefy part of
the platform to perform the pre-defined or operator controlled operalibe large living facilities
are removed or drastically reduced. Courtesy of TAIL 10.

treme weather conditions that for six months of the year amenot expect to frequently

fly workers to and from the platforms by helicopter. Finatlye oil companies address
health, safety, and the environment (HSE) as importanegssthe off-shore installations
are some of the most dangerous places to work due to the eximeather, unstructured
environment and high concentration of dangerous and in szases deadly gases, such
as hydrogen sulphid#/,.S. There is an apparent advantage in the use of robots in these
environments in order to reduce the exposure of these ramatdiman workers.

History has taught us that for applications where new teldgyds required in order to
be able to perform a given task, great effort has been put dowavelop this technology
and take it into use. On the other hand, when the task can ferped by a human
operator and the technology is not absolutely necessamy éble to perform the task, this
has not always been the case. The simple fact remains ththagtior many of the tasks
performed by humans today the technology is available ambet manipulator can do
the same job as the human operator. As an example, the ngctesdmological advances
have to a large extent been developed and used for subsedhendiangerous tasks. If
one can automate the process subsea, this should be adhialsmttopside, which is more
accessible and more structured than the subsea environment

So the question that arises is why this has not been appliegsade applications ear-
lier. One important aspect is that a higher degree of auiomatturally implies changes
in technology, peoples’ work patterns and workplace, aedotiyanisational structure in
general. This reorganisation is complex, much becauseeofdhot-human interaction.
Continuous monitoring and operation by the operator isireguand this makes the op-
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Figure 1.3: The daily operation of off-shore platforms include several challengimtpotentially
dangerous tasks for the human workers.

erator an integrated part of the control loop. The reorgdiuis also requires a complete
set of new job descriptions and new competence. This rexjdie¢ailed planning and
preparation in order to succeed. The most important aspeegver, is probably that the
transition from automating only parts of the process to detefy automate an extremely
complex process such as an oil field is a giant step in termsabinblogical advances.
To develop robotic systems that can solve all the necesaakg ton an oil platform is
probably possible in the very near future, but the main elngjés lie in developing a sys-
tem that allows for these systems to interact and work tegetbk a whole. Completely
automating the process requires both old and new techreaagich as teleoperation, ex-
treme computational power, complex control algorithmsfemy integration, and both the
robustness and efficiency of the robotic solutions need timmpeoved. It is only over the
last few years with advances in areas such as computationairpautonomous robots and
robust solutions for robots operating in harsh environmémdt this technology is starting
to become available.

Benefits of Autonomous Operation

There are considerable gains related to automating thestwlkfof the future, both in HSE
and in economic benefits. An estimate of the main advantaigastomating the process
is presented in Vatland and Svenes (2008) and can be sunechass

« Improved HSE Performance when automating oil rigs:

— Reduced need for transport/shuttling

— Reduced manning-60%
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Figure 1.4: ABB-Shell collaboration room - an example of an integrated operationsece The
operator is located on-shore and has complete control of the ofé-$aditities through visual tools.
Courtesy ABB Strategic R&D for Oil, Gas and Petrochemicals.

« Economic benefits when automating oil rigs:

— Reduced weight of floater 36%

— CAPEX reduction~ 30%

— OPEX reduction~ 32%

— Reduced emissions & chemical consumption

— Total savings of introducing automated solutions compsréoday’s solution:
650 Mill USD®

1.1.2 Integrated Operations

Integrated Operations (10), also known as eField, iFieida8-Field, etc., is a fast grow-
ing research area that has been made possible mainly due émdhmous increase in the
ability to collect, monitor and process real-time data. Thenbination of real-time and
historical data from the plant and improved computatioralgr and software represents
an extremely valuable analysis tool. The main goal is tonaftur collaboration across dif-
ferent disciplines, i.e. to allow for common access to datalifferent parts of the overall
system, like the plant, administration, operational aetand the control, monitoring, and
collaboration rooms. Statoil defines Integrated Operatas(Vatland and Svenes, 2008):

2Figures from previous studies (Vatland and Svenes, 2008)

SLoosely speaking, CAPEX is investment in the business thds abareholder value.
4Loosely speaking, OPEX is what you have to spend in orderép keur business running.
SInterest rater %, platform with 20 year field life
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Figure 1.5: High-pressure water blasting is one relevant application that the robqterféorm that
will spare the human worker from potentially dangerous tasks. Cou#AB& Strategic R&D for
Oil, Gas and Petrochemicals.

“Collaboration across disciplines, companies, organisadil and geographical bound-
aries, made possible by real-time data and new work prosgsserder to reach safer and
better decisions — fastet.

Robotics and Integrated Operations

As a part of IO, robot technology is believed to play an imanottole (Vatland and Svenes,
2008):

“[...] robotics technology to supplement and extend human irispeantd intervention
capabilities at subsea, topside and onshore facilitiese dhjective is to develop solu-
tions that combine tele-robotics and advanced visualisato enable remotely operated
inspection and maintenance operations, as well as to ifieatid close technology gafs.

The following advantages are recognised in utilising radsabgether with 10 in future
plants

* Future Plants

Modular, interchangeable equipment arrangement withoagrccess routes.

Compact process technology.

Direct access to equipment status for remote inspectiorsbyfiRemote As-
sisted Tools (RATS).

Mobile decks give enhanced access to equipment.

* Benefits

— HSE performance improvement.
» Remote operation - Hazardous work done by robots.
— OPEX reduction.
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x Considerable reduction in offshore man hours.
x» Campaign based maintenance - shortened time window.

— CAPEX reduction.

» Compact, modular process equipment on one deck.
* Shortened fabrication- & project execution-period.

— Increased flexibility.

» Reconfigurations made quickly and at low cost.
x Process modules can be “shared” between installations.

1.1.3 The TAIL IO Project

The TAIL IO project is an international cooperative reséapcoject led by Statoil and
an R&D consortium consisting of ABB, IBM, Aker Solutions aS&F. The aim of the
project is to deliver first class innovations to support &@tah achieving their overall
goals for extending the lifetime of Statoil’s oil and gasdl|

« increase daily production by at least 5 percent by redugpioguction losses caused
by operational failure, maintenance stops and inadequgipment performance

* reduce operating, construction and maintenance costé pg@ent

* reduce the number of unwanted incidents relating to hesétfety and the environ-
ment (HSE)

One out of six subproject is concerned with robotics tecbgyhwith the intention to
supplement and extend human inspection and interventipabdiies at subsea, topside
and on-shore facilities. The objective is to develop sohgithat combine telerobotics and
advanced visualisation to enable remotely operated itigmesand maintenance, as well as
toidentify and close technology gapehe Tail 1O project was supported by the Norwegian
Research Council.

1.2 Robust Solutions

Robustness is the property describing the ability to opetantinuously without failure
under a wide range of conditions (Soanes and Stevenson).2808chanism, system or
design is said to be robust if it is capable of coping well witttiations in its operating
environment with minimal or no damage, alteration or losiiattionality. The design of
robust robotic systems is one of the most challenging tapigsbotics, and in unstructured
environments with unpredictable and random variatiorsgghbblem becomes even harder.
It is impossible to design a system that is robust to all fdssiariations in the envi-
ronment so the main issue here is to design a robotic systanistiobust enough so that
utilising it will lead to improvements over other existingssems. If operation is safer and
more reliable using human workers no one will spend a corsidie amount of money
robotising the operation. Thus, robot manufacturers andldpers need to search for ar-
eas where robots will improve both reliability and safetygd @o do this in a cost efficient
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Figure 1.6: The ABB robot test laboratory in Oslo, Norway. Courtesy ABB Strategi®Ror Oil,
Gas and Petrochemicals.

manner. Off-shore oil facilities is definitely one of the asdhat stands next in line to be
robotised, but there is no doubt that the main concern footheompanies, environmen-

talists, and governments is the robustness and relialoithis solution. Parts of Part |

and the entire Part Il of this thesis is thus devoted to rotasst of robotised solutions on
off-shore facilities.

Part | addresses the effects of mounting a standard robetitpulator on a moving
base, such as a ship, autonomous underwater vehicle (AUy)atiorm. If the motion of
this base is large, like on a ship in high sea, this will add-mamtial terms to the dynamic
equations. If these non-inertial forces are dominant, entisnal motion planning and
control approaches may lead to instability or poor robustrend performance. This thus
needs to be included in the control of the robot to guararttkestness also in these cases.

If remotely located platforms are subject to weather coowlt too extreme for hu-
mans, these weather conditions will also cause great clggteto ships sailing to these
facilities. A completely automated off-shore field thusoafeeeds to include solutions for
ships. Robust operation of these ships is extremely critisghey may be loaded with
petrochemicals such as crude oil and gas. At times, shipatdagh sea and, as we show
in Part |, the inertial forces affect both the path planning aontrol of the robots operat-
ing on these ships. Conventional methods are thus not suffitor robots mounted on a
non-inertial base when it comes to robustness. This is gésmlin detail in Part 1.

Robust mathematical models of vehicle-manipulator systanalso of vital impor-
tance when it comes to implementing robust motion plannimdy@ntrol algorithms. In
the setting of this thesis we will say that a model is robudtig globally valid, i.e. sin-
gularity free. When a robotic manipulator is mounted on aalehthat can rotate freely,
singularities arise in the mathematical model if the Eulegles are used in the repre-
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1.2. ROBUST SOLUTIONS

Figure 1.7: An ABB robot at work performing routine inspection of process eqpt Courtesy
ABB Strategic R&D for Oil, Gas and Petrochemicals.

sentation. This is a problem when the dynamics are derivéldeiitonventional way, for
example for AUV-manipulator systems. AUVs are believed ¢oan integrated part of
the oil fields of the future, and robust and computationafficient models of the AUV-
manipulator dynamics is thus also important to assure tabas of the oil fields of the
future. This is also discussed in Part I.

Part Il addresses some issues concerning joint failureciBpally we address how
to deal with torque failure, i.e. when the actuation of arvedbint is lost and this joint
becomes passive, also known as a free-swinging joint fAutult tolerant system should
be able continue operation when this occurs. There arediysiwo ways to deal with
this problem. The first is to develop intrinsically fault éohnt actuators through high
redundancy, i.e. to use several smaller sub-actuatorsili the actuators (Muenchhof
et al., 2009; Steffen et al., 2009). The idea here is that hifaone of the sub-actuators
will not affect the overall performance of the main actuatdhis technology is not yet
ready and strictly speaking these actuator are not fawdtdat in the true sense. If for
example power is lost to the actuator, this will affect albsactuators and a fault occurs.

9
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The other way to deal with this is through redundant actuatio this case the robotic
manipulator can continue operation after a joint fault hecuored by utilising the redun-
dant actuators. This solution, however, requires thaoait$ are represented by at least
one redundant joint and can only be applied to parallel nash@s. Redundant joints are
expensive and reduce performance because of added welighthlis important to find
the minimal set of joints, for which the manipulator remadpgrational when joint failure
occurs for an arbitrary joint. This is discussed in Partdl parallel manipulators subject
to torque failure. We also discuss the effect of joint faglim serial manipulators.

1.3 Optimal Solutions

Throughout the history of industry, there has been one datinig factor that has been
driving the progress and technological advances more thgwther. That factor is pro-
ductivity. Over the last decade, one of the most importaalstto improve productivity,
and the one that has made the most difference in the settimg @fork, is computer-based
optimisation methods. Optimisation is basically the athodv to achieve more with less.
This has been done as long as industry and technology hdsdxXisit has reached a new
era with the development powerful computers and software.

On the oil fields of the future, robotic solutions are to sitbst many operations previ-
ously performed by humans. Removing the human worker frenpthtform area presents
us with one great challenge: An experienced human opera®ah incredible capability
to notice when something is wrong. Through sight, hearintglband physically feeling
the process area he or she can sense deviations from whairialrend trigger the alarm.
To substitute this “sensing operator” with robotic solngas a huge challenge. This area
is closely related to machine learning and artificial ingelhce.

The human operator is also very capable of finding efficiehitsms to both routine
tasks and unexpected occurrences. This is a characterigie human worker that we
should emulate in our robotic system. For robotic or comjgetd systems the intelligence
of humans is often substituted through optimisation meshddhese range from complex
algorithms and theory found in artificial intelligence tatiopal solutions of simpler task
performed by the robot. In this thesis we discuss severaasgoncerning optimality in
the setting of off-shore robotics.

For example, for a robot mounted on a ship, we can use infesmabout the ship mo-
tion to find an trajectory planner and for optimal controlidiwill allow for reduced strain
and tension on the robot, more accurate manipulation anegteslenergy consumption.
This is in fact an example where the performance of the robotlsl surpass that of the
human operator. Anyone who has tried to write or pour coffééeansitting in a moving
vehicle knows that humans are not very capable of reducimgffiects of the non-inertial
forces by compensating for these in any way. However, tHiaa@phisticated sensors
and control algorithms we can drastically reduce the effetthe non-inertial forces by
modifying the robot controller. This is discussed in deiaiPart I.

In Part Il we discuss the optimal solution to a large clastaeks that the robotic ma-
nipulator is to perform on off-shore platforms. Most tasikgolved with the surveillance
and maintenance of the platform require that some toolash#éd at the end of the manip-
ulator chain. For several of these tasks the orientatiohisftbol is critical, but there are
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also some tasks for which it is not. This is the case with task$ as high-pressure water
blasting, spray painting, welding and holding a camera tovesillance. As these tasks
constitute a large part of the tasks that are to be performeleorobots we study these in
detail. We show that the time needed to perform these taskeadnastically reduced if an
optimal solution is applied and the time saved can thus lbeatéd to other tasks.

Finally, a human operator can extend his arm to reach arahe pfocess that are very
difficult to access. This is an area where human performarezly surpasses robots, as
far as today’s technology is concerned. In general it is déficult for robots to operate in
complex process areas. To get access to every part of thegzaedundant manipulators
need to be used and this greatly complicates the path plgamic the inverse kinematics.
In Part IV we discuss one solution to the inverse kinematioblem that can be applied to
redundant actuators. The problem here is that kinematicadlundant robots do not have
an analytic solution to the inverse kinematics problemt Rars thus devoted to generic
methods for solving the inverse kinematics problem for ¢hldads of robot arms. The
approach is also applicable to other manipulators with dmated geometry that do not
have a known solution to the inverse kinematics. One grouplafts that do not have an
analytical solution to the inverse kinematics problem ¢xtesf robots that are hollow on
the inside. Making the robots hollow complicates the kingosabut is a great advantage
because placing the cables on the inside makes them moeemaitand they cannot get
stuck in the platform’s process area.

In the following we discuss the contributions of the fourfeliént parts in some more
detail.

1.4 Part | - Singularity-Free Vehicle-Manipulator Mod-
elling

Robust solutions are very important for vehicle-manipuiatystems such as a manipula-
tor mounted on an autonomous underwater vehicle (AUV) dpgraubsea, a manipulator
mounted on a satellite operating in space, and for manigngamounted on a moving ve-
hicle in general. The main strength of such systems is tlegt¢an operate in distant and
harsh environments and far away from humans who may justradskee operations or
remotely control them. Such systems thus need to be relgahiérect access may be im-
possible, very time consuming, or extremely costly. Thdalehmanipulator system may
also be part of a larger system, such as a subsea oil ingtaltat a space station. These
systems will then depend on all the sub-systems—includiegdhotic systems—for con-
tinuous operation and assistance both in routine opesatind in emergency situations.

A robotic manipulator mounted on a moving vehicle is a vélissablution well suited
for these applications and will play an important role in tiperation and surveillance of
remotely located plants in the very near future. Recreat#adjstic models of for exam-
ple space or deep-sea conditions is thus important. Botkifioulation and for model-
based control the explicit dynamic equations of vehiclerimalator systems need to be
implemented in a robust and computationally efficient wagtarantee safe testing and
operation of these systems.

We will discuss several different vehicle-manipulatorteyss in Part I. One example
of such a system is spacecraft-manipulator systems (Edjelash Sagli, 1993; Dubowsky
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and Papadopoulos, 1993; Hughes, 2002; Moosavian and Rapads, 2004, 2007) which
are emerging as an alternative to human operation in spapera@ons include assem-
bling, repair, refuelling, maintenance, and operationsabéllites and space stations. Due
to the enormous risks and costs involved with launching mgnato space, robotic so-
lutions evolve as the most cost-efficient and reliable smhut However, space manipu-
lation involves quite a few challenges. When it comes to spaaeipulators robustness
is, for obvious reasons, extremely important. The framéwwesented in Part | is well
suited for modelling spacecraft-manipulator systemsctvlis quite different from stan-
dard robot modelling. Firstly, the manipulator is mountedaofree-floating (unactuated)
or free-flying (actuated) spacecraft. Secondly, the motibthe manipulator affects the
motion of the base, which results in a set of dynamic equatdiffierent from the fixed-
base case due to the dynamic coupling. Finally, the freeefalironment complicates the
control and enhances the non-linearities in the CoriolifrimaEspecially when applying
the so-called dynamically equivalent manipulator appngatang et al., 1998; Parlaktuna
and Ozkan, 2004) the advantages of the framework propodeairti becomes apparent.

A second example which is of great importance in off-shoséiliations is autonomous
underwater vehicles (AUVs) with robotic arms, or underwatiotic vehicles (URVS)
(Love et al., 2004; Kitarovic et al., 2005; Antonelli, 200dcMillan et al., 1995). This
is an efficient way to perform challenging tasks over a langesea area. Operation at
deeper water and more remote areas where humans cannot ot want to operate, re-
guires more advanced and robust underwater systems anththaneed for continuously
operating robots for surveillance, maintenance, and dperamerges.

The use of robotic manipulators on ships is another impodgplication (Kitarovic
et al., 2005; Oh et al., 2005). In the Ampelmann project (Balzn, 2007) a Stewart plat-
form is mounted on a ship and is used to compensate for thematithe ship by keeping
the platform still with respect to the world frame. This régs both good predictions of
the motion of the ship and accurate models including the myjm&oupling between the
ship and the manipulator. This can be modelled as a 2-joichar@sm where one joint
represents the uncontrollable ship motion and one joinStiesvart platform. There are
also other relevant research areas where a robotic matapisamounted on a floating
base. Lebans et al. (1997) give a cursory description ofeartdlotic shipboard handling
system, and Kosuge et al. (1992) and Kajita and Kosuge (188diess the control of
robots floating on the water utilizing vehicle restoringdes. Another interesting research
area is macro/micro manipulators (Yoshikawa et al., 1998ylig and Khatib, 1997)
where the two manipulators in general have different dycagmiperties.

1.4.1 Euclidean and Non-Euclidean Joints

The framework that we will present i Part | is especially editor modelling the aforemen-
tioned systems due to the non-Euclidean configuration spiabe vehicle. The difference
between Euclidean and non-Euclidean joints or transfaomatis very important in this

setting so we start with a formal definition. We first need térdethe terms generalised
coordinates and generalised velocities.

Definition 1.1. A set of coordinates which uniquely describes the configumaif a body,
or system of bodies, is called the generalised coordindté®®ystem.
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This set is not unique, but there is normally a set that widivalan easier formulation
and a deeper physical insight. For robotic manipulatork @4DoF joints the joint posi-
tions are normally chosen. The minimum number of indepengieneralised coordinates
needed to describe the configuration of a system is knowneadeiree of freedoror
mobility of the system.

Definition 1.2. A generalised velocity:; associated with the generalised coordinates

defined asy; = 4.

We note that it is not always possible to find a set of generdh®locities to describe
the velocity state of the system in this way. In accordandh miuch of the literature we
will say that a system can be written in terms of generalisegtdinates if we can find a
set of generalised coordinatasd generalised velocities written as in Definition 1.2 that
uniquely describe the state of the system.

We now turn to the definition of Euclidean and non-Euclident®

Definition 1.3. A Euclidean joint is represented by a transformation whieeestate of the
joint can be written in terms of generalised velocities, e position variables are written

asz € R™ and the velocity variables as= i € R™ wherei = dj;.

All 1-DoF joints are Euclidean and thus also the most comm@mind robotic joints.
Also joints with only translational motion are Euclidean.

Definition 1.4. A non-Euclidean joint is represented by a transformatioenslthe state of
the joint cannot be written in terms of generalised velesiti.e. the position variables are
written asz € R™ and the velocity variables as= S(z)4 € R™ for some transformation
matrix S(x) andz # ddf;?. The velocity variables are thus not simply the time defieat
of the position variables.

A spherical joint, or the attitude of a rigid body, is thus afteuclidean joint. We see
this if we represent the position variables as the Euleresnfglr which the state variables
cannot be written in vector form where the velocity is simtilg time derivative of the
position variable.

1.4.2 A Short Overview of Modelling of Mechanical Systems

There is a wide variety of approaches that serve as a stamiimgto derive the dynamics
of mechanical systems. Common for all these is that we wastttact the components of
the forces and state variables that are of interest for sitioul and control, and for which
the dynamics are valid. We will in brief discuss three maiougs of systems for which we
need to project the dynamics into the useful/valid comptmel) the principle of virtual
work where the equations of motion are projected into theations associated with the
generalised velocities; 2) systems where the nonholonfonies need to be eliminated
from the equations; and 3) systems where the configuratiaoespeeds to be projected
from the Euclidean space to a configuration space with a eggyadiifferent than that of
R™.

The first groups is related with d’Alembert’s principle whehe equations of motion
are projected into the directions associated with the gdised velocities and thus the
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forces and torques of the constraints are eliminated fr@retjuations. There are many
different forces present in a mechanical system, but froimalation and control point of
view we are mainly interested in how the actuator and extéonees affect the accelera-
tions of the rigid bodies. Other forces, such as forces ostramt or internal forces are
not of interest when it comes to modelling for control. Th&sees can then be eliminated
from the dynamic equations in different ways, for exampleaishe principle of virtual
work which has its roots back to d’Alembert’s principle. Tprénciple of virtual work al-
lows us to eliminate the constraint forces without actud#yiving them explicitly, which
can be quite hard.

Another point of view regarding the virtual work is the irgegtation that the dynamic
equations are projected into directions associated wighgtmeralised coordinates. The
Newton-Euler equations can be derived from d’Alembertingiple and have shown to be
very useful in robotics, and especially when it comes tovitegicomputationally efficient
recursive algorithms for simulation and inverse dynamiag(et al., 1980). Kane (Kane
et al., 1983; Kane and Levinson, 1985) presents a detaiéadntient of this topic and
their approach for eliminating non-contributing forceeyides physical insight, is control
oriented, and allows for fast simulations. Kane’s equaticen also be implemented using
guasi-coordinates, which we will discuss later.

Also Lagrange’s equations of motion can be derived from eMbert’s principle. Sim-
ilarly to Kane’s approach, Lagrange’s equations are ddnwvith d’Alembert as a starting
point and the forces of constraint are eliminated from thea¢igns. The elimination of
these forces are of vital importance when deriving the dyosof robot manipulators and
allows us to project the equations of motion into the digdifor which the system phys-
ically allows for displacements. These directions aremivethe generalised coordinates,
and the Lagrange equations are thus only valid when thewatgbles can be written in
terms of generalised coordinates. We will see that for vehitanipulator systems this is
unfortunate as the state variables of the vehicle in gecaraiot be written as generalised
coordinates.

The second group consists of systems with nonholonomidi@nts. Nonholonomic
constraints are not as fundamental as the principle ofalifirces, but they represent a
very important group of systems. Nonholonomic constramésconstraints that are not
integrable, i.e., they occur when the instantaneous \#saif the system are constrained
to a subspace of the configuration space, but the set of relacbanfigurations are not
restricted to the same subspace. The classical examplelisel@d mechanism where the
friction of the wheels does not allow the mechanism any itst@eous lateral motion and
thus reduces the dimension of the velocity state by one tttheaame time the dimension
of the configuration space is not reduced.

The papers included in this thesis do not discuss nonhol@noonstraints, except
very briefly in Chapter 2. We have chosen, however, to mem@rholonomic constraints
and virtual work as they are in many ways related to the ngittoBoth for the virtual
work approach and nonholonomic forces the state varialded to be projected into the
admissible space, and this projection has a clear physitaipretation. Similarly, when
the velocity variables cannot be found simply by differatitig the position variables, the
state variables also need to be projected into the adnéssfidce so that the topology
of the configuration space is maintained. In the sense thmé smmponent of the state
space, i.e. the velocity, position or forces, needs to bgpied to the valid directions,
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the three groups discussed here are very much related anthadokgy well suited for
one type of projection may also be used for another. Kanelatians are for example
well suited to incorporate nonholonomic forces in additiotthe non-contributing forces
(Tanner and Kyriakopoulos, 2001; Lesser, 1992). Kane'siggus have not been used for
the last group but, as will be clear from Part |, we can refdateuKane’s equations to also
include this group.

The third group is thus concerned with projecting from theliEiean spac&®” onto
the configuration space with a different topology. This grdiffers from the previous two
in that the projection is not subject to a physical constrdiat the choice of mathematical
representation of the configuration and velocity stategobmtics, most effort regarding
this projection deals with projecting onto the Lie groufi3(3) andSE(3). These are im-
portant topological spaces in robotics, but unfortunatiedy are not very well described
using generalised coordinates and a vector representdtibase spaces leads to singular-
ities. Part | focuses on how we can describe the dynamicssbésys with non-Euclidean
configuration spaces without the presence of singularities

1.4.3 Manipulator Dynamics

A wide range of dynamical systems can be described by theabagr equations, also
commonly referred to as Euler-Lagrange equations (Gahstel., 2001)

% (%(m,m)) — g—i(x,x) =7 1.1)

wherez € R™ is a vector of generalised coordinatess R"™ is the vector of generalised
forces and

L(z,z) : R" XR" = R:=U(z,5) — V(z). (1.2)

Here,U(x, &) is the kinetic and/(x) the potential energy functions. We assume that the
kinetic energy function is positive definite and in the form

Uz, i) = %:ETM(x)i. (1.3)

whereM (z) is the inertia matrix. For a kinetic energy function in thisrh we can recast
the Lagrange equations (1.1) into the equivalent form

Mgp(2)i + Crp(z, &)t +n(x) =7 (1.4)

whereCrp(z, &) is the Coriolis and centripetal matrix amdzx) is the potential forces
vector defined as

oV (x)

n(x) = e

Robotic manipulators with conventional revolute or prisimgoints can always be

written in terms of generalised coordinates and the Lagrauations are thus often

the preferred choice to derive the manipulator dynamicsis @tso allows us to find a

well defined representation of the Coriolis matrix which bagain useful properties. In

(1.5)
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robotics the matrix representing the Coriolis and centapfrces is normally obtained
by the Christoffel symbols of the first kind as (Egeland andv@ahl, 2003)

CRB(‘T,C.C) = {Cij} = {Z F”kl'k} s (16)
k=1
o 1 8mij 8mik _ 8mkj
Figk =5 ( oy Ox; ox; ) (2.7

where M (z) = {m;;}. When representing the dynamic equations using generalised
coordinates we implicitly introduce non-inertial frameswhich we represent the iner-
tial properties of the rigid bodies. The Coriolis matrixs@a$ as a result of these non-
inertial frames. We note that there are several ways to ddim€oriolis matrix so that
cij(x,x')ij = Fijkijik is satisfied.

Of special interest in this section is the fact that (1.6) &hd) require generalised
coordinates. For each component we multiply the partiavdtive of the inertial matrix
with respect to the configuration statg with the velocity state:,. This is only mean-
ingful if the integral of the velocity state can physically interpreted as the configuration
state. For robotic manipulators this is true, but for mogticles, as we shall see, this is
not the case.

1.4.4 Singularity Prone Dynamics of Single Rigid Bodies

It is a well known fact that the kinematics of a rigid body ains singularities if the
Euler angles are used to represent the orientation of the dnadithe joint topology is not
taken into account. One solution to this problem is to userammmimal representation
such as the unit quaternion to represent the orientatiois Wi, however, increase the
complexity of the implementation as the number of variaidéacreased by one and this
representation cannot be used in Lagrange’s equations.ig himajor drawback when it
comes to modelling vehicle-manipulator systems, mainbabise a large class of methods
used for robot modelling are based on the Lagrangian apprdis thus a great advantage
if also the vehicle dynamics can be derived from the Lagratggtions.

The problem arises due to the fact that we cannot simplyréiffiate the position vari-
ables to get the velocity variables. This is normally solbgdntroducing a transformation
matrix and we get the relation

T cpeh  —spcl + cpsfsg  shsep + cpepsd 0 0 0 u

Y shch  sped + cpsbsyp  —spsp + sfspep 0 0 0 v

Z | st cOse clco 0 0 0 w (1.8)
ol =1 o 0 0 1 sotd cot| |p|

0 0 0 0 0 cp —so||q

0 0 0 0 0 2 <« ||r

relating the local and global velocity variables. Hefemeanssin 6 etc. The well known
Euler angle singularity appears @approaches .
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Given this relation the dynamics of a single rigid body, sasha ship or an AUV, is
normally given by (Fossen, 2002)

n=Jn)v, (1.9)
Mv+Cwyv+DWw)v+n(n) =1 (1.10)

wheren = [:r y z ¢ 0 w]T is the position and orientation of the vessel given in

the inertial framey = [u vow p g T]T is the linear and angular velocities given in
the body frame and(n) is given by (1.8). For underwater vehiclegv)v is the damping
and friction matrix and\/ = Mgrp + M4 andC(v) = Crp(v) + Ca(v) represent the
rigid body and added mass inertia and the correspondingl@omatrices.n(n) is the
vector of gravitational and buoyancy forces.

The fact that the integral of the local velocity variables ha physical meaning means
that the Lagrangian approach cannot be used directly teaéne dynamic equations.
This can, however, be circumvented in several differentsv@ne solution is to introduce
a more geometric approach. Geometric methods are in gememalconvenient when
dealing with single rigid bodies, but for multibody systethi& approach becomes very
complex. We can also introduce so-called quasi-coordénate@ich are well suited for
modelling systems which cannot be expressed in terms ofrgkésex coordinates but
most of these methods do not eliminate the singularity frbendynamic equations. In
the following we will look briefly at some geometric methodsrobotics and the use of
quasi-coordinates.

1.4.5 Geometric Methods in Robot Modelling

Lie groups and algebras as a mathematical basis for theatierivof the dynamics of me-
chanical systems has been used to obtain a singularitydreeifation of dynamics (Selig,
2000; Park et al., 1995). We then choose the coordinatesajedeby the Lie algebra as
local Euclidean coordinates which allows us to describadth@mics locally. Lie groups
are manifolds and thus also locally Euclidean. This meaasltdtally we can write the
vector of velocity variables as the derivative of the positvector. This is an important
property that we can use to write the dynamics of a singlel tigidy in a singularity free
manner. For this approach to be valid globally the total cpmfition space needs to be
covered by an atlas of local exponential coordinate patchié® appropriate equations
must then be chosen according to the current configuratiba.geometric approach pre-
sented in Bullo and Lewis (2004) can then be used to obtaiolzady valid set of dynamic
equations on a single Lie group, such as an AUV or spacecitifine robotic manipulator
attached. This approach is also used in Marsden and Ra®9).19

A mechanical system consisting of joints and links can beetled as a serial combi-
nation of several Lie groups, representing the freedomd @gant. These representations
are not only mathematically correct, the singularitiesadse removed from the equations.
Unfortunately, the formulation is more involved than othethods and even though com-
binations of Lie groups theoretically can be used to represeiltibody systems, the for-
mulation is very complex. These approaches are thus n@dsfdor implementation in a
simulation or control environment even though, matheraificpeaking, they are correct.
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The fact that the integral of the local velocity variable hagphysical meaning means
that the Lagrangian approach cannot be used directly toedéne dynamic equations.
For single Lie groups, however, these systems can be mddsdiag the Euler-Poincaré
equations. We can find the Euler-Poincaré equations fromilktaris extended principle,
which states that for two fixed end points, we have (EgelanidGavdahl, 2003)

(2
/ (6L + Wy)dt = 0. (1.11)
ty

Here,d L denotes theariation of the LagrangianC, which is to be considered a mathe-
matical tool that reflects an infinitesimal changelinvithout any change in the physical
variableL. Assume that only kinetic energy is presente= U = %VTMV, wherel{

denotes the kinetic energy aftl = [v w]T is the velocity variable (twist)W; is the
virtual work of the active generalised forces and is given by

Ws =Y _ 750q;. (1.12)
j=1

We can now derive the attitude dynamics of a rigid bodySm(3), i.e. V = w,
with only kinetic energy. We write? = R for a rotation matrixR and the angular
body velocitiesv, anddR = Ré for an arbitrary vectoer, wherep € R3*3 is the skew-
symmetric matrix such thaiz = p x z for all p, z € R3. Hamilton’s extended principle
gives (Egeland and Gravdahl, 2003)

t2 2 ou
/ (6L‘+W5)dt:/ <aw<5w+7'ga> dt (1.13)
t1 ty
ta
./t1 (gﬁ){(d+wa)+ﬂa) dt

—/tz _d N T pa
Ju dt \ Ow Ow Tw )

The Euler-Paoincaré equations of motion 86 (3) are then given from (1.11) and (1.13)
as

d fou\" . fouN\T
and similarly the Euler-Poincaré equations of motionSdti(3) are written as

d fouN" 1 /ou\"

wheready = [L(L)J

&
=
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If we write 7 = [ TQT]T we get the well known Kirchhoff’s equations

d /ouN" _ fouNT

dt(@v) +w<av> =T (116)
d /ouN" _/ouN"  _ fouN"
dt(@w) +’U<av) +w<aw> = T3 (117)

Kirchhoff's equations are widely used to model ships andeuwdter marine vessels as
well as spacecraft. We note however, that the Euler-Pagnequations of motion on both
SO(3) andSE(3) assume kinetic energy only and do not depend on the poskidables.
The Euler-Poincaré equations use only the local velocitialsées and we thus avoid the
transformation between the local and global velocity \@&s. As the position variables
are the integratedlobal velocity variables, we note that we need this transfornmatioo
include the position variables in the formulation. We thbtain a singularity free formu-
lation at the expense of the potential energy and positiciabies.

The reason that we can obtain this singularity free reptatien is basically that we
are dealing with single bodies, and that the inertia magrooinstant and the kinetic energy
is thus given by/(w) = 2w Mw, for SO(3) and similarly for other configuration spaces.
For multibody systems the inertia matrix depends on the gardtion of the system, and
so does forces such as gravity, which are also configuragpermtlent. In this sense the
problem of obtaining the position variables from the locglbeity variables is not solved.

There is one specific multibody system where the formulagibove can be applied.
Egeland and Pettersen (1998) derive the singularity freaujc equations of spacecraft-
manipulator systems. These systems are special in two waigh wiakes it possible to ex-
pand Kirchhoff’s equations to multibody systems. Firstire are no gravitational forces
present and the orientation of the spacecraft is not needriequations. Secondly, the
orientation of the spacecraft is not needed in the inertiirn&hich only depends on the
position of the robot joints, which are Euclidean and thussaibject to singularities. How-
ever, if the attitude of the spacecraft needs to be detednihe transformation between
the local velocity variables and the position variablesrisebagain required.

1.4.6 Quasi-Coordinates and Quasi-Velocities

Another way to deal with the fact that the integral of the egpvariable has no physical
meaning is to introduce quasi-coordinates (Gingsberg7R0h many cases it is easier
to formulate the dynamic equations in terms of velocity &bles that cannot simply be
written as the time derivative of the position variablesr Example, when dealing with
angular motion the angular velocity is not the rate of chaagehich a rotation angle
changes, except for the planar case. There is thus no firategehin orientation that cor-
responds to the angular velocity. We will denote such vgjogriables quasi-velocities,
often represented by. The corresponding quasi-coordinateloes not have any physi-
cal interpretation itself whereashas the physical interpretation dfy = 4dt, i.e. itis
associated with differential increments.
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Quasi-coordinates are hence velocity coordinates that@rsimply the time deriva-
tive of the position coordinates. The relation between tressgvelocities and the deriva-
tive of the configuration variables(generalised coordinates) is given by

v = S(q)q. (1.18)

There are many ways to write the dynamics in terms of quasieinates. The Gibbs-
Appel equations (Gibbs, 1879; Lewis, 1996) are obtaineditigrdntiation of a function
of kinematic variables. In this way the Gibbs-Appel equasicesemble Lagrange’s equa-
tions and the Euler-Poincaré equations. On the other hamte’® equations (Kane et al.,
1983; Kane and Levinson, 1985) use the virtual work prirecgs a starting point and can
be considered a generalisation of the approaches that avediérom the virtual work
approach.

There are also some more recent advances. Quasi-cooslaraeaised in Kwatny
and Blankenship (2000) where the Poincaré equations ofomatie derived in terms of
guasi-velocities. LeX be defined in terms of the Lie bracket as

X; = [[ty 2] [t3:82] -+ 13, (1.19)
whereT = [t; to -+ tn] is given below in (1.20) and the Lie bracket is defined as
[tl, t2] = t1to — tot1. The Poincaré equations of motion are then given by
v==5(9)4, ¢=T(qv (1.20)
d /oL oL "I
g (m) - 8—qT - ;vj%sxj =T (1.21)

for the LagrangiarC(q, v) in terms of quasi-velocities. If we substitute (1.20) into2(1)
we get

02L 2L oL "L
vav2 + 3¢9~ 0q ;vjavs j=T ( )

We note that the configuration coordinatgsre present in the equations and that it is
assumed thag € R™. In other words the relation between the derivatives of thsitipn
variables and the quasi-velocities depends on the vectathich we have already seen
leads to singularities in the representation. We see thisriiing out the expression for
T'(¢) as found in Kwatny and Blankenship (2000) for th&'(3) case:

* ok *x 0 0 0
x *x x 0 0 0
¥ % x 0 0 0
T(q) = shsh  cosd (1.23)
0 0 0 1 =200 cosf
0 000 cop —s0
0000 2% <«

which is singular ab = 7.
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Once the relation in (1.18) is established, the dynamicsatsmbe written in the form
of the Boltzmann-Hamel equations. The Boltzmann-Hamebg&qos are derived from
the Lagrangian, but allows the velocity variable to be ritin the form of (1.18) as
(Duindam and Stramigioli, 2007, 2008)

d (9L _ a.c oL
a4 (m) o 19L (Z vm) =T (1.24)

with the Lagrangian

1
L(g,v) =U(q,v) = V(g) = 50" M (q)v = V() (1.25)
written in terms of the quasi-velocities and quasi-cocatis and
1o (OSy; OSim
; Sl =L - : 1.26
fyk J Zslt mk (aqm aqu ) ( )

The Boltzmann-Hamel equations thus differ from the Poi@egjuations in how the deriva-
tives are computed. While the Poincaré equations use therhikét, the Boltzmann-
Hamel equations require the partial derivatives of thedfiermation (1.18). The Boltzmann-
Hamel equations are also used in Cameron and Book (1997 )aanaivska (2008), and
in Maruskin and Bloch (2007) the same equations are usedite Hte optimal control
problem for nonholonomic systems. Nonholonomic constsaane easily included in the
dynamics using the Boltzmann-Hamel equations, and quasidinates in general. In Ko-
zlowski and Herman (2008) and Herman and Kozlowski (200&21s# control laws using

a quasi-coordinate approach were presented.

Common for all these methods is, however, that the configurapace of the vehicle
and robot is described gs= R™. This is not a problem when dealing with 1-DoF revolute
or prismatic joints but for more complicated joints such al-jwints or free-floating joints
this does not solve the singularity problem, as illustrdteq1.23). Joints with more than
one degree of freedom are sometimes modelled as compouanh&iit joints (Kwatny
and Blankenship, 2000), i.e., a combination of 1-DoF sinkalematic joints. For joints
that use the Euler angles to represent the generalisedicatas also this solution leads
to singularities in the representation.

1.4.7 Advantages of the Proposed Approach

From the previous sections we can divide the approachegigatwith non-Euclidean
transformations into two groups:

* The geometric approach - allows us to represent transtiwngawith a different
topology than that oR™ globally, but is not suited for multibody systems.

« The quasi-coordinate approach - allows us to project thezites into the directions
allowed by the kinematics constraints, and more imponaptioject the velocities
so that the configuration space is consistent with the miahifdhese approaches
handle multibody systems very well, but singularities eiiis the transformation
between the local and global velocity variables.
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In this section we close the gap between the two approachksdirahthe dynamic
equations of vehicle-manipulator systems using quasietioates, but without the singu-
larities that normally arise (Kwatny and Blankenship, 200@meron and Book, 1997;
Jarzbowska, 2008; Maruskin and Bloch, 2007; Gibbs, 187%i4,e1996; Kane et al.,
1983; Kane and Levinson, 1985). The approach is based ondBuirand Stramigioli
(2007, 2008) and we extend these ideas to vehicle-manipudgstems. We also include
external forces and considerations that do not normallgapin fixed-base manipulators.
Before we go into details on the proposed approach, we kstrthin advantages:

« The approach is globally valid and there are thus no simgigis.in the representa-
tion.

» The approach is general and allows for joints with confijaraspaces different
than that ofR™ anywhere in the chain.

« The approach allows us to use results from the Lie theory,iwalid also for
multibody systems and thus an extension of the approachésuth only valid for
single Lie groups.

e Several results from the Lie theory allow for easy and comtanally efficient
implementation of the final equations.

* No local state variables are present in the final equation.

* The use of quasi-coordinates allows us to write the kineraé a block-diagonal
form and the kinematics of each joint can thus be specifieiit evel.

« Specifying the kinematics at joint level allows us to ddsesystems with more than
one non-Euclidean joint.

« The block-diagonal form allows us to build up a library offeient joints and is thus
suited for software implementation.

* The approach is well suited for vehicle-manipulator systes it allows us to in-
clude gravitational forces, buoyancy forces and the cordiipn of the vehicle.

We note that none of the approaches mentioned in the presazi®ns possess all these
properties.

We follow the generalised Lagrangian approach presentBdimdam and Stramigioli
(2007, 2008) which allows us to combine Euclidean joints ammte general joints, i.e.,
joints that can be described by the Lie gratif'(3) or one of its ten subgroups, and we
extend these ideas to vehicle-manipulator systems. As we $@en, there are several
advantages of following this approach. The use of quasidinates allows us to include
joints (or transformations) with a different topology thidwat of R™. For example, for an
AUV we can represent the transformation from the inertiairfe to the AUV body frame
as a free-floating joint with configuration spag&'(3) and we avoid the singularity-prone
kinematic relations between the inertial frame and the boaipe velocities that normally
arise in deriving the AUV dynamics (Fossen, 2002). Thisgfarmation is subject to the
well known Euler angle singularities and the dynamics atevalid globally.
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We have seen that there are several different ways to ddré/elynamic equations
in terms of quasi-coordinates. Common for all these appreschowever, is that the
transformation matrix in (1.18) is not globally defined. Tieason for this is that the
position variables are assumed to be of the fgren R™. With this as a starting point we
are not able to find a well defined mati$X¢) for which (1.18) is true.

Instead we represent the configuration of the manipulat@a ast of configuration
states) = {Q;}. The configuration stat@; of joint i is then the matrix representation of
the Lie group corresponding to the topology of the joint. Theresponding blocls; (Q;)
relating the local and global velocity variables is well iwrofrom the Lie theory and can
be found in terms of the Lie bracket or the exponential map§R@nn, 2002). Note that
S; depends only o). For standard revolute and prismatic joiiids becomes a scalar
Q; =q; andsS; = 1.

The main tool that we use is the exponential map. This allssv®iexpress the dy-
namics in exponential coordinatesand locally every stat€); is described by a set of
Euclidean coordinates; € R™. Thus, in the neighbourhood 6J; there exist a function
®,(Q;, ¢;) that defines a local diffeomorphism between a neighbourhwddl € R™:
and a neighbourhood af;. Q; is thus locally described by); = ®;(Q;,$;) with
;(Qi,0) = Q;.

The allowed joint velocity is given as an element of the tartgpace of the Lie group.
This is uniquely described by a vector € R™:. For Euclidean 1-DoF joints we thus get
v = Q € R and the coordinate mapping is given #YQ, ¢) = Q + ¢ with ¢ € R. The
most important group in this thesis is joints with a Lie graapology. ® is then given by
the exponential map, i.e.

®(Q,¢) = QeXit1 b (1.27)
whereb; is the basis elements of the Lie algebra. The blegk);) is now found by
b =d(Q,0)2"(Q, ¢). (1.28)

Here we can factorisé and find the relation betweenand¢. For example, foiS E(3)
(1.28) becomes

1 1 .

Another important observation at this stage is that if waktof the global position
variable@ as a parameter (not as a variable), and the local positidablar as a state
variable, we can write the Lagrangian in terms of this positrariable and the velocity
statev, i.e. L(¢, v). The dynamic equations can now be found using the Boltznttamel
equations. Now, if we evaluate the final equations at 0, we get back our global state
variables a®;(Q;,0) = @, and the dynamics are written in terms@fandv.

This has two main advantages. Firstly, the dynamics do npémkd on the local co-
ordinates as these are eliminated from the equations argldhal position and velocity
coordinates are the only state variables. This makes thatiegs valid globally. Sec-
ondly, evaluating the equations at= 0 greatly simplifies the dynamics and makes the
equations suited for implementation in simulation sofevarhis is seen easily in (1.29)
where all the higher order terms vanish and after diffeegintij and settingg = 0 only the
second term in the parenthesis is non-zero. We also not¢hthatpproach is well suited
for model-based control as the equations are explicit atigowt constraints.
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Even though the expressions in the derivation of the dynaarie somewhat complex
the final expressions can be written in a very simple form. Yésent several examples of
how we can use well known results—in addition to some newioglat—to simplify the
dynamic equations and speed up the implementation.

The main purpose of Part | is to study systems that consistnadeng vehicle with
a robotic manipulator attached to it. To our best knowledgsé systems have not been
studied in detail in literature using the framework presdritere. Nor are we aware of
other formulations of vehicle-manipulator systems withthé properties listed above.
The use of quasi-coordinates to derive the dynamics in thistvas mainly been applied to
standard robotic manipulators with 1-DoF joints with théegsion to more general types
of joints in Kwatny and Blankenship (2000) and Duindam andu@tgioli (2008). How-
ever, the treatment of vehicle-manipulator systems deseavspecial treatment. Chap-
ter 2 (From et al., 2010a) presents a detailed study of vemianipulator systems and
also shows how the dynamics can be implemented in a compudiir efficient manner.
Chapter 6 (From et al., 2010e) presents a detailed studyeoflyhamically equivalent
manipulator (DEM) approach for space manipulators and et the singularity free
dynamic equations of the DEM for the first time. In Chapter 5strely some important
properties of these systems, namely the boundedness fyrop#re inertia matrix and the
skew-symmetric property of the Coriolis matrix.

1.4.8 Motion Planning and Control of Robots a Non-Inertial Bag

From the previous sections we see that we can derive the dgsaifrvehicle-manipulator
systems in a robust and computationally efficient way. Thaiek equations presented
serve as a good platform for gaining a deeper insight intamamic coupling between
the moving base and the manipulator. Based on the formualgtiesented in Chapter 2
(From et al., 2010a) we develop several new algorithms faianglanning and control
of a robot mounted on a moving base. First, in Chapter 3 (Frbah.e2009a) we study
how the non-inertial forces of a moving ship affect a maraped mounted on the ship
and we show that if we take the non-inertial forces into aotao the motion planning
and control of the manipulator we can substantially redingetorques needed to take
the manipulator from an initial to a final configuration. ThémChapter 4 (From et al.,
2009b) we run several experiments and show that even thdwgfuture ship motion
can only be predicted with a certain accuracy, we can incthdepredicted ship motion
in the motion planner and improve performance. We also stodyetail for the first
time how the motion of the non-inertial base affects the alaitor and show through
experiments that a manipulator mounted on a ship in only Enveave height has to use
a substantial amount of torque just to compensate the ahéotices. This result serves
as a good motivation for the papers in this section and ikitis$ the importance of these
studies.

1.5 Part Il - Robust Manipulator Design

As already discussed in the previous section, robustnassdgtremely critical issue when
it comes to autonomous operation of remotely located fasli In Part Il of this thesis we
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are not only concerned with the mathematical representafiche robots for simulation
and control, but also with the mechanical design of the robbe main topic covered in
this part is fault tolerance with respect to torque failunefree-swinging joint faults.

Both serial and parallel robots are widely used in remoteramnsh environments where
humans cannot or do not want to operate. In the setting dff@ilare there is an important
difference between serial and parallel manipulators. W that for serial manipulators
the fault tolerance problem needs to be addressed in theotarfitthe robot after joint
failure occurs, while for parallel manipulators this netmlbe addressed in the mechanism
design. In any case, the need for a rigorous theory on whatemepwhen joint failure
occurs is important to be able to cope with unforeseen ewd#rtss kind. In this part we
present a complete and mathematically rigorous theory ekffects that passive joints
have on serial and parallel manipulators when externaéfare present.

Even though the theory developed in this part is presenttéinetting of joint failure,
it also gives us valuable insight into how passive jointeeffserial and parallel mecha-
nisms in general. The proposed framework is also well siitednechanism design of
parallel manipulators and motion analysis of such systems.

1.5.1 Joint Failure

Fault tolerance needs to be handled differently for difiétgpes of joint failure. The most
important types of joint failure are:

* Free-swinging joint faults (FSJF) - this is the case wheraetuated joint turns
passive because, for some reason, no torque is availabdmtmtthe joint. This is
also known as torque failure.

« Locked joint faults (LJF) - this is the case when the joint,some reason, becomes
stiff, or locked.

* Incorrectly measured joint position or velocity fault®&JIVF) - this occurs when
the measurements of the joint position or velocity beconmewailable or are mea-
sured incorrectly.

We are only concerned with free-swinging joint failure. &tecal motors can fail, and
when they do it is important to reduce the damage caused §¥dihire. Due to external
forces such as gravity joint failure of this type may cause itiechanism to collapse.
However, this can sometimes be avoided if the correct ptenauare taken in the design
or the control of the mechanism. This is the main topic of fag.

Figures 1.8 and 1.9 illustrate the difference between Isend parallel mechanisms.
In Figure 1.8 we see that a passive joint at the end of a séréhdeads to a motion that
cannot be compensated for if an arbitrary external forcgpied. The beam may thus
cause severe damage to the surroundings.

Closed chain manipulators such as parallel manipulatadscapnperating serial ma-
nipulators have many advantages over their serial coumtscp Parallel manipulators
are stiffer, faster, and more accurate than serial martimslaat the cost of a smaller
workspace. Cooperating robots can handle heavier and labjects than serial manipu-
lators and are thus the preferred choice in many applicati@osed chain mechanisms
are also more resistant to torque failures. From Figureardd8l.9 it is clear that a parallel
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Yy
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Figure 1.8: Passive joint about the g}, b) z- and c)z-axis for a serial manipulator.

manipulator will deal much better with a FSJF than a serialimaator. For example, the
FSJF in Figure 1.9c) will not be affected by the external ésrat all.

1.5.2 Serial Manipulators

For serial manipulators joint failure is extremely seri@ml will always result in an un-
desired motion if an arbitrary external force is presensdithis undesired motion cannot
be compensated for by controlling the active joints. We dalhote a motion generated by
the passive joints passive motionBecause serial manipulators do not have any closed
loops, and thus no loop constraints in the mechanism, th#ralways exist an external
force for which such a passive motion is generated. For elgriffhe passive motion is
affected by the gravitational forces, the mechanism, ar@gfahe mechanism, will fall to
the ground.

When the external force is known we can in some cases preventdhipulator from
collapsing and protect the surroundings of the manipulakbierthis case we investigate
under what conditions, i.e. for what external forces andwbat configurations of the
robot, the external forces do not affect the motion of thespasjoints. We will say
that the manipulator is conditionally equilibrated witlspect to an external force at all
configurations for which the passive joints are not affettgdthis specific external force.
Thus, if joint failure occurs we can prevent damage to the@tstsurroundings by taking
the manipulator to one of these configurations in a conglotb@nner. For example, if the
only external force is a force in the direction of thexis (e.g. gravity), the joint in Figure
1.8b) will resist this force as opposed to 1.8a) or 1.8c) aacshould thus strive to reach
such a configuration.

From this it is clear that joint failure is extremely seridasserial manipulators. How-
ever, the solution proposed in this part allows us to makeb#dst out of a very difficult
and dangerous situation and may prevent serious damage ttoltbt’s surroundings.
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Figure 1.9: The conceptual differences of passive joints in serial and paralleipulators.

1.5.3 Parallel Manipulators

For serial manipulators the fault tolerance needs to beesddd in the control of the robot
after such a failure has been identified. For parallel mdatpts, however, the problem
of free-swinging joint failure can—and should—be addressetthé design of the robot.
Parallel mechanisms may have passive joints as an intinsferty, i.e. a design choice,
or due to joint failure. In any case, it is important to undensl how the passive joints
affect the mobility and controllability of the robot.

Because of the closed chains, a joint failure may not affecttechanism at all. In the
papers presented in Section Il we will see several examplexots that do not collapse,
or can even continue operation, when joint failure occuoshb& able to continue operation,
we need to choose one or more redundant actuated joints astudie in detail how to
choose the active and passive joints of the mechanism tagteg fault tolerance using as
few actuated joints as possible.

We thus find that parallel manipulators can be designed swathall the degrees of
freedom of the motion remain controllable when joint faflarccurs for an arbitrary joint.
This will, however, require more active joints than necegtacontrol the degrees of free-
dom the manipulator originally was intended to operate ihisTactuator redundancy is
in many cases undesirable due to manufacturing and mamterasts, weight, perfor-
mance, and so on. The number of redundant active joints dhbus be kept as low as
possible. We present a mathematically rigorous theorydentifying the smallest set of
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active joints for which the mechanism is fault tolerant.

If the fault tolerance problem is not addressed in the dgsigoess it must be handled
in the control of the manipulator in the case of such an oenuoe. However, we find that
this is more difficult for parallel than for serial manipwdes and the problem of joint faults
should be addressed in the design process to guarantee tokadnt solution.

1.5.4 Relevant Literature and Advantages of the Proposed Appach

For parallel manipulators we first need to investigate ifiatjtailure will allow a passive

motion or not. The relation between the active and passiwgsjin a parallel manipulator
is important in this setting and well covered in literaturEhe Jacobian of the parallel
manipulator is investigated in Liu et al. (1999) and Bicchd&rattichizzo (2000) where
the passive joint accelerations are found from the active grcelerations by dividing the
Jacobian into an active and a passive part. This tells us hewdssive joints move due to
the controlled motion of the active joints, but it does nekgiis the motion of the different
links directly. The motion of the passive joints is then give the form (Liu et al., 1999)

0, = —J1(0)Ja(0)0, (1.30)

Wherng is the pseudo-inverse of the passive Jacobianjgrid the active Jacobian.

We will use the concept of mobility which has been studied asious researchers.
The mobility basically tells us how many degrees of freedberhechanism has, count-
ing both the motion of the end effector and the internal nrotib each chain. For non-
overconstrained mechanisms, i.e. when there are no reducaiastraints, we can find the
mobility by the well known Griibler formula (Murray et al., 98). For overconstrained
mechanisms there are many approaches to determine thatydiie two most important
approaches in this setting are the constraint space anddtiemspace approaches.

In Dai et al. (2006) the mobility of the mechanism is foundhfirthe constraint space.
The constraints of the system are found systematically adddundant constraints are
identified. The mobility of the mechanism is then found byiaddhe degrees of freedom
represented by these redundant constraints to the Grigloieufa for non-overconstrained
mechanisms. This approach illustrates well the effectsedindant constraints in the
mechanism.

The mobility can also be found by the motion space as in Rical.g2003, 2006).
The degree of freedom of the motion of the end effector is fishd. Then the degree
of freedom of the self-motion manifold of each chain is add®&Yy this approach the
redundant constraints are not found directly, but this apagh gives valuable insight into
where to place redundant actuators in the mechanism, whichrimain objective.

For serial manipulators, passive joints are not an intripsoperty of the manipulator
and this has thus not been treated to any extent in literatéréew exceptions can be
found, though, for example in the study of the inverted pémnduwith a passive joint.
Some references that address passive joints in serial olatops are Oriolo and Naka-
mura (1991) and Arai and Tachi (1990), and case studies suitteadcrobot (Hauser and
Murray, 1990).

For a comprehensive treatment on how to identify joint fafusee Tinds et al. (2007).
Once these are identified the appropriate control actionsldhbe applied to minimise
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damage to the surroundings. Fault tolerant actuators leently been proposed as an-
other way to deal with fault tolerance with respect to tordmikire (Muenchhof et al.,
2009; Steffen et al., 2009). The main idea here is to use alesmrall actuators and thus
guarantee that if one actuator fails, the remaining actaatan still apply the necessary
torque. This approach will not, however, be tolerant withpect to problems such as
power failure.

The approach presented here is based on the motion spacaelppas presented in
Rico et al. (2003, 2006), and we verify if the manipulator—sidiering the passive joints
only—generates a non-trivial motion. By considering thespesjoints only, and assum-
ing all actuated joints as fixed, we gain valuable insight thie uncontrollable motion of
the passive joints in the mechanism. Then, if the passivegaf the manipulator allow
a motion, we investigate what kind of motion it implementsori this we can conclude;
(i) given a mechanism, with respect to what kind of extermatés is the manipulator
equilibrated; and (ii) given an external force, what kincheéchanism and for what con-
figurations is the mechanism equilibrated with respectgcettternal force.

The mobility and classification of robotic mechanisms cahdmeed on several different
frameworks. Lie groups have been extensively used as atoaspresent the motion of
the joints, the chains and the end effector. The early wofReafleaux (1875) recognised
some commonly used primitive generators as Lie subgroup& riiost extensive work
on mechanism topology in this setting is maybe the work byEl€d978), Hervé and
Sparacino (1991) and Lee and Hervé (2006) where the topalbggrallel mechanisms
was studied based on a Lie geometrical formulation. Basethigrwork, Meng et al.
(2007) developed a geometric theory for a more precise anmplete treatment of the
synthesis problem. Other related work are Angeles (2004}t lal. (2004) and Selig
(2000).

We use the framework of Meng et al. (2007), where a precisenga@ theory for
analysis and synthesis of sub-6 DoF manipulators is predeite low dimensional sub-
groups or submanifolds of E(3) are used to represent the lower pairs, or primitive gen-
erators (commonly referred to as joints), while the highelisional subgroups are used
to represent the desired end-effector motion types. Givdesared end-effector motion
type as a Lie subgroup or a submanifold, the synthesis prodesolved for serial and
parallel manipulators, i.e. for a set of primitive generathey find the type of motion that
these generators implement. Then, from a pre-specifiedfliptimitive generators, all
possible serial and parallel arrangements of the primgieerators so that the resulting
manipulator has the desired end-effector motion type aredo

The main contribution of Part Il is that we extend this worldgresent a complete
and rigorous theory of the effect that passive joints haveobotic mechanisms. First we
use the concept of mobility to define the strongest type ofisbiess we can obtain for a
parallel manipulator:

Definition 1.5. A parallel manipulatotM is denotedequilibratedif M, either through
kinematic constraints or through actuator torque, carstesi arbitrary external wrench
Feot = [fT TT]T where f,7 € R3. In the case that an arbitrary wrench can be ac-
commodated by the kinematic constraints, we will say thatrtfanipulator igpassively
sustained When an arbitrary wrench can be produced by the actuatiquéomwe will
denote itactively equilibrated
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Secondly, we extend the formalism presented in Meng et @ 1Pto analyse the pas-
sive motion of a mechanism. Such a passive motion is alwagsilple for serial manipu-
lators with passive joints, or for parallel manipulatoratthre not found to be equilibrated
by Definition 1.5. Using this formalism it is found that a meaakism is conditionally equi-
librated with respect to an external force if the mechanismsilering only the passive
joints is a motion generator of a motion for which the recgaigroduct with the external
force vanishes. If the passive joints of the manipulat@mvet motion, we are interested in
what kind of motion this is. This is the concept of conditity&quilibrated mechanism
introduced for the first time in the papers in Part Il. We wilnibte a mechanism-force
pair conditionally equilibrated if the following holds:

Definition 1.6. A manipulatorM is denotedconditionally equilibratedwith respect to
a given external wrencli,,; = [fT TT]T where f,7 € R3, if M, either through
kinematic constraints or through actuator torque, canywed wrench opposite 6. .,
i.e. M can produce the wrenchk F,,; for somek > 0.

Thus, an equilibrated mechanism can resist any externed fovhile a conditionally
equilibrated mechanism can resist one specific externaéfand only for certain con-
figurations. We note that equilibrated mechanism appliggmtallel mechanism only, but
conditionally equilibrated applies to both serial mangiats and parallel manipulators
with passive joints.

The proposed approach is a systematic and rigorous anafytsis mobility of closed
chain mechanisms based on the theory of twists. The anatgdiss it possible to calculate
the mobility of the mechanism based on the number and typeimkjin each sub-chain.
We then determine the minimum set of active joints neededHermanipulator to be
equilibrated and fault tolerant. The mechanism needs togodilerated not only with
respect to forces acting on the end effector, but also wiheaet to forces acting on the
chains. Thus, in addition to the end-effector motion we alsed to consider the internal
motion of each chain to guarantee that the mechanism isileguéd.

We present several examples of how to apply the theory piesdém different mecha-
nisms. For three types of mechanisms—exceptional linkagesravial linkages of type |
and Il—we show how to choose the minimum number of active goéat that the mecha-
nisms are equilibrated and fault tolerant.

Even though the mobility of closed chain manipulators ieegia lot of attention in
literature, there does not seem to be a thorough treatmenobiiity in the light of joint
failure. Torque failure, or free-swinging joint faults dreated in Matone and Roth (1999),
English and Maciejewski (1998), Tinés and Terra (2002) ambg et al. (2007). The
passive motion that these joint failures allow have, howeweat been treated in literature.

1.6 Partlll - Functional Redundancy

Autonomous operation of remotely located fields dependsobots that can perform a
wide variety of tasks. This may be pre-programmed routireraons or tasks that need
to be performed in real time. In any case, robotic manipusatioat are to perform a wide
variety of tasks need to be designed so that the operatipaaksof the manipulator is
equal to or bigger than the task space of all the tasks it igtfopm. If the dimension of
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the task space is smaller than the operational space forc#ispgask, we potentially have

more controllable degrees of freedom for the end effectan thecessary to perform the
given task. This freedom is known as functional redundamey/Gan be used to improve
performance if dealt with properly in the motion planningiaontrol of the robot.

We are especially interested in this type of redundancy asllittypically arise in
settings where one manipulator is to perform several diffetasks. In remote areas the
robotic manipulator should be able to perform all the taskvipusly performed by hu-
mans. Such a wide variety of tasks will lead to tasks withed&ht dimensions of the task
spaces. Several different tasks with different task dinoenwill itself lead to functional
redundancy.

One common type of application where functional redundasayilised to improve
performance is the so-called pointing task. In pointinds @splications we only need to
specify the direction of the end effector and not the origgota In addition to the three
degrees of freedom of the position, the direction of the dfet®r has only two degrees
of freedom, as opposed to the three degrees of freedom ofrigngtation. For standard
industrial manipulators with six degrees of mobility thisep one degree of freedom that
can be used to lower energy consumption or the strain antbteas the robots, increase
the speed of the job, or improve the quality of the job in gaher

We note that this freedom arises due to the task and not thgndelsthe manipulator
itself. It is thus fundamentally different from the redundg that arises in manipulators
with many joints in the sense that the freedom arises witttmeineed to add redundant
joints to the chain. We can thus obtain functional redungavithout having to increase
the production cost and the complexity of the manipulator.

We will introduce a wider definition of functional redundgnhan the one normally
found in the robotics literature. Functional redundancgidsmally defined as an opera-
tional space and a task (and thus independent of the matopdksign) where one or more
degrees of freedom of the operational space are not of cofieethe specific task. For
the pointing task the rotation about the end-effector edatxis can be chosen arbitrarily
and thus represents a one degree of freedom redundancy.

In many applications, however, we may have a freedom in teeipations of the end
effector that cannot be described by a complete one degreeeafom redundancy as we
could for the pointing task. An easy case to visualise is whemllow a small error in the
orientation of the end effector. If the end-effector oraiun is specified, but in addition
we allow an orientation error around one or more axes, thisaibe described using the
conventional framework of functional redundancy. We thigppse a wider definition of
functional redundancy which also allows us to describedltases.

We start by defining the different classifications of redur@yaas they are normally
defined in literature and the spaces used to describe thes¢haly present a new, wider
interpretation of functional redundancy well suited toresnt the kind of freedom that
arises in the cases described above.

1.6.1 Joint Space, Operational Space and Task Space

The concept of redundancy can be defined as an intrinsic kitieproperty of the manip-
ulator or as a property relative to the task that the manipujgerforms. To get a formal
definition of redundancy and understanding this subtleetifice, we need to define the

31



INTRODUCTION

different spaces of the manipulator. We use the definitidnSaiavicco and Siciliano
(2005).

Firstly, theoperational spacés the space in which the manipulator task is specified.
The dimension of this space is given by the minimum numbendépendent parameters
needed to represent this spaceSIF(3) we need three parameters to describe the position
of the end effector and three for the orientation. The dirienef the operational space
in this case is thus: = 6. We denote an element of this spacedgy¢ SFE(3) and the
minimum number of independent parameters needed to reptdsematrixg is normally
given by the vector representatigh, i.e.

(1.31)

<
DO-n e R

(8

wherez, y, andz determine the position angl 6, and« are the Euler angles. Similarly,
for the planar cas® E(2) we havem = 3.

Secondly, thgoint space or configuration space, defines the space on which the joint
variables live. This determines what is often referred tthaslegree of mobilitfor serial
manipulators. If the manipulator consists of 1-dimensiootational or translational joints
only, the dimension of the joint space is equal to the numbgoiots in the open chain.

An element of the joint space is given by a vector

qg=1.1- (1.32)
an
For a standard industrial manipulator we have: 6.
Finally, we define theask spaceas the subspace of the operational space needed to

describe a specific task. For example the pointing task caiofpletely described with
only five of the components of the operational spac&i(3), i.e.

(1.33)

O R

and the dimension of this spaceris= 5. 1 can thus be chosen freely.

1.6.2 Redundancy

We now define functional, intrinsic and kinematic redundafrom the above-defined
spaces.
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Definition 1.7. A manipulator is denotedntrinsically redundanif m < n.

We thus note that intrinsic redundancy is a property of thaimdator design and not
of the task. This allows us to design manipulators that adnagve a freedom that we
can use to improve the performance and increase dexterttyndically redundant robots
are, however, more expensive to manufacture, the complimdteases with the number
of joints and so does the possibility of joint failure andetfaults.

Definition 1.8. A taskis denotedunctionally redundanif » < m.

Functional redundancy is thus determined by the differéndbe dimension of the
operational space and the task space and does not depene wranipulator design. If
this property is present there are two main approaches tnatwtake; to improve design
or to improve performance. One solution is to design a maaipuwith fewer degrees of
mobility and thus decrease production cost, complexitg, smon. On the other hand, if
the manipulator has = m degrees of mobility we have one or more degrees of freedom
of the end effector that can be chosen freely. This can bisedilin the motion planning
and control to improve performance.

Finally a manipulator and specific task is dendtegematically redundarit it is either
intrinsically redundant or functionally redundant, ortnoéVe stress, however, that in most
texts on robotics, kinematic redundancy is defined in theesanaly as we have defined
intrinsic redundancy above and in some of the papers in Rantel have adopted this
notation.

1.6.3 Extended Definition of Functional Redundancy

In this section we present the basic idea of extending thaitefi of functional redun-
dancy to also include a freedom in the specification of the effettor that cannot be
described by the conventional framework. The details anedain the papers included
in Part Ill. The freedom described in this section can be rilesgd as a continuous set of
orientations of the end effector. We are only concerned thighend-effector orientation,
but the same ideas can be applied to restrict the end-effeasition.

We start by defining a continuous set of frames that satisfyesoonstraint on the
orientation or direction of the end effector. This set is wiedi by restricting the allowed
rotation around one or more of the coordinate axes. By otistg the rotation around
different axes we can construct sets with different shapessi&zes suitable for different
tasks. The size of the allowed set is then given by the sizkeofdtation allowed around
each axis and the shape is given by the sequence of coordixegeve choose to rotate
about.

Three different sets are shown in Fig. 1.10. Note that alktte are convex. This is an
important property when we include this cone as a constiaiah optimisation problem.
The different shapes shown in Fig. 1.10 are defined by diffenerms inR3. All these
sets are well suited to describe the freedom that arises atsgnall orientation error is
allowed, i.e. when a small deviation from the optimal oré&iun is not of concern for the
task at hand.
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Figure 1.10: Different convex cones iR>.

1.6.4 Applications

The extended definition of functional redundancy can be tsé@dprove performance for

a wide variety of applications. The most apparent exampkesasks where a small error
in the end-effector orientation does not affect the qualitghe job performed. In this

thesis we illustrate the benefits of extending the definibfunctional redundancy by a
spray paint example. It can be shown that allowing a smadindaition error in spray paint
applications does not affect the quality of the paint jotatfekms in harsh environments,
such as high sea, are subject to extreme corrosion which ewayre the platforms to

be painted with frequent intervals. Due to the large suddoebe painted this is time
consuming task and reducing the cycle time without compsamgithe paint quality may

reduce the cost involved with painting, and also free thet®n perform other tasks.
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The search for new oil fields in more remote areas will foree ¢fi companies to
operate in extremely cold areas, such as the Shtokman fipldrex! by Statoil where
temperatures reach45°C. This poses enormous challenges when it comes to pregentin
severe damage to the equipment and an important task foollogsrwill therefore be to
operate heating devices. A heating device mounted on aicabahipulator is not affected
by the orientation with respect to the surface to a very lagent. We can thus exploit
this in the same way as for spray painting.

High pressure water blasting is another applications winererientation is not critical
and we can substantially reduce the cycle time by applyirgetktended definition of
functional redundancy. This is also an important applisatespecially at sea where high
pressure water blasting is used to avoid corrosion and fwapeethe surfaces for painting.
Other applications include arc welding, holding a cameratber measuring equipment,
etc.

This kind of freedom can also be used to improve accessibMthen searching for
the optimal path of the end effector in the presence of oletabe proposed definition
of functional redundancy allows us to include this freedenthe algorithms. For au-
tonomous operating robots we need a rigorous mathematipat¢sentation in order for
the path planner to search all possible paths, includingaities that exploit this freedom.
In the presence of obstacles the proposed approach maynitresise the workspace of
the manipulator for a specific task. The proposed formutaisoalso well suited for au-
tonomous path generation as the constraints are explativeti suited for implementation
in path planners and optimisation algorithms in general.

1.6.5 Relevant Literature and Advantages of the Proposed Appach

The approach presented in this paper is based on the ohbieartfzt a certain group of
non-linear constraints can be transformed into a test atipeslefiniteness of a linearly
constrained matrix. In Buss et al. (1996) the problem of mieit@ng suitable grasping
forces of a robotic hand in order to balance the externalefis solved. The force of
each finger is found subject to a non-linear constraint dahe friction cone. The main
contribution of this paper is to transform the problem aoftidn force limit constraints into

a problem of testing for positive definiteness of a certaitrinaThe problem of force

optimisation is then solved as an optimisation problem ersthooth manifold of linearly

constrained positive definite matrices. This guaranteasallly convergent solutions that
can be solved very efficiently and in real time.

Han et al. (2000) further cast the problem of friction foromstraints into Linear Ma-
trix Inequalities (LMIs) and efficient solutions are foung $olving a convex optimisation
problem involving LMIs. Convex optimisation problems hadeen extensively studied in
literature and a wide range of tools can be used to find efficigorithms and solving
problems such as the existence problem and finding an ipiial that satisfies the con-
straints. Boyd and Wegbreit (2007) present robust and ctatipoally efficient solutions
to these problems.

In Chapter 9 (From and Gravdahl, 2008d) these ideas are assxhtert the problem
of orientation error constraints into a test of positive niédness of a matrix. This is possi-
ble due to the results presented in Chapter 8 (From and Gig\&f#7b) where it is shown
how to represent a continuous set of frames representingnitheffector orientation as a
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constraint directly on the four entries of the quaternioor different types of orientation
errors, a suitable matrix is found and it is shown that pesitiefiniteness of this matrix is
equivalent to an orientation that satisfies the given regdris.

By transforming the non-linear orientation constraint® ipositive definiteness con-
straints imposed on certain matrices the problem of findiregoptimal orientation is thus
transformed into an optimisation problem on the smooth folthof linearly constrained
positive definite matrices. For the special case of positefenite symmetric matrices, the
constraints can be written in the form of linear matrix inalifies (LMIs). The constraints
can also be written as barrier functions which allows forgerand efficient implementa-
tion.

There is a huge advantage of being able to formulate the reamist as LMIs. With
the recent advances in computational power, problems fiatediin this form can now
be solved in real time and in many cases several times fésteranalytical solutions that
often depend on computationally heavy matrix computatidiss, together with the fact
that we are guaranteed to find a solution to any convex opiiois problem, makes LMIs
and barrier functions suited for solving real-time probéem

Potkonjak et al. (2000) address the problem of how to redueeycle time to paint
a surface, and the idea of introducing the paint quality asnstraint and minimise some
additional cost function is presented. This opens for thesidlity of allowing a small
error in the orientation of the end effector in order to irae the velocity of the paint gun,
reduce torques and so on. Also, in From and Gravdahl (200ig28hown that by allowing
an orientation error in the end-effector configuration,sheed and the quality of a spray
paint job is improved. However, the problem of choosing th&mal orientation error
remains unsolved as the orientation error is chosen iméljti The approach presented
is thus not suitable for implementation in an optimisatitgoathm. From and Gravdahl
(2008f) reformulate the problem in a convex optimisatiottisg which allows for a robust
and optimal solution to the spray paint problem. Chaptert6r( and Gravdahl, 2010b)
presents a detailed case study of how a freedom in the spicifis of the end-effector
orientation can be utilised to improve performance in spant applications.

In Chapter 11 (From and Gravdahl, 2010a) we validate the {giomtheoretical re-
sults and simulations presented in From and Gravdahl (20th@bugh empirical studies.
The simulations presented in From and Gravdahl (2010b)esidbat the torques needed
to paint a surface can be reduced with as much as 50%. It isrtipgrtant to confirm the
simulation results by implementing this on a real robot. @lgorithms are implemented
on an ABB robot and we show that both the average torque angdxénum torque val-
ues can be reduced substantially. The theory and simusadioanthus validated through
successful experimental results.

1.7 PartlV - Inverse Kinematics of Manipulators with no
Closed Form Solution

Existing oil and gas platforms, and probably also the faesliof the future, are extremely

complex constructions which cause great challenges wheonies to accessibility. A

completely automated facility without direct human intmtion needs robotic solutions
with access to every part of the platform. To achieve thisue of intrinsically redundant
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manipulators is inevitable. These manipulators do, how@aese significant challenges—
but also great potential—when it comes to solving the inv&isematics problem. In
general the inverse kinematics of intrinsically redundaahipulators cannot be solved in
a closed form, and iterative solutions are applied.

There are also other types of robotic manipulators that dohawe a closed form
solution to the inverse kinematics problem. In some cakes;lbsed form solution is not
known due to the complex geometry of the robot. This is fonga the case for the ABB
hollow wrist. The hollow wrist has the great advantage thiatables can be put inside
the wrist, instead of on the outside. This is very favouratdhen operating in complex
environments, such as an oil platform, and also when it camesrtification for use in
explosive and other critical areas. We can achieve a far mudmest solution if we avoid
cables on the outside of the robot.

The challenge with the ABB hollow wrist is that the axes ofatain cannot be rep-
resented as constant twists, but they depend upon thegrositithe wrist joints. When
the axes of rotation are not constant, we cannot solve tlergakinematics by reducing
the problem into several sub-problems, known as PadensKsila-problems, and find a
closed form solution in this way. As there is no known closedhf solution to the in-
verse kinematics problem for this kind of manipulatorss thioblem needs to be solved
iteratively. In Part IV we propose a set of algorithms wheresslve the problem numer-
ically by dividing the problem into several sub-problemsiethallows us to solve each
sub-problem very efficiently.

1.7.1 The Inverse Geometric and Inverse Kinematics Problem

In this part of the thesis we address the inverse geomeuwligm, often referred to as the
inverse kinematics problem. We will, however, distinguistween the two, even though
this is not always done in literature. The inverse kinensgimblem and the inverse geo-
metric problem solve two different problems. Which one weag®depends on whether
we want to control the robot in operational space or in jopace (Khalil and Dombre,
2002). The term inverse kinematics is also often used tordmsth inverse geometric and
inverse kinematics in one term. When appropriate we will aldopt this definition, as in
the title of Part IV.

As a general rule we can say that the inverse kinematics gmold solved when oper-
ational space control is applied, while the inverse geamptoblem is applied when joint
space control is applied. We will formalise this and point the main differences in the
following.

Operational Space Control

Operational space control has the advantage that the &atesfmotion is specified in
the Cartesian space. One popular control scheme is theidadoberse control where the
transformation from operational to joint space is obtaimgdolving thanverse kinematics
problem The inverse kinematics problem finds the joint velocitiesrf the end-effector
velocities by a transformation given by the inverse Jacubiave assume that the desired
motion is specified in the operational spacerdyy we can also easily find the actual end-
effector configuration: from the joint positions by the forward kinematics. Compgri
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these we can include a coordinate transformation by thesev@nalytical) Jacobian in
the feed-back loop which gives us the corresponding errjmiih space. The control law
is then given by (Sciavicco and Siciliano, 2005)

T=KA0 = KJ ' (0)(xqg — ) (1.34)

for some positive definitédd and where is the vector of joint variables. There are also
several other variations of this control law. The inverseoliéan in this form is also used
in the inverse dynamic control scheme (Sciavicco and Siwilj 2005).

Operational space control has many advantages and is fastrtpute. A drawback
is that it strongly depends on the inverse Jacobian and hleatransformation from op-
erational to joint space is performed inside the feedback knd thus the recomputation
time of the controller strongly depends of the complexityhig transformation (Perdereau
et al., 2002). This may lead to degrading performance of tm¢roller. Operational space
controllers are however important in force control and wttenend effector is in contact
with the environment in general.

When kinematic redundancy is present, the inverse Jacopjaoach also allows us
to add a secondary criteria, such as minimising the costifumof joint velocitiesy) =
167w for some symmetric positive definii&. For W = I the solution to this problem
is given by the Moore-Penrose generalised inversé'as J7(JJT)~L

Joint Space Control

For joint space control, the transformation from operail@pace to joint space is obtained
by solving theinverse geometric probleme. to find the joint positions from the desired
end-effector position/orientation. Then some joint speaatrol scheme can be designed.
The disadvantage of this approach is that the inverse geiornsea time-consuming prob-
lem to solve. The advantage is that the transformation frperational to joint space is
moved outside the control loop. For joint space controldleme a wide variety of ap-
proaches available, including standard feedback contibcamputed torque feedforward
control, as well as robust and adaptive control schemes.

When kinematic redundancy is present, the inverse geonagipooach also allows
for optimising a general secondary criteria, and does npeue on finding a suitable
inverse of the Jacobian, such as the Moore-Penrose geseelétiverse, as for the inverse
kinematics problem. Another advantage of the inverse gé&wrepproach is that each
joint can be controlled more directly and given the desiredracteristics such as joint
stiffness, energy consumption, maximum velocity, andatistavoidance. For the inverse
Jacobian approach these characteristics must be addegjithttee choice of the cost’.

In some cases, such as the minimisation of energy throug¥idloee-Penrose inverse, this
is both efficient and elegant, but for other characteristiczh a Jacobian may be very hard
or impossible to find.

1.7.2 Closed-form Solutions to the Inverse Geometric Probim

Most industrial manipulators with six revolute joints haaeknown analytical solution
to the inverse geometric problem. When intersecting axepr@®ent, this can be used
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to reduce the problem to several simpler sub-problems, kreswthe Paden-Kahan sub-
problems. The Paden-Kahan approach uses the product afiexjas formula found in
Brockett (1984) and was presented in Paden and Sastry (1988)work was based on
the unpublished work of Kahan (Kahan, 1983).

The basic concept is to apply the kinematic equations t@aicepbints on the intersect-
ing axes and then use this to eliminate the dependence @ jibiess to the position of the
chosen points. To be able to reduce the problem into PadbasKsub-problems, some
requirement must be met:

¢ There must be a certain number of intersecting axes.

¢ Each joint must be represented by the exponential map.iJttie same as requiring
that all links revolute around fixed axes.

A wide range of industrial manipulators have a geometry fhiclv we can find inter-
secting axes. We then apply the kinematic equations topthat lie on these intersecting
axes. This simplifies the equations as ((if)ﬂ)p = p for a pointp on the axist eliminates
the dependence of the joint andgle For example, we cannot solve the inverse geometric
problem

65191 6529265393 = go3 (1.35)

directly, but if we apply the left and the right side to a pgirdn &5, we get
ef101eS202p = gogp (1.36)

for which we have an analytical solution (Murray et al., 1p9ly eliminating the depen-
dence of certain joint variables in this way we reduce thélam to several sub-problems
that can be solved analytically.

We stress that there is only a certain class of robotic maetis for which we can
apply this approach, but this class is rather big and indwib#ne commonly used indus-
trial manipulators. There are also other ways to deriveydical expressions of the inverse
geometric problem, but most of them are based on geometalysis and often do only
apply to one specific manipulator. There is thus a need farikgns that work also on
manipulators without certain geometric properties. Thidiscussed in the next section.

1.7.3 lterative Methods in Literature

There is a wide variety of methods available for solving ttneerse geometric problem
numerically. Most of these stem from the robot research conities, but also the com-

puter graphics community has contributed to this field. Sofge most common ap-

proaches are Jacobian pseudoinverse methods (Whitney), 1868bian transpose meth-
ods (Balestrino et al., 1984), damped least squares me{iNadseamura and Hanafusa,
1986), conjugate gradient methods (Wang and Chen, 1990, aidBadler, 1994), cyclic

coordinate descent methods (Wang and Chen, 1991), andialtifiteligence methods

(D’Souza et al., 2001; Oyama et al., 2001; Tevatia and ScBAaD). These methods can
be divided into two main groups: The first group consists obb#&n-based methods while
the second is purely optimisation based.
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Firstly, Jacobian based methods take advantage of the ggoofithe mechanism and
calculates the incremental change in the joint positioomfthe end-effector error. There
are many variations of the Jacobian based approach but ginifslest form it is given
iteratively by solving the following algorithm:

« compute the end-effector errdvz = x4 — ,
 compute the corresponding joint position ertef = J 1Az,
« update the joint position®t! = 6% + AQ.

Herez, is the desired end-effector configuratiarthe current end-effector configuration,
J is the analytical Jacobian afds the joint positions. This will eventually converge to the
correct solution. Jacobian based methods suffer from knigies due to the inversion of
the Jacobian. The convergence is also poor when the initedgis far from the solution
and this may lead to oscillations.

Secondly, purely optimisation based methods do not redu@dacobian and do thus
not suffer from singularities. These methods can againvidelti in two main groups, the
ones that require the gradient, such as Cauchy steepesindiesd the ones that do not,
such as coordinate descent methods .

The steepest descent method is a popular method for the mation of a function of
several variables (Luenberger, 2003). It is also known agtadient method as it uses
the gradientV f to find the search direction. The steepest descent is givétetatively
calculating the next point by

Ol =gk — oV f(0F)T (1.37)

wherea* is a non-negative scalar minimising6* — o*V £(6*)). o* can be found in
many ways. A computationally quick solution is to tét be a small constant. This allows
us to do several iterations in a short time, at the cost of malirffy the minimum value
in the search direction. We can also search in the directidheonegative gradient for
a minimum of this line. If this can be done in a computationaifficient way, this will
give us a fast and reliable solution. Convergence to a poeraV f(6) = 0 can be
proven (Luenberger, 2003).

Methods that do not require the gradient will often divide pmoblem into sub-problems
that can be solved very efficiently. One such approach thatiécus on is the coordi-
nate descent algorithm that optimises a cost funcfig), 6 € R™, by sequentially min-
imising with respect to each of the compone#iisfori = 1...n (Grudic and Lawrence,
1993; Johnson, 1995; Wang and Chen, 1991; Luenberger, ZD08onvergence of coor-
dinate descent is in general poorer than the steepest desoenly one variable is updated
at each time step. Coordinate descent is, however, easypteriment and a fast solution
to the sub-problem makes these algorithms relatively fé#&.note that we do not need
the gradient which saves a considerable amount of compuottpower compared to the
steepest descent. The Cyclic Coordinate Descent (CCD)augtérforms this optimisa-
tion cyclically and is treated in detail in Welman (1993) aidng and Chen (1991). The
standard description of the CCD assumes an Euler anglesesgegion. Johnson (1995)
extend these works and formulate the CCD using the unit cuiateapproach.
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1.7.4 The Proposed Approach

We treat the inverse geometric problem as a pure optimisatioblem and solve the prob-
lem using the cyclic coordinate descent (CCD) approach.ebkoh joint we find the opti-

mal joint position, assuming all other joints as fixed. Byioal we may refer to the joint

position that minimises the position error of the end effecthe orientation error of the
end effector, or both. Once this is found we move on to the waxable. Inspired by

the work of Welman (1993) and Johnson (1995) we divide thélpro into smaller sub-

problems that are solved iteratively. The main contributdé our approach is that, using
the quaternion representation, we find that we can formtieg@ptimisation problem so
that an analytical solution can be found. This was also dondhnson (1995) for the
position of the end effector, but we formulate such an omation problem also for the
end-effector orientation.

The novelty of the method presented is thus that the minimfitheo cost function
with respect to each joint is found analytically and this xpleited to develop a set of
computationally efficient algorithms. It is well known ththe convergence of coordinate
descent is slower than steepest descent and Newton’s metihedadvantage is that the
analytic solution presented is a lot faster to solve thanckealgorithms in general. Thus,
by formulation the optimisation problem so that the solutian be found in closed form
for each sub-problem we develop computationally efficidgb@thms, even though the
convergence of each step is not as good at gradient or Jadudsad approaches.

A total of six algorithms are presented. The first three eserdinate descenvhich
looks at one joint at the time. The difference between theagghes lies in the inter-
pretation of the cost function, i.e. how the orientation godition errors are handled by
the algorithm. For example, we may choose to optimise wipeet to both position and
orientation for each joint, or we may choose to first optinigth respect to orientation for
all the joints, and then with respect to position for all thimjs. In addition we investigate
in detail the effect of changing the sequence of the jointsg@ptimised, i.e. if we start
with the joint closest to the base or the end effector.

The last three methods can be looked upon as approximatistespest descent where
the gradient is estimated. The idea here is to use the op$iatation found from each
joint, like for CCD, but without updating the joint positisrior each joint. We then use
the information about how far each joint should move to redaghoptimal position to
estimate the gradient. This provides us with a very efficvesy to estimate the gradient
as the solutions to all the sub-problems are found anallticéhis gradient can then be
used in for example the steepest descent approach. Thimsthigitmethod the gradient
can be found very efficiently without the need to differetgjaat the cost of finding only
an approximation. It is also argued that the step size carebassa constant. Hence,
a closed form and subsequently a computationally very efftcalternative to both the
search direction and the step size of the steepest desqanbah is presented.

It is shown that the algorithms that approximate the staegescent have very good
convergence and reliability for difficult problems. However easy problems, when the
initial guess is close to the solution, the convergence febér conventional Jacobian-
based algorithms than the algorithms proposed here. Thisggonds with most of the
literature which states that Jacobian based algorithnfeqpemell when the initialisation
point is close to the solution, but performs poorly for a badice of initialisation point.
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For problems where Jacobian based algorithms have pooegence or reliability,
the algorithms presented here are thus a better choice. Aination of the algorithms
presented and a Jacobian based method should give good latderperformance for
difficult problems but also reasonably good convergenceecto the solution. We thus
propose to use one of the algorithms presented in Part IV tbdinonfiguration in the
neighbourhood of the solution and then a Jacobian basedagpto obtain the exact
solution.
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Chapter 2

Singularity-Free Dynamic
Equations of Vehicle-
Manipulator Systems

2.1 Abstract

In this paper we derive the singularity-free dynamic equatons of vehicle- manipu-
lator systems using a minimal representation. These systesrare normally modeled
using Euler angles, which leads to singularities, or Euler prameters, which is not a
minimal representation and thus not suited for Lagrange’s guations. We circumvent
these issues by introducing quasi-coordinates which allasws to derive the dynamics
using minimal and globally valid non-Euclidean configuration coordinates. This is a
great advantage as the configuration space of the vehicle iregeral is non-Euclidean.
We thus obtain a computationally efficient and singularityfree formulation of the dy-
namic equations with the same complexity as the conventiohhagrangian approach.
The closed form formulation makes the proposed approach wekuited for system
analysis and model-based control. This paper focuses on tliynamic properties of
vehicle-manipulator systems and we present the explicit nteices needed for imple-
mentation together with several mathematical relations tlat can be used to speed
up the algorithms. We also show how to calculate the inertiatad Coriolis matrices
and present these for several different vehicle-manipulatr systems in such a way
that this can be implemented for simulation and control purposes without extensive
knowledge of the mathematical background. By presenting tb explicit equations
needed for implementation, the approach presented becomesore accessible and
should reach a wider audience, including engineers and pragmmers.

Keywords:Robot modeling, vehicle-manipulator dynamics, singtilsj quasi-coor-
dinates.
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2.2 Introduction

A good understanding of the dynamics of a robotic manipulatounted on a moving
vehicle is important in a wide range of applications. Esgkggithe use of robots in harsh
and remote areas has increased the need for vehicle-rdbtivas. A robotic manipulator
mounted on a moving vehicle is a flexible and versatile sotutivell suited for these
applications and will play an important role in the operatamd surveillance of remotely
located plants in the very near future. Recreating realisibdels of for example space
or deep-sea conditions is thus important. Both for simofatind for model-based control
the explicit dynamic equations of vehicle-manipulatortegss need to be implemented in
a robust and computationally efficient way to guaranteetesting and operation of these
systems.

One example of such a system is spacecraft-manipulataragstEgeland and Sagli,
1993; Dubowsky and Papadopoulos, 1993; Hughes, 2002; M@awsand Papadopoulos,
2004, 2007) which are emerging as an alternative to humaratpe in space. Opera-
tions include assembling, repair, refuelling, mainterarand operations of satellites and
space stations. Due to the enormous risks and costs invaligedaunching humans into
space, robotic solutions evolve as the most cost-efficiedtraliable solution. However,
space manipulation involves quite a few challenges. Inghjger we focus on modeling
spacecraft-manipulator systems, which is quite diffefesrin standard robot modeling.
Firstly, the manipulator is mounted on a free-floating (4nated) or free-flying (actu-
ated) spacecraft. There is thus no obvious way to choosen#téial frame. Secondly,
the motion of the manipulator affects the motion of the basech results in a set of dy-
namic equations different from the fixed-base case due tdyhamic coupling. Finally,
the free fall environment complicates the control and enbarthe non-linearities in the
Coriolis matrix. The framework presented in this paper izeeglly suited for modeling
such systems, especially when applying the so-called digadignequivalent manipulator
approach (Liang et al., 1998; Parlaktuna and Ozkan, 2004etAf minimal, singularity
free dynamic equations for spacecraft-manipulator syst@m presented for the first time
using the proposed framework.

A second example studied in detail in this paper is the usetih®mous underwater
vehicles (AUVs) with robotic arms, or underwater robotihites (URVS). This is an
efficient way to perform challenging tasks over a large sedbarea. Operations at deeper
water and more remote areas where humans cannot or do ndiongr@rate, require more
advanced and robust underwater systems and thus the neednfiimuously operating
robots for surveillance, maintenance, and operation eesgiigove et al., 2004; Kitarovic
et al., 2005; Antonelli, 2006; McMillan et al., 1995). We dkerthe minimal, singular-
ity free dynamic equations of AUV-manipulator systems gdime proposed framework,
which is presented for the first time in this paper. We alsawshow to add the hydrody-
namic effects such as added mass and damping forces.

The use of robotic manipulators on ships is another impodgplication (Kitarovic
et al., 2005; Oh et al., 2005). In From et al. (2009a) the dyoaguations were derived
and the effects of the moving ship on the manipulator wasyaedl In the Ampelmann
project (Salzmann, 2007) a Stewart platform is mounted ohi@ &nd is used to com-
pensate for the motion of the ship by keeping the platforfhwgiih respect to the world
frame. This can be modeled as a 2-joint mechanism where amergpresents the un-
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controllable ship motion and one joint the Stewart platfofithere are also other relevant
research areas where a robotic manipulator is mounted omtinfjcdbase. Lebans et al.
(1997) give a cursory description of a telerobotic shipddandling system, and Kosuge
et al. (1992); Kajita and Kosuge (1997) address the confnailmots floating on the water
utilizing vehicle restoring forces. Another interestimgearch area is macro/micro manip-
ulators (Yoshikawa et al., 1996; Bowling and Khatib, 199 Hene the two manipulators
in general have different dynamic properties.

It is a well known fact that the kinematics of a rigid body aint singularities if the
Euler angles are used to represent the orientation of thg aod the joint topology is
not taken into account. One solution to this problem is toaisen-minimal representa-
tion such as the unit quaternion to represent the oriemafitis will, however, increase
the complexity of the implementation and because the urtagnion is a covering man-
ifold for the set of rotation matrices they are also subjecthie unfortunate unwinding
phenomenon (Bhat and Bernstein, 2000). Also, as the nunfbariables is not mini-
mal, this representation cannot be used in Lagrange’s iegsafT his is a major drawback
when it comes to modeling vehicle-manipulator systems ast methods used for robot
modeling are based on the Lagrangian approach. It is thusa gdvantage if also the
vehicle dynamics can be derived from the Lagrange equations

The use of Lie groups and algebras as a mathematical badisefaerivation of the
dynamics of multibody systems can be used to overcome thldgan (Selig, 2000; Park
et al., 1995). We then choose the coordinates generatedelyighalgebra as local Eu-
clidean coordinates which allows us to describe the dynsuoically. For this approach
to be valid globally the total configuration space needs todwered by an atlas of local
exponential coordinate patches. The appropriate equatiorst then be chosen for the
current configuration. The geometric approach present&iiilo and Lewis (2004) can
then be used to obtain a globally valid set of dynamic eqnatan a single Lie group,
such as an AUV or spacecraft with no robotic manipulatorchta.

Even though combinations of Lie groups can be used to represdtibody systems,
the formulation is very complex and not suited for implenagion in a simulation envi-
ronment. In Kwatny and Blankenship (2000) quasi-coordisand the Lie bracket were
used to derive the dynamic equations of fixed-base robotr@putators without singular-
ities using Poincaré’s formulation of the Lagrange equmstidn Kozlowski and Herman
(2008); Herman and Kozlowski (2006) several control lanisgig quasi-coordinate ap-
proach were presented, but only robots with conventionab-joints were considered.
Common for all these methods is, however, that the configuratpace of the vehicle
and robot is described as< R™. This is not a problem when dealing with 1-DoF rev-
olute or prismatic joints but more complicated joints sushball-joints or free-floating
joints then need to be modeled as compound kinematic joitwa{ny and Blankenship,
2000), i.e., a combination of 1-DoF simple kinematic joirfesr joints that use the Euler
angles to represent the generalized coordinates this@oligiads to singularities in the
representation.

In this paper we follow the generalized Lagrangian apprgaeisented in Duindam
and Stramigioli (2007, 2008) which allows us to combine tlellEean joints and more
general joints, i.e., joints that can be described by thegraeip.SFE(3) or one of its ten
subgroups, and we extend these ideas to vehicle-manipuslgdtems. There are several
advantages in following this approach. The use of quasidinates, i.e., velocity coor-
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Figure 2.1: Model setup for a four-link robot attached to a vehicle, in this case a witip coordi-
nate framel,. FrameW, denotes the inertial reference frame.

dinates that are not simply the time derivative of the posittoordinates, allows us to
include joints (or transformations) with a different topgy than that oR™. For example,
for an AUV we can represent the transformation from the iakfitame to the AUV body
frame as a free-floating joint with configuration sp&d8(3) and we avoid the singularity-
prone kinematic relations between the inertial frame ardbtbdy frame velocities that
normally arise in deriving the AUV dynamics (Fossen, 200R)is relation is subject to
the well known Euler angle singularities and the dynamiesraot valid globally. With
our approach we thus get improved numerical stability dubécbsence of singularities
and, as the dynamics are valid globally, we avoid switchiatpeen different dynamic
models in the implementation. This approach differs froevjmus work in that it allows
us to derive the dynamic equations of vehicle-manipulaystesns for vehicles with a
configuration space different frof®™ and thus maintains the underlying topology of the
configuration space. The dynamics are expressed (locallgxponential coordinates,
but the final equations are evaluatedsat 0. This has two main advantages. Firstly, the
dynamics do not depend on the local coordinates as thesdiraieated from the equa-
tions and the global position and velocity coordinates heednly state variables. This
makes the equations valid globally. Secondly, evaluatirgetquations ap = 0 greatly
simplifies the dynamics and make the equations suited foleimgntation in simulation
software. We also note that the approach is well suited fodehbased control as the
equations are explicit and without constraints. The faat the configuration space of the
vehicle in general is a Lie group also simplifies the impletagan. Even though the ex-
pressions in the derivation of the dynamics are somewhaplmwe have several tools
from the Lie theory that allows us to write the final expressim a very simple form. We
present several examples of how we can use this to simpkfydyimamic equations and
speed up the implementation.

The main purpose of this paper is to study systems that dasfsés moving vehicle
with a robotic manipulator attached to it. To the authorsstdenowledge these systems
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have not been studied in detail in literature using the fraork presented here. There
is an apparent need to be able to derive the dynamics of ssténsy globally and using
a minimal representation, especially when it comes to féatimg model-based control
laws. In this paper we first present the framework, based erafiproach in Duindam
and Stramigioli (2007, 2008), and then show how to expargltthivehicle-manipulator
systems. The use of quasi-coordinates to derive the dysaimithis way has mainly
been applied to standard robotic manipulators with thersid®m to more general types of
joints in Kwatny and Blankenship (2000); Duindam and Stgioli (2008). However, the
treatment of vehicle-manipulator systems deserves aapgeeatment. There are several
reasons for this. Firstly, the vehicle and the manipulatay possess completely different
dynamic properties. One apparent example is when the eepidsesses a forced un-
controllable motion while the manipulator is controllabléis is the case for manipulators
mounted on ships, as treated in From et al. (2009a), whergigiefrequency motion of
the ship is a forced motion due to the waves and wind. Spaitenemipulator systems are
another example where the spacecraft may be unactuatetsqusition is determined by
the robot motion. Secondly, the formulation allows us talgtbow the two systems, i.e.,
the vehicle and the manipulator, affect each other. Thedntmn of the two systems will
depend on the inertial properties of the two systems, eatéonces acting on one or both
systems and the type of the vehicle (floating, submergelihgofixed, etc.).

The paper is organized as follows. Section 2.3 gives thaldétamathematical back-
ground for the proposed approach. This section can be skigpé practitioners mainly
interested in implementation can go straight to Sectioro25. Section 2.4 gives the ex-
plicit dynamic equations for the AUV-manipulator dynamaisng with some comments
on implementing these in a simulation environment. Thiduides hydrodynamic and
damping forces, the added mass and Coriolis matrices ard@thsiderations that are not
encountered in robot dynamics. Section 2.5 presents thenaigrequations for spacecraft-
manipulator systems and the effects of a free-floating basefiee fall environment are
treated in detail. The matrix representation of the dynaraicd how to implement this
is presented in great detail for several vehicles with diffé configuration spaces. This
allows the readers to first analyse the dynamics of the sylstemthe given equations and
then implement this in a simulation or control environmeithaut having to perform all
the detailed computations themselves.

2.3 Dynamic Equations of Vehicle-Manipulator Systems

We extend the classical dynamic equations for a serial nuéatigr arm with 1-DoF joints
to include the motion of the vehicle on which the manipulaganounted. We assume that
the motion of the vehicle can be described by a Lie group, §&.(3) or one of its ten
subgroups. The most important examples of “vehicles” thaeta Lie group topology are
shown in Table 2.1.

2.3.1 \Vehicle-Manipulator Kinematics

Consider the setup of Fig. 2.1 describing a genertahk robot manipulator arm attached
to a vehicle. Choose an inertial coordinate fraing a frame¥, rigidly attached to the
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SE(3) - AUV, 6-DoF ship, aeroplane, spacecraft
) - The Schonflies group
T(3) - 3-DoF gantry crane

SO(3) - Spacecraft (DEM approach), ball joint
SE(2) - Ground vehicle, 3-DoF ship
T(2) - 2-DoF gantry crane

Table 2.1: Lie subgroups ofSE(3) and corresponding “vehicles”. Even though some of these
can be modeled as a combination of 1-DoF Euclidean joints we considerdbeghicles and group
them correspondingly. The Schonflies GroXipz) represent 3-DoF translation and a 1-DoF rotation
about thez-axis.

vehicle, andn frames¥; (not shown) attached to each linkat the center of mass with
axes aligned with the principal directions of inertia. Hipachoose a vectog € R™ that
describes the configuration of thgoints. Using standard notation (Murray et al., 1994),
we can describe the pose of each fralneelative tol, as a homogeneous transformation
matrix go; € SE(3) of the form

o Roi  poi 4x4
with rotation matrixRy; € SO(3) and translation vectgr,; € R®. This pose can also be
described using the vector of joint coordinagess

9oi = Job9bi = gobgbi(Q)~ (2.2)

The vehicle poseg, and the joint positiong thus fully determine the configuration state
of the robot. Even though we ugg, (6 DoF) to represent the vehicle configuration,
the actual configuration space of the vehicle may be a subspfagF (3) of dimension
m < 6. For ground vehicles the configuration spac€1§(2), with dimensionn = 3, and
the attitude of a spacecraft has configuration sg#R€3), also with dimensiom: = 3.

In a similar way, the spatial velocity of each link can be egzed using twists (Murray
etal., 1994): .

Voy = B%Z} = Voy + Vi = Adygy, (Voy + Ji(0)) (2.3)
wherev); andw), are the linear and angular velocities, respectively, dflirelative to the
inertial frame,J;(¢) € R®*" is the geometric Jacobian of linkelative toV,, the adjoint
is defined as\d, := [§ 7] € R%*%, andp € R**? is the skew-symmetric matrix such
thatpz = p x x for all p,z € R3. The velocity state is thus fully determined given the
twist V4, of the vehicle and the joint velocities

In the case ofn < 6 we define a selection matrid € R®*™ such that the velocity
vector of the vehicle is given by
Vo, = HVg, (2.4)

whereVObb € R™ determines the velocity state of the vehicle by selectiegnents ofl/,
that are not trivially zero. More generally we will write tlelowed joint velocity as a
vectorv; € R™. The joint velocity is uniquely described by this vector dhd joint twist
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can be expressed in terms of this vectoT$ = X;(Q)v; with X,(Q) € R®" a matrix
describing the instantaneously allowed twists. XIfis independent of the manipulator
configuration we gef{ = X. In our case we have; = ¢; for the Euclidean joints of
the manipulator and the velocity vectay = V for the allowed vehicle velocities. The
spacial velocity whemn < 6 is then written by

'UO' ~ .
Vo — LJ%Z} =V VR = Ady,, (HT + (0)d). (2.5)

01

2.3.2 Vehicle-Manipulator Dynamics

The previous section shows how the kinematics of the systanbe naturally described
in terms of the (global) state variables,, ¢, V,, andg. We now derive the dynamic
equations for the system in terms of these state variablesfirgf assume the vehicle to
be free-moving and then restrict the vehicle motion to bekiatically constrained.

To derive the dynamics of the complete mechanism (includiegn-DoF between
¥, and¥;), we follow the generalized Lagrangian method introduceddbindam and
Stramigioli (2007, 2008). This method gives the dynamicasiquns for a general mecha-
nism described by a s€ = {Q;} of configuration stateg; (not necessarily Euclidean),
a vectorv of velocity states; € R™i, and several mappings that describe the local Eu-
clidean structure of the configuration states and theitiogldo the velocity states. More
precisely, the neighborhood of every staeis locally described by a set of Euclidean
coordinatesp; € R™ asQ; = ®;(Q;, ¢;) with ®,;(Q;,0) = Q;. ®;(Q;,¢;) defines a
local diffeomorphism between a neighborhoodaf R™ and a neighborhood @p;.

The trick here is to first considé€p; a parameter, even though it strictly speaking is
a state variable. We then think of the local coordinatas a state variable. The global
coordinatesy are thought of as state variables in the normal way. The lnagga is
then written in terms of; for velocity and®;(Q;, ¢;) for position and we differentiate
with respect to the velocity variablg and the position variable;, not Q; which we for
now consider a parameter. Recalling tda{Q,,0) = Q;, we see that evaluating the
expressions ap = 0 allows us to considef); a variable and we are done. The reason we
can do this is that locally the variablésdescribe the configuration state of the system in
a neighborhood of any configuratidpy.

We start by deriving an expression for the kinetic co-enefgymechanism, expressed
in coordinatesy, v, but locally parameterized by the coordinate mappings dahgoint.
For joints that can be described by a matrix Lie group (attUdal the group ofn x n
nonsingular real matriceSL(n,R)), this mapping can be given by the exponential map
(Murray et al., 1994). Let € gi(n,R), wheregi(n,R) is the Lie Algebra ofGL(n,R).
Then the exponential map ejp) is given by

A? = A
A _ _E

n=0

where! (no subscript) is the identity matrix. This expression isdvéor all subgroups of
SE(3) andSE(3) itself by replacing4 with the matrix representation of the Lie algebra
associated with the Lie group. We denote the matrix reptaten of the corresponding
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Lie algebra by and thus get
B R 22 0 (lgn

Specific examples of for different Lie groups are given in the following sections

The dynamics are thus expressed in local coordinatés configuration and for
velocity, and we considep a parameter. After taking partial derivatives of the Lagiian
function, we evaluate the results@t= 0 (i.e., at configuration) to obtain the dynamics
expressed in global coordinatgsandv as desired. We note that even though local co-
ordinatesp appear in the derivations of the various equations, the égahtions are all
evaluated aty = 0 and hence these final equations do not depend on local catedin
The global coordinate§ andw are the only dynamic state variables and the equations
are valid globally, without the need for coordinate trainsis between various areas of the
configuration space, as is required in methods that useasaftlocal coordinate patches.

Note also that taking the partial derivatives of the Lagrangnd evaluating at = 0
greatly simplifies (2.7) and the closed form expressionshefédxponential map is not
needed. We will use this observation to simplify the implata&on and reduce the com-
putational complexity of the algorithm. We will see sevasmhmples of how we can use
this to simplify the expressions of the Coriolis matricesdiferent types of vehicles.

In general, the topology of a Lie group is not Euclidean. WheriMihg the dynamic
equations for vehicles such as ships (Fossen, 2002), AUY(&lli, 2006), and space-
craft (Hughes, 2002), this is normally dealt with by introthg a transformation matrix
that relates the local and global velocity variables. Haveforcing the dynamics into a
vector representation in this way, without taking the toggl of the configuration space
into account, leads to singularities in the representationther deficiencies. To pre-
serve the topology of the configuration space we will use igtardinates, i.e., veloc-
ity coordinates that are not simply the time-derivative o§ition coordinates, but given
by a linear relation. Thus, there exist differentiable nieas.S; such that we can write
v; = Si(Qs, qsi)q'si for every@;. For Euclidean joints this relation is given simply by the
identity map while for joints with a Lie group topology we case the exponential map to
derive this relation.

Given a mechanism with coordinates formulated in this gaizd form, we can write
its kinetic energy ag (Q,v) = $v" M(Q)v with M(Q) the inertia matrix in coordinates
@ andwv the stacked velocities of the vehicle, representedyjpyand the robot joints,
represented by;, i = 1...n. The dynamics of this system then satisfy

M(@Q)y+C(Q,v)v=T (2.8)

with 7 the vector of external and control wrenches (collocateth wjt andC(Q, v) the
matrix describing the Coriolis and centrifugal forces givgy

oM;; 1, ,0Mj
Cij(Q,v) = ( LS — =S5 J)' vy (2.9)
J %l: a¢k kl 2 k a¢k =0

0Sm; 0S
-1 m, ms —1
+ Z <Sm7', < aqu - 6¢] ) Ssk Mkl) Ur.

k,l,m,s
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More details and proofs can be found in references DuindadvSaramigioli (2007) and
Duindam and Stramigioli (2008).

To apply this general result to systems of the form of Fig, @@ write@ = {gos, ¢}
as the set of configuration states wheygis the Lie groupS E(3) or one of its sub-groups,

andv = {%}bh} as the vector of velocity states. The local Euclidean stingcfor the state

gop IS given by exponential coordinates (Murray et al., 1994)jlevthe state; is itself
globally Euclidean. Mathematically, we can express cométions(goy, ¢) around a fixed
state(gop, 4) as

gob = govexp | Y _bi(dn); | - G =0q+¢; Vie{l,... ,n} (2.10)
=1

with b; the standard basis elements of the Lie algefr@) or one of its subalgebras.
Whenm < 6 we seth; = 0 for all then — m entries that are trivially zero, corresponding
to Equation (2.4).

From expression (2.5) for the twist of each link in the medsamn we can derive
an expression for the total kinetic energy. Ugte R™*™ andI; € R®*% denote the
constant positive-definite diagonal inertia tensor of theeband linki (expressed iny;),

respectively. The kinetic energy of link i then follows as
o= (V)" LV,
T ~
HViy+ Jia)q) Ady, I Ady,, (HVG, + Ji(a)d)

=5
(Vo) THT + 4" Jia)T) Adj,, L Ady,, (HVd, + Ji(a)d)
7

[\D\HM\)—‘MM—\[\J\H

|:(V0bb) QT} M;(q) [ q } = §vTMi(q)v (2.11)
with M, = [ 9] for the vehicle and

Mi(g) = HTAd;bI Ad,, H HTAd;bI Ad,,, J;
M= T AL L Ady, B JTAdL T Ady,, J;

gib

:| c R(7n+n)><(m+n) (212)

for the links. Here HT is the transpose off which works fine when dealing with the Lie
groups treated here, so we will use this notation throughuatpaper. The total kinetic
energy of the mechanism is given by the sum of the kineticgegrof the mechanism
links and the vehicle, that is,

T(CLU)Z%U ([Ib }+ZM ) (2.13)

inertia matrixM (q)

with M (q) the inertia matrix of the total system. Note that neitfiiy, v) nor M(q)
depend on the posg, nor the choice of inertial reference franig.
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We can write (2.8) in block-form as follows

o o[-z
+ WO = 2.14
[CqV Coq q Tq ( )

v

[Mvv MqTV}
q

MqV qu

with 7, a wrench of control and external forces acting on the veh@tpressed in coor-
dinates¥, (such that it is collocated witﬁobb). Here the subscript’ refers to the firsin
entries and the remaining: — m entries. To compute the matrX(Q, v) for our system,
we can use the observations tid{q) is independent o, thatS(Q, ¢) is independent
of ¢, and thatS(Q, 0) = I. Furthermore, the partial derivative 8f with respect tapy is
zero sinceM is independent of,, and the second term of (2.9) is only non-zero for the
Cyv block of C(Q, v). This allows us to simplifyC'(Q, v) slightly to

S8 foMy;  10M;, SR 08, 08
Cl@r) =3 (G- 557 )L_Ow;(a% - a¢j) (M(g)o)i.

(2.15)
Finally if gravitational forces are present we include thelset the wrench associated
with the gravitational force of link with respect to coordinate framig; be given by

Fi= { fa } p— [ Roies ] (2.16)

oY) %)
Pofq roRoie:

wheree, = [0 0 I]T andr is the center of mass of linkexpressed in fram&;. In
our casel; is chosen so that; is in the origin of ¥; so we have"; = 0. The equivalent
joint torque associated with linkis given by

7y = Ji(g) Ady, (Q)Fy(Q) 2.17)

where.J; is the geometric Jacobian ardl,,, = Ad,,, Ad,, is the transformation from
the inertial frame to frame. We note that bothR,, and Ad,,, depend on the vehicle
configuration with respect to the inertial frame. The tofééa of the gravity from all the
links is then given by

n(@ =>y (2.18)
i=b

which enters (2.14) in the same wayas

2.3.3 Vehicles with Configuration Space& E(3)

The configuration space of a free-floating vehicle, such a& or an aeroplane can be
described by the matrix Lie groupE(3). In this case we have the mapping (Duindam,
2006)

1 1 :
VE = (1 - 5adgy +5 adj, —.. ) by (2.19)
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with ad, = [’546-“ 7’13} € R6%6 for p € RS relating the local and global velocity

P4a...6
variables, and’}, = V5. The corresponding matrice%; can be collected in one block-
diagonal matrixS given by

2
5(Q, ) = {(I —zadgy JB% adg, —..) ? e R(EFn)x(6+n) (2.20)

This shows that the choice of coordinatg3, v) has the required form. We note that
when differentiating with respect tvand substituting = 0 this simplifies the expression
substantially.

The precise computational details of the partial deriestifollow the same steps as
in the classical approach (Murray et al., 1994}y, depends on both the first and the

second term in Equation (2.15). We havg = 1...6. Note that%> = 0 for k < 7 and

%Z” = 0 for i, j, k > 6. This simplifiesCyy to

6+n
OM;; 10M;y, dSij  OS
CylQuy =Y | D _ 10N, vk+z< LT ra.
| g 2 09 00k 005 /)|,
=0 $=0
(2.21)
Furthermore, if we writeS, = (I — % ady, +2ad}, —...) we note that after differ-

entiating and evaluating at= 0 the matncesz BS” are equal to—% ad; whereey, is a

6-vector with 1 in the:™" entry and zeros elsewhere. Simila %ij? is equal to} ad; .
J
This is then multiplied by thé&™ element of)M (¢)v when differentiating with respect to

¢i. We then get

o d MVV qr Loar
vv(Q,v) Z a M)y 5 @)y

6

=1

where(M (q)v)y is the vector of the first 6 entries (corresponding/y) of the vector
M(q)v.

Cvqe(Q,v),le,i=1...6andj =7...(6+n),isfound in a similar manner. First we
note that>;:2 = 0 fori = 1...6 and that3>4 = 0 and Gk =0forj =7...(6+n),
so only the first part is non-zero and we get

Cvyl@.0) ZaMVq . (2.23)
k=1

Finally, the termsC,y andC,, depend only on the first part of Equation (2.15) and
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can be written more explicitly as (From et al., 2009a)

8Mqv 107 T Vb
= M M .
Cov = Z i g (B a3 [B]). (224
OMyq . 197 < [Vﬂ)
——— | [M, M, 0b ) | 2.25
kzl Oqs Gk 2 9q [ qv qq] q ( )

The C-matrix is thus given by

.
2ad(rr(gyo)y

“EN s o ) & w]4])

2.3.4 \ehicles with Configuration Space&O(3)

The dynamics of a vehicle-manipulator system for a vehicih wonfiguration space
SO(3) are derived in the same way. The velocity state is thus fudfednined by only
three variables and we chooBeso that

Vo, = HV, (2.27)
with
H = [Om} . (2.28)
I3x3
We then get
. 1. 1. .
Voy = (I —gfvt 6¢‘2/ — .. ) Pv. (2.29)

The corresponding matricét can be collected in one block-diagonal matsixgiven by

S(Q,¢) _ l(l - %¢V ';é(ﬁ%/ - ) ? c R(S+n)><(3+n). (230)

We note that when differentiating with respectgaand substitutings = 0, once again

this simplifies the expression substantially. The preciseputational details of the partial

derivatives follow the same steps as for §18(3) case except faf'yy. Note thataM“ =

0 for k < 4 and 85“ = 0 for i, j, k > 3. When differentiating and evaluatlng@t: 0the
matrices_ 5 85” are equal td ¢, whereey, is a 3-vector with 1 in thé™ entry and zeros

elsewhere. Slmllarl %572% is equal to—1¢;. We then get
6 M o
Cvv(Q,v) Z "L + (M(g)v)y (2.31)

k=

where(M (q)v)y; is the vector of the first three entries of the vecté(q)v (corresponding
toV4) andp € R3*3 is the skew-symmetric matrix such that = p x = for all p, = € R3,
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2.3.5 Summary

Table 2.2 shows the mapping from local to global velocityrdamates and the correspond-

ing C-matrices for different Lie Groups.

Lie Group | Svv ¢
SE(3) I- %adm —i—é adQV — | Yk qu ; [2 adu\jl(q)v) g}
X(2) Lyxa > h—1 gf)qu é [81 g}
(3),SE(2) I3x3 Pkt gﬁf k=3 [21 g}
50(3) T—3ov+5dh — .| Zioi Gorin— 3 [Q(M})\U)V lg
T(2),0(1) Irxo D=1 gg,f = 3 [21 g}
(1),H,50(2) It Ykmt 0k~ 2 B gw
A= G ] [T8]) | B = Gl ] [T ])

Table 2.2: The Coriolis matrix for different Lie subgroups SfE£(3).

2.4 AUV-Manipulator Systems

We start by presenting the state of the art dynamic equatibas AUV-manipulator sys-
tem as it is normally presented in literature. It is well kmothat these are not valid
globally due to the Euler angle singularity that arises whransforming from local to
global velocity variables. Next, we show how to re-write thy@amics using the proposed
framework in order to avoid the singularities. The dynangjoaions have approximately
the same complexity and are better suited for simulationeasier to implement. One
drawback of the proposed approach is that the mdirix // — 2C is not skew symmet-
ric. This is a desired property in Lyapunov-based contralésign but not in model-based
controller design or simulation environments, for whiclmgutational speed, robustness,
and ease are of higher importance.
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2.4.1 State of the Art AUV Dynamics

A wide range of dynamical systems can be described by therEatgrange equations
(Goldstein et al., 2001)

o (%(x,:&)) O iy =x (2:32)

wherex € R" is a vector of generalized coordinatesc R"™ are the generalized forces
and
L(z,z) : R" xR" =5 R:=T(x,z) — V(). (2.33)

Here, T (z, &) is the kinetic and/(x) the potential energy function. We assume that the
kinetic energy function is positive definite and in the form

T (x,&) = %i‘TM(x)j:. (2.34)

whereM (z) is the inertia matrix. For a kinetic energy function on trasti we can recast
the Euler-Lagrange equations (2.32) into the equivalemn fo

Mgp(x)i + Crp(z, )t +n(x) =7 (2.35)

whereCrp(z, ) is the Coriolis and centripetal matrix andx) is the potential forces

vector defined as
n(z) = oV (x)
=

The Coriolis and centripetal matrix is normally obtainecdthg Christoffel symbols of
the first kind as (Egeland and Gravdahl, 2003)

(2.36)

CRB(.T,i) = {Cij} = {Z F,Jkl‘k} y (237)
k=1
o _ 1 (Omi;  Omix  Omyy

where M (z) = {m;;}. When representing the dynamic equations using generalized
coordinates we implicitly introduce non-inertial frameswhich we represent the iner-
tial properties of the rigid bodies. The Coriolis matrixs@as as a result of these non-
inertial frames. We note that there are several ways to défm€oriolis matrix so that
Cij(z, 2)t; = Tyt is satisfied. Later, we will see that in deriving the dynamics
using a different framework we get a different Coriolis matrith different properties.
Normally the terms wheré+# j are identified with the Coriolis forces arid= j with the
centrifugal forces.

In addition, for floating or submerged vehicles we need tothddhydrodynamic forces
and moments. The damping forces are collected in the dampétigx D and the restoring
forces (weight and buoyancy) are normally includea.{n). Furthermore, the motion of
the AUV will generate a flow in the surrounding fluid. This isdem as added mass.
For completely submerged vehicles operating at low vaekxithe added mass is given
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by a constant matri¥/, = M} > 0. The corresponding Coriolis matrix is given by
Ca = —C] and is found in the same way &% 5 by replacingM gz with M4 (Fossen,
2009). We also add environmental disturbances such astsirre

The dynamics of underwater vehicles are usually given ass@grg 2002)

n=J(n)v, (2.39)
Mv+Cwyw+DWw)v+n(n) =1 (2.40)

wheren =[xz y z ¢ 0 w]T is the position and orientation of the vessel given in
the inertial frame and = [u v ow p ¢ r}T is the linear and angular velocities
given in the body frameD(v)v is the damping and friction matrixd/ = Mgrp + M4
andC(u) = CRB(I/) + CA(Z/).

The velocity transformation matriX(n) in (2.39) transforms the velocities from the
body frame to the inertial frame and is defined as

_ [Ro(0©) 0
J(n) = { 0 To(O) (2.41)
where Ry, (©) is the rotation matrix and depends only on the orientatidnhie vessel

given by the Euler angle® = [¢ 0 w]T, represented in the reference franig (©)
is given by ¢yx-sequence)

1 singtanf cos¢tand
To(®) = |0 cos ¢ —sing | . (2.42)
0 sm‘z cos‘(g

We note thatl's (©), and thus alsd/(n), are not defined foé = +7. This is the well
known Euler angle singularity for theyz-sequence. The inverse mappirigs' (©) and
J~*(n) are defined for al € R but singular for) = +7%.

This singularity can be removed from the operational spgagehiving the kinematic
equations using two Euler angle representations with miffesingularities and switch-
ing between these two representations. It can also be aloisieg the unit quaternion
representation, which does not have a singularity at theafastroducing a fourth pa-
rameter to describe the orientation. The unit quaternipreentation is computationally
challenging when it comes to integration and normalizat&lso, in computing the Euler
angles from the quaternions the Euler angle singularityesgnt and precautions against
computational errors close to this singularity must betake

We note that the representation= [z vy z 7 € € 63}TwhereQ:

[n €1 €3 63]T is the unit quaternion cannot be used in the Lagrangian apprsince
it is defined by 7 parameters. These parameters are hencemattjzed coordinates.

We will assume that the ocean curreptis expressed in the inertial frame. Then the
relative velocity in the body-fixed frame is given by

v, = v — Ropre. (2.43)

The effects of the current are then included in the dynamyasdingv,. in the derivation
of the Coriolis and centripetal matrices and the dampingser
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The relationship between the wrench acting on the vehided the control input of
the thrusters:y is highly non-linear. However, it is common to approximaies twith a
linear relation

7= Buy (2.44)

whereB € R%*P« is a known constant matrix, is thep,-dimensional vector of control
inputs andp,, is the number of thrusters, rudders, sterns, etc.

We can rewrite the dynamics using general coordinatediminating the body frame
coordinates from the equations. We then get

M (n)ij+ C(n, )iy + D(n, )iy + i(n) = 7 (2.45)
where
M(n) = J T (n)MJ (), (2.46)
(n) = J =T (n)n(n), (2.47)
F=J T (2.48)
D(n, ) = J~ T (n)D(J " (n)0)J " (n), (2.49)
Clniyi = J7T(n) [CT ) = MI @) J )] T ). (2.50)

Note that the Equations (2.45-2.50) are only valid whiert () is non-singular, i.e., for
0 #£7%.

To formulate the Lagrange equations in a body-fixed cootdifiame directly we
need to circumvent the fact tr}%t vdt has no physical meaning. We do this by rewriting
the Langrange equations using quasi-coordinates. Write- [u v w]T andv, =

[p q r]T and similarly forr. Then the dynamics can be written as (Meirovich and

Kwak, 1989)
d (T . 0T _
a (a) e, TN (251
d (0T . oT  oT
dt (81/2) - "2 0, o oy (2:52)

We note that the dynamic equations are independent of thigquogectorn and the grav-
itational forces are thus not included in the dynamics. Westheed to augment the
equations with (2.39) to get a complete description of tlatesspace. Once again this
introduces a singularity in the equations.

2.4.2 State of the Art AUV-Manipulator Dynamics

The dynamics of an AUV-manipulator system is given by (Artitin2006)

£=J ()X, (2.53)
M(q)¢ + C(q,¢)¢ + D(q,¢)¢ + n(q, Rop) = 7 (2.54)
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where¢ = [n' qT]T, ¢=[" qT]T, M(q) € R(6+n)x(6+n) ig the inertia matrix
including added massg;(q, ¢) € R(6+)x(6+n) s the Coriolis and centripetal matrix and
D(q,¢) € RO6+m)x(6+4n) js the matrix representing the dissipative forcess the vector
of forces and moments working on the mechanism and is given by

<[ 9

whereu = [u‘T, uHT is the control input. The velocity transformation matrixgizen

by

(2.56)

2.4.3 The Proposed Approach

In this section we show how to derive the AUV-manipulatorayrics without the presence
of singularities. The inertia matrix of the AUV is derived two steps. FirstMgpg is
found from (2.13). Then the added mdds, = M| > 0 is found from the hydrodynamic
properties and we gét/ = Mgrp + M4. We can now usé/ instead ofM g to derive
the Coriolis and centripetal matrix (Fossen, 2002) whisegiusC' = Crp + C4. As the
configuration space of an AUV can be described by the matexgroupSE(3) we get
(following the mathematics of Equations (2.19-2.25)) tleiQlis matrix

n 2ad( 0
oM 1 (M(q)v)v
CQu)=) Z—k—73 |o Vé T v
g 2 |G | [Myvy M) gb S Mgy My, gb
(2.57)
The dynamic equations can now be written as
M(Q)i + C(Q,v)v+ D(v)v +n(Q) = T. (2.58)

Here,o = [(V4)T qT]T whereV}, is the velocity state of the AUV angl the velocity
state of the manipulator, ard = {gos, ¢} Wheregy, € SE(3) determines the configura-
tion space of the AUV (non-Euclidean) agdhe configuration space of the manipulator
(Euclidean). We note that the singularity in (2.53) is efiated and the state spa@@, v)

is valid globally. D(v) andn(Q) are found in the same way as for the conventional ap-
proach. Specificallyp(Q) is found by (2.18). In the following we make some brief
remarks on implementing the dynamic equations in a softeave@onment.

Computing the Partial derivatives of M (q1, ..., ¢n)

The partial derivatives of the inertia matrix with respexty{, . . ., g, are computed by
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OM(q1, ... qn) &
OM(q1,- -, qn) ({I] [a Adg,bI Adg, +AdT T %] [1 Ji]> (2.59)

Oqr ~ JT 99
N 2”: 0 Adg,, I; Ady,, 52 ]
a'J; T a'J; T TAdT :
A 5o Adg,, I; Adg,, G2t Adg, I Adgib Ji+J; Adg,, I; Adg, & Ba.

Computing the Partial derivatives of Ad,,

The main computational burden is on the computation of thegbaerivatives ofAM with
respect tag for which we need the partial derivatives of the adjoint ricas, also with
respect ta;. To compute these one can use a relatively simple relatfome express the

velocity of joint & asV\Fb = = Xy ¢z, for constantXy, then the following holds:

(k—1)k
Proposition 2.1. The partial derivatives of the adjoint matrix is given by
9 Ad,, Ady,,_,, adx, Adg, ), fori<k<j,
3 ——L =4 —Adg,,_,adx, Ady,_,, forj<k<i,
T 0 otherwise.

Proof. To prove this, we start by writing out the spatial velocityfiaime ¥, with respect
to U,y wheni < k < j:

. . G
. (k-1 -1 _ 99@k-1)k .
Xk = Vig_1)x = 90—k 1)k = T]kgk(kq)%

whereX := [Xw ?g} If we compare the first and the last terms, we get

0
OR(j—1)k

oo XoRk—1)ks (2.60)
OP(k—1)k S
o = Kupemy + X (2.61)
dk
We can use this relation in the expression for the partiavatve of Ad,, _,,,:
AR _ Bk 1)k _
O Adg [T PO Ryt Bl g
dq - 0 OR(k_1)k
gk
_ |:Xw {Q} |:R(k—1)k ﬁ(k—l)kR(k—l)k}
0 X, 0 Ra—1)k
= adx, Adg,_,), - (2.62)
It is now straight forward to show that
aAdgij :Adq . 8‘Adg(k—l)k Adg
Oar 2D T Dy &
= Adq (k—1) aka Adq(k 1k Adgkj
= Ady,,_,, adx, Adg,_, . - (2.63)
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The proof is similar forj < k£ < i. The details are found in 2.9.1. O

Computing the Jacobian and its Partial Derivatives
The Jacobian/; of link i is given by

Jz(q) = [Xl Adgbl X2 Adng X3 <o Ad Xz 0o --- 0} . (264)

9v(i—1)

When the partial derivatives of the adjoint map are found weatso use these to find the
partial derivatives of the Jacobian, i.e.,

aJ; dAd dAd,,

D~ e T T X TG Ol

(2.65)

For the special case when the twist of each joint cannot besepted as a constant vector
the computation is somewhat more involved. The proposadevweork does, however,
allow for joints with non-constant twists. This is shown i92.

Implementation

We first define the vector

(M(q)v)1
(M(q)v)2 Vb
(M(q)v)v = : = [Mvv M}, ] [ gb] . (2.66)
(M(q)v)m
This gives the adjoint part of the second part of (2.57) as
ad(m(q)v)y = (2.67)
0 —(M(q)v)s  (M(q)v)s 0 —(M(q)v)s  (M(q)v)2
(M(q)v)s 0 —(M(q)v)a  (M(q)v)s 0 —(M(q)v)
—(M(q)v)s  (M(q)v)a 0 —(M(q)v)2  (M(q)v) 0
0 0 0 0 —(M(q)v)se  (M(q)v)s
0 0 0 (M(q)v)s 0 —(M(q)v)s
0 0 0 —(M(q)v)s  (M(q)v)a 0
The lower part of the matrix in the second term in (2.57) isekited in the following way
‘3(Né(q)v)1 B(Ma(q)v)Q B(I\/Ia(q)v)s
o7 - oIl OOM(@w)e | O(M(aw)s
9q (WVV M ]{ ng: i B (2.68)
dMQv)  AM@v)e .. O(M(gv)e
L Oqn Oqn, 9qn
B e b el 0
_ > i 31;2 i D ity az;q Ui Dt #W
Zfﬂl az\g;; v; 26+n 8le(q) v e Zerln 81Vézt(q) v
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aT

(o [

(2.69)

dq
ZGJrn dM(7n+1)7,(Q) Z6+n OM (rm12)i ((1) 26+n OM(mminyi ((I)
=1 oq1 Ui =1 9q1 Ui i=1 oq1
Z6+n 9M(m+1)1(¢Z) EG-HL OM(m2yi (q) Zﬁ+n OM(minyi(a)
i=1 Ui i=1 94z Vi i=1 Vi

9q2

0q2

6+n OM(min)i(q)
Pl Ui

ZG-HL dM(m+1)z(Q)
9qn g

Z6+n OM(mi2yi ((I)
1=1 Oqn Vi

Vi i=1 0qn

and is thus also given by the partial derivative of the imentiatrix. We thus only need
to compute the partial derlvatl\%qu— once and use the result in the both in the first and
second part of (2.57). This approach can be used to obtaidythemic equations for an
arbitraryn-link mechanism mounted on an AUV.

2.5 Spacecraft-Manipulator Systems

Spacecraft-manipulator systems are different from cativeal earth-based manipulators
in that they are placed in a free fall environment and thatlthse is not fixed (free-
floating). In general there are three different cases thatt ine considered (Dubowsky
and Papadopoulos, 1993). Firstly, if we have reaction jediable and use these to keep
the spacecraft stationary we obtain a fixed spacecraft mwkieh very much resembles
the conventional fixed-based model. Secondly, if no actnasi used for the spacecraft we
have a free-floating spacecraft with reduced fuel conswmgit the expense of dynamic
coupling between the spacecraft and the manipulator andieee workspace model. Fi-
nally, if the attitude, but not the position, of the spac#tdsaactively controlled, we have
a constrained spacecraft. We note that for free-floatingespraft the center of mass (CM)
of the spacecraft-manipulator system does not acceldtat@ever, when reaction jets or
momentum wheels are used for control or other external $oace present, the center of
mass is not constant in the orbit-fixed reference frame. Taia whallenge in modeling
spacecraft-manipulator systems is that the base-fixedlgwie frame cannot simply be
fixed in the orbit-fixed frame. There are two main approachefetl with a floating base;
the virtual manipulator approach (Vafa and Dubowsky, 198&7)he barycentric vector
approach (Papadopoulos and Dubowsky, 1991).

2.5.1 State of the Art Spacecraft Dynamics

The attitude of a spacecraft is normally described by thetarameters, or unit quater-
nion. This is motivated by their properties as a nonsingtdgresentation. We note that
this is not the minimal representation, nor generalizeddioates, and thus not suited for
the Lagrangian approach. Also, when transforming back terfangles from the unit
quaternion representation a singularity is presenffer+7.

Any positive rotation) about a fixed unit vectat can be represented by the four-tuple

sz,

(2.70)
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wheren € R is known as the scalar part angt R? as the vector partQ(v, n) is written
in terms ofy andn by

7 = cos ( € = sin (%)n (2.71)

2

The kinematic differential equations can now be given by

, 1
n= —§Jw8b (2.72)
.1 R

é= S0l + &wdy (2.73)

wherew]), is the angular velocity of the body frame with respect to tHgtdrame andl,
is the spacecraft inertia matrix. The attitude dynamicgaren by (Hughes, 2002)

1,60, + WY Lhwl, = 7. (2.74)

2.5.2 State of the Art Spacecraft-Manipulator Dynamics

The equations of motion of a spacecraft-manipulator systambe written as (Egeland
and Sagli, 1993)
M(Q)o+C(Q,v)v =T. (2.75)

Here,u = [7]  (wd)" qT]T wherer is the position of the center of mass of the vehi-
cle,wy), the angular velocity of the vehicle ards the joint position of the manipulator.
Alternatively we can use the center of mass of the whole systaepresent the trans-

lational motion. Ther = [#],, (w,)" qT]T wherer.,, is the linear velocity of the
center of mass of the vehicle-manipulator system. This @dgled from the angular
velocity w), and the inertia matrix of a free-flying spacecraft-manimriaystem can be

written as (Dubowsky and Papadopoulos, 1993)

ml 0 0
M=|0 My M], (2.76)
0 My, Mgy,

wherem is the total mass of the system. The Euler angle ré@iggelate tow], by
Oob = Toy, (Oop)wly- 2.77)

Again To,, (©¢p) is singular at isolated points. The control torques arergive r =
KA TT]T wherer, is the spacecraft forces generated by thrusterss the space-

craft momeﬁts generated by thrusters, momentum gyros ctioeavheels, and; is the
manipulator torques.

Other models are also available depending on the actuataislae to control the
spacecraft. In the case whetg 7, # 0 (free-flying space robots) the center of mass of
the system is not constant, but described by the varighleof Equation (2.75) if we let

v=[rl, (W) qT]T. If no external forces act on the system and the spacecraft is

cm
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not actuated with thrusters, the center of mass does noleaate i.e., the system linear
momentum is constant and,, = 0. This can be used to simplify the equations to an
n-dimensional system with inertia matrid, = M,, — My, M;! M, and we get the
reduced system by eliminating(Dubowsky and Papadopoulos, 1993; Papadopoulos and
Dubowsky, 1991)

M (Q)G + Cr(Q,v)¢ = 74 (2.78)
The attitude of the spacecraft is then found from

w=—M, M q. (2.79)

The dynamic coupling between the manipulator and the spafitesomplicates the
modeling and control of such systems. One way to deal with ithto derive a fixed-
based manipulator with the same kinematic and dynamic ptiepeas the free-floating
spacecraft-manipulator system. The dynamically equitateanipulator (DEM) (Liang
et al., 1998; Parlaktuna and Ozkan, 2004) is a fixed-basepulandr with the base fixed
in the center of mass of the space manipulator. Here, spacutator refers to both the
satellite and the manipulator. When no external forces aegmt, the center of mass does
not move and the end-effector of this manipulator is thueigiv the inertial frame. It can
be shown that a given sequence of actuator torques actinigeoPEM will produce the
same joint trajectories for the space manipulator as fobtEM.

The dynamic equations of the free-floating space maniputatobe derived from from
Lagrange’s equations. We assume that all the joints affeastif a free fall environment.
The Lagrangian of the space manipulator is then given byitietik energy only, i.e.,

n+1
S |
T = Z [2p;rmip7; + iwj Roi i RY;wi (2.80)

for both the spacecraft and the links, which is differentdr&quation (2.12) in that the
inertia matrix depends on the configuration of both the spafeand the joints.m; is

the total mass of link andp; is the distance from the center of mass of the system to the
center of mass of link.

Similarly, we can define a fixed-based manipulator with a ephkfirst joint and ki-
netic energy

n+1
1 1
T o= 3 | gelmtos + ST RuTi (R @281)

i=1

whereu; is the velocity of linki with respect to the base. It can be shown that the kinematic
and dynamic parameters of the space manipulator can be chappiee DEM by (Liang

66



2.5. SPACECRAFFMANIPULATOR SYSTEMS

et al., 1998; Parlaktuna and Ozkan, 2004)

2
n+1
T
m; =m; ,t=2...n+1,
s 1mk2k 1mk

II=1I,i=1...n+1,

R
Wl: rL-ll-,rln1 ?
k=1 "k
i—1
M_Ri<w>+b< §+}m’“> i=2.. n+1,
> k1 Mk k=1 Mk
l1 =0
lei =Li Loy M L i=2...n+1, (2.82)
Zn+lmk
k=1

where the vectoiV; connecting joint with joint ¢ + 1 of the DEM is given byR; and
L; of the space manipulator whefg is the vector connecting the center of mass of link
and joint: + 1 andL; is the vector connecting joiritwith the center of mass of link I.;

is the vector connecting joiritand the center of mass of joifiin the DEM. We refer to
Liang et al. (1998) and Parlaktuna and Ozkan (2004) for detai

2.5.3 The Proposed Approach SE(3)

As for the AUV, the configuration space of a spacecraft candseribed by the matrix Lie
groupSE(3) with respect to an orbit-fixed frame. The dynamic equatiarslze written

as
[Mvv Mqu} |:‘./0bb:| {va CVq} { Ob} _ {Tv] (2.83)
Myv  Mgyq q Cov Cygq q Tq .
where

n 2ad/ 0
oM 1 (M(q)v)v
c(Q,v) = —r— = T Vb T Vb
(@,v) pt Aq T 2 [gq ([]vav MJv} { gb]> %q ([MqV qu] { qu})
(2.84)

This can be used both for actuated and unactuated spacecraft
For free-floating spacecraft we havge = 0 and we can simplify the dynamics sub-
stantially by re-writing the mass matrix as

M, = Mgq — Mgy Myy My, . (2.85)

The Coriolis matrix is then found by

197
Z qr — 294 (M,v) (2.86)
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with M,. given as in (2.85) and the dynamics are described by
M,j+Clg=r1, (2.87)
Wheng andg are known, the base velocity vector can be found by

MyvV + Cyv Ve = —(MY G+ Cvyq). (2.88)

q

This can be done either by projectig, onto the allowed configuration spad&=(3)
(McLachlan and Quispel, 2006) or by using structure-prgsgtintegration methods (Munthe-
Kaas, 1998). As these equations are based on the singtflagtylynamics (2.83) these
are also singularity-free with the state variablgs= {g € SE(3),q € R"} andv =

(V)T ¢T]" e RO+m,

2.5.4 The Proposed Approach: The Dynamically Equivalent Manip-
ulator - SO(3)

In this section we reformulate the dynamic equations of @epaanipulator and its dy-
namically equivalent manipulator using the proposed fraank. This removes the singu-
larities in the representation, but is otherwise similasséme no spacecraft actuation, i.e.,
7em = 0. Then the kinetic energy of linkof the space manipulator is given by

Ti=5 SUANALS
= % ( V) THT + 4" Ji(q T) Ad) I; Ady,, (H%b+J( ) )
_ % (W) THT + 47 Ji(q)T) A I; Ady,, (Hw, + Ji(g)d)
= % [(@§)T 4] Mi(e) [wgb] %UTM( v (2.89)
where
o= [ ottt ML) oo

and the inertia matrix is given by substituting this intol@. andH given as in (2.28).
The configuration space is then given®y= { Ros, ¢}

Similarly, we can define a fixed-based manipulator with a EplaHirst joint, also with
configuration spac®0(3). The corresponding inertia matrices are then given by

Mi(q) = (2.91)

HTAdy, I/ Ad, JH HTAd), I/ Adg, J!
pTAdt Iady, B ()T ALY 1Ady,

whereI] and the kinematic relations used to compig and.J/ are found from (2.82).
Thus, we havé/l, = V! as required. The spacecraft inertia matrix is given by

J: 0 0
L=10 J, 0 (2.92)
0 0 J.
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which also represents the inertial properties of the sphkbiase link. The Coriolis matrix
then becomes (following the mathematics of (2.27-2.31))

Z(’)M’ (2.93)
. —2(M'(g)v); 0
3 [g;(wfw o) ["8]) & (o amgl %))

where(M’( )v) is the vector of the first three entries of the veciét(q)v (correspond-
ing to V, = wY,). The specific computations of the inertia and Coriolis et are
performed in the same way as for the AUV (see Section 2.4.8¢pmxfrom the partial
derivatives of the inertia matrices which now depend on #lection matrixH. This is
shown in Section 2.5.4.

The dynamic equations can now be written as

M'(q)o + C"(Q,v)v =T. (2.94)

Hereo = [(w],)T ¢'] T wherew], is the velocity state of the passive spherical base joint
of the DEM (and thus also the spacecraft) gritle velocity state of the manipulator of the
DEM (and the space manipulator), a@d= { Ros, ¢} WwhereRy, € SO(3) determines the
configuration of the spherical joint/spacecratft arithe configuration of the manipulators
of the DEM and space manipulator. We note that the singultrét normally arises when
using the Euler angles is eliminated and the state sgg@ace) is valid globally.

Most importantly, we can now use this fixed-base DEM for satioh and control of
the space manipulator. Similar to the conventional apgroéde DEM described by (2.94)
have the same kinetic and dynamic properties as the spadputaar and if the same
actuator torques(t) = 7/(t), vVt are applied on both the DEM and the space manipulator,
this will produce the same joint trajectogyt) = ¢'(t) for Vt € [to, o] if q(to) = ¢ (o).

Computing the Partial derivatives of M (q1, ..., ¢n)

The partial derivatives of the inertia matrix with respextt, . . ., ¢, are computed by

aM(qh?qn) - HT T Ad - oAd,
- o :z; A { it T Ady,, + Ady, Ika} [H 7]
T
+ Z o Tme ot HT Adj, I; Ady,, &7 aTq ]
i T
i=k+1 L Oar Ad I Ad H Dan Ad I Ad J —|-J Ad ] Adng aqk
(2.95)

which only differs from (2.59) in that the identity matrixis substituted byd andH T in
the first part and we multiply by andH " to get the right dimensions in the second part.
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2.6 Ground Vehicle-Manipulator Systems

We now consider a ground vehicle with no non-holonomic aairsts. The configuration
space can be described by the matrix Lie grélp(2). The velocity state is thus fully
determined by only three variables and we cholsso that

Voo = HVy, (2.96)
with T
100 0 00
H=|0 10 0 0 0f . (2.97)
0 000 01
For Euclidean joints Equation (2.19) simplifies to

Voo = ov. (2.98)

S is thus given by the identity matrix, the partial derivasvef S vanish and we get

v (Quv) ZaMW . (2.99)
k=1
The inertia matrix
m 0 0
I=(0 m 0 (2.100)
0o 0 J,

then determines the dynamic equations.
If non-holonomic constraints are present, such as for valteglechanisms, we get the
selection matrix
g_[L 000 T
0 0 0 O

8 0 (2.101)

1

and velocity statd’}, = [2]. The dynamics are then found by substitutiigand V,
into the formalism presented in Section 2.3.

2.7 A Simple Example

Consider the general structure of the equations for a mésmanith one joint with joint
variableg; mounted on a vehicle with configuration sp&tB(3). We can write its inertia
matrix as follows

I,+Ad! I, Ad AdT I, Ad,, X,
M b 916 g1b 91b . 2.102
(@) = [XT Adib I Ady, XTAdT T Adg, X, (2.102)
Its partial derivative with respect pis a single matrix
oM (q1) I | o7 Ag, 6Adq
o |XT [ 20y Adg,, +Adg,, T w} 1 Xi] (2.103)
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Yo

Yy

Figure 2.2: One-link robot with a prismatic joint attached to a non-inertial base with corgtgn
spaceSE(3).

with
0916
oq

Note that the Jacobian matrix is constant and hence no pdetigatives are taken.
Consider as an example the robot in Figure 2.2 with a singéeratic joint. We can
write the Jacobiana$ = [0 1 0 0 0 O]T and the inertia matrix as

= —guX1g = —g1X1. (2.104)

[ M, 0 0 0 ml —maq 0 ]
0 M, 0 —ml 0 0 m
0 0 M, maqy 0 0 0

M@ =| 0 —ml mq Jio+ml*+mg 0 0 —ml
ml 0 0 0 Jiy + ml? —mlqy 0
-mg 0 0 0 —mlqy  Jiz+mg 0

| O m 0 —ml 0 0 m |

(2.105)

whereM, = my+m andJ, , = Jp » + J,, etc. Assume we are interested in the dynamics
of the prismatic joint. This is given by the last row of theritie and Coriolis matrix. The
Coriolis matrix is given by (2.26) where the first part is zaral the second part gives

* * * * * * *
* * * * * * %
* * * * * * *
C(q, Ve, 4)=

(Q7 ObaQ) * % % * * * *
* * * * * * %

m m m m m
Fw, 0 —Fw, —Fv.-mquw, Flw. F(vz+lwy)—mqw, 0
(2.106)
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The last row here is given by multiplying th@% € R7*7 with the vectorv =

(V)T ql]T. Using these expressions, we can write the dynamics of temptic joint
due to the motion of the vehicle as

7b b
g ) 8]+ e e ') =

. . . m m
mgi + moy, — miw, + 5 Wale — 5 Wals

m s m
— 5 VeWs — MWy — E(UI +lwy)w, —mqw; =T
2

G+ Oy — lwg + (v + lwy)w, — VW, — qw? — qu? = r. (2.107)
: : m

2

Similarly, if we consider a single rigid body iSE(3) the inertia matrix becomes
(dropping the subscri

m 0 0 0 0 0
0O m 0 0 0 0
0 0 m 0 0 0

M=10 00 5 0 o (2.108)
0 0 0 0 J, 0
00 0 0 0 J

and when computing the Coriolis matrix we note that the fiest pf (2.26) is zero and the
second part is given beyd(TMv) and the Coriolis matrix is thus given by

0 —Jow,  Jywy 0 0 0
Jow, 0 —dJpWye 0 0 0
| ywy Jpws 0 0 0 0
Cla) = 0 —mu, mo, 0 —Jw,  Jywy (2.109)
mu, 0 —MUy Jow, 0 —JrWys
—Muy MU 0 —Jywy  Jpwg 0

which we recognize as Kirchhoff's equations. Kirchhoffguations are, however, valid
for systems with only kinetic energy.

There are many ways for computing the Coriolis matrix foidigodies. One com-
monly found formulation in ship modeling is

Clg)=—| — Y Mun+ Mo (2.110)
Myvy + Myovs  Mayvy + Maovs

and the dynamics are given by (2.39) and (2.40). The exme$si(2.110) can also be
reformulated to the form of (2.109). We note that using tipigraach we end up with the
transformation in (2.39) which singularity prone.

2.8 Conclusions

In this paper the dynamic equations of vehicle-manipulaystems are derived based on
Lagrange’s equations. The main contribution is to closegtiebetween manipulator dy-
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namics which are normally derived based on the Lagrangiproagh and vehicle dynam-
ics which are normally derived using other approaches ieri@avoid singularities. The
proposed framework allows us to derive the dynamics of Vesiwith a Lie group topol-
ogy using a minimal, singularity-free representation baseLagrange’s equations which
naturally extends to include also the manipulator dynamidse globally valid vehicle-
manipulator dynamics are thus derived for the first time gisire proposed framework.
Several examples of how to derive the dynamics for diffevehicles, such as spacecraft,
AUVs, and ground vehicles are shown to illustrate the sinaplalytical form of the final
equations.

2.9 Appendix

2.9.1 Partial Derivatives ofAd, - By Direct Computation

The partial derivative oAd,,, with respect tay, wheni < k < j can be written as

O0Ad,, . 0Ady,,
29 i1 Z 9k Dk Adg,;
Iqx Oqy,
i N ORk—1)r  P—Dk - OR(k—1)k .
_ [Rik=1)  Pige—1) Rigr—1) day, ar Tk=Dk T P(h—1)k 5, Bij  Prj R,
L 0 Ri(k—1) 0 781%(6'“71)’“ 0 Rkj
dK

[ k—1)k »
R, ORGi—1)k pp Ry 1) ( P R + Ri(k— 1) ) Bp—1);+
_ i(k—1) 9qy, J

o9
Ri(k—l)p(k—l)kT)kRkj + Pi(k— 1)R1(k: 1)%131@]

OR(k—1)k
L 0 Ri—1)—ggr " Rij

> Rigo—1) X Rk 1)k Phs Bij +Righ—1) (RaPr1)0)+X0) Rk 1),
Rie—1) XwR—1)k Ruij [ ite—1) X R(ke—1)kPhj Ricj 7(.19 1) (k=1r) +X ) Rk 1),.:|
+Ri(k—1)p(k—l)kaR(k—l)kRAkg+Fz‘(k—1)Ri(k—l)XwR(k—l)kRk]

0 Rik—1) XwR(k—1)x R
-R'(k 1>XMR(’€ 93 { Ri(k—1)XwR(k—1)kPkj Rij+Ri(k— 1)(pr(k D) Rr—1);+ }
(e _
= J Rio—1yXoR(—1y;+ Ri(k—1)P(r— 1)kaR(1c 1 HPik—1) Rik—1) Xw R(k—1);
L 0 Ri—1)XwR(—1;

Rie—1)XwRk—1); Ri(kfI)XUR(kfl)j'i'Ri(kf1)Xwﬁ(kflij(kfl)j'i'ﬁi(kfl)Ri(kfl)XwR(kfl)j
i 0 Rik—1)XwRk-1);

_ Rik—1)Xw Ri(k—l)Xv+ﬁi(k71)Ri(k71)Xw |:R(k—1)j ﬁ(kfl)jR(kfl)j]
0 Ri(k71)Xw 0 R(kfl)j
_ [Rik—1) Isi(kfl)Ri(kfl):| |:Xw XU} |:R(k—1)j ﬁ(k—l)jR(k—l)j]
0 Rik—1) 0 X. 0 R—1);
= Adg,,_y adx, Adgg, ), (2.111)

where we have used that

ab = (ab) + ba, (2.112)
and
Pk—1); = (B(k—1)kPkj) + P(k—1)k- (2.113)

The proof whenj < k < i follows the same approach.
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2.9.2 Partial Derivatives of the Mass Matrix for Joints with Non- Con-
stant Twist

For a non-constant twisX, we get the following expression for the partial derivagieé
the inertia matrix

OM(q1,-..,qn)
0qx

M=

HT |
> ({JT} [a i [; Ady,, +Ad] I%} [H Ji]>

+Z

m><m HT AdT I Adqlb 8q ‘|
d JL T avJ; T T
Adg, I; Ady, H %2t Adg, I Ady, J +JTAdg, 1; Ad,, 52

(2.114)

where the only difference from the constant twist expresg2095) is that the summing
starts fromk and notk + 1 in the last term and that the partial derivatives of the Jegob
are given by

quL _[O Adgb(k—l) %Xk(qk) %(AdngXkJrl %(Adgb(i—l))Xi(qi) 0 ]

For non-constant twists only

- (2.115)

We still have thaly, = G, + ¢ and thus for a consta@gy, we getg, = ¢, so that
the transformation from local to global coordinates for thanipulator is still given by
G = S(q, )¢ with S(q,$) = I. Thus the expression for the Coriolis matrix does not
change.

74



Chapter 3

Modeling and Motion Planning
for Mechanisms on a Non-
Inertial Base

3.1 Abstract

Robotic manipulators on ships and platforms suffer from large inertial forces due to
the non-inertial motion of the ship or platform. When operating in high sea state,
operation of such manipulators can be made more efficient antbbust if these non-
inertial effects are taken into account in the motion planning and control systems.
Motivated by this application, we present a rigorous and singlarity-free formu-

lation of the dynamics of a robotic manipulator mounted on a ron-inertial base. We
extend the classical dynamics equations for a serial manipator to include the 6-DoF
motion of the non-inertial base. Then, we show two exampled a 1-DoF and a 4-DoF
manipulator to illustrate how these non-inertial effects @n be taken into account in
the motion planning.

3.2 Introduction

The use of unmanned and autonomous vehicles operating tilehesvironments has
shown both to be cost efficient and to protect humans fromnpialy dangerous situ-
ations. One such hostile environment is high sea state. Weildo the case when a
manipulator mounted on a ship or a platform is required taateeindependently of the
sea state. Large inertial forces may influence the manipukatd make the operation
inaccurate, extremely energy demanding, or impossiblegat@rque limits. The inertial
forces thus need to be taken into account in both the patmiplgiand control of the robot.
Ships and oil platforms are expected to become increasingtyanned in the future
and hence the need for continuously operating robots faresilance, maintenance, and
operation will grow (Love et al., 2004; Kitarovic et al., Z80 All these tasks become
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Figure 3.1: Model setup for a four-link robot attached to a non-inertial base withdinate frame
¥,. Frame¥, denotes the inertial reference frame.

increasingly important in harsh environments such as reghsgate. To be able to continue
operation under these conditions, a good understandingddead of the effects of the

inertial forces due to the motion of the ship or platform. \Werefore develop the dynamic
equations of the robotic manipulator including these éffec

Research on several related topics can be found in literatuove et al. (2004) ad-
dressed the impact of wave generated disturbances on thegaontrol of a manipulator
mounted on a ship based on the classical Lagrangian appr&agetitive learning con-
trol was used and performance was improved for purely periodtions, but no formal
derivation of the dynamics equations was presented. Thefus&ble robots for loading
and unloading cargo between two ships has also been addtgsgétarovic et al. (2005)
and Oh et al. (2005). In the Ampelmann project (SalzmannyR0@ Stewart platform
is mounted on a ship and is used to compensate for the motitheaghip by keeping
the platform still with respect to the world frame. Lebanslei(1997) give a cursory de-
scription of a telerobotic shipboard handling system, anduge et al. (1992); Kajita and
Kosuge (1997) addresses the control of robots floating owd#ter utilizing vehicle restor-
ing forces. Other related research areas are macro/miangomiators (Yoshikawa et al.,
1996; Bowling and Khatib, 1997), underwater vehicle/maldfor systems (McMillan
etal., 1995) and spacecraft/manipulator systems (Egaelad®agli, 1993). Most previous
work deals with robots mounted on a free-floating base. Tisetgowever, an important
difference between modeling a robot on a forced and a fregifip base. A forced base
motion will add inertial forces to the dynamic equationstttia not arise in free-floating
case, such as spacecraft/manipulator systems and maoiguta small AUVSs.

Our approach differs from previous work in that the dynangaations are derived
for rigid multibody systems including both Euclidean jairdnd generalized joints with
configuration spaces different froR*. We follow the generalized Lagrangian approach
presented in Duindam and Stramigioli (2007, 2008), whi¢tmed us to combine the Eu-
clidean joints (the manipulator) and more general joirtie ftase), i.e. joints that can be
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described by the Lie grou§E(3) or one of its ten subgroups. In our case, the transfor-
mation from the inertial frame to the base frame (the platiois represented as a “free
motion” joint described by the Lie groupE(3). We also show through the examples how
the base motion can be expressed as subgroufi& (), in our caseSO(2).

For marine vessels in high sea state, very large inertiabfoare added to the manip-
ulator dynamics. To illustrate the effect of the inertialdes and how these appear in the
robot equations, we look into the problem of finding the ojatitnajectory in terms of ac-
tuator torque. There are many motivations for doing thisstréf all the wear and tear on
the manipulator is reduced and, for cooperative manimnathe possibility of breaking
an object manipulated by two robots is also reduced. Segahé! solution is more energy
efficient as the inertial forces will, if possible, contrtbuo the desired motion instead of
working against it. The final motivation is that a good untkenging of the effects of the
inertial forces on the dynamic equations is essential kstttsat require high accuracy and
the need to compensate for these effects (Love et al., 2004).

We assume that the motion of the free moving base is forcestreadty by forces
unknown to us and that the pose, velocity, and acceleratidheobase relative to the
inertial world are known for all times. This means we alsaiass that the motion of the
robot does not influence the motion of the base. The motiohebase will add inertial
forces to the dynamics equations of the robot and the podeedbase will influence the
gravitational forces acting on each link. Finally, we assutre robot to be an ideal rigid
friction-less mechanism with purely torque driven actosto

Given these assumptions, we consider the following two lprob: first, we derive
the dynamic equations describing the motion of the roboeuttik influence of the non-
inertial base motion. Second, we consider the path planmiablem of finding the tra-
jectory between two given configurations for a given baseanotntuitively, the optimal
solution is the trajectory for which the inertial forces ielccelerate and decelerate the
robot as much as possible, such that little control torquedsired.

3.3 Multibody Dynamics with a Non-Inertial Base

We extend the classical dynamics equations for a serialpustor arm with 1-DoF joints
to include the forced 6-DoF motion of the non-inertial base.

3.3.1 Manipulator Kinematics on a Non-Inertial Base

Consider the setup of Fig. 3.1 describing a genertahk robot manipulator arm attached
to a moving base. Choose an inertial coordinate frdmea frameV, rigidly attached to
the moving base, andframes?; (not shown) attached to each linkt the center of mass
with axes aligned with the principal directions of inerti&nally, choose a vectar € R™
that describes the configuration of théoints.

Using standard notation (Murray et al., 1994), we can dbsdtie pose of each frame
U, relative to¥, as a homogeneous transformation magtixe SE(3) of the form

_ |Roi  poi 4x4
901—[0 1:|ER (31)
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with rotation matrixRy; € SO(3) and translation vectqr,; € R3. This pose can also be
described using the vector of joint coordinagess

9oi = Govgbi = Jobgvi(q) (3.2)
The base posgy, and the joint positiong thus fully determine the configuration state of
the robot.
In a similar way, the spatial velocity of each link can be egzed using twists (Murray
et al., 1994):

’Z]O .
Vo = L%ﬂ = Vo, + Vi) = Ady,, (Vobb + Ji(9)q) (3.3)

wherev); andw); are the linear and angular velocities, respectively, dflirelative to the
inertial frame,J;(¢) € R®*" is the geometric Jacobian of linkelative toV,, the adjoint

is defined as\d, := [ f2}] € R%*6, andp € R**3 is the skew symmetric matrix such
thatpz = p x x for all p,z € R3. The velocity state is thus fully determined given the
twist )}, of the base and the joint velocitigs

3.3.2 Manipulator Dynamics on a Non-Inertial Base

The previous section shows how the kinematics of the systembe naturally described
in terms of the (global) state variables,, ¢, V},, andg. We now derive the dynamics
equations for the system in terms of these state variablesfirgf assume the base to be
free-moving under the influence of some prescribed extevnahch F’, and then restrict
the base motion to be kinematically constrained.

To derive the dynamics of the complete mechanism (includieg6-DoF between
¥, and¥;), we follow the generalized Lagrangian method introducgddbindam and
Stramigioli (2007, 2008). This method gives the dynamiasagigns for a general mecha-
nism described by a s€ = {Q;} of configuration state®; (not necessarily Euclidean),
a vectorv of velocity states; € R™¢, and several mappings that describe the local Eu-
clidean structure of the configuration states and theitiogldo the velocity states. More
precisely, the neighborhood of every stélgis locally described by a set of Euclidean
coordinatesy; € R™ asQ; = Q;(Qs, ¢;) with Q;(Q;,0) = Q;, and there exist differen-
tiable matricesS; such that we can write; = S;(Q;, ¢;); for everyQ;.

Given a mechanism with coordinates formulated in this gaimsd form, we can write
its kinetic energy a#/; (Q, v) = 20T M (Q)v with M (Q) the inertia matrix in coordinates
Q. The dynamics of this system then satisfy

M(Q)0+C(Q,v)v =7 (3.4)

with 7 the vector of gravitational, friction, and other exterraiques (collocated with),
andC'(Q, v) the matrix describing Coriolis and centrifugal forces aneg by

_ oOM;; 1 _,0M;
Cii(Q’U) = E < . Skll - *Skil . )
™ OPx, 2 O,

vy
$=0

(3.5)

0Sm;  0S
—1 m, ms —1
+ Yy (5 ( 5o " g, )Sk Mkz> v

k,l,m,s
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More details and proofs can be found in references DuindadvSaramigioli (2007) and
Duindam and Stramigioli (2008).
To apply this general result to systems of the form of Fig, &4 write@ = {gos, ¢}

as the set of configuration states, and {ngb} as the vector of velocity states. The local

Euclidean structure for the staig, is given by exponential coordinates (Murray et al.,
1994), while the state is globally Euclidean of itself. Mathematically, we can exgs
configurationg ggs, ¢) around a fixed stat@jos,, ) as

6

gob = Job €XP Z bi(on); (3.6)
j=1

qi:(ji+¢i ViE{l,...,n} (37)

with b; the standard basis elements of the Lie algelsad). The corresponding matrices
S; can be collected in one block-diagonal matsixgiven by (Duindam, 2006)

S(Qv ¢) - |:(I B % ad¢b _B% adib T ) ?:| c R(6+n)><(6+n)

0 pPa.6
(Q,v) has the required form.

From expression (3.3) for the twist of each link in the med$ran we can derive an
expression for the total kinetic energy. Ligtc R%*6 denote the constant positive-definite
diagonal inertia tensor of link expressed inl;. The kinetic energyJ, ; of link ¢ then
follows as

with ad,, = [ﬁ‘*-‘-ﬁ 1?14-'3] € RS for p € RC. This shows that the choice of coordinates

1, . ,
Uk,i = b} (VOli)TIiVE)Zi
1
=3 (V3 + Ji(Q)Cj)T Adl I Ady,, (Vi + Ji(q)d)
1 Vb 1
=3 [(Vobb)T qT} M;(q) { g] = ivTMi(q)fu (3.8)

with

T T
Adgib I; Adg,, Adgib 1; Ady,, Ji ] (3.9)

Mi =
(@) [Jf Adl I, Ad,, JT AL I Ady, Ji

The total kinetic energy of the mechanism is given by the s@ithekinetic energies of
the mechanism links and the non-inertial base, that is,

Ui(g.v) = 3o ([{f o] + ;qu)) v (310)

inertia matrix M (q)

with M (q) the inertia matrix of the total system. Note that neitbgiq, v) nor M(q)
depend on the posg, and hence the choice of inertial reference fraige
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We can write (3.4) in block-form as follows

st i) 4]+ [ @l %)= 7]
[MIJV Myq q * Cov Cqq q T (31D
with £ the external wrench on the base link, expressed in cooeiiat (such that it is
collocated with the twist},). To compute the matri€’'(Q, v) for our system, we can use
the observations that/(q) is independent ofiy,, that S(Q, ¢) is independent of, and
thatS(Q,0) = I. Furthermore, the partial derivative df with respect tap, is zero since
M is independent o, and the second term of (3.5) is only non-zero ford@he, block
of C(Q,v).

The precise computational details of the partial deriesifollow the same steps as
in the classical approach (Murray et al., 1994). To complgepiartial derivatives of the
adjoint matrices, one can use a relatively simple relatiérwe express the velocity of
joint k& asvF Y — Xqy, for constantX,,, then the following holds:

(k—1k
dAdy,, Adg,,._,, adx, Adg,_,, for i < k<j
Tk” - B Adgi(k'—l) adx, Adg(k,ln forj <k <i

0 otherwise

To prove this, we start by writing out the spatial velocityfedme ¥, with respect to
VU (p—1)y Wheni < k < j:

. . 09—
. k— . - 9(k—1)k .
Xiqr = V((k_ll))k = g(kq)kg(kl_l)k = %gk(kq)%
qk
whereX := [?%w ?g} If we compare the first and the last terms, we get
OR 1)k .
S = Rk, (312)
dr
OP(k—1)k 5
o = Kupemv + X (3.13)
dk
We can use this relation in the expression for the partiavatve of Ad,, _,,,:
OR—1yk  Plre—1)k . OR(_1yn
OAdg, ., l 3’;;>" quin R(k—l)k"‘p(k—l)kg;kl)k‘|
a5, ORk— 1)k
aq O g
_ |:Xw )A(v:| |:R(k1)k ﬁ(kl)kR(kl)k:|
0 X, 0 Ra—1)k
= ady, Adg,_,, (3.14)
It is now straight forward to show that
0 Ady,, —Ad,, dAdy,_,, Ad,,
an Gi(k—1) aCIk 9kj
= Adgi(k—l) aka Adg(k—l)k Adgkj
= Ady,,_,, adx, Adg,_, . - (3.15)

Similarly whenj < k <.
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3.3.3 Manipulator Dynamics on a Forced Non-Inertial Base

We now simplify and specialize the dynamics equations byragsy that the motion of
the platform is fully determined by external forces that ae&her known nor of interest.
We only assume that the relative pagg, velocity V3, and acceleratioly, of the base
relative to the inertial world are known from measuremeiitsis implicitly implies that
the torques applied to the internal robot joints do not infieeethe motion of the platform,
which is a reasonable assumption in our application of divels small robot attached to
a large moving base.

Since we are not interested in the external forces on the amésin, we can consider
just the second block-row of (3.11), which expresses thetratcelerationg as a function
of the joint torques- as well as the non-inertial motion of the base. This can beittenw
as

MgqG + C_'qqq + MqVVObb + C_VqVVobb =T (3.16)

inertial forces

which partially separates the usual robot dynamics (firetteums) from the inertial forces
(third and fourth term), although the matxi%, generally still depends oW},. For a static
base frame\(, = 0), the equations reduce to the regular dynamics of-dink robotic
mechanism. Note that for consta¥if,, the terms due to the non-inertial base motion
generally do not drop out, since a constant twist can alstagoiinon-inertial) angular
components. Note also that neither the inertia of the bas¢heosecond term in (3.5)
appear in these equations.

The termsC,y andC,, can be written more explicitly as

n

= oM, 197 b
Cov =3 TGt =55 (e M3 [

k
Pt dq 2 0q q
_ " OM,, ., 187 7
=3 G =5 (1 2] )
k=1

This approach can be used to obtain the dynamics equatioas farbitraryn-link mech-
anism attached to a non-inertial base. Specific examplgzrasented in Section 3.5.

3.3.4 Gravitational Forces

Finally we include the gravitational forces. Let the wreradsociated with the gravita-
tional force of link: with respect to coordinate framlg; be given by

i | fe | | Roie-
Fg = |:’]"A;fg = —m;g f;RUiez (317)

wheree, = [0 0 I]T andr} is the center of mass of linkexpressed in fram@;. In
our casel; is chosen so that; is in the origin of¥; so we have"; = 0. The equivalent
joint torque associated with linkis given by

7y = Ji(a) Adg, (Q)F4(Q) (3.18)
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whereJ; is the geometric Jacobian addl,,, = Ad,,, Adg,, is the transformation from
the inertial frame to framé We note that bottR,; andAd,,, depend on the base config-
uration with respect to the inertial frame. The total effefcthe gravity from all the links

is then given byr, = >"" | Tg which enters Equation (3.16) the same way as the control

torque.

3.4 Compensation Using Motion Planning

In general there are two ways to deal with the inertial forod® can try to compensate
for the effects in the controller or in the motion planninga@ithm. In the first method we
cancel the effects of the inertial forces in the feed-fohtarms of the controller. Consider
the control law

T =T¢¢ +TPD (3.19)

where

Trr = Mygla + Cogda + MavVgy + Cov Vi, — > (JiAdy,, Fy) (3.20)

n=1

tracking terms compensation for inertial forces

gravity compensation
pp = Kp(qa — q) + Kp(ga — q) (3.21)

PD-controller

This is the standard augmented PD control law which in oue edso compensates for
the inertial forces. As we are mainly interested in the femdsard terms, we will assume
perfect tracking, i.eq(t) = gq(t). With this control law the non-inertial and gravitational
terms are regarded as disturbances and are canceled.

When large inertial forces are present, canceling thesesteray be very energy de-
manding. Thus, instead of regarding these terms as distoesawe will find the trajectory
for which the non-inertial and gravitational terms coirecigith the tracking terms to an as
large extent as possible. In doing this, the inertial foreiiscontribute to the desired mo-
tion instead of working against it. This will reduce the wead tear on the manipulator,
require less actuator torques and allow more accurate miatign.

Given the dynamic equations, the initial positiq) and desired end positiafy., in
joint coordinates, we want to find the optimal trajectoryagisoy the minimum of the cost

function P, i.e.
T

P,in = min P(r)dt (3.22)
a(t) Ji=1,

whereP(7) is some cost function representing the torque requirechiarrtotion,

q(To) = qo,
q(T1) = qaes, (3.23)

are the vectors describing the initial and end positiondldha joints and

Mygqq + éqqq + MqV%bb + cqv%bb Ty =T (3.24)
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determines the dynamics of the system.

The global solution to this problem is generally very compl&ssuminggos, Vi, (¢)
andVy, (t) known, we first need to computd,, (q), Cyq(q, 4, V), Mgy (g) and
Cyuv(q,4,Vy,). Then we need to find the optimal trajectony), ¢(t), ¢(t)) which re-
quires the least amount of torque. Both these operations@arputationally very de-
manding.

3.5 Examples

We now present specific examples of how the previous modalimgplanning methods
can be applied in case of specific robot motion objectivesgaveh base motion. Here,
we make specific choices as to how to discretize and apprdoitha problem to make it
solvable; future work will investigate different and morengral approaches.

3.5.1 Parameterization of Joint Motion

To reduce the search space, we assume that the shape of imh¢tajectory is given so
that we only need to find the starting time and the length ohtlé&on for each joint. We
also consider a cost functid®(r) that is quadratic in- and thus reduce the problem to

T
Ppin = min / T D7 dt (3.25)
to,t1 t=Tp
whereD is a positive definite matrix that defines a metrie-ispacet, = [tl,o e tnto]T

are the starting times artgl = [tl,l . ~tn,1]T are the end times for thejoints, which can
all be chosen independently, with the restriction that< ¢, o < t;1 < 13 for all i and
for a fixed prescribed time intervély, T ). We choose sinusoidal joint motions given by

qz(t) = Qa; sin (bz(t — tiy())) y

. a; a; . ) o
¢(t) = b cos (bi(t —ti0)) ,
a; a; .
¢i(t) = gio + o~ (t = ti0) — g5 sin (bi(t —ti0)), (3.26)

K2

fort € (t;0,t:,1) andg;(¢) constant otherwise. The boundary conditigng; o) = ¢:0
andg;(t;,1) = ¢ des 9ive rise to the following two equations

i,des — Yi b2 2
(Gides — 4i,0)b7 b= — " (3.27)
o ti1 —tio

s

a; =

and hence the motion is fully parameterizedtpy andt; ; for given gy andgg.s. The
motion planning problem is thus reduced to finding the opltitinae intervals(¢; o,¢; 1)
for all joints: =1,...,n.
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3.5.2 Base Notion

The environmental disturbances that affect the platforrtion@re wind, waves and ocean
currents. The ocean currents are low frequency disturlsaawee will not affect the ma-
nipulator dynamics. It is common to assume the principleugiesposition when consid-
ering wave and wind disturbances (Fossen, 2002) and theycaneally modeled in the
frequency spectrum. Many good models of the ship motion fifereént sea states are
available in literature (Fossen, 2002; Salvesen et alQ197

The platform motion is modeled ag,(t) € SE(3). Large marine vessels are often
found to have a characteristic motion which we can repreasrd vector subspace of
se(3). For the purpose of this paper, we will estimate the main kmguotion of the
platform somewhat roughly by a sinusoidal motionS®(2). Assume that the waves hit
the platform with a velocity in the direction of thgaxis in ;. The platform pose and
acceleration are then given by an angular motion about theis:

¢ = Asin (Bt) (3.28)

This is a simplified motion, but the dynamic equations ar@al any motion inSE(3).
Specific examples of how this base motion affects the maatipuimotion are shown in
the following.

3.5.3 1-DoF Manipulator

Consider first a mechanism with a single 1-DoF prismatid joicated ap,; = [0 0 ll} T
in ¥, and moving in the direction of thg-axis. Let the base motion be given as in (3.28).
We setm = 1 and the dynamics equations reduce to

7= L — qd* — gsin(p). (3.29)

We start by approximating the base motion given in (3.28leyTaylor approximation
sin(z) ®x — = + = — = +0(2"). (3.30)

We can writep(t), ¢(t) andd(t) as

3 5 7
o(t) ~ A (Bt— (i? + (B;!) — (B;!) +0(t9)> :
o(t) ~ AB (1 - (BQ?Q + (it!)4 - (36?6 + O(tS)) ,
. 3 5
b0 e (B0 B0 (B ).

This is typically a good approximation for one period of sinoidal motion. We ap-
proximate the desired joint motion given by (3.26) in the samay.
As we have only one joint we s& = T; andt; = 7;. The minimization problem is
then reduced to .
Prnin = min / (G — i — g6 — gsin(¢))dt (3.31)
to

0,t1
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Figure 3.2: The torques needed to move the prismatic joint fri@m= 0 to ¢4s = 1.5 for high
frequency base motiop(t) = —1/5sin (2t) plotted with respect to the start timgand the motion
lengthAt = t1 — to. The minima found are marked with an "X".

which after substituting the Taylor approximations reduttethe problem of finding the
minimum of a polynomial equation. We can now quickly find thgimal solution with
respect to the start and end timgsandt;. We define the search space as the time interval
for which the Taylor approximation is accurate, i.@g,t1) € (—tr,tr) where2tr is

the wave period of the principal frequency of the waves. Big.illustrates the value of
the integral (3.31) for different start and end timesd¢t) = —1/5sin (2¢), go = 0 and
qdes = 1.5. The optimal and worst case trajectories are shown in Fgy. 3.

3.5.4 4-DoF Manipulator

The previous example can be solved efficiently as it reduzdmding the minimum of
a polynomial equation. As a second example, we show how ricatenethods can be
used to compute optimal motion paths for the 4-DoF manipulsttown in Fig. 3.1 with
realistic mass and inertia parameters. We now use the exaatiens for base motion and
the manipulator dynamics. The base moves along the anga@ompattern (3.28) at a
relatively low frequency, which means the inertial forcesstly enter through a changing
direction of gravity.

We solve the mation planning problem by numerically minimggthe objective func-
tion (3.22) and parameterize the problem as follows: eattt joajectory is given by a
separate sinusoidal motion (3.26) with parametggsandt; ;, the total motion from start
to goal is to be finished within a fixed prescribed time intef#&, 7;) = (0,10), and
the cost function is chosen as (3.25) with= 10~ and integrated over the fixed time
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~Worst case-
. required torque

®Optimal actuator

torque
Worst case

¢ actuator torque

Torgue [Nm]

Non-inertiazl torque acting - -
on the manipulator due
to the base motion

Time [s]

Figure 3.3: Optimal and worst case trajectories. The required torque is the totaletoequired

for the desired joint motion, which is the sum of the actuator and the inertguésr The actuator
torque is the torque applied by the actuator so that the total torque is equal teqthired torque,

i.e. the inertial torques subtracted from the required torque. This is theddo be minimized. The
optimal interval is found at = [-1.58 -0.98]. The worst case is found at= [-0.95 -0.35]. The
integrated torque (squared) for the optimal solution is 0.87 and 11r3®doworst case. As the
length of the motion increaseA( increases in Fig. 3.2), the integrated torque increases unbounded,
thus the worst case starting point search is performed with a fixed motigthlef0.6s.

interval (Tp, T1). We choose the start and end configurations as

g0)=[-25 0 0 0]
(1) =25 5 5 3]

and the base motion as (3.28) with = ﬁ andB = %’T The motion planning prob-
lem thus amounts to finding the eight parameters (one stdread time for each joint)
that minimize the total squared required torque integratext a fixed time interval while
starting and finishing the robot in the required configuradio

Figures 3.4 and 3.5 show the solution obtained using Matledmstrained minimiza-
tion functionfmincon.mat. A full animation of the resulting motions can be found in the
video accompaniment to this paper. Fig. 3.4 shows stillsbfithe optimal solution and il-
lustrates the sinusoidal motion of the base. Fig. 3.5 coeghiree solutions: one baseline
solution that simply takes the start time for each jointetctgry att; o = 1y and the finish
time att, ; = 77, one solution that optimizes the cost function assuming kase motion
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(a horizontal stationary base), and one solution that aptisthe cost function taking the
real base motion into account. The associated costsafd , and11, respectively.

The figure shows that, for this example, taking the base matitw account can sig-
nificantly reduce the cost and hence the required torque joliemotions optimized for
a static base (dashed line) even perform worse than thatagght motions (dotted line)
when applied during non-static base motion. When optimittiegoint motions while tak-
ing the base motion into account (solid line), the result icmimproved, and the benefit
of the resulting motions can be understood intuitively: ghiematic motion is delayed and
shortened as to optimally use the changing gravity diradtitue to base rotation) in the
acceleration and deceleration phase, similar to the pusvieDoF example. The resulting
required actuator torque is thus reduced to close to zero during the motion, i.e., én th
time interval(tq o, t1,1) = (3.2, 7.2). Similarly, the motion of joints 3 and 4 is delayed as
to minimize the amount of time spent holding up the links agegravity.

The example shows how knowledge of the base motion can betassgnificantly
reduce torque requirements, even with only little freedanthie optimization (onlyt; o
andt; ; can be optimized). If the shapes of the trajectories aravefioto be changed
and optimized in more detail, improvement should be everensagnificant. Including
more parameters makes the optimization problem more comnibleugh, and numerical
solutions may get more easily trapped in local minima.

3.6 Conclusions

The classical dynamics equations for a serial manipuladge lbeen extended to also in-
clude the motion of a forced non-inertial base. The dynamigsations are derived using
a generalized Lagrangian method. This allows us to modeb#se motion as a “free
motion” joint serially connected with the 1-DoF joints oktimanipulator.

Examples for a 1-DoF and 4-DoF manipulator mounted on aglatfare presented.
We include the platform motion in the dynamics and find th¢ettary that takes the
manipulator from an initial position to an end position wilie least amount of torque and
compare this with the optimal trajectory when the platfosna$ssumed not to be moving.
The simulations show that when the ship motion is known thewarhof torque needed
for a given task can be substantially reduced if the ineftiades are taken into account.

A possible extension for future work is to optimize the shap#he joint trajectories
with more variables. Adding more details to the joint trégees should increase perfor-
mance even more. If a sufficiently accurate model of the giatfcan be obtained, this
may allow us to compensate for the inertial forces in highugacy applications. Another
interesting topic for future work is to look into how modekglictive control can be used
to compensate for the platform motion.
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Figure 3.4: Still shots from the simulation of the fully optimized trajectory correspondinthéo
solid lines in Fig. 3.5.
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Figure 3.5: Optimal motion trajectory for a 4-DoF manipulator. Three different titajees are
shown: a baseline trajectory with maximum motion duration (dotted lines)ptimiaed trajectory
assuming zero base motion (dashed lines), and an optimized trajectioy th& correct non-zero
base motion into account (solid lines).
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Chapter 4

Motion Planning and Control of
Robotic Manipulators on
Seaborne Platforms

4.1 Abstract

Robots on ships have to endure large inertial forces due to thnon-inertial motion of
the ship. It is thus important to investigate to what extent t is possible to predict the
future motion of a ship. The ship motion affects both the motdn planning and control

of the manipulator and accurate predictions can improve peformance substantially.
Based on these predictions, this paper presents a new appreato motion planning

and control of such manipulators. Itis shown that the effec$ of the non-inertial forces
can be eliminated—in fact, the robot can even leverage the imgal forces to improve

performance compared to robots on a fixed base. To perform rdastic experiments
a 9-DoF robot is used. The first five joints are used to generatihe real ship motion,
and the last four joints are used for motion planning. The dyramic coupling between
the first five and the last four joints is thus exactly the same s the dynamic coupling
between a ship and a manipulator, which allows for very reaktic experiments.

Keywords:Marine Systems, Robotics, Stochastic systems, MPC.

4.2 Introduction

Robotic manipulators on non-inertial platforms such apskiave to endure large iner-
tial forces due to the non-inertial motion of the platform. &tithe non-inertial platform’s
motion is known, motion planning and control algorithms tgrto eliminate these pertur-
bations. In some situations the motion planning algoritleans even leverage the inertial
forces to more economically move to a target point. Howdegnnany non-inertial plat-
forms, the motion is unknown.
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This paper first investigates to what extent it is possiblprexict the future motion
of a ship. Using real ship motion measurements one can stowytlie uncertainty of
the prediction algorithms changes with the predictionZmri Then a new motion plan-
ning approach that, based on the predicted future motiohefhip, finds the optimal
trajectory from an initial to a target configuration is pnetsal. It is also shown that by
including the uncertainty in the cost function the maximwrgties needed to reach the
target configuration can be reduced.

Due to the stochastic nature of the ship motion and the dymamipling between
the ship and the manipulator, empirical studies are extyemgortant to validate both
the ship motion predictions and the motion planning alpong. To perform realistic
experiments a 9-DoF robot is used. The first five joints arel tisgenerate the real ship
motion, and the last four joints are used for motion plannifithe dynamic coupling
between the first five and the last four joints is thus exadil $ame as the dynamic
coupling between a ship and a manipulator. It is thus passiberform very realistic
experiments as ship motions measured from a real ship atetasgenerate the actual
motion and at the same time realistic ship motion predistiare used as inputs to the
motion planner. To get statistically meaningful resultgesal simulations are performed
to confirm the experimental results.

Ships and other seaborne platforms are expected to becomeasingly unmanned in
the future and hence the need for autonomously operatirggdbr surveillance, mainte-
nance, and operation will continue to increase over timeélat al., 2004; Kitarovic et al.,
2005). The demand for unmanned operation becomes everr liigharsh environments
such as high sea state (Figure 4.1), when it can be dangesptushan operators to be
exposed. High sea environments are not only dangerous tarmperators, they also
pose significant challenges for robotic control: Largetiaéforces will influence the ma-
nipulator and, when not anticipated and accounted for, calcerthe operation inaccurate,
extremely energy demanding, and sometimes even imposhileleéo torque limits. The
inertial forces thus need to be taken into account in theangglanning of the robot.

In From et al. (2009a) the authors solve the problem of ogtmmation planning for
a robot mounted on a shiinder the assumption the base motion is known for all times.
The approach includes the ship motion in the trajectorynifemproblem and an optimal
trajectory in terms of actuator torques is found. Howewembst practical situations the
forces acting on the ship due to the interaction with wavekvéind are very irregular and
one cannot expect to know the base motion for all times.

The extent to which it is possible to obtain accurate shipiongbredictions can thus
directly affect how well the inertial forces can be compeeddor or even taken advantage
of. However, the accuracy of the ship motion prediction ndy airectly determines how
optimal a solution one can achieve, it also affects the caatjsmal requirements. In
a receding horizon setting, where the optimal control ilgerdquence is re-computed at
regular intervals, the computational burden will increfgean inaccurate model: for an
inaccurate model the initialization point taken from theypous solution is further away
from the optimal solution. In addition to affecting the cb®f horizon the modeling error
thus directly determines the frequency for which the optioaatrol or optimal trajectory
can be recalculated.

An important contribution in this paper is the use of real &iogl data, both for the
experiments and the simulations. Much of the literature ldp sotion prediction uses
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Figure 4.1: A ship in high sea. The waves forces can result in very high accelesatiahe ship
motion.

computer generated data to verify the accuracy of the predialgorithms, which leads
to unrealistically small errors in the predictions. An innfamt difference of the work
presented here is thus the use of real full-scale ship mdtato test the performance of
the ship motion prediction algorithms.

Another important contribution is the realistic experirtgenFor the experiments a 9-
DoF robot was used: The real ship motion was fed into the fivstjéiints, generating a
very realistic ship motion, and the last four joints are theed for optimal motion planning
for a 4-DoF robot on a moving base. This allows for experiragrrformed on a 4-DoF
robot mounted on a base with exactly the same motion as ifahet had been mounted
on a ship. The predictions used are based on the real shipmeoid the experiments thus
give important information on to what extent the inertiaides can be compensated for.

Experiments are important to study how the motion of the lbéfeets the manipulator
dynamics. The experiments also allow for direct measurésnafrthe torques that act on
the manipulator due to the inertial forces. This paper thesents, for the first time, a
detailed study of how the inertial motion of the ship mapsh® jpint torques. This is
used to show that the forces that act on the manipulator dilketwaves are excessive and
cannot be ignored in the motion planning and control of theimdator.

Stochastic uncertainty is present in a wide variety of sgsteanging from mechanical
systems and process control to finance. In general, recediimpn control is a well suited
control scheme to deal with uncertainties, but most appremco not use information
about the probability distribution governing the uncertgiand they only assume that
the uncertainty is bounded. Thus, the information aboutptiobabilistic distribution is
ignored and the worst-case representation of the distadsaor constraints often leads to
a conservative solution.

In this paper a new motion planning algorithm that also minés the variance of the
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controlled state is presented. First, real ship motion nremsents are used to calculate
the variance of the predictions of the forced state. It imtbthat the variance is different
for roll, pitch and yaw. Second, it is shown how to use the Boésl Kalman filter to find
how the variance in the forced state maps to the variancesafdhtrolled state, i.e., how
the uncertainties in the ship motion predictions map to ttag#ies in the robot state. The
general idea of this approach is to exploit the fact thatelzee some components of the
ship motion that are more difficult to predict than otherssdffor different configurations
of the robot, the inertial forces will affect the robot diffmtly. Thus, by including the
variance in the cost function one can force the motion platmehoose a trajectory that
is less affected by the largest and most uncertain compsioétie base motion. When a
receding horizon approach is applied, it is found that bynaeigting the cost function to
also include the variance it is possible to choose a longezdmthan when the variance
is not included.

The paper is organized as follows: Section 4.3 gives a shtmbduction to ship-
manipulator modeling, presented in more detail in From e{28l09a). The ship motion
prediction algorithms used are presented in Section 4.4re8dction 4.5 it is shown how
to use these predictions to improve the motion planning androl of a robotic manipula-
tor on a moving base. The simulations and empirical studiepresented in Section 4.6.
Related research and references are discussed in Segtion 4.

4.3 Ship-Manipulator Modeling

In From et al. (2009a) the classical dynamic equations ferialsmanipulator arm with 1-
DoF joints were extended to include the forced 6-DoF motidh®base. For more details
on how to derive the dynamics see From et al. (2009a) and @airathd Stramigioli (2007,
2008). Consider the setup of Fig. 4.2 describing a genefalk robot manipulator arm
attached to a moving base and choose an inertial coordirsatefl, a frameV, rigidly
attached to the moving base, andramesW¥; (not shown) attached to each linkat the
center of mass. Finally, choose a veajor R™ that describes the configuration of the
joints. Using standard notation (Murray et al., 1994), thegof each fram&; relative
to ¥, can be described as a homogeneous transformation mgatrix SE(3). This pose
can also be described using the vector of joint coordinates

Joi = gObgbi(Q)~ (4.1)

The base posegy, and the joint positiong thus fully determine the configuration of the
robot.

In a similar way, the spatial velocity of each link can be egzed using twists (Murray
et al., 1994):

’ZJO .
VOOi = |:w(())1:| = VE)% + VEE = Adg()b (‘/E)bb + Ji(Q)q) (42)

07

wherev); andw); are the linear and angular velocities, respectively, dfdirelative to the
inertial frame,J;(¢) € R®*™ is the geometric Jacobian of linkelative to,, the adjoint
is defined as\d, := [} 7% ] € RO*6, andp € R**3 is the skew symmetric matrix such
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4.3. HIP-MANIPULATOR MODELING

Figure 4.2: Model setup for a four-link robot attached to a non-inertial base withdinate frame
¥,. Frame¥, denotes the inertial reference frame.

thatpz = p x « for all p,z € R3. The velocity state is thus fully determined given the
twist V}, of the base and the joint velocitigs
The dynamic equations can be written in block-form as foow

N e
Mav  Mgq q Cov Cyq q T '

with F? the external wrench on the base link, expressed in cooeiat (such that it is
collocated with the twist}).

This paper is concerned with the effects that the base ggséhe base velocity/},
and the base acceleratidfj’b have on the manipulator dynamics. This can be seen by
rewriting the dynamics as

Mg + Caqd + Moy Vg + Cov Vg, = 7. (4.4)

inertial forces

Finally, the way the gravitational forces map to joint toegudepends on the configu-
ration of the base and is added to the right hand side of (#H9.torque associated with
link i is given by

7y = Ji(a) Adg, (Q)F;(Q). (4.5)
Note that both?,; andAd,,, depend on the base configuration with respect to the inertial
frame. F} is given by
i fq Royie.
F - ~d - — 7 ~7 46
g {rgfg mig FoRoie. (4.6)

wheree, = [0 0 1]T andr; is the center of mass of linkexpressed in framé,.
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4.4 Ship Motion Prediction

Due to the stochastic nature of the forces that act on sHifysnsotion prediction is a very
difficult problem. This section presents two simple and cotaponally efficient methods
for predicting the future motion of the ship: the Auto-Reggige (AR) predictor and a
predictor using a superposition of sinusoidal waves regriadion. In this paper the focus
is on these simple and computationally efficient method$i@g do not require a ship or
wave model, nor external sensors such as wave cameras ersimsors. Adding sensors
or using more advanced methods will allow for more accuragéiptions and the results
presented in the following sections can thus probably bearga if external sensors are
added.

The Auto-Regressive (AR) predictor is an all-pole model.(ino inputs) and gives an
estimate of the output directly without the need for infotima about the forces that cause
the motion. Write

y(t) = —a1y(t — 1) —agy(t —2) — -+ — any(t — n) 4.7)
and define
o(t) = [~y(t) —y(t—1) —yt—-2) -~ —ylt-n+1)]",
0= [al as .. .an]T . (4.8)

Collecting N samples and stackingin ® andy in Y one can find the optimal parameters
0 in the least squares sense by

f=(@"®) 'Y (4.9)
and the prediction problem is solved by
y(t+1)=o(t)7h. (4.10)

Alternatively one can fit the superposition dfsine waves to the measurements in the
least squares sense. Following the approach in Chung &08I0Y write

N
§(t) =) Aisin (wit +b;) (4.11)

i=1

whereA; is the amplitude of the sines; is the frequency and; is the phase. Assuming
the frequencies are found from the peaks in the frequenatrgpe, the problem amounts
to finding A; andb;. Note that

N
f(t) = Z a9;—1 sin (th) + ag; COS (w,t) (412)

=1
whereag;—1 = A;cos(b;) anday; = A;sin(b;) are used to handle phase shifts. The
parameters
6=1la1 az - asn]' (4.13)
representing the best fit in the least squares sense areoiivedh from (4.9) with
¢(t)=[sin (w1t) cos(wit) --- sin(wnt) cos (th)}T.
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4.5 Motion Planning and Control in a Stochastic Environ-
ment

This section discusses the motion planning problem, beake the manipulator from an
initial configuration to a target configuration using additorque as possible. By planning
the motion so that the inertial forces contribute to the orotind don't work against it,

it is possible, in addition to save energy, to achieve mooaiiate trajectory tracking and
reduce the strain and tension on the manipulator.

4.5.1 Motion Planning

Consider the control law
T=T¢f +7TPD (4.14)
where

n

Trf = N[qqéjd + quQd + MquObb + CquObb - Z (Ji Ad;m FQL) (4'15)

. . . . n=1
tracking terms compensation for inertial forces
gravity compensation
7pp =Kp(qa —q) + Kp(da — q) - (4.16)
PD-controller

This is the standard augmented PD control law which in thi® @lso compensates for
the inertial forces. Based on the predictionggf, V¢, andV, for a given horizon this
control law tries to cancel these disturbances regardiestether they contribute to the
desired motion or not.

For trajectory tracking this is in general a very energy dediag solution. When
large inertial forces are present, simply canceling thesmg as in Equation (4.15) may
require excessive joint torques. Thus, instead of reggttiiese terms as disturbances, the
prediction of the ship motion can be included in the motioanping. The planner can
then use this information to calculate the trajectory tleguires the least actuator torque
for the given base motion. As an example, consider a marngnulaat is to move from the
left to the right on the ship. If it chooses to start the trigeg at a time when the inertial
forces contribute to the desired motion it can potentially @n almost free ride from one
side to the other. If it simply chooses to cancel these distuces, for example by (4.15),
it might end up following a trajectory for which the inertfarces are working against the
desired motion for the entire interval. One intuitive sttaa where this can occur is when
the manipulator moves uphill instead of downhill for theienmotion and will thus not
take advantage of the gravitational forces.

This paper follows the approach presented in From et al 920&nd solves the motion
planning problem by numerically minimizing an objectivaétion representing the joint
torques with respect to the start and end time. The costiimig found from the whole
interval (Tp, T1) and not only the intervalto, t1) when the motion occurs, i.e.,

Ty
P = min / T Drdt (4.17)
t

tot1 Jy—m,
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whereTy < to < t; < Ty and D is a positive definite matrix that defines a metricrin
space. In From et al. (2009a) this was solved assuming tteerhbason was known. This
paper uses realistic predictions of the base motion in teefooction. These predictions
will become less accurate as the horizon increases, animhviastigated how the choice of
motion planning algorithm and prediction horizon affed¢ts performance of the motion
planner.

45.2 Stochastic MPC

As will be clear in Section 4.6.1 the accuracy of the prediddiis different for the dif-
ferent axes. For example for the AR predictor the predistiohthe angular acceleration
about they-axis is less accurate than the and z-axes. Also, the linear acceleration in
the direction of ther-axis is far more accurate than theandz-axes. Thus, this section
presents a modified cost function that minimizes also theeweg variance on the out-
put assuming information about how the variance evolveh tiibe is available for the
different components of the ship motion.

In Cannon et al. (2007) the control objective of the stodbasbdel predictive control
(stochastic MPC) law is to regulate the expected value andnee of the output state.
In this section the same ideas are applied and by includiegtvariance matrix in the
cost function a trajectory that also minimizes the variaisaghosen. The cost function as
defined in Cannon et al. (2007) is given by

N—-1
P =" 1(k+jlk) + L(k + N|k) (4.18)
=0

whereL is the cost-to-go function and

Uk + jlk) = z%(k + jlk) + k*02(k + j|k) (4.19)

with
z(k + j|k) = Ex(z(k + 7]k)) (4.20)
o2 (k + jlk) = B [x(k + jlk) — 2(k + j|k)]® (4.21)

denoting the expected value and variancecOf + j|k). The relative weighing of the
expected value and the variance can thus be controlledligitboough the parameter.

In the following the same ideas are applied and the covagiamatrix is included in
the cost function so that a trajectory that also minimizesdbvariance is chosen. A cost
function similar to the one found in Cannon et al. (2007) isegiby

N-—
P=S 1(k+jlk)+ Lk + N|k) (4.22)
7=0

,_.

whereL(k + N|k) is the cost-to-go and
Uk + k) = @ (k + jlk) + & |[Zq(k + 5 1K), (4.23)
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with g(k + j|k) = E[q(k + j|k)] denoting the expected state of the robot and

El(g1 —q)(ar —q@)] -+ Ellqr — @1)(gn — Gn)]
5, = : : (4.24)

El(gn — @) (@ — @)] - El(@n — G0)(gn — dn)]

so thaty, (k + j|k) is the covariance matrix af(k + j|k) given the measurements of the
robot statey(:) and the ship statey, (i) for i = kg ...k, and||-||, denotes the Euclidean
norm of each row. Similarly, the second part of (4.19) candued to the cost in (4.17) to
get the cost function in the form

T
P glitn/ (T ODO) + k2,011 ) dh. (4.25)
1 =Ty

where||%,|| denotes the Euclidean norm of the covariance matrix. Thblenois thus
to find the start time; ( and the end time; ; for the motion of each joint subject to the
restrictionTy < t; 0 < t;,1 < Ty. The cost, however, sums over the entire pre-defined
interval (Ty,T1), i.e., also when the joints do not move ajidt) = 0. Note that in this
case the joint torques are not necessarily zero because fettial forces.

Assume that each degree of freedom of the ship motion haswahdistribution, i.e.,

[ N(i,0%)
0 N (0,03)
e~ (4.26)
il N o?)

Examples of the expected value and the variance for theexretien of the ship are shown
in Figures 4.4 and 4.5, respectively. Similar relations also be found for the position
and velocity of the ship.

For linear systems the Kalman filter can be used to find theategdestate and the
error covariance. For non-linear systems the extended &alitter is implemented, i.e.,
linearizing around the mean value, and find the expected sfdahe robot and the covari-
ance matrix used in (4.25). It is then possible to includénlibe expected state and the
covariance at timék + j) given the measurements available at titr@so for non-linear
systems. This is then included in the cost function (4.28)the optimal solution is found
by minimizing the weighed cost of the expected value and tvargance.

4.6 Simulations and Experimental Studies

This section presents the simulation results and the seefuoltn experiments performed
in the lab. Due to the stochastic nature of the problem, brpiemental and simulation
studies are important. The experimental studies are daot¢ in order to gain insight

into how the moving base and errors in the prediction of trselaotion affect the motion
planning and control of the manipulator. The experiment&ariapossible to measure
the torques directly and get valuable insight into the caxpgloupling between the ship
and manipulator and how this affects the motion planningaordrol of the manipulator.

Also, due to the stochastic nature of the disturbances,lations are important to be able
to perform a sufficient number of runs and hence get staistimeaningful results.
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Figure 4.3: The Emmy Dyvi class “Erik Bye” used to measure the ship motions. “Esik"Hs
owned by Redningsselskapet, Norway.

4.6.1 Empirical Data of the Ship Motion

The need for empirical data is of utmost importance whenfyiag the performance of
prediction algorithms. Most publications on the topic oiffpsimotion prediction use com-
puter generated data such as a combination of sines, a walel moa sine with added
noise. This will not result a in good performance indicatecéuse of the stochastic nature
of the waves. In this work measurements from a real fullesship are used. This makes it
possible to compare the different prediction algorithmseai data and, most importantly,
it gives valuable information about the accuracy of the jatazhs for different prediction
horizons. The ship used to collect the measurements wasSHELR “Erik Bye”, shown
in Fig. 4.3, which is a 20.4 meter long Emmy Dyvi class ship amighs 96 tons. The
wave height at the time of the measurements was about 1 mEtership is owned by
Redningsselskapet AS, Norway.

The most important information when including the futuretimo of the ship in a
model predictive control approach is to have as accuratgigirens as possible of the
velocity and the acceleration entries of the state. If gyapiays an important role, the
attitude of the ship should also be included. Fig. 4.4 shawsexample of the true and
estimated angular acceleration (roll) of the ship. Notettiapredicted acceleration needs
to be estimated at short time intervals to maintain a lowigtexh error. In general one can
obtain very good results when the predictions are compwed/®.5 or 1.0 seconds. For
predictions up to 3 seconds the predictions are also rebkoaad no large errors occur.
The prediction accuracy depends on the frequency of the svawegeneral, predictions
with horizons longer than one wave length, which in this oaas 3-5 seconds, are not
very reliable. This is mainly due to the fact that these magutteof phase which may lead
to very large errors.

To get a more structured formulation of how the error changiéls the prediction
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Figure 4.4: A typical example of true and predicted motion (AR) where a new predigicalcu-
lated every 0.5 seconds. This clearly shows the need for re-computdtibe predicted motion at
short time intervals. The angular acceleration around:tagis (roll) is shown.

horizon one can look at how the standard deviation evolves ttme. This is important
as it allows the path planner and controller to include utadety in the cost function and
minimize this. Fig. 4.5 shows the standard deviation forghedegrees of freedom of
the velocity state denoted = [u v w p ¢ r]T. Note that the AR predictions
are more accurate than the superposition of sines, excepbfizons of 0.2 seconds or
shorter. The AR method is thus chosen to predict the shipometo be used in the motion
planning and control presented in the next sections.

4.6.2 Experimental Setup

The experiments are performed using true motion data frenfulhscale ship “Erik Bye”
and predictions from the AR model as presented in SectionAll4he data is obtained
using inertial sensing in six degrees of freedom. For theerpental setup a 9-DoF robot
(3-DoF gantry crane and 6-DoF industrial manipulator, sige #6) is used. A @del
gantry crane with three translational degrees of freedamésl to hold an ABB IRB-2400
with six rotational degrees of freedom which is mounted desiown as in Fig. 4.6. The
end effector of the robot is a camera which weighs about 1 kge © limitations in the
workspace of the gantry crane some of the components of Heerbation had to be scaled
down. The sway motion is scaled down with about 10% and theeheeotion is scaled
down with a factor of 5 to avoid collision between the mangal and the floor.

The first 5-DoF were used to generate the ship motion. Thet thibg generates the
surge, sway and heave motion with the linear actuators oféimry crane and the roll
and pitch motion with the first two rotational joints of the miulator. The yaw motion is
very small and can be neglected. The last four links of theipudator are then considered
a standard manipulator on which the control and motion pranpalgorithms are tested.
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Figure 4.5: The standard deviation as a function of the prediction horizon. Note thataheard
deviation is smaller with the AR model than for the superposition of sinegpeXor predictions of
0.2 seconds or less (not visible on the figure). The standard deviatialtidated from 200 samples,
for “Erik Bye” moving at 15 knots at 1 meter wave height.

The motion of the “base”, i.e., link 2 of the manipulator ($&g. 4.6), is set to exactly

the same as the measurements taken from the full-scale Bhip.setup thus allows for
very realistic experiments as the base link has exactly ahgesmotion as the real ship.
Due to the difference in the inertia between the ship and theipulator the motion of

the manipulator does not affect the motion of the ship. Theadyic coupling between
the base link and the last four links of the manipulator isstthe same as for a 4-DoF
manipulator mounted on a moving base.

4.6.3 Experimental Results Based on Predicted Ship Motions

This section shows how to exploit the inertial forces andalema trajectory that minimizes
the torques and the strain and tension on the manipulaterapproach is based on From
et al. (2009a) and the motion planning problem is solved hyerically minimizing an
objective function. Two different objective functions arged: i) the objective function
in (4.17) which minimizes torques only, and ii) the objeetifiunction in (4.25) which
minimizes torques and the variance.

For a given interva(T,, T1) = (0, 10), the optimization problem is then to find the
start and the end time for each joint with the restrictiont tha < ¢; o < ¢;; < T3 for
all i. The shape, but not the starting time or length, of the ttajgds thus assumed
fixed. By fixing the shape, a sub-optimal solution that can dieesl efficiently and in
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Figure 4.6: The ABB IRB-2400 robot mounted on ai@el gantry crane. The first 5 joints (the 3 of
the gantry crane and the first 2 of the robot) are used to generate thaatignm, represented by,
and the last four joints of the robot, representediys 3 4, are used for optimal motion planning
of a 4-DoF robot. Links 2 and 3 of the robot are hidden in the wrist andaigbe seen in the figure.
Courtesy ABB Strategic R&D for Oil, Gas and Petrochemicals.

real time is found. Finding the optimal solution over ali@ories is a huge optimization
problem and computationally too demanding to be solvedahtime. The start and target
configurations are chosen as

g0)=1[0 0 0 0],
o(T) = | 1"

The motion planning problem thus amounts to finding the gigindameters (one start and
end time for each joint) that minimize the cost integratedravfixed time interval while
the robot start and target configurations are satisfied.

For the first cost function (4.17) €2 be a positive definite matrix that defines a metric
in 7-space. Choos® = 1076 - diag[lO 2 2 5] reflecting the masses of the links.

NIE
NIE
NIE
ol
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surge

sway

heave

roll

pitch

Figure 4.7: The motion collected from the ship measurements and given as input toghévi
joints of the manipulator. The full line shows the measured acceleratiahthardotted line shows
the predicted ship motion used in the motion planners. Note that the predibtiwasa damping
effect as the predictions become less accurate.

For the second cost function (4.25) the weight is chosen as10 to enhance the effect
of adding the variance, but otherwise the same weighingra@fb7) is used.

First the experiments are performed with a baseline trajgct.e., a starting time
t; 0 = Ty and end time,; ; = T for all i. This is how one would choose the trajectory
when no information about the motion of the ship is availal8econd, the optimization
problem is solved assuming complete knowledge about thpershtion, including future
motion. This gives information about how well one can expegerform if accurate mo-
tion predictions are available. Finally, two experimentseve the trajectory is calculated
based on the predicted base motion but the base motion ifyeiee motion of the ship
are performed. This is done with the cost function given il 3 and in (4.25). Thus, the
four algorithms in Table 4.1 were tested.

At the beginning of the time interval the next 10 seconds @ sfotion are predicted
based on the previous 5 seconds of known ship motion. Thsr,5aseconds the current
position of the ship is updated and the ship motion for the Bexeconds is predicted.
Thus, the prediction horizon is 10 seconds for the first hahe time interval, and 5
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Alg. 1- A baseline trajectory with maximum

(—) motion duration for all the joints.

Alg. 2-  An optimized trajectory taking the

( )  correct base motion into account.

Alg. 3- An optimized trajectory taking the

(----) predicted base motion into account
with cost function (4.17).

Alg. 4 - An optimized trajectory taking the

(—-—-) predicted base motion into account
with cost function (4.25).

Table 4.1: The four algorithms studied. Note the colour coding used in the figures isehtgon.

seconds for the last half. After 5 seconds the optimal ttajgds thus re-computed based
on the new information and the new trajectory is followed. aksurate predictions are
available for about 3 seconds the algorithms must thus bahdlfact that for part of the
interval, the predictions are not very reliable.

To compare the energy used for the different algorithms dfleviing cost function
(power) is used:

Th

t=Tp
for each joint; = 1...4. This gives a good indication of how much energy is used te tak
the manipulator from the start to the target configuration.

The positions and the velocities of the four joints for therfdifferent trajectories
are found in Fig. 4.8. Note that the trajectories found ferfibur different approaches are
quite different. First, the trajectories based on the tnee@edicted base motions are quite
different, especially for joints 3 and 4. The trajectorydsn the true ship motion (Alg.
2) takes advantage of a favourable motion at the end of tieevatwhile the trajectories
based on the predicted motion (Alg. 3 and 4) take advantagefafourable motion in
the beginning of the interval. This difference arises beeahe ship motion towards the
end of the interval is not available to the algorithms basedhe predicted ship motion,
due to the long horizon and the damping effect seen in Fig.Alg. 2 chooses to wait to
start the motion until the very last minute. This probablg hasimple explanation. All the
joints start out in the initial condition, as shown in Fig4and end up with a rotation of
5 radians for all the joints. The largest components of thp sfution lie in thexz-plane,
i.e., the pitch is far bigger than the roll, and the sway isljatonstant at -1 meter. It
can be seen from Fig. 4.6 that the inertial forces affect thaipulator less for the initial
configuration than for the target configuration and thus éessgy is used if the motion is
delayed until the end of the interval.

There is also an interesting difference between the tob@sed cost function (Alg.
3) and the cost function that is based on both torque andn@igAlg. 4). Note that
Alg 4. calculates an optimal trajectory that is closer to ARy which is considered the
optimal trajectory. This can be seen in joint 1, which is thestimportant joint due to its
inertia and also the joint with the highest weight in the dasiction. As the uncertainty
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Figure 4.8: Four different trajectories are shown: Alg. 1 - a baseline trajectory wlximum
motion duration (full, red lines), Alg. 2 - an optimal trajectory taking the ecrtbase motion into
account (dotted, green lines), Alg. 3 - an optimized trajectory taking tedigted base motion into
account (dashed, blue lines), and Alg. 4 - an optimized trajectory takengrédicted base motion
into account where the variance is included in the cost function (dotedasiack lines).

is biggest in surge, heave, and pitch, and the variancelisded in the cost function, this
algorithm will try to keep a configuration for which these qmmnents of the ship motion
do not affect the manipulator. In other words, the algorithithchoose a trajectory where
the mapping from the axes with the largest uncertaintiegyéstheave, and pitch) to the
internal forces of the manipulator is as small as possiblechvis the reason for delaying
the motion for joint 1.

Fig. 4.9 shows the value of the cost (4.27) for the four athams, i.e., torque times
velocity for each joint. The most apparent observation fetiee difference between joint
1, which is a very heavy joint, and joints 2, 3 and 4, which agy\ight, i.e., about 10%
of the weight of joint 1. Note that due to the motion of the hgs@t 1 needs to use
a substantial amount of torque just to keep the arm fixed. dfj fae largest amount of
torque is used to compensate for the base motion, and notye the joint from the start
to the target configuration. This is a surprising result &lkiase motion simulates only
1 meter wave height and that some components of the motioscated down. One can
thus conclude that for a manipulator mounted on a ship in bégh the amount of torque
needed to compensate for the inertial forces will be sulisizand needs to be included
in both the motion planning and control of the manipulatoorider to obtain accurate and
energy efficient control.

Table 4.2 shows the values of the cost function (4.27) fohéaiat for the four algo-
rithms studied. The average values of the cost functiorvj4d all joints can be found in
Table 4.3. All the entries are scaled so that the maximumevefuals 1, so the values of
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(a) Measured joint torques times velocities. (b) Low pass filtered torques times velocities.

Figure 4.9: The torques times velocity over the trajectory. Four different traject@ieshown:
Alg. 1 - a baseline trajectory with maximum motion duration (full, red lines),. Ag an optimal
trajectory taking the correct base motion into account (dotted, green,lifles 3 - an optimized
trajectory taking the predicted base motion into account (dashed, blug EmesAlg. 4 - an opti-
mized trajectory taking the predicted base motion into account where tia@eaiis included in the
cost function (dot-dashed, black lines).

the different joints cannot be compared directly. Note Hithe optimization algorithms
perform better than the baseline trajectory, in terms ofgrowlso note that the optimiza-
tion based on the predicted base motion performs bettetthigamptimization based on the
real base motion when evaluating the cost given in (4.27iclmmay come as a surprise.

Joint

Alg.1 Alg.2 Alg.3 Alg.4

1

1.000 0.787 0.627 0.856

1.000 0.061 0.036 0.817

1.000 0.652 0.331 0.960

2
3
4

1.000 0.709 0.657 0.669

Table 4.2: Square of the torque times velocity over the trajectory for each joint.

Alg.1 Alg.2 Alg.3 Alg. 4

Average

1.0000 0.552 0413 0.825

Table 4.3: Average of the square of the torque times velocity over the trajectory.
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On the other hand, as can be seen in Table 4.4, this is not $kendzen the square of
the torque is used. In this case the optimization based oretilebase motion performs
best, as should be expected as this is the cost function ngkd optimization algorithm.
Also note that the cost with torque only performs better twhen the variance is added.
This is also as should be expected as the cost function usélg.ir8 is the one found in
(4.27), just with different weights for the four joints.

Joint Alg.1 Alg.2 Alg.3 Alg. 4
1 1.000 0.807 0.844 0.948
2 1.000 0.292 0.417 0.292
3 1.000 0.756 0.511 0.689
4 1.000 0.571 0.327 0.612

Table 4.4: Square of the torques over the trajectory for each joint.

Alg.1 Alg.2 Alg.3 Alg. 4

Average

1.000

0.789

0.799

0.910

Table 4.5: Average values of the square of the torques over the trajectory.

Tables 4.6 and 4.7 show the maximum torques for the four fgos. In this case,
Alg. 4 performs better than Alg. 3. This was the main intemidé adding the variance to
the cost function. When the variance is added to the costiimdhe algorithm (Alg. 4)
chooses a safer path in the sense that the mapping from tegainties of the base motion
to the uncertainty in the robot state will minimize the unagnty in the robot state. Also
note, however, that the safest path in terms of maximum &mgeems to be the one with
the longest duration and thus more evenly distributing dngues over the entire interval.

Joint Alg.1 Alg.2 Alg.3 Alg. 4
1 0.945 1.000 0.968 0.935
2 0.691 0.876 0.931 1.000
3 0.706 0.768 1.000 0.666
4 0.783 0.762 1.000 0.824

Table 4.6: Maximum of the torques for each joint.

Alg.1 Alg.2 Alg.3 Alg. 4

Average

0.873

0.935

1.000

0.903

Table 4.7: The average of the maximum of the torques.
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4.6.4 Simulations Based on Predicted Ship Motions

Simulations are used to verify the experimental studiesumying the motion planning
algorithm several times based on different motion predlictiata sets. 200 data sets that
all have the same characteristics were chosen in order tblbet@draw some general
conclusions and compare the results to the ones found irrimxgrs. All the sets are
picked from one long sampling and are thus collected durisigoat period of time and in
a sea state for which the dominant components of the motioa iw¢hexz-plane, i.e., the
pitch is far bigger than the roll, and the sway is almost zénoother words, all the data
sets are measurements of the ship moving with the same #glocthe same sea state,
and with the same attack angle on the waves.

Table 4.8 confirms the tendency from Table 4.5: all the atbors perform better than
the benchmark solution. In fact, all approaches obtairebedtsults in the simulations than
for the experiments. This is a promising result as the largaber of simulations make
these results meaningful also for stochastic data. Notehbapproach based on the real
base motion performs better in this case. This is reasomatilee amount of accurate data
available should allow for a more optimal solution to be fdufhus, the small difference
between Alg. 2 and 3 in Table 4.5 cannot be taken as a genetdl.re

Alg.1 Alg.2 Alg.3 Alg. 4
Average 1.000 0.670 0.788 0.829

Table 4.8: The square of the torques over the trajectory for all the joints. Averalyees of all the
joints for 200 samples.

Also, the maximum values found in Table 4.7 can be confirmenlvéver, Table 4.9
shows that Alg. 2 performs better than Alg. 1, which is not¢hse for the experiments.
Once again the cost function based on both the torque andatti@nee decreases the
maximum values of the torque, but increases the overaluotged during the trajectory,
which again is as expected.

Alg.1 Alg.2 Alg.3 Alg. 4
Average 0.890 0.823 1.000 0.888

Table 4.9: The maximum of the torques over the trajectory for all the joints. Averaheeg of all
the joints for 200 samples.

4.6.5 Horizon Length

This section discusses how to choose the horizon and thedney at which the problem
is re-solved in a receding horizon setting when only préatist of the base motions are
known. The previous sections found that the predictionssarg accurate for about 0.5
seconds and relatively accurate for a horizon of about 3rekcdNhen it comes to motion
planning, however, it turns out that a longer horizon shdsdadhosen. The reason for this
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is that the algorithm searches for the time interval in wtiled inertial forces contribute
to the motion as much as possible. It is thus desirable tosshtize horizon as long as
possible, but at the same time avoid using predictions tleat@t accurate and may lead to
large errors. Assume the horizon is equal to the re-comiputatiterval. Table 4.10 shows
the optimal horizon/re-computation interval, the totadtcand the maximum torques for i)
a cost function minimizing the torques only (Alg. 3), anddirost function minimizing
the torques and variance (Alg. 4). Table 4.10 shows the \@fitiee cost function based
on only the torque for both algorithms in order to be able tmpare the two values.

When the variance is included in the cost function one cawasildonger horizon.
This allows the path planner to use more of the informaticailakile, albeit inaccurate,
and results in a slightly lower cost than when only the torgguased. The advantage
of adding the variance is rather small when looking at theasep torque, so the main
advantage of including the variance in the cost functiorh& maximum values of the
torque decreases, as seen in Table 4.9.

Horizon Torque |
[s] Alg.3 Alg. 4
1 1.000 0.897
3 0.812 0.688
4 0.630 0.688
5 0.667 0.670
6 0.778 0.611
7 1.287 0.687

Table 4.10: The cost for different horizons for a cost function without and witharce, based on
200 simulations.

4.7 Related Research

Research on several related topics can be found in thetliteraLove et al. (2004) ad-
dress the impact of wave generated disturbances on thergackntrol of a manipula-
tor mounted on a ship based on the classical Lagrangian apiprorhey use repetitive
learning control and this results in performance improvetfi@ purely periodic motions,
but they do not present a formal derivation of the dynamiasaéqgns. Kitarovic et al.
(2005) and Oh et al. (2005) address the use of cable robotsdding and unloading
cargo between two ships. In the Ampelmann project (Salzn200V), a Stewart platform
is mounted on a ship and is used to compensate for the motitheaghip by keeping
the platform still with respect to the world frame. Lebanglei(1997) give a cursory de-
scription of a telerobotic shipboard handling system, anduge et al. (1992) and Kajita
and Kosuge (1997) address the control of robots floating enatéiter utilizing vehicle
restoring forces. Other related research areas are macro/manipulators (Yoshikawa
et al., 1996) and (Bowling and Khatib, 1997), underwatericlefmanipulator systems
(McMillan et al., 1995) and spacecraft-manipulator systéEgeland and Sagli, 1993).
Most previous work deals with robots mounted on a free-flmpliase. There is, how-
ever, an important difference between modeling a robot ooreetl and a free-floating
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base. A forced base motion will add inertial forces to theadyit equations that do not
arise in the free-floating case, such as spacecraft-matgrudystems and manipulators
on small AUVs.

There are some papers in the literature considering thégpi@dof ship motion. Yang
et al. (2008a,b) discuss the problem of landing a helicaptexr ship in high sea and predict
the ship motion by fitting the ship model to the measured dsiteguecursive least squares.
Khan et al. (2005) use artificial neural networks to solvestame problem. In Chung et al.
(1990) the sea excitation is extrapolated using the supéipo of sines approach and the
ship motion is predicted using the ship model driven by thteagolated forces.

Stochastic model predictive control (MPC) is discussed etaill in Cannon et al.
(2007) and Couchman et al. (2006) where the output variamdéaciuded in the cost
function. The relation between the input and the outputavaré is also important in
performance assessment, which is discussed in an MPCgsettithang and Li (2007)
and the minimum variance performance map is discussed inddarand Qin (2009). The
output variance is also discussed in the minimum varianog&ralof stochastic processes
developed by Astrom in the 1960s (Astram, 1967).

4.8 Conclusions

This paper presents the first detailed discussion regasirgral important aspects of
ship-manipulator systems. First, the extent to which thp siotion can be predicted and
for what horizon this can be used in the motion planning amdrobof the manipulator
is investigated. Then several different approaches to tbgom planning problem for
robots mounted on ships are discussed and it is shown thabtbant of torque needed to
reach a desired configuration can be reduced by includingréaicted base motion in the
motion planner. The torques needed to reach the target cagtdbeed even for relatively
moderate ship motions. Thus, one may conclude that for aishifgh sea it is possible
to substantially improve performance and allow for effitietion planning and accurate
control in settings where this would otherwise not be pdedibie to large inertial forces.
It is also shown that by including the variance of the presticinotion for the different
degrees of freedom in the motion planner the maximum torgeesged and thus also the
strain and tension on the robot are reduced.

Several simulations and experiments are performed to atalithe approaches pre-
sented. For the first time, detailed experimental resulshigf-manipulator systems under
the influence of inertial forces are presented. Severallations with a large number of
data sets are also performed and it is shown that the sironlegsults are consistent with
the experimental result. Also for the first time, the effecincluding the variance in the
cost function in a receding horizon control law is investigghthrough experiments based
on real ship motion data.

It is found that the inertial forces that act on a manipula@unted on a ship in only
1 meter wave height pose significant challenges in robotrabahd motion planning,
especially for the joints with large inertia. Also, for a ghin high sea state, the inertial
forces are significantly higher and must be included in bbéhrhotion planner and the
control to guarantee safe, cost efficient and accurate mkatipn. An interesting topic
for future work is thus to repeat the same experiments for@istigh sea.
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Chapter 5

On the Boundedness Property of
the Inertia Matrix and
Skew-Symmetric Property of the
Coriolis Matrix for
Vehicle-Manipulator Systems

5.1 Abstract

This paper addresses the boundedness property of the ineaimatrix and the skew-
symmetric property of the Coriolis matrix for vehicle-manipulator systems. These
properties are widely used in control theory and Lyapunov-tased stability proofs,
and are therefore important to identify. For example, the slew-symmetric property
does not depend on the system at hand, but on the choice of panaterisation of
the Coriolis matrix, which is not unique. It is the authors’ experience that many
researchers take this assumption for granted without takirg into account that there
exist several parameterisations for which this is not true.In fact, most researchers
refer to references that do not show this property for vehice-manipulator systems,
but for other systems such as single rigid bodies or manipulars on a fixed base.
As a result, the otherwise rigorous stability proofs fall apart. In this paper we point
out several references that are widely used, but that do nott®w this property and
we refer to the correct references. As most references on thitopics are not easily
accessible, we also give the correct proofs for commonly us@arameterisations of
the Coriolis matrix and thus provide a proof for future refer ence. We also correct
several mistakes made in the proofs of the aforementioned ferences.

The same is the case for the boundedness property of the iné&atmatrix which
for a bad choice of state variables will not necessarily hold This is an important
property in several different control laws, such as robust ontrol, and also in simula-
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tion of vehicle-manipulator systems. These control laws cabe shown to be globally
valid for single rigid bodies or fixed base manipulators, butnot for the most common
formulations of vehicle-manipulator systems which are sigularity prone. This can

be solved by deriving the dynamics in terms of quasi-velodis, which allows us to
describe the dynamics without the presence of the Euler anglsingularities that nor-

mally arise in vehicle-manipulator dynamics. When the singlarities are removed
from the equations, we get an inertia matrix that is bounded i its variables.

To the authors’ best knowledge we derive for the first time thedynamic equations
with both the skew-symmetric property of the Coriolis matrix and the boundedness
property for the inertia matrix for vehicle-manipulator sy stems with non-Euclidean
joints.

Keywords: Vehicle-manipulator dynamics, robot modelling, dynamioperties, sin-
gularities.

5.2 Introduction

This paper is motivated by a general concern that some frelguesed properties of the in-
ertia and Coriolis matrices for vehicle-manipulator systeare assumed true based on the
proofs for other systems. We show that the proofs of thesgeepties for fixed-base robot
manipulators or single rigid bodies (vehicles) cannot breegalised to vehicle-manipulator
systems directly. In fact, we show that the most commonhdubgamic equations for
vehicle-manipulator systems do not possess both the bdaede and skew-symmetric
properties. There is thus a need to clarify to what exterdetmroperties are true and
to find a rigorous mathematical representation of theseesystfor use in simulations
and controller design. To this end we present a reformulatfothe dynamic equations
for vehicle-manipulator systems for which both the boumaesd and the skew-symmetric
properties are true.

Lyapunov based controllers are based on several assumsptianmake the controller
design both more convenient and physically meaningful.s€hessumptions should thus
reflect the physical properties of the system. With the iasirey popularity of Lyapunov
design some of these properties are almost universally tikegranted. In this paper we
discuss two such properties that cannot be assumed trueliari@-manipulator systems
without further consideration.

The first property is concerned with the boundedness of tegignmatrix), i.e. if
there exist lower and upper bounds on its singular values. rétmt manipulators this
boundedness property is addressed in Ghorbel et al. (199&)evthe class of robots for
which the inertia matrix is bounded is characterised. Thekvad Ghorbel et al. (1998)
differs from our approach in that they are mainly concernét the design of the manip-
ulator while we are concerned with the mathematical reptesien. For a given robotic
manipulator there may exist one mathematical representédr which the inertia matrix
is bounded and another for which it is not. We find that for theshcommonly used
mathematical representation of vehicle-manipulatoresystthis property is not true.

The second property that we are concerned with is to find anpteaisation of the
Coriolis matrixC' so that the matrixi/ — 2C' is skew-symmetric. Such a parameterisation
is easy to find for fixed-base robots or for single rigid bodimg not always for vehicle-
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Figure 5.1: Model setup for a four-link robot attached to a non-inertial base withdinate frame
V,. Frame¥, denotes the inertial reference frame andis the end-effector frame.

manipulator systems. Particularly we find that such a patemisation is hard to find,
especially together with the boundedness property.

We will focus on two important classes of vehicle-manipoitatystems—underwater-
manipulator systems and spacecraft-manipulator systemsthdresults are general and
also applicable to other vehicles. Underwater-manipulsgstems are extensively treated
in Antonelli (2006), Schjglberg (1996), Schjglberg and $8ws(1994) and Fossen and
Fjellstad (1995). For the choice of state variables usedastrof the literature, the bound-
edness property does not hold for the whole configurationespae. there exist isolated
points where the inertia matrix becomes singular. This tawever, be dealt with by
introducing a quaternion representation (Fossen, 2002¢. dliaternion representation is
well suited for single rigid bodies, but for multibody sysie the Euler angles are nor-
mally adopted. The problems regarding the Euler angle &nijjes are pointed out in
most books and papers when it comes to modelling, but is téfeaut when dealing with
stability proofs. As a result of this the control law is noligtaat isolated points in the
configuration space.

Similarly, the skew-symmetric property of the Coriolis mirats in general not treated
correctly and is in most cases assumed true without anyduptitoof. In the authors’ view,
this is a strong weakness because this property dependswondiohoose to represent the
Coriolis matrix. It is thus not sufficient to refer to an arbity proof of skew-symmetry:
one must refer to a proof for the specific parameterisatiah@fCoriolis matrix chosen.
Most papers on the topic refer to Antonelli (2006), Fosseth Bjellstad (1995), de Wit
et al. (1998) or Schjglberg and Fossen (1994) for this prblofvever, none of these ref-
erences actually show the proof. Given the velocity statechjglberg and Fossen (1994)
state that" (M — 2C)v = 0, which is true, but a weaker result than skew-symmetry.
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This property is known as thgrinciple of conservation of energnd is always true. This
is often used to show skew-symmetry, which is not correche©tommonly used refer-
ences are taken from the fixed-base robotics literaturdy aadviurray et al. (1994) and
Sciavicco and Siciliano (2005). The proof can be found inj@blerg (1996), but only for
systems where the boundedness property does not hold. W&npthis proof, and correct
some mistakes made, so that this proof is correctly preddatduture reference.

Spacecraft are normally modelled using quaternions andniia matrix is thus
bounded for the whole configuration manifold (Wen and KreDétgado, 1991). A Lie
group formulation of the dynamics of a rigid body is studie@ullo and Lewis (2004) and
Marsden and Ratiu (1999). For spacecraft-manipulatoesyst however, a Langrangian
approach is normally adopted and, again, the dynamics drglolmally valid. Such sys-
tems are discussed in Hughes (2002), Moosavian and Papadef@007), Liang et al.
(1997, 1998) and Vafa and Dubowsky (1987). As for the undeEmsystems, most pa-
pers concerned with modelling address the boundednesspyolput it is often not noted
in the stability proofs (Antonelli, 2006). Also for the skesymmetric property the most
commonly used references only show this property for fixasetmanipulators, such as in
Murray et al. (1994), Sciavicco and Siciliano (2005) andi€fa987). For the formula-
tion presented in Egeland and Pettersen (1998) the dynamoésess the skew-symmetric
property and, based on the proof in Schjglberg and Foss&4),1&e show that this can
be shown also when the dynamics are written in terms of glstadé variables.

5.3 Properties of the dynamics

In this section we list some important properties of dynasystems in matrix form that
play important roles in system analysis as well as contraésign. Assume for now that
we can write the dynamic equations of a mechanical systeheiform

M(q)§+Clq,4)g=T7 (5.1)

whereq is the state of the system/(q) is the inertia matrix and’(q, ¢) is the Coriolis
and centripetal matrix. The following properties can beoaigged with the inertia and
Coriolis matrices (Bgrhaug, 2008):

Property1. (The boundedness property) The inertia mafviXq) is uniformly bounded
in ¢, i.e. there exist constan#s andd,, such that

0<di <||IM@©Q)| <da<oo, VqgeR", (5.2)
where||-|| is the induced norm for matrices, i.e. a max-bound on the mamxi singular

value and a min-bound on the minimum singular value of theimat

Property 2. (The skew-symmetric property) The matr@M(q) — 2C(q,q)) is skew-
symmetric.

Property 1 is true only when there are no singularities preisghe formulation. Thus,
if the Euler angles are used to represent the attitude ofehele, as in Fossen (2002),
Schjglberg (1996) and Bgrhaug (2008), this is not satisfldek existence of the bound-
ariesd; andds is the basis of gain controller design and global Lyapunabisty, and
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is used in several manipulator control laws such as robugt@o(Ghorbel et al., 1998;
Sciavicco and Siciliano, 2005). Given a computed estimbtbepinertia matrix denoted
M many controllers assume the property

HM(q)’l]\ZI(q)—IH <d<1, VgeR" (5.3)

which is automatically satisfied if the constahis chosen as

do — dy
d= .
do + dy

(5.4)

Property 1 guarantees that the constaistbounded and is thus important in a large class
of existing control laws. We will see one such example in ibads.4.1.

Property 2 is true for a certain parameterisation of the @isrimatrix. Such a rep-
resentation is well known for robotic manipulators on a fixede (Murray et al., 1994,
Sciavicco and Siciliano, 2005) and for vehicles with no mafator attached (Fossen,
2002). One formulation for spacecraft-manipulator systéfound in Egeland and Pet-
tersen (1998) where the boundedness and skew-symmetperties are both true. The
formulation uses quasi-velocities and the final equati@semble Kirchhoff's equations
(Fossen, 2002), but for multibody systems.

The formulation presented in Egeland and Pettersen (1898pivever, independent
of the vehicle configuration of the vehicle, and there is neials way to include these
without introducing the singularities that arise in thensformation between the local and
global velocity variables. The configuration of the vehislémportant in order to include
terms such as gravity and buoyancy in the dynamics. Alsordtrees, such as ocean
currents are added to the dynamics considering the relagileity v,..; in body-fixed
frame, i.e.

Vpel =V — ROchur'r‘ (55)

wherev is the linear and angular velocity in the body frame,.. is the velocity of
the ocean current given in the inertial frame aRgl, is the rotation matrix. Hence, this
transformation also requires the position state of theclehi

The formulation found in Egeland and Pettersen (1998) de¢sieed the position
variables of the vehicle because they consider this thdifikstFor more general systems
the position variables may be required in the inertia matmnd in this setting the formula-
tion in Egeland and Pettersen (1998) does not hold in terntisedboundedness property.
This includes systems with more than one transformationcdanot be represented with
generalised coordinates.

Based on these observations, we organise the paper asdgollovthe next section
we start with a motivational example and show how these pti@seappear in control
algorithms of mechanical systems. In Section 5.5 we dehieediynamics of Lagrangian
systems in terms of generalised coordinates which include{fbase robotic manipulators
with 1-DoF revolute or prismatic joints and we show that betbperties 1 and 2 hold. In
Section 5.6 we derive the dynamics for single rigid bodiesitles when the state space
cannot be written in terms of generalised coordinates anghees that Property 2 holds,
but Property 1 does not. Section 5.7.1 describes the dysashiehicle-manipulator sys-
tems as they normally appear in the literature and we shoktibdboundedness property
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does not hold. In Section 5.7.2 the dynamics of vehicle-maator systems are derived
based on Egeland and Pettersen (1998) and the boundeddeseansymmetric proper-
ties are shown. We also correct some mistakes that occuralaig and Pettersen (1998).
In Section 5.7.3 we present the correct equations basedorafiproach and extend these
to the more general case when also the position variabléseofehicle are included. We
also present the explicit expressions of the matrices thaiad appear in Egeland and
Pettersen (1998) as well as a detailed proof of the skew-striarproperty. In Section
5.7.3 we present for the first time a set of equations wherb the boundedness and
skew-symmetric properties hold for multibody systems tzatnot be written in terms of
generalised coordinates.

5.4 The Boundedness and Skew Symmetric Properties in
Control

In this section we illustrate how the boundedness propdrthe@inertia matrix appears

in control schemes such as robust control and how the skewngyjric property of the

Coriolis matrix appears in the stability proof of PD contlalvs. The next two sections

are based on the control laws presented in Sciavicco anth8@{2005) and Murray et al.
(1994), respectively.

5.4.1 Robust Control

Assume the dynamics of a robotic manipulator written in tivef of (5.1) with the control

7= M(q)y + C(q,4)d (5.6)

where)M andC represent the computed estimates of the dynamic model. Wesetthe
control action as

y=Ga+Kp(da—q)+ Kp(qa —q) (5.7

whereg, is the desired trajectory in joint space. We further chadgeand K p as positive
definite matrices which guarantees that the error convamesro. We see this if we
combine (5.1) and (5.6) which gives

M(q)i+ C(q.d)q = M(q)y + C(q,4)d- (5.8)

The inertia matrix of standard industrial manipulatorsigirtible and we can rewrite this
as

§=y+ (M (q)M(q) — Dy + M (¢)(C(q,4) — C(g,9))q- (5.9)
Thus, as we would like to havig= y, the uncertainty is represented by
v = —M " q)M(q)y - M (¢)(C(q,d) — C(g,9))q- (5.10)

We can now write the error dynamics as

€+ Kpé+ Kpe=1 (5.11)
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wheree = ¢4 — ¢ and the left hand side guarantees convergence to zero.

The right hand side of (5.11) represents the uncertainfi¢iseosystem. We need to
find a control law that guarantees asymptotic stability gitleat an estimate of the range
of variation of the uncertainties is available. Based ot@pwe can set up the following
assumptions that will guarantee asymptotic stabilityd@icico and Siciliano, 2005)

sup ||Gal| < dar < 00 Y, (5.12)
<0
HI - M—l(q)M(q)H <d<1 Vg, (5.13)

Assumption (5.12) is trivially satisfied as our planneddcapry should not require infinite
accelerations. Assumption (5.14) depends onlyy@md ¢, and is satisfied if we assume
that the joint ranges are limited and that there exist marimsaturations on the velocities
of the motors, which is the case in most mechanical systemisarainly for standard
robotic manipulators.

Of special interest in the setting of this paper is Assump{®13). For this to be true,
we need to guarantee that the inequality

0<d <||M N g)|| <dy <00, VgeR™ (5.15)

holds. If M (q) is bounded with lower and upper bounds, this inequality fialdd we can
always find a matriXx\/(q) that satisfies (5.13). For example, if we set

2

M= I 5.16
do + dy ( )

wherel is the identity matrix we get
HM(q)’lM—IH cBmd gy eRrn (5.17)

and (5.13) is satisfied. Hence, the property that the inevaiix is strictly positive definite
and bounded is used explicitly in the stability proofs.

5.4.2 PD Control Law

Stability in the sense of Lyapunov can be summarised in thewiomg way: LetV (z, t) be
a non-negative function with derivativé along the trajectories of the system.Vifz, t)
is locally positive definite antl (z, ¢) < 0 locally in zz and for all ¢, then the origin of the
system is locally stable.

We will now see an example of how the skew-symmetric propeftthe Coriolis
matrix plays an important role in Lyapunov-based stabiiitpofs. Assume the system
(5.1) and the augmented PD control law

7 = M(q)4a + C(¢,4)da — Kpé — Kpe (5.18)
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wheree = g4 — q. The closed loop system is then given by
M(q)é+ C(q,q)é — Kpé — Kpe = 0. (5.19)

To show stability we choose the Lyapunov function

1 1
Ve, é,t) = 5éTM(q)e + 5eTKPe +ee" M(q)é (5.20)

which is positive definite for sufficiently smadl We now evaluaté” along the trajectories
of (5.19):

. 1 . .
V =e"Mé + 5éTMé +é"Kpe+et" Mé+ ee” (Mé + Mé) (5.21)
1. .
= —¢"(Kp —eM)é + 5éT(M —20)é + ee' (~Kpe — Kpé — Cé + Mé)

For standard robotic manipulators—but, as we will see, majémeral mechanical systems—
we haver" (M — 2C)z = 0, Vz and the second term vanishes. Similarly, the third term
can be written as
T . . TN T T . T/1° .\ .
e (—Kpe— Kpé—Cé+ Mé)=—e Kpe—e Kpée+e (M—Cé)é
1. 1 .
= —¢'Kpe—e Kpé+ eT(§M —Cé)e+ §eTMé
1 -
=—e'Kpe—eKpée+ §eTMé (5.22)

and again we have used the skew-symmetric propertyybf- 2C'). We can now write
(5.21) as

. 1 . .
V=—¢"(Kp—eM)é+ 5éT(M —20)é +ee' (~Kpe — Kpé — Cé + Mé)

= —¢"(Kp —eM)é —ee' Kpe +ee' (—Kp + %M)é (5.23)
which, for sufficiently smalle < 0 guarantees that is negative definite and that the
system is exponentially stable. The stability proof thugurees that the terms witf/ —
2(C') vanishes.

We note that the stability proofs of neither the robust adter nor the PD controller
are valid if Properties 1 and 2 are not true. With this as natitimm we now investigate the
validity of these properties for different formulationstbe dynamic equations in matrix
form for mechanical systems.

5.5 Lagrangian Dynamics onR"

A wide range of dynamical systems can be described by theabagrequations (Goldstein

et al., 2001)
d /oL, . oc,
T (aq (qwz)) ~ g0 =" (5.24)

120



5.5. LAGRANGIAN DYNAMICS ON R"™

whereq € R" is a vector of generalised coordinates and R™ is the vector of gener-
alised forces. We note that the position variables areewritisy € R™ and the velocity
variables are written as = ¢ € R™. This is a convenient choice of state variables for
many systems, but as we will see later, there are also matgnsy$or which the position
and velocity variables cannot be written in this form. Thegtamgian is given by

L(g,d) : R" x R" = R :=U(q, ) — V(q). (5.25)

Here,U(q, ¢) is the kinetic andV’(q) the potential energy functions. We assume that the
kinetic energy function is positive definite and in the form

U(.4) = 30" M(@)i. (5.26)

where M (q) is inertia matrix. For a kinetic energy function written imig form we can
recast the Euler-Lagrange equations (5.25) into the elguizéorm

M(q)i+C(q,9)q+n(q) =T (5.27)
whereC(q, ¢) is the Coriolis and centripetal matrix andq) is the vector of potential

forces defined as

ov

We can also rewrite (5.27) in workspace coordinatése RS. The relation between
the joint and operational space velocities is then giverhbylacobian

_of
-5

where f is the mappingf : ¢ — z§,. If this mapping is smooth and invertible we can
write

(q). (5.28)

Toe = J(q)q> J(q) (529)

i = J " (q)&0e, (5.30)

ST @) (5.31)

We can now substitute this into (5.27) and pre-multiplyby" which gives

(j = Jﬁl(q)i‘Oe +

d
J VM J Vi, + <JT0J1 + JTMdt(Jl)) e +J Tn=J"Tr. (5.32)

This can be written as

M(q)ioe + C(q,d)d0e + n(q) = 7 (5.33)
where
M(q) = J " (q)M(q)J*(q), (5.34)
C) = 77(0) (Clad) T )+ M5 0). (5.35)
ii(q) = J T (g)n(q), (5.36)
7(q) = J T (g). (5.37)
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5.5.1 The Boundedness Property

Ghorbel et al. (1998) identify all manipulators for whicloperty 1, i.e. the boundedness
condition of the inertia matrix, is satisfied. They find that & large class of manipulators,
including manipulators with only revolute or only prisnajiints, this property is always
satisfied. They do not address the mathematical represemtdithe inertia matrix. A bad
choice of state variables may result in an unbounded insréifix due to mathematical
singularities. However, as long as we can use generalisadioates to represent the state
of the robot, as in (5.27), we can do this without the presefsegularities. In this case,
all manipulators characterised by Ghorbel et al. (1998atisfy Property 1 from a design
point of view, will also satisfy Property 1 from mathematipaint of view, as is our main
concern.

This is also true for the formulation in (5.33). However, vegenthat/ (¢) is not always
invertible. This is not due to singularities in the matheigatrepresentation, but due to
kinematic singularities. Kinematic singularities are figarations at which the mobility
of the manipulator is reduced, i.e. it is not possible to isgan arbitrary motion to the
end effector. This is thus a property of the manipulatorgiesind not due to singularities
in the mathematical representation.

The Jacobian of a robotic manipulator has a very simple fofime columns repre-
senting a rotation around an axis are in the form/J; = [(z1 x p1)" zﬂT for a point
p1 on z;, and the columns representing a translation along the ax&e in the form
Jl = [Z;— O]T
Examples.1 As an example we use the geometric Jacobian of the SCARA (bhotay
et al., 1994) which has three revolute joints and one prignj@int, all with respect to the
same axis.. The end effector of the SCARA manipulator can thus trasdiaely inR3
and rotate around the-axis. This is known as the Schoenflies motion. The Jacolsian i
given by

ZXPpr ZXp2 zZXp3 =z

J(q) = ; ; ; 0 (5.38)
0 lycosqr licosqr+1lacos(gr+¢q2) O
0 Ilysingg lysing; +losin(qg1 +¢q2) O
0 0 0 1
= o 0 0 0 (5.39)
0 0 0 0
1 1 1 0

wherel; is the length of linkl, [, is the length of link2 andz = [0 0 1]T. The
determinant of the x 4-matrix of (5.39) representing the 4-DoF motion (cancelliows
4 and 5) is given by

det (J(q)) = l1l2(cos q1 sin (g1 + g2) + sin gy cos (g1 + g2)). (5.40)

We note that the determinant is zero onlyif = {0,7/2}. This is the case when the
arm is stretched oufg, = 0) and the manipulator loses mobility. This kinematic sin-
gularity is thus due to the geometry of the manipulator anddoe to the mathematical
representation.
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We see from (5.38) that manipulators with only revolute arignpatic joints will not
have mathematical singularities. We can assume that tHegooations that lead to kine-
matic singularities are avoided and thus tti&}) is invertible for standard industrial ma-
nipulators. Since/(q) is invertible Property 1 holds also when the dynamics arétevri
in the form of (5.33).

5.5.2 The Skew-Symmetric Property

For robotic manipulators represented in generalised doates, the Coriolis matrix is
normally obtained by the Christoffel symbols of the firstdkis (Murray et al., 1994)

C(g,q) = {cij} = {Z Cijkdk} ) (5.41)
k=1
o 1 6mij 8mik . 8mkj
Cijh = ( 0 + 94, 7 ) (5.42)

whereM (q) = {m;;}. Given this representation it is straight forward to showat ttthe
matrix (M — 2C) is skew-symmetric (Murray etal., 1994; Sciavicco and &ini, 2005).
We see this if we write out the components(8f — 2C):

(M — 20)” = ’fnij — QCZ'j

Im; Omij . Omig . Omy; .
Z(mj mJQk* kak+ mk]‘]k)

oqx, Oqx, 0q; 0q;
8mkj 8m,k
— 5.43
E: ( 94 dx — a4, q) (5.43)

We see thatM — 2C)T = —(M — 2C) and Property 2 is satisfied.
We note that to obtain the Coriolis matrix we multiply the pios variables and the
velocity variables. For example, we multip@%@) with ¢, and get

1| om; ~ Omy,  Omy; \ .
R G — 44
{eijh =5 {321 ( 90, T o0 94, )CIk}; (5.44)

0q;

which only makes sense if the derivative of the positionalalg equals the velocity vari-
able. This is the case for robot manipulators with revolutg@rsmatic joints, but not
for vehicles with configuration spac®0(3) or SE(3). We will say that a configuration
space is non-Euclidean when the velocity variable cannatritéen simply as the time-
derivative of the position variable. The Christoffel syntghcan thus not be used to derive
the Coriolis matrix for vehicle-manipulator systems whitr@vehicle has a non-Euclidean
configuration space.
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For the formulation in (5.33) we compute

L : d d
M—-2C=J""MJ '~ 2J*TM&J*1 —2J TCJ ! + 2J*TM&(J*1) (5.45)

: d d
=J (M —2C)J ! - 2J*TMaJ*1 + 2J*TMa(J*1) (5.46)

=J (M -20)J 7t (5.47)

which, given tha(M — 2C) is skew-symmetric, is skew-symmetric.

5.6 Vehicle Dynamics

The dynamics of a single rigid body, such as an underwatdcleglare usually given by
(Fossen, 2002)

n=Jnv, (5.48)
Mv+Cwyv+DW)v+n(n) =1 (5.49)

wheren = [x y z ¢ 0 w]T is the position and orientation of the vehicle in the

reference frame and = [u v ow p ¢ r}T is the linear and angular velocities in
the body frame.D(v) is the friction and damping matrix present for underwatdrcles
andn(n) represents the gravitational and buoyancy forces.

The kinematics of the system (5.48) is given by the velodiansformation matrix
J(n) which gives the relation between the local and global véjocariables. J(n) is

defined as
J(n) _ [Rboo(@) T@?@)] (5'50)

where R, (©) is the rotation matrix and depends only on the orientatiothefvessel

represented by the Euler angl@s= [qﬁ 0 w]T, given in the reference framé@ (O)
is given by ¢yx-sequence)

1 sin¢tand cos¢tand
Te(©) = |0 cs(l)ff _ciiqr;gb . (5.51)
0 cos 6 CO;‘. 0

We note thafl'o (O), and thus alsd' (), is not defined fop = +r/2.

Similarly to robotic manipulators we can rewrite the dynesniising general coordi-
natesn, eliminating the body frame coordinategrom the equations. The dynamics are
then written as

M(n)ij+ C(n,mn + D(m,n)i +n(n) =7 (5.52)
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where
M(n) = J~T(n)MJ " (n) (5.53)
(n) = J =T (n)n(n) (5.54)
F=JT(n)r (5.55)
D(n,n) = J~ () DI (m)n) T (n) (5.56)
Clni) =T (m) [CO ) = MI ) I ()] T ) (65.57)

5.6.1 The Boundedness Property

First note that for the system (5.48-5.49) the inertia masialways bounded as it is
independent of the position variables. In this sense it imathgeous to formulate the
dynamics in the body frame. Consider the system (5.52-5a6d)recall that/(n) is
not defined fo = +x/2. This is the well known Euler angle singularity for thgz-
sequence. The inverse mappirgs' (©) and.J ! (n) are defined for a¥ € R but singular
for & = +x/2. The boundedness of the inertia matrix in Property 1 is troigme. We
can only obtain a weaker result than the one found in Profderty

Property 3. (The weak boundedness property) The inertia mam@n) is uniformly
bounded i for 6 separated frort7r/2, i.e. there exists constanis andds such that

0<d < HM(n)H <dy < o0, Vi€ RG\{(|9| - g] > 6} (5.58)

for some small positive delta. We note that the lower bodnd> 0 only exists if|| is
separated fromr/2 by some constarit

Whené = 7/2 we haved; = 0 and (5.3) does not hold @s= 1.

This singularity can be avoided by using the unit quatermpresentation, which
does not have a singularity at the cost of introducing a foperameter to describe the
orientation. However, in computing the Euler angles fromdhnaternions the Euler angle
singularity reappears.

5.6.2 The Skew-Symmetric Property

There are many ways to choose the Coriolis matrix so Aat 2C is skew-symmetric.
We first note that if\ is constant, and thus/ = 0, this is true ifC' is skew-symmetric.
The Coriolis matrix can for example be written as

0 M + Myavs

— e e (5.59)
Miyvy + Migva Moy + Maovs

Cv)= [

wherev = [v] vy }T and )\ is the skew-symmetric matrix representation)of R3
given by

R S T
A= A3 0 - | € 80(3). (560)
-2 M 0
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Alternatively, from Kirchhoff's equations we get

0 ou
EZay

wherel{(n) is given as in (5.26). The proof is found in Sagatun and Fogke®2). Both
these representations satisfy Property 2. Several othegsentations for which the Cori-
olis matrix is skew-symmetric are found in Fossen and Raadl$1995).

If the inertia matrix is not constant and the dynamics ar&@form of (5.52), we can
also show this property. The time derivative of the inertetnix can be written as (Fossen,
1991) .

M=J"T(M-2MJ )} (5.62)
and we get

(M —2C) =J TN — 20 TMJ 1 j =t —2J-TC "t + 20 Ty 1jg
=J (M —20C)J ! (5.63)

and thus, a§)M — 2C) is skew-symmetric, so i\ — 2C') and (M — 2C).

5.7 Multibody Dynamics with a Free-Floating Base

In this section we review some commonly used approachesddeiting multibody sys-
tems and propose a new approach that has certain advantagestwomes to the bound-
edness and skew-symmetric properties addressed in thes.p&onsider the setup of
Fig. 5.1 describing a generallink robot manipulator arm attached to a free-moving base.
Choose an inertial coordinate franig, a frame¥, rigidly attached to the moving base,
andn frames¥; (not shown) attached to each linkt the centre of mass with axes aligned
with the principal directions of inertia. Finally, chooseectorg € R™ that describes the
configuration of the: joints.

5.7.1 The Model of Schjglberg (1996)

In this section we present the dynamic equations as theyoaneatly presented in the un-
derwater robotics literature. The details can be found mj@berg (1996). The dynamics
can be written as

£=J(E), (5.64)
M(q)¢ +C(g, )¢ + D(a: Q)¢ +n(é) =7 (5.65)
where¢ = [n" qT]T, ¢=[v" qT]T, M(q) € R(E+m)x(6+n) g the inertia matrix,

C(q,¢) € R6+m)x(6+n) s the Coriolis and centripetal matrix aft(¢, ¢) € R(6+7)x(6+n)
is the damping matrix. The velocity transformation matsxgiven by

Roy(©) 0 0
JE=| 0 To(®) 0| eROTxEHn) (5.66)
0 0 I
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where! (no subscript) denotes the identity matrix. Similarly te giynamics of the ve-
hicle with no robotic arm, the vehicle-manipulator equasican be written in the form
of Equations (5.53-5.57) but with the velocity transforimatmatrix as in (5.66). Let),
denote the linear and angular velocity of bodyepresented in the inertial frame, and
P;(q) € R6*(6+7) pe the transformation matrix of link that gives the relation

v = Pi(q)C. (5.67)

The inertia matrix of the vehicle-manipulator system camntbe written as (Egeland and
Pettersen, 1998)

n

M(q) =Y Pl (a)L:Pi(q) (5.68)
i=b

wherel; € R°*¢ denotes the constant positive-definite diagonal inertiade of link i
expressed in?; and we thus sum from the bak¢o the end of the chain, i.e., link. We
note that the inertia matrix is independent of the positjaf the vehicle.

The Coriolis matrix is given by

Clg,0) =3 BT (@IPila) — PT@Wi(O)Pia) (5.69)
i=b

whereW;(¢) is a skew-symmetric matrix (Schjglberg, 1996). We will use framework
of Egeland and Pettersen (1998) to find an expressio#¢c¢). This is shown in Section
5.7.2.

Alternatively we can write the dynamics in terms of the vecte= [n" (:vge)T]T €
R'2 wherez9, is the manipulator position/orientation vector in the tisdrframe. We
present the equations as first presented in Schjglberg Y, 1B@6correct an error in the
expression of the Coriolis matrix. The dynamics can be amits

M(n,q)¢ +C(n,4,0)¢ + D(n,q,C)< +7(n, q) =7 (5.70)
with the matrices as in (5.53-5.57), but with

T _ | _ J(Ul _ 0 _ 12X (6+n)
) = Ryo(©)J1(n)  Ruo(©)J2(q) ¢RI (6.71)

where.J(n) is given by (5.50) and; and.J, satisfy
it = Ji(nv + Ja(q)d (5.72)

wherez?, is the end-effector position/orientation in the base frame

Ryo(0) = [R(;’O R(Zo] . (5.73)

This formulation is convenient because it allows us to witie dynamics in terms of the
end-effector position and orientation directly.
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5.7.2 Multibody Dynamics in Terms of Quasi-Velocities

In this section we derive the dynamics of a robotic maniulatounted on a free-floating

base in terms of quasi-velocities. The approach is basedjelaiid and Pettersen (1998),
but a few errors from this paper have been corrected and w@eiside some more details

in the derivation.

First, write the linear and angular velocitie§ of each linki represented in the inertial
frame (frame 0) as

0 0
0o _ |Yoiw]| _ v,
Voi = ng] = ¢ (5.74)

Then the dynamics can be written as (Egeland and Petterd3@g) 1

6 {3V8iT
= L%

d au; ' [agi_yw 0 } ou;

d+ 9,0 0 0
dt 8u01- Yoi v 6V0i

} =7 (5.75)

-0
Yoi,w

where

5 (a0 7
_ 0i
T= E { ac } . (5.76)

We now derive the dynamics in matrix form following the apgeb in Egeland and
Pettersen (1998), but in addition we show the explicit exgians for the matrices which
were not shown in Egeland and Pettersen (1998) and we cameztor is the expression
of the Coriolis matrix. First write

d o, d . o O,
Ty, &(Iﬂ/&) = Livy; = I; ( 82 ¢+ 32 ) ; (5.77)

and

07,v 0”& " 0%,v 91,0 N 0i,w §u/9
au, 0
— X Vg, 0
= aagz} N (())W au, 0
“aug, ., X Vi a0, < Voiw
—_—
0 aaﬁli 0
| | |MOiw (5.78)
ou; o | |0
d”m,u dl/[l))l,w ’
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Substituting (5.77) and (5.78) into (5.75) we get

i do; T 0., 0 lauT||
i— dt 3V01 p(())i,v VO’L ,w 81/01 -7
6 o, 1
Z { [ <al/Oz<- + 81/01 C) [/0\ %01\1)] |:V§i,v:| } =T
ED) au. ,
i— C C 31/01 ; al/m - VOz,w |
ou; ]
zﬁ: " 9 81/mC oo, " I aVOLC oy, /0\ [z {y(gi’v _
~ | ¢ ¢ ¢ 8C 78‘3? 78%{,.: V0i,w]
26: [5’/01 8V0¢ & Z 01 I, aVOz . aniT 0 316’?;,u g, C=r
Pt aC oC oC dilgfjv dfé/flw a¢
(5.79)

where we have used the relation in (5.74). The inertia antb@mmatrices are then found
from (5.79) as

n

M(q) =Y Pl (a)LiPi(q) (5.80)
i=b
where
_ 8’/81‘
Pi(q) = ac (5.81)
and
Cl0:Q) =Y (PN (@)T:PAa) - P () WiP.(0)) (5.82)
i=b
where
Wil) = | — e (5.83)
PAT0i U, au, |- '
ayl())i,'u 8”8i,w

5.7.3 General Multibody Dynamics

In this section we extend the formulation in the previougisado include more general
structures and also mechanisms where the position of thieleateeds to be included
in the dynamics. The approach is based on Duindam and Sidin{#008) and From
et al. (2009a) where the dynamics of vehicle-manipulatetesys are derived and the
boundedness property holds. However, for the Coriolis imattesented in From et al.
(2009a) the skew-symmetric property does not hold. In thitisn we thus present a
new formulation of the dynamic equations for vehicle-mafapor systems where both
the boundedness and the skew-symmetric properties hold/aieth allows us to include
the vehicle configuration in the representation.
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Using standard notation (Murray et al., 1994), we can dbsdtie pose of each frame
U, relative to¥ as a homogeneous transformation magtixe SE(3) of the form

goi = [ROO pﬂ e R1*4 (5.84)

with rotation matrixRy; € SO(3) and translation vectgr,; € R®. This pose can also be
described using the vector of joint coordinagess

9oi = gob9vi = gObgbi(Q)~ (5.85)

The base posgy, and the joint positiong thus fully determine the configuration state of
the robot. In a similar way, the spatial velocity of each lgdn be expressed using twists
(Murray et al., 1994):

0
Vi = [Zé)zj = vy + Vi = Ady,, (ng + Ji(4)q) (5.86)
wherevg, , andvg; , are the linear and angular velocities, respectively, dflirelative to
the inertial frame,J;(q) € R%*" is the geometric Jacobian of linkelative to¥;, and the
adjoint is defined add, := [ 7f] € R%*€. The velocity state is thus fully determined
given the twist/}, of the base and the joint velocitigs

This illustrates how the kinematics of the system can berabiyudescribed in terms of
the (global) state variabled = {go;, ¢} andv = {1/}, ¢}. We will use these observations
to reformulate the relation given in (5.74). We will also réethe inertia matrix, as given
in (5.26) and (5.80), in terms of the globally defined statéaides.

Given a mechanism with coordinates formulated in this gaised form, we can write
its kinetic energy a&f(Q,v) = v M (Q)v with M (Q) the inertia matrix in coordinates
Q. The dynamics of this system then satisfy

M@)o+ C(Q,v)v =1 (5.87)

with 7 the vector of gravitational forces, friction, and otherezrial forces (collocated with
).

From expression (5.86) for the twist of each link in the medém, we can derive an
expression for the total kinetic energy. The kinetic ené¥ggf link i then follows as

1 T
Ui = ) (ng‘) vy,
1 AT .
=5 (ng + Ji(q)q) Ad;b I; Adg,, (ng + Ji(q)q)
1 T . ng
5 ()" ] |8
= %UTMi(q)v (5.88)
with
AdT I, Ad Ad' I, Ad,., J;
. — gip gib gip gib Y1
Mi(g) [JJ AdT I Ady, JTAAT I Ady, J; (5.89)
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whereJ;(q) is the geometric Jacobian of lirk The total kinetic energy of the mechanism
is given by the sum of the kinetic energies of the mechanisiksland the non-inertial
base, that is,

U(g,v) = %UT qg’ 8} + ;Mi(q)> v (5.90)

inertia matrixM (q)

with M (q) the inertia matrix of the total system. Note that neitb&r, v) nor M(q)
depend on the posg;, and hence the choice of inertial reference frabge

We see that from (5.89) we can reformulate the expressiomelafid and Pettersen
(1998) for the inertia matrix and we get

M(q) = Z P (q)1;P,(q) (5.91)

where
Pi(q) = [Adngb Adgiin] c ROX(6+n) (5.92)
and the Jacobia#; of link i is given by
Jz(q) = [Xl AdgleQ Adgb2X3 R Adgb(i—l)Xi O(n_i)xﬁ] . (593)

The partial derivatives of the adjoint map is found by (Frarale 2009a)

0Ad,,. Adg'i(k—l) aka Adg(k—l)j fori <k < ]
Tg” = - Adng(k—l) adx, Adg(k.,l)j forj <k <i
o 0 otherwise

which also gives us the partial derivative of the Jacobian as

oJ;
Oqx

dAdy,, OAdg, .,
= [kaﬁ g X1 o g X, O(nﬂ')xe} (5.94)

Similarly the Coriolis matrix can be found by

n

Clg,¢) =3 (PT@LEia) - BT (WP, (0)) (5.95)

i=b

whereW; is given by (5.83) and’; by (5.92).C(q, ¢) is thus also well-defined.

We see that this approach allows us to include forces suchsastygand buoyancy
forces. Let the wrench associated with the gravitationeddmf link ¢ with respect to
coordinate frame’; be given by

Fy = [ g } = —moig [ oo ] (5.96)

20 20
Fofg rqRoiex
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wheree, = [O 0 1 T andr? is the center of mass of linkexpressed in fram#&;. In
our casev; is chosen o) thart8 coincides with the origin ofr; so we haverg = 0. The
equivalent joint torque assouated with lihks given by

7o = Ji(a) Adj, (Q)F4(Q) (5.97)

whereJ; is the geometric Jacobian aidl,,, = Ad,,, Adg,, is the transformation from
the inertial frame to framé We note that bottR,; andAd,,, depend on the base config-
uration with respect to the inertial frame. The total effetcthe gravity from all the links
is then given byn(Q) = >, 7, Ty Y which enters Equation (5.87) in the same way as the
control torque.

We note that to obtain the complete representation of thamtjecs we need to make
sure we do not leave the manifold when we perform the integraf his can be done either
by projectinggo, onto the allowed configuration spasé”(3) (McLachlan and Quispel,

2006) or by using structure-preserving integration meshddunthe-Kaas, 1998).

5.7.4 Multibody Dynamics in Terms of Quasi-Coordinates

We can also follow the generalised Lagrangian method inited by Duindam and Strami-
gioli (2008, 2007) and From et al. (2009a). This method gitilesdynamic equations for a
general mechanism described by a@et {Q,} of configuration state; (not necessar-
ily Euclidean), a vector of velocity states); € R™:, and several mappings that describe
the local Euclidean structure of the configuration statekthsir relation to the velocity
states. More precisely, the neighbourhood of every gBatis locally described by a set
of Euclidean coordinates; € R™ asQ; = Q;(Q:, ¢:) with Q;(Q;,0) = Q;, and there
exist differentiable matriceS; such that we can write; = S;(Q;, qﬁi)(bi for everyQ;.

The inertia matrix) (q) is then given by (5.90) and the Coriolis matdXQ, v) is
given by

_ OM;; . 1 __,0M;
Cij(Q,v) :== ( IS — =8 —2 )’ v
;,l ad)k 2 a¢k $=0

0Sm; 0S8
—1 m, ms —1
+ Z (Smi < 8¢: - a¢] ) Ssk Mkl) v

k,l,m,s $=0

More details and proofs can be found in Duindam and Stratni@608, 2007).

(5.98)

5.7.5 The Boundedness Property

The dynamics as presented in Schjglberg (1996) and Secfiahdo not satisfy Property
1. Due to the singularity there exist isolated points in thefiguration space where the
inertia matrix is singular. Even though this is the most camrformulation of vehicle-
manipulator systems in the literature this fact is normatiyaddressed in Lyapunov stabil-
ity proofs. The formulation in Egeland and Pettersen (1$8%) Section 5.7.2 is globally
valid and the inertia matrix is bounded the whole configoraspace. For systems where
the configuration of non-Euclidean joints needs to be irnetlid the dynamics, there does
not seem to be a straight forward way to include the transdition between the local and
global state variables without introducing singularitieshe formulation.
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This is, however, possible with the formulation presente&éctions 5.7.3 and 5.7.4
where the inertia matrix is bounded for the whole configorasipace also for non-Eucliden
joints with a Lie group topology, such &0 (3) andSE(3). These formulations allow us
to use the matrix representatign, € SE(3) of the configuration space and the structure
of the configuration manifold is thus maintained.

5.7.6 The Skew-Symmetric Property

Schjglberg (1996) show that for the formulation presente®&éction 5.7.1 the skew-
symmetric property holds in body-fixed coordinates. Basethis proof we can show that
this property also holds for the approaches presented ito8e&.7.2 and 5.7.3. First, for
the Coriolis matrix given in (5.69) and (5.82) we can write

(M —20) (ZPT )i P )—QZ(PT )LiPi(q iT(Q)WiPi(Q)>

Z ( )+ P (q)1;Pi(q) — 2P (q)I;P;(q) + ZP;I—(Q)WiPi(Q))
i=b
2 zn: PT(q) (5.99)
i=b

and(M — 2() is skew-symmetric, for skew-symmetfi€;. Thus, the formulations given
in Sections 5.7.1, 5.7.2 and 5.7.3 all satisfy the skew-sgtrimproperty. This is not true,
however, for the parameterisation in 5.7.4.

As we have seen, this property is also true if the system idemrin terms of global
state variables, as in (5.52) and (5.70), i.e. as long\as- 2C) is skew-symmetric, so is

(M — 20) and (M — 20).

5.8 Conclusions

The boundedness property of the inertia matrix and the skemmetric property of the
Coriolis matrix both depend on the choice of mathematigatesentation. The proofs of
such properties thus need to be based on the particularsesiegtion chosen. In other
words, a reference to a proof for a different choice of statéables or a different param-
eterisation of the matrices is not valid. In this paper weehslvown that several widely
used formulations of vehicle-manipulator dynamics do ragsess these properties. We
have also shown that some of the most commonly used refereiseel in for example in
stability proofs of Lyapunov-based control laws in fact di show these properties. As a
result, many of the control laws presented in the literatugenot valid.

For several formulations of vehicle-manipulator dynangemmonly found in the lit-
erature we have have studied whether the boundedness amesghkanetric properties
hold. When we find the dynamic equations to satisfy these ptiepeve have also in-
cluded the proofs for future reference. These proofs havg@mwiously been presented
correctly for vehicle-manipulator systems. Finally we pwse a modified version of the
dynamic equations that satisfy both properties for gematafibody systems.
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Chapter 6

A Singularity Free Formulation
of the Dynamically Equivalent
Manipulator Mapping for
Free-Floating and Free-Flying
Space Manipulators

6.1 Abstract

In this paper we derive, for the first time, the singularity-free dynamic equations
of the dynamically equivalent manipulator (DEM) of spacecrdt-manipulator sys-
tems. The DEM is a fixed-base manipulator with the same dynarai properties as
the corresponding spacecraft-manipulator system. The DEMonsists of a spherical
joint, representing the spacecraft, and a robotic arm with he same joint types as the
space manipulator. A spherical joint is normally modeled ugng Euler angles, which
leads to singularities, or Euler parameters, which is not a rmimal representation
and thus not suited for Lagrange’s equations. We circumventhese issues by intro-
ducing quasi-coordinates which allows us to derive the dyrmaics using minimal and
globally valid non-Euclidean configuration coordinates. This is a great advantage as
the configuration space of a spherical joint is non-Euclidea. We thus obtain a com-
putationally efficient and singularity-free formulation o f the DEM dynamics with the
same complexity as the conventional Lagrangian approach. fie closed form formu-
lation makes the proposed approach well suited for system atysis and model-based
control. The inertia and Coriolis matrices are presented insuch a way that this can
be implemented for simulation and control purposes withoutextensive knowledge of
the mathematical background.
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6.2 Introduction

One of the main issues when designing spacecraft is rolssstn€his applies to both
the hardware design and the algorithms used for operatidrcantrol. A well known
problem when it comes to modeling of these systems is theepeesof singularities in
the representation of the spacecraft. For a spaceeitiftno manipulator attachedhis
can be solved in many ways: by adopting a quaternion repiatsam, a Lie geometric
approach, or by representing the dynamics in terms of \gleeiriables only (the Euler-
Poincaré equations or Kirchhoff's equations). Howe¥er,multibody systems, such as
a manipulator arm mounted on a spacecraft, these solutioasat directly applicable
the unit quaternion can for example not be used in the Lagmanfgamework because
Lagrange’s equations require a set of generalized codatinavhich quaternions are not;
a Lie group formulation is suitable for single rigid bodibst for multibody systems these
formulations will in general be too involved to implementydfinally the Euler-Poincaré
equations consider the kinetic energy only, and do thus migle a complete description
of the dynamics which is necessary to include gravitatiéoaes or joints with complex
transformations.

The dynamically equivalent manipulator (Liang et al., 199998) addressed in this
paper suffers from these singularities when the conveatiapproaches are applied. We
thus propose a novel approach to modeling of these systeahddmot suffer from sin-
gularities and represents improved performance when itesota robust mathematical
representation. Hence, for the first time, globally validiaipns of the DEM are pre-
sented.

Vafa and Dubowsky (1987) presented the Virtual Manipul@) approach, which
addressed the problem of modeling and control of a robot neolmn a free-floating base.
The virtual manipulator is a fixed base manipulator wherestellite is modeled as a
spherical joint and the kinematic properties of the VM are shme as for the space ma-
nipulator. The virtual manipulator is an idealized masskinematic chain describing the
kinematic relations between the space manipulator andithelmanipulator. Similarly,
Liang et al. (1997, 1998) mapped the free-floating space podatdr system into a fixed-
base manipulator and it was shown that the mapping presd&ottdthe kinematic and
dynamic properties of the space manipulator. This fixedlolymamically equivalent ma-
nipulator (DEM) can thus be used for workspace analysigdtary planning, simulation,
and control of the space manipulator.

The VM and DEM concepts have proven very important when itesto modeling
and control of space manipulators. In Parlaktuna and OzR@64) an adaptive control
scheme of free-floating space manipulators was deriveddm@s¢he dynamically equiv-
alent manipulator concept. By using the fixed-base maniputhe dynamics could be
linearly parameterized and an adaptive control law wasldpee to control the system in
joint space. Liang et al. (1998) show that the property okeowation of angular momen-
tum is preserved which makes the DEM valid also for free-fiyspacecratft, i.e., when the
spacecraft attitude is controlled with reaction wheels.

Itis a well known fact that the kinematics of the attitude oitgd body contains singu-
larities if the Euler angles are used to represent the @tiemand the joint topology is not
taken into account. One solution to this problem is to userammimal representation
such as the unit quaternion. These are, however, not gereetraloordinates and can thus

136



6.2. INTRODUCTION

not be used in Lagrange’s equations. This is a major drawhde it comes to mod-
eling vehicle-manipulator systems as a wide variety of mashused for robot modeling
are based on the Lagrangian approach. The dynamically algoivmanipulator can be
modeled very easily using Langrange’s equations.

The use of Lie groups and algebras as a mathematical badisefaterivation of the
dynamics of multibody systems can be used to overcome tbldgm (Selig, 2000; Park
et al., 1995). We then choose the coordinates generatedehyig¢halgebra as local Eu-
clidean coordinates which allows us to describe the dynaoically. For this approach
to be valid globally the total configuration space needs tadxered by an atlas of lo-
cal exponential coordinate patches. The appropriate iqsamust then be chosen for
the current configuration. The geometric approach predent8ullo and Lewis (2004)
and Marsden and Ratiu (1999) can then be used to obtain allglobid set of dynamic
equations on a single Lie group, such as a spacecraft witbbat attached.

Even though combinations of Lie groups can be used to represgtibody systems,
the formulation is very complex and not suited for implenagion in a simulation environ-
ment. In this paper we introduce quasi-coordinates, iedqoity coordinates that are not
simply the time derivative of the position coordinates, ethallows us to use Lie groups
and algebra as a basis also for modeling multibody systemiswiatny and Blankenship
(2000) quasi-coordinates were used to derive the dynamiatmms of fixed-base robotic
manipulators using Poincaré’s formulation of the Lagraageations. The dynamics of
a single rigid body was also described. In Kozlowski and Herr(2008) several control
laws using a quasi-coordinate approach were presentednlyutobots with conventional
1-DoF joints were considered. Common for all these methsdsdwever, that the con-
figuration space of the system is described asR". This is not a problem when dealing
with 1-DoF revolute or prismatic joints but more complighjeints such as ball-joints or
free-floating joints then need to be modeled as compoundriatie joints (Kwatny and
Blankenship, 2000), i.e., a combination of 1-DoF simpleskiratic joints. For joints that
use the Euler angles to represent the orientation this keesiagularities in the represen-
tation.

In this paper we follow the generalized Lagrangian apprgaeisented in Duindam
and Stramigioli (2007, 2008) and From et al. (2009a) whitbvwad us to combine the Eu-
clidean joints and more general joints, i.e., joints that ba described by the Lie group
SE(3) or one of its ten subgroups, and we extend these ideas tocsp&temanipulator
systems. There are several advantages in following thisoapph. The use of quasi-
coordinates allows us to include joints (or transformatjomith a different topology than
that of R”. For example, for a spacecraft we can represent the tramafam from the
inertial frame to the spacecraft body frame as a free-flggtimt with configuration space
SE(3) and we avoid the singularity-prone kinematic relationsveen the inertial frame
and the body frame velocities that normally arise in degvihe spacecraft dynamics
(Hughes, 2002).

This approach differs from previous work in that it allowstosderive the dynamic
equations of vehicle-manipulator systems for vehiclef witonfiguration space different
from R™. The dynamics are expressed (locally) in exponential doatdse, but the final
equations are evaluated at= 0. This has two main advantages. Firstly, the dynamics
do not depend on the local coordinates as these are elidifiatien the equations and
the global position and velocity coordinates are the ordyesvariables. This makes the
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Uy

Figure 6.1: Model setup for a robot attached to a spacecraft with coordinate flmnénertial
reference framay and end-effector framé ..

equations valid globally. Secondly, evaluating the equnstiaty = 0 greatly simplifies
the dynamics and make the equations suited for implementati simulation software.
We also note that the approach is well suited for model-basattol as the equations are
explicit and without constraints. The fact that the configiam space of the spacecraft
is a Lie group also simplifies the implementation. Even thotlge expressions in the
derivation of the dynamics are somewhat complex, we haveraktools from the Lie
theory that allow us to write the final expressions in a venyde form.

Robustness of spacecraft-manipulator systems is stilljarmaancern for space oper-
ators. We therefore derive the singularity-free dynamicagigns of the DEM. We find
that, similar to the conventional approach, the DEM obtainsing our framework have
the same kinematic and dynamic properties as the space atatoip In other words, if
the same actuator torques are applied to both the DEM andptime smanipulator, this
will produce the same joint trajectory for the space marmitrlas for the DEM given that
the initial conditions are the same. We show that by usingptioposed framework we
can formulate the DEM dynamics by recognizing that the spaftecan be modeled as a
transformationSO(3). We thus formulate the dynamic equations without the segigs
that normally arise when the Euler angles are adopted arsgipiefor the first time, the
singularity free dynamic equations of the DEM.

The paper is organized as follows. Section 6.3 gives theldétaathematical back-
ground of vehicle-manipulator modeling. The dynamics dfigle-manipulator systems
are derived in detail and we show that the singularities batally arise are eliminated
from the equations. This section can be skipped and pi@utits mainly interested in
implementation can go straight to Section 6.4. Section BoWs how to derive the dy-
namic equations of the dynamically equivalent manipulasing the standard approach.
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In Section 6.5 the dynamic equations for the DEM are preskntdetail based on the for-

mulation presented in Section 6.3. The matrix represemtati the dynamics and how to
implement this is presented in great detail which allowsrdalers to implement this in a
simulation or control environment without having to penfoall the detailed computations
themselves. Finally we include several mathematicaliceiatthat can be used to improve
the speed of the algorithms. It is shown in detail how to comaplue partial derivatives of

the adjoint matrix in a computationally efficient mannereTdetailed proofs are included
in the Appendix.

6.3 Dynamic Equations of Vehicle-Manipulator Systems

In this section we show how to model a serial manipulator aith $+DoF joints mounted
on a base for which the configuration space has a Lie grouddgyo In Section 6.5
we will use this to derive the singularity-free dynamics bé tdynamically equivalent
manipulator.

6.3.1 Vehicle-Manipulator Kinematics

Consider the setup of Fig. 6.1 describing a generlihk robot manipulator arm attached
to a vehicle. Choose an inertial coordinate fradng a frameW, rigidly attached to the
vehicle, andn frames¥; (not shown) attached to each linkat the center of mass with
axes aligned with the principal directions of inertia. Hipachoose a vectog € R™ that
describes the configuration of thgoints. Using standard notation (Murray et al., 1994),
we can describe the pose of each fralmeelative tol, as a homogeneous transformation
matrix go; € SE(3) of the form

_ |Roi  poi 4x4
901—[0 1:|ER (61)
with rotation matrixR,; € SO(3) and translation vectgr,; € R®. This pose can also be
described using the vector of joint coordinagess

Joi = Job9vi = gObgbi(Q)- (6.2)

The vehicle poseg, and the joint positiong thus fully determine the configuration state
of the robot. Even though we ugg, (6 DoF) to represent the vehicle configuration, the
actual configuration space of the vehicle may be a subspatE @) of dimensionn < 6.
In our case, we have that the attitude of a spacecraft hagjooafion spac&O(3), with
dimensionm = 3.

In a similar way, the spatial velocity of each link can be egzed using twists (Murray
et al., 1994):

v); .

V= | ] = V4 Vi = Adgy (V4 (00 ©3)
7

whereuv); andw); are the linear and angular velocities, respectively, dfirelative to the

inertial frame,J;(¢) € R®*™ is the geometric Jacobian of linkelative to,, the adjoint

is defined as\d, := [} 7F] € R*5, andp € R**3 is the skew symmetric matrix such
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thatpr = p x x for all p,z € R3. The velocity state is thus fully determined given the
twist Vj, of the vehicle and the joint velocities

In the case ofn < 6 we define a selection matrid € R%*™ such that the velocity
vector of the vehicle is given by

Vo, = HVy, (6.4)

whereV}, € R™ determines the velocity state of the vehicle by selectiegnents of/},
that are not trivially zero. More generally we will write tlalowed joint velocity as a
vectory; € R™. The joint velocity is uniquely described by this vector dhe joint twist
can be expressed in terms of this vectof &5 = X, (Q)v; with X;(Q) € R°*" a matrix
describing the instantaneously allowed twists. XIfis independent of the manipulator
configuration we geH = X. In our case we hav; = 1 for the Euclidean joints of
the manipulator and the velocity vectay = V; for the allowed vehicle velocities. The
spacial velocity whemn < 6 is then written by

vo%:[

sz

0 ~
”ﬂ Vi, + Vil = Adyy, (HV, + Jila)d) (6.5)

6.3.2 Vehicle-Manipulator Dynamics

The previous section shows how the kinematics of the systenbe naturally described
in terms of the (global) state variables,, ¢, V,, andg. We now derive the dynamic
equations for the system in terms of these state variablesfirgf assume the vehicle to
be free-moving and then restrict the vehicle motion to bekiatically constrained.

To derive the dynamics of the complete mechanism (includirgn-DoF between
¥, and¥,), we follow the generalized Lagrangian method introducgddhindam and
Stramigioli (2007, 2008). This method gives the dynamicatigms for a general mecha-
nism described by a s€ = {Q;} of configuration stateg; (not necessarily Euclidean),
a vectorv of velocity states; € R™i, and several mappings that describe the local Eu-
clidean structure of the configuration states and theitiogldo the velocity states. More
precisely, the neighborhood of every sté)gis locally described by a set of Euclidean
coordinatesp; € R™ asQ; = ®;(Q;, ;) with ®;(Q;,0) = Q,. ®;(Q;, ¢;) defines a
local diffeomorphism between a neighborhoodaf R™ and a neighborhood @p;.

We start by deriving an expression for the kinetic co-enefgymechanism, expressed
in coordinates, v, but locally parameterized by the coordinate mappings dhgoint.
For joints that can be described by a matrix Lie group (abtUfal the group ofn x n
nonsingular real matrice§ L(n, R)), this mapping can be given by the exponential map
(Murray et al., 1994). Let € gi(n,R), wheregi(n,R) is the Lie Algebra ofGL(n,R).
Then the exponential map ejp) is given by

ATL
_I+A+— —Z (6.6)

wherel (no subscript) is the identity matrix. This expression idséor all subgroups of
SE(3) andSE(3) itself by replacing4 with the matrix representation of the Lie algebra
associated with the Lie group. We denote the matrix reptatien of the corresponding
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Lie algebra by and thus get
3 N 72 x én
e :I+¢+?~-~:;H. (6.7)
For the spacecraft the Lie algebra is represented by
. 0 —¢3 o2
R N Y (6.8)
—¢2 1 0

The dynamics are thus expressed in local coordinatés configuration and for
velocity, and we consid€p a parameter. After taking partial derivatives of the Lagiian
function, we evaluate the results@t= 0 (i.e., at configuratior) to obtain the dynamics
expressed in global coordinatésandv as desired. We note that even though local co-
ordinatesp appear in the derivations of the various equations, the égahtions are all
evaluated atp = 0 and hence these final equations do not depend on local catedin
The global coordinate§ andv are the only dynamic state variables and the equations
are valid globally, without the need for coordinate trainsis between various areas of the
configuration space, as is required in methods that useasaftlocal coordinate patches.

Note also that taking the partial derivatives of the Lagran@nd evaluating at = 0
greatly simplifies (6.7) and the closed form expressionsheféxponential map is not
needed. We will use this observation to simplify the impletagon and reduce the com-
putational complexity. We will see several examples of hosvaan use this to simplify
the expressions of the Coriolis matrix.

In general, the topology of a Lie group is not Euclidean. Wheriihg the dynamic
equations for vehicles such as ships (Fossen, 2002), AUYig(lli, 2006), and space-
craft (Hughes, 2002), this is normally dealt with by intrathg a transformation matrix
that relates the local and global velocity variables. Haveforcing the dynamics into a
vector representation in this way, without taking the toggl of the configuration space
into account, leads to singularities in the representationther deficiencies. To pre-
serve the topology of the configuration space we will use iet@ardinates, i.e., veloc-
ity coordinates that are not simply the time-derivative o§ition coordinates, but given
by a linear relation. Thus, there exist differentiable ricas.S; such that we can write
v; = Si(Q;, b;)o; for everyQ;. For Euclidean joints this relation is given simply by the
identity map while for joints with a Lie group topology we case the exponential map to
derive this relation.

Given a mechanism with coordinates formulated in this gaimsd form, we can write
its kinetic energy ag (Q, v) = Jv"M(Q)v with M (Q) the inertia matrix in coordinates
@ andv the stacked velocities of the vehicle, representedyjyyand the robot joints,
represented by;, i = 1...n. The dynamics of this system then satisfy

M(Q)i+ C(Q.v)v =17 (6.9)
with 7 the vector of external and control wrenches (collocateth wjt andC(Q, v) the
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matrix describing the Coriolis and centrifugal forces givey

OM,;; ,_ 1 _._10Mj
Cii(Q,v) == ( S8 = 5% )‘ v
! ; a¢k 2 a¢k' $=0

0Sm; 0S
-1 m ms —1

k,l,m,s 6=0

More details and proofs can be found in Duindam and Strami@007, 2008) and From
et al. (2009a).

To apply this general result to systems of the form of Fig, &:& write@Q = {gos, ¢}
as the set of configuration states wheggis the Lie groupSE(3) or one of its subgroups,

andv = [ngb} as the vector of velocity states. The local Euclidean stingcfor the state
gop IS given by exponential coordinates (Murray et al., 1994)jlevthe state; is itself
globally Euclidean. Mathematically, we can express coméitians(gos, ¢) around a fixed
state(gop, ) as

6
gob = Gob XD (Z bjwb)j) : (6.11)

j=1
g =q+¢; Vie{l,...,n} (6.12)

with b; the standard basis elements of the Lie algefer@) or one of its subalgebras.
Whenm < 6 we seth; = 0 for all then — m entries that are trivially zero, corresponding
to Equation (6.4).

From expression (2.5) for the twist of each link in the medsan we can derive
an expression for the total kinetic energy. Ugte R™*™ andI; € R®*% denote the
constant positive-definite diagonal inertia tensors oftthge and link (expressed inW;),
respectively. The kinetic energy of link i then follows as

1, . ,
=5 (V) LV (6.13)
1 AT ~ .
= 5 (HVi+7i(@)d) Ad},, L Ady,, (HVG,+Ji(a)q)
1/ -4 . ~ .
= 5 ((V)THT +dT0.(a)T) Ady,, 1, Ad,, (HVE, + Ji()d)
1/~ \T Vb 1
[ b T ) ob| — —oTar.
5 [(Vm,) q }Mz(q) [ q } 50 Mi(a)v
with M, = [ 9] for the vehicle and\Z;(q) € R(m+m)x(m+n) for the links are given by

ib

Mi(g) = HTAd] I;Adg, H HTAd], I;Adg, J;
T T AT 1Ay, B JTAAY T Ady, Ji ]

(6.14)

Here,H is the transpose dff which works fine when dealing with the Lie groups treated
here, and we use this notation throughout this paper. Thékintetic energy of the mech-
anism is given by the sum of the kinetic energies of the mdshalinks and the vehicle,
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that is,

T(q7v)=%v ([” }+ZM ) (6.15)

inertia matrixM (q)

with M (q) the inertia matrix of the total system. Note that neitfiy, v) nor M(q)
depend on the posg;, nor the choice of inertial reference franig.
We can write (6.9) in block-form as follows

My v MqTV} XL/Ob [va qu} {Voz;} [Tv}
+ = 6.16
[MqV Mqyq q Cqv Cyq q Tq ( )

with 7, a wrench of control and external forces acting on the veh@tpressed in coor-
dinates¥, (such that it is collocated Witﬁfobb). Here the subscript’ refers to the firsin
entries and the remaining: — m entries. To compute the matrX(Q, v) for our system,
we can use the observations tid{q) is independent o, thatS(Q, ¢) is independent
of ¢, and thatS(Q, 0) = I. Furthermore, the partial derivative 8f with respect tapy is
zero sinceV is independent ofg,, and the second term of (6.10) is only non-zero for the
Cyv block of C(Q, v). This allows us to simplifyC'(Q, v) slightly to

6+n 6+4+n
BMZ-J- 16Mjk>‘ <8S” aSzk)
Cual@v Z 2 + - M .
i(Q,v P < Ior 2 09i )|,y Uk kz::l Ry ¢:0( (q)v)k

(6.17)

We note that we always need to guarantee that the topolodpeafanfiguration space
is maintained, i.e., that we stay on the group manifold. Thisbe achieved either by pro-
jecting go, onto the allowed configuration spa6é’(3) or one of its subgroups (McLach-
lan and Quispel, 2006) or by using structure-preservinggirdtion methods (Munthe-
Kaas, 1998) for which it is guaranteed that the numericaitgm will evolve on the correct
manifold.

6.3.3 Vehicles with Configuration Space&O(3)

The configuration space of the spherical joint of the DEM erattitude of a spacecraft can
be described by the matrix Lie groufO(3). The velocity state is thus fully determined
by only three variables and we choadeso that

VObb =H %bb (6.18)
with
H = [OM} . (6.19)
I3x3
We then get
s 1 - 14, .
Vob = | I = §¢V + éﬁﬁv -] ov. (6.20)
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where$ € R3*3 is the skew symmetric matrix such that = ¢ x z for all ¢,z €
R3. The corresponding matrice% can be collected in one block-diagonal matéixc
R(B+n)x(3+n) given by

S(Q.¢) = [(I ~3ov ‘Lofli(% - ﬂ . (6.21)

We note that when differentiating with respectit@nd substituting> = 0, this simplifies
the expression substantially. The precise computatioetaild of the partial derivatives
follow the same steps as in the classical approach (Murraly,et994).

Firstly, Cyv depends on both the first and the second term in Equation)(6\Y/@

havei,j = 1...3. Note thataM” = 0fork < 4 and %i;j = 0fori,j,k > 3. This
simplifiesCVV to

3+n

OM;; 10M; 0S; 0S;
Co@n =3 | G -5 || w Z (a@j - a%’f) (M(g)o)s.
o= —— $=0
=0 ¢:0
(6.22)

The details are found in the appendix.
When differentiating and evaluating at= 0 the matrlcesz 95 are equal t&ek

whereey, is a 3-vector with 1 in thé™ entry and zeros elsewhere. Similarly, %S(;F is
J
equal to—$é;,. This is then multiplied by thé™ element ofM (¢)v and we get

6

Cvv(Q,v) Z MVV!]k+ @)\v)‘—/ (6.23)
=

where(M (q)v)y; is the vector of the first three entries of the vectd(q)v (corresponding
to V).

Secondly,Cy4(Q,v), i.e.,,i = 1...3andj = 4...(3 + n), is found in a similar
manner. First we note th =0 for i=1...3and that%i",j = 0and %3+ = 0 for
j=4...(3+n),soonly the flrst part is non-zero and we get

oM
Cyq(Q,v) Z V‘I k- (6.24)

k=1

Finally, the termsC,y, andCy, depend only on the first part of Equation (6.17) and
can be written more explicitly as (From et al., 2009a)

oM, 197 b
Z WV — 3% ([MVV M {ng]) (6.25)
T b
T (e ) e
k=1
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The C-matrix is then given by

Z a G~ 2|2 M—(M/(q;)v Vool \ ot (1 0MT Vol
w2 |5 (e 2031 ['8]) 2 (D qq1[q(l_)27)

6.4 State of the Art Spacecraft-manipulator Dynamics

The equations of motion of a spacecraft-manipulator syst@mbe written as
M(z)0+ C(x,v)v =T. (6.28)

Here,z = [r] ©], qT}T andv = [rf  (wd,)" q'T}Twhere(%b is the Euler angles,
ro is the position of the center of mass of the spacecsff,the angular velocity of the
spacecraft and is the joint positions of the manipulator.

Alternatively we can use the center of mass of the whole systaepresent the trans-

lational motion. Ther = [l (w,)" qT]T wherer..,,, is the linear velocity of the
center of mass of the spacecraft-manipulator system. $Shisd¢oupled from the angular
velocity w, and the inertia matrix for a free-flying spacecraft-margpoit system can be

written as (Dubowsky and Papadopoulos, 1993)

ml 0 0
M=|0 M, JVI,L (6.29)
0 My My

wherem is the total mass of the system. The Euler angle raiggelate towy), by

Oob = Ty, (Oos)wi, (6.30)
where
1 singtanf cos¢tant
To,,(O0) = |0 cos ¢ —sing | . (6.31)
0 sinq; cos?

To,, (O is singular at isolated points. The control torques arergiyer = [, 7.} TqT]T
wherer, is the spacecraft forces generated by thrusterss the spacecraft moments gen-
erated by thrusters, momentum gyros or reaction wheels;d@adhe manipulator torques.

Other models are also available depending on the actuatailalale to control the
spacecraft. In the case whetg 7,, # 0 (free-flying space robots) the center of mass of
the system is not constant, but described by the variahleof Equation (6.28) if we let
v=[rl, (w)T qT]T. If no external forces act on the system and the spacecraft is
not actuated, the center of mass does not accelerateheesystem linear momentum is
constant and.,,, = 0. This can be used to simplify the equations toradimensional
system with inertia matrix\/,, = Myq — Mg, M, 1MT and we get the reduced system
by eliminatingwy, (Dubowsky and Papadopoulos 1993)

M (@) + Co (2, 0) = 7. (6.32)
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The attitude of the spacecraft is then found from
w=—M, M q. (6.33)

The dynamic coupling between the manipulator and the spafitesomplicates the
modeling and control of such systems. One way to deal with ithto derive a fixed-
base manipulator with the same kinematic and dynamic ptiegeas the free-floating
spacecraft-manipulator system. The dynamically equitateanipulator (DEM) (Liang
et al., 1998; Parlaktuna and Ozkan, 2004) is a fixed-basepulandr with the base fixed
in the center of mass of the space manipulator. In the foligyive refer to the satellite-
manipulator system as a space manipulator. When no extemncakfare present, the center
of mass does not move and the end-effector of this manipukatbus given in the inertial
frame. It can be shown that a given sequence of actuatordsrgcting on the DEM will
produce the same joint trajectories for the space manipudest for the DEM.

The dynamic equations of the free-floating space manipulza be derived from
from Lagrange’s equations. We assume a free fall environarghthat all joints are stiff.
The Lagrangian of the space manipulator is then given by ithetik energy only, i.e.,

n+1
T = Z[ pzmzpz-l- wi RoiD;i R ,w; (6.34)

for both the spacecraft and the links, which is differentrirequation (2.12) in that the
inertia matrix depends on the configuration of both the sprafeand the jointsmn; is the
total mass and; the3 x 3 inertia vector of linki, andp; is the distance from the center
of mass of the system to the center of mass of link

Similarly, we can define a fixed-base manipulator with a sphéfirst joint and kinetic
energy

n+1
T = Z {10ngvi + ;( DR, DL(RY,) Tw! (6.35)

wherev; is the velocity of linki with respect to the base. It can be shown that the kinematic
and dynamic parameters of the space manipulator can be chapiee DEM by (Liang
et al., 1998; Parlaktuna and Ozkan, 2004)

2
()
m; = Mm;——— ,1=2...n+1,
Zk:l my Zk:l my

D,=D;, i=1...n+1,

Rimy
Wl n+1 ?
Zk 1 Mk
W, = R, YoM +L Yo me i=2...n+1
St imy "\ )
lcl == 0,
loi = Li i Li=2...n+1, (6.36)
n+1
Zk 1 Mk
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where the vectoiV; connecting joint with joint ¢ + 1 of the DEM is given byR; and
L; of the space manipulator whefg is the vector connecting the center of mass of link
and joint; + 1 and L; is the vector connecting joiritwith the center of mass of link [.;

is the vector connecting joiritand the center of mass of joinin the DEM. We refer to
Liang et al. (1998) and Parlaktuna and Ozkan (2004) for Wetai

6.5 The Proposed Approach

In this section we reformulate the dynamic equations of @epaanipulator and its dy-
namically equivalent manipulator using the proposed fraamk. This removes the sin-
gularities in the representation, but is otherwise similgsume no spacecraft actuation,
so the center of mass of the system does not accelerate:.j,e= 0. Then the kinetic
energy of linki of the space manipulator is given by

Ti ! (Voii)T LV,

((VOb)THT + 3" Jia)T) Ady,, 1 Ady, (HVS, + Ji(a)d)

M\Hl\.’)\)—‘[\.’)\)—‘

(WS) "H" + 4" Ji(q)") Adj, I; Ady,, (Hwl, + Ji(q)q)

0NT T _ w8b :} T
[(W8)T 7] Milg) |"2%| = S0 Milg)v (6.37)

where

gib

ib
JTAd? I; Ad H JTAdAF I; Ady,, J;

HTAd] I;Ad,, H HTAA] I,Ad,, J;
M;(q) =
gdib

(6.38)

gib

and the inertia matrix is given by substituting this intol@. andH given as in (6.19).
The configuration space is then given®y= { Ros, ¢}.

Similarly, we can define a fixed-base manipulator with a Sphkfirst joint, also with
configuration spac®0(3). The corresponding inertia matrices are then given by

/ gb )
Mi(e) = (J')TAd"b I’Ad H (J{)TAdjbIz’Ad J! (6.39)

HTAd), I/Ady H  HTAd], I/ Ad,y J’]

wherel! and the kinematic relations used to compgtg and.J; are found from (6.36).
Thus, we havé/}, = Vofj as required. Specifically, the inertia tensor of link given by

Il = ["”;I 0 } and the upper left part of/] is given by

0 D}
J. 0 0
M;jyy = HT Adg, I Adg H = Dj = 8 {)y }) (6.40)
z

which also represents the inertial properties of the sphkebase link. Following the
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mathematics of (6.18-6.23), the Coriolis matrix is theregiby

8M’
Z

1

2(M(q)v)y 0
T2 21,([M'w (3]

5) (o onni )

(6.41)

Where(M’( )v) ¢ is the vector of the first three entries of the vectdf(q)v (correspond-

ingto V) = wy,).
The dynamic equations can now be written as

M'(q)0 +C'(Q,v)v =T, (6.42)

with M’ given as in (6.39) an@” as in (6.41). Herey = [(w(,)" qT]T wherew), is the
velocity state of the spherical joint of the DEM (and thusdtse spacecraft) angthe ve-
locity state of the manipulator of the DEM (and the space malaior), and) = {Ros, ¢}
where Ry, € SO(3) determines the configuration of the spherical joint/spefeandg
the configuration of the manipulators of the DEM and spaceipugator. We note that
the singularity that normally arises when using the Eulglesis eliminated and the state
space @, v) is valid globally.

Most importantly, we can now use this fixed-base DEM for satioh and control of
the space manipulator. Similar to the conventional apgrohe DEM described by (6.42)
have the same kinetic and dynamic properties as the spadputaar and if the same
actuator torques(t) = 7'(t), vt are applied on both the DEM and the space manipulator,
this will produce the same joint trajectogyt) = ¢'(t) for Vt € [to, o] if q(to) = ¢’ (to)-

6.5.1 Computing the Partial Derivatives of the Inertia Matrix

We now show how to compute the partial derivatives of thetiaenatrix. For convenience

we leave out the superscriptsThe partial derivatives of the inertia matd{ (qy, . . ., g,)
with respect tay, . . ., ¢, are computed by
OM(q1,....qn) ~—([HT] [0 Ad, T . 0Ad,,
T o 22 T | St Iy Ady,, + Ady, L2502 ] [H 7]
(6.43)
m><m HT AdT I Adgtb qu
* Z 0 AQT T Ad,, H 2 Ad] T, Ad J+JTAdT I; Ad,,, 9%
i=k+1 L Oqx Oqx giv 71 Mgip Y giv 6‘%

6.5.2 Computing the Partial derivatives ofAd,,;

The main computational burden is on the computation of thegbaerivatives ofAM with
respect ta; for which we need the partial derivatives of the adjoint ricas, also with
respect ta;. To compute these one can use a relatively simple relatfame express the

velocity of joint & asV((kk 1))k = Xy for constantXy, then the following holds:
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Proposition 6.1. The partial derivatives of the adjoint matrix is given by

0Ad Adg'i(kfl) aka Ad

9ij __
qu = {— Adgi(lc—l) adxk Ad

fori<k<jy
Gy, TOrj<k<i
0 otherwise

9(k—1)j

Proof. To prove this, we start by writing out the spatial velocityfiegme ¥, with respect
to ¥ ,_1) wheni < k < j:

N e OY(k—1)k
. k-1 -1 _ O9(k-1)k .
Xide = V1) = 91k (k-1 = qugk(k—l)(ﬁc
o [X. X, ,
whereX = 0 NE If we compare the first and the last terms, we get
OR—1)k &
———— = X, Ru— 1)k 6.44
e (k—1)k (6.44)
OP(k—1)k 5
% = Xupk—1)k + Xo. (6.45)
qk
We can use this relation in the expression for the partiavatve of Ad,, _,,,:
OR(r_1yk  Plr— . AR,
OAdgy 1y _ lqum WR(I@%I;{‘FP(I@I)}@W]
(k—1)k
% 0 o
_ |:Xw {(vil |:R(k—1)k- ﬁ(k—l)kR(k—l)k:|
0 Xo 0 R(-1)k
= adx, Adg,_,), (6.46)
Itis now straight forward to show that
0 Ady,, OAdy, .,
Tk] = Adgi(k—l) qu Adgkj
= Adgi(k—l) adx, Adg(k—l)k Adgkj
= Adgz‘(k—l) adx, Adg(k—l)j : (6.47)
The proof is similar forj < k£ < i. The details are found in the Appendix. O
6.5.3 Computing the Jacobian and its Partial Derivatives
The Jacobian/; of link ¢ is given by
Jl(q) = [Xl 1Adgb1 X2 xAdgb2 X3 Adgb(i71) X7 0o --- 0] (648)

When the partial derivatives of the adjoint map is found we &lao use these to find
the partial derivatives of the Jacobian, i.e.,

o7,
Oq

_ OAdg,, 8Ad9b(k+1) 8Ad§b(i—1)
_{O(k+1)><6 o Xkr1 g Xk+2 g, X5 O—i)xe

(6.49)
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6.5.4 Implementation

We first define the vector

(M(q)v)1
(M(q)v)2 Vb
§y = (M(q)v)y = : = [Mvv Mj,] [ gb] : (6.50)
(M(q)v)m
This gives the second part of (6.23) as
0 =& &
adg{/ = §3 0 —51 . (651)
& & 0
The lower part of the second part of (6.27) is calculated as
_8(]6\4’0)1 8(([19\/[’0)2 8(241;)3
aMv):  a(Mv),  a(Muv)s
aT M MT V _ 0q2 9q2 0q2 6.52
a0 (avv 2P0 ) = |7 : (6.52)
B(Mv)l O(Mwv)s Q(Mv);g
L aqn Bqn 6‘]71
r—3+n OMy; 3+n OMsy; 3+n 9Ms;
Zi:iﬂ 8q11 Vi Zz 1" 6q12 Ui Z’L {L qu Vi
Z?=+1n aé\g;ivi ZL;H” 6312[;1 U4 ZZ:{L Baj\;[;lvi
ZSJT IaaM“vi ZS+1n 86vai ZSJrln .%vai
1= dn 1= dn 1= dn
r v OM (i y1)i OM (1 in)i
Sl Ty e T Sty
34+n OM(mi1); 3+n OM(ymin)i
T (a2 ] =[BT e B
dq 4 Wl g |) : . :
34+n OM(mi1); 3+n OM(min)i
>ty 8(7(1:1) R Dt éqj v,

(6.53)

and is thus also given by the partial derivative of the imentiatrix. We thus only need
to compute the partial denvatn@l— once and use the result in the both in the first and
second part of (6.27). This will simplify the dynamic eqoat for an arbitrary:-link
mechanism mounted on a spacecraft.

6.6 Conclusions

In this paper the dynamic equations of the dynamically eajaivt manipulator are derived.
The DEM approach maps the spacecraft attitude into a sath@int that is normally mod-
eled using Euler angles which leads to singularities in gprasentation. The approach
proposed in this paper, however, allows us to write the DEMaghyics without singular-
ities and with the same complexity as the conventional Liagjemn approach. Similarly
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to the conventional approach the obtained DEM dynamicsessmt a kinematic and dy-
namic mapping of the space manipulator and can be used fatation and control of the
space manipulator. We also show several mathematicailmetathat can be used to speed
up the algorithms.

6.7 Appendix

6.7.1 Fast Computation of Partial Derivatives - Proofs

In this section we show how to compute the partial derivativkthe adjoint matrixAd,,.
We also present the detailed proofs of the derivation of thiéalis matrix. The foIIowmg
relations are important when it comes to a computationdfigient implementation as the
main computational burden is on computing the partial dgitres of the adjoint matrices.

6.7.2 Partial Derivatives ofAd, - By Direct Computation

The partial derivative oAd,, ; with respect tay, is given by Proposition 6.1. For< k <
j the proof is shown by

8Adqu B 8Adg(k DE Ag
an Gi(k—1) a(]}g 9kj
R p R
. (k—Dk P(k—1)k ~ (k—1k R
| Rik—1) Pigk—1) Rir—1) dar Pan Dk~ TP(k—1)k —aq, Ryj PrjRui;
- 0 Rik-1) 0 IRk 1)k 0 Ry
dan
r oR
(k—1)k ( )
R 8R(’”"1)’“R Rik—1) —aq,— Phkj Bij+Ri(k—1) Rp_1);+
i(k—=1)""9 kj . AR () ) BR( 71),€
= Ri(k—1)DP(k—1)k — 54 Rij+pi(k— I)Rz(k 1) Ry
oR
(k—1)k
L 0 Ri(k—l) By [tk

Ri(k—1)D(k— 1)AX Re— 1)k Rij+hich—1)Ri(h—1) Xw Rk -1y Ricj

Rih—1) XoRee— 191 Rij |:RL(k 1 XwR (k- l)kkaRkJ+Rz(k D((Xwpe—1yk)+Xv) R 1)J+}]

L 0 Ri(k—1)XwR(k— 1y Rij
_ [Ri(k—l)XwR(k—l)j Ri(k—l)XwR(k—l)j+Ri(k—1)Xwﬁ(k—l)jR(k—l)j+ﬁi(k—1)Ri(k—1)XwR(k—1)ji|
0 Rik—1)XwRk—1);
_ |:Rz‘(k—l)Xw Ri(k—I)Xv""ﬁi(k—l)Ri(k—l)Xw:| [R(k,—l)j ﬁ(k—l)jR(k,—l)j:|
0 Ri(kfl)j(w 0 R(kfl)j

_ | Bie-n) Pi(k—1)Ri(k—1) Xo X, Rk—1); Pk—1); R(k—1);
0 Rik—1) 0 X, 0 R(k—1);

= Ad adx, Ady, ., (6.54)

Gi(k—1)

where we have used that

ab = (ab) + ba, (6.55)
and .
Pk—1); = (B(k—1)kPkj) + P(k—1)k- (6.56)
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6.7.3 Simplifications of the Coriolis Matrix

In this section we show how to come from Equation (6.10) todfigm (6.22). Fist we

write Equation (6.10) as

OM;; 1 OM;
C'Ll' v) = ( Wg-1_ —g-1 Jl>‘ v
J(Q ) — &m kl 9 ki a¢k oo l
0S,,; 08
2 _ -1 mj  OPms ~1
ch@u =3 (st (T - ) situ)|
1m, $=0

and we get

Ci;(Q.v)

k,l

34+n 6ML
:ZZ( LSt -
-

¥ <8ML] gt

15_18Mﬂ>‘ "

kl _5 ki a(bk

1 _,_,0Mj
iy 7;1 J )’ vy
277 Ak ) | 4eg

S oM 1 L, OM,;
- (S (Gas) ‘z?(sﬁlwm'(bo“l

w

7
(oM,
Z < Ik

B
+ 1
S N

3
k=

=

3+naMk
"Z Do )

(aM,] _
P

&
=0

16Mjk>| .

2 0¢;

where we have used the following relations:

(6.58)—(6.59)
(6.59)-(6.60)
(6.60)—(6.61)
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(6.57)
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For the second part we have

_ 8577’7. aSms —
chan= 3 (s (Gt - G satana)

Ul

k,l,m,s )
_ -1 asmj B BSms .
- zk:mz;l <Smi ( a¢a 3¢J > Ssk Mkl) v
X $=0
dSmj  9S
= S_l < mj ms) S_1> v
zk: ;; ( me 0o, 8¢] sk - ( (q)v)k
< 0S;;  0S;
= (s (Tl -Gk )| e
kzzl ( oo 905 ) )|
B B (M(q)v)y
kz:; <( 0dr,  09; -

where we have used that

(6.64)~(6.65) >, Myvy = (M(q)v)r
(6.65)5(6.66) S(Q,0) = 1,5, =0, i j,i ¢ m k< s
(6.66)+(6.67) Su(Q,0) =1

and we have arrived at Equation (6.22).

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)
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Chapter 7

A Geometric Approach to
Handling Torque Failure in
Serial and Closed Chain
Manipulators with Passive Joints

7.1 Abstract

The increasing use of robotic manipulators in remote and sesitive areas calls for
more robust solutions when handling joint failure, and the ndustry demands mathe-
matically robust approaches to handle even the worst caseecarios. For both serial
and parallel manipulators, torque failure is indeed a worstcase scenario as the ma-
nipulator can collapse due to external forces, such as grayi It is a very hard task,
and in some cases impossible, to prevent damage when this oz When possible,
however, these aspects should be a concern both in the desighthe manipulators
and in the control of the manipulator after such an occurren@. Thus, a systematic
analysis of the effects of external forces on manipulators ith passive joints is pre-
sented.

For serial manipulators we investigate under what conditims the robot is con-
ditionally equilibrated, that is, equilibrated with respect to a specific external force.
These conditions are, as expected, very restrictive, butfanany manipulators we can
find certain configurations for which the manipulator does nd collapse when the ex-
ternal force is known. The serial, or subchain, case also segs as a good platform for
understanding and analysing parallel manipulators. In parllel manipulators pas-
sive joints can appear as a design choice or as a result of tang failure. In both
cases a good understanding of the effects that passive jogritave on the mobility and
motion of the parallel manipulator is crucial. We first look at the effect that passive
joints have on the mobility of the mechanism. Then, if the mobity, considering pas-
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sive joints only, is not zero we find a condition similar to theserial case for which
the parallel manipulator is conditionally equilibrated wi th respect to a given external
force.

Keywords—Robotics, kinematics, mobility, fault tolerance.

7.2 Introduction

Serial and parallel robots are widely used in remote andhhansironments where hu-
mans cannot or do not want to operate. The need for a rigohmasyt on what happens
when joint failure occurs is thus important to be able to cefth unforeseen events such
as joint failures. This paper endeavours to convey a completory of the effects that
passive joints have on serial and parallel manipulatorsvengernal forces are present.
We start by looking at how joint failure affects the mobild§closed chain manipulators.
We are interested in the undesired motion generated by t&vegoints that cannot be
compensated for by the active joints. For parallel manipuga joint failure may or may
not allow a motion generated by the passive joints. If theimdator does not allow such
a passive motion, we will denote it equilibrated. In thise#@scan resist a wrench in an
arbitrary direction either through kinematic constraiotshrough actuator torques. We
obtain this if the manipulator, considering the passivatgpionly, has mobility equal to
zero, i.e. we do not want the passive joints to allow any nmotithen the active joints are
locked. If this property is satisfied the manipulator doeshave an unstable singularity,
following the classification in Matone and Roth (1999). Oa dther hand, for serial ma-
nipulators joint failure will always result in an undesirgtbtion if an arbitrary external
force is present. In this case we investigate under whatitions, i.e. for what external
forces and for what configurations, the external forces dafiect the motion of the pas-
sive joints. We will say that the manipulator is conditidgaquilibrated with respect to
an external force at all configurations for which the pasgigts are not affected by the
given force.

Many papers discussing the mobility of parallel maniputatnd the relation between
the active and passive joints can be found in literature. Jdwobian of the parallel ma-
nipulator is investigated in Liu et al. (1999) and Bicchi aRdittichizzo (2000) where
the passive joint accelerations are found from the activg mccelerations by dividing
the Jacobian into an active and a passive part. For non-av&rained mechanisms, i.e.
when there are no redundant constraints, we can find the ityobyl the well known
Grubler formula (Murray et al., 1994). For overconstraimeechanisms, there are many
approaches to determine the mobility. In Dai et al. (2006)rtiobility of the mechanism
is found from the constraint space. The constraints of teesy are found systematically
and the redundant constraints are identified. The mobdgitthen found by adding the
degrees of freedom represented by these redundant cotstathe Griibler formula for
non-overconstrained mechanisms. This approach illestratll the effect of redundant
constraints in the mechanism.

The mobility can also be found by the motion space as in Rical.g2003, 2006).
The degree of freedom of the motion of the end effector is fishd. Then the degree
of freedom of the self-motion manifold of each chain is add®y this approach the
redundant constraints are not found directly, but this @ggh gives valuable in-sight on
where to place redundant actuators in the mechanism.
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Even though the mobility of closed chain manipulators isegia lot of attention in
literature, there does not seem to be a thorough treatmenbbiiity in the light of joint
failure. In this paper we are mainly concerned with the effexd torque failure (Matone
and Roth, 1999), also known as free-swinging joint faultSJF), see English and Ma-
ciejewski (1998); Tinds and Terra (2002); Tinds et al. (200his occurs when an active
joint suddenly loses its actuation and starts behavingdikassive joint. For a compre-
hensive treatment on how to identify joint failures see &imd al. (2007). Once these
are identified the appropriate control actions should bdieghpo minimise damage to the
surroundings.

Passive joints will in general not be an intrinsic propeiftao open chain manipulator
as this would make the manipulator collapse due to gravittleer external forces. In the
case of free-swinging joint faults, however, the study afgdee joints is important also
for serial manipulators in order to prevent damage from tee-winging joint. FSJF may
occur for any joint and for any configuration of the manipafaA systematic and rigorous
description is thus essential in order to find a good and @dstien and to prevent damage
to the surroundings. For serial manipulators the stronmegterty we can obtain is that the
robot is conditionally equilibrated, i.e. a set of configioas for which the manipulator is
equilibrated with respect to a given external force. Pa&gsints in serial manipulators are
treated only briefly in literature, see for example Oriolal &akamura (1991) and Arai
and Tachi (1990), and case studies such as the Acrobot (Handé/urray, 1990).

Parallel manipulators can be designed such that all theede@f freedom of the mo-
tion remain controllable when joint failure occurs for abignary joint. This will, however,
require more active joints than necessary to control theegsgof freedom of the manip-
ulator. This actuator redundancy is in many cases undésicale to manufacturing and
maintenance costs, weight, performance, and so on. If thiettderance problem is not
addressed in the design process it must be handled in theotofithe manipulator in the
case of such an occurrence. In this case the serial andgdanalhipulators are treated in a
similar manner and we search the configuration space of tigporator for a set of joint
positions for which the manipulator remains equilibratedd given external force.

The approach presented in this paper is in itself very simpiest, we use Gribler’s
formula or a generic method based on the results in Rico @03, 2006) to verify if the
manipulator, considering the passive joints only, gemsratnon-trivial motion. Then, if
the passive joints of the manipulator allow a motion, we @tigate what kind of motion
it implements. From this we can conclude; (i) given a mectraniwith respect to what
kind of external forces is the manipulator equilibratedd &ii) given an external force,
what kind of mechanism and for what configurations is the rapidm equilibrated with
respect to the external force.

In Meng et al. (2007), a precise geometric theory for analgsid synthesis of sub-6
DOF manipulators was presented. The low dimensional suipgror submanifolds of
SE(3) were used to represent the lower pairs, or primitive genesatvhile the high di-
mensional subgroups were used to represent the desireeffectbr motion types. Given
a desired end-effector motion type as a Lie subgroup or a anlfoid, the synthesis prob-
lem was solved for serial and parallel manipulators. Themmfa pre-specified list of
primitive generators, all possible serial and parallehagements of the primitive genera-
tors so that the resulting manipulator has the desired &adter motion type were found.
Using the formalism of Meng et al. (2007), it is found that acimenism is conditionally
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equilibrated with respect to an external force if the meddrarconsidering only the pas-
sive joints is a motion generator of a motion for which theipeacal product with the
external force vanishes. Thus, while Meng et al. (2007) tisegeneral concept of mo-
tion type (reference frame not specified) in their definitafrmotion generator, we will
use a motion defined in a specific coordinate frame in our digfits. This allows us to
verify resistance with respect to a specific external foaoel, not a type or class of external
forces.

7.3 Preliminaries

This section presents a brief overview of mathematical tiodeof rigid body motion and
the definition of motion type. For a detailed treatment oftihjgic, the reader is referred
to Murray et al. (1994) and Meng et al. (2007).

7.3.1 Rigid Body Motion

We will use the special Euclidean grof#(3) to represent the configuration space of a
rigid body. In addition to its group structur8,E(3) is a differentiable manifold, and is
what is known as &ie group SE(3) is thus a matrix Lie group and can be written by
homogeneous coordinates

SE(3) = { Fg ﬂ IpeR3,Re 50(3)} (7.1)

whereSO(3) is the 3-dimensional special orthogonal group. An elergentSE(3) rep-
resents a rotation and a displacement of a rigid body relatha reference configuration.
The manifold structure of £/(3) is given by

®:S0(3) x R? = SE(3) : (R,p) — {]0% ﬂ . (7.2)

Associated with every Lie grou is its Lie algebrag which is defined as the tangent
space of at the identitye and is written agy = 7,G. A vector spacé’ is a Lie algebra
if there exists a bilinear operation given by the matrix cameor vy, vo] = v1ve — vav1.
The Lie algebrae(3) of SE(3) consist of al4 x 4 matrices

se(3) = {‘5 g] (7.3)

wherev € R? and® is the skew-symmetric matrix representation.of R? given by

0 —Ws3 %)
w=| ws 0 —w1| € 80(3). (74)
—Wwy Wi 0
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An element ofse(3) can be represented by the twist coordinates [v7 wT]T € R
which can be identified with the twiste se(3) by the map
6 .o s oo

AN:R® = se(3) : ¢ = LJ — &= {O O} € se(3). (7.5)

Let @ be the configuration space of the constrained system. Inase(@ € SE(3) so

an elemenf € se(3) can be represented ky—= [vT wT]T. ThenT,() defines the set
of allowed velocities of the constrained systenyat-urther we write an element of the
constraint forces a8 = [fT TT]T. The set of constraint forces atis then defined as
the vanishing of the reciprocal product wihi.e.

T:Q" ={F eR%| (£, F) =0,V¢ € T,Q}. (7.6)

where(,F) =v- f+w-T.
The exponential map

exp : se(3) — SE(3) : £ — et (7.7)

defines a local diffeomorphism taking the zero vectos«(B) to the identity element of
SE(3). Physicallyes, § € R corresponds to a screw motion along the axis of a fixed
Denote byL, and R, the left and right translation map, respectively. The défdial L.
of L, defines the body velocity and the differentia}.. of R, defines spatidlvelocity of

a rigid body. Then for a trajectory(t) € SE(3),t € (—¢,¢), the body velocity of the
rigid body is given by

. . RTR Ry o v
V= Lyw-1. - 9(t) = [ 0 Op] = {0 0} (7.8)

while the spatial velocity is given by = Ry, - g. The body and spatial velocities are
related by the Adjoint map

Ve =Ad,V? (7.9)
whereg = (R, p) and
_|R PR
Ad, = [0 R} . (7.10)

We will write the twist of jointi asg; and thetwist systenof chainj as

ﬂj :(g15g27agn):(Mj17M]2>aﬂ]n) (711)

where we use the second notation;; when we need to clarify what chain the joints
belong to in a parallel mechanism. We use the same notatrathdgoint positions, i.e.
6;;. The twist system describes the motion of the end effectah#®open chain.

IFor simplicity we will write twist for both twist coordinatesnd twists.
2|n this contextspatialmeans that the velocity is given with respect to a globallyrgeficoordinate system.
We will also use spatial for the 3-dimensional space, as agaptisthe 2-dimensional space.
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Let the parallel manipulator
M = My|[Ma]]- - [ Mg (7.12)

consist ofk serial manipulator sub-chains that share a common base emah@on end
effector. The set of end-effector motions is defined as (Msrad., 2007)

Cm=Cpy NCpy, NN C s (7.13)

whereC'y; is the set of rigid transformations thatl; generates without loop constraints.
Cr defines the configurations of the end effector with the loapstraints imposed.

We are interested in theassive motioni.e. the motion due to the passive joints when
the active joints are fixed. We denote this by

Mp = Mp1||[Mps]| -+ || Mpg (7.14)

where M p; consists of only the passive joints of chgin
Although only the passive joints are considered, the twaibthe passive joints depend
on the configuration of the active joints. The twist of joirg given by

G/ = Ady,, ,,Gi (7.15)

whereg,; € SE(3) is the transformation from the base to joint We will assume it
implicitly understood that the twists, as written in (7.1&)e transformed according to

(7.15), and thus writg for G’. Similarly when we writeAd, M, we mean

Adg(g)m = {g;linl, ey g;l}
= {Adgnfzgn—l+17 e 7Adgn,1 gn} (716)

We will introduce the following notation from Dai et al. (260to represent sets of
twists or wrenches. Braceds} are used to indicate setthat contains unique elements
while angle bracket$) are used to indicateultisetswhich may contain multiple entries
of each element. We will use cardinalityagd) to give the number of elements {n or
{-}. For{-}, this is the same as its dimension.

7.3.2 Motion Type

We now define motion type as in Meng et al. (2007). Motion typsatibes a class of
motions, that is the conjugacy class of a normal form sulqgarisubmanifold ofSE(3)
under the similarity transformation.

Definition 7.1. The group of similarity transformations B, denotedSim ™ (3), consists
of matrices of the form

1
{g - sx ::g[AOI ﬂ | g€ SE(3),A >0} (7.17)

Under the group of similarity transformations helical nootiwith distinct pitches be-
long to the same conjugacy class. This is desirable in thaitefi of motion type as

defined in Meng et al. (2007).
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Definition 7.2. Let M be a mechanism that consists of a system of coupled rigicebpdi
one of which is identified with the base and one as the endteffeChoose a reference
configuration ofM and identify the joint variables with zero. Attach a cooataframe
to the end-effector and denote By, the set of rigid motions generated (or attainable)
by the end-effector relative to the reference configuratian ¢ € Cy. Let Qg be a
normal form subgroup or submanifold 8% (3) and@, the conjugacy class @, under
Sim™(3). M is said to have the motion type (or finite motion propertyldf there exists
gr € Sim™(3) such thay, *C g, agrees withQ, in an open neighbourhodd C SFE(3)
of e, i.e.

(9, ' Crmgr) NU = QN U. (7.18)

Equivalently we can write
CmNU = (9:Qogy ") NU. (7.19)

We are now ready to give the conditions for which serial andlfel manipulators
have the motion type ap.

Definition 7.3. We will denote a serial manipulatdvt amotion generatoof a subgroup
or submanifold@ of SE(3) if M contains an open neighbourhoodeoin Q. If Q is a
subgroup of SE(3), then M is a motion generator af if there exists a configuration
such thatM = (G1,--- ,G,) = T.Q.

For parallel manipulators the corresponding definition Bagallel Motion (PM) gen-
eratoris given by

Definition 7.4. A parallel manipulatocM = M]|- - - || M, is aParallel Motion (PM)
generatorof Q if there exists an open neighbourhddaf e in SE(3) such that'\NU =
QNU,whereCpa = Cpqy N---NChry,.

The conditions for whichM is a PM generator of the subgrodp is given in the
following proposition:

Theorem 7.1. Given a motion typ&) < SE(3). Assume that eactir,,j = 1,....k
contains a connected open sub&gt of ) arounde,

QU C C./Vlja .] = 17 ak (720)

and consequentl®)y; C Cn4. If the following condition

T.Q =MiN---N My (7.21)
or the dual condition
TiQb = (TXCOm,) "+ + (TXOm,) " (7.22)
holds, where
T;Q" ={F eR°| (¢, F) =0,Y¢ € T.Q} (7.23)
denotes the set of constraint forces 1o, then M = M,|| - - - || M}, is a PM generator
of Q.

3The case wher is a submanifold o F(3) is treated in detail in Meng et al. (2007).
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Proof. The proof is given in Meng et al. (2007). O

In the setting of this paper the following is also importdhfor everyg € W,
Rg—l*TgQ = Rgfl*TgCMpl N---N Rgfl*TgCMpk (7.24)

or its dual holds, then there exists a connected open sUbs€tS F(3) arounde such that
Qu = CpyNW,i.e.Cpy agrees withy in W.
Thus, alternatively we can write (7.21) in the transformeufrf as

Ry-1.TyQ = Adg My N Adyg Mo N -+ N Adg M. (7.25)

7.4 Problem Statement: Equilibrated and Conditionally
Equilibrated Serial and Parallel Manipulators

A parallel manipulator for which the mobility 0¥ p is zero, can resist any external force.
Specifically, we will denote a mechanism equilibrated if fibéowing is satisfied:

Definition 7.5. A parallel manipulatotM is denotedequilibratedif M, either through
kinematic constraints or through actuator torque, carstresi arbitrary external wrench

Feut = [fT TT]T where f,7 € R3. In the case that an arbitrary wrench can be ac-
commodated by the kinematic constraints, we will say thatrtfanipulator igpassively
sustained When an arbitrary wrench can be produced by the actuatiquéomwe will
denote itactively equilibrated

A parallel manipulator is equilibrated with respect to abi@ary wrench if and only
if the mobility is equal to zero. To guarantee fault tolemtize mobility needs to remain
zero when torque failure occurs for an arbitrary joint. Thikrequire redundant actuators
to be implemented. We note that a serial manipulator witlsigagoints can never be
equilibrated.

When the mobility is not zero, the best result we can obtaihas the mechanism is
conditionally equilibratedwith respect to a given external wrench. This applies both to
serial and parallel manipulators.

Definition 7.6. A manipulator M is denotedconditionally equilibratedwith respect to
a given external wrencli,,, = [fT TT]T where f,7 € R3, if M, either through
kinematic constraints or through actuator torque, canysed wrench opposite 8.,
i.e. M can produce the wrenchk F.,; for somek > 0.

Note that in this case we do not require that the manipulaarresist any external
wrench, only that it can produce a wrench of a given type anection. This can for
example be used to verify if a mechanism can resist the gtauital forces.

We see that we will need a different definition of motion thia@ dne given in Section
7.3. While Definition 7.2 requires the existence of sogpec Sim™*(3), we need to
check for stability of an external force in one given direatii.e. an external disturbance
“fixed” in one given frame. Hence, we will defimaotion as opposed tmotion type as
all g,C g5t that agree withQ s for a giveng, € SE(3).
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Definition 7.7. Let Qg0 be a normal form subgroup or submanifold$¥'(3) and@Qs =
9sQs095 ! the homogeneous transformation@f, for a giveng, € SE(3). M is said
to have themotionof Qs if g;1Crgs agrees withQso in an open neighbourhodd c
SE(3) of e, i.e.

(9:'Crmgs) NU = QsoNU (7.26)

or equivalently

CmNU = (9sQs095 ") NU
CunNU=QsNU. (7.27)

Note thatQgo is a motion type whileg, determines in what coordinate frame the
motion is given, i.e. the “direction” of the motion. Henci&el Qo in Definition 7.2,Qsq
is a motion type. However, whil@ (in Definition 7.2) is the conjugacy class @f under
Sim™(3), Qs is a homogeneous transformation@f, underSE(3). We then get the
following important result.

Definition 7.8. A manipulatorM is conditionally equilibrated with respect to external
forcesF,,, if and only if M p is not a motion generator of any componentrf,,, i.e.
Mp is a motion generator of son@y C Qs where(F,,;,Qs) = 0. We write this as
CMP € QS-

Thus we want the mechanisit to generate the motio@ and at the same time we
want the passive mechanisivl p to generate motions that lie igs. We can summarise
this as follows:

To get the desired properties for a parallel manipulatorch@seM such that
* M is a motion generator of (the motion typ®@)

* Mp is a motion generator of (the motio@)s C Qs.

When joint failure occurs in a parallel mechanism we want theoed property to
remain true. We note that1 includes both passive and active joints and will thus not
change if torque failure occursM p, however, will change and therefore, to guarantee
fault tolerance, the mobility o\ » must be checked against joint failure in all joints.
If the manipulator allows any motion we need to look into if wen guarantee that the
mechanism remains conditionally stable with respect tovargéxternal force.

For parallel manipulators we start the analysis by findirggrttobility D considering
the passive joints only. If the mobility of the mechanism é&@we can conclude that
the mechanism is equilibrated with respect to any extewrakf Mobility in the setting
of fault tolerance is discussed in Section 7.5 and 7.6, aadheles are given in Section
7.7. On the other hand, if the mobilit® > 0 for parallel manipulators and similarly for
serial manipulators with passive joints, an additionalditon needs to be satisfied for the
mechanism to be equilibrated. The requirement for whii¢hs conditionally equilibrated
is treated in Section 7.8 for serial manipulators and Secti® for parallel manipulators
together with several examples.
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7.5 Mobility of Closed-Chain Manipulators

7.5.1 Non-overconstrained Mechanisms

We start by looking at the mobility of non-overconstraineéaimanisms when passive
joints are present and find a set of rules to guarantee that&mégpulator is fault tolerant.
For the planar case the mobility of the closed chain mechamésgiven by Gribler's
formula

D =3N - Zn: (3 — hy). (7.28)
=1

whereN is the number of links in the mechanism amds the number of jointsh; is the
degree of freedom of jointwhich is 1 for the lower pairs. Grubler’s formula then beceme

D =3N — 2n. (7.29)

For the three-dimensional Euclidean space, Gribler's éitarhecomes
D=6N-Y (6—h), (7.30)
=1

whereh; is 1 for the 1-dimensional lower pairs and we write
D =6N — 5n. (7.31)

Proposition 7.1. Given a desired end-effector motion typavithm = dim(Q) and a par-
allel non-overconstrained manipulatdvt = M| - - - || M. Then ifm joints are chosen
active in such a way thaM generate€), then M p is locked andM is equilibrated.

Proof. The proof is found in From and Gravdahl (2009a). O

This is consistent with the result that at leastactuators are needed to generate a
motion of dimensionn. Hence, by choosing joints active, the mechanisiiv 4, con-
sidering both active and passive joints, generglemnd M p is equilibrated with respect
to any external disturbance.

For an arbitrary dimensios Grubler's formula becomes

D=dN — znj (d — hy). (7.32)
=1

7.5.2 Overconstrained Mechanisms

When the constraints are not linearly independent the mésinaa over-constrained, i.e.
some of the constraints are redundant and have no effectcomaibility. Based on the

approach in Dai et al. (2006) we first identify the constmthtt are common for all chains
and eliminate the redundancy in this set. This set is eaddgtified as the intersection of
the constraint space of all the chains. Further the coms¢raéihat constrain each chain
to the end effector-motion, thend effector constraint systerare identified and again
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the redundant constraints are found from this set. The apprpresented in Dai et al.
(2006) is based on the screw system of the mechanism andegsdhe constraint space
as reciprocal screws. Here, we apply the same general idieales et al. (2006). The
approach is based on an analysis of the sub-algebras amdamifslds of the Lie Algebra
se(3) and their cotangent spaces.

The approach is general in the sense that no classificatibie ofiechanism is required.
As pointed out in Rico et al. (2003), the classification of techanism is not needed to
determine its mobility. However, in our setting, the cléisation is important in the sense
that it tells us where to place the active joints. As for th@+overconstrained case, the
active joints cannot be placed arbitrarily in the mechanigvie will see that only in very
special cases can the active joints be arbitrarily chosémeimechanism.

The approach in Dai et al. (2006) is based on the constraadesformulation. It is
also shown that the mobility can be found by the motion spaci &ico et al. (2003)
and Rico et al. (2006). By this approach the chains are alssifled and it is straight
forward to determine the effect a passive joint has on thehamism. We will use the
motion space approach to set up a set of simple rules on whetade the active joints in
the mechanism in order for the mechanism to be equilibraféis set of rules naturally
leads to an approach on how to choose actuator redundancyeffioently to make the
manipulator resistant to joint failures.

7.5.3 The Constraint Space

To find the mobility from the constraint space as in Dai et2006), we start by denoting
themotion spacef the chainj as

M; =(G1,G2,...,Gn,) (7.33)

whereg,; is the twist of joint: andn; is the number of joints in chaifl Recall that braces
{-} are used to indicate setthat contains unique elements while angle brackétare
used to indicatenultisetswhich may contain multiple entries of each element.

We will denote theconstraint systerof chainyj as

M =M (7.34)

WhereﬂjL ={F eR%| (£ F) =0,V ¢ e M;} which is the vanishing of the reciprocal
product of Ball (Lipkin and Duffy, 2002). This representg ttonstraints imposed on the

end effector by chain. Note that we cannot identify the self-motion froﬁjc.
Further we will definenechanism motioas the union of all the twists in the system

MM :ﬂ1 UMQU"'UMk, (7.35)

evaluated ay € Crq, N --- N Cpy,,. Theend-effector constraints given as the union of
the constraints of each chain,

Mo =M, UM U= UM, (7.36)

evaluated ay € Crq, N --- N Cyy,. From this we can find theonstrained motion of the
end effector

My = (M) (7.37)

167



A GEOMETRICAPPROACH TOHANDLING TORQUEFAILURE

The intersection of all the constraints are further given by
My =M, nMS NN My, (7.38)
or alternatively
—C o=l

With the notation of braces and angle brackets, each of theessi introduced in this
section is given by

k k

{Mar} = J M, (Mar) =Y M;,
Jj=1 j=1

k k
My = UM, (Mp) =M.
]; ) J; )
Mg} = M. M} = N M;.
(Mg} = (Mz)* (Mg} = (M)t
= <ﬂg>la = (M)t

Thus, the collection of all constraints is given W§>, including repeated elements.
The first step is to factorise out all the constraints thatcammon for all chains. The
“directions” of the end effector represented by these caimds can be considered the
most robust directions as they are constrained by all theckams in the mechanism. The

constraints that are common for all sub-chains is giver{Fyff}. We will say that a
single subchain cannot have redundant constraints (asfmerthe other chains or the

end effector). This is always true. Becm{s@%} is the same for all chains we can write
——C —C
(Mag) =k - {My}. (7.40)

We see tha(ﬂgﬁ is (k — 1) times redundant.
For each chain we can factorise out this part by taking

M5} = (Mo U {Me;) (7.41)
Where{ﬂif} N {ng} = (). We can add the multisets of Equation (7.41) and get
——C ——C ——C
Mp) = My) + Mc)
= k- {M} + (M) (7.42)

Where<ﬂf4> N WS) = (). As the redundancy iWi) is already dealt with, we can
focus on(ﬂg> which may also be redundant. We start by writing

(Me) = {Mc} + (M) (7.43)
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Here,{ﬂg} is the linearly independent part which restricts the motibtine end effector
to Mg, while (ﬂf) is the collection of the constraints that are linearly dejsemn of the
entries in{ﬂg}. Thus, the redundant constraints given by the tem@ in Equation
(7.42) are given by ca(ﬂf). The total redundancy in the constraint system is given by

cardMy,) = (k — 1)card{ Moy } + card M., ). (7.44)
Finally, we also note the(tﬂi,) can also be factorised out from
—C —C —C
Mpg) ={Mg}+ Mg,). (7.45)

7.5.4 The Modified Gribler Formula

The Griibler formula does not take redundant constraintsdahsideration. Redundant
constraint are constraints that do not reduce the mobifith@end effector or the chains.
We therefore need to add these to the Gribler formula. Mbéified Gribler formulaas
presented in Dai et al. (2006) is given by adding (7.44) t8QY.

dN — Zn:(d i)+ (k= 1) - card{ Moy} + card(M. ) (7.46)

i=1

D

whered is the dimension of the space, normally 3 or 6. This expresglentifies the

redundant constraints. It also gives the mobility due tésaltion. It does not, however,
identify very easily due to what joints these motions occlinis is considered in more
detail in the next section.

7.5.5 The Motion Space

The mobility of the mechanism tells us how many active joarts needed for the mech-
anism to be equilibrated. However, it does not tell us whattgocan be set as passive
and what joints need to be active. In the following, we wilbghthat an alternative to the
Modified Grubler formula given in (7.46) can be found from thetion space and we will
show how this approach naturally leads to the classificaifatifferent types of overcon-
strained joints. This is the same classification of overtraimeed chains as in Rico et al.
(2003) and Rico et al. (2006). Further, in the next sectiomwill use this to set up a set
of simple rules on where the active joints need to be placed how many active joints
need to be placed in each chain, as well as their positioreictiain.

Exceptional Linkages

In Rico et al. (2003), two sub-chains that have an intersecthut for which the motion
space of one sub-chain is not a subspace of the other, isatbexteptional linkage

We refer to the work of Hervé (1978) for a formal definition ofceptional, trivial and

paradoxical linkages. Paradoxical linkages are not tcelagge. In Rico et al. (2006) this
is generalised to the case of arbitrarily many chains. Hereill ook at it from a different

view in order to get a deeper understanding of the mobilitydon.
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We start by finding the mobility of the end effector. This isag by the intersection
of the motion space of each chain

k
(Mg} = ({M;}, (7.47)

j=1

Thus the mobility of the end effector is given byrd{ M z}. Each chain may also have
a mobility independent of the mobility of the end effectohig'is the self-motion and is
given by the degree of freedom in the chain and subtractiaditnension of the open loop
end-effector motion of the chain.

card{ Mg, }; = Z h; — card{ M},
i=1

k nj
card{ M, } = Z (Z h; — card{/\/lj}> . (7.48)

j=1 \i=1

The total mobility of the mechanism is then given by addingt&J to (7.47). We will
write this as a proposition and provide a different proofittizat of Rico et al. (2006).

Proposition 7.2. The total mobility of a mechanism is given by the degree etifsen of the
end effector, given in Equation (7.47) and the self-motibthe chain, given in Equation
(7.48) by

ko /m
D = card{Mg} + Z <Z hi — card{/\/lj}> ,

j=1 \i=1
n k
= card{ Mg} + Z h; — Z card{M,}. (7.49)
i=1 j=1

Proof. (sketch)The result follows directly from the observations that 2 ttegree of
freedom of the end effector is given by the dimensio{ 8z} in Equation (7.47); and
b) that the self-motion of each chain is given by EquatioAgy..

a) The degree of freedom of the end effector is given by theedsion of{ Mz} in
Equation (7.47). This follows directly from Meng et al. (200

b) The dimension of the self-motion manifold can be found iosmtextbooks on
robotics (e.g. Murray et al. (1994)) to be the dimension efrihll of the Jaco-
bian N/(J), which is given aslim(N(J)) = n; — m wheren; is the number of
joints andm is the dimension of the end-effector motion for the openmhaihis
equivalent to (7.48).

O

We are mainly concerned with the effect of adding a joint ®¢hain. Adding a joint
to a chainM will have the same effect as making one joint passive whey thiel passive

170



7.5. MOBILITY OF CLOSED-CHAIN MANIPULATORS

joints of the manipulator are considered, i.e. adding atjwnM p. In this section we
look at the effect of adding a joint to the mechanisms and émiixt section we use these
results to analyse in what case the manipulator is equiédraie will use the reasoning
in Proposition 7.2 and the observation that a joint thateases the dimension of the end
effector motion of the open chain, but not of the closed chaithalways be locked. Then
there are three different outcomes of adding a joint to theipudator:

« >, hi increases by one whileard{ M } does not.

— The dimension of the self-motion manifold of the chain irases by one.
e Y%, h; andcard{M,} increase by one whileard{ Mz} does not.

— The joint will be locked and the mobility of the system does cltange.
o Y. hy, card{ M} andcard{ M} increase by one.

— The mobility of the end effector increases by one.
— The dimension of the self-motion manifold of the chain doesincrease.

Thus, by checking the dimension afrd{M;} andcard{ Mg} we can effectively find
the effect that a joint failure has on the mobility of the efffé&tor.

Trivial Linkage of Type |
In Rico et al. (2006) the case when all the sub-chains gem#itatsame motion
{M;} = {Mg} forj=1...k (7.50)

is denotedrivial linkages In this case the mobility is found directly from (7.49) by

k nj
D = card{ Mg} + z (Z hi — card{ME})

j=1 \i=1
k 7
= card{ Mg} — k- card{ Mg} + Z (Z hi)
j=1 \i=1
= ihi —(k—1) - card{ Mg} (7.51)
i=1

In this case there are only two different outcomes:
« Y%, h; increases by one whileard{ M} does not.
— The dimension of the self-motion manifold of the chain irmses by one.
e Y%, h; andcard{ M, } increase by one.
— The joint will be locked and the mobility of the system does cfrange.
e >, hi, card{M;} andcard{ M} increase by one.

— Will never occur.
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Trivial Linkage of Type Il

The case when the entire motion of the end-effector, coeddry two sub-chains, can be
determined and is restricted by one chain is dentigal linkage in Rico et al. (2003).
As they only consider single loops, the constraints of theiothain does not affect the
mobility of the end effector. In our setting, we define theresponding multi-loop clas-
sification of trivial linkage as the following. Assume thaewaveE’ manipulators that
all generate) 5, described byM z, andM’ manipulators that all generafg,;, described
by M, whereCr C Cys. Then the total mobility of the system is given Byl z and
the internal mobility of each of the chains. The internal ifigbof the chains inM g and
M must, however, be treated differently.

The total mobility of the system is then given by

ko /ny
D =card{ Mg} + Z (Z h; — card{J\/lj}>

j=1 \i=1
=card{ Mg} + Z (ZJ hi — card{/\/lE}) + Z (ZJ h; — card{./\/lM}>
E \i=1 M \i=1
:i hi — (E' — 1) -card{Mpg} — M’ - card{ M} (7.52)
i=1

where}" , sums over all the chains that generatg; and",, sums over all the chains
that generateM ;. Also in this case there are three different outcomes whiehwil
divide into two classes:

Forj € M,

e >, h; increases by one whilewrd{M;} does not.

— The dimension of the self-motion manifold of the chain irases by one.
e > ", h; andcard{M,} increase by one whileard{ M} does not.

— The joint will be locked and the mobility of the system does cltange.
e > hi,card{M;} andcard{ M} increase by one.

— Will never occur.

Forj € E,

e >, h;increases by one whilewrd{M;} does not.

— The dimension of the self-motion manifold of the chain irms®es by one.
e >, h; andcard{M,} increase by one whileard{ My} does not.

— The joint will be locked and the mobility of the system does cltange.
e >, hi, card{M;} andcard{ M} increase by one.

— The mobility of the end effector increases by one. The salfiom of the chain

does not increase.
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7.6 Fault Tolerance

In this section, we look into the effect of free-swingingibfailure (FSJF), or torque fail-
ure, in parallel manipulators and how the results from tlewipus section can be used to
prevent that the mechanism turns inequilibrated when tisis. For a general treatment
and an approach on how to identify joint failure see Tinosle2907). In this case, as
the number of passive joints in the manipulator increasamiey the mobility ofM p may
remain zero or increase by one. Letbe the number of active joints iM. When M p
does not allow any motion after the joint failure, we have

FSJF
>

Dy =0 D1 =0 (7.53)

and the manipulator remains equilibrated with respectltexaernal forces. Whem p
allows a 1 DOF motion as a result of the joint failure, i.e.

Dy =0=22E p =1, (7.54)

the mechanism is not fault tolerant.

We are interested in the condition for whidh,,_; = 0. As seen in the previous
section, the effect of a free-swinging joint failure depgiod the joint, the chain and also
the motion generated by the other chains in open loop. Welstaetting up a set of rules
that determine if a joint failure will increase the mobildf M p. This can also be used as a
design criterion to guarantee the mechanism to be faulatoteWe do that by determining
where to put the actuator redundancy most effectively ireofdr the manipulator to be
resistant to a joint failure in any joint.

In the following we will find the conditions for which the meahism is equilibrated
for all the different outcomes of joint failure found in Siect 7.5.5.

Exceptional Linkages

« S, hi increases by one whileard{ M, } does not.

— The end effector is equilibrated. Chajrwill only remain equilibrated if it is
actuator redundant. The redundancy must be in the set d§jwirwhich the
self-motion occurs.

« Y%, h; andcard{M,} increase by one whileard{ Mz} does not.

— No action needed. Both end effector and chains are equiithra

e >, hi, card{M;} andcard{ Mg} increase by one.

— The mobility can be compensated with actuator redundanagyrjoint that is
not locked for the motion generated By p.
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Trivial Linkage of Type |
« Y% h; increases by one whileard{ M} does not.

— The end effector is equilibrated. Chajrwill only remain equilibrated if it is
actuator redundant. The redundancy must be in the set djwirwhich the
self-motion occurs.

« >, hi andcard{M,} increase by one.
— No action needed. Both end effector and chains are equiithra
¢ S hi, card{M;} andcard{ Mg} increase by one.

— Will never occur.

Trivial Linkage of Type Il

Forj € M,
e > 7. h; increases by one whileard{ M } does not.

— The end effector is equilibrated. Chajrwill only remain equilibrated if it is
actuator redundant. The redundancy must be in the set d§jwirwhich the
self-motion occurs.

e > ", h; andcard{M,} increase by one whileard{ M} does not.
— No action needed. Both end effector and chains are equiithra
e > hi, card{M;} andcard{ Mz} increase by one.
— Will never occur.
Forj € E,
e >, h;increases by one whileard{M;} does not.

— The end effector is equilibrated. Chajrwill only remain equilibrated if it is
actuator redundant. The redundancy must be in the set d§jwirwhich the
self-motion occurs.

e >, hi andcard{M,} increase by one whileard{ My} does not.
— No action needed. Both end effector and chains are equithra
e >, hi, card{M;} andcard{ M} increase by one.

— The mobility can be compensated with actuator redundanagyrjoint that is
not locked for the motion generated 3y p.
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From the results presented in this section, we see that weasily verify if redun-
dant actuation is needed when joint failure occurs for argaetive joint. If joint failure
does not lead to self-motion of the chain it may be compeddateby another redundant
actuated joint that is not locked for this motion. These sage important to recognise in
order not to place unnecessary many active joints in the argsin. If, on the other hand,
the joint failure leads to self-motion, a redundant actdgtént is always needed in the
respective chain. These observations lead to a simple nul®w to place the redundant
active joints in order to guarantee that the mechanism mesrequilibrated when actuator
failure occurs for an arbitrary joint.

7.7 Examples - Mobility

We are interested in the condition for whiéh,,_; = 0. As seen in the previous section,
the effect of a free swinging joint failure depends on thetjoh which it occurs. In
the following we show three examples on how to determine wherput the actuator
redundancy most effectively in order guarantee fault soiee with respect to any joint.

7.7.1 Exceptional Linkages

Consider the mechanisms in Figure 74, is kinematically redundant in order to avoid
obstacles. We find the twists representing each chain

_ Uy P12 X Wy P13 X Wy P14 X Wy
1 R w, ) w, ) w, )
Uz P22 X W, P23 X Wy P24 X Wy P25 X Wy Ad P26 X We
0]’ Wy ’ Wy ’ Wy ’ Wy ’ 92,65 Wy ’

(7.55)

N

N

2

wherep;; = [xji Yji zﬂ-]T is some point on the revolute axis of joinh chainj given
in the inertial frame, anab, = [1 0 O]T, w, = [0 1 O}T andw, = [0 0 1]T.
We can write the transformatiopy,5) from the basé to joint 5 of M5 by Rs 55 andps 45
given by

cosfy —sinfy O
R2,b5 (02) = [sin 92 COS 92 0 (756)
0 0 1
-
pabs(01) = [Tapa Y24 22,04) (7.57)

wheref, = 327 6, andf, = 37, 61;. We can then write the twists as

0 212 213 214
1 0 0 0
- 0 —T12 —T13 —T14
Ml - 0 ) 0 ) 0 9 0 ) (758)
0 1 1 1
0 0 0 0
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T

Figure 7.1: Exceptional linkage with self motion

0 Y22 Y23 Y24 Y25 — (226 + 22,p5) sin b
0 —ZT22 —X23 —X24 —x25 (226 + Z2,b5) cos o
m o 1 0 0 0 0 X2 b4 sin 92 — Y26 — Y2,b5 COS 92
7YoL o [ o |2l o '] 0 |” cos 0y
0 0 0 0 0 sin 0o
0 1 1 1 1 0
Equilibrated Mechanism
The motion of each chain is given by
Mi € X(y), My X(2)x R(ws) (7.59)

whereX (w) is the Schoenflies group (3D translation and rotation ahgwnd
We = R27b5wx. (760)
The constrained space is given by

= { e )) e

HQC:{[O 0 0 —sinfly cosfy 0}}T

- { {R;iwj } '
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Due to the kinematic constraints we haige= 0 which gives us

e OHCN

Wy Wy W,

Note that none of these are redundant. We can now write
Mp = (Mp)* = Hﬂ ) {7’6’} , {%H eT(3). (7.63)

These are clearly multisets so we can choose a combinatjomts in bothA1; and Mo
to generate the particular motion. We can now verify thatrtteehanism is exceptional,
i.e.

ME Cﬂl, mE CﬂQ;
M ¢ Mo, Mo & Mo

As the end effector has three degrees of freedom, we needsittfeee active joints.
These can be chosen arbitrarily among the joints that gentira end-effector motion, i.e.
all joints exceptMo6. At this stage it is important that all the degrees of freed@oxi7.63)
and the internal motion are taken care of. To see this we lbEkjaation (7.49) where we
see that the mobility can be divided into the degree of freedbthe end-effector and the
self-motion of the chains

k nj
D = card{ Mg} + Z (Z hi — card{/\/lj}> . (7.64)

End-effector DOF J=1 Nimd

DOF of self-motion of chairy
We get the following set of rules for choosing the joints;

 choose four active joint of which at least one is chosen agtloa joints that generate
the self motion,

« choose the joints so that they generate the end-effectbom® (3).

One example of how the active joints can be chosen is showr2in/Ve illustrate the
mobility of M p by setting the active joints rigid. Note that the manipulat@nsidering
passive joints only, is now equilibrated with respect to arternal disturbances.

Fault tolerance

Assume we have chosen a set of joints like the ones in Fig@ré7 which the manipu-
lator is equilibrated. After observing thatlos does not affect the end-effector or internal
motion we get the twists

Mpy = { ﬁﬂ : [pl‘lwxywy] } (7.65)
el Pl i) om
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Maia

T Y

Figure 7.2: Exceptional linkage. We consider the active joints as fixed and congitieth® passive
joints, i.e. Mp. The mechanisriV p is equilibrated with respect to any external disturbance. If
M4 is chosen as the redundant actuation, the manipulator is also fault tolérart., is chosen,

it is not fault tolerant

Then the effect of adding a joint to the chainMp, i.e. turning one of the active
joints passive inM, depends on the joint. We first note that

ﬂp = MP1 ﬂﬂpz =0. (7.67)

We need to choose one or more additional active joints inrdalguarantee that the
manipulator remains equilibrated when joint failure osciVe will look into two different
cases. First we chooskt,4 to be the redundant active joint, then we chagk, (or
equivalentlyM,,) and we will see how important this choice is for fault toleca of the
mechanism.

Assume fist we choos#1,, as the redundant active joint (see Figure 7.2). We then
have two different cases that need to be considered.

* One of the active joints itM; becomes passive:

- >y, hi andcard{Mp,} increase by one whileard{Mp} does not. M
remains equilibrated.

Ds=0=22E p, —o.

* One of the active joints itM, becomes passive:

- > My hir card{Mpy} andcard{ Mp} increase by one. The end effector of
M p has one degree of freedoi (y)).

Ds=022E p,—1.
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We can see this if we write out the twists 6fl p when M4 is chosen as the redundant
actuation and joint failure occurs jis3:

plz{{”g’“, (7.68)
- Vz P22 X Wy P23 X Wy P24 X Wy
{8 i Y e Y i ¢

ﬂp = mpl ﬂﬂpz = T(y) (7.69)

We see that when the actuator redundancy is chosevtinthe mechanism is fault
tolerant with respect to joint failures ifvt; only.

For M2/ Mo, we also consider the same two cases, there is no differemeedfioose
Mo O Moy.

N

N

and

* One of the active joints itM; becomes passive:

- > mp, hi andcard{Mp,} increase by one whileard{Mp} does not.M

remains equilibrated.

Ds =022 p, =o.

< One of the active joints itMy becomes passive:

- > a1, hi @andcard{M,} increase by one whileard{Mp} does not. M

remains equilibrated.

Ds =022 p, =o.

Again we write out the twists oM p when M, is chosen as the redundant actuation and
joint failure occurs inM3:

- i) i)
o S NS | A

ﬂp = ﬂpl ﬂﬂm = 0. (7.71)

We see that when the actuator redundancy is choseévtinthe mechanism is fault
tolerant with respect to joint failures in all joints, alsoi; .

and

7.7.2 Trivial Linkage of Type |

Mechanisms for which all chains generate the same motioa same special character-
istics. First of all, none of the joints are locked due to tireeknatic constraints. Also, a
joint fault in one chain which reduces the mobility of the effibctor can be compensated
for by actuator redundancy in any other chain. The chains neainematically redun-
dant which is the case fok1; in Figure 7.3. As the reasoning is similar to the previous
example, we give only a cursory description of how to chobseattive joints.
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Figure 7.3: Trivial Linkage of Type I.

Equilibrated Mechanism

As all chains generate the same motion we have more freedarhdosing the active
joints. All the chains in Figure 7.3 generaté =) which gives the end effector four degrees
of freedom. M3 also has one degree of internal freedom. Hence, we need tselat
least one of the joints in the set that generate the selfemats active and the other four
can be chosen arbitrarily as long as all the degrees of freédd’(z) can be generated.

Fault Tolerance

Assume that we follow the reasoning from the previous exanapld choose the active
joints as in Figure 7.4 witb\ 15, Moo, Moz, M33 and M3, active. The motivation for
this choice is that internal motion is presentirs, so we need one redundant actuator
among these jointsN133 and Ms34). This redundant actuator will also assure fault toler-
ance when joint failure occurs in joints in the other chahet generate the same motion,
i.e. the intersection of the motions generated by the reglonaictuator and the motion of
the fault tolerant joint is non-empty.

If, however, joint failure occurs itM 5, chainM; can generate a motion in the direc-
tion of thez-axis. We have

T(z)NMs; =0, fori=2,3,4,5. (7.72)

As the intersection is empty, the redundancy\Mfy does not make the mechanism fault
tolerant with respect to joinM 5. To guarantee fault tolerance with respect to all joints,
we need actuator redundancy in the joints that generateomatithis direction as well.
This can be obtained by joint$1;3, M2, or M3;. We thus conclude that, for the mecha-
nism to be fault tolerant we need two redundant actuatedsjoin

The conditions under which the manipulator in Figure 7.3isditionally equilibrated
is discussed in detail in Section 7.9.3.
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Figure 7.4: Trivial Linkage of Type |. Bad choice of active joints. If joint failure @as in joint
M2, the mechanism is no longer equilibrated with respect to forces in the dimegdtihe z-axis,
such as gravitational forces. Joimtd,, and M, are parallelogram joints that generate motion in
St

7.7.3 Trivial Linkage of Type Il
Consider the manipulator in Figure 7.5. The twists of eadircls given by

M = { %’] } (7.73)
My = { [p21 % wz:| ’ [P22 X wz:| 7 [p23 x wz:| } 7
| w; w, w,
Ms = { [p31 % wm:| 7 [P32 X wz] : {Psz X wm:l JAdy, ., {P34 X ’wz] JAdy, ,, [p35 X wz:| } )
- Wy Wy : W,y : w,

Due to the kinematic constraintB; ;3 and R 4 are constant and

M € T(y), My € PL(2),
Ms € PL(x) x R(wg) x R(ws). (7.74)

where
wy = R3p3w,, w5 = R3osw, (7.75)

At reference configuration we have thag o3 = R34 = I so thatw, = ws = w, and
we get

—C (v, Vs, 0 0 0

st = {[5]-[a] o] o) L)

Mg:{: o)) .76
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Considering the kinematic constraint, the constraint sgd@d 13 becomes simpIWEj =
{ [0 wy]T}. We see that

My c My < MY (7.77)
or alternatively
ﬂl C Mz C ﬂg (7.78)

which is the definition of trivial linkage of type Il. This ergssion can be seen from (7.74)
when applying the kinematic constraints.

Equilibrated Mechanism

The motion of the end effector is given by
WE = M1 n mz N M;} = M1 = T(y) (7.79)

and has thus only one degree of freedowty has no internal motion, as can be seen from
analysingM, and M, in the plane M; U M5, has only one degree of freedom, which is
the same as the end effector, and has no self-motion.

As the mechanism has mobility one, we need one active joimistke the manipulator
equilibrated. This joint must generate the motib(y). From (7.74) it is clear that all the
joints in M, and M, generate the end-effector motion. If we take a close loak1at
we see that the three first joints generRt€(z). The last two joints in this chain generate
R(w4) x R(ws). This motion depends on the configuration of the first thréggo Due
to the joint constraints we havg; + 035 + 633 = 0 and thusw, = ws = w,. As

T (y) N (R(psa, w2) X R(pss, ws)) =0 (7.80)

we conclude that these joints are locked.

To guarantee that the mechanism is equilibrated we can elrarggjoint that generate
the end-effector motion. The only joints that do not gereethts motion areM 3, and
M35 as these will always be locked.

Fault tolerance

The same applies to fault tolerance. To guarantee that thgolator remains equilibrated
when joint failure occurs we can choose any joint that geedte end-effector motion as
the redundant actuation.

7.8 Robustness to external forces for serial manipulators
The results presented in Section 7.3 let us quickly verify gfiven serial or parallel ma-
nipulator has the desired type of end-effector motion. Weneiw use the same approach

to analyse if a manipulator allows an undesired motion dysassive joints. We will start
with a motivating example for the serial case.
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Figure 7.5: Trivial linkage of type Il

Examplel. Assume a serial manipulator with one passive revolute piitlhe end of the
manipulator chain. Attach a coordinate frame at the badseaftanipulator and choose the
reference configuration so that the revolute axis of thgdastand they-axis of the inertial
frame are parallel. Assume that the joint revolutes abaaiythxis with unit velocity, i.e.

wy=1[0 1 O]T, and letp € R® be a point on thg-axisp = [p. py pz]T. Then the
twist is given by

5:{1’“’@}:[—;& 0 p, 0 1 0], (7.81)

Wy

Assume further two external (linear) forces
F,=[0 1 0 0 0 0], (7.82)
F.=[0 0 10 0 0. (7.83)

For the chosen reference configuration the set of consti@ices for the twist is given
by all forces that satisfy

(€, Fe) =0, (7.84)

and we conclude that
F, € Fg, (7.85)
F, ¢ F¢. (7.86)

Thus, for the twist describing a joint that revolutes abbetit-axis and an external force
F, the reciprocal product vanishes and the joint is not aftebiethe external forcé,.

For a force in the direction of the-axis, however, this is not the case and the configuration
of the last joint is affected by this external force. We se# tbr a serial manipulator the
external forces for which the passive joint maintains itstpee is, as already noted, very
limited.
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From the example presented above, we see that the endeeffecifiguration is equi-
librated with respect to one “type” or group of external fscbut not to others. We will
denote the mechanisoonditionally equilibratedvhen it is equilibrated with respect to a
specific type of external force, e.g. gravity. In the follogiiwe will generalise this using
the formalism presented in Meng et al. (2007).

We will restrict ourselves td.,; = [f7 O}T, i.e. linear forces and the moments

that result from these. The extensionHg,; = [0 TT}T is straight forward. This is for
example the case when the base moves with an angular velatiigh may occur on a
boat, oil platform or a moving vehicle.

Example 1 is special in the sense that the axis of the passiviei$ constant. This is
obviously not always the case, for example when the passineig at the end of a ma-
nipulator chain. Thus, we will divide the problem into tworfsa i) when the mechanism
is locally equilibrated (at reference configuration); aijievhen the mechanism is globally
equilibrated (for any position of the active joints). Obw#ly a mechanism can be equi-
librated with respect to an external disturbance for ondigaration but not for another.
We will start by looking at the local case and look at how exéédisturbances affect the
mechanism at the reference configuration. In Section 7.8.@iextend this to the entire
workspace of the manipulator.

7.8.1 A Local Solution

To analyse the manipulator when it is in the reference cordigan is very much related
to the work presented in Meng et al. (2007), and their resisltsbe applied with a few
simple modifications. From Example 1 we see that anotheritlefirof motion than the
one given in Definition 7.2 is needed. We need to define theamatith respect to a given
reference frame.

Thus, for a given external wrench, the equilibrated motiepresents all the "direc-
tions" in which we can allow the manipulator to move, i.e. theections that are not
affected by the external force. This is formalised in théofwing.

Definition 7.9. For a given nominal external wrendhy = [f; O}T the set of equili-
brated motionds defined as all twists for which the reciprocal product withvanish,
ie.

Qso = Fy = {¢| (F,€) = 0,YF € Fy}. (7.87)

We see that) sy gives us a complete description of all the motions the meshan
can generate and still be conditionally equilibrated witkpect to the external wrench.
The complete description of the equilibrated motion is thisen by choosing the external
wrenchFj represented in the inertial frame, i.e. the type of the digtnce, and the coor-
dinate framey, of Fy and we writel; = Ad,, Fy. Similarly, we getQ s, = Ady, Qso.

Assume now a manipulator withh joints, which of! are passive. Without loss of
generality we assume that the passive joints are at the eti ahanipulator chain. We
denote byM 4 then — [ first active joints and byM p the last/ passive joints of the
manipulator, so we have

M =My Mp. (7.88)
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For a mechanism to be resistant to an external force it canadiov motions inQ 5.
From this observation and the fact that active joints théwaseare always equilibrated
with respect to external forces, we conclude the following:

Definition 7.10. GivenF,, = [fT O]T and a corresponding equilibrated motiQg. A
serial manipulatoM is equilibrated with respect to external fordggif and only if M p
generates a motio C Q.

This becomes clearer with the following proposition:

Proposition 7.3. Let Mp := {Gp(n_i41),---,Gpn} @ndFy = {Hg1,..., Hgpm} SO that
eachGp; represents the twist of jointand the?,;'s are m external forces. TheM is
conditionally equilibrated with respect g, if and only if

_ N i=Mm-1+1)...n,
(Gpi, Hyj) =0, for { i=1..m. (7.89)
This proposition states that the external force must lidéndonstraint motion of each
joint and that each joint can be looked at independently. Wewrite this on a more
compact form as -
(Mp,Fy)=0. (7.90)

We will say that when Equation (7.90) is satisfigd,p is conditionally equilibrated with
respect to all external forces ki, .

7.8.2 A Global Solution

The results presented in the previous section give a singpiditton for the mechanism to
be equilibrated with respect to an external force arounddference configuration. We
now expand this to the entire workspace, i.e. for what pmsstiof the active joints is the
mechanism conditionally equilibrated. We start with a dergxample.

Example2. Assume we want to check if a mechanism is equilibrated wispeet to the
gravitational forces, i.e.

F,=[0 0 1 0 0 0. (7.91)
Let the last passive joint revolute around the inergialxis at reference configuration
£, = {pzy} —[-p- 0 p. 0 1 0]". (7.92)
Then the problem amounts to finding all configuratiérier which
(Adg, &, Fy) = 0. (7.93)

The solution is obtained by a rotatian around ther-axis. We see that the mechanism is
equilibrated with respect to forces working in the samedtiom as the axis of the revolute
joint only. Note in addition to these there are certain pos# of the passive joint for
which the external forces do not affect the configuratiochsas the stable and unstable
equilibrium of a pendulum, but we require that the mecharéamresist external forces
for all positions in order to denote it conditionally equilibratead isolated points in the
configuration space are thus not included in the solution.
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For serial manipulators the formulation described can give restriction on the con-
figuration of the last “active link” for the manipulator to lw®nditionally equilibrated.
By last active link we mean the link after the last active {oifihis is formalized in the
following.

A transformation from the reference configuration to a jaiah be given as a rigid
transformationg by the Adjoint map Ag. We will introduce the following notation
Adg(g)ﬂp which describes the twists of the passive joints under thednce (rigid trans-
formation) of the active joints. Hence,

Adg(e)ﬂP = {g;L—l—‘rl? ceey g;L}
= {Ady. Gu_tr1... Ad,, G} (7.94)

whereg; is the rigid transformation from the base to joirdand thus depends on the joint
positions. Further we will assume that the passive joingdifiilibrated at the reference
configuration, is equilibrated for all positions of the pasgoint. Note that we can only
control the position of the active joints, while the position of the passive joinfig; can
move freely. An example is given in the next section.

7.8.3 Free Swinging Joint Faults in Serial Manipulators

For a serial manipulator free-swinging joint fault is extigly serious and will in general
cause the manipulator to collapse. This can cause damabgedbtimans and the sur-
roundings. In this case we will need an additional requingtoe the active joint positions
so that the manipulator is conditionally equilibrated.

Definition 7.11. A serial manipulatorM is conditionally equilibrated with respect to an
external forcel, (e.g gravity) if and only if the active joint$, are chosen such that

O = {04 | (Ady)(Mp), Fy) = 0}. (7.95)

When joint failure occurs for any of the joints close to thedyahis requirement is
practically impossible to satisfy. Due to the kinematicsvafny commonly used manip-
ulators such as the Motoman or the ABB IRB, this conditioroisthe other side, quite
easy to satisfy when the joint error occurs for one of thejtaints. Examples of this are
given below.

Example3. Assume a manipulator with one active and one passive revgbint and

where the passive jointis parallel to the disturbance fgrp#, = [0 0 1 0 0 O]T
at reference configuration. We have

MZMA-MP m:{glagQ} (7-96)

We are to verify under what condition, i.e. for what configimas of M 4, the mechanism
remains equilibrated. We will consider two cases

« when the active joint rotates about thaxis,

« when the active joint rotates about thexis.
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7.8. ROBUSTNESS TO EXTERNAL FORCES FOR SERIAL MANIPULATORS

In both cases, the twist of the passive joint is written as
Go=1[ya —22 0 0 O I]T. (7.97)

The rotational and translational displacements due to ¢tigegjoint in the two cases are
given by

091 —891 0 091 0 891
Rz = 891 691 0 y Ry = 0 1 0 s
0 0 1 —891 0 691

p=[t01 w 2]

wherec meanscos () and s# meanssin (6). For the first case when the active joint is
parallel to the disturbance, Adis given by

chy —s61 0 —zp1501 —zp1ct Yb1
891 691 0 Zb1091 —Zp1 891 —Tp1
. 0 0 1 xp1801 —yp1cbr  xp1c01 + Yp1561 0
Adg. = 0 0 0 b —s0, 0 (7.98)
0 0 0 s61 ch1 0
0 0 0 0 0 1
and we get that
yacl + 2561 + yp1
y2591 — xacth — 21
Ad, G, = 8 (7.99)
0
1

As (7.95) is always satisfied, the mechanism is equilibré&deall configurations and no
further action is required.
For the second case, we have

cdp 0 sb; —1p1501 —2p1 Yp1c01
0 1 0 zp1cl1 + xp1 8607 0 21801 — xp1¢6q
_|—s01 0 cby —yp1c01 Tp1 —yp1501
Adgy = 0 0 0 ) 0 s0, . (7.100)
0 0O O 0 1 0
0 0 0 7801 0 691
and we get that
(Y2 + yo1)c1
—2 + (2p15601 — Tp1¢61)
_ —(y2 + yp1)sth
Ad,, 0 = o . (7.101)
0
091

187



A GEOMETRICAPPROACH TOHANDLING TORQUEFAILURE

We see that in the second case, the manipulator is condlfiewuilibrated with respect
to F, if and only if
yp1 8in (61) = 0. (7.102)

This is the case wheft, = 0, which is the reference configuration and whgn= +=
which is when the first link points in the exact opposite dii@t of the reference config-
uration. Thus, if joint failure occurs, we should strive &ach one of the configurations
represented by

O, ={6=0,%7} (7.103)

in order to minimise damage to the surroundings.
Example4. Assume a manipulator with two active-(and y-axis in reference config-

uration) and one passive-@xis) joint. The set of equilibrated configuratiofs, =
{04 | (Adyp)(Mp), Fy) =0}, is given by

| 6y free,
O, = { by — 0, 47, (7.104)

We see that the stability depends on the positiofy afhile the position of); can be chose
freely.

7.9 Robustness to external forces for parallel manipula-
tors

From Sections 7.5.1 and 7.5.2, we saw that whép does not allow any motion after the
joint failure, i.e. we haveD,,,_; = 0, the mechanism is passively sustained with respect to
any external force. However, when the mechanism allows gomdue to the joint failure,
i.e.

Dp=0=£ D, =1, (7.105)

an additional requirement needs to be satisfied for the nmézinato be equilibrated. In

this case the mechanism cannot be equilibrated with respect arbitrary external force,

as there will always exist a force that results in the freeiomotThus, the strongest result
we can obtain in this case is to guarantee that the mechagipassively sustained with
respect to a given external force.

We will start by looking at the conditions for which the maunigtor is conditionally
equilibrated at a reference configuration. As for the serge, we get that this is true
when the allowed motion lies in the annihilating space ofakternal forces. Finally we
look at the global case and find for what configurations, iasitpns of the active joints,
this is true.

7.9.1 A Local Solution

Again we start by choosing a reference configuration andiigethe joint positions with
zero. In this section we apply the same modifications to tkalt® presented in Meng
et al. (2007) as for serial manipulators. Recall that oumitédih of motion differs from
the definition of motion type in Meng et al. (2007) in tliat relates ta)) 5o by a (specific)
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homogeneous transformation and not by the conjugacy cfake similarity transforma-
tion. We need to verify if the constrained motion of the enféabr C'(, lies in the

equilibrated motiorns. We thus assume that eaCh,,.,,j = 1,...,k contains a con-
nected open subsét; of Qs arounde,

Qu C CMPjaj =1,...,k (7106)

and consequently)y € Cy,. Due to the kinematic constraints, the configuration space
of the end effector is forced to be

Crmp =Cprp, NCrp, N---NCrp,- (7.207)

Recall thatQ) s represents the equilibrated motions with respeditg represented in
the coordinate framg € SE(3).

Proposition 7.4. Let Qg be the equilibrated motion with respect . The parallel
manipulatorM is resistant to the external forcds, if Mp = Mpi N MpaN---NMpy
is contained iR, i.e.

Mp € Qs. (7.108)

Alternatively we can verify thal’, is contained in the constraint forcesttp, i.e.
Fy € (T Cotpy )" + (TFCptp) 4+ + (T5Cpt) (7.109)

holds, which means that every componentjfis restrained by the constraint forces of
M.

This guarantees that the end-effector motion is not aftdeyehe external forces. Note
that we also have to check for the internal motion of eachrchiiience, if joint failure
occurs in chain, we also need to verify that the internal motion of this chaiocontained

inQs.

7.9.2 A Global Solution

In this section we generalise the results from the previeatan to find all configurations
for which the mechanism is conditionally equilibrated wifspect to a given external
force. We will first assume that all the passive joints ardatend of the sub-chains

M =My Mp. (7.110)

Again we need to verify if the mechanism, considering thespagoints only, is equi-
librated with respect to an external forgég. We denote the transformation #fl » by the
active joints ag 4. We then need to find the set

Ga={94| R, 1, Ty.Crtp € Ry-1.TyQs0} (7.111)
where

Ry, Ty Cntp = Ry Ty, Oty N N Ry1, Ty, Oty (7.112)
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is the attainable spatial velocities.M p atg, andR -1, T, Q5o is the equilibrated motion
with respect taF,,; in a given reference frame

The main observation here is that the infinitesimal motidteirsable byM p, when
Mp is at the end of the chains, are transformed by a rigid tramsftion g4 which de-
pends on the active joints only. Thus, we can write

Mp = Ad,, Mp (7.113)

and we can uséA  for Mp in Equation (7.108).

We will divide the motion of the mechanism into two motionsirsg C4, is the
motion due to the passive joints. This motion is affectednieyexternal disturbances. The
other motion iC'»,, which is due to the active joints. This is not affected by thiemal
disturbance. The aim of this section is to find the configaretiof the active joints so that
CMP € QS-

We will write

G;z = Adgj,bq:gjia (7114)

whereg; ;; is the transformation from the base to joimtf chainj. In the previous sections
the active joints were considered fixed. Now, the directitthe twists of the passive joints
will depend on the position of the active joints, i.¢;;; depends on the position of the
active joints.

We need to verify if

Mp € Qs (7.115)
where
Mp = Mpi N Mpy N Mpy, (7.116)
and
Mp; ={G51.Gjo .Gy} (7.117)

We will represent the set of conditionally equilibrated figarations as

Ga={ga| Mp(9(0)) € Qs} (7.118)

which is found by
Ga={ga| (Ady)(Mp), Fy) = 0} (7.119)

which is the set of all equilibrated configurations fot.
Alternatively we can write

©4 = {04 Mp(g(0)) € Qs} (7.120)

which is found by
©4 = {04 | (Adye)(Mp), Fy) = 0} (7.121)

which represents afl4 for which M p is equilibrated with respect tB,.
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7.9.3 Free Swinging Joint Faults in Parallel Manipulators

Free swinging joint faults affect parallel manipulator§etiently than serial manipulators.
For serial manipulators joint faults is extremely seriouslavthis is not always the case
for closed chain manipulators due to the kinematic con#fsain this section we present
several examples illustrating the effects of torque failiarparallel mechanisms.

Consider the parallel manipulator in Figure 7.4. We constd® cases when joint
failure occurs inM5;

« the actuated joints are chosen as in Figure 7.4 (Example 5),

« the actuated joints are chosen as in Figure 7.4 but withy actuated instead of
M3 (Example 6).

Example5. Assume that the actuated joints are chosen as in Figure @.{bant failure
occurs inM15. We choose a reference configuration as in Figure 7.4 anduilsestof
each chain is given by

S [ve] [p2xws]| [pisxws] [praxw,
e G B S B i I
_— [v,] [0
Mpg{_o_ , _wj}’ (7.122)
<. _ (v, ] _P32><wz P35 X Wy
Fo={ ] [ ]
and we get
Mp = ﬂpl QMPQ ﬁmPg = |:UOZ:| . (7.123)

Thus for the chosen reference configuratign is not conditionally equilibrated with
respect to the gravitational forces. It is, however, caodilly equilibrated with respect
to all forces in thery-plane, e.qg.
(Mp,F.) #0,
(Mp,Fy) =0,
We now look into for what configurations this is true. This tisagyht forward due to
the observation o o
Mpi; = (Ady, ,.(0)) Mpij , Vi, j,0 (7.124)
and thus the twists of the passive joints are independentsifipns of the active joints.
The set of joint positions for which the manipulator is cdimtially equilibrated with
respect taF, is thus given by
Op, = {0 <Ad9(9)(mP)7Fy> =0}
={v6} (7.125)
Similarly, the set of joint positions for which the maniptdeis conditionally equilibrated
with respect taF, is thus given by
O, ={0] (Ady)(Mp),F.) =0}
= {0} (7.126)
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Examples. Again we assume that the actuated joints are chosen as ireFigtiand joint
failure occurs inM 5, but with My, actuated instead of133. We choose a reference
configuration as in Figure 7.4 and the twists of each chaiiviengoy

Mpy — _Uz_ —p12 X wr_ _P13 X Wy P14 X Wy
P1 ’ 0 ] 9 I 0 ) W, )

Mpy = { - ” (7.127)

o = 4 [02] [ps2xw:]  [pszxw:] [pss xw.
P3 ol w, ) W, ) w, .

and we get

Mp =Mpi N Mpy N Mps = [u(z) } . (7.128)

Thus for the chosen reference configuratidip is conditionally equilibrated with respect
to the gravitational forces only, e.qg.

(Mp,F.) =0,
<MP7F1/> # 07

We now look into for what configurations this is true. Again heve that Equation
(7.124) is true and that the twists of the passive joints adependent of positions of
the active joints. The set of joint positions for which thempalator is conditionally
equilibrated with respect té., is thus given by

Or, = {0 (Ady)(Mp), F.) = 0}
— (V) (7.129)

Similarly, the set of joint positions for which the maniptdais conditionally equilibrated
with respect taF, is thus given by

©r, = {0| (Adyp(Mp), F,) = 0}
= {0} (7.130)

This example illustrates the difference between the effe€tjoint failure in serial
and parallel manipulators. For serial manipulators we dtendake the manipulator to
a certain configuration for which it is conditionally eqbifated. For parallel manipula-
tors, however, we find that this requirement is either satisfor all configurations, as in
(7.129), or it is not satisfied at all, as in (7.130). Thush# parallel mechanism is con-
ditionally equilibrated, this is an intrinsic property dfet mechanical design and only in
very special cases can it be taken care of in the control. éftalsnanipulators, however,
the design of the manipulator does not affect the conditican¢ertain extent, but we have
more freedom to deal with external disturbances in the obwtnen joint failure occurs.
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7.9.4 Singular Configurations of M p

Much work is done on localizing the singularities in paraff@nipulators. For a singular
configuration the manipulator loses one degree of freedonthd special case of torque
failure whenM p can generate a 1 DOF motion these configurations are the aoatiigns
for which the passive manipulator loses this freedom ang thins equilibrated. We note
that these configurations can be found off-line for each c&gaint failure and does not
depend on the external force. Singularities in parallelim#ators are treated in detail in
the literature, such as in

7.10 Conclusion

A mathematically rigorous framework for analysing the efeof joint failure in serial
and parallel manipulators is presented. For serial maaiptd we find that for certain
configurations the manipulator remains conditionally &qrated with respect to a specific
external force, such as gravity, even after joint failurewss. This must thus be handled
in the control algorithms and there is no way to guarantek falerance through a fault
tolerant design of the mechanism.

For parallel manipulators, however, we can find a set of agtints for which the
design itself is fault tolerant. In this sense, the parati@hipulators are more robust than
their serial counterparts. On the other hand, when actf@tare occurs and this allows
for a motion in the passive joints, we have less flexibilityd&al with this in the control
algorithms than for serial manipulators. In general we flrat the parallel manipulator is
either conditionally equilibrated for all configuratiors, it is never conditionally equili-
brated. Fault tolerance of parallel manipulators shouls the addressed in the design of
the mechanism.
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Chapter 8

Representing Attitudes as Sets of
Frames

8.1 Abstract

A general framework for representing continuous sets of franes with the unit quater-
nion representation is presented. The determination and atrol of the attitude of a
rigid body is important in a wide range of applications and has been given much
attention in the control community. Not always, however, mt the desired attitude
be restricted to one given orientation, but can be given as aiscrete or continuous
set of orientations subject to some restriction. An attitugk can be represented by the
four-parameter unit quaternion without the presence of sirgularities. It is shown how
continuous sets of frames can be described by the unit quateion representation. It
is also shown how this set can be reorientated into an arbitng coordinate system
by the quaternion product. Some work is done on finding the aftude that is closest
to the desired orientation when the desired orientation is ot of reach due to some
restriction on the allowed orientations or rotations.

8.2 Introduction

The attitude control problem of a rigid body is given mucteatton in the control com-
munity, and its applications range from attitude contrahio€raft, spacecraft and satellites
(Dwyer, 1984; Kristiansen et al., 2005) to rigid bodies Hefdobotic manipulators (Yuan,
1988; Xian et al., 2004). A thorough discussion on the atétaontrol problem is given in
Wen and Kreutz-Delgado (1991), where global stability isveh for a variety of control
laws using the unit quaternion representation in a Lyapduaogtion.

The unit quaternion group allows orientation and rotatiofé represented globally
without singularities. One problem of the unit quaterniooup is that it is not as easy
to visualise as the Euler angles. Many methods have beetogedk:to help visualising
quaternions and the relationship between quaternionstead-tlimensional rotations. A
good introduction on how to visualise quaternions can ba&doin Hanson (2006) and
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Kuipers (2002). Hanson (2006) also gives a thorough pratientof quaternion curves,
surfaces and volumes. Of special interest is the work ptedesn quaternion volumes,
where it is shown that a continuous set of frames can be repied by a quaternion and
a set of intuitive restrictions in Euler angle representatiThe theory of quaternion vol-
umes closely relates to orientation maps. Several tecksithat can be used to visualise
orientations are discussed in Alpern et al. (1993).

In this paper, the work on quaternion volumes is taken orgefat¢her, and a schematic
approach on how to represent sets of frames is presentedsHbivn how this set can be
visualised by a set of points in the unit sphere, and how #tisedate to the corresponding
guaternion volume. It is also shown how this set can be retaied so that it is defined
with respect to some other reference frame. A test to vefifyquaternion satisfies the
restrictions given by the quaternion volume is also presgnt

This paper also addresses the problem of how the unit quemegroup can be utilised
to find the attitude that is closest to some given orientatiben rotations about one axis
only are allowed. This work is similar to the results found¥Yman (1988); Wen and
Kreutz-Delgado (1991); Hanson (2006) in how the orientatioror is presented, but goes
one step further in also finding the closest orientation.

8.3 Representing Rotations

Most of the fundamental principles of rotation were presdrn two papers by Leonhard
Euler in 1775 (Alpern et al., 1993). The first paper shows dmgtrotation can be accom-
plished by a sequence of three rotations about the cooediads. In the second paper,
Euler states that any orientation can be represented byaombof some angle about
some fixed axig:. He also shows that the composition of two rotations isfisebtation.

8.3.1 The Unit Quaternion

The unit quaternion representation closely relates todkalts presented in Euler’s sec-
ond paper. A good introduction to quaternions is found ing€us (2002). Any positive
rotation¢ about a fixed unit vectan can be represented by the four-tuple

Q- m , (8.1)

whereg, € R is known as the scalar part agde R? as the vector part) (¢, n) is written
in terms of¢ andn by

qo = cos(g), q:sin(g)n. (8.2)

Q is a quaternion of unit length and denotedidt quaternion Henceforth, all quaternions
have unit length if not other is stated. The quaternion pcbdéia rotation( followed by
a rotationP is written in vector algebra notations as

Pogo —P-4q
@ Poq + QP+ P XxXq (8.3)
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The cross product implies that quaternion multiplicatismdt commutative, as expected.

LetP =[py p1 p2 pg]T andQ =00 @ @ qg}T. Then the quaternion product
is written as

Poqo — P191 — P2q92 — P3qs3
Poq1 + P1qo + P2q3 — P3q2
* Q) = . 8.4
@r=Q Poq2 + P2qo + P3q1 — P14q3 (8.4)
Pog3 + P3qo + P1g2 — P2q1

The quaternion product of two unit quaternions is a unit guabn. By the definition
of the quaternion the quaterniof@sand—(@ produce the same rotation. This is referred to

as the dual covering. The quaternion identity is giverchy=[1 0 0 O}T.

A pure quaternion is a quaternion with zero scalar part. Aegtar,v = [z Y z]T
can be represented by a pure quaternion

v = M . (8.5)

v

The conjugate of a quaternion is defined@is= [¢0 -1 —¢2 —q3]T.

8.3.2 Quaternions and Rotations

Let a vector, v, be represented by the pure quaternign This vector can be rotategl
radians around the axis by

vy = Q *x vy *x Q. (8.6)

Every vectors € R? can be represented by a pure quaternion, herisenot necessarily

a unit quaternion. The quaterniaR(¢, n), however, is unitary. This represents the angle
and the axis that the vectoy is to be rotated about. The resulting vec#®y, is then of the
same length a8, if and only if Q) is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotatiamfrone orientation to another.
Let P and@ be two orientations. Then, by taking

E =P «Q, (8.7)

E will rotate P into Q by the shortest rotation.

Note that equation (8.7) rotates one frame into anotherdraBy aframeit is meant
a coordinate system IR? using Cartesian coordinates. One frame with respect tdhanot
frame represents three degrees of freedom and is referragl émattitude orientation
Equation (8.6) rotates one vector into another vector asdwa degrees of freedom (e.g.
longitude and latitude) (Ahuactzin and Gupka, 1999). A weittor with respect to a
unit reference vector is referred to asattitude direction Henceforth, when referred to
direction, this is the direction of the-axis of the body frame with respect to thexis of
the reference frame.
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8.4 Quaternion Volumes

8.4.1 General Definition

A set of frames that correspond to a reference frame by aaontabout a fixed axisy,
can be represented by a quaternion and some restfiction

Q(¢a n), for ¢min < ¢ < ¢mam- (88)

When restrictions are not limited to one axis only, a more garscription of all allowed
orientations can be defined by a combination of rotationsrgly the quaternion product
of two or more quaternions and their restrictions. In thipgraonly sets of frames that
can be described by a sequence of rotations about fixed exé®ated.

Definition 8.1 (Quaternion Volume) A quaternion volume@®, is defined as

Q® = {Q(d1, -, Pnsm1, 1) | D1 min < D1 < 1maz

: (8.9)
¢n,min < (bn < ¢n,maa;}

for n > 1 and where

Q(¢17 AR 7¢nan17 AR »nn) = Q((blanl) koeee ok Q((bnvnn) (810)

From the above it is clear that a quaternion volume is obthlyethe quaternion prod-
uct of one or more quaternion volumes. This is stated in tixé pr@position.

Proposition 8.1 (Quaternion Product of Quat. Volume(s)yhe quaternion product of
two quaternion volumes, or a quaternion volume and a quaterris itself a quaternion
volume.

Proof. By equation (8.3) the quaternion product of two quaternisrsquaternion. LeP
be a quaternion with the restrictiods,;, < ¢ < dmae- Then it is a quaternion volume
by definition 8.1 withn = 1. Then the quaternion produét = P x @) consists of the 16
elements of equation (8.4). L& be a quaternion, thef can be written in terms afy_3.

= po(®)qo — p1(d)q1 — P2(@)a2 — p3(P)gs, (8.11)

= po(P)q1 + p1(d)qo + p2(d)as — p3(¢)ge, (8.12)
= po(9)q2 + p2(d)qo + p3(d)ar — p1(9)gs, (8.13)
= po(®)as + p3(d)ao + p1(d)g2 — p2(P)qa- (8.14)

Note that, ag) is a quaternion, the elements Bfare sums of the products of a constant
(qo—3) and the elements of the quaternion volumpg §(¢)). By representing® € R*
and@ € R* as four-tuples, the quaternion product is given by (8.B81}4) and the field

1The dual covering allows every rotation to be describedewin this paper, however, it is only described
once, so that all angles are assumed to be in the interva) . It is also assumed that all angles of inverse
trigonometric functions are in this interval with the coitrsign. Forarctan, this is denote@rctan2.
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propertyclosuré is satisfied so that,_3; € R. Thus,e_3 are functions of so that the
restrictions onp can be applied to the quaternion product. Furthermorg k= 1 for
all ¢, ||E|| = 1 so thatE is a quaternion volume by definition 8.1 with= 2.

Similarly, when bothP and@ are quaternion volumes the elementg:bére sums of
products ofp;(¢1)g;(¢2) andE is a quaternion volume by the same argumentation. The
same argumentation applies whenand ) are quaternions or quaternion volumes with
more than one restrictiom, > 1. O

8.4.2 Quaternion Volumes by Rotations Sequences

A rotation sequence describes a rotation about one codedinés followed by a rotation
about another of the coordinate axes in the rotated codrdsystem. A general frame-
work on how to construct easily visualisable quaternioruras by rotation sequences is
presented. The rotation sequence starts with two subserptations about two coordi-
nate axes, represented by the quateridgion This defines the attitude direction. The last
degree of freedom is added by a rotation about the direcgotoy, here the-axis, by(Q. .

In equation (8.6), let)., represent the vector to be rotated and@gtbe the quaternion
describing the direction of this vector. Then the rotatiequence

V=0Q:s*Q, x Q: (8-15)

represents the direction of theaxis for a given rotatior); given by the direction of
the vector part of and the rotation about the-axis given by the scalar part or length
of the vector part of¥ by ¢ = 2arcsin(||D]|) = 2arccos(vg)sgnvy). Henceforth,)

is called avisualising quaternion Note that) does not represent a rotation. It is used
as a tool to visualise rotations and as a help to define an ppat® set of frames for
different applications. The visualising quaternion arel¢brresponding quaternion should
be viewed upon as a paii@, V), where the visualising quaterniol, gives an intuitive
description of a rotation of a frame k.

Let the vector part of the visualising quaternion be plotte@ point in the:yz-sphere.
Then the direction of the-axis, rotated by the corresponding quaternion is giverhiey t
vector from the origin to this point, and the rotation abdwg 1-axis itself is given by the
length of this vector. Hence, a continuous set of quatemfarguaternion volume) is rep-
resented by a “cloud” in theyz-sphere describing the corresponding set of orientations.

The quaternion that rotates the reference frame into tleattion described by equa-
tion (8.15) is then given by

Q=Q.*Qs. (8.16)

Finally, the quaternion volume is given by restricting tilevaed rotations of each quater-
nion.

2The real numbers are closed under addition and multiplicatience if a and b are real numbers, so are a+b
and ab (Kuipers, 2002).
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Given a visualising quaternion volume by the sequence
VO = Q7 = QY * (QF)" (8.17)

and the restrictions 0@% andQ?. Then the corresponding quaternion
volume that results in the set of orientations describettBys given by

Q¥ =Q7*QY (8.18)

with the same restrictions applied@® as toV®.

Figure 8.1 shows the difference between the quaterniomwland the visualising quater-
nion volume when the vector part is plotted in the:-spheré. Note that the dual covering
also applies to the visualising quaternion volume. Henoe, should always keep track
of the sign of the rotation so that a negative rotation abbet:taxis is not interpreted
as an opposite direction of theaxis. This can be done by moving the negative sign to
the scalar part (which is positive (r-m, ) or to assume all angles in the interyal 27)
wheresin(2) is positive.

8.4.3 Reorientation of Quaternion Volumes

Let Q® be a quaternion volume and the quaternidmepresent some transformation on
Q®. It will be claimed that the transformatio@% = Q% x P rotates the entire set of
frames by a rotatior?. Similarly, the transformatioxi)}‘?, = Q% x P* allows the set of
frames represented by the quaternion volume to be repesbwiith respect to a new ref-
erence frameP. The transformation induced by changing from one referemigmtation
to another is calledeorientation(Alpern et al., 1993).

Proposition 8.2 (Transformation of Quaternion VolumesAny quaternion volume)®,
represented with respect to the identity frame can be taansfd into another quaternion
volume by

S =Q%xP, (8.19)

where the orientations represented @ relate to P in the same way aQ® relates to
the identity frame.

Proof. The quaternion produdt = @ P can be viewed upon as a rotatiérfollowed by

a rotation@ with respect to th@ewframe that resulted from the first rotatiéh Hence £
relates taP in the same way ag relates to the identity frame. By the same argumentation
the quaternion volum&)? relates toP in the same way aQ® relates to the identity
frame. O

In proposition 8.2, the reference frame is kept constantalhthe elements of the
guaternion volume are rotated By Reorientation, however, is a rotation of the reference
frame (change of observer) while the quaternion volumeji &enstant. The proof of the
reorientations = Q® = P* is constructed in the same way as the proof of proposition
8.2.

3In figure 8.1, the orientations are plotted &iyx (%)n (the orthographic orientation map (Alpern et al.,
1993)) for both the quaternion volume and the visualisingepméon volume.
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z—axis Quaternion Volume z—axis Visualising Quaternion Volume
1 1

0.5 0.5

Figure 8.1: The quaternion volume and the visualising quaternion volume in:thesphere. The
upper plots show a freedom about thaxis and the lower plots show all vectors that span out a cone
and the orientations about these vectors. The visualising quaternione/gives a more intuitive
picture of the orientations described by the quaternion volume than thergjoateolume itself
when plotted in thecy z-sphere.

Commentl. From equations (8.3) and (8.6), four different ways of tfarmeing quater-
nion volumes arise.

DQF =Q%«P  3) Q% =Q%xPx(Q%)
2) Q% =PxQ®  4)QF =P*Q%xP*

The first transformation is used in Hanson (2006) to find a BEames, all with one axis
pointing in a fixed direction, as a mean to find an optimal pattihé quaternion space. If
Q® represents a freedom about one of the coordinate axes, esayabh's,@%1 can also
represent a set of orientations where thaxes have the same angles with respect to the
reference frame-axis, determined by’. For this special case, the same result is obtained
by the third representation. Even though the two repreientapresent the same set of
vectors they differ in orientation. The set of frames debsmtibyQ%1 is the set that results

from rotating the frame represented Byabout the coordinate axis, whit@}@;3 is the set
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of frames when the shortest rotation is taken from the referdrame to the directions
described byP andQ®.

8.5 Coordinate Axis Rotation

There are several ways of representing the proximity of tmonks (Yuan, 1988; Wen
and Kreutz-Delgado, 1991). Here, the proximity of two framell be described by the
rotation required to take one frame into the other by thetsesbrotation.

Definition 8.2 (Quaternion Space Proximity)Given two orientations represented by the
two quaternions” and@. Let theerror quaternionbe denoted

E =P xQ. (8.20)
Then the scalar part df, eg, describes the proximity of the two frames.

Definition 8.3 (Minimal Rotation) The larger (closer to%) the error quaternion scalar
parteq, the closer are the two orientatioftsand@.

An uncountable number of devices have only one degree diantd freedom, rang-
ing from human elbows and revolute robotic joints to satliwith only one operating
actuator. The control of a one-actuator satellite is imgrurivhenever actuator failure
occurs. Two questions arise:

1. How close to the desired orientation can one get with jostaegree of freedom.
2. What is the reachable orientation closest to the desiiedtation.

Assume that’? represents the set of orientations when the identity fraametated
about thez-axis. Then the problem is to find th& that that is closest tQ.

Proposition 8.3 (Optimal Rotation) Consider an orientatior) = [qo Q1 Qo Q3]T.

The orientation described by the quaternifn = [po 0 0 pg]T that is closest ta@)
(by definition 8.2 and 8.3) is given by

+
Po = % (8.21)
qy + a3
+
sq3 (8.22)

P33 = —F/——=
Vs + a3

where the twat, have the same sign.

Proof. E = P* x () can be written

€o| _ | Po P3| |4 (8.23)
€3 —P3 Po] |43
“Note that an equally good description of proximity is givenemhag approaches-1. As cos(%) is positive
for ¢ in the chosen intervdl—, ), the positive value o is chosen.

204



8.5. COORDINATE AXIS ROTATION

{61} _ [ Po Ps} {qﬂ (8.24)
€2 —P3 Po| |92

By definitions 8.2 and 8.3, the quaterniéh that is closest t@) is found by the error
quaternion withe, closest to 1.

€0 = poqo + P3q3 (8.25)
= qo COS(%) +q3 sin(%)7 (8.26)
so that d " "
0 _ G Uy, B Y
w2 Sln(2)+ 5 005(2). (8.27)
Let 95 = 0. Then
Y a3
tan(=) = =—. 8.28
=2 (8.28)
Then by usingirctan(z) = arcsin (ﬁ) (Bronshtein et al., 2003)} is written as
= 2arctan(q—3) (8.29)
do
a4
= 2arcsin | —2— (8.30)
432
1+ (2)
. a3
= 2 arcsin —— | - (8.31)
95 143

From the definition of the quaternion
1 = 2arcsin(ps). (8.32)

By comparing equations (8.31) and (8.32), equation (82@iven. Similarly byarctan(z) =
arccos (ﬁ) sgn(z)

=2 arctan(@) (8.33)
q0
= 2arccos 1 Sgl’(q—?’) (8.34)
Tr(ER)
q0 q3
= 2arccos | ——— | sgn(—). (8.35)
(x/q§+q§> r(QO>

Note that the sign af = 2 arccos(pp)sgnv) is given by equation (8.32). Hence, equation
(8.21) is found. For to be in the interval—m, 7], the sign+, is chosen positive, so that
e is positive. Similarly wherP rotates about the- andy-axis. O
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The largest rotation is given whep is close to zero.

€0 = Poqo + P3qs3 (8.36)
=qo cos(%) + g3 sin(%) =0. (8.37)
tan(%) - f;LZ. (8.38)

Similar to the proof of proposition 8.3, the orientatiéh furthest away fronm() is given
by

+5
po= (8.39)
Va5 a3
£tdo (8.40)

Py = —e
V@ + a3

where thet,; and+,; have opposite signs.

8.6 Quaternion Volume Desired Attitude

In the following, a satellite is used to illustrate the reésydresented above and how they
apply to the control of rigid bodies. Two basic problems atdrassed in this paper.

1. Fuel consumption is critical in the control of satelliteés methodology on how to
represent the desired attitude by a quaternion volume asaa toeesave energy is
proposed.

2. Failure in one or more of the satellite actuators greaityglicates the control and
can result in a desired attitude that is out of reach. A mettrodiow to take the
satellite as close as possible to the desired attitude ustrone actuator is proposed.

A satellite with three actuators is considered. Each actugdplies a torque about one
of the coordinate axes of the satellite body frame.

The body frame and desired attitude are defined with respahetNorth-East-Down
coordinate system (NED-frame). Theaxis of the body frame points in the speed direc-
tion and the operating device (camera, telescope, tradgpoatc) is aligned along the
body framez-axis.

8.6.1 Desired Attitude Direction

First assume that the satellite attitude must be aligneld that thez-axis is always orthog-
onal to the earth’s surface, pointing towards the earths ghies the satellite one degree
of freedom about the-axis. An arbitrary rotationy, about thez-axis can be represented
by the quaternion volume

Q%ee = [cos(%) 0 0 sin(%)f, for —m <y <. (8.41)

Hence, the quaternion volume is given with respect to thetijeframe. Further, assume
the desired quaternion volume instead is to be rotate@by- [dy di d dg}T with
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respect to the identity frame. The quaternion volume thatidlees all attitudes where the
z-axis points in the same direction as thaxis of Q4 is given byQ; = Q;‘?Tee *x Qg SO
that

I
QU
)
2]
B

dg cos
dq cos
do cos
d3 cos

~—

+d, sin for —m <y <. (8.42)

+ dg sin

QO
L®
I
[NISENTESINTISINTESS
S— N N N
|
=9
[V
w, o,
=
—~—~ —~
ool

~— — —

Exampler. If the desired orientation is set so that thaxis is always orthogonal to they-
plane, pointing outwards into space, by a rotation abougtaeis,Q,; = [0 0 1 O]T,

equation (8.42) simplifies to

QY =10 —sin(%) cos(¥) O]T, for —m <y <. (8.43)

It can be shown that this quaternion volume representstatlides with az-axis in the
opposite direction of the NED-frameaxis.

=QF *v, % (QF)* (8.44)
0 0

_ —sm(g) . 0 bln(

B cos(g’) 0 — cos( %
L0 1
fcos(%)sm(% ) + cos( % ) sin( %

. 0

o 0
L —cos?(¥£) —sin?(%)
[0

= 8 , for —m <Y< (8.45)
-1

8.6.2 Desired Attitude Orientation

The attitude can be represented as a set of frames. Thisrsbeceomposed by a rota-
tion sequence of quaternion volumes. Two rotation sequesieediscussed, the ZYZYZ-
sequence, as in Hanson (2006) and Alpern et al. (1993), adYHY X-sequence.

The ZYZYZ-sequence

The ZYZYZ-sequence allows the desired attitude to be defawed set of vectors that
span out a cone about the refereneaxis and all orientations about these vectors. Let

Qs(, 8) = Q(B,y)+Q(a, ) whereQ(a, z) = [cos () 0 0 sin(%)]" andQ(8,y) =
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[cos(g) 0 sin(g) O]Tsothat

cos(%)cos(g)
_ |sin(3)sin(5)
Qs(a, B) 207 0% (8.46)
COS(2)Sln(g)
sin (§) cos (5)

The quaternion volume can be visualised intye-sphere (see figure 8.1) by the three
last elements of

et
i = [E ) o
sin(3) cos(B)

« represents the allowed orientations about 4kexis of the first rotation whiles is the
allowed orientation about the neyaxis. If « has no restrictions; is the offset angle
that defines a cone with theaxis at the centrey restricts the orientation about theaxis
itself. A cone sector that allows a deviatidry,, ., in the sector defined by the restrictions
ona in thexy-plane is defined by

cos(%) cos(§ + 3)
an(BYain(e _ 2
Q% =Q%«Q% = b?n(g)bln(g g) (8.48)
sin(5)cos(§ — 3)
cos(g) sin(§ + 3)
and the restrictions
Amin S o S Amazx (849)
0 S 5 S bmaa: (850)
Cmin S Y S Cmaz (851)

Example8. Assume a satellite where theaxis is to point outwards into space. Further
assume that a small errar,,,.., in the orientation is allowed and only the attitude direc-
tions are restricted. The set of frames describing the&adds is given by (8.48) and the
restrictions

—rm<a<mw (8.52)
T < B <7+ bnas (8.53)
—r<y<T7 (8.54)

It can be showed that this is the same as substituting
B+ w4  anda + —a into equation (8.48) so that

QY =Q¥ x Q% = (8.55)
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and keeping the restrictions (8.49)-(8.51). Note that #qng8.55) can also be obtained
by rotating the quaternion volume of the previous example bgdians about thg-axis,
hence by equation (8.19) with = [0 0 1 O]T andQ® = [0 @1 ¢ Q3]T asin
(8.48)sothat)y = [-q2 a3 qo —ql]T, which is the same as equation (8.55).

The XYZYX-sequence

The XYZYX-sequence defines a pyramid of allowed orientatianere the allowed ori-
entations about the-axis and the (newj)-axis are restricted. This is a good estimation
of restricting the orientation about the globally definedandy-axes whenever the angles
are kept smallQ;(«a, 3) is then given by

cos(5) cos(g)
_ | sin(§)cos(5)
Qs(a, B) cos(2) Sin(é) , (8.56)
—sin(§) sin(g)
and visualised by
cos(3)
® - sin () sin (3)
Ve B = | _ sin () sin () cos (B) | (8.57)
sin () cos (c) cos (5)
The corresponding quaternion volume is again given by
QF =QF *Q? (8.58)
and the restrictions
Amin S « S Amazx (859)
bmin S 5 S bmax (860)
Cmin S Y S Cmax (861)

Example9. Assume a satellite where the attitude is to be restrictedaiymnto example

8, but instead of allowing some error in the orientation, @ardation error about the-
andy-axes are restricted thha and+b. Then the set of frames describing these attitudes
is given by (8.58) and the restrictions

T—a<a<m+a (8.62)
—b<B<b (8.63)
—r<~v<m (8.64)
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8.7 Control

Two ways to exploit the quaternion volume representatiaetiuce fuel consumption are
presented.

1. Let the desired attitude (one frame only) take part in arobmoop. When the
attitude is inside the attitude specifications given by thatgrnion volume, some
action is taken to save energy. This may be to switch to anaibwtroller which
requires less energy or to switch to another desired atitnside the quaternion
volume, closer or equal to the current attitude. Note alst ththe quaternion
volume defines a set of orientations close to some referametation, a linearised
model of the satellite may be used.

2. Find the frame within the set of frames restricted by thategnion volume that
corresponds to the shortest rotation from the current taiem and set this as the
desired attitude.

Two problems arise.
1. Atest to verify if a frame is inside the quaternion voluraeeeded.

2. Find the orientation inside the quaternion volume thsiilts in the shortest rotation
from the current orientation.

8.7.1 Quaternion Volume Test

Consider a quaternion volume defined by the ZYZYZ-sequenkdest to verify if a
query quaternio®) ., = [qo @ g Q3]T is an element of the quaternion volume is
presented.

A query quaternion can be represented in terme&,08 and~. The transformation
between the quaternion representation and thg,{)-representation can be performed
in many ways, by geometric analysis, by the visualising eumaon or through a quater-
nion/orientation map. The first method is often the easiedtraost intuitive method and
works well when only the direction is concerned. When thedtikntation is to be deter-
mined, this approach is not suitable. In the following, isi®wn how this method can be
combined with the visualising quaternion to find the ori¢inta

By noting thato and 5 can be seen from the direction of thexis only (not from the

entire frame), they can be found from the vector= [x Y z]T of the rotation of the

vector along the-axis, . = [0 0 1}T by z = Qgry * v. x Q;,,. Then, by standard
geometrical relationa and are found.

o= arctanz(g) , (8.65)
X
B = arccos(z), (8.66)
wherez, y andz are the elements &f given by

2q0q2 + 2q193
24293 — 290q1 | - (8.67)
B—G-B+a

I\
Il
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As already stated, the rotation about thexis cannot be seen from the vector rotation
of the z-axis, but is found from) by v = 2arccos(vg). The sign ofy is lost in the
transformation but can be found by, for example the sign efftlurth element op.

Given a query quaternio@,,,. Thena, 5 and~ from the ZYZYZ-
sequence are found by
o = arctan2 (M) (8.68)
qog2 + 4193
B = arccos(qs — ¢} — q5 + q3), (8.69)
~ = 2arccos (vg) Sgnvy). (8.70)

It is now straight forward to verify if the quaternion is idsithe quaternion volume.

The quaternion volume is not always of such a structure thedn be analysed ge-
ometrically. Then the analytic expression of the quaterniolume can be used. For
comparison, this approach is also shown for the ZYZYZ-saqae

The quaternion volume is given by equation (8.48) and itsioti®ns.

cos(ﬁ)cos(g‘ +3)] [ao] (D)

3
sin(2)sin(s — 3) | || (D)
sm(é)cos(; %) ¢ | (ITD) (8.71)
cos(g)sm( +3)] e (V)
By substituting (l1) into (1), (1) simplifies to
. B i
5111(5) 1-— Sil’l21(g) =qo (8.72)

so thatg is found by

B = 2arcsin /¢ + ¢3. (8.73)

B is positive by definitionc« and+y are found by dividing (1) by (111) and (1V) by (1):

7o« Q1
A 74
tan( 5 2) 0 (8.74)
7@ a3
— g
tan(2 + 2) “ (8.75)
Further let
7o« Q1
—— == = 7
55 arc‘can(q2 ), (8.76)
T, @ as
— -+ — = arctan(—). 8.77
142 &) 8.77)
so thatw and+y are given by
o= arctan(q—:‘) - arctan(q—l), (8.78)
do a2
43 Q1
~ = arctan(—) + arctan(—). (8.79)
do a2
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Hence, andg can by found by geometrical interpretation whiles and-~ are found
from the analytical expression of the quaternion volumehénfollowing, it is shown that
these two approaches give the same result. From equat@®)(8.is simplified by

B = arccos(q§ — ¢f — ¢5 + ¢3) (8.80)
= arccos(2(qa +¢3) — 1) (8.81)

and the trigonometric relatioharccos(x) = arccos(2x? — 1) (Bronshtein et al., 2003) so

that
B = 2arccos \/ g2 + ¢3. (8.82)

By arccos(z) = arcsin(\/l — z2) this is equal to equation (8.73). Byctan(x) +
) equation (8.78) can be written as

arctan(y) = arctan2

a = arctan( q— arctan(Q1) (8.83)
0 g2
= arctan2 ( q1q3 ) (8.84)
%qg
= arctan2 <q2q3—qoq1> . (8.85)
Goq2 + G193

~ can be written in the same way so that, alternatively, a cetaglescription of the query
guaternion can be given by

Given a query quaternio@,.,. Thenc, 8 and~ from the ZYZYZ-
sequence are found by
«a = arctan2 (qzq:>,—(]()611) , (8.86)
qoq2 + 4143
B = 2arccos\/q2 + 43, (8.87)
~ = arctan2 <q2q3+qoql> . (8.88)
q092 — 9193

8.7.2 Transformed Quaternion Volumes

The easiest way to verify if a query quaternion is inside aeuron volume transformed
by equation (8.19) is to transform the query quaternion leyoiposite transformatiot,
so that both the quaternion volume and the query quaterm@®prasented in the identity
frame. Hence, the two problems below are identical.

Qury EP*Q% 7 (8.89)
P* % Qury €Q% 7 (8.90)
This operation is computationally demanding. As equat&tq) gives an analytical ex-

pression of the transformed quaternion volume, the orilemtahould be found by a set of
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parameters similar to the ones found in equations (8.8@B{8 This may be done when
the quaternion volume is on a simple form, for example by #gng8.55). Then the
query quaternion may be tested against the restriction8.49)-(8.51) directly. By fol-
lowing the mathematics of equations (8.71)-(8.88),5 and~ are found with respect to

the coordinate systemdt = [0 0 1 O]T by

ap = arctan? (M) , (8.91)

qoq2 + 9193
Bp = 2arcsin\/ ¢ + ¢3, (8.92)
~vp = arctan2 (W) . (8.93)

qo92 — 4193

Hence, as expected

Bp =B —m, (8.94)
ap = —aq, (8.95)
Y = 1. (8.96)

8.7.3 Clamping

If any of the restrictions are violated, the quaternion rhilgh clamped into the set of
frames restricted by the quaternion volume in many ways sBiaii2006) suggests finding
the nearest point in the quaternion metric. Another intaiti tempting approach is to set
the exceeded value to the maximum allowed value. Then amu@tethat is inside the
guaternion volume may be constructed by the definition iraiqn (8.48) directly. If the
quaternion volume is on a simple form, the orientation caol@aped into the quaternion
volume by the shortest rotation in order to save energy.

8.7.4 Shortest Rotation

How to find the orientation in the quaternion volume that lssim the shortest rotation
from the current attitude depends on the quaternion volu@ae simple solution oc-
curs when the quaternion volume represents a freedom abeudxis. Then the theory
from section 8.5 can be applied directly. L@tbe the current attitude anBY_ =

free

[cos(%) 00 sin(%)]T represent the set of allowed attitudes, both defined in the

NED-frame. Then the attitude within the quaternion volutmat is closest to the current
attitude is given by

+,
po= (8.97)
V4 + a3
+.0-
243 (8.98)

Py = —F———
V@ + 43

and the rotation required to takginto P (the error) is given by
1) = 2arccos(eg), (8.99)

whereeg = poqo + p3gs-
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8.7.5 Closest Orientation

Closely related to the problem of the previous subsectidhésproblem of finding the
optimal rotation when actuator failure occurs. When only agtiator is functional, the
satellite can only rotate about one of the axes of the bodydralet the current body
orientation be described in the NED-frame By The desired orientatior), is also
given in the NED-frame. Assume that the freedom, repregdmyea quaternion volume,
Q?Tee, is given with respect to the body frame, so that

QF =T *QF,... (8.100)

represent all reachable orientations. Then the probleaiffiad the quaternio) € Qf?m

that takes the satellite as close to the desired orientatsopossible. This is given by
proposition 8.3 wherd is given by

E=Q;xQ% (8.101)
= Qi *T*QF,.. (8.102)

LetT; =Q5«T =] —q —q2 —q3|. Then, as only the size (not the direction) of
the rotation is considered, the closest possible oriemtasi given by equations (8.21) and
(8.22) and the rotation needed to take the satellite fronclttsest reachable orientation to
the desired orientation (the error) is given by equatiofqg.

8.8 Conclusions

The unit quaternion group is used to find a general framewarkepresenting sets of ori-
entations. Itis also shown how this set can be representbd&gpect to another reference
frame or how to rotate this set when the reference frame isdastant. Several examples
of sets of orientations are presented and it is shown hovetbets can be represented by
a quaternion and some easy to visualise restrictions. Aligaie used to illustrate how
to save energy by defining the desired attitude as a set aftatiens. A method to verify
whether a quaternion is inside a quaternion volume is alssegmited. It is also shown how
to find the rotation that requires less energy in order to takedesired attitude into an
element of the quaternion volume. Some work is done on finttiagrientation closest to
the desired orientation when the desired orientation ibrgach.
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Chapter 9

On the Equivalence of
Orientation Error and Positive
Definiteness of Matrices

9.1 Abstract

In this paper we show how a continuous set of orientations cabe represented as a
positive definiteness test on a given matrix. When this contimous set is restricted by
the maximum allowed orientation error in some or all directions it is shown that the
requirement for an orientation to satisfy these restrictions is equivalent to positive
definiteness for a certain matrix. The problem of finding the gtimal orientation that
satisfies these restrictions is hence transformed into an ¢gimisation problem on the
Riemannian manifold of linearly constrained symmetric postive definite matrices.
Thus, the problem of finding the optimal orientation can be séved as a standard op-
timisation problem with the constraints written in the form of linear matrix inequal-
ities or barrier functions. Linear matrix inequalities hav e been extensively studied in
the optimisation communities and good and efficient algorttms are available.

9.2 Introduction

In a wide range of applications the orientation of a rigidyddes not need to be restricted
to one frame but can be given as a continuous set of framesatlihele of a satellite can
for example be set so that the transmitter or receiver paiopsoximately in the direction
of the earth. Another example is the end effector of a robratoipulator where an orien-
tation error is allowed in the end-effector orientation.Potkonjak et al. (2000) the idea
of introducing the paint quality as a constraint and minarésme additional cost function
was presented. This opens for the possibility of allowingaentation error in the orien-
tation of the end effector in order to improve the speed ofjdhe reduce torques and so
on. It was shown in From and Gravdahl (2007a) that by allovéingrientation error in
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the end effector configuration of a robotic manipulator,g2heed and the quality of the job
was improved. The orientation error was chosen intuitivehd the approach presented
was not suitable for implementation in an optimisation althon. The pointing task is
another example where a continuous set of orientationsowed in the specifications of
the end-effector orientation.

In Buss et al. (1996) the problem of friction force limit ctragnts is transformed into
a problem of testing for positive definiteness of a certaitrimaln this paper the same
ideas are used to convert the problem of orientation ernasteaints into a test of positive
definiteness of a matrix. For different types of orientatorors, a suitable matrix is found
and it is shown that positive definiteness of this matrix igiegjent to an orientation that
satisfies the given restrictions on the orientation.

By transforming the nonlinear orientation constraint® ipositive definiteness con-
straints imposed on certain symmetric matrices the proldéfinding the optimal ori-
entation is transformed into an optimisation problem ongtm®oth manifold of linearly
constrained positive definite matrices. For the specia capositive definite symmetric
matrices, the problem can be transformed into solving atimeatrix inequality (LMI).
Convex optimisation problems involving LMIs have been asteely studied in literature,
and good solutions, such as interior point algorithms, amnn.

For many sets of orientations a symmetric matrix can be foumg easily. For other
sets with a more complicated structure, a symmetric matay be hard to find. Itis a clear
advantage to choose the sets for which a symmetric matribedound because LMIs of
symmetric matrices are in general solved very efficienthe difference between the sets
for which a symmetric matrix can and cannot be found is shdwough the examples.

The applications range from satellites and aircraft to tissand rigid bodies in gen-
eral. A satellite acted upon by an external force can beew#is an LMI with an additional
linear constraint. The cost function will typically tenditdinity at the border of positive
definiteness, which is equivalent to orientation error t@msts. In robotics, the freedom
represented by the orientation can be used to improve tHerpsmnce as in From and
Gravdahl (2007a). The advantage of the approach preseatedsithat the problem can
be formulated as an optimisation problem on a smooth mahifdience, an optimal so-
lution can be found, as opposed to the intuitively found gewim solution presented in
From and Gravdahl (2007a).

The problems considered are formulatednaaxdetproblems subject to LMI con-
straints. This is convenient when it comes to introducingess constraints on the orien-
tation. A simple example when the directions of thaxis andz-axis of the end-effector
frame are specified independently is shown.

9.3 Representing Rotations

Most of the fundamental principles of rotation were presdrnn two papers by Leonhard
Euler in 1775 (Alpern et al., 1993). The first paper shows dmgtrotation can be accom-
plished by a sequence of three rotations about the cooediads. In the second paper,
Euler states that any orientation can be represented byatombf some angle about
some fixed axig:. He also shows that the composition of two rotations isfisebtation.
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9.3.1 The Unit Quaternion

The unit quaternion representation closely relates todbkalts presented in Euler’s sec-
ond paper. A good introduction to quaternions is found ingeus (2002). Any positive
rotation¢ about a fixed unit vectar can be represented by the four-tuple

Q- m | (9.1)

whereg, € R is known as the scalar part agds R? as the vector parQ(¢, n) is written
in terms of¢ andn by

do = cos (%), g = sin (%)n (9.2)
Q is a quaternion of unit length and denoteaidt quaternion Henceforth, all quaternions

have unit length if not other is stated. L@ = [po pT]T. The quaternion product of a
rotation@ followed by a rotation) p is written in vector algebra notations as

Pogo —P-q
CrQ@= g+ ap+pxaq ©3)
The cross product implies that quaternion multiplicatiemét commutative, as expected.

LetQp = [po p1 P2 p3]T andQ =[q @ ¢ Q3]T. Then the quaternion prod-
uct is written as
Poqo — P14¢1 — P292 — P3qs3
Poq1 + P1qo + P2q3 — P3q2
x(Q = . 9.4
@r=Q Poq2 + P2qo + P3q1 — P14q3 (9-4)
Pog3 + P3qo + P192 — P2q1

The quaternion product of two unit quaternions is a unit guaon. By the definition of
the quaternion the quaternio@sand—( produce the same rotation. This is referred to as

the dual covering. The quaternion identity is given®@y=[1 0 0 O]T.

A pure quaternion is a quaternion with zero scalar part. Aestor,s = [z y z]T
can be represented by a pure quaternion

v = [9] . (9.5)

The conjugate of a quaternion is defined as
* T
Q =[w -0 - —gl . (9.6)

9.3.2 Quaternions and Rotations

Let a vector,u,, be represented by the pure quaternign This vector can be rotateg
radians around the axis by

vy = Q *x vy x Q. (9.7)
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Every vectors € R3 can be represented by a pure quaternion, herisenot necessarily

a unit quaternion. The quaterniaf(¢, n), however, is unitary. This represents the angle
and the axis that the vectdy is to be rotated about. The resulting vec®y, is then of the
same length a8, if and only if Q) is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotatiamfrone orientation to another.
Let @ p and@ be two orientations. Then, by taking

E=QpxQ, (9.8)

E will rotate Q p into @ by the shortest rotation.

Note that Equation (9.8) rotates one frame into anotherdrady aframeit is meant
a coordinate system iR* using Cartesian coordinates. One frame with respect thanot
frame represents three degrees of freedom and is refer@siorgentation The inertial
frame is denotedf; and the frame that correspond to the inertial frame by aioot#)
from the inertial frame is denotekly. Equation (9.7) rotates one vector into another vector
and has two degrees of freedom (e.g. longitude and latifédejactzin and Gupka, 1999).
A unit vector with respect to a unit reference vector is neféito agdirection Henceforth,
the main concern is with the direction of the central axisichlis assumed to be the body
framez-axis of the end effector.

9.3.3 Rotation Sequences

In this paper, the orientation is represented by a rotagguence of three rotations about
the unitary axes. The ZYZ-sequence is given by first a ratatiabout thez-axis followed
by a rotations about the newj-axis. This describes the direction of theaxis. The last
degree of freedom is given by the rotatigpmbout thez-axis. When the sequence is given,

a one-to-onkmapping betweery(, 3, ) and the quaternio® = [q0 1 ¢2 Q3]T can
be found wheneves + 0.

Given a quaterniod). Thena, 5 and~ from the ZYZ-sequence are found by (From
and Gravdahl, 2007b)

a = arctan2 (qug_qO(h> , (9.9)
qog2 + 4143

B = 2arcsiny/q? + q3, (9.10)

= arctan (2000 ), (9.11)
doq2 — 4193
The following relations are also used in the following:

a= arctan(q—?’) - arctan(q—l), (9.12)

do q2
v = arctan(q—g) + arctan(q—l), (9.13)

do q2

and hence
a+y= Qarctan(q—s). (9.14)
qo0

11f the dual covering of the quaternion is taken into accoarne-to-two mapping can be found.
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The following lemmas will be used in the following to detenmmipositive definiteness
of a matrix.

Lemma 9.1. (Sylvester’s criterion) A matri¥// is positive definite if and only if all of
the leading principal minors are positivel! is positive semi-definite if all the leading
principal minors are non-negative.

Lemma 9.2. A block diagonal matrix

P 0 0
0 P ... 0
P=|. . . . (9.15)
0 0 Py
is symmetric (semi) positive definite if and only if each blBg i =1, ...,k is symmet-

ric (semi) positive definite.

9.4 Orientation Error Constraints as LMIs

9.4.1 Cone

Assume that one would like to restrict theaxis of 7 to point in approximately the
same direction as the-axis of the inertial frameF;. This can be visualised by a cone of
directions and restricted By| < By, where0 < 8, < 7. The orientation errof can
be found only fromy; andg, from the quaternio) by (9.10)

B = 2arcsin \/q¢? + 3. (9.16)

Due to this observation, a test to verify if theaxis of ¢ does not deviate from theaxis
of Fr by more thans;;,,, is given in the following.

Proposition 9.1. Given a restriction in the orientation erroff;,,,. Then thez-axis of F¢

rotated byQ = [qo Q Qe qg]T from the inertial frameF; lies within the restrictions
given byg;;,, if and only if

n 0 @
P=10 n gq| =0 (9.17)
q q2 7

wheren = sin Bgm , 0 < Biim < mand>= means positive semi-definiteness of the symmet-
ric matrix P.

Proof. Asn > 0 andn? > 0, from Lemma 9.1 it only remains to test fdet(P). The
determinant ofP is given by

det(P) =n(n* — ¢ — ¢3). (9.18)
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Note that0 < 8y, < ™ = n > 0 so thatdet(P) > 0 can be written as

"’ —qi—q; >0
n”?>qi+q3

n=z \/tm
sin ﬁl;m > m (919)

As0 < /¢ + ¢35 <1= 0 <arcsin\/¢} + ¢3, the following holds

0 < 2arcsin\/¢? + ¢3 < Blim.- (9.20)

Then Equation (9.16) concludes the proof as

Similarly for strictly positive definiteness. O

Note that the restrictions in Proposition 9.1 are on thectiives of thez-axis only and
that rotations about the-axis itself are not restricted (the pointing task). NotwoahatP
is a symmetric matrix. This is an important property that i used in the next sections.

9.4.2 Restriction on the Orientation about the Central Axis

In the following a condition on the orientation error abooe ttentral axis is given. As-
sume that the:-axis points in the direction of the velocity and that it issited that the
body framez-axis points in approximately the direction of theaxis of the reference
orientation. Again consider the ZYZ-sequence. In the caserno orientation error is
allowed for the direction of the central axis, this is givemially by |v| < ¢pa., Where
cmaz 1S the maximum allowed orientation error of theaxis. For the ZYZ-sequence the
direction of thex-axis is given by bothy, 8 and~. Assume that the orientation error of
the direction of thez-axis is restricted as in the previous section. When thissgicted
to be relatively small, the error in the direction of thexis can be approximated by the
error in the orientation about the central axis. This ersawiitten as

€e=a+n. (9.22)
This leads to the following result.

Proposition 9.2. Assume that the orientation error of the direction of thaxis is small.
Given a restriction in the orientation errag;;,,, about the central axis, the-axis of 7

rotated byQ = [qo Qo Q3]T from the inertial frameF; lies within the restrictions

given bye,;,,, if and only if
a3

p[; Q]to (9.23)

wherex = tan <=,
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Proof. The determinant of is given by

2
det(P) = K% — Z;; (9.24)
0

As 0 < tan = for 0 < €, < m, det(P) > 0 is written as

2
2. B

~q@
q3
qo

K

K >

4

q0

€lim > |2 arctan(q—g)| (9.25)
do

€lim
tan — >
2

Then Equation (9.14) concludes that
€lim > |€] (9.26)

wheree is given by Equation (9.14).

9.4.3 Direction of the x-axis

Alternatively, one might want to restrict the direction bét:-axis directly. Note that the
matrix given in the previous section is not affine and caneat$ed directly as an LMl in
amaxdetproblem. Hence, another matrix that is both symmetric dfiidesis proposed in
the following.

Assume that the direction of theaxis is to be restricted. Similarly to Equation (9.17),
the requirement that the body frameaxis is to point in the direction of the inertial frame
x-axis is given by

§ 0 q
P2 = O f qs t 0 (927)
a2 g3 &

where¢ = sin 2.

Also note that the results presented are not restrictecktgltbal reference framg;.
Assume that the direction of the body frameaxis is to point in an arbitrary direction
given by the direction of the-axis of Qq = [dy di d dg]T. In order to apply the
restriction given by (9.27), but to the direction of theaxis of 7, and not that of7;,
Q is transformed back into the inertial frame and the test ifopmed on the transformed
guaternion

*
*
—daqo + dogqz2 — d3q1 + d1gs3
—d3qo + dogz — d1g2 + d2qa
Note that wherQ); is substituted into (9.27)> is still symmetric and affine i6).

Qe=0Q3+Q= (9.28)
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9.4.4 Pyramid

Assume instead that one would like to restrict the allowedtion differently around dif-
ferent axes. For example, if the set of allowed orientatiengiven by restrictions on
the rotation about the-axis followed by a rotation about theaxis, this will result in a
pyramid-shaped set of allowed directions. The followingevations are important in the
following.

Rotating the vectow; = [0 0 l]T by a about thez-axis of the inertial frame
followed by a rotations about they-axis, also of the inertial frame, is given by

cos asin 3
vy =| —sina |. (9.29)
cosacos 3

For a rotation about ther-axis of the inertial frame followed by a rotatighabout the
y-axis of the rotated coordinate system is given by

sin 3
vp = |—sinacosB| . (9.30)
cos asin 8

This can also be written as a quatern@nLet the vectow; = [0 0 1]T, represent the
z-axis, be rotated by) into vy = Q * v1 * Q*. Thenw, is written as

0
2(qo092 + q193)
9.31
2(q2q3 — qo0q1) (9:31)
% — ¢ — 43 + a3
This is a point on the unit sphere.

Proposition 9.3. Given a restrictiony;,,, in the orientation error about the-axis of the
inertial frame andg;;,,, in the orientation error about thg-axis of the rotated coordinate
frame. Then the-axis of frameF, rotated by the quaternio® = [q0 ¢ ¢ qg]T
with respect to the inertial framé&7 lies within the restrictions given b¥;;,, if and only if

n 0 @
Pr=10 n gl >0 (9.32)
qg3 42 N

wheren = \/% and > means positive semi-definiteness for the non-symmetric ma-
trix Pi.

Proof. The determinant oP; is given by
det(P1) = n(n* = qog2 — q143)- (9.33)
Assumedet(P;) > 0

n? — qog2 — q1q3 > 0
n? > qog + q143 (9.34)
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As Bim > 0, comparing Equations (9.30) and (9.31) gives

sin Brim > 2|qoq2 + ¢1q3|- (9.35)

Let
B’ = arcsin (2(qog2 + 9143)), (9.36)

and the initial requirement is obtained by
~Brim < B < Biim (9.37)
wheref3’ is the angle between the nemaxis and theyz- plane. O

Proposition 9.4. Given a restrictionay;,, in the orientation error about the-axis and
Biim N the orientation error about thg-axis, both in the inertial frame. Then theaxis of
frame F, rotated by the quaternioty = [qo q1 ¢ Q3]T with respect to the inertial
frame 77 lies within the restrictions given by, if and only if

§ @@ 0
Py=|gqp & qq| >0 (9.38)
26 qq €

where¢ = #Lim

Proof. The determinant of;, is given by

det(P2) = £(€% — (qoq1)* — (q293)* + 290919243).- (9.39)
Assumedet(P;) > 0
€ — (q0q1)* — (9293)* + 29091293 > 0
€2 > (qoq1)? + (9243)* — 200914203

€ > (qoq1 — 293)*
€] > |g0q1 — q243] (9.40)

As oy > 0, comparing Equations (9.31) and (9.29) gives

sin agim > 2|qoq1 — q24s3)- (9.41)

Let
o = arcsin (2(qoq1 — ¢293)), (9.42)

and the initial requirement is obtained by

—im < @ < Qgi. (9.43)
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Note that in Proposition 9.3 the second rotation is with eesjo the rotated coordinate
frame and restricts only the rotations about ghaxis while in Proposition 9.4 the second
rotation is with respect to the rotated coordinate framerastticts the allowed rotations
about thex-axis only. This simplifies the computations substantiafpr smalla and
B this is a good approximation. The next step is to put the tvetritions together to
one block-diagonal matrix. This shows how two restrictionghe orientation can be put
together and represented as one constraint.

Note that the matrices given in Propositions 9.3 and 9.4 atesymmetric and that
P, in (9.38) is not affine. Hence, the constraints cannot beessgmted as LMIs. They
can, however, be represented as barrier functions giveheasdgative logarithm of the
determinant. This is discussed shortly in Section 9.6.

Examplel0. Given a restrictiony;;,, in the orientation error about the-axis andg;;,,
in the orientation error about the-axis. Then thez-axis of frameF, rotated by the

guaternion = [qo Q1 Qo q;g]T with respect to the inertial fram#y, lies within the
restrictions given byy;;,,, andg;;,,, if and only if

[P0
P = {0 PQ] >0 (9.44)

whereP; and P, are given as in Equations (9.32) and (9.38).

Alternatively, if one would like to restrict the orientati@about thez-axis followed by
the orientation about the neyvaxis, this can be achieved by substituting

NN 045

where = arcsin 2(qog2 + ¢1¢3) for n into Equation (9.32) which will give the exact
solution.

9.5 Applications

In this section it is shown how the results from the previcetion can be used as LMIs
in an optimisation problem.

9.5.1 Analytic Centering

The problem
minimise  ¢(z) = logdet G(x) !
subjectto G(z) >0 (9.46)
where
G(l‘) =Go+21G1 +22G2+ -+ + menu (947)

is known as the analytic centering problem. If the feasileleX = {z|G(z) - 0} is
non-empty and bounded, then the matri€gsi = 1, ..., m are linearly independent and
the objective function is strictly convex o (Vandenberghe et al., 1996). In this case, it
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can be guaranteed that the optimality condit¥n(z*) = 0, for an optimal solution:*,
can be reached.
In our case, for the specification of theaxis:

minimise  ¢(z) = log det P(x) !

subjectto P(x) > 0 (9.48)
whereP is given by Equation (9.17) and can be written as
P(JZ):P0—|—.131P1—|—I2P2+.%‘3P3—|—.I‘4P4, (949)
where T1=4qo, T2=4(q1, T3=(q2, T4 =3, (9.50)
n 0 0 0 0 0
Po=1{0 n 0, Pr=P,=1{0 0 0f,
0 0 n 0 00
0 0 1 0 0 0
P,=10 0 Of, Ps=1(0 0 1
1 00 010
qo andgs do not affect the solution and can be eliminated from the &ops
The optimal solution to this problem is given by the set
Qopt ={Q | 1 = ¢2 =0} (9.51)
or similarly by all quaternions on the form
Qopt = [cos 0 0 sin2]". (9.52)

The solution to this problem is trivially given by all the eritations that make the body
framez-axis point in the direction of the inertial frameaxis. We now look into the case
when an additional constraint is added. Two cases are amesig(a) two constraints are
represented by the positive definiteness of two matri¢esnd P, and the determinant of
the block diagonal matri¥> = Blockdiag P, P») is minimised; and (b)?; is minimised
andP; is a constraint.

9.5.2 Blockdiagonal G-matrix

To combine the restrictions of the and z-axes, substitute (9.28) into (9.27), denote the
resulting matrixZ’, and write it on the form of (9.49) so that

F(x) = Fo + 21 F1 + 22 Fy + 2385 + 24 Fy, (9.53)
r1 =4dqo, T2 =4dq1, I3=4(q2, T4 = (3, (9.54)
& 00 0 0 —ds
Frb=1(0 ¢ 0], F) = 0 0 —ds | ,
0 0 ¢ —dy —ds3 0
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0 0 —ds] 0 0 do
F=|0 0 d|, F=]|0 0 —dl,
—dy dy O | dy —di 0

[0 0 di]
F=10 0 d
di dy 0]

The problem can now be formulated as follows:

P(z) 0 )} -

minimise  ¢(x) = log det

. Pz) 0
subject to { 0 F(m)} =0

0 F= (9.55)

for which the solution is the orientation which minimises #rror both of the:-axis and
the z-axis with a “metric” that increases exponentially with gteortest angular distance
from the desired directions of the andz-axes.

9.5.3 LMI Constraint

Alternatively the determinant dP can be minimised under the constraifz) = 0.

minimise  ¢(z) = logdet P(z)~!
subjectto P(z) > 0
F(z) > 0.

Hence, the optimal solution of the direction of thaxis is found and the direction of the
z-axis is within the restrictions. If the-axis is close or far from the desired direction does
not affect the solution.

(9.56)

9.5.4 Normalisation

The optimisation algorithms described optimise freelyr@lequaternions, and it is thus
not guaranteed, nor likely, that the resulting quaterniofi unit length. One simple,
though not very mathematically sound solution is to optériieely over all quaternions
and then normalise the result afterwards. Another optida &ld the constrairt)| = 1
in the optimisation algorithm which guarantees that thedeapace is only the set of
guaternions of unit length. For the restriction given by &ipn (9.17), it is for example
sufficient to add the restriction

G+ <1 (9.57)

9.6 Future Work
The examples shown in this paper are all very basic. They degher, show how the

formulation allows the programmer to include the constsaon the orientation error in
optimisation problems in the form of linear matrix ineqtiak. Constraints in the form of
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LMIs are convenient in the sense that they are easily cordbiriéh other LMIs into one
“big” LMI. This is exploited in for example Han et al. (2000).
Consider the LMI

Blockdiag P, (z), Ps(z), ..., Py(z)) = 0. (9.58)

Let P, (z1) be the constraint on the orientation error. Th&g(x) ... P,(z) may impose
other constraints on the optimisation problem. These maglaged to the orientation, as
in (9.55). The true advantage of representing the conssramLMIs, however, only come
apparent when the constraints on the orientation is cordhiritih other constraints such
as joint torque or the quality of the job performed. This I & future research topics.

In this paper only LMIs have been considered, but the rdg&tris on the orientation
could just as well have been formulated as for example bauriections. Given the re-
strictions in Proposition 9.1, this can be formulated asegdidrier for the cone constraint

¢ = —log(n” — ¢f — q3) (9.59)
which is then included in the barrier subproblem

minimise  F(z) + ¢(z)
=0

subjectto P(x) (9.60)

whereF(x) is the objective function that we want to minimise angk) is some additional
constraint.

9.7 Conclusions

This paper casts constraints on the orientation error inal matrix inequalities. For
many practically important examples, it has been shownttleatontinuous set of orienta-
tions that satisfy a given constraint can be representediogitive definiteness constraint
of a certain matrix where the four real quaternion-quaagiii, ¢, go andgs are the en-
tries. Some simple examples of how to include the LMIs inte rtrexdetproblem are
given. The LMIs can be included in optimisation algorithradihd the optimal orienta-
tion of some devise, such as a satellite or the end effectratbotic manipulator, subject
to some optimisation criteria.
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Chapter 10

A Real-Time Algorithm to
Determine the Optimal Paint
Gun Orientation in Spray Paint
Applications

10.1 Abstract

In this paper we present a method for increasing the speed at kich a standard in-
dustrial manipulator can paint a surface. The approach is ba&ed on the observation
that a small error in the orientation of the end effector doesnot affect the quality of
the paint job. It is far more important to maintain constant v elocity throughout the
trajectory. We consider the freedom in the end-effector oréntation as functional re-
dundancy and represent the restriction on the orientation eror as barrier functions
or linear matrix inequalities. In doing this we cast the problem of finding the optimal
orientation at every time step into a convex optimisation poblem that can be solved
very efficiently and in real time. We show that the approach dbws the end effector to
maintain a higher constant velocity throughout the trajeciory guaranteeing uniform
paint coating and substantially reducing the time needed tgaint the object.

Note to Practitioners—This paper is motivated by the observation that uniform
paint coating cannot be achieved in steep turns. Even if the amipulator possesses
the necessary actuator torques to maintain constant speeaif a straight line tra-
jectory the torques needed to maintain constant velocity dung turn are far higher.
Thus, the operator has to lower the trajectory speed, also ithe straight line segments
where this would normally not be necessary, or accept a thia layer of paint in the
turns. The method proposed in this paper is to implement a stjhtly different plan-
ning algorithm in turns allowing the paint gun to follow the t rajectory with a higher
constant velocity. This will allow the paint gun to follow the trajectory, including
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both straight line segments and turns, with constant veloty and thus achieve uni-
form paint coating. We show how to choose the desired orienten of the paint gun
at every time step and present the explicit expressions folodving and implementing
the algorithms.

The approach can also be used for other applications where iroducing a free-
dom in the end-effector orientation improves performancesuch as welding and high-
pressure water blasting.

Keywords— Spray painting, assembly-line manufacturing, conveinoigation, robotics,
functional redundancy, modelling.

10.2 Introduction

One of the most important benefits of introducing industmahipulators to the assembly
line automotive manufacturing in the 1980s was the remokalldwuman workers from
the spray paint area, relieving them from a toxic workingiemment. It is crucial for the
flow of the automotive assembly line that the spray paintsgdarformed both with high
quality and in an efficient manner. In this paper we addresptbblem of reducing the
time needed to paint a surface without compromising theityuafl the coating. This is
based on the observation that the velocity at which the diedtef follows the path is far
more important to guarantee uniform paint coating than trentation of the end effector.

We assume that the tool centre point trajectory, i.e. thjedtary at the surface that
the paint gun is to follow, is known. Several approaches fudlifig the optimal path in
terms of speed, coverage and paint waste have been pregelitechture. An automatic
trajectory planning system is presented in Suh and |.-K. \I®&91). Both the painting
mechanics and the robot dynamics are used to find the optigjattory with respect to
paint uniformity and cycle time given a CAD model. Ramablaadand Antonio (1997);
Antonio (1994) present a computationally efficient forntigia of the trajectory tracking
problem in spray paint application while Kim and Sarma (9d0®1 the optimal sweeping
paths by minimising the cycle time subject to actuator speits and coating thickness.

Some work has also been done on modelling the paint composith a surface.
Hertling et al. (1996) present a mathematical model of thetpgaating for a tilted gun
and Conner et al. (2005) develop computationally tractabédytic deposition models that
allow us to include the paint model, including the oriertatvith respect to the surface,
when considering the paint coating. Smith et al. (2001)udis¢he problem of minimising
the orientation error when following curved surfaces anlaftet al. (2005) include the
paint model in their framework for optimising cycle time acwhting quality.

In Potkonjak et al. (2000) the idea of introducing the paumlgy as a constraint and
minimise some additional cost function was presented. ®péns for the possibility of
allowing a small error in the orientation of the end effedtoorder to increase the velocity
of the paint gun, reduce torques and so on. It was shown in BrehGravdahl (2007a) that
by allowing an orientation error, the speed and quality efjtb was improved. However,
the optimal orientation error was chosen intuitively ane #pproach presented was not
suitable for implementation in an optimisation algorithm.

In Buss et al. (1996) the problem of friction force limit caomasnts was transformed
into a problem of testing for positive definiteness of a dentaatrix. In From and Gravdahl
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(2008d) the same ideas were used to convert the problemenftation error constraints
into a test of positive definiteness of a matrix. For différgmes of orientation errors,
a suitable matrix was found and it was shown that positivendefiess of this matrix is
equivalent to an orientation satisfying the given restrits.

By transforming the non-linear orientation constraint® ipositive definiteness con-
straints imposed on certain symmetric matrices we transtbe problem of finding the
optimal orientation into an optimisation problem on the sthamanifold of linearly con-
strained positive definite matrices. For the special casposttive definite symmetric
matrices, the constraints can be written on the form of limeatrix inequalities (LMIs).
We also show how to write the constraints as barrier funstiand how to solve these.
Convex optimisation problems involving LMIs or barrier fifions have been extensively
studied in literature, and reliable and efficient solutiaresknown (see Vandenberghe et al.
(1996); Boyd and Vandenberghe (2004); Boyd et al. (1994)).

10.3 Problem Statement

There are two main factors that play an important role iniobig uniform paint coating
in automotive manufacturing. The first is to move the paint guith constant velocity
throughout the trajectory. This is in general an easy tadbliowing straight lines but
can be a challenge in turns where high accelerations ar@eegdhe second factor is the
orientation of the paint gun with respect to the surface cWishould be orthogonal. It can
be shown that the velocity of the paint gun is far more impurtaan the orientation when
it comes to uniform paint coating. A small orientation erfaR0°) in the paint gun does
not affect the quality of the coating to the same extent asgbsin the velocity. Based
on these observations we represent the orientation noteaframe, but as a constrained
continuous set of frames. The problem treated in this paiein formulated as follows:

Given a maximum allowed orientation error of the paint gunl antrajectory on the
surface that the paint gun is to follow with constant velpeibd with a fixed distance from
the paint gun to the trajectory. Then the problem is to finddhentation of the paint
gun at every point on the trajectory that allows it to folldwettrajectory with the highest
possible constant velocity.

We note that in this paper we do not require the orientatidretoptimal. The optimal
solution to this problem, considering both kinematics aymbanics, is extremely complex.
However, we formulate the problem as an optimisation probb@sed on a simple and
intuitive cost function and show that the solution to thislgem substantially improves
performance. In the following we will denote the solutiorthgs optimisation problem the
"optimal orientation" although strictly speaking theregimi exist other orientations that
improve performance even further.

We consider a standard industrial manipulator, in our chseABB IRB-5400 series
which is illustrated in Fig. 10.1. The first three joints aederred to as the main axes,
or the main joints. These are the strongest joints and atsoitles that require the most
energy. While the main axes are mainly used for positioniegpdint gun, the last three
joints, referred to as the wrist joints, determine the deéon of the paint gun. We fix
the inertial reference frame to the base of the manipuldtfer.also attach a frame to the
end effector of the manipulator, in our case the paint gunis ©hattached so that the
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».  Reference
t y frame
Fr z

Figure 10.1: The ABB IRB spray paint robot with the definitions of the reference aotiftames.
Picture courtesy of ABB Robotics.

end-effectorz-axis is aligned with the direction of the paint flow. This sié referred to
as the central axis of the end effector.

To find the optimal orientation we first need to define a set lafnad orientations
from which we can choose the optimal one. This set of orieaniatis defined using the
unit quaternion which allows us to re-write the constrairgig very simple expressions.
Sections 10.4 and 10.5 give a brief background on repreggotientations and continuous
sets of orientations of rigid bodies. We also show how we eawrite restrictions on the
direction of the central axis as a simple constraint on thequaternion. In Section 10.6
we present the theoretical background on how to write caimgs on the orientation in
a convex optimisation setting and in Section 10.7 we protdeequations needed for
implementing the algorithms such that a solution can bedanmeal time.

In Section 10.8 we show how we can increase the speed at wigahanipulator can
paint a given surface without compromising the paint gualithe solution in itself is
very simple. It basically allows us to distribute the wodatl more evenly on the different
joints. In our case we find that for the main joints the actusdogues are very close to
the torque limits while the wrist joints use only a fractiditioe torque available. We thus
choose the orientations in a way that will make the main gombve less, and thus require
less torque. One easy way to do this is to force the positidgheofvrist towards the centre
of the surface reducing the length of its trajectory. Kegpimmind that the main joints are
mainly used for displacement, this will reduce the requitedques of these joints. Section
10.8 also includes several simulations to verify the efficieof the approach presented.
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10.4 Representing Rotations
10.4.1 The Unit Quaternion

The unit quaternion is well suited for representing origates or continuous sets of ori-
entations of rigid bodies. A good introduction to quatensias found in Kuipers (2002).
Any positive rotationp about a fixed unit vectan can be represented by the four-tuple

_ |90
Q= [q} , (10.1)

whereg, € R is known as the scalar part agde R? as the vector part) (¢, n) is written
in terms of¢ andn by

go = cos (g), g =sin (g)n (10.2)
Q is a quaternion of unit length and denotegdt quaternion Henceforth, all quaternions

have unit length if not other is stated. L@ = [po pT]T. The quaternion product of a
rotation@ followed by a rotation) p is written in vector algebra notations as

Poqo — P-4
= . 10.3
@r+@= | g tqptpxgq (10.3)

The cross product implies that quaternion multiplicatiemét commutative, as expected.

LetQp = [po p1 P2 p3]T andQ = [q0 @1 ¢ Q3]T. Then the quaternion prod-
uct is written as
Poqo — P191 — P2g2 — P343
Poq1 + P19o + P2g3 — P3q2
*Q = : 10.4
@p*Q Poq2 + P29o + P3q1 — P1G3 ( )
Pogs + P3qo + P1q2 — P2q1

The quaternion product of two unit quaternions is a unit guaon. From the definition of
the quaternion we see that the quaterni@Qremd—(Q produce the same rotation. This dual
covering allows every rotation to be described twice. Is fhaper all angles are assumed
to be in the interval—, 7] so every orientation corresponds to one specific quaterition
is also assumed that all angles of inverse trigonometrictfons are in this interval with
the correct sign. Fairctan, this is denotedrctan2. The quaternion identity representing

the inertial frame is given bg); = [1 0 0 O}T.

A pure quaternion is a quaternion with zero scalar part. Aestar,v = [a: Y z]T
can be represented by a pure quaternioa [0 ﬁT]T. Finally the conjugate of a quater-
nion is defined a®* = [0 —¢1 —g2 —as] -

10.4.2 \Vector Rotations

Let a vectoro; be represented by the pure quaternign This vector can be rotateg
radians around the axis by
vy = Q *x vy x Q. (10.5)
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Every vectors € R3 can be represented by a pure quaternion, herisenot necessarily
of unit length. The quaternio@, however, is unitary. This represents the angle and the
axis that the vectop; is rotated about. The resulting vect®r is then of the same length
asv; if and only if Q) is a unit quaternion.

Note that Equation (10.3) rotates one frame into anothendreaBy aframeit is meant
a coordinate system IR? using Cartesian coordinates. One frame with respect tdvanot
frame represents three degrees of freedom and is referesbtentation The reference
frame is the inertial frame denoteg and the frame that corresponds to the inertial frame
by a rotation( is denotedF,. Equation (10.5), however, rotates one vector into another
vector and represents two degrees of freedom, i.e. a poiatspiere. A unit vector with
respect to a unit reference vector is referred tdieection Henceforth, the main concern
is with the direction of the central axis, which is assumetedhe body frame-axis of
the end effector. We refer to van der Ha and Shuster (200@9) dood reference on vectors
and attitudes. The following lemmas will also be used.

Lemma 10.1. (Sylvester’s criterion) A matrix is positive definite if and only if all the
leading principal minors are positive? is positive semi definite if all the leading principal
minors are non-negative.

Lemma 10.2. A block diagonal matrix? = Blockdiag P, ..., P, ..., Py) is symmetric
positive definite if and only if each blodk, ¢ = 1,...,k is symmetric positive definite.
P is positive semi definite if each block is positive semi defini

10.5 Quaternion Volumes

We start by representing a continuous set of orientatiofisek by a set of constraints
in Euler angles and a sequence of rotations. This allows dmdothe corresponding
constraints on the quaternion entrigs ¢, ¢ andgs. We denote this continuous set of
guaternions gjuaternion volumeWe then use this intuitive and well defined tool in the
next sections to represent these constraints as LMIs ceb#&unctions.

10.5.1 General Definition

A set of frames corresponding to a reference frame by a ootatiabout a fixed axis:
can be represented as

Q((bv n)7 for (bmzn S (b S ¢max- (106)

When the rotations are not limited to one axis only, a more ggraescription of all
allowed orientations can be represented by a sequenceatibrat given by the quaternion
product of two or more quaternions and their restrictions.

Definition 10.1 (Quaternion Volume) A quaternion volume)® is defined as
Q® é {Q(¢1a ey ¢n7n17 .. 7nn) ‘ ¢1,min S ¢1 S ¢1,max
(10.7)

¢n,min S (bn S ¢n,mam}
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for n > 1 and where

Q(¢17 e a¢n7n17 e 7nn) = Q(¢n7nn) Kook Q(¢17n1)' (108)

In this paper, only sets of frames that can be described byjaesee of rotations
about the coordinate axes are treated. We refer to Hans@6)20d From and Gravdahl
(2007b) for a detailed discussion on quaternion volumes.

10.5.2 Reorientation of Quaternion Volumes

The quaternion product of two quaternion volumes, or a qoate volume and a quater-
nion, is itself a quaternion volume. We can use this obsimwab transform gquaternion
volumes and to represent them in a rotated coordinate system

Let Q® be a quaternion volume and the quaternibrepresent some transformation on
Q®. Then the transformatio@% = Q% x P rotates the entire set of frames by a rotation
P. Similarly, the transformatio®$ = Q® * P* allows the set of frames represented
by the quaternion volume to be represented with respect tewareference frame.
The transformation induced by changing from one referermmé to another is called
reorientation(Alpern et al., 1993).

Proposition 10.1(Transformation of Quaternion Volumeshny quaternion volumé&®
represented with respect to the reference frame can beftyamed into another quaternion
volume by

Q% =Q%x P, (10.9)

where the orientations represented @ relate to P in the same way aQ® relates to
the reference frame.

Proof. The quaternion produdf = @ * P can be viewed upon as a rotatiéhfollowed
by a rotation with respect to th@ewframe. HenceF relates toP in the same way as
Q relates to the reference frame. By the same argumentatoguhternion vqumQ%
relates taP in the same way a§® relates to the reference frame. O

In Proposition 10.1 the reference frame is kept constanttaedjuaternion volume
is rotated byP. Reorientation, however, is a rotation of the referencen&gchange of
observer) while the quaternion volume is kept constant. fdioef of the reorientation

© = Q% x P* is constructed in the same way as the proof of Propositioh. 10.

10.5.3 The Pointing Task

We now show how to represent the freedom of the pointing task @uaternion volume.
First assume that theaxis of the end effector must be aligned with thaxis of ;. This
gives the end effector one degree of rotational freedomtaheu-axis. The pointing task
can be represented by an arbitrary rotatipabout thez-axis as the quaternion volume

Q?t = [COS(%) 0 0 sm(%)]T7 for —m <y <m. (10.10)

The quaternion volume is thus given with respect to the eefee frame. Assume the
desired quaternion volume instead is to be rotate@hy= [do di da dg}T from the
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reference frame. The quaternion volume that describegialhtations where the-axis
points in the same direction as thexis of Q) is given byQ? = Q;?; x ()4 SO that

d3 sin(%)
do sin %)
K
)

Examplell. If the desired orientation is chosen so that thaxis of the end effector
always points in the opposite direction of theaxis of ; by a rotation about thg-axis

Qa=1[0 0 1 O}T,Equation (10.11) simplifies to

do cos(%)

dq cos(%) (
do cos (%) 4 dy sin
ds cos (%) + dp sin (

QY = - Cfor —m < <. (10.11)

S

F=1[0 —sin(¥) cos(¥) O]T, for —m <y <m. (10.12)

All the quaternions that satisfy this restriction resultain end effector pointing in
the opposite direction of the-axis of 7;. Wee see this by rotating the vectdoy =
[0 0 1]" byQ%. Thenfor—r < ¢ < = we have

2% =QF xv, x(Q9)* (10.13)
[0 0 0
_ —sin(%) 0 sin %)
B cos(%) 0 —cos(%)
0 1 0
cos(%)sin(%) fcos(%)sin(%) 0
0 0
_ X =1, (10.14)
—cos?(¥) —sin®(¥) -1

10.5.4 Cone Shaped Quaternion Volumes by Rotations Sequersc

A rotation sequence describes a rotation about one codedixés followed by a rotation
about another coordinate axis in the rotated coordinatesysA general framework on
how to construct easily visualisable quaternion volumelation sequences is presented.
We show how to construct different types of quaternion vaarand how these relate to
the different rotation sequences. This will allow the psogmer to choose the quaternion
volume most appropriate for the task in hand or to define velumnsing other rotation
sequences to obtain a new shape well suited for a specifickaskotation sequence starts
with two subsequent rotations about two coordinate axgsesented by the quaternion
Q)s. This defines the direction of the central axis, which is o@imtoncern. The last
degree of freedom is added by a rotation about the centralitself, here the-axis, by
Q.. Then the orientation of the end effector is described by

We will look into two different rotation sequences, the Z¥&guence and the XYZ-
sequence. For the ZYZ-sequence the direction of the ceaxialis determined by a
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Figure 10.2: Different convex cones iiR®. The cone defined by the 2-norm is self dual (setting
u = 1). The cone defined by theo-norm is the dual of the cone defined by the 1-norm. The
illustrations of theco- and 1-norms are good approximations for small rotations.

rotation about the:-axis followed by a rotation about the newaxis. Thus, the differ-
ence in the direction between the new and the old centralisxdé/en by the rotation
about they-axis only. For the XYZ-sequence, however, this differeisagiven by the first
two rotations. For both sequences the last degree of freéslgiven by a rotation about
the central axis itself and does not change its directionallyi, the quaternion volume is
given by restricting the allowed rotations of each quatarni

We use norms ifR?3 to define the directions of the central axis. We consider hiheet
cones given in Fig. 10.2. The cones are defined by the degriwe aform, representing
the shape of the cone, and by a paramétepresenting the size of the cone by

|21, 22,. .., zno1|| <&z (10.16)
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We are mainly concerned with theaxis, so inR3 we write
[z, yl| < €]z (10.17)

Examplel2. Given a||-||,-cone with the parameterrestricting the direction of the-axis,

i.e.
Va2 +y? <vlz| (10.18)

Then the maximum rotation allowed by this conesjs,, = arctan v around any axis in
thexy-plane. This is obtained by the ZYZ-sequence and can beligsdan Fig. 10.2a).

Examplel3. Given a||-||  -cone with the parameter restricting the direction of the-
axis, i.e.
max{z,y} < n|z|. (10.19)

Then the maximum rotation allowed by this congjs,, = arctan n around the coordinate
axes {- andy-axes) and3;;,,, = arctan /27 around the axes = 4. This is obtained
by the XYZ-sequence and can be visualised in Fig. 10.2b)rfalsrotations.

Examplel4. Given a/|-||,-cone with the parametgrrestricting the direction of the-axis,
ie.
|z + [yl < plzl. (10.20)

Then the maximum rotation allowed by this congjis,, = arctan p around the coordinate
axes {- andy-axes) ands;,,, = arctan % around the axes = +y. This is the dual of

the||-|| . .-cone and is visualised in Fig. 10.2c) for small rotations.

We note that the results are valid for rotations around dlploefined z- andy-axes
while the XYZ-sequence rotates about the rotated coorelinges. For theo- and 1-
norms this is thus an approximation and only valid for smatthtions.

We will represent the desired orientations as the contiasetiof directions of the cen-
tral axis as described by the cones and a free rotation abewentral axis itself. This set
can be composed by a rotation sequence of quaternion volufa@srotation sequences
are discussed in detail, the ZYZ-sequence, also considerétpern et al. (1993) and
Hanson (2006), and the XYZ-sequence.

2-cone

The ZYZ-sequence allows the desired orientation to be défasea set of vectors that
span out g|-||,-cone about the refereneeaxis and all orientations about these vectors.
Let Qs(a, B) = Q(B,vy) * Q(a, z) whereQ(a, z) = [cos(%) 0 0 sin(%)]T and
Q(B,y) = [cos(2) 0 sin(Z) 0] sothat

cos(%)cos(g)
_ sin (§)sin (5)
Qs(a, B) 200 (10.21)
005(2)sm(%)
sin (§) cos (5)

« represents the allowed orientations about 4kexis of the first rotation whiles is the
allowed orientation about the neyvaxis. If o has no restrictions; defines the size of a
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cone with thez-axis at the centre, illustrated in Fig. 10.2a). Weleestrict the orientation
about thez-axis itself and the corresponding quaternion volume is tiieen by

COS(%) cos(3 + )
©_ o, oo _ |sin(z)sin(g —3) 10.22
Ba = @0 s ool - 5) (o022

cos(5)sin(3 + §)

and the restrictions

—im < @ < Qi (10.23)
0 < B8 < Biim (10.24)
—Yiim S Yy S Yiim (1025)

Examplel5. Assume that the central axis is to point in the opposite dorof thez-axis

of F;. Further assume that a small erf}y,,, in the direction is allowed and no restrictions
on the rotation about the-axis. The set of frames describing these orientationsvisngi
by (10.22) and the restrictions

—r<a<m (10.26)
7 < B <74 Biim (1027)
—T<y<Tm (10.28)

We can also substitue < = + g anda < —« into (10.22)

—sin(ﬁg)cos(% - %)
_ . | cos(5)sin(Z + %)
QY =Q2xQ% = Cos(é) Cosé N % (10.29)

and restrictions (10.23)-(10.25). Note that EquationZ@pPcan also be obtained by ro-
tating the quaternion volume in (10.22) hyradians about thg-axis, i.e. by Equation

0.9 withP = [0 0 1 0]"andQ® = [g0 @ ¢ gs] asin (10.22) so that
Q%=1[-¢ g ¢ -] whichisthe same as (10.29).

oo-cone

The XYZ-sequence defines thig|__-cone, or a square cone of allowed directions where
the allowed orientations about theaxis and the (new)-axis are restricted. This is a good
estimation of restricting the orientation about the glbpdéfinedz- andy-axes whenever
the angles are kept smal], («, 5) is then given by

)
; . (10.30)
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The orientation is given by the quaternion volume

QY =Q2 QY (10.31)
and the restrictions
—Qim < @ < Qi (10.32)
—Biim < B < Biim (1033)
—Yim S Y S Yim (1034)

10.5.5 Quaternion Volume Test

We now derive a test to verify if a quaternion lies inside tlesickd quaternion volume.
We will in turn use this to transform these restrictions iotmstraints that can be handled
directly in convex optimisation problems. Consider a quats volume defined by the
ZYZ-sequence. We show how to use the analytic expressidmeadjtiaternion volume to

find test to verify if a query quaternio®,, = [qo Q1 Qo q3]T is an element of the
guaternion volume. Equation (10.22) gives

cos($)eos3 + 5] a] (1)
sin(5)sin(§ — ) a1 | (II)
= 1 .
Sin(é)cos(% -5) g2 | (I11) (10.39)
cos(g) sin(3 + §) as] (IV)
Then, from the Appendix we get
o= arctan(q—?’) + arctan(q—l), (10.36)
do q2
B = 2arcsin\/¢? + ¢3, (20.37)
v = arctan(q—g) — :aurctan(q—l)7 (10.38)
d0 q2
which gives
a+y=2 arctan(q—s). (10.39)
q0
An alternative formulation is given by (From and Gravdal@i02b)
« = arctan2 (Wm> , (10.40)
qoq2 — G143
B = 2arccos \/ g2 + ¢3, (10.41)
~ = arctan2 (qu?’_qwl) . (10.42)
qoq2 + q143
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10.5.6 Transformed Quaternion Volumes

The easiest way to verify if a query quaternion lies insideategrnion volume transformed
by Equation (10.9) is to transform the query quaternion leyapposite transformatioR

so that both the quaternion volume and the query quaterméprasented in the reference
frame. Hence, the two problems below are identical.

Qury EQ2xP 7 (10.43)
Qqry * P*€Q® 7 (10.44)

This operation is computationally demanding. In the spex@ae when an analytical ex-
pression of the transformed quaternion volume is givennasguation (10.9), the ori-
entation should be found by a set of parameters similar toties found in Equations
(10.40)-(10.42). We can obtain this when the quaternionmel is on a simple form, for
example as in Equation (10.29) where the quaternion volsmetated180° around the

y-axis. Then the query quaternion may be tested against $kvéctens in (10.23)-(10.25)
directly. By following the mathematics of Equations (10-850.42),«, 8 and~ are found

with respect to the coordinate systemiot= [0 0 1 O]T by

ap = arctan2 (Wm) , (10.45)
9092 — 4193

Bp = 2arcsiny/q2 + ¢3, (10.46)

~p = arctan2 (qoq1—CJ2Q3) . (10.47)
qoq2 + q143

Hence, as expected we g&t = 5 — 7, ap = a andyp = —~.

10.6 Restrictions on Orientation Error in a Convex Opti-
misation Setting

In this section we show how the formalism of quaternion vatsmaturally leads to for-
mulating restrictions on the orientation as LMIs and barftections.

10.6.1 2-norm

Assume that we would like to restrict theaxis of F¢ to point in approximately the same
direction as the:-axis of the reference framé&;. This can be visualised by a cone of
directions restricted bys| < Sy where0 < S5, < w. The orientation erroff can be
found fromg; andgs by (10.37), i.e.

B = 2arcsin \/q¢? + q3. (10.48)

A test to verify if thez-axis of F does not deviate from the-axis of 7; by more than
Biim 1S given in the following.
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Proposition 10.2. Given a maximum allowed deviation in the direction of theaxis, rep-

resented by the rotatiofi;;,,. Then thez-axis of 7 rotated byQ = [q0 ¢1 @2 q3]T
from the reference framg; lies within the|-||,-cone defined by;;,, if and only if

n 0 @
P=10 n q|>=0 (10.49)
q1 g2 1N

wheren = sin ﬁlT" 0 < Biim < mand>= means positive semi-definiteness of the symmet-
ric matrix P.

Proof. Asn > 0 andn? > 0, from Lemma 10.1 we have th#t = 0 if det(P) > 0. The
determinant ofP is given by

det(P) = n(n* — ¢ — ¢3). (10.50)
Note thatd < S;;,, < m = n > 0 so thatdet(P) > 0 can be written as
n”’—qi—q¢; >0
sin 52’” > /@ + ¢ (10.51)
As0 < /¢ + ¢ <1= 0 <arcsin/q} + ¢3, we have
0 < 2arcsin\/¢% + ¢3 < Brim.- (10.52)

Then Equation (10.48) concludes the proof as

0 < B < Biim- (10.53)
O

Note that the restrictions in Proposition 10.2 are on thedtions of thez-axis only
and that rotations about theaxis itself are not restricted (the pointing task). Nosoahat
P is symmetric and affine ifY. This is an important property as it allows us to represent
the constraints as LMIs. The following follows directly froProposition 10.2 and allows
us to formulate the restrictions as a barrier function.

Corollary 10.1 Given a maximum allowed deviation in the direction of thaxis, repre-
sented by the rotatiofi;;,,, and letn = sin @Tm Then the barrier function

¢ =—log(n> —q; — ¢3) (10.54)

increases exponentially to infinity as the orientation apphes the orientation limit forc-

ing the z-axis of F, rotated byQ = [q() a1 g2 qg]T from the reference framé&; to
lie within the restrictions given by, .

The proof of Corollary 10.1 follows directly from the proof Broposition 10.2.
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10.6.2 oo-norm

Assume instead that we would like to restrict the allowedtion differently around dif-
ferent axes. For example, if the set of allowed orientatiengiven by restrictions on
the rotation about the-axis followed by a rotation about thgaxis, this will result in
a pyramid-shaped set of allowed directions. The followibgervations are important in
this section.

Rotating the vectop, = [0 0 l]T by o about thez-axis of the reference frame
followed by a rotatior about they-axis, also of the reference frame, gives the new vector

cos asin 8
—sina | . (10.55)
cos a.cos 3

<l
~
I

For a rotationn about ther-axis of the reference frame followed by a rotatipabout the
y-axis of the rotated coordinate system, the rotated vestgiven by

sin 3
Up= |—sinacosf| . (10.56)
cos asin 8

This can also be written as a quaternign Let the vectors; be rotated by into vo =
Q@ * vy * Q*. Thenwv, is written as

0
2(qoq2 + q193)
. 10.57
2(q2q3 — q0q1) ( )
@ -4 —a+a

Vg =

Proposition 10.3. Given a restrictiony,;,,, in the orientation error about the-axis of the
reference frame and,;,,, in the orientation error about thg-axis of the rotated coordinate
frame. Then the-axis of 7, rotated by the quaternio) = [¢0 @1 @2 qg]T with
respect to the reference frani@ lies within the restrictions given by;;,,, wheregs;;.,, > 0,

if and only if

n 0 q
Pr=1{0 n q| >0 (10.58)
g3 q2 1)

wheren = \/% and > means positive semi-definiteness for the non-symmetric ma-
trix P;.

Proof. The determinant of; is given by
det(P1) = n(n” — qog2 — q143)- (10.59)
Assumedet(P;) >0
n” — Qo2 — q1gs > 0
sin Bim > 2(qoq2 + q143)- (10.60)
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As B > 0, comparing Equations (10.56) and (10.57) gives

B = arcsin (2(qogq2 + ¢193)), (10.61)

and the initial requirement is obtained by

ﬁ S /BliﬂL (1062)

whereg is the angle between the newaxis and theyz-plane. Similarly for the lower
bound. O

Proposition 10.4. Given a restrictiony;;,,, in the orientation error about the-axis and
Buim N the orientation error about thg-axis, both in the reference frame. Then the
axis of frameF, rotated by the quaternioy) = [qo Q1 Qo qg}T with respect to the
reference framér; lies within the restrictions given by;;,, if

§ @@ 0
Py=|gqp £ qq| >0 (10.63)
26 qq €

whereg = sQLim
Proof. We start with the principal minors and see that we need tol&danstraint
€ — ¢33 > 0. (10.64)
The determinant of>;, is given by
det(P2) = &(€* — (q0q1)* — (9243)° + 240q1423)- (10.65)

Thendet(P;) > 0 becomes

€ — (q0q1)* — (9243)* + 29091293 > 0

€ > (203 — 0q1)?
sin agim > 2[g2q3 — qoqu|- (10.66)

As oy, > 0, comparing Equations (10.57) and (10.55) gives
a = arcsin (2(g2q3 — qoq1)), (10.67)
and the initial requirement is obtained by
—im < a < Apim- (10.68)
O

Note that in Proposition 10.3 the second rotation is wittpees to the rotated co-
ordinate frame and the constraints restrict only the rotatiabout thes-axis while in
Proposition 10.4 the second rotation is with respect toaketed coordinate frame and the
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constraints restrict the allowed rotations about:itkexis only. This simplifies the compu-
tations substantially and is a good approximation to mtpsiround ther- andy-axes of
Fr. We also note that the matrices given in Propositions 10d31&¥4 are not symmetric
and thatP, in (10.63) is not affine. Hence, the constraints cannot beesgmted as LMIs.
They can, however, be represented as barrier functions gis¢he negative logarithm of
the determinant for which we also omit the additional caxistr(10.64).

Examplel6. Given a restrictiony;,, in the orientation error about the-axis andg;;,,
in the orientation error about the-axis. Then thez-axis of frameF, rotated by the

quaternion@) = [qo Q1 Qe Q3]T with respect to the reference frarfg, lies within
the restrictions given byi;;,,, andg;;,,, if

[P0
pP= {0 PQ] >0 (10.69)

whereP; and P, are given as in Propositions 10.3 and 10.4 respectively.

Alternatively, an accurate solution can be found by resitgcthe orientation about the
x-axis followed by the orientation about theaxis, also inF;. This can be achieved by
writing o = arctan2(22+%4) and substituting

q092—4q193
- W (10.70)

10.6.3 Restriction on the Orientation about the Central Axs

for n in Equation (10.58).

We now turn to the pointing task problem, i.e. to determireertitation about the central
axis itself. This will not change the direction of the cehtais and thus not influence
the orientation error. Assume we want th@xis to point in one given direction in order
to improve performance. This direction may be differentvadrg time step. Also for the
x-axis we may allow a small error from the desired directioar the ZYZ-sequence the
direction of thex-axis is given by bothw, 5 and~y. We assume the error of the direction of
thez-axis is restricted as in Section 10.6.1. When this is coimgceto be relatively small,
the error in the direction of the-axis can be approximated by the error in the orientation
about the central axis. This error is given by (10.39) as

e=a+. (10.71)

Proposition 10.5. Assume that the error in the direction of theaxis is small. Given a
restriction in the orientation erro,;,,, around the central axis, the-axis of 7 rotated

byQ = [qo a1 Q2 qg]T from the reference framé; lies within the restrictions given
by €, > 0if and only if

g3
P= {Z_ %} =0 (10.72)

22 l‘<l'/ -
]

wherer = tan <=,
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Proof. The determinant of is given by
q2
det(P) = k% — q% (10.73)
0

As €, is positive, we hav® < tan <Lz for 0 < €, < manddet(P) > 0 can be
written as

2
K2 > q%
40
q3
€lim > |2 arctan (== )| (10.74)
q0
Then Equation (10.39) concludes that
—€lim < € < €lim.- (10.75)

O

Also for Proposition 10.5 we can reformulate the result abighio a barrier function.

Corollary 10.2 Assume that the orientation error of the direction of thaxis is small
and the orientation error about the central axis is restitbe;;,,, and lets = tan (<= ).
Then the barrier function

2
¢ = —log (F»Q = q?g) (10.76)

45
increases exponentially to infinity as the orientation apphes the orientation limit, forc-

ing thez-axis of F¢ rotated byQ) = [qo Q1 Qe CI3]T from the reference fram&; to
lie within the restrictions given by;;,, .

10.6.4 Direction of thez-axis

Alternatively, one might want to restrict the direction bétz-axis directly. Note that the
matrix given in the previous section is not affine and caneowktten as an LMI. Hence,
another matrix that is both symmetric and affine is proposeie following. Assume that
the direction of thez-axis is to be restricted. Similarly to Equation (10.49§ tquirement
that the body frame-axis is to point in the direction of the reference framaxis is given

by

§ 0 @
Po=10 ¢ g| >0 (10.77)
@ g &

where = sin 4= This will restrict thez-axis of 7 to lie within a cone with the:-axis
of Fr at the centre.

This quaternion volume can also be transformed by Equatior®). Assume that the
direction of the body frame-axis is to point in the direction given by the direction oéth

z-axis of Qg = [do di do dg]T. In order to apply the restriction given by (10.77),
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samplepoints .t
< Turning points
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Figure 10.3: The path of the tool centre point (TCP) in thg-plane. The direction of the central
axis is determined frorfi by the quaterniom®4(6) and the rotation around the central axis itself is
determined fromp.

but to the direction of the-axis of 7, and not that ofF;, ) is transformed back into the
reference frame and the test is performed on the transfoquaigrnion

*
*
—qoda + gadg — q3d1 + q1d3
—qods + q3do — q1d2 + qa2dy

Qi =Q*Qy= (10.78)

Note that wherQ); is substituted into (10.77)? is still symmetric and affine ig.

10.7 Spray Painting

We now show an example where the direction of thaxis is determined by two cone-
shaped sets of orientations. The direction given by the tte at each time step is in
general conflicting and the solution is the minimum of a casttion given by the sum of
the two orientation errors. There are two main criteria thiitguarantee uniform paint
coating, the orientation of the spray gun with respect tostivéace and its velocity. The
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first restriction is ensured by the constraint
7’ —q —q3 >0 (10.79)

wheren = sin (%) and 5;,, is the maximum allowed orientation error for which the
quality of the paint job is satisfying. The paint gun shouldays be orthogonal to the
surface, but in general an orientation error of alifiitguarantees uniform paint coating.
We will assume a manipulator that is to paint a surface incji@lane following the path
in Fig. 10.3. The restrictions on the orientation is vissedi by a cone. The cross section
of this cone is given by the circle in Fig. 10.3.

The second restriction is on the velocity of the paint gun eaud be improved by a
similar constraint. The general idea is to reduce the digplent of the paint gun by
choosing a desired orientation at each time step which $arezposition of the paint gun
to remain at the centre of the surface. This will reduce thgues in the main axes as these
are mainly used for positioning the end effector. Assume &atwo paint the surface in
the zy-plane with a constant distaneg., between the tool and the surface. lcdbe the
vector from the centre of the surface, at height,, denotedp,.,,;, to the current position
Pt ON the surface

c= ptcp — Peent- (1080)

This is the direction of the central axis for which the maiesxon’t need to move at all,
i.e. pure rotation of the wrist. We choose this as the deslnattion of the central axis
when the orientation error is not considered, represenye@ We now introduce the
same freedom in this constraint as we did with the oriemtagioor, forcing the orientation
to lie inside a quaternion volume with theaxis of @, at the centre.

First we transform the quaternion back into the referenamé& and perform the test
on the transformed quaternion in the reference frame. EHmstormed quaternion is given

by

Po *
D1 X —qod1 + q1do — g2ds + gzdo
t) = = )= . 10.81
@ (t) D2 @*Qa(t) —qoda + gado — q3d1 + q1d3 ( )
ps3 *

The constraint that forces the end effector to point in theation ofQ,; with a maximum
orientation errory;,,, is given by Proposition 10.2 as

& —pi—p3>0 (10.82)

where = sin (%4 ). Thus, we use the same constraint as for the reference ftarhen
the transformed quaterniap, (t).

We now turn to the problem of spray painting the surface imdipgplane in Fig. 10.3,
also addressed in From and Gravdahl (2007a). The surfaodéspainted from above, so
the set representing the orientation error needs to beebt&80° so that it points down-
wards. This can be done by to Equation (10.9) with= [0 0 1 O]T or the approach
that we will take here, instead of the restrictigh> ¢7 4¢3, which we used in Proposition
10.2, we write

< gt + 4, (10.83)
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and replace3y,, < m™ — Bym IN 7 = sin(ﬁl%). This will guarantee that the set of
orientations points in exactly the opposite direction @& #et of Equation (10.82). The
barrier function is then the sum of the two constraints regnéing the orientation error
and the velocity and is given by

(b = kerr(ber'r + ktcp(btcp (1084)
= —kerr10g(qF + @3 —1%) — kuep log(€* — pT — ).

whereé¢,,, guarantees that the orientation error lies within the braimd¢,., allows the
end effector to follow the path with a higher velocity. Theighdsk.,.,. andk,., weighs the
importance of the two restrictions and should be chosenataitie end-effector velocity
is constant and as high as possible.

10.7.1 The gradient Method and Implementation

In this section we show how to solve the optimisation probkgnthe gradient method.
The partial derivatives are given by

OPerr OPerr 2q
0 o G+a - (1089
OPerr 0Perr 2q2
P 02 @G+ -n* (10.89)
and
Obrep _ 2(d? +d3)qo — 2(dody + dads)qr + 2(dids — doda)go (10.87)
9o §2 —pi -3 ’ '
Obrep _  2(d3 + d3)qr — 2(dody + dads)qo + 2(doda — did3)gs (10.88)
I §2 —pi -3 ’ '
Odrep _ _2(dg + d3)go + 2(cids — doda)qo — 2(dads + doch)gs (10.89)
92 §2 —pi -3 ’ '
Obrep _ 2(dF +d3)qs + 2(doda — dids)qr — 2(d2ds + dodi)go (10.90)
9gs §2 —pi -3 ' '
The gradient is then given by
Ferr Zéfq + Ftep Zg,;q
Vo = kdaT ey a?;ii: : (10.91)

The problem is solved by the gradient method
P = ¢F — aVe. (10.92)

For a feasible initial condition and for a relatively smatidaconstant step sizethe sta-
bility and convergence of the method is good. Due to the lommatational burden of
this approach, a constant step is used instead of a searchrebjuires that: is chosen
conservatively which may lead to slower convergence.
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10.7.2 The Pointing Task

By the approach described in the previous section, thetatien about the central axis{
axis) is not determined. In this section we show how to @iliee last degree of freedom to
improve performance further. We will present three diffeérpproaches for implementing
the solution to the pointing task problem. The orientatifimsd do not differ very much,
but the implementations are quite different.

From and Gravdahl (2007a)

The first approach presented is the intuitive approach dgivenom and Gravdahl (2007a).
The orientation about the central axis at paiig set as

b (t) = ky arctan2 (M) (10.93)

for k, € (0,1] and wherex(t) andy(t) give the position of the end effector at timén
thexy-plane ande...,.; is the centre of the surface in thedirection.(¢) is shown in Fig.
10.3. It was shown in From and Gravdahl (2007a) that will cedilne displacement of the
main axes.

Direction of the z-axis (Section 10.6.4)

A similar approach is to force the end effecieaxis to point in the direction of the base of
the manipulator. By projecting the end-effecterxis into thexy-plane and force this to
point in the direction of the base will have approximately #ame effect as the approach
in the previous section, but this constraint can easily bi#emron the form of (10.78) as

To
T1 *
t) = = O x t) = 10.94
@ () o @*Qc(t) —qoe2 + q2e0 — qze1 + qres |’ ( )
T3 —qoes + q3eo — q1€2 + q2€1

whereQ.(t) is time varying and takes the end-effecteaxis into the desired direction.
Further, we want the end-effectoraxis to point in the opposite direction of the global
x-axis, so we lety;., < ™ — vm and write the corresponding cost function as

bp = —log(rs + 12 — %), (10.95)
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wherev = sin(24= ) andv;;,, is the maximum error allowed in the direction of thexis.
The partial derivatives are given by

Ody  2(e3 + €3)qo0 — 2(eoea + eres)qe + 2(ere2 — €ges)qs

B0 - R - , (10.96)
Ody  2(e3 + e3)q1 + 2(eges — erez)qr — 2(eres + €pe2)qs 10.97
o T3+ 12 —v? ’ (10.97)
09, 2(63 +e?)g2 — 2(egea + ere3)qo + 2(eges — ere2)q 10.98
g2 T3+ 12— U2 ’ (10.98)
0ps 2(e3 + e?)qs + 2(erea — epes)qo — 2(eres + epea)qr 10.99
dgs T3+ 13— v? ’ (10.99)
Thus, the search direction for every time step is given by
8¢e7‘7‘ 8¢tcp 8(131«
o e
Korr S5 + kyop—i2 + k522
Vo= | st L vy g ok | (10.100)
err 6%12 tep a%qz x ggQ
kerr 6;;T + ktcp aq;p + kx (9q;

Applying the gradient method will find the minimum of a coshétion given by the
sum of three in general conflicting objectives,.. guarantees that the orientation error is

within its limits, ¢, increases the velocity of the paint gun amgdexploits the pointing
task to increase the velocity further.

Restrictions of the Rotation about the central axis (Sectio 10.6.3)

By Proposition 10.5, we get that the rotation about4kexis can be forced to zero by the
cost function

2
br = —ky log(k? — %). (10.101)
0
The partial derivatives are given by

0 _, 0o ____ 2

o Oqo qo(K%q3 — q3)’

8¢a: =0 a¢x _ 2(13

dga 7 Ogz  KA§—q3

We would like thez-axis to point in the direction of the base, which we obtainaby
rotation about the-axis byQ. = [eg 0 0 63]T. Again we use&, = Q * Q* and

2
¢ = —log(r* — :—%) (10.102)
where
0 Go€o + qses
Q) =t =Q+Q:() = . . (10.103)
2
3 —qoe3 + g3ep
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The partial derivatives are then given by

Oy Oz

=0, =0, 10.104
oq g2 ( )
0da _ 2(e5 — eg)qoqs — 2(45 — adqs) (eges + eoel)
D40 3(2rg —13) |
0y _ 2(661 - 6%)%%% - 2((]8 - q(>q§)(eoe§ + 6363)
Das 3(s2rg —13) |

Then by choosing). such that the:-axis points in the direction of the base by a rotation
about thez-axis, we obtain the desired motion characteristics. Nuo#t inh (10.102) the
central axis is assumed to be orthogonal to the surface. djéine results are only valid
when a small orientation error in the direction of thexis is allowed.

10.7.3 LMis

We now turn to the problem of how to formulate the constraimt¢he orientation as LMIs
and how to solve this when several constraints are preséetpfioblem

minimise  ¢(z) = logdet G(z) ™!

subjectto G(z) = 0 (10.105)

where
G(z) = Go +21G1 + 22G2 + - - + 2, Gy (10.106)

is known as the analytic centering problem. This formulatitlows us to formulate the
restrictions on the:- and z-axes in one big block diagonal matrix and solve this very
efficiently. If the feasible seX = {z | G(xz) = 0} is non-empty and bounded, the
matricesG;,i = 1,...,m are linearly independent and the objective function i#yri
convex onX (Vandenberghe et al., 1996). In this case, it can be guadriteat the
optimality conditionV¢(z*) = 0, for an optimal solution:*, can be reached.

In our case, the constraints on thaxis are written as:

minimise  ¢(z) = logdet P(z)~*

subjectto P(z) >0 (10.107)
whereP is given by Equation (10.49) and can be written as
P(x) = Py + 1Py 4+ 22 Py + 23P3 + x4 Py, (10.108)
where
1 =4qo, T2=q1, T3=q2, T4=(s, (10.109)
n 0 0 000
PO =10 n 0 s P1 = P4 =10 0 O s
0 0 7§ 0 00
0 01 0 0O
P=10 0 0], Pa=1(0 0 1
100 010
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qo andgs do not affect the solution and can be eliminated from the tops
To apply the time varying constraints on the transformeakis, substitute (10.78) into
(10.77), denote the resulting matr% and write it on the form of (10.108) so that

F(z) = Fo + 21 F1 + 22F3 + 23F3 + 24 Fy, (10.110)
T1=(qo, T2=q1, T3 =Gz, Ta=(s, (10.111)
& 00 0 0 —ds
Fo=10 ¢ of, mR@®=|0 0 —dsl,
00 ¢ “dy —dy O
0 0 _d3 0 0 do
BO=]0 0 d|, FBO=|0 0 —d,
—ds dy O dy —dy O
0 0 d
P =10 0 d
di dy O

To combine the restrictions of the and z-axes we use Lemma 10.2 and formulate the
problem as

—1
minimise  ¢(z) = log det ng) F(Of)]

' . (10.112)
subject to { 0 F(m)} =0

for which the solution is the orientation which minimisee #rror both of the:-axis and
the z-axis with a “metric” that increases exponentially with #iegular distance from the
desired directions of the- andz-axes. Also note that for two conflicting constraints on the
direction of thez-axis, the constraints given by Equation (10.82) can beevrisimilarly

by substituting (10.81) into (10.49).

10.7.4 Normalisation

The optimisation algorithms described optimise freelyr@lequaternions, and it is thus
not guaranteed, nor likely, that the resulting quaterngafiunit length. One simple and
very effective, though not very mathematically sound sotytis to optimise freely over
all quaternions and then normalise the result afterwartig flirns out to work very well

in practice. Another option is to add the constrd@t = 1 in the optimisation algorithm

which guarantees that the search space is only the set @rgiats of unit length.

10.7.5 Optimality and Existence of the Solutions

We note that the quaternion volumes must be chosen so thatteoea@xists. The quater-
nion volume representing the orientation error should bleseh according to the maxi-
mum allowed error. For the quaternion volume constructéddrease velocity we have
more freedom in choosing the size of the volume. This shduld be chosen big enough
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so that a solution always exists. This can then be compeah$atdy increasingc:., in
Equations (10.84) or (10.91).

The optimal orientation at every time step can be found ihthee given the velocity
of the paint gun. However, the optimal velocity is not foundeal time. This is achieved
by increasing the velocity until the simulations show thwt joint torques reach the limits.
Thus, to find the optimal velocity, we need to perform sevemaulations or test runs to
find this. In this sense the solution is not found in real tingn the other hand, if the
manipulator is to follow a trajectory for which the maximumlecity is not found by test
runs, we can use information about the curvature of the pattitee maximum orientation
error to choose a velocity that is far higher than for the emtional approach. In this
sense, the solution is optimal for the chosen velocity.

The main strength of this method lies in its simplicity. Tloevlcomputation time al-
lows us to run the problem several times to find a solution zéoge to the optimal one.
There are many alternative approaches well suited to fincptimal or closer to optimal
solution. A learning approach may find a more optimal sohytiout this would require
far more computational effort. One might also construct ptindsation problem that
optimises the torques given a freedom in the orientationtdfind an optimal global so-
lution to this problem is extremely complex. The short cotagion time for the proposed
algorithm makes it a good alternative to the computatigmatbre demanding approaches.

10.7.6 Curved Surfaces

The approach presented is not limited to planar surfaces.clwed surfaces such as
the hood of a car, we can use the exact same approach. Thedldsiection of the
end effector used in (10.81) can be chosen as the same asathar phse. However,
the quaternion volume representing the orientation ermstrbe transformed similarly to
(10.81) so that the centre of the volume is orthogonal to tinfase at every point on the
trajectory. For curved surfaces we expect the performamémprove more than for a
plane as the orientation of the paint gun does not have tovidlhe optimal orientation
(orthogonal to the surface) as tightly and can sweep ovesuhface more smoothly and
with less variation in the orientation.

10.8 Numerical Examples

10.8.1 Convergence

Table 10.1 shows the computational efficiency of the alboré presented. The conver-
gence is in general very good and a solution is found in 10t@@tions. In some cases
a few more iterations are needed, but for all the tests paddr about 50 iterations is
sufficient, as a worst-case measure. No information fronptheious solution is used in
choosing the initial conditions. The simulations were parfed on an Intel T7200 2GHz
processor. We can see that the time needed for each iterati@ny low. Even for the
worst case of 50 iterations the time needed to find a solusidesis than one millisecond.
This makes all the algorithms presented suitable for oailimplementation.

The three algorithms presented were compared in terms opatational efficiency.
The algorithms tested were i}axis cone restrictions as presented in Section 10.7.1; ii)
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Figure 10.4: Torques for joint 1 and 2 for the four different approaches preskn

z-axis cone restrictions as presented in Section 10.7.1lawitlitional cone restriction on
the direction of ther-axis as presented in Section 10.7.2; andzigxis cone restrictions
as presented in Section 10.7.1 with additional restrictinrthe rotation about the-axis
as presented in Section 10.7.2.

Algoritm Iteration time | Max its | Max time
[ms] needed [ms]

i) z-axis cone 0.00232 50 0.116

i) z-axis cone &z-axis cone 0.00268 50 0.1608

iii) z-axis cone & restr:-axis 0.00605 50 0.363

Table 10.1: Speed for one iteration, number of iterations needed to "guarantegdtiamabsolution
(worst case), and time needed to obtain optimal solution.

10.8.2 Trajectory Speed

The same algorithms were tested for trajectory followinge Thanipulator was to follow
the path given in Fig. 10.3 with a constant speed of 1m/s. ©hgues of joints 1 and
2 for each case is shown in Fig. 10.4 together with the torguoisl of each joint. We
can see that all the approaches improve performance stibtanThe approach that
only adds constraints on the direction of thaxis performs very well and is very easy to
implement. For large allowed orientation errors of thaxis thez-axis cone will reduce
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the orientation error not only of the-axis but also the-axis. This may be considered
a side-effect of this cone constraint as the main motivatiehind this restriction is to
change the direction of the-axis and not the-axis. This side-effect is not present for
the last approach which determines the direction ofattaxis by restricting the rotation
around the end-effector-axis. This approach will thus perform better in some cases
as the orientation error of the-axis, which is our main concern, is not reduced. This
approach does, however, have a numerical singularity wheapproaches zero. This
must be handled in the implementation.

Table 10.2 shows the maximum speed for which the maniputatorfollow the path
for each algorithm. The speed increases for all the appesagtesented. Table 10.2 also
shows the maximum orientation error of thexis in each case. The maximum allowed
orientation error is set t@0° for all approaches. We see that the maximum orientation
error when both the- andz-axes are restricted by a cone is lower than for the two other
cases. This is because, as described above, the restictitme z-axis cone will also
affect direction of thez-axis. As the direction of the-axis is our main tool to improve
performance, this approach does not perform as well as tiez two when large orienta-
tion errors are allowed.

Algorithm Max vel [m/s] | Max or. error|°]
Conventional 0.91 0
i) z-axis cone 1.35 20
i) z-axis cone &z-axis cone 1.28 12
iii) z-axis cone & restr-axis 1.37 20

Table 10.2: The maximum speed the manipulator can follow the path for the four diffeap-
proaches and the corresponding orientation errors.

10.9 Conclusion

In this paper we have shown how to transform a constraint @n#raious set of orienta-
tions into a convex constraint. By representing the comggas LMIs or barrier functions
the optimal solution for a given cost function can be foundsial time at every time step.
For spray paint applications this allows us to exploit the fhat a small orientation error
can be utilised to increase the velocity of the paint gunrduturn, guaranteeing uniform
paint coating and substantially decreasing the time netxdpdint a surface.

10.10 Appendix

The quaternion volume is given by Equation (10.22), i.e.

cos(g)cos(§ +3)1 [a] (1)
fﬂg;ifﬁ(%_g; = |0 {ff}) (10.113)
cos(3)sin(5 +3)]  Las] (IV)
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10.10. APPENDIX

By substituting (I1) into (IIl), (IIl) becomes

= ¢ (10.114)

andg = 2arcsin \/¢? + ¢3 is positive by definition.c and~ are found by dividing (11)
by (Ill) and (IV) by (1):

:CI1

o 9 7, o q3
tan(— — = = tan(= + =) = =. 10.115
We write
a q1 7, @ a3
— — — =arctan(—), = + — = arctan(—), 10.116
-3 @), 45 (2 (10.116)

so thatw, § and~ are given by Equations (10.36)-(10.38).

257






Chapter 11

Optimal Paint Gun Orientation
In Spray Paint Applications -
Experimental Results

11.1 Abstract

In this paper we present the experimental results of a new s@y paint algorithm
presented in previous publications. Both theory and simultions indicate that the
proposed method allows a robotic manipulator to paint a give surface using sub-
stantially lower joint torques than with conventional approaches. In this paper we
confirm this by implementing the algorithm on an ABB robot and we find that the
joint torques needed to follow the trajectory are substantally lower than for the con-
ventional approach.

The approach presented is based on the observation that a siharror in the ori-
entation of the end effector does not affect the quality of th paint job. It is far more
important to maintain constant velocity for the entire traj ectory. We thus propose
to allow a small error in the specification of the end-effecto orientation and show
how this allows us to obtain a higher constant speed throughd the trajectory. In
addition to improve the uniformity of the paint coating we are able perform the paint
jobin less time.

Note to Practitioners—This paper is motivated by the observation that uniform
paint coating cannot be achieved in steep turns. Even if the amipulator possesses
the necessary actuator torques to maintain constant speeaif a straight line tra-
jectory the torques needed to maintain constant velocity ding turn are far higher.
Thus, the operator has to lower the trajectory speed, also ithe straight line segments
where this would normally not be necessary, or accept a thigk layer of paint in the
turns. The method proposed in this paper is to implement a stjhtly different plan-
ning algorithm in turns allowing the paint gun to follow the t rajectory with a higher
constant velocity.

Keywords—Spray painting, assembly-line manufacturing, modelliempirical stud-
ies.
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11.2 Introduction

In robotics research empirical studies are extremely it@mbrin order to validate algo-
rithms and simulation results. Even though simulationdae becoming increasingly
accurate, they can never compare to real-world experimémthis paper we present the
empirical data obtained by implementing three differemagpaint algorithms and run-
ning these on a robot manipulator in our lab. The algorithoregute a trajectory in joint
space for which the end-effector follows a pre-defined pdthe joint torques are then
measured for the different approaches and compared to thegtional approach. The
details of the proposed approach and the expressions toghermanted are found in From
and Gravdahl (2010b).

In Potkonjak et al. (2000) the idea of introducing the paumlgy as a constraint and
minimise some additional cost function was presented. @pens for the possibility of
allowing a small error in the orientation of the end effedtoorder to increase the velocity
of the paint gun, reduce torques, and so on. In Buss et al6§18@ problem of friction
force limit constraints was transformed into a problem sfitey for positive definiteness
of a certain matrix and in From and Gravdahl (2008d) the sa®as were used to convert
the problem of orientation error constraints into a testadifive definiteness of a matrix.
For different types of orientation errors, a suitable nxatras found and it was shown that
positive definiteness of this matrix is equivalent to an mia¢ion satisfying the given re-
strictions. By transforming the non-linear orientatiomstraints into positive definiteness
constraints imposed on certain matrices we transformeprtstdem of finding the optimal
orientation into an optimisation problem on the smooth rfdhiof linearly constrained
positive definite matrices (From and Gravdahl, 2010b).

In From and Gravdahl (2010b) we showed that by allowing aemnation error of
about 20 we are able to 1) reduce the torques required to follow a patibbut 50% and
2) increase the speed at which the end effector can folloviréijectory with about 50%.
These results were found through simulations. It is, howexrgortant to confirm these
results also through empirical studies in the lab. In thigepave have implemented the
same algorithms on a robot and measured the torques neefiglbwoa typical path for
painting a flat and a curved surface.

11.3 Problem Statement

There are two main factors that play important roles in atitg uniform paint coating
in automotive manufacturing. The first is to move the pain guth constant velocity
throughout the trajectory. This is in general an easy tadkllowing straight lines but
can be a challenge in turns where high accelerations argreelqgi’he second factor is the
orientation of the paint gun with respect to the surface ciishould be orthogonal.

It can be shown that the velocity of the paint gun is far morpontant than the ori-
entation when it comes to uniform paint coating. A small efr020°) in the paint gun
orientation does not affect the quality of the coating toghme extent as changes in the
velocity. Based on these observations we represent thatatien not as one frame, but as
a constrained continuous set of frames. The problem treéatdts paper is then formu-
lated as follows:
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Given a maximum allowed orientation error of the paint guml @ntrajectory on the
surface that the paint gun is to follow with constant velpaitd with a fixed distance from
the paint gun to the surface. Then the problem is to find thenteition of the paint gun at
every point on the trajectory that allows it to follow thejaatory with the highest possible
constant velocity.

We consider a standard industrial manipulator. The firgehoints are referred to as
the main axes, or the main joints. These are the strongegtjand also the ones that
require the most torque. While the main axes are mainly useddsitioning the paint
gun, the last three joints, referred to as the wrist joinetednine the orientation of the
paint gun. We fix the inertial reference frame to the base efritanipulator. We also
attach a frame to the end effector of the manipulator, in @sedhe paint gun. This is
attached so that the end-effectoeaxis is aligned with the direction of the paint flow. This
axis is referred to as the central axis.

We thus follow the standard approach for defining the refezdrames of the manip-
ulator but instead of specifying only one frame, we can dedigentinuous set of frames
that lie close to the original frame by some metric. The atbor is then free to choose
any frame that lies sufficiently close to the original frand¢.each point in the path, the
proposed algorithm then chooses the frame that resultseimitfhest possible constant
speed of the end effector.

For a spray paint robot following a path as the one in Fig. tielmain work load is
on the main axes of the robot, i.e., joints 1, 2, and 3. We aestirat the work load on
the wrist axes is very small compared to the main axes. Theoged algorithm will thus
endeavour to move some of the work load from the main axestavtlst axes. Because
the joint torques of the main axes are very close to the tdimuits, this should allow us to
follow the trajectory with a higher velocity. Increasingettorques of the wrist axes should
not pose any problems as these are very small for this typajettory.

11.4 Experimental Set-up

All the experiments were performed in ABB’s robot lab in Qsikorway on the ABB
IRB-4400 industrial robot. The robot was equipped with ad effector of approximately
the same weight as a spray paint gun. The optimal trajesteréze computed off-line to
allow for analysis, but as far as the computation time is eomed, the computations could
have been performed on-line. The resulting optimal trajées were implemented in joint
space feeding the joint positions for each joint at condierd intervals.

During the experiments the positions, velocities, anduesopf each joint were saved.
All signals are scaled so that the maximum value equals 1. méasurements for the
three different approaches are scaled by the same facttire gpots presented in the next
section are comparable and illustrate well the differeretevben the different approaches.

The robot was set to follow a path as the one shown in Fig. 1hithwconsists of
four straight line segments and three turpg., denotes a position at the surface and at
every timet the spray gun must point in the directionf,,(¢). This is the path of the
tool centre point (TCP). We perform the experiments for tftecent surfaces: 1) a flat
surface in thecy-plane, and 2) a curved surface. The surfaces are illudtiateig. 11.1.
All the experiments are performed with a constant TCP véjaxfi0.9 m/s.
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Figure 11.1: The path of the tool centre point (TCP) for the flat surface inapeplane and the
curved surface.

11.5 Experimental Results

In this section we present the experimental results whetrajectory is computed using
the following algorithms:

1. Conventional - the orientation error is zero and the optimal orientatiosuad the
central axis is not utilized to improve performance.

2. Pointing Task - the orientation error is zero and the optimal orientatimuad the
central axis is found. The rotation about the central axislEchosen freely.

3. Quaternion Volume - an orientation error of 20is allowed and the optimal orien-
tation is found. We also optimise around the central axifn 3.

11.5.1 Flat Surface

The joint positions for the main and wrist axes are found ig. Bil.2. We can see that
the joint trajectories found by the three algorithms areegdifferent even though the
end-effector position is basically the same and the oriemtadiffers only slightly for
the different approaches. The trajectories in joint spaeegaite similar for joint 2 and
3, which is due to the kinematic coupling between these goimtthe IRB-4400. The
corresponding joint velocities are found in Fig. 11.3. Hitj.4 shows the power for all the
joints. We see clearly that the energy used is reduced famtiia axes and that the wrist
axes take more of the work load. The largest reduction isdaarthe first joint, which
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Figure 11.2: Joint positions. All positions are scaled.

corresponds well with the position and velocity plots. Wepatote that for the wrist axes
we use considerably more energy when an orientation eredioiwed.

| | Conventional| Pointing Task| Quat Volume|

1 0.363 0.162 0.066
2 1.000 0.881 0.518
3 0.416 0.410 0.212
4 0.010 0.012 0.021
5 0.017 0.053 0.032
6 0.011 0.014 0.011

Table 11.1: The square of the torques for each joint. All values are scaled.

We use the square of the torque over the trajectory as a netmmpare the amount
of torque needed to follow the three paths. This is given fhejoint in Table 11.1.
We see that the torques needed to follow the trajectory formhin axes decrease for the
pointing task and even further for the quaternion volumesHaw this more clearly, Table
11.2 shows the average torques for the main and wrist axese®@hat for the main axes
the torques needed to follow the trajectory are reduced By 8 the pointing task and
55% for the quaternion volume. This shows that the propofgatithms work well and,
as anticipated, the work load on the main axes are reducedasuially. For the wrist
axes, however, the torques increase. This is as expecteg, thie main objective was to
move the work load from the main axes to the wrist axes. Howeasgethe wrist torques
needed to follow the trajectory for the conventional apphowere so small, these are
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still well inside the torque limits and can still be consigévery small, even though they
increase by 117% and 83% for the pointing task and the quatewolume, respectively.
The average joint torque is shown in Table 11.3.

] | Conventional| Pointing Task [ Quat Volume |

Main 0.593 0.484 (-18.4%) | 0.265 (-55.3%)
Wrist 0.012 0.026 (+116.6%)| 0.022 (+83.3%)

Table 11.2: The average of the square of the torques for the main and wrist axes.

Conventional| Pointing Task| Quat Volume
All Joints 0.303 0.255 0.143

Table 11.3: The average of the square of the torques for all the joints.

The maximum and minimum torques are shown in Table 11.4. \Wels# for the
main axes also the maximum values decrease for the poimtikgaind quaternion volume.
As for the average torques, the maximum torques increagbdarrist axes. Again, these
results are as expected and the work load is moved from the amas to the wrist axes.

Conventional | Pointing Task | Quat Volume
Joinf Max [ Min Max | Min Max | Min
1 | 1.000| -0.483| 0.752 | -0.355| 0.555| -0.211
0.791 | -0.553| 0.789 | -0.667 | 0.700 | -0.647
0.452 | -0.486 | 0.520| -0.592| 0.329 | -0.495
0.087 | -0.066| 0.174 | -0.053 | 0.176 | -0.290
0.065| -0.069 | 0.433| -0.100| 0.191 | -0.160
0.043 | -0.069| 0.158| -0.047 | 0.075| -0.073

OO BlWN

Table 11.4: The average of the maximum and minimum joint torques for the diffeneprtamches.
All values are normalised.

Conventional | Pointing Task | Quat Volume
Max [ Min Max [ Min Max [ Min

Main | 0.745| -0.507 | 0.682 | -0.540 | 0.528 | -0.418
Wrist | 0.065 | -0.061 | 0.255| -0.067 | 0.147| -0.175

Table 11.5: The average of the maximum and minimum of the main and wrist axes.

The maximum velocities for which we can follow the trajegtor Fig. 11.1 are shown
in Table 11.7. We see that by optimising the orientation adaihe central axis (the point-
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Figure 11.3: Joint velocities. All velocities are scaled.

ing task) at every time step, we can increase the maximumdsgleghtly without al-

lowing an orientation error. Any planning algorithm shothdis include an optimisation
around the central axis to be able to increase the maximuedspesimply reduce the
joint torques. However, if we allow an orientation error dbat 20 we see that we can
increase the maximum speed with 50% compared to the cone¢tipproach. Allthough
the numbers are slightly different from the simulation tesuhe ratio between the num-

bers are approximately the same and the experimentalsekult confirm the simulations
presented in From and Gravdahl (2010b).

Conventional | Pointing Task | Quat Volume
Max | Min Max | Min Max | Min
] AIIJoints\ 0.406\ —0.284\ 0.471\ -0.302\ 1.337\ —0.296\

Table 11.6: The average of the maximum and minimum torques.

11.5.2 Curved Surface

The approach presented is not limited to planar surfacesclwed surfaces such as the
hood of a car, we can use the same approach. The path of theetdod point is the same
and the direction of the end effector, assuming no oriestiairor, is set orthogonal to the
surface at each point in the TCP-path.

We see from Tables 11.8 and 11.9 that for the curved surfaeesmwreduce the torques
needed to follow the path even more than for flat surfaces.tditggies needed to follow
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Max vel [m/s] | Max or. error[°]
Conventional 0.94 0
Pointing Task 0.98 0
Quaternion Volume 1.41 20

Table 11.7: The maximum speed the manipulator can follow the path and the corréeganéen-
tation errors.

] | Conventional| Pointing Task | Quat Volume |

Main 0.623 0.509 (-18.3%)| 0.271 (-56.5%)
Wrist 0.152 0.232 (+52.6%)| 0.202 (+32.9%)

Table 11.8: The average of the square of the torques for the main joints and the vimist yehen
applied to a curved surface.

Conventional | Pointing Task | Quat Volume
Max | Min Max | Min Max | Min

Main | 0.904 | -0.677| 0.792| -0.702 | 0.596 | -0.520
Wrist | 0.277 | -0.223 | 0.288| -0.167 | 0.224 | -0.201

Table 11.9: The average of the maximum and minimum of the main and wrist axes wiptie@ to
a curved surface.

a curved path are somewhat larger than for flat surfaces tisingonventional approach,
but at the same time the gain that we get from allowing an tat&m error is larger and
the torques needed to follow the trajectory on a flat and eclisveface are more or less the
same when an orientation error of°28 allowed.

As expected the performance of the algorithm improves farraed surface compared
to the plane. This is mainly because for the curved surfaeeotlentation of the paint
gun changes over the path. Allowing a freedom in the spetifics of the end-effector
orientation allows us to “even out” these changes in thentatéon and thus sweep over
the surface more smoothly.

11.6 Conclusion

The algorithm in this paper is based on the observation thauzdl error in the end-effector
orientation does not decrease the quality of the paint jod large extent. To guarantee
uniform paint coating, it is far more important to maintaionstant velocity throughout
the trajectory. We thus propose to use the freedom thatsaviben we allow a small
orientation error to increase the velocity of the end efiect

Previous publications have shown that one should be abledoce the maximum
torgues and the energy needed to follow a specific path byt&@8a by allowing a small
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Figure 11.4: The power of each joint. All plots are scaled.

orientation error in the specification of the end effectdre Tieed to confirm these promis-
ing simulation results through experiments is thus apparenthis paper we have vali-
dated the theory and simulations presented previouslylamarsthat we can substantially
reduce the joint torques needed for a spray paint robot tovioh specific end-effector
trajectory. We have shown that both the energy used and tlké@mam torques are re-
duced. This allows us to paint the surface considerablykguithan with the conventional
approach.

In this paper we have also investigated how the algorithrfopmis on curved surfaces.
As expected we are able to reduce the torques even more thitett &urfaces. This shows
that the approach is versatile and can be applied to a widetyaf problems.
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Part IV

Inverse Kinematics of Robotic
Manipulators with no Closed
Form Solution
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Chapter 12

Iterative Solutions to the Inverse
Geometric Problem for
Manipulators with no Closed
Form Solution

12.1 Abstract

A set of new iterative solutions to the inverse geometric priolem is presented. The
approach is general and does not depend on intersecting axes calculation of the

Jacobian. The solution can be applied to any manipulator ands well suited for

manipulators for which convergence is poor for conventionhJacobian-based itera-
tive algorithms. For kinematically redundant manipulator s, weights can be applied
to each joint to introduce stiffness and for collision avoicénce. The algorithm uses
the unit quaternion to represent the position of each joint aand calculates analytically
the optimal position of the joint when only the respective jint is considered. This
sub-problem is computationally very efficient due to the andytical solution. Several

algorithms based on the solution of this sub-problem are preented. For difficult

problems, for which the initial condition is far from a solution or the geometry of the
manipulator makes the solution hard to reach, it is shown thathe algorithm finds a

solution fairly close to the solution in only a few iteratiors.

12.2 Introduction

In general, motion control is performed in operational gpac joint space (Khalil and
Dombre, 2002). Operational space control has the advatiagehe end-effector posi-
tion and orientation are given in the Cartesian space. Ferabpnal space control, the
transformation from operational to joint space is obtaibgdolving theinverse kinematic
problem which finds the joint velocities from the desired end-effeaelocities. Oper-
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ational space control has many advantages and is fast toutemf drawback is that it
strongly depends on the inverse Jacobian and that the aramstion from operational to
joint space is performed inside the feedback loop so thatithe-step of the controller
strongly depends of the complexity of this transformatiBerflereau et al., 2002).

For joint space control, the transformation from operatl@pace to joint space is ob-
tained by solving thénverse geometric problenie. to find the joint positions from the
desired end-effector position/orientation. Then sometjspace control scheme, indepen-
dent of the task, can be designed. The disadvantage of thieagh is that the inverse
geometrics is a time-consuming problem to solve. The adganis that the transforma-
tion from operational to joint space is moved outside thetrmbhoop. When kinematic
redundancy is present, the inverse geometric approaclalédses for optimising a general
secondary criteria, and does not depend on finding a suital@ese of the Jacobian, such
as the Moore-Penrose generalised inverse, as for the @kiersmatic problem.

Another advantage of the inverse geometric approach isethet joint can be con-
trolled more directly and given the desired charactesssiach as joint stiffness, energy
consumption, maximum velocity and obstacle avoidance. tlik®rinverse Jacobian ap-
proach these characteristics must be added through theecbbthe Jacobian. In some
cases, such as the minimisation of energy through the MBergese, this is both efficient
and elegant, but for other characteristics such an invexsebian may be very hard or
impossible to find.

Closed-form solutions to the inverse geometric problemcenly known for certain
types of robotic manipulators, so numerical approachesvately studied and in many
cases, such as for most redundant manipulators, reprégautiy solution to the problem.
Numerical solutions are in general more time-consuming ttlased-form solutions and
are hence more suitable for off-line path planning. Thelteswesented in this paper are
based on the preliminary results presented in From and @haya007a). Here the inverse
geometric problem is treated as a pure optimisation probléhis allows the programmer
to include a secondary objective which is used to give theipugator motion the desired
characteristics (Grudic and Lawrence, 1993; Wang and CHe9il; Luenberger, 2003).
When redundancy is present, the redundant degrees of freagoused to optimise this
objective.

The novelty of the method presented is that the minimum ofctiet function with
respect to each joint is found analytically and this is eitptbto develop a set of compu-
tationally efficient algorithms. The solution is shown foc@st function representing the
position and orientation error of the end effector but caeXyganded to include a general
class of cost functions representing both global and lobgatives.

Six algorithms are presented. The first three oserdinate descenwhich looks at
one joint at the time. It is well known that the convergenceadrdinate descent is slower
than steepest descent and Newton’s method. The advanttus the analytic solution
presented is a lot faster to solve than search algorithmeriemgl. The last three methods
can be looked upon as approximations of steepest descerg thigegradient is estimated.
It is argued that the step size can be set as a constant. Hememalytic and computa-
tionally efficient alternative to both the search directaond the step size of the steepest
descent is presented.

It is shown that the algorithms that approximate the stdegescent have very good
convergence and reliability for difficult problems. Howevier easy problems, when the
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12.3. REPRESENTINGROTATIONS

initial guess is close to the solution, the convergence teb#r conventional Jacobian-
based algorithms than the algorithms presented in thisrp&pe problems for which the
Jacobian-based algorithms have poor convergence oritijigthe algorithms presented
are a better choice. A combination of the algorithms preskntay give good and reli-
able performance for difficult problems but also reasongblyd convergence close to the
solution.

12.3 Representing Rotations
12.3.1 The Unit Quaternion

Any positive rotationg about a fixed unit vecton can be represented by the quadruple
(Kuipers, 2002)

q

whereqy € R is known as the scalar part amd € R? as the vector part. The unit
quaternionl (¢, n) is written in terms ofp andn by

Q= M , (12.1)

go = cos (g), q = sin (g)n7 (12.2)

wheren is unitary. Note thaty and —Q represent the same rotation. This is referred

to as the dual covering. The quaternion identity is giverchy= [1 0 0 O]T. A
multiplication of two quaternions is given by a quaternionguct and is written in vector
algebra notations as

Pogo —P-q
@ Poq +qop+p xXq ( )

Let P = [po p1 p2 pg]T andQ = [q0 @1 ¢ qg]T. A multiplication of two
quaternions can then be written as the quaternion product as

Podo — P191 — P292 — P343

PxQ = Poq1 + P1qo + P2g3 — P3G2 . (12.4)
DPog2 + P2go + P3q1 — P1q3
Poqs + P3qo + P192 — P2q1

A pure quaternion is a quaternion with zero scalar part. Aegter,s = [z y z]T

can be represented by a pure quaternica [0 z‘;T}T. The conjugate of a quaternion is
defined as

Q =l —a - - . (12.5)

12.3.2 Quaternions and Rotations

Let a vector;p,, be represented by the pure quaternign This vector can be rotated the
angle¢ about the axis: by (Kuipers, 2002)

vy = Q *x vy x Q. (12.6)
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Every vectors € R? can be represented by a pure quaternion, heriseot necessarily a
unit quaternion. The quaterni@p(¢, n) however is unitary. This represents the angle and
the axis that the vectd#, is to be rotated about. The resulting vectoy, is then of the
same length a8, if and only if Q) is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotatiamfrone orientation to another.
Let P and@ be two orientations. Then, by taking

E =P xQ, (12.7)

E will rotate P into @ by the shortest rotation. That i, is the quaternion, out of all the
quaternions that tak® into @, with the largest scalar part and thus the smallest angle.
Note that Equation (12.7) rotates one frame into anothendraBy aframeis meant
a coordinate system iR? using Cartesian coordinates. One frame with respect tdvanot
frame represents three degrees of freedom and is refer@sldaorientation Equation
(12.6) rotates one vector into another vector and has twredsgf freedom, in the same
way as a point on a sphere can be defined by two coordinatesit Aaator with respect
to a unit reference vector is referred to adirection Henceforth, when referred to direc-
tion, this is the direction of the-axis of the body frame with respect to theaxis of the
reference frame, as theaxis of the end effector is our main concern in this paper.

12.4 Quaternion Space Metric

The axis of a revolute joint, represented in the coordinedené of the joint, is always
constant. This is used in the following to simplify the cortagions. First the proximity
of two frames is discussed, then this is applied to each foifind the optimal position
of the joint. By optimal position is meant the position of flaent that minimises the end
effector orientation error, position error, or both.

There are many ways to represent the proximity or distantedss two orientations
(Yuan, 1988; Wen and Kreutz-Delgado, 1991; Hanson, 2006)e &€ample which is
proportional to the length of the geodesic path on the 4-dgimmal unit sphere is

U, = arccos (ep) (12.8)

whereey is taken fromE = P* x (). The cost function in (12.8) can be identified with
a physical property and is a metric function. The formal pribat (12.8) is a metric
function is given in the Appendix. The geodesic path dessrithe shortest path from
one orientation to another. Choosing that path on the 44ioeal unit sphere gives a
well-defined and computationally efficient metric.

A computationally more efficient cost function represegtine rotational part is given
simply by

U, =1-—¢p. (12.9)

This cost function lacks the property that it can be iderdifieith a physical property
directly and it is not a metric function. Also, its minimum gven bye, = +1, for
which the two orientations are identical, and the maximurgiien by zero, for which
the orientations point in the opposite directions. Howgdae to the light computational
complexity, this cost function turns out to be very efficient
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A cost function onSE(3) will depend on the weighing of the rotational and transla-
tional part. On its general form, it is given by

U = w, Uy + w, U, (12.10)

wherew, andw, are the weights, the translational pa#t; is chosen as the standard
Euclidean norm and the rotational part is the metric in (12.8

U = wy ||po — p1|| + w, arccos (ep). (12.11)
or alternatively the cost function in (12.9)
U = w ||po — p1l| + wr(1 — eo). (12.12)

Definition 12.1 (Quaternion Space Proximity{siven two orientations represented by the
two quaternions” and@. Let theerror quaternionbe denoted

E=P"xQ. (12.13)
Then the scalar part df, eq, describes the proximity of the two frames.

Definition 12.2 (Minimal Rotation) The bigger (closer to 1)the error quaternion scalar
parteq, the closer are the two orientatioflsand@.

That this is a perfectly good description of the proximityheb frames even though it
does not represent a physical property directly. The géogeash can, however, be found
through Equation (12.8) .

Consider the set of orientations for which the identity feais rotated about the-
axis. The problem to find the orientatidf from this set that is closest to some arbitrary
orientation@ is considered.

Proposition 12.1(Optimal Rotation) Consider an orientatioid) = [qo Q1 Qe (J3]T.

The orientation described by the quaternifn = [po 0 0 pg]T that is closest t@)
(by Definitions 12.1 and 12.2) is given by

+s5
po= ——2_ (12.14)
2 2
Va5t a3
+
py = —28 (12.15)

V@ + 43

where the twat-, have the same sign.

Proof. £ = P* % () can be written

€o| _ | Po P3| |4 (12.16)
€3 —P3 Po] |43
INote that an equally good description of proximity is giverenh, approaches-1. As cos(%) is positive
for + in the chosen intervdl—m, 7), the positive value oég is chosen.
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{61} _ {po P:s} [m] (12.17)
€2 —P3 Po| |92

By Definitions 12.1 and 12.2, the quaternidy that is closest t@) is found by the
error quaternion witle, closestto 1.

€0 = Poqo + DP3G3 (12.18)

Yy (12.19)

= quOS(%) + g3 sin(2

deo  qo . ¥, a3 (
do 2 sm(2) + 5 005(2). (12.20)
Let §% = 0. Then .
a3
tan(=) = —. 12.21
&) - & (12.21)

Then by usingirctan(x) = arcsin (ﬁ) (Bronshtein et al., 2003)} is written as

=2 arctan Q3 (12.22)
= 2arcsin (\/7) (12.23)
e
= 2arcsin (12.24)
(\/ 9 + )
From the definition of the quaternion
1 = 2arcsin(ps). (12.25)

By comparing Equations (12.24) and (12.25), Equation @Ri4 given. Similarly, by
arctan(x) = arccos (ﬁ) sgn(x),

=2 arctan(qg) (12.26)
q0
= 2arccos 1 Sgr(q—?’) (12.27)
Cr@e)
do a3
= 2arccos | —— | sgn—). (12.28)
(x/qé—s—q%) r((Jo)

Note that the sign of) = 2arccos(po)sgn(y) is given by Equation (12.25). Hence,
Equation (12.14) is found. Fap to be in the interva(—, 7), the sign+; is chosen so
thateg is positive. O
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Similar results are found wheR rotates about the- andy-axis. The largest rotation
is given wherey is close to zero.

€o = Poqo + P3q3 (12.29)
= qo COS(%) +qs3 sin(%) = 0. (12.30)

P q0
tan(=) = ——. 12.31
(5 -2 (1231)

Similar to the proof of Proposition 12.1, the orientatiBnfurthest away fron@ is given
by
isq3

Po = —F— (12.32)
V45 a3
*¢qo0 (12.33)

Py = ——er
Vi + a3

where thet, and+, have opposite signs.

12.5 Optimisation Algorithms

12.5.1 Descent Methods

This section presents some important approaches to soleeaaa optimisation problem
by iterative algorithms (Luenberger, 2003).

Definition 12.3 (Descent Algorithm) An algorithm that for every new point generated,
decreases the corresponding value of some function, edcaltdescent algorithm.

If an algorithm is not descent, it is not guaranteed that thet function decreases at
every iteration. This property is desirable, but not regdirLuenberger (2003) shows that
the first order necessary condition is satisfieqf (= 0) for descent algorithms. A similar
proof cannot be given for algorithms that are not descent.

12.5.2 Steepest Descent

The most common method for the minimisation of a functionexfesal variables is the
steepest decent, or the gradient method. The steepesnhtdésgiven by the iterative
algorithm

oh Tt = gk — oV (M) T (12.34)

wherea” is a non-negative scalar minimisiffgz* — o*V f(2*)). o is found by a search
in the direction of the negative gradient for a minimum o§tlime. Convergence to a point
whereV f(z) = 0 can be proven (Luenberger, 2003).
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12.5.3 Coordinate Descent Methods

The coordinate descent algorithm optimises a given costtiom f (x), = € R", by se-
quentially minimising with respect to each of the composent, fori = 1...n. The
convergence of coordinate descent is in general poorerttieasteepest descent. Coor-
dinate descent is, however, easy to implement and, as théegtas not required, a fast
solution to the sub-problem makes these algorithms relgtiast.

12.5.4 Position and Orientation Error

This section presents a set of algorithms that solve thesevgeometric problem as seen
from one joint. The solution of this sub-problem is the bdersall the algorithms pre-
sented in the next sections. Assume that only one joint camdoed, and consider the
problem of finding the joint position which minimises the givcost function. All the
algorithms presented are based on the analytical solufi@noinimisation problem on
SE(3). This analytical solution guarantees that every sub-gmbis computationally
very efficient.

In the following, the principal cost function, representithe position and orientation
error is presented. All cost functions presented are wafiked. If the cost function is
extended to also include some secondary objective, thisleflend on the task, and must
be worked out in each case. The problem is solved for reviiries only.

The algorithms in this section are based on two differeningpation problems. One
with the position and orientation treated separately, am@where the cost function rep-
resents the sum of the position and orientation error. k¢hse the solution depends on
the choice of units. As angles and lengths cannot simply bectbgether, care must be
taken.

Position Cost Function

Letthe desired positioR; = [0 =4 ya zd]Tand current positio’, = [0 z. . zc]T
of the end effector be given in the frame of jointAssume that the current position can be
rotated about the-axis, and hence represents one degree of freedom, givdhduager-

nions on the fornd). = [cos (¥£) 0 0 sin (%)}T for —m < ¢ < 7. Then, the solution
to the problem of finding the quaternion that takésas close taP; as possible is given
by minimising

gp(¥) = (za — &e)* + (Ya — 9e)® + (20 — 2c)% (12.35)
where
P.=Q.*P.*Q:. (12.36)
By noting that
0 0
P = 5 = ;fgs;qf;i{ :iﬁz for—m < <, (12.37)
Ze Ze
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gp(1) can be written as

gp(¥) = Ky + ay cos (1) + by sin (), (12.38)
where
Ky =aj+yq+ 25 + a2 +y2 + 27 — 2202, (12.39)
ay = —2(xaZe + Yaye), (12.40)
by = 2(zqYc — YeTa)- (12.41)

Similarly when the freedom is given about thi@xis, g, () is given by

gp(0) = Ko + ag cos (0) + bg sin (), (12.42)
where
Ko = x+yq+ 25 + 22+ y2 + 22 = 2yaye, (12.43)
ag = —2(xqxc + 2q2c), (12.44)
bg = Q(dec — J:dzd). (12.45)

The rotation that minimises the position error of the enck@fir is given by setting
dgp (¥) =0 and dgp(0) =0
dyp do :

b

Ymin = arctan 2 <w> +, (12.46)
Qofy
be

Opmin = arctan2 | — | £ 7 (12.47)
ag

for a rotation about the- andy-axes, respectively. In order to choose the solution that
corresponds to the minimum and not the maximum valug, athoose the solution for

which
d2gp(0)
do?
Which solution to choose can also be determined by the fatiguémma.

> 0. (12.48)

Lemma 12.1. Given a functiory(#) on the form
g(0) = K + acos (0) + bsin (), (12.49)
evaluated on-7 < 0 < 7. Let#,,;, minimiseg(d). Then the following is always true

b>0= 0nin <0, (12.50)
b<0= 0Omnin > 0. (12.51)

Proof. The lemma is proved by contradiction. L&t,;, minimise g(). Assume that
b > 0 andb,,;, > 0. Then on the intervatm < 6 < w, we have that: cos (0,,;,) =
@ €08 (—0Opmin) @andbsin (6,,:n) > bsin (—6,,:, ). Thus we have that(0,,,:,) > g(—0min)
which is a contradiction a,,;,, was assumed to minimiggd). Similarly forb < 0. O
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Orientation Cost Function

Similarly, the orientation error can be given by the diffeze between the desired orienta-

tion D and the current orientatiofl. Let D andC' be given in the frame of jointand let

C = Q. = C represent all the reachable orientations by rotating atheut-axis.

15) — c3sin (12”)

%) — sm( )

L)+ ersin (¥)

%) + ¢o sin (w)
for —r<¢y<m

g cos (
1 cos (
o cos (
c3 cos (

C=Q,xC= , (12.52)

The orientation error is then given by

9o(¥) =(do — e0(¥))* + (dr — &1(¥))* + (d2 — é2(¢))2 + (ds — &3(v))?

:2 — Q(Codo =+ Cldl —+ ngg =+ C3d3) (5)

+ 2(03d0 + Cle — CldQ — Codg) sin (%) (1253)

go(1) can be written as

_ v .Y
Go(¥) = Ky + ¢y cos(E) +dy sm(E), (12.54)
where

Ky, =2, (12.55)
Cyp = —2(Cod0 + c1dy + cada + ngg), (1256)
dw = 2(03d0 + Cle — CldQ — C()dg). (1257)

Similarly when they-axis is the revolute axis.

0
90(9) =2 — 2(Cod0 + c1dy + cods + ngg) Ccos (5)

+ 2(02d0 — c3dy — coda + Cld3) sin (g) (1258)
Jo(#) can then be written as
go(0) = Ko+ ¢y cos(g) + dg sin(g)7 (12.59)
where
Ky=2, (12.60)
Cyp = 72(Cod0 + 01d1 + CQdQ + ngg), (1261)
dg = Q(ngo + cody — c1doy — Cod3). (1262)

The advantage of this approach is that the cost function eamsbd as an error measure
directly. The guaternion representation also allows thi@mag rotation to be computed
somewhat faster, but then the error function needs to belesdtl separately as in Johnson
(1995) and From (2006).
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12.5.5 Orientation and Position Cost Function

The total position and orientation error can be giveryby) = g,(¢) + go(¢). g,(¢) and
Jo(1) are taken from Equations (12.38) and (12.54), respectiselthat the minimum of
g() is given by
dg(¥) _
W = 0 (12.63)

where

dgd(j)) = by cos (1) + dy, cos (%) — ay sin () — ¢y sin (%) (12.64)
This can be turned into an equation of degree four which casobed analytically, for
example by Ferrari's method. This will give four solutiohe solution that results in the
smallest value o§(%)) is then chosen.

However, by avoiding the half angles in Equation (12.649,gblution is found simply
by the inverse tangent and the computational complexitgdsiced. In Wang and Chen
(1991) ay) is found by maximisingy(). In the following, a cost function, representing
the sum of the position and orientation error is presentdts dost function can then be
used as a threshold limit directly, which was not the case amg\and Chen (1991). The
approach resembles the one in Ahuactzin and Gupka (1999/lbws the programmer
to weigh the importance of the position and orientationrerro

The cost function can be written as a function/oby representing the desired orien-
tation of each joint by a rotation of the three unit vectors’tly, = Qg xe; xQ%. YQq and
*Qq are constructed similarly frora; ande;, wheree;, e;, e, are the unitary axes. Then
the unitary axes are transformed by the quaterdigrinto

0

2 2 2 2

z * 9 +9 — 95 — a3
= * e * — , 12.65
@a = @a 2(q1q2 + qo0q3) ( )

| 2(q1g3 — qo0q2) |

0

* 2 -
YQui=Qurej*Qi= | 2 (_QE?JF qq%‘)q_g)qg : (12.66)

| 2(qoq1 + q2q3) |

0

2 « | 2(qoq2 +q1q3)
Qi=Qaxer*Q= o5 — qoq1) | - (12.67)

@ — @ — @+ 43

Then the cost function can be written as

9(1/1) = wpgp(w) + wogo(w) (1268)
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wherew, andw, are constant weightg,,(¢) is given by Equation (12.38) ang,(¢) is
found similarly by representing the difference betweendésired position of the unitary
axes and the current position of the same axes. The desisgtiopofor the z-axis is
given by*Qq = [0 “zq4 “ys “zq4]. Assume that the-axis is the revolute axis. Then
the position of the unitary-axis is given by*Q. = [0 cos (1)) sin(¢) 0] and the
difference is written as
“90(¥) = (*xa—cos (1)) + (“ya—sin (¢))* + (“z4—0)°

=2 — 2%z cos () — 2%yg sin (¥), (12.69)
and similarly for they- andz-axes. By adding these three to Equation (12.38);) can
be written as

9(¥) = wpgp(¥) + wo(" 9o () +Y90(¥) + “g0(¢))
= Ky + ay cos () + by sin (¢) (12.70)
where
Ky =wy (23 +y3+ 25 + a2 +y2 + 22 — 2242:) + w, (6 — 2°24)
ay = —2wp(TaTe + Yaye) — 2Wo("Td + Yya),
by = 2wy (Taye — Yare) + 2wWo(Y2a — “ya).
Similarly when they-axis is the revolute axis
g(0) = Ky + ag cos (8) + by sin () (12.71)
where
Ko = wy (23 +ya + 23 + 22 + 2 + 22 = 2yaye) + wo (6 = 2%ya)
ap = —2wp(Tae + 2azc) — 2wo(“xq + *2a),
by = 2wp(24xc — Taze) + 2w, (“2q4 — “x4a).

The minimum of the cost function, with respect to each jamgiven by Equation (12.46)
and the error is given by = K + a (sety) = 6 = 0in (12.70) and (12.71)).

For redundant manipulators, the cost function can be exgahtalinclude an addition
term

9(¥) = wpgp(¥) + wogo (V) + wrgr(¥). (12.72)

Whenever, can be written on the form of (12.70) the same analyticaltBmiuo the sub-
problem can be found. This is a large class of cost functibatdllows a great variety of
secondary objectives to be included in the cost functiooh s distance to obstacles and
elbow position.

Note also that for the pointing task, Equation (12.70) reduo

() = wpgp(Y) + wo"go (1) (12.73)

which is widely used in applications such as spray paintmelding and high pressure
water jets. In this case only the direction of the end-effetol is considered and thus
the computational complexity is reduced.
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12.6 Solutions to the Inverse Geometric Problem

12.6.1 Algorithm 1 - Coordinate Descent

The coordinate descent algorithm optimises a cost funatiitn respect to each of the

variables of the cost function (Wang and Chen, 1991). Thdbisach joint in the chain,

the minimum of the cost function, when only the respectivetjis moved, is found.
There are several different ways the algorithm can work &g thirough the chain:

L]

Start from the end and work its way towards the base.

Start from the base and work its way towards the end.

Start from one end and sweep its way towards the other andhibek (Aitken
double sweep method).

If the gradient is known, select the coordinate (in thisedh® joint) that corresponds
to the largest (in absolute value) component of the gradiector (Gauss-Southwell
Method, presented in the Section 12.6.2).

The cost function must be objective, i.e. independent ott@dinate frame in which it
is measured (Lin and Burdick, 2000), and preferably deswisome physical property,
as the sum of the position and orientation error. Objegtigtimportant because all the
calculations are done in local coordinates, and thus thedomate frame changes for each
iteration. Objectivity is in this case sufficient to guaemthat the algorithm is descent
and convergent (to a point satisfying the first order neecgssandition). The cost function
should also be computationally efficient, i.e. the minimuinthe cost function should be
found analytically.

The cost function presented in Section 12.5.5 have thegepies. This cost function,
together with an algorithm that starts from the end and magesay towards the base,
is a fast and stable algorithm. The cost functions représgndtation or orientation error
only are also well-defined 080 (3) andRR?, respectively. They can also be combined as
described in Section 12.5.5 to a metric function$f(3). Caution must be taken when
dealing with metrics ot$ E/(3), as it will depend on the choice of units and an unfortunate
implementation of the algorithm may cause the algorithmaiibtb converge. This is,
as will be clear in the following, for example the case whematively optimising with
respect to orientation and position error.

Three different approaches are presented:
Algorithm 1a: Loop until the error is under a threshold limit or a maximunmioer of
iterations is performed.

« for each joint, in a pre-defined order, find the joint positibat locally minimises
the position error of the end-effector, as in Section 12.5.4

« for each joint, in a pre-defined order, find the joint positthat locally minimises
the orientation error of the end-effector, as in Sectiob 2.
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Algorithm 1b: Loop until the error is under a threshold limit or a maximunmoer of
iterations is performed. For each joint, in a pre-definecord

« find the joint position that locally minimises the positierror of the end-effector,
as in Section 12.5.4.

« find the joint position that locally minimises the oriendat error of the end
effector, as in Section 12.5.4.

Algorithm 1c: Loop until the error is under a threshold limit or a maximurmioer of
iterations is performed. For each joint, in a pre-definecord

< Minimise a cost function representing the sum of the posiéind orientation errar,
as in Section 12.5.5.

The change of reference frame on the cost function must lkeskuThe cost function
needs to be objective, as defined in Lin and Burdick (2000notf the algorithm may
fail to converge. A well defined metric function will guaraetthat the the value of the
cost function does not change with the change of refereaoeeiwhich again means that
it does not change with the joint. The cost function must &lecso that the total error
decreases when iterating betwe®d(3) andR? such as in Algorithms 1a and 1b. This is
not guaranteed by just successively iterating betweeniposind orientation as a decrease
in the orientation error might cause an increase in the ipositrror and vice versa. There
is no guarantee that the total error decreases for evestiaer

12.6.2 Algorithm 2 - Modified Gauss-Southwell

The Gauss-Southwell Method determines the largest conmparighe gradientVg(x)
and chooses this for descent. This sub-section presentibeanative approach, where
the minimum of the cost function is found for each joint. Théj that corresponds to
the smallest possible value of the cost function is then emodhis is found simply by
Equation (12.46). This approach is computationally mofieieht than to compute the
gradient. It will also converge faster (at least in the bagig) because the joint that
corresponds to the maximum possible decrease of the cadidaris always chosen. This
algorithm is descent.

12.6.3 Algorithm 3 - Gauss-Southwell

The method presented above can be modified somewhat so thgbed is chosen by the
steepest descent instead of maximum possible descentmagbiat the position of each
joint that results in the minimum of the cost functigx) is found. Denote this by* for
joint ¢ and iterationk. Therate of decrease with respect to this joint is estimated by

dg(ak) _ g(@F) —g(aF) .
R ~ P fori=1...n. (12.74)

This is a good estimate only Whefn}f — xf| is small. Then the joint with the largest
corresponding absolute value of the “gradient” is chosdmns &pproach is different from
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P

Tool coordinates

\—— Tool center point

Base coordinates

Figure 12.1: General structure of a robotic manipulator.

the solution given in Section 12.6.2 in that not only the &ltgominimum is taken into
account, but also how much the manipulator has to move reftbet choice of search
direction, which leads to a more energy preserving solufl¢re joint update is then given
by

bt = 2k pap(@F —2F),  with0 < w; < 1. (12.75)

12.6.4 Algorithm 4 - Steepest Descent

Equation (12.74) gives information about all the jointsisTinformation can be exploited
by applying (12.75) to all the joints for every iteration. the optimal position of each joint
is found, assuming that all the other joints are fixed, theghtsi0 < w; < 1 need to be
chosen conservatively. As this approach requires appiteiynthe same computational
burden as the approach in the previous section but all jairgsnoved, the convergence
can be improved substantially. The algorithm is not descamd convergence cannot be
proven. This is due to the fact that Equation (12.74) is aimadé of the gradient and not
the actual gradient. In some cases & must be chosen very small which makes the
convergence very slow.

12.6.5 Algorithm 5 - Manipulator Dependent Steepest Descent

The manipulator structure can be taken into account to isgconvergence. For instance
if two joints work in the same “direction” in the operatiorsdace, they should be scaled
down so that the sum of the two joints will result in the desineovement, and not each
one looked at separately. By studying the structure of theipodator in Figure 12.1,
joint 1 is seen to be very much decoupled from the others whewmes to the effect on
the end-effector position and orientation, and th{i$' is set close ta:¥. Joint 2 and 3,
however, are strongly coupled, 88 3 should be set to about 0,5. The three wrist joints
should also be scaled due to coupling. In addition, thisirsgalector should be scaled
down somewhat by a factor < w, < 1, to ensure convergence. The following scaling
vector is suggested for a manipulator with a structure sintd the one in Figure 12.1:

W=uw,[1 05 05 03 03 03]. (12.76)
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As the previous algorithm, this algorithm is not descentweleer,w, can be set so that
the behaviour of the algorithm resembles that of a descgotitdim. This is done at the
cost of fast convergence. A simple approach to make theitigpbehave like a descent
algorithm is to perform a test for every iteration to checketiter the cost function has
decreased or not. Then, if it has nat, should be reduced until a decrease in the cost
function is obtained. For the steepest descent, a decrdabe cost function can be
guaranteed as — 0. As Vg(z) is only an approximation of the gradient, this cannot be
guaranteed in this case.

12.6.6 Algorithm 6 - Steepest Descent with Gradient Estimate

Equation (12.74) can also be used to make an estimate ofdldéegt of the cost function.
If the absolute sign is removed, the gradieny6f*) can be estimated as

Vg(xk) ~ : (12.77)

g(@8)—g(=h)
k—zk

As g(z) is on the form of (12.70)‘@9@?) < |Vg(at)| for all i so thatVg(z) is a
conservative estimate &fg(x).

Now, Equation (12.77) can be applied to Equation (12.34atly. The “step size” can
be set similar to Equation (12.76) with (somewhat consemig) w, = min;—;.., |[&F — 2|,
When the solution approaches zero, the it can be simplified te |24 — 2f|.

It should be noted that when Equation (12.75) is appliedltoiatts, or the estimate of
the gradient is applied in Equation (12.34), the algoritsmat descent. Again, however,
the behaviour of the algorithm can be made descent by chpélsénweights conserva-
tively.

The steepest descent with gradient estimate differs frogorthm 4 steepest descent
in that for the steepest descent the optimal solution foh gaiat looked at separately is
found, and then the update is done for all joints. For thepststedescent with the gradient
estimate is the well known steepest descent method, butanitstimate of the gradient.

12.7 Numerical Examples

All the inverse geometric algorithms have been tested foratgariety of problems with
the cost functions given in Sections 12.5.4 and 12.5.5. Boparison, the same test has
also been done for a Jacobian-based inverse geometridthigorThe Jacobian-based
algorithm used in the simulations is an iterative algorithased on the pseudo-inverse
of the manipulator Jacobian, as the one presented in Rebdticlbox (Corke, 1996).
The convergence of the algorithms are tested for very diffigtoblems and very easy
problems. Difficult problems are problems for which the solu is very far from the
initial guess or the geometric considerations makes itadifffito “move” the manipulator
from the initial condition to the solutions. For the easylgems the initial guess is chosen
close to one of the solutions. 20 difficult and 20 easy problare chosen and convergence
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is investigated for the two cases for all algorithms presgénfThe convergence for easy
and difficult problems for all algorithms presented are teldtwith respect to iterations
and time in Figures 12.4-12.7.

12.7.1 Algorithm 1 - Coordinate Descent

The conventional CCD presented in Section 12.6.1 is contiputlly fast. The conver-
gence of the CCD algorithms can be found in Figures 12.2:-Th8 following algorithms
are tested:

e Algla(6 — 1
* Alglb (6 — 1
(

)
)
* Alglc (6 — 1)
)

Alglc(1 —6

L]

Alglc (double sweep)

where Alglx refers to the algorithms in Section 12.6.1 &hd+ 1) means that the algo-
rithm works its way through the chain from the end effectothte base.

Itis clear that the first two algorithms that optimise it@rally between orientation and
rotation error are not descent and convergence is poor. féuisd that optimising with
respect to one criteria, while disregarding the other, moll necessarily decrease the sum
of the two cost functions.

The three algorithms presented that are based on a cosidiunepresenting the sum
of the orientation and position error are all descent atgors and convergence is reason-
ably good due to the analytical solution of each sub-probldime algorithm that starts
at the base and works its way towards the end of the chain ésstaconvergence in
the beginning an also finds the most accurate solution. Tteafalytical solution to the
sub-problem, presented in Section 12.5.5 makes this #igonieasonably good. Alglc
(6 — 1) is chosen to compare convergence in Figures 12.4-12.7.

12.7.2 Algorithm 2 - Modified Gauss-Southwell

Gauss-Southwell is computationally slower as it finds theimium for all the joints but
only one joint is chosen for decrease. As the Modified Gausgsvell finds the minimum
possible value of the cost function by moving one joint oitljzas the best convergence
in the beginning among the algorithms that move only one jairthe time. This makes
this algorithm a very good choice when an approximate swiut the problem is needed.
Convergence is very good for 5-10 iterations. After this¢bavergence flattens out and
one should switch to another algorithm to find an exact smuti

12.7.3 Algorithm 3 - Gauss-Southwell

Also the Gauss-Southwell has good convergence in the bieginbut only for about 5
iterations. Then it flattens out and the closest solutiomdbis farther from the desired
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solution than for the Modified Gauss-Southwell. The aldioniteasily gets stuck, and for
the majority of the problems, it does not converge towardreecv solution. The algorithm
can only be said to perform satisfactory for the first fewatems.

12.7.4 Algorithm 4 - Steepest Descent

The Steepest Descent moves all joints for every iteratioichwviesults in very good con-
vergence. For a weight ~ 0.5, the behaviour of the algorithm is very stable and a very
accurate solution is found reasonably fast. This is therdlgn presented that best com-
petes with the Jacobian approach when the initial condisi@tose to a solution. Also for
more difficult problems, this is the algorithm that finds thestnaccurate solution if many
iterations are allowed.

12.7.5 Algorithm 5 - Manipulator Dependent Steepest Descent

The convergence of the Manipulator Dependent Steepesebeiscabout the same as the
Steepest Descent, but convergence is better in the begiforidifficult problems. An al-
gorithm that applies a few (5-10) iterations of the Manipotdependent Steepest Descent
and then changes to Steepest Descent will give a fast aabieklgorithm which is easy
to implement as the two algorithms are almost equal whemitssoto implementation.

12.7.6 Algorithm 6 - Steepest Descent with Gradient Estimate

The Steepest Descent with Gradient Estimate is hard to tadéhe weights need to be
chosen relatively small for the algorithm to behave stabhas results poor convergence.
The convergence is about the same as the Coordinate Dese#mads, but the computa-
tional complexity makes this algorithm slower. The weighed in the simulations was
ws = 0.05.

12.7.7 lteration Speed

The simulations were performed on an 2GHz processor. Tahlk ghows the iteration
speed of each algorithm. For algorithms 1-6, this is the ti@eded to analytically solve
the optimisation problem and to update the joint positiod #re value of the objective
function.

12.8 Conclusions

A new class of solutions to the inverse geometric problenrésgnted. Convergence is
found to be very good for problems which cannot be solvedieffity or cannot be solved
at all with Jacobian-based algorithms. For all tests, amamate solution was found in
only a few iterations. The analytical solution to the subkpem guarantees computational
efficiency. A combination of the algorithms presented willega stable and fast solution
to any inverse geometrics problem. For problems with ihitiendition close to a solution,
conventional Jacobian-based algorithms converge fagtbe algorithms presented are
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Algoritm | Iteration Speed [ms]
Algo 3.85
Algl 2.62
Alg2 12.36
Alg3 12.46
Alg4 18.87
Alg5 18.88
Alg6 15.27

Table 12.1: Iteration speed of each algorithm

thus well suited to find an initial condition for the Jacobizesed algorithms in order to
improve convergence and guarantee that a solution is found.

Appendix |

Formal Metric Proof
A metric on a sefX is a function
T:XxX >R (12.78)
which for allz, y, 2 € X satisfy the following conditions
1. U(z,y) >0
2. U(z,y) =0ifandonlyifz =y
3. ¥(z,y) = ¥(y,z)
4. U(z,2) < V(z,y)+ V(y,2)
Let U define the set of all quaternions of unit length
U={(qo, 41,42, 43)|90, 01,42, 43 € R, @ + ¢f + @5 + ¢3 = 1} (12.79)

Further letey be the scalar part df = P x Q* given by
€0 = Poqo + P1q1 + P2g2 + p3gs. (12.80)

We will, without loss of generality, assume that all anglesia the interval-= < ¢ < .
Proposition 12.2. The function

U, =UxU—R (12.81)
given by¥,. = arccos(eg), is a metric function.

Proof. For all P, @, R € U we have
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1. ¥(P,Q)>0
We have

—1<ey <1 = arccos(eg) > 0. (12.82)

2. ¥(P,Q)=0ifandonlyif P = Q

We have
arccos(eg) = 0 (12.83)
if and only if
e =1 (12.84)
forwhich P = Q.

3. ¥(P,Q) =¥(Q,P)

V(P,Q) = arccos(poqo + p1q1 + p2q2 + p3q3)
= arccos(qopo + q1p1 + q2p2 + q3p3) = ¥(Q, P). (12.85)

4. V(P,R) < ¥(P,Q) + ¥(Q, R)
By definition the rotation’ = P x R* takesP into R by the shortest rotation. This
is obtained by the rotation
ppr = 2arccos (e} ) (12.86)
whereel' T is the scalar part oP * Q*. Thus we have that

opPr < ¢PQ + PQR- (12.87)

Because the rotation froift to () followed by the rotation frond) to R also takeP
into R, and from (12.86) and (12.87) we have

dpr < dPQ + PR
1 1 1
§¢PR < §¢PQ + §¢QR
arccos (el ) < arccos (egQ) + arccos (eOQR)
U(P,R) < U(P,Q) + U(Q, R) (12.88)

which concludes the proof.

Finally we show, by contradiction that the function
U, =UxU—=R (12.89)

given byW,. = 1 — ¢g, is nota metric function.
Given the triangular inequality
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V(P R) < ¥(P,Q)+ ¥(Q, R))
(1—eg™) < (1) + (1 —eg"
—eg < —(eg? e = 1)
el 26§Q+60QR—1

Consider the following rotations

P=[1 0 0 o
Qz[cos() 0 sin(%) O]T

R={cos (%) 0 sin(%) O]T

e

NN

(12.90)

(12.91)

Then we have that botR « R* and P = Q* followed by @ x R* will take P into R. If we

set¢ = 0.1 we have

eo® =0.9988
e&™ = 0.9988
ed T =0.9950

and we have

0.9950 > 0.9988 4 0.9988 — 1
0.9950 > 0.9975

and thus a contradiction.

(12.92)

(12.93)

291



THE INVERSE GEOMETRIC PROBLEM

! Algla — Coordinate Descent, 6—>1
351 ! Alglb - Coordinate Descent, 6->1
| — - — Alglc - Coordinate Descent, 6—>1
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Figure 12.2: Convergence of Coordinate Cyclic Descent Algorithms that move onegpihe time.

Initial conditions is set far from a solution.
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Figure 12.3: Convergence of Coordinate Cyclic Descent Algorithms that move onegbihe time.

Initial conditions is set close to a solution.
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60- Alg0 - Jacobian
Algl - Coordinate Descent
Alg2 - Gauss-Southwell
Alg3 - Gauss-Southwell with Gradient
50 + —©&— Alg4 - Steepest Descent (w=0.55)
— © - Alg5 — Manipulator Dependent Steepest Descent
o + - Alg6 — Steepest Descent with Gradient Estimate
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Figure 12.4: Convergence of algorithms with initial conditions far from a solution.
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\ Alg3 — Gauss—Southwell with Gradient
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O -+ Alg5 - Manipulator Dependent Steepest Descent
+ - Alg6 — Steepest Descent with Gradient Estimate
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Figure 12.5: Convergence of algorithms with initial conditions far from a solution with eespo
time.
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35r Alg0 - Jacobian
Algl - Coordinate Descent
Alg2 - Gauss-Southwell
30r Alg3 - Gauss—Southwell with Gradient
—&— Alg4 - Steepest Descent (w=0.55)
— © - Alg5 - Manipulator Dependent Steepest Descent
O 925k + - Alg6 — Steepest Descent with Gradient Estimate
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Figure 12.6: Convergence of algorithms with initial conditions close to solution.
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Alg3 - Gauss-Southwell with Gradient
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Figure 12.7: Convergence of algorithms with initial conditions close to solution with respect
time.

294



Part V

Concluding Remarks

295






Chapter 13

Conclusion

In this thesis we have addressed several issues that needstiMed before autonomous
operation of off-shore oil and gas fields can see the lightgf @he diversity in topics cov-
ered illustrates well how the transition from humanly opedaplatforms to autonomous
operation requires advances in several different fieldesdarch related to robotics. The
problems that need to be solved are not only related to dediffement research areas: the
solutions also need to represent considerable advances itvb@emes to robustness and
efficiency, compared to today’s technology. The transitionomplete autonomous oper-
ation of off-shore platforms thus requires consideralfierein a wide variety of research
areas and there is a need for considerable advances in athtsse areas before this
transition can take place.

Today there are several processes that are automated otatbdrms. These are,
however, mainly internal processes such as the control pehtion of the “factory floor”.
The external processes, such as observation and maingerteae not yet reached this
level of automation. The main topic of this thesis is how twsel this gap so that also the
external processes can be automated.

Closing this gap will require advances also in areas nottlireelated to robotics. One
example is a fundamental change to the platform design.Bedasks such as observation
and maintenance up until now have been performed by humxeisting oil platforms are
not built for robotic operation. The oil platforms of the dué will thus be quite different
from what we see today. Designing the next generation plagas currently a very active
research area and the final product will depend heavily ordiffierent types of robotic
solutions we choose. The platforms need to be constructéldasdhe robots can move
around freely and have access to every part of the platforhe platforms will also be
considerably smaller as the living facilities are remové&datform design has not been
treated in this dissertation, but the robotic solutionsased will certainly affect the
design of the platforms of the future.

In this thesis we have introduced some problems that weveetieed to be addressed
in order to obtain autonomous operation. For the topicsesdad there are still a lot of
work that needs to be done. In this sense we have not presiwetdicial solution or the
“right answer” to these problems and we have certainly ndtesbsed all the topics that
need to be addressed. We do believe, however, that we havesadd some important
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topics and that we have made some contributions—some snakithaome cases bigger—
to these topics.

We have put considerable effort into making the theory preegkas robust as possible.
We believe this to be one of the main challenges when opegratimtforms located in
remote areas. This is also one of the most difficult topicsliotics—maybe in any kind of
engineering. Solutions need to work, if not, no-one willéavin them. Also, the systems
need to work when unforeseen events occur. This is conilyemaore challenging than
making solutions that work in structured environments sTifia very active research area
that has been addressed in great depth in this thesis.

The first part of the thesis discussed robust mathematipegsentations of the dynam-
ics of vehicle-manipulator systems. These models are ussiinulation and control of
the robots where a mathematically robust representationgertant. We have presented
the dynamic equations of these systems without the presdisaggularities and in a com-
putationally efficient way. This makes the proposed apgreasll suited for model-based
control and implementation in simulation software. We halg® presented solutions for
robust operation of parallel or cooperating robots. The@ggh can be used in the design
process, where we have shown how to design parallel manipsithat are fault tolerant
with respect to torque failure. The approach can also be dsgdg operation if a joint
failure occurs in order to prevent damage to the surroundibgts or equipment.

Another aspect of developing solutions that the oil comgamiill invest in is to make
the systems economically viable. This requires efficiehttamns that can lower the overall
operational costs. This is a great challenge because th#émaenvestment of installing
a robotic system is extremely high compared to human operatfficient and optimal
solutions that can lower the operational costs comparedrain operation is thus vital.

We have presented several contributions that will increaseproductivity and effi-
ciency of the robotic operation of the platform. In Part liéywresented a new approach
that allows the manipulator to perform several differenintemance tasks such as spray
painting, high-pressure water blasting, and welding inteshorter time and using less
actuator torque. This part comes as a direct result of aelésim the oil companies who
have recognised these tasks as the most important and ¢insesning tasks expected to
be performed by robots. We also presented solutions thaw daie manipulator to take
advantage of the motion of the base in the case when thisge Emough to affect the
manipulator dynamics. This will also save actuator torgue decrease the wear and tear
on the robot.

We have also put considerable effort into verifying the tieéioal results in the lab. The
industry is only interested in solutions that work—not omtleory, but also in real life.
We have thus presented several empirical studies from ththk verify the theoretical
studies. We have had access to a well equipped lab where webdormed experiments
that illustrate, for the first time, how the inertial forcesaomoving platform affect the
manipulator. We have used this to show that the inertialf®cting on a robot mounted
on a ship in only 1 meter wave height affect the robot dynaminz if accounted for, can
be used to improve the motion planner. We have also colletiatibn data from a real
ship. This allows us to get valuable information about hovll we can predict the future
motion of a ship. This is important information when we use pedicted ship motion in
the motion planner of robot. Finally we have performed savexperiments that illustrate
how the approach in Part Il increases the efficiency of sgraint, welding, and high
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pressure water blasting applications—not only in simufetjdut also on an industrial
robot in the lab. All these empirical studies strengthenthemretical results presented
throughout the thesis.

Future Work

As already noted, there is still a long way to go before offrghoil platforms can be
completely operated by robots. There are thus severalestiag research topics that
still need to be investigated. We believe the most challepgispects of autonomous
operation are related to robustness. Unfortunately, théebils that have not yet been
explored are mostly in sensitive areas where the conseqaaimil spill are enormous.
This, combined with the fact that these areas are remoteftdal and often in extremely
harsh environments, makes the robustness of the utilissdrag a very interesting and a
challenging research area that will require a lot of attentn the future. Robustness is
also a major concern for the oil companies as unplannedddwt of the platforms are
extremely costly and should be avoided.

Also when it comes to the robotic manipulator we can expaars¢advances. Indus-
trial robots are not built for extreme weather conditionseTobots will thus need to be
manufactured for extreme conditions such as salt water@mwients, extreme tempera-
tures, strong winds, explosive gases, and so on. New migterith probably have to be
used, as well as improved coating to protect against low éeatpres and salt water.

Finally we point out intelligent solutions as an importag$earch area. Autonomous
operation requires solutions that can take the right aciiso when unplanned or un-
foreseen events occur. Even though we cannot rely entirelgexisions made by the
robotic systems, a large part of the decision-making psbsuld be executed without
the involvement of humans. This will require that the robatystem can make intelligent
decisions on its own. The robotic system is also the eyes, aad nose of the on-shore
human supervisor. The robotic system thus needs to maksialesion what information
to pass on to the supervisor. Such intelligent decisioninga&lso requires advances in
areas such as machine learning and artificial intelligence.

One of the main goals of the TAIL IO project when it startedrfgears ago was to
study the feasibility of autonomously operated off-shdt@latforms. The time span was
set to 15 years to build the first autonomous platform. Nowr feears later, we believe
that we can maintain this goal, i.e. that we will be able tddthe first autonomous oil
platform eleven years from now. A lot of research still rensaibut the investment from
both robotic manufacturers and oil companies, both whearites to financial investment
and the number of research projects on the area, suggestkitharogress will continue
and that relatively soon, the first fully autonomous off+hoil platform will see the light
of day.
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