
Summary

The work of this thesis is focused on the robustness of control laws for space-
craft formation. Robustness in this case refers to the ability of the system
to withstand persistent perturbations, and to keep some of the stability
characteristics of the unperturbed system.

Analogous to the de�nition of practical asymptotic stability in Chaillet
and Loría (2006b), practical exponential stability is de�ned. This de�nition
is more restrictive than its asymptotic counterpart, but has the advantage
of an exponentially decaying upper bound of the solution on the considered
part of the state space. Lyapunov su¢ cient conditions are stated, both for
general systems and systems which are interconnected on a cascaded struc-
ture. Systems can naturally show a cascaded structure, as e.g. a leader
follower spacecraft formation, or they can be rewritten into a cascaded
structure, which is a common approach for systems with an observer and
certainty equivalence controller. Furthermore, a theoretical framework is
provided that �ts realistic challenges related to spacecraft formation with
disturbances. It is shown that the input-to-state property of such sys-
tems guarantees some robustness with respect to a class of signals with
bounded average-energy, which encompasses the typical disturbances act-
ing on spacecraft formations. Robustness is considered in the sense that
solutions are bounded by a converging function of time, up to an o¤set
which is somewhat proportional to the considered average energy of dis-
turbances. The proposed approach allows for a tighter evaluation of the
disturbances�in�uence, which in turns allows for the use of more parsimo-
nious control gains.

With the mathematical background in place, the leader-follower space-
craft formation is modeled. This type of formation is chosen because of
its simplicity. It is therefore, in the authors opinion, the type of formation
most likely used for real applications in the �eld of spacecraft formation
control in the nearest future. Both a model for relative translation and
rotation is derived. The relative translation model is derived in a general
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setting, where the origin of the frame of reference can be chosen as the
center of gravity of the leader spacecraft, or some other convenient point.

Output tracking control laws for the relative translation and rotation
models are designed. The follower spacecraft control laws are derived under
limited knowledge of the leader spacecraft. It is required that the leader
spacecraft can either broadcast its position and attitude, or the follower
spacecraft are equipped with devices that can take the necessary measure-
ments. In deriving the control laws, inspiration is taken from the theory
for control of robotic manipulators and ocean vehicles, as they are systems
with similar properties.

Motivated by the possibly high amplitude/ low energy disturbances
acting on the formation, stability of some of the control algorithms with
respect to a class of bounded-energy signals are analysed, using the above
mentioned framework.

As propulsion systems of spacecraft often do not provide continuous
actuation, stability properties of the control algorithms are also analysed
when the actuation is quantized or pulse width modulated.
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Chapter 1

Introduction

1.1 Motivation

There are several reasons for formations of spacecraft gaining so much inter-
est from the research community in the last decade. The most important is
the desire to place measuring equipment further apart than what is possible
on a single spacecraft. This is desirable because the resolution of measure-
ments often are proportional to the baseline length, meaning that either a
big spacecraft or a formation of smaller, but accurately controlled space-
craft may be used. Big spacecraft that satisfy the demand of resolution
are often impractical and both costly to develop and to launch. Smaller
spacecraft on the other hand may be standardized and have lower devel-
opment cost. In addition they may be of a lower collective weight and/or
of collective smaller size such that cheaper launch vehicles can be used.
There is also the possibility for them to piggy-back with other commercial
spacecraft.

What is a formation?

Before we proceed it is important to agree on what is meant by a (space-
craft) formation. We follow Scharf et al. (2003) and Scharf et al. (2004),
which de�ne a formation as �a set of more than one spacecraft in which
any of the spacecraft dynamic states are coupled through a common control
law.� In particular, �at least one of the members of the set must:

1. track a desired state pro�le relative to another member, and

2. the associated tracking control law must at the minimum depend upon
the state of this other member�.
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This is sometimes also referred to as an autonomous formation. A
constellation on the other hand, is �a set of spacecraft whose states are not
dynamically coupled in any way�, Scharf et al. (2003). It should be clear
that the global positioning system (GPS) is a constellation as the spacecraft
orbit corrections does not require the information about any of the other
spacecraft, but are solely based on the individual spacecraft position and
velocity.

Applications

Applications can e.g. be automated rendezvous for equipment and fuel
delivery. These applications can be considered as special cases, as the need
for autonomy is only over a limited time frame. On the other hand, the
demands to fault protection and accuracy, are just as high as for other types
of missions, due the close proximity of the spacecraft.

Another application is distributed sensors arrays. In deep space, forma-
tions will �enable variable-baseline interferometers and large-scale distrib-
uted sensors that can probe the origin and structure of stars and galaxies
with high precision�, Scharf et al. (2004). According to the same refer-
ence, Earth orbiting formations will �enable distributed sensing and sparse
antenna arrays for applications such as gravitational mapping and interfer-
ometric synthetic aperture radar�.

Proposed and ongoing projects demonstrating tandem or forma-
tion �ight

A list of proposed or ongoing formation �ying projects (including tandem
�ights, which are not autonomous) can be found in e.g. Xu et al. (2007),
D�Amico et al. (2005), Gill et al. (2001), Persson et al. (2006) and com-
prise TerraSAR-X / TanDEM-X, GRACE, the New Millienium Program
with EO-1/Landsat, Proba-3, A-Train and Prisma. It is di¢ cult to state
which of the projects that will perform true formation �ight in the sense of
the de�nition in Section 1.1, as tandem �ights often also are described as
formations in the literature.

Also, there has been a recent proposal by DARPA which may serve as
a motivation for the work of this thesis1:

�The goal of the System F6 program is to demonstrate a radically new
space system composed of a heterogeneous network of formation �ying or
loosely connected small satellite modules that will, working together, provide

1Accessed at "http://www.darpa.mil/tto/programs/system_F6/" 21. August, 2009
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Figure 1.1: Artistic interpretation of the Prisma satellites. Re-
produced with courtesy to the Swedish National Space Board
(http://www.prismasatellites.se)

at least the same e¤ective mission capability of a large monolithic satellite.
Current large space systems used for national security purposes are con-
strained due to their monolithic architecture. They can be launched only on
a small number of large launch vehicles, cannot readily be upgraded and/or
recon�gured with new hardware on-orbit, and are risk-intensive, since the
unforgiving launch and space environments can result in a total loss of
investment with one mistake. The System F6 will partition the tasks per-
formed by monolithic spacecraft (power, receivers, control modules, etc.)
and assign each task to a dedicated small or micro satellite. This frac-
tionated space system o¤ers the potential for reduced risk, greater �exibil-
ity (e.g. simpli�ed on-orbit servicing, recon�gurability to meet changing
mission needs), payload isolation, faster deployment of initial capability,
and potential for improved survivability. This program will develop, de-
sign, and test new space system architectures and technologies required to
successfully decompose a spacecraft into fundamental elements. Such archi-
tectures include, but are not limited to, ultra-secure intra-system wireless
data communications, wireless power systems, electromagnetic formation
�ying systems, remote attitude determination systems, structure-less opti-
cal and RF arrays, distributed spacecraft computing systems, and reliable,
robust, rapidly re-locatable ground systems.�
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Explicit choices in this thesis

There are a few explicit choices that have been made in this thesis and which
should be given the grounds for: We only consider leader-follower type of
formation. This is motivated by the above mentioned projects, which for
most are formations of two spacecraft, and the fact that autonomous for-
mation control of spacecraft as an engineering problem is in its evolutionary
cradle, which prompts for simple solutions.

We use the full nonlinear model of the formation, and do not linearize
about a point of reference as is commonly done in the literature on forma-
tion �ying spacecraft. This choice is taken to be able to handle formations in
strongly elliptic orbits and formation with long baseline. Also the required
precision of the proposed project, does not allow for severe approximations.

The focus on output feedback in this thesis is motivated by the fact that
position and velocity measurements in space may not be easily achieved,
e.g. because the formation is outside the coverage of the Global Positioning
System (GPS), or because the the spacecraft can not be equipped with the
necessary sensors for such measurements due to space constraints or budget
limits. Numerical derivatives are not well suited, as they may amplify
measurement noise.

Although output feedback will be treated extensively in this thesis, the
use of Kalman �lters, which can be found very useful for this type of mis-
sions (where measurements are correlates with noise) and which are able
to provide velocity information from position measurements, have not been
considered in the analysis. One of the reasons for this is that Kalman �lters
have already been thoroughly treated in the literature. More importantly,
the main focus of this thesis is on strong stability properties, which may
be di¢ cult to achieve for Kalman �lters although they may provide the
necessary estimates.

1.1.1 Literature review

Practical stability and input-to-state-stable systems

Notice that the term practical stability has di¤erent meaning in the liter-
ature of control theory, see Chaillet and Loría (2006b) for a discussion on
this matter. Our understanding of the term is that of Chaillet and Loría
(2006b) where the vicinity of the origin to which the solutions converge,
may be made arbitrarily small by convenient tuning of some parameters of
the system, typically the control gains. This meaning is in fact consistent
with the narrower stability property referred to in the classic text book on
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stability (Hahn, 1967, Page 278): �One does not [when talking about his
de�nition of practical stability], however, insist on the narrower stability
property; that is one will not require that the deviation from zero can be
made arbitrarily small by a suitable choice of constants�. We stress that
ultimate boundedness as de�ned in Khalil (2002) is a weaker property than
practical stability.

Input-to-state stability (ISS) is a concept introduced in (Sontag, 1989),
which has been thoroughly treated in the literature: see for instance the
survey (Sontag, 2007) and references therein. Roughly speaking, this ro-
bustness property ensures asymptotic stability, up to a term that is �pro-
portional�to the amplitude of the disturbing signal. Similarly, its integral
extension, iISS (Sontag, 1998), links the convergence of the state to a mea-
sure of the energy that is fed by the disturbance into the system. However,
in the original works on ISS and iISS, both these notions require that these
indicators (amplitude or energy) be �nite to guarantee some robustness. In
particular, while this concept has proved useful in many control applica-
tion, ISS may yield very conservative estimates when the disturbing signals
come with high amplitude even if their moving average is reasonable.

These limitations have already been pointed out and partially addressed
in the literature. In Angeli and Ne�íc (2001), the notions of �Power ISS�and
�Power iISS�are introduced to estimate more tightly the in�uence of the
power or moving average of the exogenous input on the power of the state.
Under the assumption of local stability for the zero-input system, these
properties are shown to be actually equivalent to ISS and iISS respectively.
Nonetheless, for a generic class of input signals, no hard bound on the state
norm can be derived for this work.

Other works have focused on quantitative aspects of ISS, such as (Praly
and Wang, 1996), (Grüne, 2002) and (Grüne, 2004). All these three papers
solve the problem by introducing a �memory fading� e¤ect in the input
term of the ISS formulation. In (Praly and Wang, 1996) the perturbation
is �rst fed into a linear scalar system whose output then enters the right
hand side of the ISS estimate. The resulting property is referred to as exp-
ISS and is shown to be equivalent to ISS. In (Grüne, 2002) and (Grüne,
2004) the concept of input-to-state dynamical stability (ISDS) is introduced
and exploited. In the ISDS state estimate, the value of the perturbation at
each time instant is used as the initial value of a one-dimensional system,
thus generalizing the original idea of Praly and Wang. The quantitative
knowledge of how past values of the input signal in�uence the system allows,
in particular, to guarantee an explicit decay rate of the state for vanishing
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perturbations.

Relative translational tracking

Research on spacecraft formation control is vast, and makes us unable to
serve the enormous amount of literature justice here. We will therefore
focus on previous work done on spacecraft formations where a relative po-
sition model similar to the one in Chapter 3 are used. For a more thorough
treatment of the topic of spacecraft formation control, the interested reader
is instead referred to the survey paper Scharf et al. (2004). One of the so-
lutions to the control problem of the relative position model was presented
in Queiroz et al. (1999). There, a nonlinear output feedback control law
was developed guaranteeing global uniform ultimate boundedness (GUUB)
of the position and velocity tracking errors in the presence of unknown
spacecraft masses and disturbance force parameters. A �ltering scheme
was provided, to allow for the use of relative velocity in the controller. A
similar result was given in Yan et al. (2000). In Pan and Kapila (2001)
the nonlinear tracking control problem for both translation and rotation
was presented. The adaptive control law derived, ensure global asymptotic
convergence in the presence of unknown mass and inertia of the leader and
follower spacecraft. In Wong et al. (2001) a full state feedback adaptive
learning control algorithm was developed to give global asymptotic conver-
gence of position and velocity tracking errors, in the presence of periodic
disturbances and unknown spacecraft masses. An internal model based
approach was taken in Serrani (2003) to design a controller that handles
parametric uncertainties and unknown disturbances. The methodology was
shown to be robust to persistent disturbances, such as gravitational per-
turbations. Assuming boundedness of orbital perturbations and the leader
control force only, an adaptive controller was designed in Kristiansen et al.
(2006b) to prove that the closed-loop system is uniformly semiglobally prac-
tically asymptotically stable (USPAS). A velocity �lter was used to provide
su¢ cient knowledge about the relative velocity to solve the control problem.
These results were extended in Kristiansen et al. (2006a) to also include the
case of uncertainty in spacecraft mass.

Relative rotational tracking

The following is a presentation of some of the works done on output con-
trol of spacecraft using quaternion measurements. A globally convergent
angular velocity observer can be found in Salcudean (1991) and is highly
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referenced in the later works on output control of spacecraft. In Lizarralde
and Wen (1996) a nonlinear �lter is used to compensate for missing velocity
measurements. The passivity properties of the system are exploited in an
output controller so as to achieve asymptotic stabilization of the closed-loop
system. A nonlinear quaternion based feedback control law is used in Joshi
et al. (1995) to achieve similar stability results. The controller does not
depend on system parameters, and therefore robustness to modeling errors
and parametric uncertainties are ensured. Two schemes for output atti-
tude tracking are presented in Caccavale and Villani (1999). The schemes
are based on results achieved for output control of robot manipulators, see
Berghuis and Nijmeijer (1993), but as mentioned in Caccavale and Villani
(1999) the extension is not straight forward due to the nonlinear mapping
between the orientation variables, the unit quaternions. In Bondhus et al.
(2005) output control is applied to the synchronization of a leader/follower
formation of spacecraft. Nonlinear observers are used to estimate the angu-
lar velocities based on quaternion measurements, and the rotation matrices
representing the attitude error between the reference trajectory and the
leader and the follower spacecraft are shown to converge to the identity ma-
trix from any initial condition. The tracking control problem of a follower
spacecraft with coupled rotational and translational motion is addressed
in Wong et al. (2005). Convergence of the position and tracking errors
are proven, using only position and attitude orientation measurements. In
Tayebi (2006) a spacecraft is stabilized without the use of velocity measure-
ments. A unit quaternion observer is used together with linear feedback
in terms of the vector parts of the actual unit quaternion and the estima-
tion error quaternion. Asymptotic stability is proven through Lyapunov
analysis. The model of the relative dynamics used in this paper has also
been treated in Kristiansen et al. (2006c) and Krogstad et al. (2007). In
Kristiansen et al. (2009) a controller was designed which incorporates an
approximate-di¤erentiation �lter to account for the unmeasured angular
velocity. The closed-loop system was shown to be UPAS.

1.2 Contributions and limitations of this thesis

1.2.1 Contributions

In the following the contributions of the work presented in this thesis are
summarized. The labels are with reference to the publication list in Section
1.2.2:

In Chapter 2 we present a theoretical contribution consisting of new
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de�nitions and theorems of su¢ cient conditions for nonlinear time-varying
systems to be exponentially stable with respect to balls that can be arbi-
trarily reduced by a convenient tuning. We denote a system satisfying these
properties in the whole state-space uniformly globally practically exponen-
tially stable (UGPES). For the sake of completeness, we also discuss uniform
semiglobal exponential stability (USES) and uniform semiglobal practical
exponential stability (USPES), in which case the domain of attraction is not
the whole state-space, but a compact set that can be arbitrarily enlarged.
These results were published in vi/.

Furthermore, we provide a theorem of su¢ cient conditions for a cas-
caded system to be UGPES, uniformly practically exponentially stable
(UPES) or uniformly globally practically asymptotically stable (UGPAS).
As many of the disturbances acting on spacecraft are di¢ cult to model,
we de�ne a general class of signals with limited excitation in average. By
explicit knowledge of an ISS Lyapunov function, and in particular its dis-
sipation rate, we are able to identify the class to which it is robust, in
the sense that the solutions are bounded by a KL estimate and a constant
(corresponding to the prede�ned required precision). These results are con-
tained in iv/. The mathematical framework is put forward in Chapter 2.

Most of what is presented in Chapter 3 is based on previous published
materials by other authors, e.g. Ploen et al. (2004b). Some new and impor-
tant properties of the models were however published in iii/. Also, based
on the content of Chapter 3, we show in subsequent chapters how di¤erent
choices of reference frames simpli�es the stability analysis of the overall
formation, and gives stronger stability results.

Chapter 4 through 6 contain applications of the theory in Chapter 2. In
the following, we will therefore summarize how our applications are di¤erent
from other results in the literature.

In Chapter 4 the stability of a leader/follower formation is analyzed us-
ing a controller-observer scheme originally designed for the control of robot
manipulators. While, in the nominal case, the solutions of the system are
proven to be exponentially convergent to zero, we will show that the steady-
state error resulting from external disturbances and lack of measurement
can be arbitrarily diminished by a convenient tuning of some controller
gains. In fact, based on knowledge on the bounds of the disturbances and
the acceptable steady state error, the presented theorems give information
on how to pick the controller gains. These results were published in xi/
and vi/.

In Chapter 5 the attitude tracking problem of a leader/follower forma-
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tion under external disturbances is considered. As opposed to most other
papers on the topic, the control of both the leader and follower spacecraft
are considered, and the solutions of the system are proved to be exponen-
tially convergent to zero, up to a steady-state error that can be arbitrarily
reduced by a convenient tuning of the control gains. The results of this
chapter are based on vii/.

In Chapter 6 we show that the overall formation is input-to-state stable
(ISS) with respect to an extended disturbance, which from the follower
spacecraft point of view not only includes the external disturbances, but
also the leader spacecraft reference trajectory. Using the framework of
Section 2.5, we �nd an explicit bound on the tolerable average excitation.
The contents of this chapter can also be found in iv/.

Although, propulsion systems of spacecraft often do not provide contin-
uous actuation, stability analysis of such systems have hardly been treated
in the literature for systems with nonlinear plants. Chapter 7 is devoted
to the analysis of such systems when the actuation is quantized or pulse
width modulated. The results of quantized actuation have been published
in x/ and ix/.

1.2.2 List of publications

The following list contains the authors publications and recently submitted
papers:

Journal papers

i/ Grøtli, E. I., Chaillet, A., Panteley, E., Gravdahl, J. T., 2010a. Ro-
bustness of ISS systems to inputs with limited moving average, with
application to spacecraft formations. International Journal of Robust
and Nonlinear Control. (Submitted).

ii/ Sprinkle, J., Eklund, J. M., Gonzalez, H., Grøtli, E. I., Upcroft, B.,
Makarenko, A., Uther, W., Moser, M., Fitch, R., Durrant-Whyte,
H. and Sastry, S. S., 2009. Model-based design: A report from the
trenches of the DARPA Urban Challenge. Software and Systems
Modeling 8, 551-556.

iii/ Kristiansen, R., Grøtli, E. I., Nicklasson, P. J. and Gravdahl, J. T.,
2007. A model of relative translation and rotation in a leader-follower
spacecraft formation. Modeling, Identi�cation and Control 28 (1), 3-
13.
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Conference papers

iv/ Grøtli, E. I., Chaillet, A., Panteley, E., Gravdahl, J. T., 2010b.
Robustness of ISS systems to inputs with limited moving average,
with application to spacecraft formations. In: Proc. of the Interna-
tional Conference on Informatics in Control, Automation and Robot-
ics.(Submitted).

v/ Sprinkle, J., Eklund, J. M., Gonzalez, H., Grøtli, E. I., Sanketi, P.,
Moser, M., and Sastry, S. S., 2010. Recovering Models of a Four-
Wheel Vehicle Using Vehicular System Data. In: -. (In preparation).

vi/ Grøtli, E. I., Chaillet, A., Gravdahl, J. T., 2008. Output control of
spacecraft in leader follower formation. In: Proc. of the 47th IEEE
Conference on Decision and Control. pp. 1030-1035.

vii/ Grøtli, E. I., Gravdahl, J. T., 2008b. Output attitude tracking of
formation of spacecraft. In: Proc. of the 17th IFAC World Congress.
pp. 2137-2142

viii/ Gonzalez, H., Grøtli, E. I., Templeton, T. R., Biermeyer, J. O., Sprin-
kle, J. and Sastry, S. S., 2008. Transitioning control and sensing tech-
nologies from fully-autonomous driving to driver assistance systems.
In: Proc. of Automatisierungs-, Assistenzsysteme und eingebettete
Systeme für Transportmittel.

ix/ Grøtli, E. I., Gravdahl, J. T., 2008a. Formation control by quantized
output feedback. In: Proc. of the 3rd International Symposium on
Formation Flying, Missions and Technologies

x/ Grøtli, E. I., 2007. Analysis of a nonlinear continuous control algo-
rithm, in the case of discontinuous actuation. In: Proc. of the 58th
International Astronautical Congress

xi/ Grøtli, E. I., Gravdahl, J. T., 2007. Passivity based controller-observer
schemes for relative translation of a formation of spacecraft. In: Proc.
of the 26th American Control Conference. pp. 4684-4689

The publications ii/, v/ and viii/ were produced during the same time
period, but are outside the scope of this thesis.
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1.2.3 Limitations

Only leader-follower type of formations are considered in this thesis. Unless
otherwise stated, it is assumed that both the structure and parameters of
the models are known.

There is no explicit treatment of the control force saturation. For prac-
tical stability, it is assumed that the gains can be chosen su¢ ciently large
to achieve the prespeci�ed precision. This means that for accurate preci-
sion, the required actuation forces may become larger than what an actual
control system can provide. Furthermore, the spacecraft are considered to
be overactuated and that thrust is available in the necessary directions.

All signals are deterministic and without delay, and no explicit con-
cern on how to achieve the sensored information has been taken. Collision
avoidance is assumed to be ensured by a supervisory control level, and is
considered to be outside the scope of this thesis.

1.2.4 Organization of this thesis

Chapter 2: This chapter makes up the theoretical framework for this the-
sis. Analogous to the de�nition of practical asymptotic stability in Chaillet
and Loría (2006b), we de�ne practical exponential stability. This de�nition
is more restrictive than its asymptotic counterpart, but is a stronger result
in the sense that the solutions are bounded by an exponentially decay-
ing function on the considered part of the state space. Lyapunov su¢ cient
conditions are stated, both for general systems and systems which are inter-
connected on cascaded structure. Systems can naturally show a cascaded
structure, as e.g. a leader follower spacecraft formation, or they can be
rewritten to the desired structure such as systems with both controller and
observer. Furthermore, we study the robustness of a class of nonlinear
systems with respect to a certain class of signals. Such signals are typi-
cally external disturbances, but from a follower spacecraft point of view,
these signals may also be the reference trajectory of the leader spacecraft.
Reference trajectories often belong to the considered set of signals.

Chapter 3: Here, the leader-follower spacecraft formation is modeled.
This type of formation is chosen because of its simplicity. It is therefore, in
the author�s opinion, the type of formation most likely used for real appli-
cations in the relatively new �eld of spacecraft formation control. Both a
model for relative translation and rotation is derived. The relative transla-
tion model is derived in a general setting, where we can choose the origin of
the frame of reference as center of gravity of the leader spacecraft or some
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other convenient point.
Chapter 4: This chapter concerns output tracking of relative transla-

tion. The follower spacecraft control law is derived under limited knowledge
of the leader spacecraft. It is required that the leader spacecraft can either
broadcast its position, or the follower spacecraft are equipped with devices
that can give the necessary measurements. In addition, it is assumed that
the control action and disturbances acting on the leader spacecraft is upper
bounded. In deriving the control laws we make use of the theory for con-
trol of robotic manipulators and ocean vehicles, as they are systems with
similar properties.

Chapter 5: This chapter is concerned with output attitude tracking.
As opposed to the translational case in Chapter 4, we derive control laws
for both the leader- and the follower spacecraft. The error dynamics is
naturally on a cascaded structure, and we apply the theorem for UPES
derived in Chapter 2 in the analysis.

Chapter 6: Here we analyse the controllers of a spacecraft formation,
using the framework of Section 2.5. Our application show that the frame-
work is not only useful for systems perturbed by certain disturbances, but
we also show that the reference trajectory of the leader spacecraft can be
seen as a disturbance from the follower spacecraft point of view.

Chapter 7: As propulsion systems of spacecraft often do not provide
continuous actuation, this chapter is devoted to the analysis of such systems
when the actuation is quantized or pulse width modulated.

1.3 Mathematical preliminaries

1.3.1 Notation

� N, R, C and H denote the set of all nonnegative integers, real num-
bers, complex numbers and quaternions, respectively. We use R�0 to
denote all nonnegative real numbers, and N�N to denote all integers
greater or equal to N . b�c denote the �oor function, i.e. bxc is the
largest integer not greater than x.

� The time derivatives of a function x(t) are denoted _x := dx
dt , �x :=

d2x
dt2
,

..., x(n) := d(n)x
dt(n)

� The p-norm of a vector x 2 Rn is de�ned as jxjp := (
Pn
i=1 jxijp)1=p,

for 1 � p < 1 and jxj1 := maxi jxij. Of notational simplicity we
de�ne the Euclidean vector norm as jxj := jxj2 = (x>x)1=2.
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� We use j � j for the induced L2 norm of matrices.

� We use diag(�; :::; �) to denote diagonal- or block diagonal matrices,
with the elements within the parenthesis along the diagonal.

� The Lp and L1 norms of a measurable function � : R ! Rn are
de�ned as jj�jjp := (

R1
t0
jj�(t)jjpdt)1=p, and jj�jj1 := ess supt�0 j�(t)j.

� The open ball in Rn of radius � about x0 is de�ned by B�(x0) := fx 2
Rn : jx�x0j < �g. We use B� for the open ball about the origin, that
is B� := fx 2 Rn : jxj < �g.

� The set A � Rn is open if for any x 2 A there exists a real number �
such that B�(x) � A. A is closed if the complement (Rn=A) is open.
The closure of an open set A is denoted A.

� We use j � jA to denote the distance-to-set function, that is jx1jA :=
inffjx1 � x2j : x2 2 Ag.

� A set A is convex if for each x1; x2 2 A, �x1 + (1 � �)x2 2 A;8� 2
[0; 1]. The closed convex hull of a set A, that is, the smallest closed
convex set containing A, is denoted coA.

� The function f : [a; b] ! R is continuous if for each � > 0 and each
x 2 [a; b] there is a � > 0 such that

y 2 [a; b] and jy � xj < � =) jf(y)� f(x)j < �:

� The function g : [a; b] ! R is absolutely continuous if for each � > 0
there is a � > 0 such that whenever (�1; �1); : : : ; (�n; �n) are disjoint
intervals in [a; b] we have

nX
k=1

�k � �k < � =)
nX
k=1

jg(�k)� g(�k)j < �:

� A measurable function u : [t0;+1) ! Rn, n positive integer, is said
to be essentially bounded if ess supt2[t0;+1) ju(t)j < +1, and locally
essentially bounded if, for any T > t0, u[t0;T ) is essentially bounded,
where u[t0;T ) : [t0;+1)! Rn is the function given by

u[t0;T )(t) =

(
u(t) for all t 2 [t0; T )
0 elsewhere:
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� A continuous function � : R� ! R�0 is of class K (� 2 K), if it
is strictly increasing and �(0) = 0. If, in addition, �(s) ! 1 as
s ! 1, then � is of class K1 (� 2 K1). A continuous function
� : R�0 � R�0 ! R�0 is said to be of class KL if, �(�; t) 2 K for
any t 2 R�0, and �(s; �) is decreasing and tends to zero as s tends to
in�nity.

� The maximum and minimum eigenvalue of a matrix A is denoted by
�max(A) and �min(A), respectively.

� In�n and 0n�n denote the n�n identity- and zero matrix, respectively.

� Given a vector ! = col(!1; !2; !3), the matrix S is the skew-symmetric
operator de�ned as

S (!) :=

24 0 �!3 !2
!3 0 �!1
�!2 !1 0

35
i.e. S (!) = �S> (!). We use SS to denote the set of skew-symmetric
matrices.

The notation ~x is used for a coordinate-free or geometric vector, a quan-
tity of both magnitude j~xj and direction. By coordinate-free we mean that
this description does not rely on the de�nition of any coordinate frame, but
obeys the parallelogram law of addition in the three dimensional Euclidean
point space, E3, see Ploen et al. (2004a). In a coordinate frame Fe, the
vector ~x can be expressed as a linear combination of the orthogonal unit
vectors ~ei, i 2 f1; 2; 3g, by

~x = xe1~e1 + x
e
2~e2 + x

e
3~e3;

where xi = ~x � ~ei are the Cartesian coordinates of ~x in Fe. The time
derivative of a vector ~x with reference to Fe is de�ned by

ed

dt
~x := _xe1~e1 + _xe2~e2 + _xe3~e3

A coordinate vector is another convenient form to describe ~x, where the
coordinates with respect to a particular coordinate frame, in this case Fe,
are written as a column vector:

xe = col (xe1; x
e
2; x

e
3) :

The time derivative coordinate vector is represented as:

_xe = col ( _xe1; _x
e
2; _x

e
3) :
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1.3.2 Rotation matrices and unit quaternions

We use the rotation matrix Rab ; to transform vectors represented in coordi-
nate frame Fa to Fb; while preserving the length of the vectors. Rotation
matrices are special orthogonal matrices in R3�3, that is, they belong to
the space

SO (3) =
n
R 2 R3�3 j R>R = I3�3;det (R) = 1

o
:

We will repeatedly use the fact that (Rab )
> = (Rab )

�1 = Rba (where R
b
a is

equivalent to the opposite rotation of Rab ), that the rotation matrix of a
composite rotation is given by the product of the rotation matrices (i.e.
Rac = R

a
bR

b
c), and that

_Rab = S (!
a
ab)R

a
b :

The vector !aab is the angular velocity vector. The subscript denotes the
angular velocity of reference frame Fb relative to frame Fa, where as the
superscript shows that the vector is decomposed in frame Fa. When clear
from the context, we may leave out the superscript of notational simplicity.
Two important properties of the indexed angular velocity representation are
!aab = �!aba and !aac = !aab + !abc. The quaternions are a generalization of
the complex numbers, and the set of quaternions, denoted by H, is de�ned
as, see Ma et al. (2004):

H = C+ Cj; with j2 = �1

and where the set of complex numbers is de�ned as C = R+ Ri with i2 =
�1. Furthermore, an element of H, that is a quaternion, is of the form

Q = � + �1i+ �2j + �3k

with �; �1; �2; �3 2 R and k = ij = �ji. In this paper we will focus on a
subgroup of H, the unit quaternions:

S3 =
n
Q 2 H j jQj2 = 1

o
: (1.1)

The unit quaternions (or Euler parameters) can be used to represent ro-
tation matrices, and this representation has the advantage of avoiding sin-
gularities (as opposed to rotation matrices represented with Euler angles).
We will in the following use the vector q to represent the quaternions,
with its elements being the real elements of Q; i.e. q = (�; �>)> where
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� = col(�1; �2; �3). The rotation matrix for the unit quaternions is (see
Hughes (1986))

R (q) = I3�3 + 2�S (�) + 2S
2 (�) :

Therefore, q and �q represents the same orientation. We use �q to denote
the complex conjugate of q, i.e. �q = (�;��>)>. The quaternion product be-
tween two vectors qa = (�a; �

>
a )
> and qb = (�b; �

>
b )
> is de�ned, see Egeland

and Gravdahl (2002), as

qa 
 qb =
�

�a�b � �>a �b
�a�b + �b�a + S (�a) �b

�
:

We de�ne the matrix
E(q) = �I3�3 + S(�):

The kinematic di¤erential equation can now be derived as

_q =
1

2

�
��>
E (q)

�
!;

relating the time derivative of the quaternion to the angular velocity. We
will use the notation qab for the quaternion describing the orientation of a
frame Fb relative to a frame Fa. Perfect tracking in terms of the quaternion
error qdl = �qid
qil, where qid(t) represents a possibly time varying reference
orientation and qid represents the actual orientation, is achieved when qdl =
col(�1; 0; 0; 0).



Chapter 2

Mathematical Preliminaries

2.1 Practical stability

The formal study of spacecraft formation requires solid theoretical roots. In
this chapter, a theoretical framework that �ts realistic challenges related to
this problem is presented, which is also contained in Grøtli et al. (2008) and
Grøtli et al. (2010a). The material highly builds on the work in Chaillet
(2006). Indeed, in presence of uncertainties or disturbances, it is often
the case that a nominally asymptotically or exponentially stable formation
turns out to present a steady-state error in reality. In the case when this
error can be reducible at will by a convenient tuning of some gains, this
stability property is referred to as practical. Practical stability has been
treated in several papers, see Chaillet and Loría (2006b), Chaillet and Loría
(2008) and references therein. We will here give a very simple introductory
example:

Example 2.1 Consider the scalar system

_x = ��x+ d (2.1)

where � is a constant parameter and d = d(t) is a non vanishing, time-
varying disturbance. In this case, for any �, the solutions are bounded by

jx(t)j � (jx(0)� �d
�
j)e��t + �d

�
(2.2)

where �d = supt d(t). We see that for any � such that � > �d�, the solutions
converge exponentially to a ball around the origin of radius � = �d=�.
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Tools for a formal analysis of more involved parameterized time-varying
systems will be given in Section 2.2. We will stress that ultimate bounded-
ness as de�ned in Khalil (2002) is a weaker property than practical stabil-
ity. For a system possessing the latter property, the vicinity of the origin to
which the solutions converge may be made arbitrary small by convenient
tuning of some parameters of the system, typically the control gains.

2.2 De�nitions

Semiglobal and practical exponential stability properties pertain to para-
meterized nonlinear time-varying systems of the form

_x = f(t; x; �) ; (2.3)

where x 2 Rn, t 2 R�0, � 2 Rm is a vector of constant parameters and
f : R�0�Rn�Rm ! Rn is locally Lipschitz in x and piecewise continuous
in t for any � under consideration. � is a free tuning parameter, that can
for instance be a control gain, see Chaillet and Loría (2008) for details.

De�nition 2.1 (UGPES) Let � � Rm be a set of parameters. The sys-
tem (2.3) is said to be uniformly globally practically exponentially stable
on � if, given any � > 0, there exists a parameter �?(�) 2 �, and positive
constants k(�) and 
(�) such that, for any x0 2 Rn and any t0 2 R�0 the
solution of (2.3) satis�es, for all t � t0,

jx(t; t0; x0; �?)j � � + k(�) jx0j e�
(�)(t�t0): (2.4)

De�nition 2.2 (USES) Let � � Rm be a set of parameters. The system
(2.3) is said to be uniformly semiglobally exponentially stable on � if, given
any � > 0, there exists a parameter �?(�) 2 � and positive constants k(�)
and 
(�) such that, for any x0 2 B� and any t0 2 R�0 the solution of (2.3)
satis�es, for all t � t0;

jx(t; t0; x0; �?)j � k(�) jx0j e�
(�)(t�t0)

De�nition 2.3 (USPES) Let � � Rm be a set of parameters. The sys-
tem (2.3) is said to be uniformly semiglobally practically exponentially
stable on � if, given any � > � > 0, there exists a parameter �?(�;�) 2 �
and positive constants k(�;�) and 
(�;�) such that, for any x0 2 B� and
any t0 2 R�0 the solution of (2.3) satis�es, for all t � t0;

jx(t; t0; x0; �?)j � � + k(�;�) jx0j e�
(�;�)(t�t0) :
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These properties are strongly related to their asymptotic counterpart
(UGPAS, USAS and USPAS) de�ned and commented in detail in Chaillet
and Loría (2006c, 2008). They are however stronger properties as they
impose an exponential behavior of the solutions in the considered domain
of the state-space and a linear dependency in the initial condition.

Remark 2.1 The term uniform in the above de�nition is due to the re-
quirement that the constants k and 
 are independent of initial condi-
tions. For time-varying systems the uniformity property is crucial as it
provides certain robustness properties with respect to external disturbances.
As pointed out in e.g. Loría and Panteley (2005), nonlinear time varying
systems which are locally Lipschitz in t, and which are ULAS or ULES,
are also locally input-to-state stable. On the contrary, systems without this
property are not robust. An example is given in (Loría and Panteley, 2006,
Proposition 6.1), of a system which solutions are exponentially convergent,
but where the convergence rate depends on initial times. It is shown that
it is possible to construct non-vanishing perturbations that destabilizes the
system.

Remark 2.2 Note the di¤erence of UGPES in De�nition 2.1 and the def-
inition of �-UGPES in (Loría and Panteley, 2002, De�nition 1). Although
they also consider a parameterized nonlinear system, and the constants k
and 
 in De�nition 2.1 may depend on a parameter �, the stability is with
respect to the origin (and not to a ball of radius �).

Remark 2.3 We would also like to make the reader aware of the di¤erence
from the de�nition of UGPES (of impulsive systems) in (Dlala and Ham-
mami, 2007, De�nition 4.1), where the constants k and 
 are independent
of �. Our approach, allows for the use of a Lyapunov function that depends
on the parameter �, (which again depends on �).

Remark 2.4 Global practical uniform exponential stability was also de-
�ned in (Benabdallah et al., 2009, De�nition 5), but with a di¤erent mean-
ing than in 2.1, since the stability in the cited reference is with respect to a
�xed set, and not a set that can be decreased by parameter tuning.

In Chapter 5 we will deal with the attitude tracking of spacecraft. Since
the Euler parameters, introduced in Section 1.3.2, will be used to describe
the orientation error, any global/semiglobal results in the above setting
are ruled out. This is due to the fact that the Euler parameters naturally
entails two equilibrium points. We will therefore also need the following
de�nition:
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De�nition 2.4 (UPES) Let � � Rm be a set of parameters. The system
(2.3) is said to be uniformly (locally) practically exponentially stable on
� if there exists � > 0, and given any � > 0, there exists a parameter
�?(�;�) 2 � and positive constants k(�;�) and 
(�;�) such that, for any
x0 2 B� and any t0 2 R�0 the solution of (2.3) satis�es, for all t � t0;

jx(t; t0; x0; �?)j � � + k(�;�) jx0j e�
(�;�)(t�t0) :

2.3 Lyapunov su¢ cient conditions

We here present su¢ cient conditions for the above properties to hold. They
are expressed as a condition on the sign of a Lyapunov-like function�s deriv-
ative, on a restricted region of the state space.

2.3.1 UGPES

Theorem 2.1 (Su¢ cient condition for UGPES) Let � be a subset of
Rm and suppose that, given any � > 0, there exist a parameter �?(�) 2 �,
a continuously di¤erentiable Lyapunov function V� : R�0 � Rn ! R�0 and
positive constants �(�), �(�), �(�) such that, for all x 2 Rn n B� and all
t 2 R�0,

�(�) jxjp � V�(t; x) � �(�) jxjp ; (2.5)
@V�
@t
(t; x) +

@V�
@x
(t; x)f(t; x; �?) � ��(�) jxjp ; (2.6)

where p denotes a positive constant. Then, under the condition that

lim
�!0

�(�)�p

�(�)
= 0 ; (2.7)

the system _x = f(t; x; �) introduced in (2.3) is UGPES on the parameter
set �.

Proof. Let (2.5) and (2.6) hold for all x 2 Rn n B~� and all t 2 R�0. Along
the solutions of (2.3), we get from (2.5) and (2.6) that

jx(t; t0; x0; �?)j > ~� )
_V~�(t; x(t; t0; x0; �

?)) � ��0(~�)V~�(t; x(t; t0; x0; �
?)) ;

where �0(~�) := �(~�)=�(~�). Invoking (Chaillet and Loría, 2006c, Lemma 13),
we then get that, for all x0 2 Rn, all t0 2 R�0 and all t � t0,

jx(t; t0; x0; �?)j �
 
�(~�)~�

p

�(~�)

!1=p
+

 
�(~�)

�(~�)

!1=p
jx0j e��

0(~�)(t�t0)=p:
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In view of (2.7), we see that the quantity �(~�)~�
p
=�(~�) may be reduced at

will by choosing ~� small enough. Therefore, (2.4) is satis�ed with

� =

 
�(~�)~�

p

�(~�)

!1=p
; k(�) =

 
�(~�)

�(~�)

!1=p
and 
 (�) =

�0(~�)

p
;

and the conclusion follows.
Compared to classical results for Lyapunov stability, conditions (2.5)

and (2.6) are natural (see (Khalil, 2002, Theorem 4.10)). For perturbed
systems, (2.5) is notably satis�ed by the Lyapunov function associated to
the UGES of the origin of the corresponding nominal systems. (2.6) is sim-
ilar to the Lyapunov su¢ cient condition for global ultimate boundedness
(cf. e.g. Khalil (2002)). Intuitively, one may expect that these two require-
ments, when valid for any arbitrarily small �, su¢ ce to conclude UGPES.
However, we see that an additional assumption (2.7) is required, establish-
ing a relationship between the bounds on the Lyapunov function. Indeed,
in the present framework, the Lyapunov function may here depend on the
tuning parameter �, and consequently on the radius �. As clearly shown
in Kokotovic̀ and Marino (1986); Sepulchre (2000), this parametrization
of the Lyapunov function may induce unexpected behaviors if (2.7) is not
assumed.

2.3.2 USES

Theorem 2.2 (Su¢ cient condition for USES) Let � be a subset of
Rm and suppose that, given any � > 0, there exist a parameter �?(�) 2 �,
a continuously di¤erentiable Lyapunov function V� : R�0 � Rn ! R�0
and positive constants �(�), �(�), �(�) such that, for all x 2 B� and all
t 2 R�0,

�(�) jxjp � V�(t; x) � �(�) jxjp (2.8)

@V�
@t

(t; x) +
@V�
@x

(t; x)f(t; x; �?) � ��(�) jxjp ; (2.9)

where p denotes a positive constant. Then, under the condition that

lim
�!1

�(�)�p

�(�)
=1 ; (2.10)

the system _x = f(t; x; �) introduced in (2.3) is USES on the parameter set
�.

The proof is omitted, but follows along the same lines as in the proof
of Theorem 2.1 and Theorem 2.3.
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2.3.3 USPES

Theorem 2.3 (Su¢ cient condition for USPES) Let � be a subset of
Rm and suppose that, given any � > � > 0, there exist a parameter
�?(�;�) 2 �, a continuously di¤erentiable Lyapunov function V�;� : R�0�
Rn ! R�0 and positive constants �(�;�), �(�;�), �(�;�) such that, for
all x 2 B� n B� and all t 2 R�0,

�(�;�) jxjp � V�;�(t; x) � �(�;�) jxjp (2.11)

@V�;�
@t

(t; x) +
@V�;�
@x

(t; x)f(t; x; �?) � ��(�;�) jxjp ; (2.12)

where p denotes a positive constant. Assume also that, given any �? >
�? > 0, there exist � > � > 0 such that

�(�;�)�p

�(�;�)
� �? and

�(�;�)�p

�(�;�)
� �? : (2.13)

Then the system _x = f(t; x; �) introduced in (2.3) is USPES on the para-
meter set �.

Proof. Let (2.11) and (2.12) hold for all x 2 B ~� n B~� and all t 2 R�0. Let
~� be any positive constant and pick � such that0@�

�
~�; ~�

�
�p

�
�
~�; ~�

�
1A

1
p

< ~�;

which is always possible due to (2.13). This allows us to apply (Chaillet,
2006, Proposition 2.13), and we �nd that

jx0j � �� =) jx(t; t0; x0; �?)j � ~�; 8t � t0;

where

�� :=

�
� (�;�)�p

� (�;�)

� 1
p

:

Note that solutions starting in B ��, will never escape B ~�, and in view of
(Chaillet, 2006, Lemma 2.7), we have that for any x0 2 B �� and any t0 2
R�0,

jx (t; t0; x0; �?)j � �� +
 
�(~�; ~�)

�(~�; ~�)

!1=p
jx0j e��

0(~�; ~�)(t�t0)=p;
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where �0(~�; ~�) := �(~�; ~�)=�(~�; ~�), and

�� :=

 
�(~�; ~�)~�

p

�(~�; ~�)

!1=p
:

In view of (2.13), we see that the quantity �� may be reduced at will by
choosing ~� small enough, and that �� may be enlarged at will by choosing
~� large enough. Therefore, (2.3) is satis�ed with

� = ��; k(�;�) =

 
�(~�; ~�)

�(~�; ~�)

!1=p
and 
 (�;�) =

�0(~�; ~�)

p

and the conclusion follows.

2.3.4 UPES

Theorem 2.4 (Su¢ cient condition for UPES) Let � be a subset of
Rm and suppose that, there exists � > 0; and given any � > � > 0,
there exist a parameter �?(�) 2 �, a continuously di¤erentiable Lyapunov
function V� : R�0�B� ! R�0 and positive constants �(�), �(�), �(�) such
that, for all x 2 B� n B� and all t 2 R�0,

�(�) jxjp � V�(t; x) � �(�) jxjp (2.14)

@V�
@t
(t; x) +

@V�
@x
(t; x)f(t; x; �?) � ��(�) jxjp ; (2.15)

where p denotes a positive constant. Then, under the condition that

lim
�!0

�(�)�p

�(�)
= 0 ; (2.16)

the system _x = f(t; x; �) introduced in (2.3) is UPES on the parameter set
�.

The proof is omitted, but follows along the same lines as Theorem 2.1.

2.3.5 Practical K-exponential stability

For the sake of completeness, we will here brie�y discuss the relations of the
above stated de�nitions to K-exponential stability. Exponential stability in
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any ball of initial conditions and K-exponential stability - two equivalent de-
�nitions, see (Børhaug, 2008, Remark 2.1) - were de�ned in Sastry and Bod-
son (1994) and Sørdalen and Egeland (1995), respectively. These de�nitions
are commonly applied to stability analysis of nonholonomic and underac-
tuated systems. The following remark shows that practical K-exponential
and practical asymptotic stability are the same.

Remark 2.5 The notion of uniform practical K-exponential stability, i.e.
for any � > 0, there exist �? 2 �; a function �� 2 K and a positive constant
k� > 0, such that for all x0 2 Rn and all t0 � 0,

jx (t; t0; x0; �?)j � �� (jx0j) e�k�(t�t0) + �; 8t � t0; (2.17)

and the notion of uniform practical asymptotic stability, i.e. for any � > 0;
there exist a function �� 2 KL and �? 2 � such that for all x0 2 Rn, an
all t0 � 0,

jx (t; t0; x0; �?)j � �� (jx0j ; t� t0) + �; 8t � t0; (2.18)

are equivalent.

Proof. The implication from (2.17) to (2.18) is trivial. For the implication
in the opposite direction, consider the following: for all x0 2 Rn and all
� > 0, there exists a T (jx0j) � t0 such that �� (jx0j ; T�) � �. Then

jx (t)j � 2�; 8t � T� (jx0j) :
By (Sontag, 1998, Lemma 8) we have that since �� 2 KL, there exist
�1� ; �2� 2 K1 such that for all s � 0, and for all t � t0 � 0,

�� (s; t� t0) � �1� (s)�2�
�
e�(t�t0)

�
:

Furthermore, for all s � 0 and all t � T� (s),
�� (s; t) � �1� (s)�2� (1) e

T�(s)�(t�t0)

� �1� (s) e
T�(s)�2� (1) e

�(t�t0):

Let
�� (s) := �1� (s) e

T�(s)�2� (1) :

Then, �
jx (t)j � 2� 8t � T� (jx0j)

jx (t)j � �� (jx0j) e�k�(t�t0) + � 8t < T� (jx0j)
Let ~� := 2�. Then for all t � t0,

jx (t)j � �� (jx0j) e�k�(t�t0) + ~�
which concludes the proof.
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2.4 Stability of cascades

In this section we consider systems on the following cascaded structure:

_x1 = f1(t; x1; �1) + g(t; x; �) (2.19)

_x2 = f2(t; x2; �2) (2.20)

where x :=
�
x>1 ; x

>
2

�> 2 Rn1 �Rn2 , t 2 R�0, � := ��>1 ; �>2 �> 2 Rm1 �Rm2 ,
f1 and f2 are locally Lipschitz in x and piecewise continuous in t for all
� under consideration. Stability of cascades for nonlinear nonautonomous
systems has been thoroughly treated in the literature. Su¢ cient conditions
for UGES can be found in Corless and Glielmo (1998) and Panteley et al.
(1998); for UGAS can be found in Panteley and Loría (1998), Panteley and
Loría (2001), Loría and Panteley (2005) and Tjønnås et al. (2006), and
for UGPAS can be found in Chaillet and Loría (2006a) and Chaillet and
Loría (2008). The above references contain general results for stability of
cascades, where as the results of this section is mainly intended for the
applications of this thesis.

2.4.1 UGPES

Theorem 2.5 Under Assumption 2.1, 2.2 and 2.3, the system (2.19-2.20)
is UGPES on �1 ��2.

Assumption 2.1 Given any �1 > 0, there exist a parameter �?1(�1) 2 �1,
a continuously di¤erentiable Lyapunov function V�1 : R�0�Rn1 ! R�0 and
positive constants � (j�?1j), � (j�?1j) (a¢ ne in j�?1j) and an arbitrarily large
� (j�?1j) (a¢ ne in j�?1j) such that, for all x1 2 Rn1 ; and all t 2 R�0,

�1 (j�?1j) jx1j
2 � V�1(t; x1) � �1 (j�?1j) jx1j

2 (2.21)

@V�1
@t

(t; x1) +
@V�1
@x1

(t; x1)f1(t; x1; �
?
1) � ��1 (j�?1j) jx1j

2 ;

Assumption 2.2 There exist a positive constant c2, and given any �2 > 0,
there exist a parameter �?2(�2) 2 �2, a continuously di¤erentiable Lyapunov
function V�2 : R�0 � Rn2 ! R�0 and positive constants �2 (j�?2j), �2 (j�?2j)
(a¢ ne in j�?2j) and an arbitrarily large �2 (j�?2j) (a¢ ne in j�?2j), such that,
for all x2 2 Rn2 and all t 2 R�0,

�2 (j�?2j) jx2j
2 � V�2 (t; x2) � �2 (j�?2j) jx2j

2 (2.22)
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@V�2
@t

(t; x2) +
@V�2
@x2

(t; x2) f2 (t; x2; �
?
2) � ��2 (j�?2j) jx2j

2 + c2 jx2j :

Assumption 2.3 There exists a positive constant, ~c, such that the gradient
of V�1 from Assumption 2.1 along the interconnection term for all x =
(x>1 ; x

>
2 )
> 2 Rn1 � Rn2 and all t 2 R�0, satis�es

@V�1
@x1

(t; x1) g (t; x; �
?
2) � ~c jx1j� (x1; x2; �?2)

where
� (x1; x2; �

?
2) � 1 + j�?2j jx1j+ (1 + j�?2j) jx2j :

The proof of Theorem 2.5 can be found in Appendix A.

2.4.2 UPES

We here state a local version of Theorem 2.5, a useful tool for stability
analysis of attitude control using Euler parameters.

Theorem 2.6 Under Assumption 2.4, 2.5 and 2.6, with

� := min f�1;�2g > � := max f�1; �2g ;

the system (2.19-2.20) is UPES on �1 ��2.

Assumption 2.4 Given any �1 and any �1 such that �1 > �1 > 0, there
exist a parameter �?1(�1) 2 �1, a continuously di¤erentiable Lyapunov func-
tion V�1 : R�0�B�1 ! R�0 and positive constants �1 (j�?1j), �1 (j�?1j) (a¢ ne
in j�?1j) and an arbitrarily large �1 (j�?1j) (a¢ ne in j�?1j) such that, for all
x1 2 B�1 ; and all t 2 R�0,

�1 (j�?1j) jx1j
2 � V�1(t; x1) � �1 (j�?1j) jx1j

2 (2.23)

@V�1
@t

(t; x1) +
@V�1
@x1

(t; x1)f1(t; x1; �
?
1) � ��1 (j�?1j) jx1j

2 ; (2.24)

Assumption 2.5 There exist a positive constant c2, and given any �2
and any �2 such that �2 > �2 > 0, there exist a parameter �?2(�2) 2 �2, a
continuously di¤erentiable Lyapunov function V�2 : R�0 � B�2 ! R�0 and
positive constants �2 (j�?2j), �2 (j�?2j) (a¢ ne in j�?2j) and an arbitrarily large
�2 (j�?2j) (a¢ ne in j�?2j) such that, for all x2 2 B�2 and all t 2 R�0,

�2 (j�?2j) jx2j
2 � V�2 (t; x2) � �2 (j�?2j) jx2j

2 (2.25)

@V�2
@t

(t; x2) +
@V�2
@x2

(t; x2) f2 (t; x2; �
?
2) � ��2 (j�?2j) jx2j

2 + c2 jx2j :
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Assumption 2.6 There exists a positive constant, ~c, such that the gradient
of V�1 from Assumption 2.1 along the interconnection term for all x =�
x>1 ; x

>
2

�> 2 B�1 � B�2 and all t 2 R�0, satis�es
@V�1
@x1

(t; x1) g (t; x; �
?
2) � ~c jx1j� (x1; x2; �?2)

where
� (x1; x2; �

?
2) � 1 + j�?2j jx1j+ (1 + j�?2j) jx2j :

The proof follows along the lines of the proof of Theorem 2.5, which is
given in Appendix A.

2.4.3 UGPAS

The next theorem shows that we can relax the conditions on the intercon-
nection term, at the price of only achieving UGPAS instead of UGPES.
More general su¢ cient conditions for a system of the structure (2.20-2.20)
to be UGPAS, have already been given in Chaillet and Loría (2006b). How-
ever, for certain systems on a cascaded structure, such as the dynamics of a
leader follower formation presented in the subsequent chapters, the condi-
tions on the interconnection term might not be ful�lled. The main reason
it that the trajectory based proof technique in Chaillet and Loría (2006b),
does not, in general, allow for the interconnection to depend on �2. It
should be noted that there is a relaxation stated in (Chaillet and Loría,
2006b, Remark 2) that allows for the interconnection term to depend on
�2, but this relaxation is not applicable for the leader-follower formation
considered in this thesis. We therefore present a cascaded theorem, which
proof is based on repeated use of Young�s Inequality as opposed to the
trajectory based proof technique in Chaillet and Loría (2006b). The impli-
cation is that the former allows for the interconnection term to depend on
the tuning parameters of the driving subsystem, where as the latter allows
it to depend on the tuning parameters of the driven subsystem.

Theorem 2.7 Under Assumption 2.1 with �1 independent of j�?1j, Assump-
tion 2.2 with �2 independent of j�?2j and Assumption 2.7, the system (2.19-
2.20) is UGPAS on �1 ��2.

Assumption 2.7 There exists a positive constant, ~c, such that the gradient
of V�1 from Assumption 2.1 along the interconnection term satis�es

@V�1
@x1

(t; x1) g (t; x; �
?
2) � ~c jx1j� (x1; x2; �?2)
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where

� (x1; x2; �
?
2) � 1 + j�?2j jx1j

+ (1 + jx1j+ j�?2j+ jx1j j�?2j)
QX
q=1

jx2jq :

The proof of Theorem 2.7 can be found in Appendix A.

2.5 Robustness of ISS systems with respect to a
class of non-bounded energy inputs

2.5.1 Terminology

We next recall some classical de�nitions related to the stability and robust-
ness of nonlinear systems of the form

_x = f(x; u); (2.26)

where x 2 Rn, u 2 U and f : Rn � Rp ! Rn is locally Lipschitz in x.
The class U of external inputs u that we consider consists of a subset of all
signals u : R�0 ! Rp that are measurable and locally essentially bounded.

De�nition 2.5 Let � be a positive number and u be a given signal in U .
The ball B� is said to be globally asymptotically stable (GAS) for (2.26) if
there exists a class KL function � such that the solution of (2.26) from any
initial state x0 2 Rn satis�es

jx(t; x0; u)j � � + �(jx0j; t); 8t � 0: (2.27)

De�nition 2.6 The ball B� is said to be globally exponentially stable (GES)
for (2.26) if De�nition 2.5 holds with �(r; s) = kre�
s for some positive
constants k and 
.

De�nition 2.7 The system _x = f(x; u) is said to be input-to-state stable
(ISS) if there exist � 2 KL and 
 2 K1 such that, for all x0 2 Rn and all
u 2 U , the solution of (2.26) satis�es

jx(t; x0; u)j � �(jx0j; t) + 
(jju(s)jj1) ; 8t � 0 :
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ISS thus imposes an asymptotic decay of the norm of the state up to a
function of the amplitude jjujj1 of the input signal. We also recall the fol-
lowing well-known Lyapunov characterization of ISS, originally established
in Praly and Wang (1996) and thus extending the original characterization
proposed in Sontag and Wang (1995).

Proposition 2.1 The system (2.26) is ISS if and only if there exist �; �; 
 2
K1 and � > 0 such that, for all x 2 Rn and all u 2 Rp,

�(jxj) � V (x) � �(jxj)

@V

@x
(x)f(x; u) � ��V (x) + 
(juj) :


 is then called a supply rate for (2.26).

Remark 2.6 Since ISS implies iISS (cf. Sontag (1998)), it can be shown
that the solutions of any ISS system with supply rate 
 satis�es, for all
x0 2 Rn,

jx(t; x0; u)j � �(jx0j; t) + �
�Z t

0

(ju(�)j)d�

�
; 8t � 0 ;

where � 2 KL and � 2 K1.

The above remark establishes a link between a measure of the energy
fed into the system and the norm of the state: if this energy is small,
then the state will eventually be small. However, stated as above, the ISS
property does not provide any information on the behavior of the system
when this energy is not �nite, that is if the perturbation persistently excites
the system. In the same way, the statement of De�nition 2.7 is not relevant
for signals whose supremum is unbounded. Both these types of signals are
relevant for control applications, and in particular for spacecraft formations.
This motivates the introduction of the following class of signals.

De�nition 2.8 Given some constants E; T > 0 and and some function

 2 K, the set W
(E; T ) denotes the set of all signals u 2 U satisfying, for
all t 2 R�0, Z t+T

t

(ju(s)j)ds � E :



30 Mathematical Preliminaries

Any signal u belonging to the class W
(E; T ) has therefore a limited
excitation in average. The main concern here is the measure E of the max-
imum energy that can be fed into the system over a moving time window of
given length T . Signals of this class are not necessarily globally essentially
bounded, nor are they required to have a �nite energy, as illustrated by the
following examples. Robustness to this class of signal thus constitutes an
extension of typical properties of ISS systems.

Example 2.2 1. Essentially bounded signals: given any T > 0 and any

 2 K, if jjujj1 is �nite then it holds that u 2 W
(T
(jjujj1); T ). We
stress that this includes signals with in�nite energy (think for instance
of constant non-zero signals).

2. Unbounded signals: given any T > 0 and any 
 2 K, the following
signal belongs to W
(1; T ) and satis�es lim supt!1 ju(t)j = +1:

u(t) :=

�
2k if t 2 [2kT ; 2kT + 1

2k ] ; k 2 N
0 otherwise.

2.5.2 Robustness of ISS systems w.r.t. signals in class W

The main contribution of this article is the following result, which estab-
lishes that the impact of exogenous signals on the qualitative behavior of an
ISS systems is negligible if the average excitation of this signal is su¢ ciently
small.

Theorem 2.8 Assume that the system _x = f(x; u) is ISS. Then, there
exists a class K1 function 
 and a class KL function � and, given any
precision � > 0 and any time window T > 0, there exists a positive average
excitation E(T; �) such that, given any u 2 W
(E; T ), the ball B� is GAS.

The above result adds another brick in the wall of nice properties in-
duced by ISS, cf. Sontag (2007) and references therein. It ensures that,
provided that steady-state error � can be tolerated, then every ISS system
is robust to a class of disturbances with esuriently small average excitation.
Of course, the greater imprecise � one may tolerate, the larger the class
admissible perturbations.

It is worth stressing that the KL estimate of the solutions is independent
of the required precision �. This implies, in particular, that the expected
transient overshoot and decay rate are independent of the aimed precision.
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Proof of Theorem 2.8. In view of (Praly and Wang, 1996, Lemma
11) and (Angeli et al., 2000, Remark 2.4), there exists a continuously dif-
ferentiable function V : Rn ! R�0, class K1 functions �; � and 
, and a
positive constant � such that, for all x 2 Rn and all u 2 Rm,

�(jxj) � V (x) � �(jxj) (2.28)

@V

@x
(x)f(x; u) � ��V (x) + 
(juj) : (2.29)

Let w(t) := V (x(t; x0; u)). Then it holds in view of (2.29) that

_w(t) = _V (x(t; x0; u))

� ��V (x(t; x0; u)) + 
(ju(t)j)
� ��w(t) + 
(ju(t)j) :

In particular, it holds that, for all t � 0,

w(t) � w(0)e��t +
Z t

0

(ju(s)j)ds : (2.30)

Assuming that u belongs to the class W
(E; T ), for some arbitrary con-
stants E; T > 0, it follows that

w(T ) � w(0)e��T +
Z T

0

(ju(s)j)ds � w(0)e��T + E :

Considering this inequality recursively, it follows that, for each ` 2 N�1,

w(`T ) � w(0)e�`�T + E
k�1X
j=0

e�j�T

� w(0)e�`�T + E
X
j�0

e�j�T

� w(0)e�`�T + E
e�T

e�T � 1 : (2.31)

Given any t � 0, pick ` as bt=T c and de�ne t0 := t�`T . Note that t0 2 [0; T ].
Then, it follows from (2.30) that

w(t) � w(`T )e��t0 +
Z t

`T

(ju(s)j)ds � w(`T )e��t0 + E ;
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which, in view of (2.31), implies that

w(t) �
�
w(0)e�`�T + E

e�T

e�T � 1

�
e�t

0
+ E

� w(0)e�k(`T+t
0) + E

�
1 +

e�T

e�T � 1

�
� w(0)e��t +

2e�T � 1
e�T � 1 E :

Recalling that w(t) = V (x(t; x0; u)), it follows that

V (x(t; x0; u)) � V (x0)e��t +
2e�T � 1
e�T � 1 E ;

which implies, in view of (2.28), that

�(jx(t; x0; u)j) � �(jx0j)e��t +
2e�T � 1
e�T � 1 E ;

Recalling that ��1(a+b) � ��1(2a)+��1(2b) as � 2 K1, we �nally obtain
that, given any x0 2 Rn, any u 2 W
(E; T ) and any t � 0,

jx(t; x0; u)j � ��1
�
2�(jx0j)e��t

�
+ ��1

�
2E
2e�T � 1
e�T � 1

�
: (2.32)

Given any T; � � 0, the following choice of E:

E(T; �) � �(�)

2

e�T � 1
2e�T � 1 : (2.33)

ensures that

��1
�
2E
2e�T � 1
e�T � 1

�
� �

and the conclusion follows in view of (2.32) with the KL function

�(s; t) := ��1
�
2�(s)e��t

�
; 8s; t � 0 :
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Known explicit Lyapunov function

It follows along the proof of Theorem 2.8 that an explicit bound on the
tolerable average excitation can be provided if an ISS Lyapunov is known.
More precisely, we state the following result.

Corollary 2.1 Assume there exists a continuously di¤erentiable function
V : Rn ! R�0, a positive constant � and class K1 functions � and � such
that, for all x 2 Rn and all u 2 Rm,

�(jxj) � V (x) � �(jxj) (2.34)

@V

@x
(x)f(x; u) � ��V (x) + 
(juj) : (2.35)

Given any precision � > 0 and any time window T > 0, consider any
average excitation satisfying

E(T; �) � �(�)

2

e�T � 1
2e�T � 1 : (2.36)

Then, for any u 2 W
(E; T ) and any x0 2 Rn, B� is GAS for _x = f(x; u).

The above statements shows that, by knowing a Lyapunov function
associated to the ISS of a system, and in particular its dissipation rate 
,
one is able to explicitly identify the classW
(E; T ) to which it is robust up
to the arbitrary precision �.

In a similar way, we can state su¢ cient condition for global exponen-
tial stability of some neighborhood of the origin. This result also trivially
follows from the proof of Theorem 2.8.

Corollary 2.2 If the conditions of Corollary 2.1 are satis�ed with � (s) =
csp and � (s) = csp, with c; c; p positive constants, then, given any T; � > 0,
the ball �B� is GES for (2.26) with any signal u 2 W
 (E; T ) provided that

E(T; �) � c�p

2

e�T � 1
2e�T � 1 :
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Chapter 3

Modeling

This chapter is devoted to modeling of the formations of spacecraft. In
Section 3.1 the model for the translational case is derived, and Section 3.2
contains the model for the rotational case.

3.1 Translational case

The model of the spacecraft can be derived with respect to the inertial
reference frame, or with respect to a moving reference frame. The moving
reference frame can either be an orbital reference frame of a prescribed mo-
tion or a reference frame attached to one of the spacecraft in the formation.
Let the position of the spacecraft be described by the vector ~r, let ~ro be the
vector describing the origin of the moving reference frame Fo, and de�ne
~p := ~r�~ro. The acceleration is then given by the following equation, which
is a result of applying the rules for di¤erentiation in moving frames, see e.g.
Egeland and Gravdahl (2002):

id

dt
~r =

od

dt
~r + ~!io � ~r

id2

dt2
~r =

od

dt

�
od

dt
~r + ~!io � ~r

�
+ ~!io �

�
od

dt
~r + ~!io � ~r

�
=

od2

dt2
~r + 2~!io �

od

dt
~r +

�
od

dt
~!io

�
� ~r + ~!io � (~!io � ~r) (3.1)

Here, ~!io is the angular velocity of the moving reference frame, relative to
the inertial frame. The unit vectors of Fo are chosen such that ~o1 points
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in the anti-nadir direction, ~o3 points in the direction of the orbit normal,
and �nally ~o2 completes the right-handed orthogonal frame. The rotation
matrix between the orbital frame and the inertial frame is given by

Rio =
�
oi1 oi2 oi3

�
2 SO (3) ;

where

oi1 :=
rio
jroj

; oi2 := o
i
3 � oi2; oi3 :=

rio � _rio
jro � _roj

:

The matrix can also be expressed in terms of orbital parameters, as three
consecutive rotations:

Rio = Rz (
o)Rx (io)Rz (~!o + �o) ;

where 
o is the longitude of the ascending node, io is the inclination, ~!o
is the argument of perigee and �o is the true anomaly. The subscript o is
to emphasize that these are the orbital parameters describing the motion
of the point o. The angular velocity can be given as a coordinate vector in
terms of the orbital parameters as:

!iio =

24 00
_
o

35+Rz;
o
24_io0
0

35+Rz;
oRx;io
24 0

0
_~!o + _�o

35
=

24 00
_
o

35+
24cos
o � sin
o 0
sin
o cos
o 0
0 0 1

3524_io0
0

35
+

24cos
o � cos io sin
o sin io sin
o
sin
o cos io cos
o � sin io cos
o
0 sin io cos io

3524 0
0

_~!o + _�o

35
=

24 00
_
o

35+
24_io cos
o_io sin
o

0

35+
24 �

_~!o + _�o
�
sin io sin
o

�
�
_~!o + _�o

�
sin io cos
o�

_~!o + _�o
�
cos io

35
= T�1� (�) _�

with � = (
o; io; ~!o + �o) and

T�1� =

240 cos
o sin io sin
o
0 sin
o � sin io cos
o
1 0 cos io

35 :
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Hence,

T� (�) =

24� (cos io) sin
osin io
(cos io)

cos
o
sin io

1

cos
o sin
o 0
sin
o
sin io

� cos
o
sin io

0

35 :
Or, the angular velocity can be expressed in the leader spacecraft frame as:

!oio = Rz;�(~!o+�o)Rx;�io

24 00
_
o

35+Rz;�(~!o+�o)
24_io0
0

35+
24 0

0
_!o + _�o

35
=

24 cos (�o + ~!o) sin (�o + ~!o) cos io sin (�o + ~!o) sin io
� sin (�o + ~!o) cos (�o + ~!o) cos io cos (�o + ~!o) sin io

0 � sin io cos io

3524 00
_
o

35
+

24 cos (~!o + �o) sin (~!o + �o) 0
� sin (~!o + �o) cos (~!o + �o) 0

0 0 1

3524_io0
0

35+
24 0

0
_~!o + _�o

35
=

24 _
o sin (� + ~!o) sin io_
o cos (� + ~!o) sin io
_
o cos io

35+
24 _io cos (~!o + �o)�_io sin (~!o + �o)

0

35+
24 0

0
_~!o + _�o

35
= U�1�

_�

with

U�1� =

24sin (� + ~!) sin i cos (~! + �) 0
cos (� + ~!) sin i � sin (~! + �) 0

cos i 0 1

35 :
Notice that we have not chosen the origin of the moving reference frame
yet. It can be chosen to satisfy any point of interest with respect to the
spacecraft, and a suitable choice is to let the origin be a solution to the
di¤erential equation

id2

dt2
~ro = �

�

j~roj3
~ro (3.2)

where � is the gravitational parameter of Earth. By choosing the origin of
the orbit frame to be a solution of (3.2), the orbital elements ~!o, io and 
o
are constant, and the angular velocity of the orbital frame becomes simply

!oio = (0; 0; _�o)
> : (3.3)

From Newton�s Second Law, we have that

m
id2

dt2
~r = ~f
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where ~f is the resultant force acting on the center of gravity of the object
with mass m. Expressing the model (3.1) in matrix form, we �nd that

fo

m
= (�roo + �p

o) + 2S (!oio) ( _r
o
o + _po) + (S2 (!oio) + S ( _!

o
io)) (r

o
o + p

o)

Remark 3.1 An alternative approach is to di¤erentiate the expression ri =
Rior

o, twice. This, by using that _Rio = R
i
oS (!

o
io), directly leads to

�ri = Rio
�
�ro + 2S (!oio) _r

o +
�
S2 (!oio) + S ( _!

o
io)
�
ro
�

Now, Newton�s law states that �ri = f i=m, where f i 2 R3 consists of all
the forces acting on the spacecraft and m is the spacecraft mass, and which
equivalently can be stated as �ri = Riof

o=m. Inserting this expression and
using that r = ro + p, gives

fo

m
= (�roo + �p

o) + 2S (!oio) ( _r
o
o + _po) + (S2 (!oio) + S ( _!

o
io)) (r

o
o + p

o) :

Now, consider that the motion of spacecraft j is given by these same
equations, but we use the subscript j, to denote spacecraft j:

foj
mj

= (�roo + �p
o
j) + 2S (!

o
io)
�
_roo + _poj

�
+ (S2 (!oio) + S ( _!

o
io))

�
roo + p

o
j

�
: (3.4)

This is the model given in Ploen et al. (2004b). Since

�rio = R
i
o((S

2 (!oio) + S ( _!
o
io))r

o
o + 2S (!

o
io) _r

o
o + �r

o
o)

and, if we choose the origin of Fo to satisfy the coordinate version of (3.2),

�rio = �
�

jroj3
rio;

we get that

foj
mj

= �poj + 2S (!
o
io) _p

o
j + (S

2 (!oio) + S ( _!
o
io))p

o
j �

�

jroj3
roo:

Furthermore, by using that fj is composed of gravitational forces, con-
trol forces uj and other forces dj , the model can be written as:

mj((S
2 (!oio) + S ( _!

o
io))p

o
j + 2S (!

o
io) _p

o
j + �p

o
j)) + n (ro; pj) = u

o
j + d

o
j : (3.5)

with

n (ro; pj) := mj�

0B@ roo + p
o
j���roo + poj ���3 �

roo

jroj3

1CA :
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Remark 3.2 In Ploen et al. (2004b), each spacecraft j is considered as a
part of what is called a virtual structure. A convenient model is found by
stacking the position vector of each spacecraft, and letting the origin of the
reference frame Fo for example be the center of mass of the formation.

We will now derive the relative dynamics of spacecraft k and j. De�ne
pjk := pk � pj as the relative position vector. By (3.4), the equation of
motion of spacecraft k relative to spacecraft j is found to be:

mk((S
2 (!oio) + S ( _!

o
io))p

o
jk + 2S (!

o
io) _p

o
jk + �p

o
jk) = f

o
k �

mk

mj
fok

Again, by (3.3), and by separating fj and fk into gravitational forces, con-
trol forces and other forces, the equation become:

uok + d
o
k �

mk

mj

�
uoj + d

o
j

�
= mk(S

2 (!oio) + S ( _!
o
io))p

o
jk + 2mkS (!

o
io) _p

o
jk

+mk �p
o
jk + n (ro; pj ; pjk) (3.6)

with

n(ro; pj ; pjk) := mk�

 
roo + p

o
k

jro + pkj3
�

roo + p
o
j

jro + pj j3

!

= mk�

 
roo + p

o
jk + p

o
j

jro + pjk + pj j3
�

roo + p
o
j

jro + pj j3

!

For later reference we will now give a compact description of the models
used in the chapters to follow.

3.1.1 Model with reference frame following Keplerian orbit

When the reference frame is moving in a Keplerian orbit, the model of the
leader is given by (3.5), which can be rewritten as:

ml�p+ Cl ( _�o) _p+Dl ( _�o; ��o) p+ nl (ro; p) = ul + dl (3.7)

where (borrowing notation from Kristiansen et al. (2006b))

Cl ( _�o) := 2ml _�o �C; �C :=

240 �1 0
1 0 0
0 0 0

35 2 SS(3);
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Dl ( _�o; ��o) := ml _�
2
o
�D +ml��o �C;

�D := diag(�1;�1; 0) 2 R3�3;

nl (ro; p) := ml�

�
ro + p

jro + pj3
� ro
jroj3

�
;

ml is the mass of the leader spacecraft, and ul and dl are the control-
and disturbance vectors, respectively, acting on the leader. The model
describing the motion of the follower spacecraft relative to the leader is
given by (3.6) and can be written as

mf��+Cf ( _�o) _�+Df ( _�o; ��o) �+nf (ro; p; �) = uf+df�
mf

ml
(ul + dl) ; (3.8)

with
Df ( _�o; ��o) := mf _�

2
o
�D +mf ��o �C;

and

nf (ro; p; �) := mf�

�
ro + p+ �

jro + �+ pj3
� ro + p

jro + pj3

�
:

mf is the mass of the follower spacecraft, where as uf and df are the
control- and disturbance vectors, respectively. All vectors, both for the
leader and the follower spacecraft, are expressed in an orbital frame, with
the origin satisfying Newton�s gravitational law. The superscript to denote
the reference frame o, has been dropped out of notational convenience and
the subscripts of (3.5) and (3.6) have been replaced with l and f , to denote
the leader and follower spacecraft, respectively.

3.1.2 Model with reference frame attached to leader space-
craft

Another possibility is to derive the equation of relative motion with respect
to an origin attached to the leader spacecraft. When the reference frame
is attached to the leader spacecraft, the dynamics describing the motion of
the follower spacecraft, relative to the leader can be written :

mf��+ Cf ( _�l) _�+Df ( _�l; ��l; rl; �) �+ nf (rl; �) = uf + df �
mf

ml
(ul + dl) ;

(3.9)
with (borrowing the notation from Kristiansen et al. (2006b))

Cf ( _�l) := 2mf _�l �C; �C :=

240 �1 0
1 0 0
0 0 0

35 2 SS(3);
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~rf
~ro

~rl
~�~o2

~o1

~o3 ~p

~i1

~i2

~i3

Figure 3.1: The model described in Section 3.1.1

Df ( _�l; ��l; rl; �) := mf _�
2
l
�D +mf ��l �C +mf

�

jrl + �j3
I3�3;

�D := diag(�1;�1; 0) 2 R3�3, and

nf (rl; �) := mf�

�
rl

jrl + �j3
� rl

jrlj3

�
:

This model is the same as in (Kristiansen et al. (2007)), and is the most
commonly used model in the literature for the relative translation of space-
craft. On the downside �l; and its time derivatives, are no longer known a
priori, but are parameters depending on the motion of the leader spacecraft.
To see why, notice that the angular velocity vector is given by

!iil =
S
�
ril
�
_ril

jrlj2
;

From the direction cosine matrix, we see that

!lil = Rli!
i
il

= col (0; 0; _�l)
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with

_�l =

 
S
�
ril
�
_ril

jS (rl) _rlj

!> 
S
�
ril
�
_ril

jrlj2

!

=
jS (rl) _rlj
jrlj2

which in fact is the true anomaly rate, Sellers (2000). We see that _�l,
depends on rl and _rl, which in turn depends on the disturbance- and control
forces. The true anomaly rate could of course be given in terms of orbital
parameters, but it is important to have in mind, at least from a theoretical
viewpoint, that for instance the eccentricity is no longer constant if the
spacecraft is perturbed from its elliptic orbit. This problem is related to the
fact that the eccentricity vector (Laplace-Runge-Lenz vector) is no longer
conserved, since the spacecraft, and thus the reference frame, is in�uenced
by forces that do not obey an inverse-square law.

3.1.3 Model with reference frame attached to leader space-
craft, Alternative 2

In Chapter 4, we will also consider the following model, where the relative
dynamics is described in the leader spacecraft frame:

mf��+ Cf (!
l
il) _�+Df (!

l
il; _!

l
il)�+ nf (rl; �) = uf + df �

mf

ml
(ul + dl) ;

where
Cf (!

l
il) := 2mf (S!

l
il)

Df (!
l
il; _!

l
il) := mfS(!

l
il)
2 +mfS( _!

l
il)

and

nf (rl; �) := mf�

�
rl + �

jrl + �j3
� rl

jrlj3

�
:

This model is just a rewrite of the model (3.9). !lil and _!lil denote the
angular velocity and acceleration of the leader spacecraft reference frame,
relative to the inertial frame and is given by

!lil ( _rl; rl) = R
l
i

S
�
ril
�
_ril

jrlj2
(3.10)

and

_!lil = R
l
i

�
S
�
ril
�
�ril
	
(ril)

>ril � 2
�
S
�
ril
�
_ril
	
( _ril)

>ril
jrlj4

: (3.11)



3.2 Rotational case 43

~rf
~rl

~�

~o2 ~o1

~o3

~i1

~i2

~i3

Figure 3.2: The model described in Section 3.1.3

For the leader spacecraft, the following model will be used:

ml�r
i
l +ml

�

jrlj3
ril = u

i
l + d

i
l

where the superscript i is used to denote that the vectors are decomposed
in the inertial frame.

3.2 Rotational case

3.2.1 Model of leader spacecraft

The model for the leader spacecraft is (Hughes (1986)):

_qil =
1

2

�
��>il
E (qil)

�
!lil (3.12)

Jl _!
l
il + Cl(!

l
il)!

l
il = � l + dl (3.13)

with Jl 2 R3�3 being the leader spacecraft inertia matrix, !lil the an-
gular velocity of the spacecraft relative to the inertial frame, Cl

�
!lil
�
=

�S
�
Jl!

l
il

�
and � l and dl the input and disturbance moments on the leader

spacecraft, respectively.
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3.2.2 Model of follower spacecraft

The model used for the follower spacecraft is similar to the one found in
Kristiansen et al. (2007), where the model of the relative attitude in a
leader-follower formation can be written as

_qlf =
1

2

�
��>lf
E (qlf )

�
!flf (3.14)

Jf _!
f
lf + Cf (!

f
lf )!

f
lf + nf (!

l
il; !

f
lf ) = �a + �d (3.15)

with Jf 2 R3�3 being the follower spacecraft inertia matrix, !flf the an-
gular velocity of the follower spacecraft relative to the leader spacecraft,
Cf (!

f
lf ) = �S(Jf!

f
lf ) and

nf =(S(R
f
l !

l
il)JfR

f
l � JfR

f
l J

�1
l S(!lil)Jl)!

l
il

+ (�S(JfRfl !
l
il) + JfS(R

f
l !

l
il) + S(R

f
l !

l
il)Jf )!

f
lf

Furthermore,
�a = �

f
f � JfR

f
l J

�1
l � ll (3.16)

and
�d = d

f
f � JfR

f
l J

�1
l dll (3.17)

with � f and df as the input and disturbance moments on the follower
spacecraft, respectively.

Remark 3.3 The model in Kristiansen et al. (2007) is slightly di¤erent,
and may prove advantageous from a control design perspective, as it more
thoroughly explores the properties of the matrices in the model.

Remark 3.4 Note that the matrices Ci; i 2 fl; fg satisfy the inequalities

jCi (a) bj � jJij jaj jbj

and are linear in their arguments, i.e.

Ci (�1a+ �2b) = �Ci (a) + �Ci (b)

for any vectors a; b 2 R3 and any constants �1; �2 2 R.
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3.3 Disturbances acting on spacecraft

In the following, models of the most prominent disturbances acting on
spacecraft in orbit are listed. In addition there are several other types
of disturbances that are not easily modeled, see Section 6.1.

3.3.1 Gravitational forces

The second zonal harmonic J2 is the most dominant, and by only consider-
ing this zonal harmonic the gravitational potential can be further approxi-
mated as

U (r; �) = ��
�
1

j~rj �
1

2
J2
R2e

j~rj3
�
3 sin2 �� 1

��
where Re is the mean equatorial radius of the Earth, � is the geocentric
latitude of the spacecraft position and ~r is the position vector from the
center of Earth to the spacecraft. Let ~rz be the part of ~r along the line
connecting the center of Earth with the geometrical north pole. Then,
using that sin� = rz= j~rj, we get that the gravitational forces acting on a
spacecraft is given by

~f = �mrU

= �m�
�
� ~r

j~rj2
� 1
2
J2R

2
e

�
�15r2z

~r

j~rj7
+ 3

~rz

j~rj5 j~rzj
+ 3

~r

j~rj5

��
:

3.3.2 Aerodynamic drag

The forces acting on a spacecraft due to atmospheric drag, can, based on
empirical observations, be modeled as Ploen et al. (2004b):

~fdrag = �
1

2
�CdragAe¤ j~vasj~vas,

where � is the atmospheric density, Cdrag is the drag coe¢ cient, Ae¤ is
the e¤ective incident area and ~vas is the velocity vector of the spacecraft
relative to the atmosphere of the Earth. If, in addition, it is assumed that
the atmosphere rotates with the Earth, then

~vas =
id

dt
~r � ~!ie � ~r

with ~!ie being the angular velocity of the Earth.
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3.3.3 Solar radiation

The force acting on a spacecraft due to the mean solar energy �ux is propor-
tional to the inverse square of the distance from the Sun, and can according
to Montenbruck and Gill (2000) be modeled as:

~frad = �P cos�A (1� ")~e+ 2� cos�~n;

with P being the solar radiation pressure, ~n is the normal vector of the
radiated surface area A and ~e points in the direction of the Sun, inclined at
an angle � relative to ~n. The distance between the Sun and the spacecraft
is assumed constant.

3.3.4 Third body gravitational perturbations

The gravitational perturbing forces due to j = 1; ::; N interacting bodies
modeled as point masses, can be given as:

~f =

NX
j=1

m�j

 
~rj

j~rj j3
� ~rej
j~rej j

!
;

where �j is the gravitational parameter of the j
th perturbing body, ~rej is

the vector from the Earth to the perturbing body j, and �nally ~rj is the
vector from the spacecraft to the perturbing body j, such that ~rj = ~rej�~r.



Chapter 4

Output tracking control of
leader-follower formation:
translational case

4.1 Control of relative motion in leader �xed co-
ordinate frame

In this Section, as in the original publications Grøtli and Gravdahl (2007)
and Grøtli et al. (2008), we only consider the relative dynamics of two
spacecraft, and with the origin of the frame of reference situated at the
origin of the leader spacecraft.

4.1.1 Model and desired trajectory assumptions

The relative dynamics were given in Section (3.1.2) by:

mf��+ Cf ( _�l) _�+Df ( _�l; ��l; rl; �) �+ nf (rl; �) = uf + df �
mf

ml
(ul + dl) ;

(4.1)
where

Df ( _�l; ��l; rl; �) := mf _�
2
l
�D +mf ��l �C +mf

�

jrl + �j3
I3�3

and

nf (rl; �) := mf�

�
rl

jrl + �j3
� rl

jrlj3

�
:
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translational case

The true anomaly of the leader spacecraft is the angle between the eccen-
tricity vector

el =
_rl � h
�

� rl
jrlj

2 R3 (4.2)

where h = rl � _rl 2 R3, and rl is the orbital state vector, so that:

�l =

8<:arccos
e>l rl
jeljjrlj if r>l _rl � 0

2� � arccos e>l rl
jeljjrlj if r>l _rl < 0

(4.3)

The eccentricity vector is conserved under forces that obey the inverse-
square law as e.g. the gravitational forces, but due to the control and
disturbance forces in (4.1), the eccentricity vector will vary. See Egorov
(1958) for a discussion of the de�nition of the true anomaly in perturbed
motion. We choose the reference trajectory of the leader spacecraft to
satisfy the inverse square law such that the eccentricity is constant. Then,
the desired true anomaly rate and true anomaly rate of change of the leader
spacecraft, denoted _�d and ��d, are given by:

_�d(t) =
nd(1 + ed cos �d(t))

2

(1� e2d)
3
2

(4.4)

and

��d(t) =
�2n2ded(1 + ed cos �d(t))3 sin �d(t)

(1� e2d)3
; (4.5)

with nd =
q
�=a3d 2 R as the desired mean motion of the leader, and

ad 2 R and ed 2 R as the semimajor axis and the eccentricity of the desired
spacecraft orbit, respectively. The desired trajectory is an elliptic orbit
around the Earth, and hence ed 2 (0; 1).

We will make some basic assumptions with respect to the motion of the
leader spacecraft and the reference trajectory of the follower spacecraft.
Stability analysis will be based on di¤erent assumptions on the degree of
information about the leader spacecraft, which is summarized in Assump-
tion 4.1 and 4.2.

Assumption 4.1 The true anomaly rate, _�l; and the true anomaly rate-
of-change, ��l, of the leader spacecraft are assumed to be known, and, given
a positive constant r, j _�l (0)j � r implies that j _�l (t)j � � _�l, t � t0 � 0.
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The bounds on _�l (t) is a fair assumption for a leader spacecraft in or-
bit. Notice that j _�l (0)j � r restrict the initial conditions of the leader
spacecraft. It is, however, not a restriction on the initial relative posi-
tion/velocity/acceleration of the two spacecraft. We now state an assump-
tion which is a relaxation of the previous. We will no longer assume exact
knowledge of _�l and ��l. Instead we assume that the control of the leader
spacecraft is su¢ ciently good, such that even under disturbances the fol-
lowing hold:

Assumption 4.2 De�ne ~� (t) := �l � �d, where �l (t) and �d (t) are the
actual and the desired true anomaly of the leader spacecraft, respectively.
We will assume that the desired true anomaly rate of the leader spacecraft
is bounded, i.e. given a positive constant r1, j _�d (t0)j � r1 implies that
j _�d (t)j � � _�d for all t � t0 � 0, for some positive constant � _�d. Further-
more, we assume that the actuation system of the leader spacecraft keeps
_~� and �~� bounded, i.e. given some positive constant r2, r3,

�� _~� (t0)�� � r2
implies that

�� _~� (t)�� � � _~� for all t � t0 � 0, and
���~� (t0)�� � r3 implies that���~� (t)�� � ��~� for all t � t0 � 0, where � _~� ; ��~� are positive constants.

Again we emphasize that this is no restriction on the initial relative
state vector, to be de�ned in the sequel.

In addition we will make the following assumptions regarding the desired
trajectories of the follower spacecraft:

Assumption 4.3 The desired relative position �d(t), desired relative veloc-
ity _�d(t) and desired relative acceleration ��d(t) are all smooth and bounded
functions, i.e. there exists positive constants ��d, � _�d, ���d such that j�d(t)j �
��d, j _�d(t)j � � _�d and j��d(t)j � ���d for all t � t0 � 0.

Finally, we assume that the disturbances acting on the spacecraft are
bounded.

Assumption 4.4 The disturbances acting on the follower spacecraft are
bounded, i.e. there exist a positive constant �df such that

jdf (t)j � �df (4.6)

and that the di¤erence between thrust and external disturbances acting on
the leader spacecraft is bounded, that is:

jul(t) + dl(t)j � �(ul+dl) (4.7)

for a positive constant �(ul+dl).
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4.1.2 Controller scheme

In this section the controller scheme of Paden and Panja (1988) as rede�ned
for output feedback in Berghuis and Nijmeijer (1993) will be used.

Without disturbance

De�ne ef := ���d 2 R3 as the position error and ~� := �� �̂ as the observer
estimation error. Let the controller of the follower spacecraft be:

uf = mf��d + Cf ( _�l) _�d +Df ( _�l; ��l; rl; �) �

+ nf (rl; �)�Kd( _�0 � _�r) (4.8)

_�r = _�d � �fef (4.9)

_�0 =
_̂�� �f~�; (4.10)

where �f = �>f 2 R3�3 > 0, Kd := kdI3�3 with kd > mf�max(�f ) +
2mf� _�l . Let the observer be:

_̂� = af + (lfI + �f ) ~� (4.11)

_af = ��d + lf�f~�; (4.12)

with lf > 2kd=mf being a scalar.
The following Proposition was given in (Grøtli and Gravdahl, 2007,

Proposition 2).

Proposition 4.1 Let j _�l (0)j � r for some positive constant r. Let As-
sumption 4.1 and 4.3 hold. Assume that ul + dl = 0, df = 0. Then the
origin of (4.1), in closed loop with the controller (4.8-4.10) and the observer
(4.11-4.12) is uniformly globally exponentially stable.

Proof. By inserting (4.8-4.10) into (4.1), the closed-loop tracking error
dynamics are found to be

mf �ef + Cf ( _�l) _ef +Kf ( _�0 � _�r) = 0; (4.13)

since �� �d = ef . Now, de�ning the sliding variables t1; t2 2 R3 as

t1 := _�� _�r = _ef + �fef (4.14)

t2 := _�� _�0 = _~�+ �f~�; (4.15)

we get the tracking error dynamics

mf _t1 = mf�f _ef � Cf ( _�l) _ef �Kf (t1 � t2); (4.16)
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since _�0 � _�r = t1 � t2. The observer error dynamics is

mf _t2 = �Cf ( _�l) _ef �Kf (t1 � t2)�mf lf t2: (4.17)

Let the Lyapunov function candidate be given by (cf. Berghuis and Nijmei-
jer (1994) and Berghuis and Nijmeijer (1993))

V (x) :=
1

2
x>W>RWx; (4.18)

where x := ( _e>f ; (�fef )
>; _~�>; (�f~�)

>) 2 R12, R := diag(mfI3�3; 2Kf�
�1
f �

mfI3�3;mfI3�3; 2Kf�
�1
f ) 2 R12�12 and

W :=

2664
I3�3 I3�3 03�3 03�3
03�3 I3�3 03�3 03�3
03�3 03�3 I3�3 I3�3
03�3 03�3 03�3 I3�3

3775 2 R12�12: (4.19)

Note that for Kf > mf�f , we have that

k1 jxj2 � V � k2 jxj2

with k1 = 1
6�min(R) and k2 =

3
2�max(R), where �min(R) = mf and �max(R) =

2kf�min(�f )
�1. This can be veri�ed using the fact that 13 � �min(W

>W )
and that �max(W>W ) � 3, where �min(W>W ) and �max(W>W ) denote
the minimum and maximum eigenvalue of W>W , respectively. The time
derivative of the Lyapunov function candidate along the error dynamics
(4.16) and (4.17) is

_V =� x>Qx� t>2 (lfmfI3�3 � 2Kf )t2
� (t1 + t2)>Cf ( _�l) _ef ; (4.20)

where Q := diag(Kf �mf�f ;Kf ;Kf ;Kf ) 2 R12�12. By using that lf �
2kf=mf and that j _�l (t)j � � _�l and

�� _~� (t)�� � � _~� , we get that
_V � �(kf �mf�max(�f )� 2mf� _�l) jxj

2

� �k3 jxj2 ; (4.21)

where k3 is a positive constant. It has also been used that
��(t1 + t2)>Cf ( _�l) _ef �� �

jt1 + t2j jCf ( _�l) _ef j � 2mf� _�l jxj
2 where (t1 + t2) = Y x with

Y :=
�
I3�3 I3�3 I3�3 I3�3

�
2 R3�12;

so that jY xj � jY j jxj = 2 jxj. Hence, according to (Khalil, 2002, Theorem
4.10), the origin of the system is UGES.
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With disturbances

In the previous section it is assumed that the true anomaly, _�l; and true
anomaly rate of change, ��l, of the leader spacecraft are available. Since
these parameters can be considered as velocity and acceleration parameters,
we will now treat the case where the true values of _�l and ��l are unknown.

Let the controller of the follower spacecraft be:

uf = mf��d + Cf ( _�d) _�d +Df ( _�d; ��d; rl; �) �

+ nf (rl; �)�Kf ( _�0 � _�r) (4.22)

_�r = _�d � �fef (4.23)

_�0 =
_̂�� �f~�; (4.24)

with observer (4.11-4.12). Note the di¤erence in equation (4.22) from that
of equation (4.8) in that the parameters _�d; ��d; of the desired trajectory
of the leader spacecraft are used, instead of the actual parameters, _�l; ��l,
of the leader spacecraft orbit. By using the error of the true anomaly,
~� = �l � �d, we get that the tracking error dynamics are

mf �ef =� Cf ( _�l) _ef �Kf (t1 � t2)

+ df �
mf

ml
(ul + dl)� 2mf

�C _~� _�d

�mf
�D
�
_~�2 + 2 _~� _�d

�
�d �mf

�C�~��d: (4.25)

Similarly the observer error dynamics, using the observer (4.11) and (4.12)
become

mf
�~� =�mf�f _~�� Cf ( _�l) _ef �Kf (t1 � t2)

�mf lf t2 + df �
mf

ml
(ul + dl)� 2mf

�C _~� _�d

�mf
�D
�
_~�2 + 2 _~� _�d

�
�d �mf

�C�~��d: (4.26)

Proposition 4.2 Let j _�d (t0)j � r1,
�� _~� (t0)�� � r2 and

���~� (t0)�� � r3 for
some positive constants r1; r2 and r3. Let Assumption 4.2-4.4 hold. The
controller given by (4.22)-(4.24) and observer (4.11)-(4.12) in closed loop
with (4.1) is UGPES, with � = (kf ; lf )> 2 � as tuning parameters.
Proof. The proof is done by applying Theorem 2.1. Using (4.18) as the
Lyapunov function candidate, we get that its time derivative along (4.25)
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and (4.26) is bounded as:

_V �� (kf �mf�max(�f )� 2mf (� _~� + � _�d)) jxj
2

+ 2
�
�df +

mf

ml
�(ul+dl) + 2mf� _~�� _�d

+mf (�
2
_~�
+ 2� _~�� _�d + ��~�)��d

�
jxj ;

(4.27)

by similar calculations as in the proof of Proposition 4.1. Let � be any
positive constant. Pick lf � l?f := 2kf=mf . Pick kf � k?f , where

k?f :=2mf�max(�f ) + 4mf (� _~� + � _�d)

+
4

�

�
�df +

mf

ml
�(ul+dl) + 2mf� _~�� _�d

+mf (�
2
_~�
+ 2� _~�� _�d + ��~�)��d

� (4.28)

Then, for any jxj � � we have that

_V � �1
2
k?f jxj

2 (4.29)

and we can apply Theorem 2.1 with p = 2, V� = V , �(�) = 1
6�min(R) =

1
6mf , � = 3

2�max(R(�)) = 3k
?
f (�)=�max(�f ) and �(�) =

1
2k
?
f (�). Finally we

have

lim
�!0

�(�)�p

�(�)
= lim
�!0

18k?f (�)�
2

�max(�f )mf
= 0; (4.30)

thus (2.7) is also satis�ed and we can conclude UGPES of model (4.1),
in closed loop with the controller (4.8), (4.9), (4.10) and observer (4.11),
(4.12).

Remark 4.1 Although we focused on robustness with respect to external
disturbances and inaccurate control of the leader spacecraft in this section,
the analysis can easily be extended to also include robustness with respect
to uncertainties in the spacecraft masses.

4.1.3 Simulations

In this section the performance of the controller-observer scheme will be
illustrated by simulations. The desired orbit of the leader spacecraft is
of eccentricity ed = 0:5, and with semimajor axis ad = 20000 km. The
true anomaly rate and true anomaly rate-of-change are generated by (4.4)
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Figure 4.1: Position and velocity
tracking errors

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time [s]

P
o
si

ti
o
n

[m
]

 

 

ρ̃1

ρ̃2

ρ̃3

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time [s]

V
el

o
ci

ty
[m

/
s]

 

 

˙̃ρ
1

˙̃ρ
2

˙̃ρ
3

Figure 4.2: Position and velocity es-
timation errors
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Figure 4.3: Control history

and (4.5). We want to illustrate the robustness of our controller-observer
scheme even under perturbed motion of the leader spacecraft. For that
reason the leader spacecraft is simulated according to

�rl = �
�

jrlj3
rl +

dl + ul
ml

with ul+dl = col(0:5 sin 1
10 t; 0:2 sin

1
100 t; 0:3 sin

1
1000 t) to illustrate a control

system that is not able to handle the periodic forces that an orbiting space-
craft are exposed to. The true anomaly rate and rate-of-change of the leader
spacecraft are achieved by di¤erentiation of (4.3). The desired trajectory of
the follower spacecraft is given by �d(t) = col(�10 cos �; 20 sin �; 0), which
means that the follower spacecraft evolves around the leader spacecraft in
an ellipse during their orbit around the Earth. This is a fuel e¢ cient or-
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bit, as it is close to a natural orbit of the spacecraft. We assume that the
follower spacecraft is exposed to similar perturbations as the leader space-
craft, and we have chosen that df = col(0:1 sin 1

100 t; 0:3 sin
1
10 t; 0:4 sin t).

The initial position and velocity of the follower spacecraft is chosen as
�(0) = col(�10; 5; 7) and _�(0) = col(1; 0;�1), where as the initial states
of the observer are �̂(0) = col(4;�4; 1) and af (0) = col(�1; 4; 2). The
controller and observer gains are as follows: lf = 0:5, Kd = 20I3�3,
�f = 0:06I3�3. Both spacecraft are of mass ml = mf = 100 kg. Further-
more, the thrust is assumed to be continuous and available in all directions
of the leader spacecraft frame, but limited to maxuf = 10N. Figure 4.1
and 4.2 show the tracking and estimation errors, respectively. As proven
in the previous section, the tracking error in Figure 4.1 can be arbitrarily
diminished by an appropriate choice of control gains, e.g. by increasing Kd.
The control history is shown in Figure 4.3. The actuation of the follower
spacecraft would be greatly reduced by a better controlled leader space-
craft, as we use _�d and ��d, instead of the actual parameters _�l and ��l for
the true anomaly rate and rate-of-change. To further save fuel, one can
imagine that control parameters are changed so as extensive actuation is
used only when high accuracy formation control is needed, e.g. only during
performance of measurement.

4.2 Control of a leader-follower spacecraft forma-
tion in leader �xed coordinate frame

4.2.1 Model of the formation

In this section we will use the model of Section 3.1.3. For the leader space-
craft we use that

ml�r
i
l +ml

�

jrlj3
ril = u

i
l + d

i
l

where rl is the position of the leader spacecraft with respect to the center
of Earth, ml is the mass of the spacecraft, and ul and dl are the control-
and disturbance forces acting on the spacecraft. The relative dynamics
describing the motion of the follower spacecraft is given by

mf��+ Cf (!
l
il) _�+Df (!

l
il; _!

l
il)�+ nf (rl; �) = uf + df �

mf

ml
(ul + dl) ;

where
Cf (!

l
il) := 2mfS(!

l
il) (4.31)
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Df (!
l
il; _!

l
il) := mfS(!

l
il)
2 +mfS( _!

l
il)

and

nf (rl; �) := mf�

�
rl + �

jrl + �j3
� rl

jrlj3

�
:

mf is the mass of the follower spacecraft, uf and df are the control- and
disturbance forces, respectively. !lil and _!lil denotes the angular velocity
and acceleration of the leader spacecraft reference frame, relative to the
inertial frame and is given by

!lil ( _rl; rl) = R
l
i

S
�
ril
�
_ril

jrlj2
(4.32)

and

_!lil = R
l
i

�
S
�
ril
�
�ril
	
(ril)

>ril � 2
�
S
�
ril
�
_ril
	
( _ril)

>ril
jrlj4

: (4.33)

The superscript i and l denoting the frame of reference in which the vector
is decomposed, is left out of notational simplicity, when there is no peril of
confusion.

4.2.2 Assumptions on reference trajectories

We will make use of the following assumptions:

Assumption 4.5 Let the leader spacecraft reference trajectory be given by
rd (t). We will assume that rd is smooth and that there exist positive con-
stants scalars �rd ; �rd ; � _rd ; ��rd such that

�rd � jrd (t)j � �rd ;

j _rd (t)j � � _rd ;

j�rd (t)j � ��rd ;

for all t � t0 � 0: Similarly, the reference trajectory of the follower space-
craft, �d (t) is assumed to be smooth and bounded such that

�pd � j�d (t)j � �pd ;

j _�d (t)j � � _pd ;

j��d (t)j � � �pd ;

for some positive scalars ��d ; ��d ; � _�d ; ���d.
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Assumption 4.6 The disturbances acting on the formation are bounded,
i.e. there exists positive scalars �dl and �df such that

jdl (t)j � �dl

and
jdf (t)j � �df ;

for all t � t0 � 0.

Assumption 4.7 The vector describing the motion of the leader spacecraft
relative to the center of Earth, is bounded from below by a positive constant.
Out of simplicity we will use that

jrl (t)j � 1;

for all t � t0 � 0.

Remark 4.2 Assumption 4.7 deserves a few comments. The proof of con-
vergence of the controllers in this section rely on this assumption, and since
el = rl � rd will be used as one of the state variables, the claim of global
stability results may seem inappropriate. The argument for still claiming
global results, is that there is a physical limitation, i.e. the Earths radius
rE, such that jrl (t)j � rE for all t � t0 � 0, and Assumption 4.7 holds.

4.2.3 Control schemes

Control of leader spacecraft

Let r̂ be the estimated position of the leader spacecraft. De�ne el := rl�rd
as the position error, and ~r := rl� r̂ as the estimation error. For the leader
spacecraft to track its desired position rd (t) we use the controller

ul = ml�rd +ml
�

jrlj3
rl �Kl ( _r0 � _rr) (4.34)

_rr = _rd � �lel (4.35)

_r0 = _̂r � �l~r (4.36)

and observer

_̂r = al + (llI3�3 + �l) ~r (4.37)

_al = �rd + ll�l~r (4.38)
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where Kl 2 R3�3 is a positive de�nite matrix and �l 2 R3�3 is a symmetric,
positive de�nite matrix. For simplicity we choose Kl := klI3�3.

De�ne x2 := ( _e>l ; (�lel)
> ; _~r>; (�l~r)

>)> 2 R12 and �2 := (kl; ll)> 2 R2.
By de�ning

Y :=
�
I3�3 I3�3 �I3�3 �I3�3

�
we can write _r0� _rr = Y x2. We can now write the leader spacecraft closed-
loop system on state space form:

_x2 = f2 (t; x2; �2) (4.39)

where

f2 (t; x2; �2) :=

2664
m�1
l �21
�l _el

m�1
l �23
�l _~r

3775 (4.40)

with
�21 := �KlY x2 + dl

and
�23 := �ml�l _~r �KlY x2 + dl �mlll

�
_~r + �l~r

�
We are now ready to state the following proposition

Proposition 4.3 Under Assumption 4.5 and 4.6, the system (4.39) is UG-
PES with �2 as tuning parameter.

Proof. The proof is done by applying Theorem 2.1. We choose the Lya-
punov function candidate as

V2 (x2) := x
>
2W

>R2Wx2

where R2 := diag(mlI3�3; 2Kl�
�1
l �mlI3�3;mlI3�3; 2Kl�

�1
l ) 2 R12�12 and

W :=

2664
I3�3 I3�3 03�3 03�3
03�3 I3�3 03�3 03�3
03�3 03�3 I3�3 I3�3
03�3 03�3 03�3 I3�3

3775 2 R12�12
We de�ne the sliding variables:

s1 := _rl � _rr

s2 := _rl � _r0
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such that s1 = _el +�lel and s2 = _~r+�l~r, to aid the Lyapunov analysis. It
can be shown that the time derivative of the Lyapunov function candidate
can be compactly written as

_V2 = �x>2 Qlx2 � s>2 (llmlI3�3 � 2Kl) s2 +ml(s1 + s2)dl

where Ql := diag(Kl � ml�l;Kl;Kl;Kl) 2 R12�12. By picking ll � l?l :=
2kl=ml, and using Assumption 4.6 and that js1 + s2j � 2 jx2j we get

_V2 � � (kl �ml�max (�l)) jx2j2 + 2ml�dl jx2j :

Let �2 be any positive constant. Pick kl � k?l := 2ml�max (�l)+4ml�dl=�2.
Then for any jx2j � �2, we have that

_V2 � �
1

2
k?l jx2j

2

Notice that this choice of kl also ensures that V2 is positive de�nite. We see
that (2.5-2.6) of Theorem 2.1 are satis�ed with p = 2, �(�) = 1=6�min (R2) =
1=6ml, �(�) = 3=2�max (R2 (�2)) = 3k?l (�2) =�max (�l), V� = V2 and �(�) =
1=2k?l (�2). Finally, we have that

lim
�!0

�(�)�p

�(�)
= lim
�2!0

18k?l (�2) �
2
2

�max (�l)ml
= 0;

thus (2.7) is also satis�ed and the conclusion follows.

Control of follower spacecraft

To make the follower spacecraft follow the trajectory given by desired (rela-
tive) position �d (t), we propose a similar control algorithm as for the leader
spacecraft. Let �̂ 2 R3 be the estimated position. We de�ne ef := ���d as
the tracking error and ~� := ���̂ as the estimation error. In case an estimate
or a measure of the angular velocity, !lil; and angular acceleration, _!

l
il; of

the leader spacecraft frame is available, we propose the following controller:

uf = mf��d +
1

2
Cf (!

l
il)( _�0 + _�r) +Df (!

l
il; _!

l
il)�

+ nf (rl; �)�Kf ( _�0 � _�r) (4.41)

_�r = _�d � �fef (4.42)

_�0 =
_̂�� �f~�; (4.43)
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and relative position

_̂� = af + (lfI3�3 + �f ) ~� (4.44)

_af = ��d + lf�f~� (4.45)

Similar as for the leader spacecraft we de�ne the gain matrix Kl 2 R3�3
as Kl := klI3�3, a diagonal matrix with the tuning parameter kl along the
diagonal. The other tuning parameter is ll.

De�ne x1 := ( _e>f ; (�fef )
>; _~�>; (�f~�f )

>)> 2 R12 and �1 := (kl; ll)
> 2

R2. We can now write the system on a state space form _x1 = f1 (t; x1; �1)+
g (t; x; �) where

f1 (t; x1; �1) :=

26664
1
mf
�11

�f _ef
1
mf
�3

�f _~�

37775 (4.46)

with
�11 := �KfY x1

�13 := �mf�f _~��KfY x1 �mf lf
�
�f~�+ _~�

�
and where

g (t; x; �) =

26664
1
mf
�g

0
1
mf
�g

0

37775 (4.47)

with

�g := Cf (!
l
il)( _��

1

2
( _�0 + _�r)) + d

l
f �

mf

ml
dll �

mf

ml
Rliu

l
l: (4.48)

In case !lil, _!
l
il are not available, we propose the following controller for

the follower spacecraft:

uf =mf��d + Cf (!
l
id) _�d +Df (!

l
id; _�!

l
id)�

+ nf (rl; �)�Kf ( _�0 � _�r) (4.49)

_�r =_�d � �fef (4.50)

_�0 =
_̂�� �f~�; (4.51)

with _�r and _�0 as de�ned in (4.42) and (4.43), together with the observer
(4.44)-(4.45). Note that we have not used the actual orbital angular veloc-
ity and acceleration of the leader spacecraft, !lil and _!lil, but the desired
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velocity and an estimate of the desired acceleration. The desired angular
velocity !lid, is a function of the desired position and velocity of the leader
spacecraft, that is

!lid ( _rd; rd) := R
l
i

S
�
rid
�
_rid

jrdj2
(4.52)

The desired angular velocity is found by di¤erentiating (4.52):

_!lid =�RliS(!lil)!iid

+Rli
fS (rd) �rdg r>d rd � 2 fS (rd) _rdg _r>d rd

jrdj4
(4.53)

We see that this would require knowledge of the actual angular velocity of
the leader spacecraft, !lil, so we will instead use the estimate

_�!lid := _!
l
id +R

l
iS(!

l
il)!

i
id

=Rli
fS (rd) �rdg r>d rd � 2 fS (rd) _rdg _r>d rd

jrdj4
: (4.54)

For later reference we de�ne

_�!lld := _�!lid � _!lil (4.55)

The system can be written on the same cascaded form _x = f (t; x; �1) +
g (t; x; �), with f as in (4.46) and

g (t; x; �) =

26664
1
mf
~g

0
1
mf
~g

0

37775 ; (4.56)

where

~g := Cf (!
l
id) _�d � Cf (!lil) _�+Df (!lid; _�!lid)�

�Df (!lil; _!lil)�+ dlf �
mf

ml
dll �

mf

ml
Rliu

l
l:

(4.57)

Proposition 4.4 Under Assumption 4.5 and 4.6 the cascaded system

_x1 = f1 (t; x1; �1) + g (t; x; �)

_x2 = f2 (t; x2; �2)

with f1 as in (4.46), f2 as in (4.39) and g as in (4.47) is UGPES.
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Proof. The proof is made by applying Theorem 2.5. We have already seen
that UGPES of the driving subsystem can be shown by using

V2 (x2) = x
>
2W

>R2Wx2

as a Lyapunov function. The conditions of Assumption 2.2 will also be satis-
�ed with �2 = k?l =2, �2 = 1=6ml (independent of �), �2(�) = 3k?l (�2) =�max (�l)
and V�2 = V2, where k

?
l = 2ml�max (�l)+4ml�dl=�2. To analyse the stabil-

ity properties of the driven subsystem, we will use the following Lyapunov
function candidate

V1 (x1) :=
1

2
x>1W

>R1Wx1

where R1 := diag(mfI3�3; 2Kf�
�1
f �mfI3�3;mfI3�3; 2Kf�

�1
f ) 2 R12�12.

By de�ning the sliding variables:

t1 := _�� _�r
t2 := _�� _�0

such that t1 = _ef +�fef and t2 = _~�+�f~�, we �nd that the time derivative
of the Lyapunov function is

_V1 = mf t
>
1
_t1 + e

>
f �f

�
2Kf�

�1
f �mfI3�3

�
�f _ef +mf t

>
2
_t2 + 2~p

>�fKf _~p:

Inserting for the error dynamics (4.46) it can be shown that the time deriv-
ative of the Lyapunov function candidate can be compactly written as

_V1 = �x>1 Qfx1 � t>2 (lfmfI3�3 � 2Kf ) t2

where Qf := (Kf �mf�f ;Kf ;Kf ;Kf ) 2 R12�12. For any lf > 2kf=mf ,
and any kf > 2mf�max (�f ) we get that _V1 � �1

2kf jx1j
2. Hence, Assump-

tion 2.1 holds with V�1 = V1, �1 = kf=2, �1 = 1=6mf (independent of �)
and �1 = 3k?f=�max (�f ). Furthermore, for g (t; x; �2) = (�g=mf ; 0; �g=mf ; 0)
with �g as in (4.48) we �nd that

@V1
@x1

g (t; x; �2) = (t1 + t2)
> �g

= (t1 + t2)
>
�
dlf �

mf

ml
dll �

mf

ml
Rliu

l
l

�
� k jx1j (1 + j�2j jx2j)
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for some constant k independent of t, � and x, where we have used As-
sumption 4.6 and 4.5, that

(t1 + t2)
>Cf (!

l
il)( _��

1

2
( _�0 + _�r)) = (t1 + t2)

>Cf (!
l
il) (t1 + t2)

= 0;

and that the controller in (4.34) can be bounded, in the sense that

jul (t; x2)j � ml��rd +ml�+ 2 j�2j jx2j : (4.58)

Therefore, Assumption 2.3 of Theorem 2.5 holds, and the cascaded system
is UGPES.

Proposition 4.5 Under Assumption 4.5, 4.6 and 4.7 the cascaded system

_x1 = f1 (t; x1; �1) + g (t; x; �)

_x2 = f2 (t; x2; �2)

with f1 as in (4.46), f2 as in (4.39) and g as in (4.56) is UGPAS.

Proof. The proof is made by applying Theorem 2.7. Notice that Assump-
tion 2.1 and 2.2 were shown to hold in the Proof of Theorem 4.4 with �1
and �2 independent of �. Now,

@V1
@x1

g (t; x; �2) = (t1 + t2)
> ~g

with

~g := Cf (!
l
id) _�d � Cf (!lil) _�+Df (!lid; _�!lid)�

�Df (!lil; _!lil)�+ dlf �
mf

ml
dll �

mf

ml
Rliu

l
l:

By Assumption 4.5 and 4.7, and that el = rl� rd, and ef = ���d, we have
from (4.31) that

jCf (!lil (t)) _� (t) j � 2mf j!ilj j _�j

� 2mf
jrlj j _rlj
jrlj2

j _ef + _�dj

� 2mf (j _elj+ � _rd)(j _ef j+ � _�d)
� 2mf (jx2j+ � _rd)(jx1j+ � _�d)
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By the same arguments, we �nd the bounds

jCf (!lid (t)) _�d (t) j � 2mf

�rd� _rd
�2rd

� _�d

and

jDf (!lid (t) ; _�!lid (t))� (t) j � mf

 
4
�2rd�

2
_rd
+ �3rd��rd + 2�

2
rd
�2_rd

�4rd

!�
jx1j+ ��d

�
:

From (4.39), ml (�rl � �rd) = �KlY x2 + dl, and by Assumption 4.5, 4.7 and
4.6, we �nd that

jDf (!lil (t) ; _!lil (t))� (t) j � 3mf

�
jx2j+ � _rd

�2 �jx1j+ ��d�
+
mf

ml

�
2 j�2j jx2j+ �dl

� �
jx1j+ ��d

�
+mf��rd

�
jx1j+ ��d

�
Finally, with ul bounded as in (4.58), jdl (t)j � �dl and jdf (t)j � �df we
�nd that there exist a constant 
, such that

@V1
@x1

g (t; x; �2) � 
 jx1j
�
(jx1j+ 1) jx2j j�2j+ jx2j+ jx2j2 + 1

�
:

Therefore, Assumption 2.7 of Theorem 2.7 holds, and the cascaded system
is UGPAS.

4.2.4 Simulation study

Let the reference trajectory of the leader spacecraft be an eccentric orbit
with radius of perigee Rp = 10000000 and radius of apogee Ra = 30000000,
which can be generated by numerical integration of

�rd = �ml
�

jrdj3
rd (4.59)

with rd (0) = col(Rp; 0; 0) and _rd (0) = col(0; Vp; 0); and where

Vp =

s
2�

�
1

Rp
� 1

(Rp +Ra)

�
:

Out of simplicity we have chosen the desired perigee to lie on the �rst axis
of the inertial coordinate system. The initial values of the leader spacecraft
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are rl (0) = col(Rp+4;�3; 5) and _rl (0) = _rd (0)+ col(0:4;�0:8;�0:2). The
control parameters are �l = 0:04I3�3, kl = 6 and ll = 0:3. These choices of
control gains are chosen based on the outcome of the Lyapunov analysis.
The initial values of the controller are chosen as the initial values of the
reference trajectory, i.e. r̂ (0) = rd (0) and al (0) = _rd (0).

The reference trajectory of the follower spacecraft are chosen as the
solutions of a special case of the Clohessy-Wiltshire equations, Clohessy
and Wiltshire (1960). We use

pd (t) =

24 10 cos �d (t)�20 sin �d (t)
0

35 (4.60)

and its time derivatives. Here, �d is the desired true anomaly, and where
�d and _�d are found by

��d (t) =
�2� (1 + ed cos �d (t))3 sin �d (t)

(Rp +Ra)
3 �1� e2d�3

numerical integration. With our choice of reference trajectory (4.59), j _!iidj =
��id. Since the reference trajectory is chosen to start at perigee, �d (0) = 0,
and _�d (0) = Vp=Rp. The eccentricity of the reference trajectory is con-
stant, and can be calculated from Ra and Rp to be ed = 0:5. This choice
of reference trajectory means that the two spacecraft are in the same or-
bital plane, and that the follower spacecraft will "evolve" around the leader
spacecraft as the two spacecraft orbit Earth. The initial values of the fol-
lower spacecraft are p (0) = col(5;�7; 3) and _p (0) = col(�0:3; 0:2; 0:6). The
control parameters are the same as for the leader spacecraft, i.e. �f = �l,
kf = kl and lf = ll. The initial parameters of the controller are chosen
to be p̂ (0) = pd (0) = col(10; 0; 0) and af (0) = _pd (0) = col(0; 0; 0). We
use mf = ml = 100 kg both in the model and the control structure. Both
spacecraft are subject to J2 perturbations, as described in Section 3.3.1,
that is:

dif =
1

2
J2R

2
emf�

2666664
15

rf;1r
2
f;3

jrf j7
� 3 rf;1jrf j5

15
rf;2r

2
f;3

jrf j7
� 3 rf;2jrf j5

15
r3f;3

jrf j7
� 9 rf;3jrf j5

3777775 ;
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Figure 4.4: Position tracking error
of leader spacecraft

0 20 40 60 80 100 120 140 160 180 200

−6

−4

−2

0

2

4

6

Time [s]

P
o
si

ti
o
n

es
ti

m
a
ti

o
n

er
ro

r
[m

]

 

 

r̃1

r̃2

r̃3

Figure 4.5: Position estimation er-
ror of leader spacecraft
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Figure 4.6: Control forces acting on
leader spacecraft
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Figure 4.7: Position tracking error
of follower spacecraft

dil =
1

2
J2R

2
eml�

26664
15

rl;1r
2
l;3

jrlj7
� 3 rl;1jrlj5

15
rl;2r

2
l;3

jrlj7
� 3 rl;2jrlj5

15
r3l;3
jrlj7

� 9 rl;3jrlj5

37775 ;
where Re is the mean equatorial radius of the Earth, J2 is the second zonal
harmonics, col(rf;1; rf;2; rf;3) =: rif and col(rl;1; rl;2; rl;3) =: r

i
l .

Figure 4.4, 4.5 and 4.6 shows the position tracking error, position esti-
mation error and control history of the leader spacecraft, where as Figure
4.7, 4.8 and 4.9 are the equivalent �gures for the follower spacecraft. No
optimization has been used in picking the control gains, but they are cho-
sen such that the actuation is kept �moderate�. This comes at the cost of a
longer settling time. It is clear that better initial conditions would improve
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Figure 4.8: Position estimation er-
ror of follower spacecraft
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Figure 4.9: Control forces acting on
follower spacecraft

the overshoot and the settling time signi�cantly. By comparing the �gures
for the performance of the leader spacecraft with those for the follower
spacecraft, we see that the follower spacecraft has a longer settling time.
This is natural since the same control gains have been used for both space-
craft, and since control forces acting on the leader spacecraft in�uences the
follower spacecraft model.
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Chapter 5

Output tracking control of
leader-follower formation:
rotational case

This chapter is based on Grøtli and Gravdahl (2008b).

5.1 Models and basic assumptions

We will use the models from Section 3.2, restated here for the sake of
completeness. The model for the leader spacecraft is

_qil =
1

2

�
��>il
E (qil)

�
!lil; (5.1)

Jl _!
l
il + Cl(!

l
il)!

l
il = � l + dl; (5.2)

with Jl 2 R3�3 being the leader spacecraft inertia matrix, !lil the an-
gular velocity of the spacecraft relative to the inertial frame, Cl

�
!lil
�
=

�S
�
Jl!

l
il

�
and � l and dl the input and disturbance moments on the leader

spacecraft, respectively.
The model for the follower spacecraft is

_qlf =
1

2

�
��>lf
E (qlf )

�
!flf ; (5.3)

Jf _!
f
lf + Cf (!

f
lf )!

f
lf + nf (!

l
il; !

f
lf ) = �a + �d; (5.4)
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with Jf 2 R3�3 being the follower spacecraft inertia matrix, !flf = !fif �
Rfl !

l
il the angular velocity of the follower spacecraft relative to the leader

spacecraft, Cf (!
f
lf ) = �S(Jf!

f
lf ) and

nf =(S(R
f
l !

l
il)JfR

f
l � JfR

f
l J

�1
l S(!lil)Jl)!

l
il

+ (JfS(R
f
l !

l
il)� S(JfR

f
l !

l
il) + S(R

f
l !

l
il)Jf )!

f
lf : (5.5)

Furthermore,
�a = �

f
f � JfR

f
l J

�1
l � ll; (5.6)

and
�d = d

f
f � JfR

f
l J

�1
l dll; (5.7)

with � f and df as the input and disturbance moments on the follower
spacecraft, respectively.

We pose the following assumption on the spacecraft models:

Assumption 5.1 The inertia matrices Ji; i 2 fl; fg are symmetric and
positive de�nite, and satisfy the inequalities

�Ji � jJij � �Ji ;

with �Ji ; �Ji 2 R being positive constants.

Assumption 5.2 The disturbance moments di, i 2 fl; fg are bounded as

jdi (t) j � �di ;

with �di 2 R being positive constants.

5.2 Controller-observer design

5.2.1 Leader spacecraft

The desired angular velocity of the leader spacecraft is usually given with
reference to the inertial frame as !iid. In the leader spacecraft frame, it is

!lid = R
l
i!
i
id;

where as its time derivative is

_!lid =
_Rli!

i
id +R

l
i _!
i
id

= �S(!lil)!lid +Rli _!iid:
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We see that to evaluate the derivative we need to know the actual velocity of
the leader spacecraft !lil; so we will therefore use the modi�ed acceleration
vector

ad = �S(!lid)!lid +Rli _!iid
= Rli _!

i
id: (5.8)

Let us assume the following:

Assumption 5.3 The desired angular velocity and the desired angular ac-
celeration of the leader spacecraft are bounded, i.e.

��!lid (t)�� � �!lid
and�� _!lid (t)�� � � _!lid

for all t � t0 � 0, for some positive constants �!lid and
� _!lid

.

The following controller-observer scheme is the same as in (Caccavale
and Villani, 1999, Theorem 1). Let the control law be

� ll = Jlar + Cl(!o)!r + kv(!r � !o)� kp�dl (5.9)

ar = ad �
1

2
�dE(qde)!de (5.10)

!r = !
l
id � �d�de (5.11)

!o = !
l
ie � �e�el; (5.12)

with kv; kp; �e; �d 2 R constants to be de�ned, �dl as the vector part of the
quaternion product qdl = �qid 
 qil; �de as the vector part of qde = �qid 
 qie,
�el and �el as the vector and scalar part of qel = �qie
qil, respectively, !lde =
!lie � !lid and E(qde) = �deI + S(�de): Here, qid represents the orientation
of the desired frame, qie the orientation of the estimated frame, and �nally
qil the actual orientation of the leader spacecraft, all relative to the inertial
frame. Let the observer be

_z = ar + J
�1
l (lp�el � kp�dl + lv�e�el�el) (5.13)

!lie = z + �e�el + 2J
�1
l lv�el; (5.14)

with lv; lp 2 R constants to be de�ned.
Let us �rst de�ne the sliding variables

�d = !
l
il � !r (5.15)

= !ldl + �d�de; (5.16)
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and

�e = !
l
il � !o (5.17)

= !lel + �e�el: (5.18)

De�ne ~�dl := 1� �dl and ~�el := 1� �el. Let x2 := col(�d; ~�dl; �dl; �e; ~�el; �el)
and let �2 := col (kv; lv). The error dynamics can be written on state space
form _x2 = f2 (t; x2; �2), where

f2 (t; x2; �2) =

26666664

J�1l �3
1
2

�
�>dl

E (qdl)

�
!ldl

J�1l �4
1
2

�
�>el

E (qel)

�
!lel

37777775 (5.19)

with

�3 =� Cl(!lil)�d � kv�d � kp�dl + kv�e � Cl(�e)!r
� JlS(!lld)!lid + dl (5.20)

and

�4 =� (lvE(qel)� kvI)�e � lp�el � kv�d � Cl(�e)!r
� Cl(!lil)�d + dl: (5.21)

Remark 5.1 Note that we have chosen to characterize perfect tracking in
terms of the quaternion error to when �dl = +1 and �el = +1, cf. the dis-
cussion about perfect tracking in Section 1.3.2. We could just as well have
used �dl = �1 and �el = �1, or both - that is, de�ned tracking error in
terms of the scalar part of the quaternion product as 1� j�dlj and 1� j�elj.
Throughout the literature it has been common to use the signum function
in the control law for e¢ cient maneuvers. Such an approach would not �t
our framework, because of the discontinuities it would introduce. A thor-
ough analysis of stability with respect to sets using discontinuous Lyapunov
functions can be found in Fragopoulos and Innocenti (2004). In Kristiansen
et al. (2009) stability of both equilibrium positions are shown.

Proposition 5.1 Let Assumption 5.1, 5.3 and 5.2 hold. Then, the system
_x2 = f2 (t; x2; �2) is UPES.
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Proof. The proof is mostly similar to the proof of (Caccavale and Vil-
lani, 1999, Theorem 1). Consider the positive de�nite Lyapunov function
candidate

V2 =
1

2
�>d Jl�d + kp((1� �dl)2 + �>dl�dl)

+
1

2
�>e Jl�e + lp((1� �el)2 + �>el�el): (5.22)

Following the steps of the proof of (Caccavale and Villani, 1999, Theorem 1)
we �nd that the time derivative of the Lyapunov function candidate along
the error dynamics are

_V2 =� kv�>d �d � kp�d�el�>dl�dl + kp�d�dl�>el�dl
� �>d Cl(�e)!r � �>d JlS(!lld)!lid + �>d dl
� (lv�el � kv)�>e �e � lp�e�>el�el
� �>e Cl(�e)!r � �>e Cl(!lil)�d + �>e dl:

From Remark 3.4, that is, since the matrix Cl (�) is linear in its argument,
we have that

jCl(a)bj � �Jl j jaj jbj : (5.23)

By (5.23), Young�s inequality and (5.11) we have that

�>d Cl(�e)!r �
1

2
�Jl(j�dj

2 + j�ej2)(�!lid + �d j�dej): (5.24)

By (5.23), Young�s inequality, (5.11) and (5.15), we have that

�>e Cl(!
l
il)�d �

1

2
�Jl(j�dj

2 + j�ej2)(j�dj+ �d j�dej+ �!lid): (5.25)

By (5.23) and (5.11) we have that

�>e Cl(�e)!r � �Jl j�ej
2 (�d j�dej+ �!lid): (5.26)

By (5.23), (5.15) and that j�dej � j�elj+ j�dlj we have that

�>d JlS(!
l
ld)!

l
id � �Jl�!lid

j�dj (j�dj+ �d j�dej)

� �Jl�!lid
(j�dj2 + �d j�dj (j�elj+ j�dlj))

� �Jl�!lid
((1 +

�d
2
) j�dj2 +

�d
2
(j�elj2 + j�dlj2)):(5.27)
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Inserting for the bounds (5.24-5.27), we get that

_V2 �� (kv � �Jl(�d j�dej+
1

2
j�dj+ (2 +

�d
2
)�!lid

)) j�dj2

� (lv�el � kv � 2�Jl(�d j�dej+ �!lid +
1

4
j�dj)) j�ej2

� 1
2
(kp�d�el � �Jl�!lid�d) j�dlj

2

� 1
2
(lp�e � �Jl�!lid�d) j�elj

2

� 1
2

�
j�dlj
j�elj

�> �
kp�d�el �kp�d
�kp�d lp�e

� �
j�dlj
j�elj

�
+ (j�dj+ j�ej)�dl :

For any jx2j � ��2 < 1, we have that �el �
p
1� ��2 > 0. For any �2 � jx2j,

we de�ne

k?v := �Jl

�
�d +

1

2
��2 + (2 +

�d
2
)�!lid

+
�dl
�2

�
;

l?v :=
1p
1� ��2

�
kv + 2�Jl

�
�d +

1

2
��2 + �!lid

�
+
�dl
�2

�
;

k?p :=
�Jl�!lidp
1� ��2

;

l?p := max

(
�Jl�!lid

�d

�e
;

kp�d

�e
p
1� ��2

)
;

such that with kv > k?v , lv > l?v (kv) ; kp > k?p and lp > l?p (kp) condition
(2.15) of Theorem 2.4 is satis�ed, provided that �el does not change sign.
Note that for the considered domain of the state space, namely where jx2j �
��2, V2 is in fact a proper Lyapunov function, i.e. its time derivative can be
bounded as in (2.15). To see this, let c1 and c2 be positive constants. For
jx2j � ��2 we have that �el; �dl > 0, so �c1j�dlj2 � �1=2c1(j�dlj2+(1��dl)2)
and �c2j�elj2 � �1=2c2(j�elj2+(1��el)2). Condition (2.14) is satis�ed with
V� = V2, �(�) = min f1=2�Jl ; kp; lpg, �(�) = max f1=2�Jl ; 2kp; 2lpg. Hence,
for any x(0) 2 B�2 , where �2 :=

p
�(�)=�(�) ��2, we are ensured that �el

does not change sign. Furthermore,

lim
�2!0

� (�2) �
p
2

� (�2)
= lim
�2!0

max f12�Jl ; 2kp; 2lpg�
2
2

min f12�Jl ; kp; lpg
= 0;

and we can conclude UPES with � = col(kv; lv) as tuning parameter.
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5.2.2 Follower spacecraft

In the design and analysis of the follower spacecraft, we will overline the
subscripts to distinguish vectors from the vectors related to the leader
spacecraft. The subscript �d denote the desired frame and �e the estimated
frame of follower spacecraft. E.g. !i

l �d
will be the desired angular velocity

of the follower spacecraft relative to the leader spacecraft.
Consider the control law:

� ff = Jfa�r + Cf (!�o)!�r + k�v(!�r � !�o)� k�p� �df (5.28)

a�r = a �d �
1

2
� �dE(q �d�e)!

f
�d�e

(5.29)

!�r = !f
l �d
� � �d� �d�e (5.30)

!�o = !fl�e � ��e��ef ; (5.31)

with k�v; k�p; � �d; ��e 2 R positive constants, � �df as the vector part of the
quaternion product q �df = �ql �d 
 qlf ; � �d�e as the vector part of q �d�e = �ql �d 
 ql�e,
��ef as the vector part of q�ef = �ql�e 
 qlf , !f�d�e = !fl�e � !ll �d and E(q �d�e) =
� �d�eI + S(� �d�e). Here, the desired orientation of the follower spacecraft rela-
tive to the leader is described by ql �d, the actual orientation of the follower
spacecraft relative to the leader is qlf , and �nally ql�e is the estimated orien-
tation of the follower spacecraft relative to the leader. Since the states !flf
and !lil are assumed unknown, we have introduced the acceleration vector
a �d = R

f
i _!

i
l �d
. Let the observer be

_z = a�r + J
�1
f (lp��ef � kp� �df + l�v��e��ef ��ef ) (5.32)

!fl�e = z + ��e��ef + 2J
�1
f l�v��ef ; (5.33)

with l�v and l�p positive constants.
To ease the analysis we will de�ne the variables

� �d = !flf � !�r (5.34)

= !f�df + � �d� �d�e (5.35)

and

��e = !flf � !�o (5.36)

= !f�ef + ��e��ef : (5.37)
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De�ne ~� �df := 1�� �df and ~��ef := 1���ef . Let x1 := col(� �d; ~� �df ; � �df ; ��e; ~��ef ; ��ef )
and let �1 = col (k�v; l�v). We can write the error dynamics on state space
form, as:

_x1 = f1 (t; x1; �1) + g (t; x; �) (5.38)

_x2 = f2 (t; x2; �2) ; (5.39)

where

f1 (t; x1; �1) :=

2666666664

J�1f �1

1
2

"
�>�df

E
�
q �df
�#!f�df

J�1f �2

1
2

�
�>�ef

E (q�ef )

�
!f�ef

3777777775
(5.40)

with

�1 =� Cf (!
f
lf )� �d � k�v� �d � k�p� �df + k�v��e � Cf (��e)!�r

+ JfS(!
f
lf )!

f

l �d
+ dff � JfR

f
l J

�1
l dll;

�2 =� (l�vE(q�ef )� k�vI)��e � lp��ef � k�v� �d � Cf (��e)!�r
� Cf (!flf )� �d + d

f
f � JfR

f
l J

�1
l dll;

and

g (t; x; �) :=

26664
�nf (!lil; !

f
lf )� JfS(!

f

l �d
)Rfl !

l
il � JfR

f
l J

�1
l � ll

0

�nf (!lil; !
f
lf )� JfR

f
l J

�1
l � ll

0

37775 : (5.41)

Finally, f2(t; x2; �2) is as in (5.19-5.21). We are now ready to state the
following proposition:

Proposition 5.2 Let Assumption 5.1 and 5.3 hold. Then the system (5.38-
5.39) is UPES.

Proof. To prove this proposition we will apply Theorem 2.6. We will �rst
prove Assumption 2.4. Consider the positive-de�nite Lyapunov function

V1 =
1

2
�>�d Jf� �d + k�p((1� � �df )

2 + �>�df � �df )

+
1

2
�>�e Jf��e + l�p((1� ��ef )2 + �>�ef ��ef )
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This function satis�es condition (2.23) of Theorem 2.6 with V�1 = V1,
�1 = min f1=2�Jf ; k�p; l�pg and �1 = max f1=2�Jf ; 2k�p; 2l�pg. Notice that
�1 and �2 are independent of �. We will now prove Assumption 2.6, i.e.
boundedness of the gradient of V�1 along the interconnection term g(t; x; �).
First we �nd bounds on the terms of � l, as stated in (5.9). From (5.10),
(5.8), (5.11), (5.12), (5.15) and (5.17), and using that !lde = !

l
ie � !lid, we

�nd that

jJlarj � �Jl� _!id +
1

2
�d (j�dej+ j�dej) (j�dj+ �d j�dej+ j�ej+ �e j�elj) :

From (5.11), (5.15) and (5.17), we have that

jCl (!o)!rj � �Jl
�
j�dj+ j�ej+ �!id + �d j�dej

� �
�!id + �d j�dej

�
:

Furthermore, from (5.5), and using that jS (�) j = j�j and jRj = 1;���nf (!lil; !flf )��� � 2�Jf
�
j�dj+ �!id + �d j�dej

�2
+3�Jf

�
j�dj+ �!id + �d j�dej

� �
j� �dj+ �!l �d + � �d j� �d�ej

�
:

Notice that,
@V1
@x1

= x>1 Q;

where Q := diag(Jf ; 2k�pI4�4; Jf ; 2l�pI4�4), such that Q is independent of
�. By the above derived bounds, and using that j�dj � jx2j, j�ej � jx2j,
j� �dj � jx1j, j�dej � 1, j�dej � 1 and j� �d�ej � 1, we have that the following
holds:

@V1
@x1

g(t; x; �) � a0 jx1j+ (a1 + j�2j) jx1j jx2j+ a2 jx1j jx2j2; (5.42)

with a0, a1, a2 being positive constants, independent of x1, x2, �1, �2 and t.
For any jx2j 2 �2, with �2 as in the proof of Proposition 5.1, Assumption
2.6 holds. The time derivative of V1 along _x1 = f1 (t; x1; �1), is given by

_V1 = �k�v�T�d � �d � k�p� �d��ef �
T
�df � �df + k�p� �d� �df �

T
�ef � �df

� �T�dCf (��e)!�r + �
T
�d JfS(!

f
lf )!

f

l �d

� (l�v��ef � k�v)�T�e ��e � l�p��e�T�ef ��ef � �T�e Cf (��e)!�r
� �Te Cf (!

f
lf )� �d +

�
�T�d + �

T
�e

�
df
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By deriving similar bounds as in (5.23-5.27), the time derivative of the
Lyapunov function can be upper bounded by:

_V1 � �
�
k�v � �Jf

�
� �d j� �d�ej+

1

2
j�dj+ (2 +

� �d
2
)�!l �d

��
j� �dj

2

�
�
l�v��el � k�v � 2�Jf

�
� �d j� �d�ej+ �!l �d +

1

4
j�dj

��
j��ej2

�1
2

�
k�p��el� �d � � �d�Jf�!l �d

�
j� �df j2

�1
2

�
l�p��e � � �d�Jf�!l �d

�
j��ef j2

�1
2

���� �df ��
j��ef j

�> �
k�p��el� �d �k�p� �d
�k�p� �d l�p��e

� ���� �df ��
j��ef j

�
+(j� �dj+ j��ej)�df :

Let jx1j � ��1 � 1. For any �1 � jx1j, we de�ne

k?�v :=�Jf

�
� �d +

1

2
��1 + (2 +

� �d
2
)�!l �d +

�df
�1

�
l?�v :=

1p
1� ��21

�
k�v + 2�Jf

�
� �d + �!f

l �d

+
1

4
��1

�
+
�df
�1

�
k?�p :=

� �d�Jf�!l �d

� �d
p
1� ��21

l?�p :=max

(
� �d�Jf�!l �d

��e
;

k�p� �d

��e
p
1� ��21

)

and choosing the control gains such that k�v > k?�v , l�v > l?�v(k�v), k�p > k?�p
and l�p > l?�p(k�p) we satisfy condition (2.23), provided that x(0) 2 B�1 where
�1 :=

p
�(�)=�(�) ��1. Hence, all conditions of Assumption 2.4 are satis�ed.

Finally, it is shown in Proposition 5.1 that Assumption 2.5 holds, and the
conclusion of Proposition 5.2 follows.

5.3 Simulation

The spacecraft inertia matrices were chosen to be Jl = Jf = diagf6; 7; 8g,
where as the input torque were saturated to max f� lg = max f� fg = 20.
The disturbances acting on the spacecraft, dl and df , were band-limited
white noise of power 0.1 and sample time of 0.1 acting about all body frame
axis. Examples of disturbances on a spacecraft orbiting Earth are torques
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Figure 5.1: Orientation and angular
velocity tracking error of the leader
spacecraft
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Figure 5.2: Orientation and angu-
lar velocity estimation error of the
leader spacecraft
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Figure 5.3: Orientation and angu-
lar velocity tracking error of the fol-
lower spacecraft
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Figure 5.4: Orientation and angular
velocity estimation error of the fol-
lower spacecraft

due to gravitational, aerodynamic and magnetic forces. The initial condi-
tions for the leader spacecraft model were qil(0) = col (1=2; 1=2; 1=2; 1=2)
and !il(0) = col (0:2; 0:3;�0:2), where as the controller had initial condi-
tions qie(0) = col (1=2;�1=2; 1=2; 1=2) and z(0) = col (5; 6; 4) and gains
kp = 2, kv = 80, lv = 45, lp = 2, �d = 5 and �e = 5. The refer-
ence signal was chosen as _!iid = 0:1 col(sin

�
32 t+

�
2 ; sin

�
4 t; sin

�
8 t+

�
4 ) with

!iid achieved by numerical integration of _!
i
id, and the quaternion qid =�

�id; �
>
id

�>
by numerical integration of the relations _�id = �1=2�id!iid and

_�id = 1=2E (qid)!
i
id. Figure 5.1 shows the orientation and angular veloc-

ity tracking error of the leader spacecraft. Figure 5.2 shows the estima-
tion errors. The follower spacecraft were chosen to track the orientation
and angular velocity of the leader spacecraft. The initial conditions of
the follower spacecraft model were qlf (0) = col (1=2; 1=2; 1=2;�1=2) and
!lf (0) = col (0; 0; 0). The controller initial conditions and gains were
qie(0) = col (1=2; 1=2;�1=2;�1=2) and z(0) = col (5; 6; 4) and k�p = kp,
k�v = kv, l�v = lv, l�p = lp, � �d = �d and ��e = �e, respectively. The gains
of the controller and observer were chosen based on the outcome of the
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Lyapunov analysis in the previous sections. Figure 5.3 and 5.4 show the
simulation results.



Chapter 6

Robustness to a class of
signals with unbounded
energy

We now exploit the results developed in Section 2.5 to demonstrate the ro-
bustness of a spacecraft formation control in a leader-follower con�guration,
when only position is measured. The focus on output feedback in this illus-
tration is motivated by the fact that velocity measurements in space may
not be easily achieved, e.g. can not be equipped with the necessary sen-
sors for such measurements due to space constraints or budget limits. The
models described in this section have strong resemblance with the model
of a robot manipulator. Our control design is therefore based on control
algorithms already validated for robot manipulators, in particular Berghuis
and Nijmeijer (1993) and Paden and Panja (1988).

6.1 Disturbances acting on spacecraft formation

From a control design perspective, a crucial challenge is to maintain a
prede�ned relative trajectory, even in presence of disturbances. These dis-
turbances may have diverse origins:

� Intervehicle interference. In close formation or spacecraft rendezvous,
thruster �rings and exhaust gases may in�uence other spacecraft.

� Solar wind and radiation. Particles and radiation expelled from the
sun in�uence the spacecraft and are dependent on the solar activity
(Wertz, 1978), which is di¢ cult to predict (Hanslmeier et al., 1999).
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� Small debris. While large debris would typically mean the end of
the mission, some space trash, including paint �akes, dust, coolant
and even small needles1, is small enough to �only� deteriorate the
performance, see (NASA, 1999).

� Micrometeoroids. The damages caused to micrometeoroids may be
limited due to their tiny size, but constant high velocity impacts will
degrade the performance of the spacecraft.

� Gravitational disturbances. Even gravitational models including higher
order zonal harmonics, can only achieve a certain level of accuracy,
as the Earth is neither a sphere nor an ellipsoid, and is certainly not
homogeneous, see Figure 6.2. In addition comes the gravitational
perturbation due other gravitating bodies such as the Sun and the
Moon.

� Actuator mismatch. There will commonly be a mismatch between
the actuation calculated by the control algorithm, and the actual ac-
tuation that the thrusters can provide. This mismatch is particularly
present if the control algorithm is based on continuous dynamics,
without taking into account pulse based thrusters.

Several of the above mentioned disturbances, have a possibly great am-
plitude, but last for a short period of time. The class of such signals are
well described by the class W (E; T ), described in Section 2.5.

6.2 Model

In this section, we state the models of the spacecraft. The models are
similar to the ones derived in (Ploen et al., 2004b). All vectors, both for
the leader and the follower spacecraft, are expressed in an orbital frame,
with the origin satisfying Newton�s gravitational law. The model of the
leader is given by

ml�p+ Cl ( _�o) _p+Dl ( _�o; ��o) p+ nl (ro; p) = ul + dl (6.1)

1Project West Ford was a test carried out in the early 1960s, where 480 million needles
were placed in orbit, with the aim to create an arti�cial ionosphere above the Earth to
allow global radio communication, Overhage and Radford (1964).
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Figure 6.1: Artistic interpretation of debris objects in lo-Earth orbit based
on actual density data. Object are however shown at an exaggerated size
to make them visible. Reproduced with courtesy to the European Space
Agency (http://www.esa.int)

Figure 6.2: Gravity map of the Southern Ocean around the Antarctic con-
tinent. This gravity �eld was computed from sea-surface height measure-
ments collected by the US Navy GEOSAT altimeter between March, 1985,
and January, 1990. Reproduced with courtesy to the National Oceanic and
Atmospheric Administration (www.noaa.gov)
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where �o is the true-anomaly of the reference frame,

Cl ( _�o) := 2ml _�o �C; �C :=

240 �1 0
1 0 0
0 0 0

35 ;
Dl ( _�o; ��o) : = ml _�

2
o
�D +ml��o �C;

�D : = diag(�1;�1; 0) 2 R3�3;

and

nl (ro; p) := ml�

�
ro + p

jro + pj3
� ro
jroj3

�
:

The model describing the motion of the follower spacecraft relative to the
leader is given by:

mf��+Cf ( _�o) _�+Df ( _�o; ��o) �+nf (ro; p; �) = uf+df�
mf

ml
(ul + dl) ; (6.2)

with
Df ( _�o; ��o) := mf _�

2
o
�D +mf ��o �C

and

nf (ro; p; �) := mf�

�
ro + p+ �

jro + �+ pj3
� ro + p

jro + pj3

�
:

In the analysis of the formation we will make use of the following assump-
tion:

Assumption 6.1 The true anomaly rate _�o, and true anomaly rate-of-
change, ��o, of the reference frame, are upper bounded by a constant, that
is j _�o(t)j � � _�o and j��o(t)j � ���o for all t � t0 � 0, for some positive
constants � _�o and ���o.

Note that this assumption is naturally satis�ed when the reference frame
is following a Keplerian orbit, but it also holds for any su¢ ciently smooth
reference trajectory.

6.3 Control of the leader spacecraft

We now propose a controller whose goal is to make the leader spacecraft
follow a trajectory given by the desired position pd (t) relative to the orbit
frame. Let p̂ 2 R3 be the estimated position. We de�ne el := p� pd as the
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tracking error and ~p := p� p̂ as the estimation error. Similarly to Berghuis
and Nijmeijer (1993), the controller is given by:

ul = ml�pd + Cl ( _�o) _pd +Dl ( _�o; ��o) p+ nl (ro; p)�Kl ( _p0 � _pr) (6.3)

_pr = _pd � `lel (6.4)

_p0 = _̂p� `l~p; (6.5)

with Kl := klI3�3 and kl; `l > 0. The observer is given by:

_̂p = al + (ll + `l) ~p (6.6)

_al = �pd + ll`l~p (6.7)

where ll > 2kl=ml denotes a free positive constant. Let us de�ne x2 :=�
_e>l ; `le

>
l ;
_~p>; `l~p

>�> 2 R12. We can now write the system in a state space
form _x2 = f2 (x2; d2) where2

f2 (t; x2; d2) :=

2664
1
ml
�1(t; x2; d2)

`l _el
1
ml
�3(t; x2; d2)

`l _~p

3775 (6.8)

with d2 = dl and

�1(t; x2; d2) := �Cl _el �KlY x2 + d2
�3(t; x2; d2) := �Cl _el �ml`l _~p�KlY x2 �mlll

�
`l~p+ _~p

�
+ d2;

Y :=
�
I3�3 �I3�3 I3�3 �I3�3

�
:

6.4 Control of the follower spacecraft

We now propose a controller to make the follower spacecraft track the
trajectory given by the desired position �d (t) relative to the leader. Let
�̂ 2 R3 be the estimated position. We de�ne ef := � � �d as the tracking
error and ~� := �� �̂ as the estimation error. We use a similar controller as
for the leader spacecraft, that is:

2The results of Section 2.5 are stated in a time-invariant setup, but can naturally
be extended to non-autonomous systems if the properties on the considered Lyapunov
function hold uniformly in time which, as we will see, in the case here.
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uf =mf��d + Cf ( _�o) _�d +Df ( _�o; ��o) �+ nf (ro; p; �) +
mf

ml
nl (ro; p)

�Kf ( _�0 � _�r) (6.9)

_�r =_�d � `fef (6.10)

_�0 =
_̂�� `f~�; (6.11)

where Kf := kfI3�3, kf ; `f > 0 being tuning gains. The observer is given
by

_̂� = af + (lf + `f ) ~�f (6.12)

_af = ��d + lf `f~�f (6.13)

with a positive constant lf > 2kf=mf . De�ne x1 :=
�
_e>f ; `fe

>
f ;
_~�>; `f~�

>
�>

2
R12. Combining (6.2) and (6.9-6.13) and inserting the leader spacecraft con-
troller ul by (6.3), we can summarize the follower spacecraft�s dynamics by
the state space equation _x1 = f1 (x1; d1) where

f1 (t; x1; x2; d1) :=

26664
1
mf
�1(t; x1; x2; d1)

`f _ef
1
mf
�3(t; x1; x2; d1)

`f _~p

37775 ; (6.14)

with

�1(t; x1; x2; d1) := �Cf _ef �KfY x1
�mf ( _�o(t)

2 �D + �vo(t) �C)el +KlY x2 + d1

�3(t; x1; x2; d1) := �Cf _ef �mf `f _~��KfY x1 �mf lf
�
`f~�+ _~�

�
�mf ( _�o(t)

2 �D + �vo(t) �C)el +KlY x2 + d1

d1 := �mf �pd �mf ( _�
2
o
�D + �vo �C)pd �

mf

ml
dl + df :(6.15)

6.5 Stability analysis of the overall formation

We are now ready to state the following result, which establishes the ro-
bustness of the controlled formation to a wide class of disturbances.
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Proposition 6.1 Let Assumption 6.1 hold. Let the controller of the leader
spacecraft be given by (6.3)-(6.7) with ll � 2kl=ml and kl > 9=2k?l , where

k?l := ml`l + 4ml� _�o + 2
mf

`l

�
�2_�o + ���o

�
+ 2 (6.16)

and let the controller of the follower spacecraft be given by (6.9)-(6.13) with
lf � 2kf=mf and kf > 3k?f=2, where

k?f := mf `f + 4mf� _�o + 2
mf

`l

�
�2_�o + ���o

�
+ 2 +

3

2
kl: (6.17)

Given any precision � > 0 and any time window T > 0, consider any
average excitation satisfying

E(T; �) � min fmf ;mlg �2

12

e�T � 1
2e�T � 1 ; (6.18)

where

� :=
1

6

k?l
max fkl=`l; kf=`fg

: (6.19)

Then, for any d 2 W
(E; T ) where 
(s) := 2s2, the ball B� is GAS for the
overall formation _x = f (t; x; d) with x := (x>1 ; x

>
2 )
>; d :=

�
d>1 ; d

>
2

�>
and

f := (f>1 ; f
>
2 ).

Proof. The proof is done by applying Corollary 2.1. We consider the
Lyapunov function candidate

V (x) :=
1

2
V1 (x1) +

1

2
V2 (x2) (6.20)

where V1 (x1) := x>1W
>R1Wx1 and V2 (x2) := x>2W

>R2Wx2, with R1 :=
diag(mfI3�3; 2Kf=`f�mfI3�3;mfI3�3; 2Kf=`f ), R2 := diag(mlI3�3; 2Kl=`l�
mlI3�3;mlI3�3; 2Kl=`l) and

W :=

2664
I3�3 I3�3 03�3 03�3
03�3 I3�3 03�3 03�3
03�3 03�3 I3�3 I3�3
03�3 03�3 03�3 I3�3

3775 :
In order to simplify the Lyapunov analysis, de�ne the sliding variables
t1 := _� � _�r and t2 := _� � _�0 in such a way that t1 = _ef + `fef and
t2 = _~�+`f~�. De�ne also s1 := _p� _pr and s2 := _p� _p0 such that s1 = _el+`lel
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and s2 = _~p+ `l~p. It can be shown that the time derivative of the Lyapunov
function candidate can be compactly written as

_V = �x>1 Qfx1 � t>2 (lfmfI3�3 � 2Kf ) t2
+(t1 + t2)

> (d1 � Cf ( _�o) _ef )
+ (t1 + t2)

> ��mf ( _�
2
o
�D + �vo �C)el +KlY x2

�
�x>2 Qlx2 � s>2 (llmlI3�3 � 2Kl) s2
� (s1 + s2)> (d2 � Cl ( _�o) _el)

with Ql := diag(Kl �ml`lI3�3;Kl;Kl;Kl) 2 R12�12 and Qf := diag(Kf �
mf `fI3�3;Kf ;Kf ;Kf ) 2 R12�12. Note that jt1 + t2j � 2 jx1j, js1 + s2j �
2 jx2j, j _ef j � jx1j, j _elj � jx2j, and that jelj � jx1j =`l. Recalling that
lf � 2kf=mf and ll � 2kl=ml, and invoking Assumption 6.1, we get that
the derivative of the Lyapunov function can be upper bounded as:

_V � �
�
kf �mf `f � 4mf� _�o

�
jx1j2

+2 jd1j jx1j+ 2
mf

`l

�
�2_�o + ���o

�
jx1j jx2j+ 2kl jx1j jx2j

�
�
kl �ml`l � 4ml� _�o

�
jx2j2

+2 jd2j jx2j : (6.21)

By Young�s inequality, jd1j jx1j � jd1j2+jx1j2, jd2j jx2j � jd2j2+jx2j2 ; jx1j jx2j �
jx1j2+jx2j2, and noticing that kl jx1j jx2j � kl=3 jx2j2+3kl=4 jx1j2, it follows
that

_V � �
�
kf �mf `f � 4mf� _�o � 2

mf

`l

�
�2_�o + ���o

�
� 2� 3

2
kl

�
jx1j2

�
�
kl

�
1� 2

3

�
�ml`l � 4ml� _�o � 2

mf

`l

�
�2_�o + ���o

�
� 2
�
jx2j2

+2 jd1j2 + 2 jd2j2 :

If we chose kl > 9=2k?l and kf > 3k
?
f=2 as given in the statement of Proposi-

tion 6.1, we are ensured that R1; R2; Ql; Qf are all positive de�nite matrices,
and it can be seen that

1

6
min fml;mfg jxj2 � V (x) � 3max fkl=`l; kf=`fg jxj2 :
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Using these inequalities and the fact that k?l < k
?
f , we get that

_V � �1
2
k?l

�
jx1j2 + jx2j2

�
+ 2 jd1j2 + 2 jd2j2

� �1
2
k?l jxj

2 + 2 jdj2 (6.22)

� ��V (x) + 2 jdj2

with the constant � de�ned in (6.19). Hence, the conditions of Corollary 2.1
are satis�ed, with � (s) = 1

6 min fml;mfg s2, � (s) = 3max fkl=`l; kf=`fg s2
and 
 (s) = 2s2, and the conclusion follows.

6.6 Simulations

Let the reference orbit be an eccentric orbit with radius of perigee Rp =
107m and radius of apogee Ra = 3 � 107m, which can be generated by
numerical integration of

�ro = �
�

jroj3
ro; (6.23)

with ro (0) = (Rp; 0; 0) and _ro (0) = (0; Vp; 0); and where

Vp =

s
2�

�
1

Rp
� 1

(Rp +Ra)

�
:

For simplicity, we choose the desired trajectory of the leader spacecraft to
coincide with the reference orbit. The initial values of the leader spacecraft
are pl (0) = (2;�2; 3)> and _pl (0) = (0:4;�0:8;�0:2)>. The initial values
of the observer are chosen as p̂ (0) = (0; 0; 0)> and al (0) = (0; 0; 0)

>.
The reference trajectory of the follower spacecraft are chosen as the

solutions of a special case of the Clohessy-Wiltshire equations, cf. Clohessy
and Wiltshire (1960). We use

�d (t) =

24 10 cos �o (t)�20 sin �o (t)
0

35 : (6.24)

Here, �o is the true anomaly of the reference frame, obtained by numerical
integration of the equation

��o (t) =
�2� (1 + eo cos �o (t))3 sin �o (t)

(Rp +Ra)
3 (1� e2o)

3 :
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Since the reference frame is initially at perigee, �o (0) = 0 and _�o (0) =
Vp=Rp. The eccentricity of the reference frame is constant, and can be
calculated from Ra and Rp to be eo = 0:5. This choice of reference orbit
means that the two spacecraft are in the same orbital plane, and that the
follower spacecraft will make a full rotation about the leader spacecraft
per orbit around the Earth. The initial values of the follower spacecraft
are � (0) = (9;�1; 2)> and _� (0) = (�0:3; 0:2; 0:6)>. The initial para-
meters of the observer are chosen to be �̂ (0) = �d (0) = (10; 0; 0)> and
af (0) = (0; 0; 0)>. We use mf = ml = 25 kg both in the model and the
control structure. The control gains are based on the analysis in Section
6.5. First we pick `l = 0:06. Then, by assuming we can ignore the ef-
fect of _�o and ��o (due to the great orbit which implies that _�o and ��o
vary slowly), we �nd that k?l = 3:5 from (6.16). Since kl should satisfy
kl > 9=2k?l , we chose kl = 15:75. We now pick `f = 0:15, and again by
assuming that we can ignore the e¤ect of _�o and ��o, we �nd from (6.16)
that k?f = 29:375. Since kf should satisfy kf > 3=2k

?
f , we chose kf = 44:1.

At last we take lf = 3:52 and ll = 1:26. With these choices, we �nd from
(6.19) that � = 0:0019841. Over a 10 second interval the average excita-
tion must satisfy E(T; �) � 0:04014�2, according to (6.18). We consider
two types of disturbances acting on the spacecraft; impacts and continuous
disturbances. The impacts have random amplitude, but with maximum
of 1:5 N in each direction of the Cartesian frame. Out of simplicity we
allow only one impact over each 10 second interval, and we assume that
the duration of each impact is 0:1 s. The continuous part is taken as sinu-
soids, also acting in each direction of the Cartesian frame, and are chosen
to be (0:1 sin 0:01t; 0:25 sin 0:03t; 0:3 sin 0:04t)> for both spacecraft. The
motivation for choosing the same kind of continuous disturbance for both
spacecraft, is that this disturbance is typically due to gravitational pertur-
bation, which at least for close formations, have the same e¤ect on both
spacecraft. Notice from (6.2) that the relative dynamics are in�uenced by
disturbances acting on the leader- and follower spacecraft, so the e¤ect of
the continuous part of the disturbance on the relative dynamics is zero.
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Figure 6.3: Position tracking error
of leader spacecraft
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Figure 6.4: Position estimation er-
ror of follower spacecraft
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Figure 6.5: Control forces acting on
leader spacecraft
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Figure 6.6: Disturbance forces act-
ing on leader spacecraft

The disturbances satisfy the following average excitationZ t+10

t
2jd(�)j2d� �2

Z t+10

t
(0:1 sin 0:01�)2d�

+ 2

Z t+10

t
(0:25 sin 0:03�)2d�

+ 2

Z t+10

t
(0:3 sin 0:04�)2d�

+ 3

Z t+10

t
2(1:52)d�

�1:48:

This means that we can expect a precision better than � = 6:1.
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Figure 6.7: Position tracking error
of follower spacecraft
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Figure 6.8: Position estimation er-
ror of follower spacecraft
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Figure 6.9: Control forces acting on
follower spacecraft
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Figure 6.10: Disturbance forces act-
ing on follower spacecraft

Figure 6.3, 6.4 and 6.5 show the position tracking error, position esti-
mation error and control history of the leader spacecraft, where as Figure
6.7, 6.8 and 6.9 are the equivalent �gures for the follower spacecraft. Figure
6.6 and 6.10 show the e¤ect of d2 and d1 acting on the formation. Notice
in Figure 6.10 that the e¤ect of the continuous part of the disturbance is
canceled out (since we consider relative dynamics and both spacecraft are
in�uenced by the same continuous disturbance), where as the e¤ect of the
impacts has increased compared to the e¤ect of the impacts on the leader
spacecraft. The control gains have been chosen based on the Lyapunov
analysis. This yields in general very conservative constraints on the choice
of control gains, and also conservative estimates of the disturbances the
control system is able to handle. As shown in Figure 6.5, and in particular
Figure 6.9, this leads to large transients in the actuation.



Chapter 7

Quantized and pulse width
modulated actuation

As propulsion systems of spacecraft often do not provide continuous actu-
ation, we will in this chapter show how strong stability properties can be
achieved also under certain quantization schemes or pulse width modulation
of the continuous control signal.

7.1 Solutions of discontinuous di¤erential equa-
tions

Due to the discontinuous feedback considered in this chapter, we will have
to recapture some mathematical tools from set-valued analysis. Stability
of sets (both bounded and unbounded) have been treated extensively in
the literature, see for instance Lin (1992), Lin et al. (1996), Vorotnikov
(1998), Teel and Praly (2000), Teel et al. (2002), Chellaboina and Haddad
(2002), Skjetne (2005) and Tjønnås (2008) for developments in the last two
decades. Let F : G !(subsets of Rn), where G is an open subset of Rn. We
will make use of the following de�nitions (Teel and Praly (2000),Teel et al.
(2004)).

De�nition 7.1 The set-valued map F is said to be upper semicontinuous
on G if, given x 2 G, for each " > 0 there exists � > 0 such that F (B� (x)) �
F (x) + B".

De�nition 7.2 The set-valued map F is said to satisfy the basic conditions
on G if it is upper semicontinuous on G and, for each x 2 G, F (x) is
nonempty, compact and convex.
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Given a nonlinear discontinuous di¤erential equation

_x = f (t; x) (7.1)

where f : [0;1)� Rn ! Rn.

De�nition 7.3 An absolutely continuous function x (t; x0; t0) is said to be
a solution of (7.1) in the sense of Krasowskii, if for almost every1 t � t0 � 0
satis�es the di¤erential inclusion

_x 2 K (f (t; x)) := \
�>0
cof (t;B� (x))

De�nition 7.4 An absolutely continuous function x (t; x0; t0) is said to be
a solution of (7.1) in the sense of Filippov, if for almost every t � t0 � 0
satis�es the di¤erential inclusion

_x 2 F (f (t; x)) := \
�>0

\
meas(N)=0

cof (t;B� (x) nN) :

The intersection is taken over all sets N of measure 0 to be able to
exclude sets on which f (t; x) is not de�ned, see Sastry (1999). Local ex-
istence of Krasowskii and Filippov solutions are ensured by the following
theorem:

Theorem 7.1 (Ceragioli, 1999, Theorem 5) If f : [t0; t0+ a]�Rn !
Rn is locally bounded (locally essentially bounded), then a local Krasovskii
(Filippov) solution of (7.1) exists.

For more on existence (or uniqueness) of solutions to di¤erential inclu-
sions the reader is referred to Cortés (2008), Ceragioli (1999) and Filippov
(1988).

7.2 Quantized actuation

An interesting approach for the analysis of systems with discontinuous ac-
tuation are found in Ceragioli and De Persis (2007), where su¢ cient con-
ditions for a stabilizing feedback law to be quantizable can be found. The
rest of this section will build upon the results of this paper.

1"almost every" means except for a set of t of measure 0.
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Figure 7.1: Quantization levels and sector bounds

We consider a special case of (7.1), namely the parameterized input
a¢ ne system

_x = f (t; x; �)

= �f (t; x) + g (x)u (t; x; �) (7.2)

(with �f 2 Rn ! Rn and g 2 Rn ! Rn�m are continuously di¤erentiable,
and u 2 R�0 � Rn � Rp ! U �Rm with U is the set of all measurable and
locally bounded functions) or, in case of quantized feedback:

_x = f (t; x; �)

= �f (t; x) + g (x)	 (u (t; x; �)) (7.3)

where the quantization scheme 	(�) in this paper is as follows Ceragioli
and De Persis (2007): Let the input signal to be quantized be �. Let
� = (1� �)=(1 + �) with 0 < � < 1 �xed, and let ui = �iu0 with i 2 Z and
u0 > 0. Then the output of the quantizer is:

	(�) =

8><>:
ui if 1

1+�ui � � �
1
1��ui

0 if � = 0

�	(��) if � � 0
(7.4)

which can be seen in Figure 7.1. For a vectorial input signal the quantizer
is applied on each element of the vector. The Krasowskii solutions of (7.3)
are absolutely continuous functions which satis�es the di¤erential inclusion:

_x 2 �f + gK (	 (u))

� �f + (1 + ��) gu (7.5)
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with � 2 [�1; 1], and where the dependencies of �f , g and u have been left
out for notational simplicity.

We can now state the following proposition, which gives su¢ cient con-
ditions for a system to be UGPES on a parameter set �, with respect to
Krasowskii solutions.

Proposition 7.1 Let � be a subset of Rp and suppose that, given any � >
0, there exist a parameter �?(�) 2 �; a continuously di¤erentiable Lyapunov
function V� : R�0�Rn ! R�0 and positive constants k1(�); k2(�); k3(�); k4 (�)
such that for all x 2 RnnB� and all t 2 R�0;

k1 (�) jxjp � V� (t; x) � k2 (�) jxjp (7.6)

@V�
@t

(t; x) +
@V�
@x

(t; x) (f (t; x; �?)) � �k3 (�) jxjp (7.7)

with f (t; x; �?) = �f (t; x) + g (x)u (t; x; �?),

@V�
@x

(t; x) g (x)u (t; x; �?) � k4 (�) jxjp (7.8)

where p denotes a positive constant. Then, under the condition that

lim
�!0

k2 (�) �
p

k1 (�)
= 0 (7.9)

the system _x = �f (t; x)+ g (x)	 (u (t; x; �)) is UGPES on the parameter set
� with respect to Krasowskii solutions.

Proof. Let v 2 K (	 (u (t; x; �))). Consider the case where @V�@x g (x)u (t; x; �) 6=
0. Due to (7.5) we have that (leaving out the arguments of brevity)

@V�
@x

�
�f + gv

�
=
@V�
@x

�
�f + gu

�
+ ��

@V�
@x
gu

Using (7.7), (7.8) and that j�j � 1 we get that

@V�
@t

+
@V�
@x

�
�f + gv

�
� �k3 (�) jxjp + j�j�k4 (�) jxjp

� � (k3 (�)� �k4 (�)) jxjp

We see that the conditions of Theorem 2.1 in Chapter 2 are satis�ed with
�(�) = k1 (�) ; �(�) = k2 (�) ; � (�) = k3 (�) � �k4 (�). Notice that � (�) can
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always be chosen positive, by increasing � of the quantizer and thereby
decreasing �. When @V�

@x gu = 0, then from (7.7) we have that

@V�
@t

+
@V�
@x

�
�f + gv

�
=

@V�
@t

+
@V�
@x

�f

� �k3 (�) jxjp

so the conditions of Theorem 2.1 are again satis�ed, this time with �(�) =
k3(�), and the conclusion follows.

Remark 7.1 The proof of Proposition 7.1 follows along the same lines as
the proof of (Ceragioli and De Persis, 2007, Proposition 1) for global asymp-
totic stability. As mentioned in (Ceragioli and De Persis, 2007, Remark
below Proposition 1), the result is easily extended to exponential stability
provided that the system (7.2) is exponentially stable.

7.2.1 Model of follower spacecraft

We only consider the relative dynamics of the two spacecraft, which is given
by

mf��+ Cf ( _�l) _�+Df ( _�l; ��l; rl; �) �+ nf (rl; �) = uf + df �
mf

ml
(ul + dl) ;

with � being the relative position between the spacecraft.

7.2.2 Control scheme

We now show how similar results as achieved in Proposition 4.2 for continu-
ous actuation, under certain additional assumptions also hold for quantized
actuation. To keep this section self contained, we restate the assumptions
of Proposition 4.2 here.

Assumption 7.1 De�ne ~� (t) := �l � �d, where �l (t) and �d (t) are the
actual and the desired true anomaly of the leader spacecraft, respectively.
We will assume that the desired true anomaly rate and true anomaly rate-
of-change of the leader spacecraft is bounded, i.e. given some positive con-
stant r1; r2, j _�d (t0)j � r1 and j��d (t0)j � r2 implies that j _�d (t)j � � _�d and
j��d (t)j � ���d for all t � t0 � 0, for some positive constants � _�d and ���d.
Furthermore, we assume that the actuation system of the leader spacecraft
keeps _~� and �~� bounded, i.e. given some positive constant r3, r4,

�� _~� (t0)�� � r3
implies that

�� _~� (t)�� � � _~� for all t � t0 � 0, and
���~� (t0)�� � r4 implies that���~� (t)�� � ��~� for all t � t0 � 0, where � _~� ; ��~� are positive constants.
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Again we emphasize that this is no restriction on the initial relative state
vector, to be de�ned in the sequel. In addition we will make the following
assumption regarding the desired trajectories of the follower spacecraft:

Assumption 7.2 The desired relative position �d(t), desired relative veloc-
ity _�d(t) and desired relative acceleration ��d(t) are all smooth and bounded
functions, i.e. there exists positive constants ��d, � _�d, ���d such that j�d(t)j �
��d, j _�d(t)j � � _�d and j��d(t)j � ���d for all t � t0 � 0.

We will also assume that the disturbances acting on the spacecraft are
bounded:

Assumption 7.3 The disturbances acting on the follower spacecraft are
bounded, i.e. there exist a positive constant �df such that

jdf (t)j � �df ; 8t � t0 � 0 (7.10)

and that the di¤erence between thrust and external disturbances acting on
the leader spacecraft is bounded, that is:

jul(t) + dl(t)j � �(ul+dl); 8t � t0 � 0 (7.11)

for a positive constant �(ul+dl).

We will also make use of the following assumption:

Assumption 7.4 There exists some positive constant �rl,�rf , such that
jrl (t)j � �rl and jrf (t)j � �rf for all t � t0 � 0.

Since the leader spacecraft is assumed to follow an elliptic orbit, the
assumption on the bound of rl is plausible. The bound of rf , may however
seem inappropriate as the state vector (to be de�ned) implicitly depends
on rf . The choice of still making this assumption, is discussed in Remark
4.2.

Proposition 7.2 Let j _�d (t0)j � r1, j��d (t0)j � r2,
�� _~� (t0)�� � r3 and ���~� (t0)�� �

r4 for some positive constants r1; r2; r3 and r4. Let Assumption 7.1-7.4
hold. Let the controller be given by

uf = mf��d + Cf ( _�d) _�d +Df ( _�d; ��d; rl; �) �+ nf (rl; �)�Kf ( _�0 � _�r)
(7.12)

_�r = _�d � �fef (7.13)

_�0 =
_̂�� �f~�; (7.14)
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where �f = �>f 2 R3�3 and Kf := kfI3�3 are positive de�nite, ef :=
�� �d 2 R3 is the position error and ~� := �� �̂ is the observer estimation
error. Let the observer be given by

_̂� = af + (lfI3�3 + �f ) ~�f (7.15)

_af = ��d + lf�f~�f ; (7.16)

where lf > 2kf=mf scalar. With the input quantized, that is 	(uf ), with
	(�) as in (7.4), the closed-loop system is UGPES with respect to Krasowskii
solutions.

Proof. To ease the application of Theorem 7.1, we write the system on
state space form as in (7.2), that is:

_x1 = f1(t; x1) + g1u1(t; x1; �1)

Here, x1 := ( _e>f ; (�fef )
>; _~�>; (�f~�)

>)> 2 R12 and f1(t; x1) = (�>1 ; �>2 ; �>3 ; �>4 )>
with

�1 :=� ��d �
1

mf

�
Cf ( _�l) _�

�D ( _�l; ��l; rl; �) �� nf (rl; �) + df �
mf

ml
(ul + dl)

	
(7.17)

�2 :=�f _ef (7.18)

�3 :=� �f _~�� lf _~�� lf�f~�

� 1

mf

�
Cf ( _�l) _��Df ( _�l; ��l; rl; �) �

� nf (rl; �) + df �
mf

ml
(ul + dl)

	
(7.19)

�4 :=�f _~� (7.20)

Furthermore,
g1 := (13�3; 03�3; 13�3; 03�3)

> ; (7.21)

and
u1(t; x; �) = uf (7.22)

with uf is as given in Proposition 7.2. Let us �rst de�ne the Lyapunov
function given by (cf. Berghuis and Nijmeijer (1993))

V1(x1) :=
1

2
x>1W

>R1Wx1; (7.23)
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where R1 2 R12�12 is de�ned as:

R1 := diag(mfI3�3; 2Kf�
�1
f �mfI3�3;mfI3�3; 2Kf�

�1
f ) (7.24)

and

W :=

2664
I I 0 0
0 I 0 0
0 0 I I
0 0 0 I

3775 2 R12�12: (7.25)

Note that for Kf > mfI3�3�f , we have that

c1 jx1j2 � V1 � c2 jx1j2

with c1 = 1
6�min(R1) and c2 =

3
2�max(R1), where �min(R1) = mf and

�max(R1) = 2kf�max(�f )
�1. This can be veri�ed using the fact that 1

3 �
�min(W

>W ) and that �max(W>W ) � 3. As shown in Proposition 4.2,
(7.6) and (7.7) of Proposition 7.1 are satis�ed with x = x1, p = 2, V� =
V1, k1 = 1

6�min(R1) =
1
6mf , k2 = 3

2�max(R1(�)) = 3k?f (�)=�max(�f ) and
k3(�) =

1
2k
?
f (�), where

k?f :=2mf�max(�f ) + 4mf

�
� _~� + � _�d

�
+
4

�

�
�df +

mf

ml
�(ul+dl)

+ 2mf� _~�� _�d +mf (�
2
_~�
+ 2� _~�� _�d + ��~�)��

� (7.26)

Furthermore,

lim
�!0

k2(�)�
p

k1(�)
= lim
�!0

18k?f (�)�
2

�max(�f )mf
= 0; (7.27)

thus (7.9) is also satis�ed. We will now prove (7.8) of Proposition 7.1. We
have that

@V

@x1
g1u1 = x

>
1W

>R1Wg1u1: (7.28)

By Assumption 7.1 and 7.4, we can therefore �nd positive constants �Df ,
�Cf and �nf , de�ned as:

�Df =mf

�
�

�rf
+ �2_�d�max(

�D) + ���d�max(
�C)

�
(7.29)

�Cf =2mf� _�d�max(
�C) (7.30)

�nf =mf�

 
�rl
�3rf

� 1

�2rl

!
(7.31)
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such that �Df � jDf (��d (t) ; _�d (t) ; rf (t))j, �Cf � jCf ( _�d (t))j and �nf �
jnf (rl (t) ; rf (t))j for all t � t0 � 0. This in turn, implies that the control
law can be bounded as:

juf (t) j ��nf + �Df

�
1

�min(�f )
jx1 (t) j+ ��d

�
+ �Cf� _�d +mf���d + kf jx1 (t) j;

(7.32)

for all t � t0 � 0. We see that Assumption 7.4 were made to prevent uf to
grow unbounded. Now, let � be a positive constant. Then, for any jx1j � �
we have that

@V1
@x1

g1u1 � k4(�)jx1j2 (7.33)

where

k4(�) =2mf

��
mf���d + �Cf� _�d + �Df��d

+ �nf
�1
�
+ �Df

1

�min(�f )
+ kf (�)

	 (7.34)

where it has been used that �max(WRWg1) = 2mf . Hence, the conclusion
that the closed-loop system is UGPES on the chosen parameter set follows.

7.2.3 Simulations

In this section the performance of the proposed controller-observer scheme
will be shown by simulations. The desired orbit of the leader spacecraft is of
eccentricity ed = 0:5, and has semimajor axis ad = 20000 km. Both space-
craft are of mass ml = mf = 100 kg. Furthermore, the thrust is assumed to
be available in all directions of the leader spacecraft frame. The desired tra-
jectory of the follower spacecraft is given by �d(t) = col(�10 cos �; 20 sin �; 0),
which means that the follower spacecraft evolves around the leader space-
craft in an ellipse during their orbit around the Earth. The initial position
and velocity of the follower spacecraft is chosen as �(0) = col(�40; 20; 40)
and _�(0) = col(1; 0;�1), where as the initial states of the observer are
�̂(0) = col(4;�4; 1) and af (0) = col(�1; 4; 3). The controller and observer
gains are as follows: ld = 0:5, Kf = 20I3�3, �f = 0:06I3�3.The logarithmic
scheme of Proposition 7.2 is used with u0 = 2 and � = 0:2. Figure 7.2
shows the position and velocity tracking error, and Figure 7.3 shows the
actuation forces.
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Figure 7.2: Position and velocity er-
ror with quantized actuation
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Figure 7.3: Force on follower space-
craft with quantized actuation

7.3 Pulse width modulated actuation

Commonly the actuation of spacecraft is pulse modulated. The fuel con-
sumption is lowered; usually at the price of reduced accuracy. The stability
analysis of such systems has mainly been focused on linear plants, see Gelig
and Churilov (1998) and references therein, with a few exceptions includ-
ing Hou and Michel (2001) and Teel et al. (2004). We will now show that
although the control laws in the previous chapters were derived under the
assumption of continuous actuation, similar stability properties are achiev-
able even under pulse-width modulated systems. The analysis is based on
Teel et al. (2004), where they consider systems of the following form:

_x = "

"
f (x) +

mX
i=1

gi (x)u (hi (x)� pi (t))
#
; (7.35)

where " is a small positive parameter, u : R! [0; 1] is the unit step function
with u (0) = 1, the functions hi : Rn ! [0; 1], f and gi are continuous, and
the functions pi : R! [0; 1] are measurable, bounded and periodic with
period one. The analysis of (7.35) can be reduced to the analysis of

_x 2 f (x) +
mX
i=1

gi (x)Si (hi (x)) ; (7.36)

since " > 0 is small, and the state therefore changes slowly compared to pi,
so that the e¤ect of pi on (7.35) can be averaged. If, in addition pi (t) is
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chosen as pi (t) = tmod1, then (7.36) becomes simply,

_x = f (x) +
mX
i=1

gi (x)hi (x) ; (7.37)

Remark 7.2 Even for systems of the form

_x = f (x) +

kX
i=1

gci (x)hci (x)

where the domain of hci is not necessarily [0; 1], but instead in [�hci; hci],
we can write the system in the form of (7.37). Just let gi = gcjhj and
hi = hcj=hj for i = 1; � � � k, j = 1; � � � ; k, and let gi = gcjhj and hi = hcj=hj
for i = k + 1; � � � ; 2k = m, j = 1; � � � ; k.

To keep this section self-contained, we will restate (Teel et al., 2004,
Theorem1) here:

Theorem 7.2 (Teel et al., 2004, Theorem 1) Suppose the functions
f , gi, hi are continuous and that for (7.36) the compact set A is asymptot-
ically stable with basin of attraction H. Under these conditions, the set H
is open and

� for each continuous function w : H !R�0 that is positive de�nite with
respect to A and proper with respect to H, there exists � 2 KL,

� and, for each � > 0 and compact K � H, there exists "� > 0

such that
" 2 (0; "�]; x (t0) 2 K =)

the (generalized Krasowskii/Filippov) solutions of (7.35) exist for all t � t0
and satisfy

w (x (t)) � � (w (x (t0)) ; " (t� t0)) + �; 8t � t0:

In the proof of Theorem 7.2, asymptotic stability of the compact set A
with basin of attraction H is used, by applying Theorem (Teel and Praly,
2000, Proposition 3), to ensure existence of a function �� 2 KL, such that
the solutions of system (7.36) that starts in H satisfy

w (x (t)) � �� (w (x (0)) ; t) ; 8t � 0.

We will now give su¢ cient conditions for this hold:
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Proposition 7.3 Given any � > 0, suppose that there exists a continuous
function V : Rn ! R�0, some class K functions �, � and � such that for
any x 2 RnnB�;and any t 2 R�0,

� (jxj) � V (x) � � (jxj) (7.38)

@V

@x
(x)

 
f (x) +

mX
i=1

gi (x)hi (x)

!
� �� (jxj) (7.39)

Then, there exists a continuous function w (�) : Rn ! R�0, positive de�nite
with respect to B~� with ~� := � (�) and proper with respect to Rn, such that

w (jx (t)j) � � (w (jx0j) ; t) ; 8t � 0;

for some function � 2 KL.

Proof. Assume that V (x) � � (�) Then jxj � ��1 (V (x)) � � such that

_V � �~� (V ) ;

with ~� (�) := � � ��1 (�). Now, de�ne

jV j~� := V � ~�

Since ~� is constant, for V � ~�:

d

dt

�
jV j~�

	
= _V � �~� (V ) � �~�

�
jV j~�

�
;

(This holds trivially for V < ~�). By the comparison lemma,

jV (x (t))j~� � �
�
jV (x (0))j~� ; t

�
; 8t � 0;

with � 2 KL, and the conclusion follows by taking w := jV j~�.
As an illustration of the above result, we will again consider the control

problem investigated in Chapter 6, but now with the actuation being pulse
width modulated.

Proposition 7.4 Consider the model (6.1-6.2), with control laws (6.3-6.6)
and (6.9-6.12). Let Assumption 6.1 hold, and let ll � 2kl=ml and kl >
9=2k?l , where

k?l := ml`l + 4ml� _�o + 2
mf

`l

�
�2_�o + ���o

�
+ 4

�d
�
; (7.40)
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and let lf � 2kf=mf and kf > 3k?f=2, where

k?f := mf `f + 4mf� _�o + 2
mf

`l

�
�2_�o + ���o

�
+ 4

�d
�
+
3

2
kl: (7.41)

Assume that there exists a positive constant �d, such that jd (t)j � �d, for
any t � t0 � 0, where d = (d>1 ; d

>
2 )
> with d1 as de�ned in (6.15) and

d2 = dl. Finally, assume that the control law is pulse width modulated with
switching signal pi (t) = tmod1. Then, for each ��, and compact K �Rn,
there exists an "? > 0 and a ~� > 0, such that for any " 2 (0; "?], x (t0) 2 K
the solutions exist for all t � t0 and satisfy

jV (x (t))j~� � �
�
jV (x (t0))j~� ; " (t� t0)

�
+ ��; 8t � 0; (7.42)

with V as in (6.20).

Proof. The model (6.1-6.2), with control laws (6.3-6.6) and (6.9-6.12) can
be written on the form of (7.37), although with f and h also depending
on t. It is the choice pi (t) = tmod1 which simpli�es the analysis to the
problem of �nding an asymptotically stable compact set A with basin of
attraction H for (7.37). We showed in the proof of Proposition 6.1, that
(7.38) holds with V (x) as in (6.20), with � (s) = 1

6 min fml;mfg s2, � (s) =
3max fkl=`l; kf=`fg s2. Given any � > 0, the time derivative of V (x) can,
by using (6.21), jx1j jx2j � jx1j2+ jx2j2, kl jx1j jx2j � kl=3 jx2j2+3kl=4 jx1j2
and that jd (t)j � �d, for all t � t0, be bounded as,

_V � �
�
kf �mf `f � 4mf� _�o � 2

mf

`l

�
�2_�o + ���o

�
� 3
2
kl � 4

�d
�

�
jx1j2

�
�
kl

�
1� 2

3

�
�ml`l � 4ml� _�o � 2

mf

`l

�
�2_�o + ���o

�
� 4�d

�

�
jx2j2 ;

for any x 2 RnB�. Using kl > 9=2k?l and kf > 3k?f=2, we get that (7.39)
holds with � (s) = �1=2k?s2. By Proposition 7.3, we �nd that

jV (x (t))j~� � �
�
jV (x (0))j~� ; t

�
; 8t � 0:

The conclusion follows by applying Theorem 7.2; see the discussion below
Theorem 7.2.

Remark 7.3 Using the bounds for V (x), namely � (jxj) = 1
6 min fml;mfg jxj2,

� (jxj) = 3max fkl=`l; kf=`fg jxj2, the inequality 7.42 can be rewritten as:

jx (t)j � �? (jx0j ; " (t� t0)) + �?;
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Figure 7.4: Position tracking error
of leader spacecraft
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ėl,1
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Figure 7.5: Velocity tracking error
of leader spacecraft

where
�? (s; t) := ��1 (� (� (s) ; t)) 2 KL

and

�? :=

0@ 6
�
~� + ��

�
min fml;mfg

1A
1
2

:

7.3.1 Simulations

As an illustration, we study the same problem as in Section 6.6, except that
our control law is now pulse-width-modulated, and the disturbance is the J2
disturbance described in Section 3.3.1, instead of the impact disturbances.
Figure 7.4 to 7.7 show the position tracking error, velocity tracking error,
position estimation error and velocity estimation error, respectively, of the
leader spacecraft. Figure 7.8 shows the control forces acting on the leader
spacecraft, and Figure 7.9 shows the same over a shorter time period. The
corresponding �gures for the follower spacecraft are given in 7.10 to 7.15.
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Figure 7.6: Position estimation er-
ror of leader spacecraft
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Figure 7.7: Velocity estimation er-
ror of leader spacecraft
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Figure 7.8: Control forces acting on
leader spacecraft

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

u
l,
1

[N
]

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

u
l,
2

[N
]

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

u
l,
3

[N
]

Figure 7.9: Control forces acting on
leader spacecraft
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Figure 7.10: Position tracking error
of follower spacecraft
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Figure 7.11: Velocity tracking error
of follower spacecraft
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Figure 7.12: Position estimation er-
ror of follower spacecraft
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Figure 7.13: Velocity estimation er-
ror of follower spacecraft
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Figure 7.14: Control forces acting
on follower spacecraft
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Figure 7.15: Control forces acting
on follower spacecraft



Chapter 8

Conclusion and future work

8.1 Conclusion

This thesis has been concerned with the problem of robust stability of non-
linear control algorithms applied to spacecraft in formation. By robustness
we mean for instance the ability of a system to decrease the steady state
o¤set under perturbations, by appropriately choosing the tuning parame-
ters. This criteria has formally been stated in the new de�nition of uniform
global practical exponential stability (UGPES), and similar semiglobal de-
�nitions. For ease of application, we have provided Lyapunov su¢ cient
conditions for a system to satisfy the de�nitions, both for ordinary systems
and interconnected system on a cascaded structure. The mathematical
framework were further extended by considering a class of disturbances,
to which solutions of input-to-state stable systems would show uniform as-
ymptotic stability properties (outside a ball of the origin of the nominal
system, which corresponds to a prede�ned level of accuracy). These math-
ematical tools, were applied in the reminder of the thesis to analyse control
algorithms for spacecraft in leader-follower formation.

To serve the need of being cost- and space e¢ cient, we have proposed
algorithms, both for rotational and translational tracking, which have low
demands to measurements and intervehicle communication. In fact, we
have proven that in the translational case, UGPES can be achieved when
only absolute position is available to both spacecraft, and relative position
is available to the follower spacecraft. In the rotational case UPES (local re-
sult) is achieved when the relative attitude to the inertial frame is available
to the leader spacecraft, and the relative attitude between the spacecraft are
available to the follower. In both cases closely connected controller-observer
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algorithms were used, which are usually more compact than when the con-
troller design is separated from the observer design. This concludes the
research done on attitude tracking of leader-follower spacecraft formation
in this thesis, and the focus was again directed toward relative translation.

We then proceeded with removing the assumption that the disturbance
is bounded in its norm. Instead we assume that the disturbance belong to a
certain class with limited excitation in average. We show that the proposed
controller-observer for the system is input-to-state stable, and that we are
able to identify certain measures, such as precision and convergence rate,
depending on the disturbance excitation over a certain time window.

The above described work, has assumed that continuous actuation could
be provided by the spacecraft. To extend the area of application, we have
considered two approaches in this thesis: quantized and pulse width mod-
ulated actuation.

8.2 Recommendations for future work

8.2.1 Qualitative behavior of ISS systems

Based on the results in Section 2.5, one should exploit the possibility to
tune some control gains in order to enlarge the class of signals to which
the systems is robust or, equivalently, to increase the precision for signals
belonging to a given class, and make the connection to practical stability.
Another possibility would be to achieve similar properties for integral ISS
systems.

8.2.2 Formations about other planets and in deep space

The leader follower formations described in this thesis were intended for
Earth orbiting applications. Most of the results, could possibly be applied
to formations around other planets or even in deep space, with only mi-
nor modi�cations. For example will the models for a quasi-Halo orbit, as
described in e.g. Di Giamberardino and Monaco (1997), be of a similar
structure as the models presented in this thesis.

8.2.3 Internal model approach to robust control

Based on the recent developments in Zhang and Serrani (2006) and Zhang
and Serrani (2009), the results of Serrani (2003) for circular orbits, could
possibly be extended to elliptical orbits. The internal model approach is
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somewhat unrelated to the control design approaches taken in this thesis,
but non the less interesting as robustness properties desirable for spacecraft
formation are typically achieved. In addition the formation type considered
in Serrani (2003), is practically the same as in this thesis.

8.2.4 Quantized and pulse modulated control

In Chapter 7 of this thesis, we consider control with quantized inputs.
The results are based on the use of a logarithmic quantizer, which is not
very useful for practical purposes as it requires in�nite valued feedback
laws. The results however, may be improved by considering the truncated
version of the logarithmic quantizer, as described Ceragioli and De Persis
(2007). This �nite valued feedback law could be used to achieve semiglobal
practical stability of the overall formation. For the analysis in Chapter
7 to be more realistic, it would be appropriate to include the actuator
con�gurations for the spacecraft. In the author�s opinion it would also
be interesting to investigate stability of a pulse modulated system using
the recent developments in hybrid systems analysis, see e.g. Goebel et al.
(2009) and references therein.

8.2.5 Attitude tracking

As discussed in Section 1.3.2, perfect tracking in term of the quaternion
error qdl, is achieved when qdl = (�1; 0; 0; 0). In Chapter 5, the proposed
control schemes only achieve stability with respect to one of the equilibrium
points. Therefore, two local controller could be used, as in Kristiansen
et al. (2009), one for each equilibrium point. To account for measurement
noise while avoiding in�nite switching between the controllers, the work of
Prieur et al. (2007) should be considered. Also, future work should aim at
increasing the domain of attraction to allow for greater angular estimation-
and tracking velocity errors.

8.2.6 Multispacecraft formations

As shown in Ploen et al. (2004b) (see also Ploen et al. (2004a)), the models
of Chapter 3 can be conveniently stacked into a model with the same basic
properties. This means that most of the control algorithms of this thesis
also can be extended to multispacecraft formations. The stacked model
can also be used for other types of formations, such as virtual structure
formations, by not describing the relative motion of each spacecraft to a
leader, but rather the relative motion of each spacecraft to a convenient
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point of reference. Considering multispacecraft formation will however in-
troduce complexity in several aspects; guidance algorithms, communication
topology and collision avoidance are a few examples.

8.2.7 Communication delay

Although there has been focused on keeping the need for intervehicle com-
munication at a low level, due to limited bandwidth, all signals considered
in this thesis are deterministic and all communication is without delay.
These are topics that should be addressed.

8.2.8 External disturbances and numerical issues in simula-
tion

The control algorithms should be tested with realistic disturbances, by
using one of the commercially available packages for MATLAB, e.g. the
Spacecraft Control Toolbox from Princeton Satellite Systems1, which has
its own formation �ying module.

The rigid body dynamics should also be considered simulated using
the method outlined in e.g. Celledoni and Säfström (2006), as it yields a
faster and more important, more accurate numerical solution compared to
standard numerical solvers.

8.2.9 Other topics

There are several topics which were not handled at all in this thesis, but
are still closely related, see Section 1.2.3. For example has this thesis not
dealt with the problem of �nding appropriate trajectories for the formation.
Such trajectories should be fuel e¢ cient, but also be ideal for the formation
task in question. The Clohessy-Wiltshire equation, Clohessy and Wiltshire
(1960), originally stated for orbital rendezvous and considered in several
papers on formation �ying, are not particularly suited from a fuel e¢ ciency
point of view as they do not take into account the oblateness of Earth.
A realistic setup for the control algorithms proposed in this thesis, would
rather build on Schaub and Alfriend (2001), were an analytic method for
establishing J2 invariant relative orbits is presented.

1For more information see http://www.psatellite.com. Accessed 29th of October, 2009
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Appendix A

Proofs of UGPES and
UGPAS for systems on
cascade

A.1 UGPES

Proof of Theorem 2.5. Due to Young�s inequality and Assumption 2.3
we can �nd the following bound:
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where � is a constant. Now, de�ne
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The time derivative of V along (2.19) and (2.20) is:
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Now, de�ne
� := max f�1; �2g ;

and notice that
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:

We will now separate between three di¤erent cases:
Case 1: Assume jx1j � �=

p
2, jx2j � �=

p
2. Then,

_V� �
 
�1 � ~c

p
2

�
� ~c (1 + (1 + �) j�?2j)

!
jx1j2

�
 
�2 � c2

p
2

�
� ~c

�
1 +

1

�
j�?2j
�!

jx2j2

To make the expressions within the parenthesis positive, �1 and �2 are
chosen to satisfy:

�1 >
~c
p
2

�
+ ~c (1 + (1 + �) j�?2j)

and

�2 > c2

p
2

�
+ ~c

�
1 +

1

�
j�?2j
�
:

where the second inequality is made possible by picking � su¢ ciently large.
Case 2: Assume jx1j � �=

p
2, jx2j � �=

p
2. Then,

_V� �
 
�1 � (c2 + ~c)

p
2

�
� ~c (1 + (1 + �) j�?2j)

!
jx1j2

�
�
�2 � ~c

�
1 +

1

�
j�?2j
��

jx2j2

The following choice of gains, ensures that the expressions within the paren-
thesis are positive:

�1 > (c2 + ~c)

p
2

�
+ ~c (1 + (1 + �) j�?2j) ;

�2 > ~c

�
1 +

1

�
j�?2j
�
:
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Case 3: Assume jx1j � �=
p
2, jx2j � �=

p
2. Then,

_V� � (�1 � ~c (1 + (1 + �) j�?2j)) jx1j
2

�
 
�2 � (c2 + ~c)

p
2

�
� ~c

�
1 +

1

�
j�?2j
�!

jx2j2

This time it is su¢ cient to pick �1 as:

�1 > ~c (1 + (1 + �) j�?2j) ;

and �2 is chosen to satisfy:

�2 >
(~c+ c2)

p
2

�
+ ~c

�
1 +

1

�
j�?2j
�
:

Now, based on the previous calculations, we can pick �1 and �2 large enough
(for instance as the maximum of the previous calculated �1 and �2 in the
three cases), such that for all jxj � �;

_V � �� jxj2 ;

for some positive constant �. From (2.21) and (2.22) we �nd that

� jxj2 � V �� jxj2 ;

where � := min f�1; �2g and � := max f�1; �2g. Hence, the inequalities
(2.5) and (2.6) of Theorem 2.1, are satis�ed with p = 2, � = �, � = � and
V� = V. To show practical stability, i.e. that � can be diminished at will by
conveniently tuning the gains, we notice that �? � 1=�, such that condition
(2.7) holds, and which concludes the proof.

A.2 UGPAS

Before we prove Theorem 2.7, we will present the following lemma:

Lemma A.1 If

L �
NX
i=1

�i (jxij) (A.1)

where xi 2 R are subvectors of x 2 Rn and �i 2 K for all i, then there
exists a constant c, such that

L � � (jxj) (A.2)
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where
� (s) := c min

i21;:::;N
�i (s) :

Proof. Let

S :=

(
x j L �

NX
i=1

�i (jxij)
)

If there are no c such that (A.2) holds, then this would imply the existence
of a sequence of vectors in S, frkg ; such that

min
i21;:::;N

�i (jrkj) �!
k!1

1:

(If not, then there would exist a �nite constant M , such that

sup min
i21;:::;N

�i (jxj) �M; x 2 S

and (A.2) would have been satis�ed trivially with c = L=M). But if such se-
quence exists, then none of the functions �i would be upper bounded, since
the minimum over all such functions �i approached in�nity. In addition
we have that at least one of the subvectors of the elements of the sequence
frkg approach in�nity. But if none of the functions �i are bounded, and S
contains elements where at least one of the subvectors approaches in�nity,
then

NX
i=1

�i (jxij) �!1

and the claim is proved by contradiction.
We are now ready to present the proof of Theorem 2.7:

Proof of Theorem 2.7. Due to Young�s inequality and Assumption 2.7
we can �nd the following bound:

jx1j� (x1; x2; �?2) � jx1j+ j�?2j jx1j
2 + 2 jx1j2 +

QX
q=1

jx2j2q + jx1j2
QX
q=1

jx2j2q

+ j�?2j jx1j
2
QX
q=1

~�q + j�?2j
QX
q=1

jx2j2q
~�q

+ j�?2j jx1j
2
QX
q=1

��q + j�?2j jx1j
2
QX
q=1

jx2j2q
��q

;
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where ��q and ~�q; q = 1; ::; Q are constants. Now, de�ne

V := ln (1 + V�1) +
QX
q=1

V q�2 :

The time derivative of V is

_V =
_V�1

1 + V�1
+

QX
q=1

qV
(q�1)
�2

_V�2 ;

which along (2.19) and (2.20) have the following bound:

_V� � 1

1 + V�1

0@ �1 jx1j2 � ~c jx1j � 2~c jx1j2

� ~c j�?2j jx1j
2

0@1 + QX
q=1

~�q + ��q

1A1A
�

QX
q=1

 
�2q jx2j2 V (q�1)�2

� c2q jx2jV (q�1)�2

� ~c

1 + V�1

 
1 + jx1j2 +

j�?2j
~�q

+ jx1j2
j�?2j
��q

!
jx2j2q

!

Due to (2.21), that is V�1 � �1 jx1j
2, we �nd that

jx1j2

1 + V�1
� 1

�1

and
1

1 + V�1
� 1:

By (2.22), we have that

jx2j2q �
jx2j2 V (q�1)�2

�
(q�1)
2
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we can bound the time derivative of V in the following way:

_V � � 1

1 + V�1

0@ �1 jx1j2 � ~c jx1j � 2~c jx1j2

� ~c j�?2j jx1j
2

0@1 + QX
q=1

~�q + ��q

1A1A
�

QX
q=1

 
�2q �

c2q

jx2j

� ~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!!
jx2j2 V (q�1)�2

Now, de�ne
� := max f�1; �2g ;

and notice that

jxj � � =) max fjx1j ; jx2jg �
�p
2
:

We will now separate between three di¤erent cases.
Case 1: Assume jx1j � �=

p
2, jx2j � �=

p
2. Then,

_V � � 1

1 + V�1

0@ �1 �
~c
p
2

�
� 2~c

� ~c j�?2j

0@1 + QX
q=1

~�q + ��q

1A1A jx1j2
�

QX
q=1

 
�2q �

c2q
p
2

�

� ~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!!
jx2j2 V (q�1)�2

We choose:

�1 >
~c
p
2

�
+ 2~c+ ~c j�?2j

0@1 + QX
q=1

~�q + ��q

1A
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and

�2 >
1

q

 
c2q
p
2

�
+

~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!!
;

for all q 2 f1; :::; Qg.
Case 2: Assume jx1j � �=

p
2, jx2j � �=

p
2. First notice that

QX
q=1

c2q jx2jV (q�1)�2
=

jx1j2

1 + V�1

1 + V�1
jx1j2

QX
q=1

c2q jx2jV (q�1)�2

� jx1j2

1 + V�1

�
1 + �1 jx1j

2
�

jx1j2
QX
q=1

c2q jx2j
�
�2 jx2j2

�(q�1)
� jx1j2

1 + V�1

�
2

�2
+ �1

� QX
q=1

c2q�
(q�1)
2 jx2j(2q�1)

� jx1j2

1 + V�1

�
2

�2
+ �1

� QX
q=1

c2q�
(q�1)
2

�(2q�1)

2q
p
2

Then,

_V � � 1

1 + V�1

0@ �1 �
~c
p
2

�
�
�
2

�2
+ �1

� QX
q=1

c2q�
(q�1)
2

�(2q�1)

2q
p
2

� 2~c� ~c j�?2j

0@1 + QX
q=1

~�q + ��q

1A1A jx1j2
�

QX
q=1

 
�2q �

~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!!
jx2j2 V (q�1)�2

The following choice of gains, ensures that the expressions within the paren-
thesis are positive:

�1 >
~c
p
2

�
+

�
2

�2
+ �1

� QX
q=1

c2q�
(q�1)
2

�(2q�1)

2q
p
2

+ 2~c+ ~c j�?2j

0@1 + QX
q=1

~�q + ��q

1A ;
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and

�2 >
~c

q�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!
;

for all q 2 f1; :::; Qg.
Case 3: Assume jx1j � �=

p
2, jx2j � �=

p
2. Now, notice that

1

1 + V�1
~c jx1j =

1

1 + V�1
~c
jx1j
jx2j2

jx2j2

� ~c 1jx2j
jx2j2

� ~c
p
2

�
jx2j2

and therefore

_V � � 1

1 + V�1

0@�1 � 2~c� ~c j�2j
0@1 + QX

q=1

~�q + ��q

1A1A jx1j2
�
 
�2 �

(~c+ c2)
p
2

�
� ~c

�
1 +

j�?2j
~�1

+
1

�1

�
1 +

j�?2j
��1

��!
jx2j2

�
QX
q=2

 
�2q �

c2q
p
2

�

� ~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!!
jx2j2 V (q�1)�2

This time it is su¢ cient to pick �1 as:

�1 > 2~c+ ~c j�?2j

0@1 + QX
q=1

~�q + ��q

1A ;
and for every q 2 f1; ::; Qg, it is su¢ cient that �2 is chosen to satisfy:

�2 >
(~c+ c2q)

p
2

�
+

~c

�
(q�1)
2

 
1 +

j�?2j
~�q

+
1

�1

�
1 +

j�?2j
��q

�!
:
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Now, based on the previous calculations, we can pick �1 and �2 large
enough, such that for all jxj � �;

_V � �1
2
�1

jx1j2

1 + V�1
� 1
2
�2 jx2j2

QX
q=1

V
(q�1)
�2

� �1
2
�1

jx1j2

1 + �1 jx1j2
� 1
2
�2

QX
q=1

�
(q�1)
2 jx2j2q (A.3)

The right hand side is negative de�nite and and non-increasing. De�ne the
class K functions

f1 (r) :=
1

2
�1

r2

1 + ��r2
;

and

f2 (r) :=
1

2
�2

QX
q=1

��
(q�1)
2 r2q:

From (A.3), we see that the inequality

_V � � 1

n1

n1X
i=1

f1 (jx1ij) +
n2X
j=1

f2 (jx2j j)

also holds, where x1i is element i of the vector x1 2 Rn1 and x2j is element
j of the vector x2 2 Rn2 . As a consequence of Lemma A.1 there is a class
K function �� such that for all x 2 Rn= �B�

_V � ��� (jxj) :

To apply (Chaillet and Loría, 2008, Lemma 27), the function �� is required
to be of class K1, but a closer investigation of the proof shows that it
is su¢ cient for �� to be non-decreasing. Furthermore, due to the positive
de�niteness of V, (Khalil, 2002, Lemma 4.3) ensures that for all x 2 Rn= �B�;

�� (jxj) � V (t; x) � �� (jxj)

for some class K function ��; ��. This means that the conditions of (Chaillet
and Loría, 2008, Lemma 27) hold, and for any k > 0, there exists a C1

function V and e�; e� 2 K1 such that for all x 2 Rn= �B� and all t 2 R�0;

e� (jxj) � V (t; x) � e� (jxj)
_V (t; x) � �kV (t; x) :
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Also, for any s 2 R�0, it holds that

e��1 � e� (s) = �� � �� (s)
We are now able to apply (Chaillet and Loría, 2008, Lemma 28), so for all
x0 2 Rn and all t0 2 R�0 we have that

jx (t; t0; x0)j � e��1� � e�� (�) + e��1� �e�� (jx0j) e�k(t�t0)�
Hence we have that for all x0 2 Rn and all t0 2 R�0,

jx (t; t0; x0)j � ~� + �� (jx0j ; t� t0)

where

~� := e��1� � e�� (�)
= ��1� � �� (�)

�� (s; t) := e��1� �e�� (s) e�kt� 2 KL:
To show practical stability, i.e. that ~� can be diminished at will by conve-
niently tuning the gains, we will prove that

lim
�!0

e��1 � e� (s) = lim
�!0

��1� � �� (�)

= 0:

Since �� is a class K1 function, independent of �, it will su¢ ce to prove
that

lim
�!0

�� (�) = 0 (A.4)

For � small, �� (s) � �q2s2q. Since �2 � 1=�, (A.4) is indeed satis�ed, and
the conclusion follows.


