Summary

The work of this thesis is focused on the robustness of control laws for space-
craft formation. Robustness in this case refers to the ability of the system
to withstand persistent perturbations, and to keep some of the stability
characteristics of the unperturbed system.

Analogous to the definition of practical asymptotic stability in Chaillet
and Lorfa (2006b), practical exponential stability is defined. This definition
is more restrictive than its asymptotic counterpart, but has the advantage
of an exponentially decaying upper bound of the solution on the considered
part of the state space. Lyapunov sufficient conditions are stated, both for
general systems and systems which are interconnected on a cascaded struc-
ture. Systems can naturally show a cascaded structure, as e.g. a leader
follower spacecraft formation, or they can be rewritten into a cascaded
structure, which is a common approach for systems with an observer and
certainty equivalence controller. Furthermore, a theoretical framework is
provided that fits realistic challenges related to spacecraft formation with
disturbances. It is shown that the input-to-state property of such sys-
tems guarantees some robustness with respect to a class of signals with
bounded average-energy, which encompasses the typical disturbances act-
ing on spacecraft formations. Robustness is considered in the sense that
solutions are bounded by a converging function of time, up to an offset
which is somewhat proportional to the considered average energy of dis-
turbances. The proposed approach allows for a tighter evaluation of the
disturbances’ influence, which in turns allows for the use of more parsimo-
nious control gains.

With the mathematical background in place, the leader-follower space-
craft formation is modeled. This type of formation is chosen because of
its simplicity. It is therefore, in the authors opinion, the type of formation
most likely used for real applications in the field of spacecraft formation
control in the nearest future. Both a model for relative translation and
rotation is derived. The relative translation model is derived in a general
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setting, where the origin of the frame of reference can be chosen as the
center of gravity of the leader spacecraft, or some other convenient point.

Output tracking control laws for the relative translation and rotation
models are designed. The follower spacecraft control laws are derived under
limited knowledge of the leader spacecraft. It is required that the leader
spacecraft can either broadcast its position and attitude, or the follower
spacecraft are equipped with devices that can take the necessary measure-
ments. In deriving the control laws, inspiration is taken from the theory
for control of robotic manipulators and ocean vehicles, as they are systems
with similar properties.

Motivated by the possibly high amplitude/ low energy disturbances
acting on the formation, stability of some of the control algorithms with
respect to a class of bounded-energy signals are analysed, using the above
mentioned framework.

As propulsion systems of spacecraft often do not provide continuous
actuation, stability properties of the control algorithms are also analysed
when the actuation is quantized or pulse width modulated.
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Chapter 1

Introduction

1.1 Motivation

There are several reasons for formations of spacecraft gaining so much inter-
est from the research community in the last decade. The most important is
the desire to place measuring equipment further apart than what is possible
on a single spacecraft. This is desirable because the resolution of measure-
ments often are proportional to the baseline length, meaning that either a
big spacecraft or a formation of smaller, but accurately controlled space-
craft may be used. Big spacecraft that satisfy the demand of resolution
are often impractical and both costly to develop and to launch. Smaller
spacecraft on the other hand may be standardized and have lower devel-
opment cost. In addition they may be of a lower collective weight and/or
of collective smaller size such that cheaper launch vehicles can be used.
There is also the possibility for them to piggy-back with other commercial
spacecraft.

What is a formation?

Before we proceed it is important to agree on what is meant by a (space-
craft) formation. We follow Scharf et al. (2003) and Scharf et al. (2004),
which define a formation as “a set of more than one spacecraft in which
any of the spacecraft dynamic states are coupled through a common control
In particular, “at least one of the members of the set must:

1. track a desired state profile relative to another member, and

2. the associated tracking control law must at the minimum depend upon
the state of this other member”.
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This is sometimes also referred to as an autonomous formation. A
constellation on the other hand, is “a set of spacecraft whose states are not
dynamically coupled in any way”, Scharf et al. (2003). It should be clear
that the global positioning system (GPS) is a constellation as the spacecraft
orbit corrections does not require the information about any of the other
spacecraft, but are solely based on the individual spacecraft position and
velocity.

Applications

Applications can e.g. be automated rendezvous for equipment and fuel
delivery. These applications can be considered as special cases, as the need
for autonomy is only over a limited time frame. On the other hand, the
demands to fault protection and accuracy, are just as high as for other types
of missions, due the close proximity of the spacecraft.

Another application is distributed sensors arrays. In deep space, forma-
tions will “enable variable-baseline interferometers and large-scale distrib-
uted sensors that can probe the origin and structure of stars and galazies
with high precision”, Scharf et al. (2004). According to the same refer-
ence, Earth orbiting formations will “enable distributed sensing and sparse
antenna arrays for applications such as gravitational mapping and interfer-
ometric synthetic aperture radar”.

Proposed and ongoing projects demonstrating tandem or forma-
tion flight

A list of proposed or ongoing formation flying projects (including tandem
flights, which are not autonomous) can be found in e.g. Xu et al. (2007),
D’Amico et al. (2005), Gill et al. (2001), Persson et al. (2006) and com-
prise TerraSAR-X / TanDEM-X, GRACE, the New Millienium Program
with EO-1/Landsat, Proba-3, A-Train and Prisma. It is difficult to state
which of the projects that will perform true formation flight in the sense of
the definition in Section 1.1, as tandem flights often also are described as
formations in the literature.

Also, there has been a recent proposal by DARPA which may serve as
a motivation for the work of this thesis':

“The goal of the System F6 program is to demonstrate a radically new
space system composed of a heterogeneous network of formation flying or
loosely connected small satellite modules that will, working together, provide

! Accessed at "http://www.darpa.mil/tto/programs/system F6/" 21. August, 2009
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Figure 1.1: Artistic interpretation of the Prisma satellites. Re-
produced with courtesy to the Swedish National Space Board
(http://www.prismasatellites.se)

at least the same effective mission capability of a large monolithic satellite.
Current large space systems used for national security purposes are con-
strained due to their monolithic architecture. They can be launched only on
a small number of large launch vehicles, cannot readily be upgraded and/or
reconfigured with new hardware on-orbit, and are risk-intensive, since the
unforgiving launch and space environments can result in a total loss of
investment with one mistake. The System F6 will partition the tasks per-
formed by monolithic spacecraft (power, receivers, control modules, etc.)
and assign each task to a dedicated small or micro satellite. This frac-
tionated space system offers the potential for reduced risk, greater flexibil-
ity (e.g. simplified on-orbit servicing, reconfigurability to meet changing
mission needs), payload isolation, faster deployment of initial capability,
and potential for improved survivability. This program will develop, de-
stgn, and test new space system architectures and technologies required to
successfully decompose a spacecraft into fundamental elements. Such archi-
tectures include, but are not limited to, ultra-secure intra-system wireless
data communications, wireless power systems, electromagnetic formation
flying systems, remote attitude determination systems, structure-less opti-
cal and RF arrays, distributed spacecraft computing systems, and reliable,
robust, rapidly re-locatable ground systems.”
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Explicit choices in this thesis

There are a few explicit choices that have been made in this thesis and which
should be given the grounds for: We only consider leader-follower type of
formation. This is motivated by the above mentioned projects, which for
most are formations of two spacecraft, and the fact that autonomous for-
mation control of spacecraft as an engineering problem is in its evolutionary
cradle, which prompts for simple solutions.

We use the full nonlinear model of the formation, and do not linearize
about a point of reference as is commonly done in the literature on forma-
tion flying spacecraft. This choice is taken to be able to handle formations in
strongly elliptic orbits and formation with long baseline. Also the required
precision of the proposed project, does not allow for severe approximations.

The focus on output feedback in this thesis is motivated by the fact that
position and velocity measurements in space may not be easily achieved,
e.g. because the formation is outside the coverage of the Global Positioning
System (GPS), or because the the spacecraft can not be equipped with the
necessary sensors for such measurements due to space constraints or budget
limits. Numerical derivatives are not well suited, as they may amplify
measurement noise.

Although output feedback will be treated extensively in this thesis, the
use of Kalman filters, which can be found very useful for this type of mis-
sions (where measurements are correlates with noise) and which are able
to provide velocity information from position measurements, have not been
considered in the analysis. One of the reasons for this is that Kalman filters
have already been thoroughly treated in the literature. More importantly,
the main focus of this thesis is on strong stability properties, which may
be difficult to achieve for Kalman filters although they may provide the
necessary estimates.

1.1.1 Literature review
Practical stability and input-to-state-stable systems

Notice that the term practical stability has different meaning in the liter-
ature of control theory, see Chaillet and Loria (2006b) for a discussion on
this matter. Our understanding of the term is that of Chaillet and Loria
(2006b) where the vicinity of the origin to which the solutions converge,
may be made arbitrarily small by convenient tuning of some parameters of
the system, typically the control gains. This meaning is in fact consistent
with the narrower stability property referred to in the classic text book on
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stability (Hahn, 1967, Page 278): “One does not [when talking about his
definition of practical stability], however, insist on the narrower stability
property; that is one will not require that the deviation from zero can be
made arbitrarily small by a suitable choice of constants”. We stress that
ultimate boundedness as defined in Khalil (2002) is a weaker property than
practical stability.

Input-to-state stability (ISS) is a concept introduced in (Sontag, 1989),
which has been thoroughly treated in the literature: see for instance the
survey (Sontag, 2007) and references therein. Roughly speaking, this ro-
bustness property ensures asymptotic stability, up to a term that is “pro-
portional” to the amplitude of the disturbing signal. Similarly, its integral
extension, iISS (Sontag, 1998), links the convergence of the state to a mea-
sure of the energy that is fed by the disturbance into the system. However,
in the original works on ISS and iISS, both these notions require that these
indicators (amplitude or energy) be finite to guarantee some robustness. In
particular, while this concept has proved useful in many control applica-
tion, ISS may yield very conservative estimates when the disturbing signals
come with high amplitude even if their moving average is reasonable.

These limitations have already been pointed out and partially addressed
in the literature. In Angeli and Nesi¢ (2001), the notions of “Power ISS” and
“Power iISS” are introduced to estimate more tightly the influence of the
power or moving average of the exogenous input on the power of the state.
Under the assumption of local stability for the zero-input system, these
properties are shown to be actually equivalent to ISS and iISS respectively.
Nonetheless, for a generic class of input signals, no hard bound on the state
norm can be derived for this work.

Other works have focused on quantitative aspects of ISS, such as (Praly
and Wang, 1996), (Griine, 2002) and (Griine, 2004). All these three papers
solve the problem by introducing a “memory fading” effect in the input
term of the ISS formulation. In (Praly and Wang, 1996) the perturbation
is first fed into a linear scalar system whose output then enters the right
hand side of the ISS estimate. The resulting property is referred to as exp-
ISS and is shown to be equivalent to ISS. In (Griine, 2002) and (Griine,
2004) the concept of input-to-state dynamical stability (ISDS) is introduced
and exploited. In the ISDS state estimate, the value of the perturbation at
each time instant is used as the initial value of a one-dimensional system,
thus generalizing the original idea of Praly and Wang. The quantitative
knowledge of how past values of the input signal influence the system allows,
in particular, to guarantee an explicit decay rate of the state for vanishing
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perturbations.

Relative translational tracking

Research on spacecraft formation control is vast, and makes us unable to
serve the enormous amount of literature justice here. We will therefore
focus on previous work done on spacecraft formations where a relative po-
sition model similar to the one in Chapter 3 are used. For a more thorough
treatment of the topic of spacecraft formation control, the interested reader
is instead referred to the survey paper Scharf et al. (2004). One of the so-
lutions to the control problem of the relative position model was presented
in Queiroz et al. (1999). There, a nonlinear output feedback control law
was developed guaranteeing global uniform ultimate boundedness (GUUB)
of the position and velocity tracking errors in the presence of unknown
spacecraft masses and disturbance force parameters. A filtering scheme
was provided, to allow for the use of relative velocity in the controller. A
similar result was given in Yan et al. (2000). In Pan and Kapila (2001)
the nonlinear tracking control problem for both translation and rotation
was presented. The adaptive control law derived, ensure global asymptotic
convergence in the presence of unknown mass and inertia of the leader and
follower spacecraft. In Wong et al. (2001) a full state feedback adaptive
learning control algorithm was developed to give global asymptotic conver-
gence of position and velocity tracking errors, in the presence of periodic
disturbances and unknown spacecraft masses. An internal model based
approach was taken in Serrani (2003) to design a controller that handles
parametric uncertainties and unknown disturbances. The methodology was
shown to be robust to persistent disturbances, such as gravitational per-
turbations. Assuming boundedness of orbital perturbations and the leader
control force only, an adaptive controller was designed in Kristiansen et al.
(2006b) to prove that the closed-loop system is uniformly semiglobally prac-
tically asymptotically stable (USPAS). A velocity filter was used to provide
sufficient knowledge about the relative velocity to solve the control problem.
These results were extended in Kristiansen et al. (2006a) to also include the
case of uncertainty in spacecraft mass.

Relative rotational tracking

The following is a presentation of some of the works done on output con-
trol of spacecraft using quaternion measurements. A globally convergent
angular velocity observer can be found in Salcudean (1991) and is highly
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referenced in the later works on output control of spacecraft. In Lizarralde
and Wen (1996) a nonlinear filter is used to compensate for missing velocity
measurements. The passivity properties of the system are exploited in an
output controller so as to achieve asymptotic stabilization of the closed-loop
system. A nonlinear quaternion based feedback control law is used in Joshi
et al. (1995) to achieve similar stability results. The controller does not
depend on system parameters, and therefore robustness to modeling errors
and parametric uncertainties are ensured. Two schemes for output atti-
tude tracking are presented in Caccavale and Villani (1999). The schemes
are based on results achieved for output control of robot manipulators, see
Berghuis and Nijmeijer (1993), but as mentioned in Caccavale and Villani
(1999) the extension is not straight forward due to the nonlinear mapping
between the orientation variables, the unit quaternions. In Bondhus et al.
(2005) output control is applied to the synchronization of a leader/follower
formation of spacecraft. Nonlinear observers are used to estimate the angu-
lar velocities based on quaternion measurements, and the rotation matrices
representing the attitude error between the reference trajectory and the
leader and the follower spacecraft are shown to converge to the identity ma-
trix from any initial condition. The tracking control problem of a follower
spacecraft with coupled rotational and translational motion is addressed
in Wong et al. (2005). Convergence of the position and tracking errors
are proven, using only position and attitude orientation measurements. In
Tayebi (2006) a spacecraft is stabilized without the use of velocity measure-
ments. A unit quaternion observer is used together with linear feedback
in terms of the vector parts of the actual unit quaternion and the estima-
tion error quaternion. Asymptotic stability is proven through Lyapunov
analysis. The model of the relative dynamics used in this paper has also
been treated in Kristiansen et al. (2006c) and Krogstad et al. (2007). In
Kristiansen et al. (2009) a controller was designed which incorporates an
approximate-differentiation filter to account for the unmeasured angular
velocity. The closed-loop system was shown to be UPAS.

1.2 Contributions and limitations of this thesis

1.2.1 Contributions

In the following the contributions of the work presented in this thesis are
summarized. The labels are with reference to the publication list in Section
1.2.2:

In Chapter 2 we present a theoretical contribution consisting of new
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definitions and theorems of sufficient conditions for nonlinear time-varying
systems to be exponentially stable with respect to balls that can be arbi-
trarily reduced by a convenient tuning. We denote a system satisfying these
properties in the whole state-space uniformly globally practically exponen-
tially stable (UGPES). For the sake of completeness, we also discuss uniform
semiglobal exponential stability (USES) and uniform semiglobal practical
exponential stability (USPES), in which case the domain of attraction is not
the whole state-space, but a compact set that can be arbitrarily enlarged.
These results were published in vi/.

Furthermore, we provide a theorem of sufficient conditions for a cas-
caded system to be UGPES, uniformly practically exponentially stable
(UPES) or uniformly globally practically asymptotically stable (UGPAS).
As many of the disturbances acting on spacecraft are difficult to model,
we define a general class of signals with limited excitation in average. By
explicit knowledge of an ISS Lyapunov function, and in particular its dis-
sipation rate, we are able to identify the class to which it is robust, in
the sense that the solutions are bounded by a KL estimate and a constant
(corresponding to the predefined required precision). These results are con-
tained in iv/. The mathematical framework is put forward in Chapter 2.

Most of what is presented in Chapter 3 is based on previous published
materials by other authors, e.g. Ploen et al. (2004b). Some new and impor-
tant properties of the models were however published in iii/. Also, based
on the content of Chapter 3, we show in subsequent chapters how different
choices of reference frames simplifies the stability analysis of the overall
formation, and gives stronger stability results.

Chapter 4 through 6 contain applications of the theory in Chapter 2. In
the following, we will therefore summarize how our applications are different
from other results in the literature.

In Chapter 4 the stability of a leader /follower formation is analyzed us-
ing a controller-observer scheme originally designed for the control of robot
manipulators. While, in the nominal case, the solutions of the system are
proven to be exponentially convergent to zero, we will show that the steady-
state error resulting from external disturbances and lack of measurement
can be arbitrarily diminished by a convenient tuning of some controller
gains. In fact, based on knowledge on the bounds of the disturbances and
the acceptable steady state error, the presented theorems give information
on how to pick the controller gains. These results were published in xi/
and vi/.

In Chapter 5 the attitude tracking problem of a leader/follower forma-
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tion under external disturbances is considered. As opposed to most other
papers on the topic, the control of both the leader and follower spacecraft
are considered, and the solutions of the system are proved to be exponen-
tially convergent to zero, up to a steady-state error that can be arbitrarily
reduced by a convenient tuning of the control gains. The results of this
chapter are based on vii/.

In Chapter 6 we show that the overall formation is input-to-state stable
(ISS) with respect to an extended disturbance, which from the follower
spacecraft point of view not only includes the external disturbances, but
also the leader spacecraft reference trajectory. Using the framework of
Section 2.5, we find an explicit bound on the tolerable average excitation.
The contents of this chapter can also be found in iv/.

Although, propulsion systems of spacecraft often do not provide contin-
uous actuation, stability analysis of such systems have hardly been treated
in the literature for systems with nonlinear plants. Chapter 7 is devoted
to the analysis of such systems when the actuation is quantized or pulse
width modulated. The results of quantized actuation have been published
in x/ and ix/.

1.2.2 List of publications

The following list contains the authors publications and recently submitted
papers:

Journal papers

i/ Grotli, E. 1., Chaillet, A., Panteley, E., Gravdahl, J. T., 2010a. Ro-
bustness of ISS systems to inputs with limited moving average, with
application to spacecraft formations. International Journal of Robust
and Nonlinear Control. (Submitted).

ii/ Sprinkle, J., Eklund, J. M., Gonzalez, H., Grgtli, E. 1., Upcroft, B.,
Makarenko, A., Uther, W., Moser, M., Fitch, R., Durrant-Whyte,
H. and Sastry, S. S., 2009. Model-based design: A report from the
trenches of the DARPA Urban Challenge. Software and Systems
Modeling 8, 551-556.

iii/ Kristiansen, R., Grotli, E. 1., Nicklasson, P. J. and Gravdahl, J. T.,
2007. A model of relative translation and rotation in a leader-follower
spacecraft formation. Modeling, Identification and Control 28 (1), 3-
13.
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Conference papers

iv/ Gretli, E. 1., Chaillet, A., Panteley, E., Gravdahl, J. T., 2010b.
Robustness of ISS systems to inputs with limited moving average,
with application to spacecraft formations. In: Proc. of the Interna-
tional Conference on Informatics in Control, Automation and Robot-
ics.(Submitted).

v/ Sprinkle, J., Eklund, J. M., Gonzalez, H., Grotli, E. 1., Sanketi, P.,
Moser, M., and Sastry, S. S., 2010. Recovering Models of a Four-
Wheel Vehicle Using Vehicular System Data. In: -. (In preparation).

vi/ Grotli, E. 1., Chaillet, A., Gravdahl, J. T., 2008. Output control of
spacecraft in leader follower formation. In: Proc. of the 47th IEEE
Conference on Decision and Control. pp. 1030-1035.

vii/ Gretli, E. 1., Gravdahl, J. T., 2008b. Output attitude tracking of
formation of spacecraft. In: Proc. of the 17th IFAC World Congress.
pp. 2137-2142

viii/ Gonzalez, H., Grotli, E. I., Templeton, T. R., Biermeyer, J. O., Sprin-
kle, J. and Sastry, S. S., 2008. Transitioning control and sensing tech-
nologies from fully-autonomous driving to driver assistance systems.
In: Proc. of Automatisierungs-, Assistenzsysteme und eingebettete
Systeme fiir Transportmittel.

ix/ Groetli, E. I., Gravdahl, J. T., 2008a. Formation control by quantized
output feedback. In: Proc. of the 3rd International Symposium on
Formation Flying, Missions and Technologies

x/ Grotli, E. 1., 2007. Analysis of a nonlinear continuous control algo-
rithm, in the case of discontinuous actuation. In: Proc. of the 58th
International Astronautical Congress

xi/ Grotli, E. I., Gravdahl, J. T., 2007. Passivity based controller-observer
schemes for relative translation of a formation of spacecraft. In: Proc.
of the 26th American Control Conference. pp. 4684-4689

The publications ii/, v/ and viii/ were produced during the same time
period, but are outside the scope of this thesis.
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1.2.3 Limitations

Only leader-follower type of formations are considered in this thesis. Unless
otherwise stated, it is assumed that both the structure and parameters of
the models are known.

There is no explicit treatment of the control force saturation. For prac-
tical stability, it is assumed that the gains can be chosen sufficiently large
to achieve the prespecified precision. This means that for accurate preci-
sion, the required actuation forces may become larger than what an actual
control system can provide. Furthermore, the spacecraft are considered to
be overactuated and that thrust is available in the necessary directions.

All signals are deterministic and without delay, and no explicit con-
cern on how to achieve the sensored information has been taken. Collision
avoidance is assumed to be ensured by a supervisory control level, and is
considered to be outside the scope of this thesis.

1.2.4 Organization of this thesis

Chapter 2: This chapter makes up the theoretical framework for this the-
sis. Analogous to the definition of practical asymptotic stability in Chaillet
and Lorfa (2006b), we define practical exponential stability. This definition
is more restrictive than its asymptotic counterpart, but is a stronger result
in the sense that the solutions are bounded by an exponentially decay-
ing function on the considered part of the state space. Lyapunov sufficient
conditions are stated, both for general systems and systems which are inter-
connected on cascaded structure. Systems can naturally show a cascaded
structure, as e.g. a leader follower spacecraft formation, or they can be
rewritten to the desired structure such as systems with both controller and
observer. Furthermore, we study the robustness of a class of nonlinear
systems with respect to a certain class of signals. Such signals are typi-
cally external disturbances, but from a follower spacecraft point of view,
these signals may also be the reference trajectory of the leader spacecraft.
Reference trajectories often belong to the considered set of signals.
Chapter 3: Here, the leader-follower spacecraft formation is modeled.
This type of formation is chosen because of its simplicity. It is therefore, in
the author’s opinion, the type of formation most likely used for real appli-
cations in the relatively new field of spacecraft formation control. Both a
model for relative translation and rotation is derived. The relative transla-
tion model is derived in a general setting, where we can choose the origin of
the frame of reference as center of gravity of the leader spacecraft or some
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other convenient point.

Chapter 4: This chapter concerns output tracking of relative transla-
tion. The follower spacecraft control law is derived under limited knowledge
of the leader spacecraft. It is required that the leader spacecraft can either
broadcast its position, or the follower spacecraft are equipped with devices
that can give the necessary measurements. In addition, it is assumed that
the control action and disturbances acting on the leader spacecraft is upper
bounded. In deriving the control laws we make use of the theory for con-
trol of robotic manipulators and ocean vehicles, as they are systems with
similar properties.

Chapter 5: This chapter is concerned with output attitude tracking.
As opposed to the translational case in Chapter 4, we derive control laws
for both the leader- and the follower spacecraft. The error dynamics is
naturally on a cascaded structure, and we apply the theorem for UPES
derived in Chapter 2 in the analysis.

Chapter 6: Here we analyse the controllers of a spacecraft formation,
using the framework of Section 2.5. Our application show that the frame-
work is not only useful for systems perturbed by certain disturbances, but
we also show that the reference trajectory of the leader spacecraft can be
seen as a disturbance from the follower spacecraft point of view.

Chapter 7: As propulsion systems of spacecraft often do not provide
continuous actuation, this chapter is devoted to the analysis of such systems
when the actuation is quantized or pulse width modulated.

1.3 Mathematical preliminaries

1.3.1 Notation

e N, R, C and H denote the set of all nonnegative integers, real num-
bers, complex numbers and quaternions, respectively. We use R>q to
denote all nonnegative real numbers, and N>y to denote all integers
greater or equal to N. |-| denote the floor function, i.e. |z| is the
largest integer not greater than .

e The time derivatives of a function z(t) are denoted & := ?Tf, Z = ‘3173”,
(n) . d™g
Todt

e The p-norm of a vector € R™ is defined as |z|, := (31, |z:[?)/?,
for 1 < p < oo and |z| = max; |z;|. Of notational simplicity we
define the Euclidean vector norm as |z| := ||y = (2 z)Y/2.
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e We use | - | for the induced Ly norm of matrices.

e We use diag(-,...,-) to denote diagonal- or block diagonal matrices,
with the elements within the parenthesis along the diagonal.

e The £, and L, norms of a measurable function ¢ : R — R" are
defined as [|]l, = ([ |6(1) PdL) 17, and [|6loc = ess supy=g [6(2)].

e The open ball in R™ of radius ¢ about z is defined by Bs(x) := {z €
R™: |z — x| < 0}. We use Bs for the open ball about the origin, that
is Bs :={x € R" : |z| < 0}.

e The set A C R" is open if for any = € A there exists a real number ¢
such that Bs(x) C A. A is closed if the complement (R"/A) is open.
The closure of an open set A is denoted A.

e We use |- |4 to denote the distance-to-set function, that is |xi|4 =
inf{|zq — xo| : xo € A}.

e A set A is convex if for each 21,29 € A, az1 + (1 — a)ze € A, Va €
[0,1]. The closed convex hull of a set A, that is, the smallest closed
convex set containing A, is denoted ¢o.A.

e The function f : [a,b] — R is continuous if for each ¢ > 0 and each
x € [a,b] there is a 0 > 0 such that

y€lab] and |y—z[<d = |f(y) - f(z)| <e

e The function ¢ : [a,b] — R is absolutely continuous if for each € > 0
there is a § > 0 such that whenever (aq, 3;), ..., (an, 5,,) are disjoint
intervals in [a, b] we have

S Be—ar <8 = > |g(By) — glan)| < e
k=1 k=1

e A measurable function u : [tg, +00) — R™, n positive integer, is said
to be essentially bounded if esssupcp, +o0) [u(t)| < +00, and locally
essentially bounded if, for any T' > o, uj, 1) is essentially bounded,
where u, 1) : [to, +00) — R" is the function given by

u(t) forall t € [to, T)
U t) =
[tO,T)( ) {O elsewhere.
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A continuous function a : R> — Rxq is of class K (a € K), if it
is strictly increasing and «(0) = 0. If, in addition, a(s) — oo as
s — 00, then « is of class K (o € K). A continuous function
B : R>p X R>g — R is said to be of class KL if, 5(-,t) € K for
any t € R>o, and (s, -) is decreasing and tends to zero as s tends to
infinity.

e The maximum and minimum eigenvalue of a matrix A is denoted by
Amax(A) and A\pin(A), respectively.

e I,xn and 0, denote the nxn identity- and zero matrix, respectively.

e Given a vector w = col(w1, w2, ws3), the matrix S is the skew-symmetric
operator defined as

0 —W3 w9
S(w):= | ws 0 —w
—W?9 w1 0

ie. S(w)=—ST (w). We use SS to denote the set of skew-symmetric
matrices.

The notation 7 is used for a coordinate-free or geometric vector, a quan-
tity of both magnitude |Z| and direction. By coordinate-free we mean that
this description does not rely on the definition of any coordinate frame, but
obeys the parallelogram law of addition in the three dimensional Euclidean
point space, E3, see Ploen et al. (2004a). In a coordinate frame F,, the
vector & can be expressed as a linear combination of the orthogonal unit
vectors €, 1 € {1,2,3}, by

T = x7€1 + 2562 + x35€3,

where x; = ¥ - €; are the Cartesian coordinates of £ in F.. The time
derivative of a vector Z with reference to F. is defined by
e

af = S'Uié'l + .’,1'2552 + .i'ggg

A coordinate vector is another convenient form to describe Z, where the
coordinates with respect to a particular coordinate frame, in this case F,
are written as a column vector:

z¢ = col (x7, z§, x5) .
The time derivative coordinate vector is represented as:

&° = col (i, 45, 75) .
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1.3.2 Rotation matrices and unit quaternions

We use the rotation matrix Rf, to transform vectors represented in coordi-
nate frame F, to Fp, while preserving the length of the vectors. Rotation
matrices are special orthogonal matrices in R3*3, that is, they belong to
the space

sowz{Rawwl ﬁﬁzkmdam%ﬂ}

We will repeatedly use the fact that (Rg)—r = (Rg)_1 = R® (where R? is
equivalent to the opposite rotation of R}), that the rotation matrix of a
composite rotation is given by the product of the rotation matrices (i.e.
R% = R¢R?), and that

RY = § (wy) R

The vector wg, is the angular velocity vector. The subscript denotes the
angular velocity of reference frame F; relative to frame F,, where as the
superscript shows that the vector is decomposed in frame F,. When clear
from the context, we may leave out the superscript of notational simplicity.
Two important properties of the indexed angular velocity representation are
wl = —wp, and wi,. = Wi + wi.. The quaternions are a generalization of
the complex numbers, and the set of quaternions, denoted by H, is defined
as, see Ma et al. (2004):

H=C+Cj, withjZ=-1

and where the set of complex numbers is defined as C = R + Ri with 2 =
—1. Furthermore, an element of Hl, that is a quaternion, is of the form

Q =n+ €11+ exj + e3k

with 7,€1,€3,e3 € R and k = ij = —ji. In this paper we will focus on a
subgroup of H, the unit quaternions:

§:{QEH| @P:Q. (1.1)

The unit quaternions (or Euler parameters) can be used to represent ro-
tation matrices, and this representation has the advantage of avoiding sin-
gularities (as opposed to rotation matrices represented with Euler angles).
We will in the following use the vector ¢ to represent the quaternions,
with its elements being the real elements of @, i.e. ¢ = (77,6T)T where
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e = col(eq,€9,€3). The rotation matrix for the unit quaternions is (see
Hughes (1986))
R(q) = Isxs + 218 (¢) +25° (¢) .

Therefore, ¢ and —q represents the same orientation. We use ¢ to denote
the complex conjugate of ¢, i.e. ¢ = (1, —¢')'. The quaternion product be-
tween two vectors g, = (1,,€, )" and g, = (1, ¢, ) is defined, see Egeland
and Gravdahl (2002), as

NaTly = €a € ]

X =
o & b [%61) + nyea + 5 (€a) €

We define the matrix
E(q) =nlsxs + S(e).

The kinematic differential equation can now be derived as

.1 —e

T3 [E <q>} “
relating the time derivative of the quaternion to the angular velocity. We
will use the notation ¢, for the quaternion describing the orientation of a
frame Fy relative to a frame F,. Perfect tracking in terms of the quaternion
error qq; = G;a @i, where g;4(t) represents a possibly time varying reference
orientation and g;4 represents the actual orientation, is achieved when g4 =
col(£1,0,0,0).



Chapter 2

Mathematical Preliminaries

2.1 Practical stability

The formal study of spacecraft formation requires solid theoretical roots. In
this chapter, a theoretical framework that fits realistic challenges related to
this problem is presented, which is also contained in Grgtli et al. (2008) and
Grotli et al. (2010a). The material highly builds on the work in Chaillet
(2006). Indeed, in presence of uncertainties or disturbances, it is often
the case that a nominally asymptotically or exponentially stable formation
turns out to present a steady-state error in reality. In the case when this
error can be reducible at will by a convenient tuning of some gains, this
stability property is referred to as practical. Practical stability has been
treated in several papers, see Chaillet and Loria (2006b), Chaillet and Loria
(2008) and references therein. We will here give a very simple introductory
example:

Example 2.1 Consider the scalar system
z=—-0x+d (2.1)

where 0 is a constant parameter and d = d(t) is a non vanishing, time-
varying disturbance. In this case, for any 0, the solutions are bounded by

(1) < (2(0) ~ 2] 1 2 2.2)

where B4 = sup, d(t). We see that for any 0 such that 0 > 5,0, the solutions
converge exponentially to a ball around the origin of radius § = 3,/6.
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Tools for a formal analysis of more involved parameterized time-varying
systems will be given in Section 2.2. We will stress that ultimate bounded-
ness as defined in Khalil (2002) is a weaker property than practical stabil-
ity. For a system possessing the latter property, the vicinity of the origin to
which the solutions converge may be made arbitrary small by convenient
tuning of some parameters of the system, typically the control gains.

2.2 Definitions

Semiglobal and practical exponential stability properties pertain to para-
meterized nonlinear time-varying systems of the form

&= f(t,z,0), (2.3)

where z € R", t € R>p, § € R™ is a vector of constant parameters and
[R50 xR" xR™ — R" is locally Lipschitz in z and piecewise continuous
in t for any ¢ under consideration. 6 is a free tuning parameter, that can
for instance be a control gain, see Chaillet and Loria (2008) for details.

Definition 2.1 (UGPES) Let © C R™ be a set of parameters. The sys-
tem (2.3) is said to be uniformly globally practically exponentially stable
on O if, given any 0 > 0, there exists a parameter 0*(0) € O, and positive
constants k(6) and v(5) such that, for any zo € R™ and any tg € R>qo the
solution of (2.3) satisfies, for all t > ty,

|z (¢, to, 20, 0)| < 6 + k() |zo| e YO E—t0), (2.4)

Definition 2.2 (USES) Let © C R™ be a set of parameters. The system
(2.3) is said to be uniformly semiglobally exponentially stable on © if, given
any A > 0, there exists a parameter 0*(A) € © and positive constants k(A)
and ¥(A) such that, for any xog € Ba and any ty € R>q the solution of (2.3)
satisfies, for all t > ty,

|z (t, to, @0, 0%)| < k(A) |zo] e V(A E=H0)

Definition 2.3 (USPES) Let © C R™ be a set of parameters. The sys-
tem (2.8) is said to be uniformly semiglobally practically exponentially
stable on O if, given any A > § > 0, there exists a parameter 0*(5,A) € ©
and positive constants k(5,A) and v(5,A) such that, for any xg € Ba and
any to € R>q the solution of (2.8) satisfies, for all t > to,

|2(t, to, 0, 0%)| < & + k(5, A) |zo| e (G2 t—to)
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These properties are strongly related to their asymptotic counterpart
(UGPAS, USAS and USPAS) defined and commented in detail in Chaillet
and Loria (2006c, 2008). They are however stronger properties as they
impose an exponential behavior of the solutions in the considered domain
of the state-space and a linear dependency in the initial condition.

Remark 2.1 The term uniform in the above definition is due to the re-
quirement that the constants k and v are independent of initial condi-
tions. For time-varying systems the uniformity property is crucial as it
provides certain robustness properties with respect to external disturbances.
As pointed out in e.g. Loria and Panteley (2005), nonlinear time varying
systems which are locally Lipschitz in t, and which are ULAS or ULES,
are also locally input-to-state stable. On the contrary, systems without this
property are not robust. An example is given in (Loria and Panteley, 2006,
Proposition 6.1), of a system which solutions are exponentially convergent,
but where the convergence rate depends on initial times. It is shown that
it 1is possible to construct mon-vanishing perturbations that destabilizes the
system.

Remark 2.2 Note the difference of UGPES in Definition 2.1 and the def-
inition of \-UGPES in (Loria and Panteley, 2002, Definition 1). Although
they also consider a parameterized nonlinear system, and the constants k
and v in Definition 2.1 may depend on a parameter A, the stability is with
respect to the origin (and not to a ball of radius 0).

Remark 2.3 We would also like to make the reader aware of the difference
from the definition of UGPES (of impulsive systems) in (Dlala and Ham-
mami, 2007, Definition 4.1), where the constants k and ~ are independent
of §. Our approach, allows for the use of a Lyapunov function that depends
on the parameter 0, (which again depends on ¢ ).

Remark 2.4 Global practical uniform exponential stability was also de-
fined in (Benabdallah et al., 2009, Definition 5), but with a different mean-
ing than in 2.1, since the stability in the cited reference is with respect to a
fized set, and not a set that can be decreased by parameter tuning.

In Chapter 5 we will deal with the attitude tracking of spacecraft. Since
the Euler parameters, introduced in Section 1.3.2, will be used to describe
the orientation error, any global/semiglobal results in the above setting
are ruled out. This is due to the fact that the Euler parameters naturally
entails two equilibrium points. We will therefore also need the following
definition:
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Definition 2.4 (UPES) Let © C R™ be a set of parameters. The system
(2.3) is said to be uniformly (locally) practically exponentially stable on
© if there exists A > 0, and given any § > 0, there exists a parameter
0%(0,A) € © and positive constants k(0,A) and v(0,A) such that, for any
zo € Ba and any to € R>q the solution of (2.8) satisfies, for all t > to,

|2 (t, to, mo, 0)| < 0 + k(3, A) |zg| e V@A) E—t0)

2.3 Lyapunov sufficient conditions

We here present sufficient conditions for the above properties to hold. They
are expressed as a condition on the sign of a Lyapunov-like function’s deriv-
ative, on a restricted region of the state space.

2.3.1 UGPES

Theorem 2.1 (Sufficient condition for UGPES) Let O be a subset of
R™ and suppose that, given any 6 > 0, there exist a parameter 0*(5) € O,
a continuously differentiable Lyapunov function Vs : R>g x R" — R>q and
positive constants k(8), k(d), ®(8) such that, for all z € R™ \ Bs and all
t € R>o,

5(0) x]” < Vs(t, x) < R() [, (2.5)
Vs Vs
-9 -9 *) < p .
)+ S0 (12,07 < —w(B) o 2.6
where p denotes a positive constant. Then, under the condition that
R(0)6P
= 2.

the system @ = f(t,x,0) introduced in (2.3) is UGPES on the parameter
set ©.

Proof. Let (2.5) and (2.6) hold for all z € R™\ B; and all ¢ € R>q. Along
the solutions of (2.3), we get from (2.5) and (2.6) that
]a:(t, to, X0, 9*)| > S =

Vs(t, z(t, to, x0,0%)) < —k'(0) V5 (¢, 2(t, to, zo, 0))

where #/(8) := k(8)/%(). Invoking (Chaillet and Lorfa, 2006¢c, Lemma 13),
we then get that, for all xg € R", all ty € R>¢ and all ¢t > tp,

N AN _= 0\ Up )
ot t0,20,09)] < [ E22 ) (D) ) oot
= \s0) 5(3)
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In view of (2.7), we see that the quantity %(8)6” /() may be reduced at
will by choosing ¢ small enough. Therefore, (2.4) is satisfied with

s (70" ko) = (22 " @) =¥
“\wG) ) ~ \&0) wETeE T

and the conclusion follows. m

Compared to classical results for Lyapunov stability, conditions (2.5)
and (2.6) are natural (see (Khalil, 2002, Theorem 4.10)). For perturbed
systems, (2.5) is notably satisfied by the Lyapunov function associated to
the UGES of the origin of the corresponding nominal systems. (2.6) is sim-
ilar to the Lyapunov sufficient condition for global ultimate boundedness
(¢f. e.g. Khalil (2002)). Intuitively, one may expect that these two require-
ments, when valid for any arbitrarily small d, suffice to conclude UGPES.
However, we see that an additional assumption (2.7) is required, establish-
ing a relationship between the bounds on the Lyapunov function. Indeed,
in the present framework, the Lyapunov function may here depend on the
tuning parameter ¢, and consequently on the radius §. As clearly shown
in Kokotovic and Marino (1986); Sepulchre (2000), this parametrization
of the Lyapunov function may induce unexpected behaviors if (2.7) is not
assumed.

2.3.2 USES

Theorem 2.2 (Sufficient condition for USES) Let © be a subset of
R™ and suppose that, given any A > 0, there exist a parameter *(A) € O,
a continuously differentiable Lyapunov function Va : R>¢g x R" — Rxq
and positive constants k(A), k(A), B(A) such that, for all x € Ba and all
t € R>o,

E(A) |2]P < Va(t,z) < R(A) |l (2.8)
oVa oVa "

—_— — < —k(A) |z|P 2.

SE b w) + 52 (0) (12,60%) < ~w(A)[a]” | (29)
where p denotes a positive constant. Then, under the condition that
. K(A)AP

lim ——~— = 2.1

A Ay T (2.10)

the system @ = f(t,x,0) introduced in (2.3) is USES on the parameter set
©.

The proof is omitted, but follows along the same lines as in the proof
of Theorem 2.1 and Theorem 2.3.
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2.3.3 USPES

Theorem 2.3 (Sufficient condition for USPES) Let © be a subset of
R™ and suppose that, given any A > & > 0, there exist a parameter
6%(6,A) € ©, a continuously differentiable Lyapunov function Vs a : R>g x
R™ — R>q and positive constants k(0,A), k(6,A), (5, A) such that, for
all z € Ba \ Bs and all t € R>o,

K(8,A) [ < Vaalt,) <R, A) [zl (2.11)

aV; aV;
5,A (t2) + 5,A
ot Or
where p denotes a positive constant. Assume also that, given any A* >
0* > 0, there exist A > 6 > 0 such that

"6, A)° K(8,A)AP
— 7 < — 7 > A*. 2.1
w,8) =0 " THEa) C (2.13)

(t,x)f(t,z,0%) < —k(0,A) |z, (2.12)

Then the system & = f(t,x,0) introduced in (2.3) is USPES on the para-
meter set O.

Proof. Let (2.11) and (2.12) hold for all z € Bx \ B and all ¢ € R>q. Let
A be any positive constant and pick § such that

1
R (S, A) P\

— 7N <A,

65)

which is always possible due to (2.13). This allows us to apply (Chaillet,
2006, Proposition 2.13), and we find that

lzo| <A = |2(t, Lo, 20,0%)] <A, Vit >to,

where )
A (EO2E
R (0,A)
Note that solutions starting in Bx, will never escape EA? and in view of

(Chaillet, 2006, Lemma 2.7), we have that for any 2o € Bx and any tq €
R>o,

= <0\ /P
< H}((; A) W (5 A (t—
t,to, o, 0)] <6+ = K(8,8)(t=to)/p
(bt 20, 0] < </€(5,A)> 2ol e
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In view of (2.13), we see that the quantity § may be reduced at will by
choosing ¢ small enough, and that A may be enlarged at will by choosing
A large enough. Therefore, (2.3) is satisfied with

S

K (0, A)
p

A

5(

,A)
,A)

1/p
§=06, k(5,A)= ( ) and v (4, A) =

S

and the conclusion follows. m

2.3.4 UPES

Theorem 2.4 (Sufficient condition for UPES) Let © be a subset of
R™ and suppose that, there exists A > 0, and given any A > § > 0,
there exist a parameter 0*(0) € ©, a continuously differentiable Lyapunov
function Vs : R>g x Ba — Rxq and positive constants x(6), k(5), () such
that, for all x € Ba \ Bs and all t € Rx,

£(0) |z|” < Vs(t,z) < R(9) [=]” (2.14)
%(t,x) + %(i, z)f(t,z,07) < —k(d) |z, (2.15)

where p denotes a positive constant. Then, under the condition that

O
I e0)

=0, (2.16)

the system @ = f(t,x,0) introduced in (2.3) is UPES on the parameter set
©.

The proof is omitted, but follows along the same lines as Theorem 2.1.

2.3.5 Practical K-exponential stability

For the sake of completeness, we will here briefly discuss the relations of the
above stated definitions to KC-exponential stability. Ezponential stability in
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any ball of initial conditions and K-exponential stability - two equivalent de-
finitions, see (Bgrhaug, 2008, Remark 2.1) - were defined in Sastry and Bod-
son (1994) and Sgrdalen and Egeland (1995), respectively. These definitions
are commonly applied to stability analysis of nonholonomic and underac-
tuated systems. The following remark shows that practical K-exponential
and practical asymptotic stability are the same.

Remark 2.5 The notion of uniform practical K-exponential stability, ¢.e.
for any § > 0, there exist 0* € O, a function ks € K and a positive constant
ks > 0, such that for all xg € R™ and all tg > 0,

|2 (£, to, 20, 0%)| < ks (|zo]) e Fol—00) 16, Wt >, (2.17)

and the notion of uniform practical asymptotic stability, i.e. for any § > 0,
there exist a function B5 € KL and 0* € © such that for all xg € R™, an
all to > 0,

|IB (t,to,l’o,e*” < 55(|£L'0|,t—t0)—|—5, Yt > to, (2.18)
are equivalent.

Proof. The implication from (2.17) to (2.18) is trivial. For the implication
in the opposite direction, consider the following: for all xg € R™ and all
d > 0, there exists a T (Jxg|) > to such that S5 (|zo|,T5) < 6. Then

2 (t)] <26, V> Ty (Jaol)
By (Sontag, 1998, Lemma 8) we have that since S5 € KL, there exist
a4, 25 € Koo such that for all s > 0, and for all ¢ > ¢y > 0,
Bs (s,t —to) < ay (5) gy (ef(t7t°)> .
Furthermore, for all s > 0 and all ¢t < T; (s),
Bs(s,t) < o, (s)ag, (1) eTa(o)=(i=to)
< oy (s) ey, (1) e~ 10,

Let
ks (s) == ai, () GT(S(S)OZQ(S (1).

Then,
|z ()] <26 vt > T (|zol)
& ()] < ks (Jzol) e ™) 16 Vit < T (|zo))

Let & := 25. Then for all t > ¢,
[ (8)] < ks (Jaol) e M50 10) 4§

which concludes the proof. m
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2.4 Stability of cascades

In this section we consider systems on the following cascaded structure:

.i’l = fl(t,l‘l,el) +g(t,a:,9) (2.19)
.fz = fg (t, 9, 92) (2.20)

where T := (a:lT,a:ZT)T eR™ xR™,t € Rxg, 0 := (HI,HJ)T € R™ x R™2,
f1 and fo are locally Lipschitz in = and piecewise continuous in ¢ for all
0 under consideration. Stability of cascades for nonlinear nonautonomous
systems has been thoroughly treated in the literature. Sufficient conditions
for UGES can be found in Corless and Glielmo (1998) and Panteley et al.
(1998); for UGAS can be found in Panteley and Lorfa (1998), Panteley and
Lorfa (2001), Loria and Panteley (2005) and Tjgnnas et al. (2006), and
for UGPAS can be found in Chaillet and Lorfa (2006a) and Chaillet and
Lorfa (2008). The above references contain general results for stability of
cascades, where as the results of this section is mainly intended for the
applications of this thesis.

2.4.1 UGPES

Theorem 2.5 Under Assumption 2.1, 2.2 and 2.3, the system (2.19-2.20)
is UGPES on ©1 x ©s.

Assumption 2.1 Given any 61 > 0, there exist a parameter 07(01) € O1,
a continuously differentiable Lyapunov function Vs, : R>o xR™ — R>q and
positive constants k (107]), % (|01]) (affine in |07|) and an arbitrarily large
k (101]) (affine in |07]) such that, for all x1 € R™, and all t € R>,

i1 (107]) 1 [* < V5, (8, 21) < R (167]) |22 [ (2.21)
Vs Vs . "
atl (t,.%j) + aTll(tvxl)fl(t7$1791) < —Ki1 (‘01|) ’xl‘Q ’

Assumption 2.2 There exist a positive constant co, and given any da > 0,
there exist a parameter 05(d2) € Oz, a continuously differentiable Lyapunov
Junction Vs, : R>¢g x R™ — R>( and positive constants ko (|05]), Kz (|05])
(affine in |65|) and an arbitrarily large k2 (165|) (affine in |03]), such that,
for all xo € R™ and all t € R>q,

53 (1031) |2l < Vi, (8, 22) < R (163]) |2 (2.22)
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oV oVs
g (b2) + 5 22 (t02) fo (22, 05) < —ra (05]) 2l + €2 fos

Assumption 2.3 There exists a positive constant, ¢, such that the gradient
of V5, from Assumption 2.1 along the interconnection term for all x =
(z],29)" € R™ x R and all t € R>q, satisfies

Vs,
81’1

(ta‘rl)g (t,m, 05) <c |:15'1’ g (‘Tl"x?v 95)

where
o (x1,12,03) < 14 103] [x1] 4+ (1 + |603]) |z2| .

The proof of Theorem 2.5 can be found in Appendix A.

2.4.2 UPES

We here state a local version of Theorem 2.5, a useful tool for stability
analysis of attitude control using Euler parameters.

Theorem 2.6 Under Assumption 2.4, 2.5 and 2.6, with
A := min {Al, AQ} > = max{&l, (52} s
the system (2.19-2.20) is UPES on ©1 X Oa.

Assumption 2.4 Given any A1 and any 01 such that A1 > 01 > 0, there
exist a parameter 05(01) € O1, a continuously differentiable Lyapunov func-
tion Vs, : RsoxBa, — Rxq and positive constants ky (|07]), %1 (|07]) (affine
in |07]) and an arbitrarily large k1 (|05]) (affine in |67|) such that, for all
x1 € Ba,, and all t € R>o,

w1 (163]) |21 < Vs, (8, 1) < R (165]) |1 | (2.23)
A% OV
O (t, 1) + =22 (, 1) fu (21, 0F) < —rn (|65]) |2]? (2.24)
ot 8951

Assumption 2.5 There exist a positive constant co, and given any Ao
and any do such that Ay > do > 0, there exist a parameter 05(d2) € O3, a
continuously differentiable Lyapunov function Vs, : R>o x Ba, — R>o and
positive constants kqy (|05]), F2 (|05]) (affine in |05|) and an arbitrarily large
k2 (105]) (affine in |05|) such that, for all x5 € Ba, and all t € R,

iy (165]) |22]* < V3, (8, 22) < R (|65]) |2 (2.25)

Vs,
O0x9

Vs,
ot

(t,22) + =2 (t,22) fo (t,22,05) < —ka (103]) [w2|” + c2 2] .



2.4 Stability of cascades 27

Assumption 2.6 There exists a positive constant, ¢, such that the gradient
of Vs, from Assumption 2.1 along the interconnection term for all x =

(m]—,a:;—)—r € Ba, X Ba, and all t € R>q, satisfies

Vs,
81‘1

(t7$1) g (t,.’lﬁ, 95) <c ‘3}1’ 9 (.%'1, z2, 9;)

where
0 (v1,22,05) < 1+105] [z1] + (1 + |03]) [22] .

The proof follows along the lines of the proof of Theorem 2.5, which is
given in Appendix A.

2.4.3 UGPAS

The next theorem shows that we can relax the conditions on the intercon-
nection term, at the price of only achieving UGPAS instead of UGPES.
More general sufficient conditions for a system of the structure (2.20-2.20)
to be UGPAS, have already been given in Chaillet and Loria (2006b). How-
ever, for certain systems on a cascaded structure, such as the dynamics of a
leader follower formation presented in the subsequent chapters, the condi-
tions on the interconnection term might not be fulfilled. The main reason
it that the trajectory based proof technique in Chaillet and Loria (2006b),
does not, in general, allow for the interconnection to depend on fo. It
should be noted that there is a relaxation stated in (Chaillet and Lorfa,
2006b, Remark 2) that allows for the interconnection term to depend on
A5, but this relaxation is not applicable for the leader-follower formation
considered in this thesis. We therefore present a cascaded theorem, which
proof is based on repeated use of Young’s Inequality as opposed to the
trajectory based proof technique in Chaillet and Lorfa (2006b). The impli-
cation is that the former allows for the interconnection term to depend on
the tuning parameters of the driving subsystem, where as the latter allows
it to depend on the tuning parameters of the driven subsystem.

Theorem 2.7 Under Assumption 2.1 with k; independent of |07, Assump-
tion 2.2 with ky independent of |05] and Assumption 2.7, the system (2.19-
2.20) is UGPAS on ©1 x ©.

Assumption 2.7 There exists a positive constant, ¢, such that the gradient
of Vs, from Assumption 2.1 along the interconnection term satisfies
oVs,
356'1

(t7$1)g (t,J), 95) S ¢ |$1| 9 (xla z2, 05)
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where

o (z1,22,03) < 1+ |05]|21]
Q
+ (L 1|+ 105] + 1] 105]) D |wa] .
qg=1

The proof of Theorem 2.7 can be found in Appendix A.

2.5 Robustness of ISS systems with respect to a
class of non-bounded energy inputs

2.5.1 Terminology

We next recall some classical definitions related to the stability and robust-
ness of nonlinear systems of the form

T = f(z,u), (2.26)

where x € R", v € U and f : R” x RP — R” is locally Lipschitz in z.
The class U of external inputs u that we consider consists of a subset of all
signals u : R>o — R? that are measurable and locally essentially bounded.

Definition 2.5 Let § be a positive number and u be a given signal in U.
The ball Bs is said to be globally asymptotically stable (GAS) for (2.26) if
there exists a class ICL function 5 such that the solution of (2.26) from any
initial state xg € R™ satisfies

|z(t, x0,u)| < 0+ B(|zol,t), Vt>0. (2.27)
Definition 2.6 The ball Bs is said to be globally exponentially stable (GES)

for (2.26) if Definition 2.5 holds with B(r,s) = kre="® for some positive
constants k and ~y.

Definition 2.7 The system @ = f(x,u) is said to be input-to-state stable
(1SS) if there exist B € KL and v € Koo such that, for all zo € R™ and all
u € U, the solution of (2.26) satisfies

2t 20,w)| < B(Jol,t) +A(lluls)]0) . VE> 0.
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ISS thus imposes an asymptotic decay of the norm of the state up to a
function of the amplitude ||u|| of the input signal. We also recall the fol-
lowing well-known Lyapunov characterization of ISS, originally established
in Praly and Wang (1996) and thus extending the original characterization
proposed in Sontag and Wang (1995).

Proposition 2.1 The system (2.26) is ISS if and only if there exist o, &,y €
Koo and x> 0 such that, for all x € R™ and all u € RP,

oflz]) < V(z) <a(lz)

v
ox
v is then called a supply rate for (2.26).

(@) f (2, u) < =KV (x) +(|ul).

Remark 2.6 Since ISS implies iISS (cf. Sontag (1998)), it can be shown
that the solutions of any ISS system with supply rate v satisfies, for all
xg € R”,

t
2(t, w0, )| < Bllol,8) + 7 ( / v<ru<f>r>df) w0,
0
where 8 € KL and n € Koo.

The above remark establishes a link between a measure of the energy
fed into the system and the norm of the state: if this energy is small,
then the state will eventually be small. However, stated as above, the ISS
property does not provide any information on the behavior of the system
when this energy is not finite, that is if the perturbation persistently excites
the system. In the same way, the statement of Definition 2.7 is not relevant
for signals whose supremum is unbounded. Both these types of signals are
relevant for control applications, and in particular for spacecraft formations.
This motivates the introduction of the following class of signals.

Definition 2.8 Given some constants E,T > 0 and and some function
v € K, the set Wy(E,T) denotes the set of all signals w € U satisfying, for
all t € Rzo,

t+T
/t A(Ju(s))ds < E.
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Any signal u belonging to the class W, (E,T) has therefore a limited
excitation in average. The main concern here is the measure E of the max-
imum energy that can be fed into the system over a moving time window of
given length T'. Signals of this class are not necessarily globally essentially
bounded, nor are they required to have a finite energy, as illustrated by the
following examples. Robustness to this class of signal thus constitutes an
extension of typical properties of ISS systems.

Example 2.2 1. Essentially bounded signals: given any T > 0 and any
v € K, if ||u||so is finite then it holds that u € Wy (T (||ul|eo), T). We
stress that this includes signals with infinite energy (think for instance
of constant non-zero signals).

2. Unbounded signals: given any T > 0 and any v € K, the following
signal belongs to Wy (1,T) and satisfies limsup;_, . |u(t)| = +o0:

(1) = 2k if te2kT;2kT+ 5:], k€N
ult) = 0 otherwise.

2.5.2 Robustness of ISS systems w.r.t. signals in class W

The main contribution of this article is the following result, which estab-
lishes that the impact of exogenous signals on the qualitative behavior of an
ISS systems is negligible if the average excitation of this signal is sufficiently
small.

Theorem 2.8 Assume that the system & = f(x,u) is ISS. Then, there
exists a class Koo function v and a class KL function B8 and, given any

precision d > 0 and any time window T > 0, there exists a positive average
excitation E(T,6) such that, given any uw € W, (E,T), the ball Bs is GAS.

The above result adds another brick in the wall of nice properties in-
duced by ISS, cf. Sontag (2007) and references therein. It ensures that,
provided that steady-state error § can be tolerated, then every ISS system
is robust to a class of disturbances with esuriently small average excitation.
Of course, the greater imprecise ¢ one may tolerate, the larger the class
admissible perturbations.

It is worth stressing that the KL estimate of the solutions is independent
of the required precision §. This implies, in particular, that the expected
transient overshoot and decay rate are independent of the aimed precision.
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Proof of Theorem 2.8. In view of (Praly and Wang, 1996, Lemma
11) and (Angeli et al., 2000, Remark 2.4), there exists a continuously dif-
ferentiable function V' : R" — Rx, class K functions o, @ and v, and a
positive constant x such that, for all z € R™ and all © € R™,

a(lz]) < V() <aflz) (2.28)

ov
Ox
Let w(t) := V(z(t,z0,u)). Then it holds in view of (2.29) that

(@)f (2, u) < =KV (x) +(|ul). (2.29)

V(x(t, xo,u))
—kV (2(t, 20, u)) +v(|u(?)])
—rw(t) +y(u(®)]).-

w(t)

<
<
In particular, it holds that, for all ¢ > 0,

t
w(t) < w(0)e " +/0 Y(Ju(s)|)ds . (2.30)

Assuming that w belongs to the class W, (E,T), for some arbitrary con-
stants F,T > 0, it follows that

T
w(T) < w(0)e"T +/0 ~(lu(s)))ds < w(0)e T + B

Considering this inequality recursively, it follows that, for each ¢ € N>,

k—1
w(0)e T + E Z e I°T
=0
w(O)eiéﬂT + E Z e IeT
j=0
wT

w(lT)

IN

IN

< w0)e "+ FE

T (2.31)
Given any t > 0, pick £ as [t/T| and define ¢ := t—¢T. Note that ¢’ € [0, T].
Then, it follows from (2.30) that

t
w(t) < wlT)e ™ + /ZT7(|U(5)|)dS <w{T)e ™ + E,



32 Mathematical Preliminaries

which, in view of (2.31), implies that

w(t)

IN

<w(0)e£”T +E— ) e +E

IN

k(eT+t' er!
w(0)e T+ )+E<1+6HT_1>

B 2erT — 1
UJ(O)@ rt + ﬁE .

IN

Recalling that w(t) = V (z(t, zo,u)), it follows that

—kKt 2€HT —1
V(x(t,xo,u)) < V(xg)e ™ + enTi_lE’
which implies, in view of (2.28), that
B B 26KT -1
a(lz(t, zo, u)|) < @(|zol)e™ + enTi_lE’

Recalling that o~ !(a+b) < a™1(2a)+a~1(2b) as @ € K, we finally obtain
that, given any x¢g € R", any u € W, (F,T) and any t > 0,

2eT — 1
j(t, z0, )| < o~ (2a(|wol)e ™) + a7 <2E:,€T_1> : (2.32)

Given any 7,6 > 0, the following choice of E:

(2.33)

ensures that

and the conclusion follows in view of (2.32) with the L function

B(s,t) :=a (2a(s)e ™), Vs,t>0.
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Known explicit Lyapunov function

It follows along the proof of Theorem 2.8 that an explicit bound on the
tolerable average excitation can be provided if an ISS Lyapunov is known.
More precisely, we state the following result.

Corollary 2.1 Assume there exists a continuously differentiable function
Vi R"™ — R>q, a positive constant k and class Koo functions o and & such
that, for all x € R™ and all v € R™,

oflz]) < V(z) < alz)) (2.34)
ov
oz

Given any precision § > 0 and any time window T > 0, consider any
average excitation satisfying

(@) f(z,u) < —kV(x) +(|ul). (2.35)

E(T,6) < (2.36)

Then, for any uw € W, (E,T) and any zo € R™, Bs is GAS for i = f(x,u).

The above statements shows that, by knowing a Lyapunov function
associated to the ISS of a system, and in particular its dissipation rate +,
one is able to explicitly identify the class W, (E,T') to which it is robust up
to the arbitrary precision 4.

In a similar way, we can state sufficient condition for global exponen-
tial stability of some neighborhood of the origin. This result also trivially
follows from the proof of Theorem 2.8.

Corollary 2.2 If the conditions of Corollary 2.1 are satisfied with o (s) =
csP and @ (s) = ¢sP, with ¢, ¢, p positive constants, then, given any T,0 > 0,
the ball Bs is GES for (2.26) with any signal u € W, (E,T) provided that

coP el — 1
ElTH<< =———
(T,0) = 2 2esT — 1
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Chapter 3

Modeling

This chapter is devoted to modeling of the formations of spacecraft. In
Section 3.1 the model for the translational case is derived, and Section 3.2
contains the model for the rotational case.

3.1 Translational case

The model of the spacecraft can be derived with respect to the inertial
reference frame, or with respect to a moving reference frame. The moving
reference frame can either be an orbital reference frame of a prescribed mo-
tion or a reference frame attached to one of the spacecraft in the formation.
Let the position of the spacecraft be described by the vector 7, let 7, be the
vector describing the origin of the moving reference frame F,, and define
p:= 7 —7,. The acceleration is then given by the following equation, which
is a result of applying the rules for differentiation in moving frames, see e.g.
Egeland and Gravdahl (2002):

id °d
id2 °d 7/°d °d
°d? . ed, (od L W
= dt2r + 20,0 X Er + (dtwio> X T+ Wip X (Jio X 7) (3.1)

Here, &J;, is the angular velocity of th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>