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Abstract

Vegetables and other row-crops represent a large share of the agricultural pro-
duction. There is a large variation in crop species, and a limited availability in
specialized herbicides. The robot presented here utilizes the systematic cultivation
techniques of row crops to navigate and operate in the �eld. By the use of machine
vision it separates seeded vegetable crops from weed, and treat each weed within
the row with individual herbicide droplets, without a�ecting the crop. This Drop-
on-Demand (DoD) method allow the use of non-selective herbicides and signi�cant
reductions in herbicide use.

This thesis presents six research papers concerning the development of the DoD
system and the mobile robot. The robot is tailored to its purpose with cost, main-
tainability, e�cient operation and robustness in mind. The three-wheeled design is
unconventional, and the design maintains maneuverability and stability with the
bene�t of reduced weight, complexity and cost.

Topics within localization and navigation for agricultural robotics have been
explored. Quaternion estimation by an Extended Kalman Filter and a Non-linear
complimentary �lter has been implemented on an ARM Cortex M3 microcontroller.
A Bayesian framework for fusing delayed Visual Odometry measurements has been
explored in simulations. A Non-linear Model Predictive Controller (NMPC) has
been developed and explored in simulation to enable a controller guaranteed to not
sway its wheels into the crop row and subsequently damage the crop. The frame-
work is also suitable for implementing other constrains for operation in other en-
vironments, such as greenhouses or con�ned spaces. Path following by an adaptive
controller and a Model Reference Adaptive Controller (MRAC) has been imple-
mented and compared in indoor trials.

The DoD system for herbicide application has been developed within and in
connection with this project. The in�uence of liquid properties viscosity and surface
tension on the formation and stability of droplets has been tested in lab trials. A
control circuit for synchronized control of solenoid valves was developed and tested.

Indoor pot trials with four weed species demonstrated that the Drop-on-Demand
system (DoD) could control the weeds with as little as 7.6 µg glyphosate or 0.15
µg iodosulfuron per plant. The results also highlight the importance of liquid char-
acteristics for leaf retention, as the common herbicide glyphosate had no e�ect
unless mixed with suitable additives. The trials document the DoD e�ect on weed
species not previously described in literature, and with an alternative herbicide to
glyphosate, iodosulfuron. A �eld trial with the robot was performed in a carrot
�eld, and all the weeds were e�ectively controlled with the DoD system.
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Abstract

The robot and DoD system represent an important contribution to the range of
systems presented witin Precision Agriculture for in-row weed control - a movement
which as a whole represent a paradigm shift to the environmental impact and health
risks of weed control, while providing valuable new tools to the producers.
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Chapter 1

Introduction

The Ph.D. project has been part of a larger e�ort from Adigo AS to develop an
autonomous robot for weed control in row crops, Figure 1.1. This involves research
and development in several technical �elds, where this thesis work has involved
several of them.

Figure 1.1: The 2017 Asterix robot prototype in �eld trials in Central Norway.
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1. Introduction

1.1 Thesis Outline

Chapter 2 include conference papers and journal papers written and co-authored
through the Ph.D. studies. The remaining parts of this thesis are intended to com-
plement the papers and provide context, while avoiding repetition of information.

This introduction will describe the background for the project and its motiva-
tion, and the context and relationship between each paper is described in Section
1.4. The conclusion in Chapter 3 will tie together our �ndings and describe our
perspective on the path forwards for Drop on Demand (DoD) herbicide application.

1.2 Background

The production of row crops represent a signi�cant portion of the overall food
production in the world. This production is composed of large variety of crops of
which each individual crop has a smaller volume. In contrast to major crops such
as corn, soy and cereal, the vegetable crops have a smaller selection of available
herbicides. The research investments required to develop a new herbicide are sig-
ni�cant, and with the smaller acreage of each vegetable crop, it is not likely that
we will see the introduction of new herbicides to the market that will signi�cantly
improve the situation for vegetable producers, Gast (2008). In the past 20 years
we have seen a signi�cant increase in herbicide resistant weeds (Heap, 2014), while
the availability of herbicides has been reduced by regulations due to health and
environmental concern. The end result is an increasingly challenging situation for
farmers who are left with fewer e�cient herbicides.

Weed control is one of the most important factors in all agricultural production.
Weeds compete with crop plants for moisture, nutrients and sunlight and will have
a signi�cant negative impact on yield without su�cient weed control. Typical weed
control methods for row crops include a combination of pre-emergence herbicide
application, pre-emergence tillage, mechanical row harrowing and post-emergence
herbicide application - if a selective herbicide or crop resistance is available, (Fen-
nimore et al., 2016; Slaughter et al., 2008).

In 2008, the European Commission withdrew the approval for several herbi-
cides, among them herbicides with propachlor as the active ingredient (European
Commission, 2008). The herbicide was a health risk and had been documented con-
taminating ground water and harmful to aquatic life. The consequence to farmers
of some cabbages and rutabaga was that they lost access to their most e�ective
herbicide. In Norway, this spurred a joint project with farmers, the Norwegian Ex-
tension Service, the Norwegian Institute of Bioeconomy Research and Adigo in the
search for alternative weed control methods.

The project explored an array of possible technologies for weed control, includ-
ing microwaves, lasers and DoD applications. The delivery of herbicide through
individual controlled droplets was considered the most suitable, and the technolo-
gies was demonstrated in an early �eld trial, (Guren, 2010).

The weed that occur in between rows, inter-row weeds, can be controlled by
row-harrowing, �aming or shielded spraying. Whereas the in-row weeds pose a
greater challenge for the farmers. In lack of selective post-emergence herbicides
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1.2. Background

they are left with few other options than manual in-row hoeing by hand, which is
much more expensive than conventional spraying.

In the past 10-20 years we have seen a signi�cant push to bring new methods to
the farmers to control in-row weeds. And for transplanted crops, there are methods
available with vision-controlled in-row harrowing (Poulsen, 2018; Steketee, 2018;
Tillett et al., 2008) and selective spraying (Blue River Technologies, 2018; Eco-
robotix, 2018). These cultures are relatively sparse which allow for these methods.
The Garford rotating disk cultivator was tested in celery, lettuce, and radicchio in
trials presented by Fennimore et al. (2014). Economic analysis was performed on
some of the yield data, which demonstrated that the rotating disc cultivator was
generally more e�ective than the standard inter-row hoe cultivator combined with
hand weeding for the transplanted crops. For direct seeded salad the system dam-
aged 20 - 28 % of the salad stands, which incurred a net loss by using the system.
The study demonstrates that there exists an economic rationale for robotic weed
control, while the rotating disc cultivator that was tested was not suitable for the
seeded cultures.

Seeded crops present a greater challenge than transplanted crops. The visual
separation of crop and weed is harder as the weed and crop are similar in size, and
for many crops there is not enough room in between crop plants for a mechanical
hoe to pass in and out of the crop row. Herbicide application either requires a
selective herbicide which does not harm the crop, or a better resolution application
to not a�ect the crop.

The essence of DoD spraying is to detect the weeds within the plant row, and
selectively shoot droplets of herbicide on those weed leaves. By targeting only the
weed leaves, the crop and soil are left una�ected, which allows for the use of broad
spectre herbicides that would normally harm the crop, Figure 1.2.

Figure 1.2: Concept illustration of the Drop-on-Demand herbicide application.
Courtesy of Adigo AS.

1.2.1 Crops of focus

The DoD technology is suitable for a wide range of row crops, and an ambition for
the project was to provide an alternative method for weed control also for seeded
crops. To guide our selection of focus crops, we have considered the agricultural
market in Germany, France, Netherlands and United Kingdom. The area harvested
for a few selected crops is shown in Figure 1.3 using 2012 data from the Food

3



1. Introduction
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Figure 1.3: Harvested area for a few selected crops of interest in Germany, France,
Netherlands and United Kingdom in 2012.
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Figure 1.4: Total crop value for the farmers of the selected crops in Germany,
France, Netherlands and United Kingdom in 2012.

and Agriculture Organisation of the United Nations, (FAO, 2014). Cauli�owers,
broccoli, cabbages, other brassicas and lettuce is dominantly transplanted crops,
for which mechanical in-row weeding solutions to some extent are commercially
available.

Carrots and turnips are dominantly seeded crops, and we consider them a good
example of challenging crops for robotic weed control. They are of high value as
illustrated in Figure 1.4. In 2014 carrots and turnips accounted for 6.25 % of Eu-
rope's harvested area for vegetables, with 2.6 million Ha. The gross production
value for Europe was above 3 billion USD in 2014 (FAO, 2014).

Carrot competes poorly with weeds especially in the early stages, as documented
by Swanton et al. (2010) in a �eld trial in Ontario, Canada. The critical weed-free
period for carrots was found to be 450 growing-degree-days (3 to 6 weeks at 10 to
20°C), or until the carrot plants have reached the six-leaf stage. The carrot crop
row becomes increasingly dense in this period as illustrated by Figure 1.5 and 1.6.
The crop will gradually out-compete any smaller weed by blocking for sunlight,

4



1.3. State of the Art

Figure 1.5: A carrot crop row at the one true leaf stage. The larger weeds in this
image is Chenopodium album L. (Fat hen).

Figure 1.6: A carrot crop row at the 3 - 4 true leaves stage. Among other weeds
Tripleurospermum inodorum (L.) Sch. Bip. (Scentless Mayweed) is present in this
image, recognized by it tree-like leaf structure, which bear resemblance to the carrot
leaves.

while it becomes increasingly hard to detect and target individual weeds within
the row.

1.3 State of the Art

The available products for guided hoeing and selective thinning are paving the way
for further advances in automatic weed control in speciality crops. Our attention
will be focused on precision-spray application targeting individual weeds - a domain
which is yet to see its �rst commercially available solution for seeded crops.

One of the �rst demonstrations of a Precision-Spray robot was by Lee, Slaugh-
ter, and Giles as early as 1999. They developed a robot for controlling weeds in
tomato crops. The robot was equipped with an Cohu RGB camera which informa-
tion was digitized to 256x240 pixels at 8 bit per channel. The processing was done
by a 200 MHz Pentium Pro CPU running MSDOS. The system recognized 73 % of
the tomato plants and 69 % of the weeds, and was able to treat 48 % of the weeds
at a speed of 0.8 km/h.

Nearly 20 years have passed since then, and while the robots have become
incrementally better, we are yet to see weeding robots make an impact on the
use of herbicides in agriculture. A thorough overview of this �eld can be found in
Fennimore et al. (2016) or Slaughter et al. (2008), while we here will focus on a
few relevant technical aspects.

1.3.1 Drop-On-Demand herbicide application

A challenge presented by Lee et al. (1999) is to increase the accuracy, precision
and e�cacy of the herbicide application. This e�ort involves everything from the
design of the droplet forming mechanism, the �uid dynamics of the droplets, the

5



1. Introduction

droplets retention on the weed leaves, the choice of active ingredient, to the motion
estimation and targeting algorithm.

Most of the previously presented systems for DoD herbicide application has
either used adapted industrial print-heads (Lund and Mathiassen, 2010; Midtiby
et al., 2011) or an array of solenoid valves and nozzles (Lee et al., 1999; Nieuwen-
huizen, 2009; Søgaard and Lund, 2005) to form droplets. There is also a presented
paper by Basi et al. (2012) where a pneumatic valve is presented for better dosing
and formation of individual droplets. The �uid dynamics of the in-�ight droplets
has been investigated by Lund and Mathiassen (2010) and Lund and Olsen (2010).
They described the disintegration of droplets and the e�ects of altering the vis-
cosity and surface tension of the �uid. We expanded on this and also explored the
e�ect of the electrical control signal to the solenoid valve on the droplet formation
in our experiments presented in Urdal et al. (2014).

Lund and Mathiassen (2010) and Lund et al. (2006) demonstrated that herbi-
cide droplets formulated with Glyphosate (27µg per plant) can e�ectively control
Solanum nigrum L., (Black Nightshade) a weed which is resistant to most selective
herbicides. Midtiby et al. (2011) presented a simulated row crop trial where plants
passed under the system on a conveyor belt at 0.5 m/s. The system was able to
e�ectively control weeds larger than 11x11 mm, which gave good results on Bras-
sica napus L. (oilseed rape) and to some extent Tripleurospermum inodorum(L)
Sch. Bip. (Scentless Mayweed). Koukiasas et al. (2016) demonstrated that Galium
aparine L. is e�ectively controlled with 19.3 µg of glyphosate per plant.

1.3.2 Leaf Classi�cation

Weed and crop classi�cation has largely followed the classical approach of segment-
ing plant material from the background soil, for subsequent classi�cation based on
shape, color and texture features, since Lee et al. (1999). Several systems have
incorporated a Near-Infrared (NIR) channel to enhance the soil segmentation, e.g.:
Nieuwenhuizen (2009). A mutual unsolved challenge has been overlapping leaves
and higher density cultures - as the classi�cation has mainly been reliant on seg-
mentation and the shape of the leaves. This has been an important road-block for
robotic weed control, as we have not had satisfactory performance of classi�cation
when weeds overlap. There has been much e�ort invested in improving these algo-
rithms (Fennimore et al., 2016). One example is Haug et al. (2014), who was able
to circumvent the reliance on segmenting individual plants by implementing a form
of sliding-window classi�er.

Computer Vision in Agriculture may have been slightly behind other techno-
logical domains. We have seen nearly all other image recognition and classi�cation
tasks being dominated by deep convolutional neural-networks (deep CNN) in re-
cent years. We do see an important shift now towards arti�cial intelligence (AI)
and CNN's making its way into weed detection. One of several compelling examples
is presented by Milioto et al. (2018), where pixel-wise semantic segmentation into
weed/crop is demonstrated.
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1.3. State of the Art

(a) DeepField Robotics BoniRob, photo
courtesy of Bosch AG

(b) Ecorobotix, photo courtesy of Eco-
robotix Ltd

(c) Thorvald II platform, photo courtesy
of Saga Robotics AS.

(d) AgBot II, photo courtesy of Queens-
land University of Technology

Figure 1.7: A selection of other robot platforms presented in litterature.

1.3.3 State-of-the art in Agricultural Robotic Platforms

There is a signi�cant body of research and industrial push towards robotization
in agriculture. There are philosophies towards automating tractors, building spe-
cialized robots for each task and towards making highly versatile and modular
robots. A selection of comparable robots that have been presented for weed control
is shown in Figure 1.7.

Modularity has been uphold as an important design criteria for the Armadillo
(Nielsen et al., 2012), Naïo Dino (Naïo Technologies, 2018) and the Thorvald II
platform (Grimstad and From, 2017) which can be customized to di�erent con�g-
urations. Thorvald II, BoniRob, (Figure 1.7a and 1.7c), and Naïo Dino have drive
and steering on all four wheels. This enables holonomic control of the robot: the
robot can navigate freely in all directions, handle tight environments such as green-
houses and the front and rear wheels can follow the same tracks through a turn.
This comes at the cost of having 8 motors for steering and drive.

The AgBot II shown in Figure 1.7d and presented by Bawden et al. (2017) is a
robot platform for weed control, set up with di�erential drive front wheels and two
rear castor wheels. The design emphasizes modularity and ease of on-site assembly
of the system. A docking container covered with solar panels provide the power
needs for charging, and the system has been tested with a range of chemical and
mechanical weed control implements (McCool et al., 2018).

7



1. Introduction

A more minimalistic approach has been taken by the Swiss company Ecorobotix
(Ecorobotix, 2018) who are working on a fully solar powered robot, Figure 1.7b,
which applies a micro-dose of herbicide by two robotic parallel arms.

The systems described above are intended to be a representative selection, and
not an exhaustive review of the �eld, as there are several other systems that could
have been mentioned.

1.4 System Development and Research

The development of an agricultural robot for weed control involves technology and
knowledge that span across several �elds. The author of this thesis has been deeply
involved in all aspects of its development and testing. The robot platform that was
used for the main part of the testing and development is shown in Figure 1.8.

Figure 1.8: The robot development platform built in 2012 and used with modi�-
cations through the following years to perform �eld trials and develop the compo-
nents.

1.4.1 Localization and estimation

Localization is a fundamental part of robotics and a pre-requisite for accurate
application of herbicide relative to the generated spray maps. The combination
of GPS positioning with wheel encoders and inertial sensors (IMU) on the robot
provide high accuracy localization.

The implementation of two attitude estimation �lters on an IMU was presented
in (Utstumo and Gravdahl, 2013) and is reproduced in Section 2.1. While the work
only considers the three degrees of rotation for attitude estimation, it provides the
fundamental understanding of quaternion implementations in an Extended Kalman
Filter.

While working to expand the localization to include visual odometry, the ques-
tion of including delayed measurements from a slower Visual Odometry algorithm

8



1.4. System Development and Research

was explored. This work was presented in (Arbo et al., 2017), and is reproduced in
Section 2.5.

1.4.2 Navigation and control

A robot working in a row crop will mostly have two navigational challenges at
hand: Detecting and following the row, and upon reaching the headlands perform
a turn and enter the subsequent row.

Operation in the crop row requires that the robot keeps its wheels within the
existing wheel tracks. If the robot sways from its path, and the wheels enter the
crop rows this will directly damage the crop and result in an economic loss for the
producer. A Non-linear Model Predictive Crontroller (NMPC) was formulated to
center the robot over the detected row crops while maintaining the constraints of
the wheel tracks. The controller with simulations was presented in Utstumo et al.
(2015), and is reproduced in Section 2.3.

The simulations with the NMPC controller assumed perfect knowledge of the
model parameters. In a real world situation the robot response will vary with
soil conditions, payload etc. Adaptive control is explored in Dørum et al. (2015),
which is reproduced in Section 2.4. The paper presents two approaches to adaptive
control: One is based on-line parameter estimation of the dynamic model, which
is used to adjust the controller parameters. The second approach implements a
direct Model Reference Adaptive Controller (MRAC), where instead of identifying
the model parameters we directly identify the controller parameters so that the
robot behaves as closely as possible to a simulated �rst-order reference model.

For a �eet of agricultural robots these methods may prove valuable in varying
conditions. Where the operation in the crop row will not provide su�cient excita-
tion for the adaptive controllers to estimate its parameters, the operations in the
headlands may be used for system identi�cation as well as any navigation to and
from the �eld. The improved knowledge of the system response will enable a more
precise control of the robot.

The NMPC controller was implemented using the Casadi open-source non-linear
optimization framework, (Andersson, 2013). The intuitive structure of the control
problem with a symbolic formulation of the cost function and constraints allows for
adaptation to other scenarios and environments. For example if the robot was to
operate within the constrained space of a greenhouse, additional constraints may
be added to expand the controller.

1.4.3 Herbicide application

At the core of the system is the DoD module, which accurately images the ground,
detects weeds and precisely shoot droplets of herbicide on weed leaves. The liquid
properties are important through the three phases for the droplet. At the outset we
seek to create one droplet without satellites and break-up. We require fast control
of the solenoid valve at opening and closing, and as the droplet forms in air we seek
liquid properties and an Ohnesorge number, so that the tail and �lament of the
droplet does not disintegrate into satellite droplets. In-�ight, the droplet stability
is governed by the Weber number, where a higher surface tension aids stability. In
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1. Introduction

the last phase, when the droplet lands on the leaf, we seek a good retention of the
droplet and low surface tension so that it �oats out and covers as much as possible
of the leafs surface.

Together with the design of a H-bridge electronic controller for the solenoid
valves, the droplet and liquid properties are further described in (Urdal et al.,
2014), which is reproduced in Section 2.2.

1.4.4 The overall system and trials

The overall robot design is presented in (Utstumo et al., Submitted for publication
2018), which is reproduced in Section 2.6. The paper presents a liquid system for
�ushing the solenoid valves and pipes to avoid residues of herbicide and clogged
valves, the row following method and results demonstrating the e�cacy of the DoD
method on weeds in a lab and a �eld trial.

10



Chapter 2

Conference and journal papers

This chapter presents 4 conference papers, and 2 journal papers, in chronological
order.

Conference Paper - Attitude Estimation

T. Utstumo and J. T. Gravdahl. Implementation and comparison of attitude
estimation methods for agricultural robotics. In Proceedings of the 4th IFAC
Conference on Modelling and Control in Agriculture, Horticulture and Post
Harvest Industry, Espoo, Finland, 28-30 August 2013.

Conference Paper - Drop on Demand Valve Control

F. Urdal, T. Utstumo, J. K. Vatne, S. A. A. Ellingsen, and J. T. Grav-
dahl. Design and control of precision drop-on-demand herbicide application
in agricultural robotics. In Proceedings of the 13th International Conference
on Control Automation Robotics and Vision, ICARCV, Singapore, December
10-12, 2014.

Conference Paper - Non-linear Model Predictive Control

T. Utstumo, T. Berge, and J. Gravdahl. Non-linear model predictive control
for constrained robot navigation in row crops. In Proceedings of the IEEE
International Conference on Industrial Technology, Sevilla, Spain, March 17-
19, 2015.

Conference Paper - Adaptive Control

J. Dørum, T. Utstumo, and J. Gravdahl. Experimental comparison of adap-
tive controllers for trajectory tracking in agricultural robotics. In Proceedings
of the 19th International Conference on System Theory, Control and Com-
puting, ICSTCC, Cheile Gradistei, Romania, October 14-16, 2015.

Journal Paper - Delayed Measurements

M. H. Arbo, T. Utstumo, E. Brekke, and J. T. Gravdahl. Unscented multi-
point smoother for fusion of delayed displacement measurements: Application
to agricultural robots. Modeling, Identication and Control, 38(1):1, 2017.

Journal Paper - Robotic In-Row Weed Control

T. Utstumo, F. Urdal, A. Brevik, J. Dørum, J. Netland, Ø. Overskeid, T.
W. Berge, and J. T. Gravdahl. Robotic in-row weed control for vegetables.
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Computers and Electronics in Agriculture, Submitted for review, February 28,
2018.
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2.1 Conference Paper - Attitude Estimation

T. Utstumo and J. T. Gravdahl. Implementation and comparison of attitude es-
timation methods for agricultural robotics. In Proceedings of the 4th IFAC Con-
ference on Modelling and Control in Agriculture, Horticulture and Post Harvest
Industry, Espoo, Finland, 28-30 August 2013.
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Abstract: The field of precision agriculture increasingly utilize and develop robotics for various
applications, many of which are dependent on high accuracy localization and attitude estimation.
Special attention has been put towards full attitude estimation by low-cost sensors, in relation
to the development of an autonomous field robot. Quaternions have been chosen due to its
continuous nature, and with respect to applications in the pipeline with on other platforms.
The performance and complexity of two approaches to attitude estimation has been investigated:
One Multiplicative Extended Kalman Filter (MEKF) and one non-linear observer. Both were
implemented on an ARM Cortex M3 microcontroller with sensors for a Attitude Heading
Reference System (AHRS), and benchmarked towards a relative high grade commercial AHRS
device.
The relative computational burden of the MEKF have been underlined, by execution times
more than 10 times those of the non-linear estimator. The implementation complexity is also
significantly lower for the non-linear observer, which facilitate test and verification through more
transparent software.

Keywords: Instrumentation and Sensing; Robotics and Mechatronics for Agricultural
Automation; Precision Agriculture

1. INTRODUCTION

Modern agriculture is increasingly utilizing advanced tech-
nology to automate and better manage its production
processes. The use of autonomous systems for weed con-
trol is a research field with growing interest, and several
autonomous systems have been demonstrated, where some
are presented in the review by Slaughter et. al. Slaughter
et al. (2008).

Adigo is developing a mobile robot, illustrated in Figure 1,
for research on precision agriculture1. Building on previous
experience with autonomous robots, the attitude estima-
tion is given special attention as part of the localization
and navigation for the robot. Attitude heading reference
systems (AHRS) are widely utilized in other applications
of autonomous ground vehicles, and provide important
input to the localization sensor fusion.

The work presented can facilitate customized and better
integrated solutions with attitude estimation and enable
the use of low cost sensors.

1.1 Multiplicative Extended Kalman Filter

The survey by Crassidis, Markley and Cheng Crassidis
et al. (2007) provides a good background and review of

1 Consortium research program “Multisensory Precision Agriculture
- Improving yields and reducing environmental impact” sponsored by
the Norwegian Research Council [207829].

Fig. 1. A robot developed for autonomous N2O mea-
surements on cereal fields. The robots autonomy is
currently under development where efficient attitude
estimation is a focus.

various attitude filters, observers and smoothers. For a sin-
gularity free representation of attitude we have considered
quaternion estimators.

The Extended Kalman filter (EKF) has become the
workhorse of attitude estimation, largely through the re-
search effort and numerous applications in space explo-
ration. There are numerous variations on how to imple-
ment an EKF for quaternion estimation, especially in the
update step where both quaternion addition and multipli-
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cation can be utilized. Multiplication should however be
preferred Shuster (1993).

Implementing multiple vector measurements directly in
the MEKF is not trivial, and is accompanied with a com-
plex set of tuning parameters Markley et al. (2003). It is
however quite straightforward to implement a quaternion
measurement in the MEKF. Using the QUEST Shuster
and Oh (1981), or an equivalent algorithm, for prepro-
cessing measurement vectors greatly simplify the filter
interface. The QUEST algorithm provides support for an
arbitrary number of measurement vectors, and the QUEST
covariance matrix can directly feed the Kalman R matrix
Shuster (1990),Crassidis et al. (2007).

1.2 Non-linear observer: Explicit Complementary Filter

The EKF does have a number of drawbacks: Implemen-
tation is not straight-forward, the numerous parameters
require tuning, it is computationally expensive, and it
is usually difficult to prove its convergence Martin and
Salaun (2010).

Many of these issues can be addressed by nonlinear ob-
servers, and especially the stability properties can be
proven, using Lyapunov-based methods. A significant step
was taken with the Explicit Complementary Filter pro-
posed by Hamel and Mahony (2006) and refined in Mahony
et al. (2008). It makes use of the vector measurements di-
rectly in body frame, and also includes gyro bias estimates.
The filter provides near global stability. The concept has
later been extended to include time-varying reference vec-
tors by Hua (2010) and Grip et al. (2011). For systems
with low accelerations the filter performs as well as these
later designs (Hua, 2010), and is thus suitable for wheeled
robotic applications with slow dynamics.

2. MODELLING

We operate with three coordinate frames, where our ref-
erence frame is North-East-Down (NED), the robot body
frame is defined as forward-right-down (BODY) and the
instrument frame depending on how the sensor is mounted
in the robot (I). The frames are indicated by subscripts n,
b and i respectively.

2.1 Unit Quaternions

Rotations and attitude are represented by unit quater-
nions, where the scalar is defined as the first element in

q = η + iε2 + jε2 + kε3 = [η, ε]
T

(1)

Quaternion multiplication is expressed by:

p⊗ q =
[
ηp
εp

]
⊗
[
ηq
εq

]
=

[
ηp ηq − εTp εq

ηp εq + ηq εp + εp × εq

]
. (2)

Consecutive rotations by quaternions are done by post-
multiplication, in contrast to rotation matrices. Thus, the
rotation from NED to I, can be composed by rotations
from NED to BODY to I as qi

n = qb
n ⊗ qi

b

2.2 Angular velocity

For a rotation from NED to BODY, the kinematic differ-
ential equation is given by Egeland and Gravdahl (2002)

q̇ = 1
2 [0,ωn]

T ⊗ q = 1
2q⊗ [0,ωb]

T
(3)

where ωn and ωb are rotational velocities.

2.3 Measurements

The AHRS receives measurement vectors from a MEMS
accelerometer, ab, and magnetometer, mb, in BODY
frame. They are normalized and compared with their ref-
erence vectors in NED frame, an and mn. The MEMS gyro
is modelled with a bias in body frame as ωb = ωactual +b

3. MULTIPLICATIVE EXTENDED KALMAN FILTER

Representing the full quaternion in the filter would lead to
a singularity in the co-variance matrix P, which results in
numerical errors and possibly negative eigenvalues in P,
Shuster (1993).

An intuitive solution is to leave out the scalar element, η,
of the quaternion. Since the quaternion is of unit length,
it can be reconstructed by

q(ε) =

[√
1− ‖ε‖2
ε

]
(4)

With this modification singularities arise at multiples of π.
By only representing the rotation error in the filter, δε, the
singularities are less likely to occur. Error representations
with better margins are described by Markley et al. (2003),
which should be considered for a robust implementation.
The resulting state vector, x = [δε ; b] maintains the error
of each update, and the gyro bias estimate.

Update q̄(k)→ q̂(k)

Error est. δq(k) =

[
δη
δε

]
= q̂−1(k)⊗ qref (k)

Innovation ∆x = K δε

State update q̂(k) = q
(
x[1:3](k)

)
⊗ q̄(k)

Reset x[1:3] = 0

Table 1. Details of the MEKF State update,
q̄(k) is the prediction and q̂(k) is the posterior.

The essence of the MEKF is how the state update is
performed by quaternion multiplication. The error is cal-
culated relative to the QUEST position estimate, and is
represented by its vectorial part ε. This allows the three
dimensional error representation to construct the Kalman
matrices, P, K and H without singularities. The details
of the MEKF update in discrete time is shown in Table 1.

The full singularity free unit quaternion represent the
attitude estimate and is used in the nonlinear state prop-
agation, through the kinematic equation (3), discretized
by Euler’s method Crassidis et al. (2007); Markley et al.
(2003); Lefferts et al. (1982); Shuster (2009).

4. THE EXPLICIT COMPLEMENTARY FILTER

The Explicit Complementary Filter described by Mahony
et al. (2008), for magnetometer and accelerometer input
can be presented as:
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σ = ka (ab × âb) + km (mb × m̂b) (5a)

˙̂q =
1

2
q̂⊗

[
0

ωgyro − b̂ + kpσ

]
(5b)

˙̂
b = −kIσ (5c)

Where σ is the filter correction term, and k[p,I,a,m] are
the gains for correction, bias integration and weights on
accelerometer and magnetometer measurements. The ref-
erence vectors âb and m̂b are found by rotating the refer-
ence in NED frame by the transposed rotation estimate,

R(q)
T

.

âb = R(q̂)Tai/|ai|, m̂b = R(q̂)Tmi/|mi| (6)

The magnetometer can have large influx of noise, espe-
cially in vehicles with electrical motors. This problem is
well known and different solutions are proposed in litera-
ture.

To minimize the impact of this it is possible to reduce
the weighting of the magnetometer in periods with high
noise on the magnetometer,(Mahony et al., 2008). With
more permanent noise on the magnetometer one can limit
its effect to only the yaw rotation, (Martin and Salaun,
2010). This can be done by aligning the magnetometer
cross product with the measured accelerometer vector,
changing equation (5a) to:

σm = ka (ab × âb) + km

(
(mb × m̂b)

T
ab

)
ab (7)

Local exponential stability can be shown with this mod-
ification, but it complicates the analysis for region of at-
traction, (Martin and Salaun, 2010). Hua (2010) confirms
the insulation of magnetic perturbations from roll and
pitch in simulations, and do comparisons with the update
in equation (5a). A price to pay for this modification, is
increased error amplitude from accelerations.

5. HARDWARE

The implementation of the filter algorithms investigated
has been done on the AHRS CHR-6dm by CH Robotics,
and benchmarked towards the Microstrain 3DM-GX3-25
ARHS.

The two sensors have been aligned and mounted to an alu-
minum bar, with double-sided tape, to minimize magnetic
disturbances.

The CHR-6dm AHRS was chosen because of its Open
Source firmware, potent ARM Cortex-M3 processor and
its low cost. The individual sensors are surface mounted
to the PCB, as seen in Figure 2. The accelerometers and
gyros are mounted in agreement with the BODY-frame,
whereas the magnetometer is constructed with the z-axis
pointing up, which result in the following rotation from
the magnetometer instrument frame:

mb = Ri
bmi = [my mx −mz]

T
i (8)

The gyro and accelerometers are analog devices, sampled
by an AD-converter at 400Hz. The magnetometer is con-
nected over the I2C bus, and reports it’s measurements at
87Hz.

Fig. 2. The components of the CHR-6dm are: 1. Mi-
crocontroller, STM32F103T8 2. Gyro Pitch-Roll,
LPR510AHL 3. Magnetometer, HMC5843 4. Ac-
celerometer, ADXL335 5. Gyro Yaw, LY510AHL 6.
3.3V Voltage regulator

The gyro bias, b, was measured on several devices, and
in various temperatures. The bias values varied in tests in
the range of 0.004 to 0.120 rad/s.

The magnetometer measurements are corrected both by
a scaling factor and a constant bias, calculated from an
initial calibration routine.

6. FIRMWARE DEVELOPMENT

The algorithms for attitude estimation have been devel-
oped by first prototyping the algorithms in Matlab with
recorded data, then implemented in C both on the PC and
then on the microcontroller. The filter parameters were
tuned in the Matlab filter prototypes using recorded sensor
data.

The QUEST algorithm was implemented on the basis of
Shuster (2006) and the flow chart in Takahashi et al.
(2009), for two input vectors. Further details on this can
be found in Utstumo (2011).

The MEKF was implemented with QUEST as a prepro-
cessor as described in Mahony et al. (2008). The detailed
steps of the algorithm are shown in Table 2. The covariance
matrix, P, is treated by its block-diagonal elements, Pa,
Pb, and the correlation blocks Pc. This further enables us
to exploit the simple form of H to simplify the covariance
propagation and reduce the number of matrix operations,
as described by Markley et al. (2003).

The covariance matrix returned from the QUEST-algorithm
is presented directly to the Kalman filter as the measure-
ment covariance matrix, R. The P matrix is set initially
large on the error estimate, Pa(0) = diag(100), to quickly
converge to the correct attitude, while the initial bias esti-
mate dynamics are limited by setting, Pb(0) = diag(0.1).

The time step, ∆t, is calculated between each step by using
the internal timer TIM3 on the microcontroller.

The Explicit Complementary filter is expressed in three
equations (5), and those three equations are implemented

2.1. Conference Paper - Attitude Estimation
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Step Equations

Update step (87 Hz)

Quest [qq ,Rq ](k) =QUEST(an, mn, ab, mb, σa, σm)

Kalman gain K(k) =

[
P̄a

P̄c

]T
[P̄a + Rq ]−1

P update P̂(k) =P̄(k)−K(k)[P̄a P̄c]

Error estimate δq(k) =q̄′(k)⊗ qq(k)

Innovation x̂(k) =x̄(k) + K(k) δεb

State update q̂(k) =q̄(k)⊗
[√

1− |x̂[1:3](k))|
x̂[1:3](k)

]

Normalize q̂(k) =q̂(k) / |q̂(k)|
Reset x̂[1:3](k) =[0 0 0]T

Propagate (400 Hz)

Propagate state q̄(k + 1) =q̂(k)+ ∆t
2

(
q̂(k)⊗

[
0

ωb − x̂[4:6](k)

])

Linearization F =

[
−[ωb×] −I

0 0

]
, G =

[
−I 0
0 I

]

Propagate P P̄(k + 1) =P̄(k) + ∆t (FP + PF′ + GQG′)

Table 2. The implementation of the MEKF

Step Equations

Update (87Hz) If new magnetometer data

Rotate reference m̂b =R(q̂)Tmn

âb =R(q̂)T an

Correction σm =ka(ab × âb) + km
(
(mb × m̂b)T ab

)
ab

Update δq̂ = 1
2
q̂⊗
[

0
ω − b̂ + kp + σm

]

q̂(+) =q̂(−) + ∆t δq̂

b̂(+) =b̂(−) + ∆t (−kIσm)
Normalize q̂(+) =q̂(+)/|q̂(+)|
Propagate (400Hz) If no new magnetometer data

Propagate ˙̂q = 1
2
q̂⊗
[

0
ω − b̂

]

q̂(+) =q̂(−) + ∆t ˙̂q

Table 3. The Mahony implementation

directly, with some surrounding logic to handle asyn-
chronous updates, and correction of numerical drift on
the quaternion. With the magnetic noise in mind, the
implementation has been adapted to use the update (7)
from Martin and Salaun (2010). The detailed steps of the
algorithm are shown in Table 3.

A significant part of the filter implementation is the sup-
porting libraries to handle matrix, vector and quaternion
operations in 32 bit floating point precision. We have cho-
sen to write the methods specific for each matrix dimen-
sion, eliminating the overhead accompanied with generic
functions supporting arbitrary length vectors.

7. EVALUATION

The hardware implementation has been tested with the
QUEST algorithm, MEKF and The Explicit Complemen-
tary Filter. And the run-time of each algoritm has been
recorded. The timer TIM4 was set up specifically to time
the algorithms, with a clock resolution of 1 µs. The results
are shown in Table 4. Note that this is only timing the
algorithm run time, excluding the time spent fetching the
measurement from the sensors.

Algorithm Propagate [µs] Update [µs]

MEKF 1 337 5 580
QUEST, (part of MEKF) 571
Explicit Complimentary Filter 92 376

Table 4. Execution time of the algorithms

To evaluate the accuracy and estimation performance of
the sensor, it has been manually aligned and mounted
together with the Microstrain 3DM-GX3, see Figure 3.

7.1 Runtime

Our QUEST implementation runs at 571 µs. Directly
comparable results have been published earlier by Taka-
hashi et al. (2009), where two processors are compared
at 24MHz. Execution time for the ARM Cortex M3 at
72MHz in 32 bit precision is reported to 2444 µs. The large
discrepancy in execution time may be due to the custom
3x3 matrix math library, differences in timing, including,
or not, the time taken to read and decimate sensors, or
communicate data.

The execution time of the Multiplicative Extended Kalman
Filter is slow in comparison, and we cannot uphold a
constant output rate of 400 Hz through the update.

The Mahony non-linear observer, on the other hand is
more than 10 times faster, which leave runtime for aux-
iliary tasks such as communication etc.

7.2 Benchmarking towards the 3DM-GX3

Fig. 3. This setup is used to test the step-response and ac-
curacy of the yaw estimate. The filter is benchmarked
towards the known movement, as well as the reference
Microstrain 3DM-GX3 sensor.

The relative high-grade MEMS sensor by Microstrain was
used as a benchmark in this project. To be able to compare
the MEKF and Mahony filters on the same data-sets, the
AHRS was set up to output raw sensor measurements. The
algorithms have then been run in Matlab on the logged
data. This also facilitates the process of tuning the filters.

To test the accuracy of the algorithms, a level plate was
attached by double-sided tape to a table, Figure 3. The
plate was assured level by using a hand level tool, and
directed north as reported by the Microstrain sensor.
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Fig. 4. Accuracy test for Yaw-angle, the lines in the Yaw
plot are drawn at nπ/6.

Three test sequences were performed: One for yaw accu-
racy and one for roll and pitch, where the sensor was moved
in steps to test transient response and absolute accuracy.
The last test was in free hand motion with smoother
motions.

7.3 Yaw accuracy

In Figure 4 the filters output is shown. There are several
interesting features in these plots. Please note that the
y-axis range on Roll and Pitch is ±8.6◦.

The pitch estimate shows how a small positive bias on the
accelerometer y-axis directly affects the Explicit Comple-
mentary filter, with the modified update (7). The mag-
netometer readings are discarded from the pitch and roll
updates, and the filter then solely rely on the accelerome-
ter.

The MEKF on the other hand, uses the QUEST algorithm
with near equal weights on the two measurements. As
the two vector measurements conflict, QUEST alternates
between trusting the magnetometer, or the accelerometer
the most.

This is a desirable trait to the QUEST algorithm, and the
pure Mahony update would rather have output a weighted
average between the two.

Further, notice that the transients caused by the abrupt
stop and go motion affect the two sensor nearly the
same. This is an effect of the accelerometer measurement
swinging out when rotating the sensor in a stop-and-go
fashion.
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Fig. 5. Accuracy test for Roll and Pitch angle.

In the first part of the Yaw plot, the three lines follow
closely, and the Microstrain slightly underestimate the
rotation which was performed in three steps to ±π/2. In
the latter part of the graph, the Microstrain display better
performance under fast dynamics, where the two filters on
the AHRS data first underestimate the rotation, but slowly
swing in to near correct levels.

7.4 Roll and pitch accuracy

The deviation in Figure 5 is mostly due to a combination
of non-perfect alignment of the two sensors, and differences
in how the magnetic field is measured.

The filters also show excellent accuracy in estimating the
roll and pitch angles when the gravitation vector is aligned
with a measurement vector. At 170s the Euler conversion
experience near-gimbal-lock conditions, and the Roll and
Yaw measurements does not represent the physical motion.

7.5 Hand held

The dataset shown in Figure 6 was recorded by freely
holding the sensor-block, and moving it around. In con-
trast to the Yaw Accuracy test, the Microstrain now show
an higher amplitude in yaw rotation. Otherwise the filters
display very similar dynamics, where the MEKF is the
most conservative one.

At approximately 52 seconds, the Microstrain Euler con-
version experience a gimbal lock, and spin both the Roll
and Pitch angle 360◦, a mathematical artifact in the con-
version to Euler angles.

2.1. Conference Paper - Attitude Estimation

19



30 35 40 45 50 55 60
−3

−2

−1

0

1

2

3
Euler comparision − roll

Time [s]

ra
di

an
s

 

 

30 35 40 45 50 55 60
−3

−2

−1

0

1

2

3
Euler comparision − Pitch

Time [s]

ra
di

an
s

30 35 40 45 50 55 60
−3

−2

−1

0

1

2

3
Euler comparision − Yaw

Time [s]

ra
di

an
s

Mahony
MEKF
3dm−gx3

Fig. 6. The filters under controlled hand motion.

8. RESULTS

We have demonstrated the implementation of the QUEST
algorithm, the much implemented Multiplicative EKF and
a non-linear observer, the Explicit Complimentary Filter.

The algorithms have been implemented on the CHR-6dm,
where most of the firmware has been re-engineered to
better accompany the filters. The implemented algorithms
have been analysed by run-time on the microprocessor.
The QUEST algorithm runs at 571 µs, which is four
times faster than a previously published implementation
Takahashi et al. (2009), on nearly the same processor.

The Mahony non-linear estimator demonstrate its compu-
tational advantage, by running more than ten times faster
than the MEKF.

By comparing the algorithms with a relative high-grade
sensor, the usability and accuracy of the filters have been
positively indicated.

9. CONCLUSION

The implementation, and run-time results of the MEKF
and the Mahony non-linear observer illustrate clearly the
relative computational cost of Kalman filters to non-
linear observer designs. Whereas relatively cheap micro-
controllers are fully capable of running a MEKF filter, the
chosen non-linear observer run ten times faster.

The Extended Kalman filter design provides few obvi-
ous advantages, besides being the industry standard for
decades. Non-linear observers may be more demanding in

design, but provide attractive stability properties and the
implementation in code is significantly more lightweight
and transparent. This in turn leave less room for software
bugs and facilitate test and verification.

For our agricultural robotic attitude estimation, the ex-
plicit complementary filter is preferred over a Kalman
based design. And we focus on applying observers which
also incorporate heading estimates from the forward mo-
tion measured by GPS to improve absolute accuracy.
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Abstract—Drop-on-demand weed control is a field of research
within Precision Agriculture, where the herbicide application is
controlled down to individual droplets. This paper focuses on the
fluid dynamics and electronics design of the droplet dispensing.
The droplets are formed through an array of nozzles, controlled
by two-way solenoid valves.

A much used control circuit for opening and closing a solenoid
valve is a spike and hold circuit, where the solenoid current
finally is discharged over a Schottky diode on closing. This paper
presents a PWM design, where the discharge is done by reversing
the polarity of the voltage. This demands an accurate timing of
the reverse spike not to recharge and reopen the valve. The
PWM design gives flexibility in choosing the spike and hold
voltage arbitrarily, and may use fewer components. Calculations
combined with laboratory experiments verify this valve control
strategy.

In early flight the stability of the tail, or filament, is described
in theory by the Ohnesorge number. In later flight, when a droplet
shape has formed, the droplet stability is governed by the Weber
number. These two considerations have opposite implications on
the desired surface tension of the fluid. The Weber number is
more important for longer distances, as the filament satelites
normally catch up and join the main droplet in flight.

I. INTRODUCTION

In this paper we study the use of a H-bridge, PWM, as the
valve control strategy for a drop-on-demand(DOD) herbicide
application in precision agricultural robotics. The design and
control strategy has been guided by experiments with droplet
dynamics, and the effect of reverse voltage overshoot has been
illustrated.

Weed control is a vital part of agriculture, and herbicide
application is the most efficient and common control strategy.
Environmental and health concerns lead to restrictions and
regulations on the use of herbicides, which stimulate initiatives
for other weed control strategies [1]. Precision agriculture is
an active area of research and methods in agriculture which
focuses on adapting the field treatment to the spatial and
temporal heterogenity of a field. Weed control in row crops,
such as carrots, can be seperated into controlling weeds within,
and in between the crop rows: Intra- and inter-row weed
control.

DOD herbicide application for intra-row weeding has been
investigated by several research groups: [2] designed a robotic
weed control system for tomatoes, [3] developed an automated
detection and control system for volunteer potatoes in sugar

beet fields and [4] created a crop/weed discriminating mi-
crosprayer. Common for all tree applications is the use of a
valve array to only target the weeds, thus avoiding crop and
soil. The literature displays promising results, and experiments
indicate that the herbicide usage can be reduced by more than
95 % [1]. The literature also illustrates that there are remaining
challenges with precisly targeting droplets, classifying weeds
by machine vision and maintaining a precise motion estimate
for the robotic platform and nozzle array. The review article
[5] presents a good overview of the field.

Fig. 1. The Asterix robot platform design for operation in row crops. The
platform has two driven wheels and a passive caster wheel. The Asterix
modules with the DOD system and machine vision will be mounted in the
open area between the two wheels.

The work presented in this paper has been done in the
framework of the Asterix project, which works towards a
functional robot for DOD intra-weed control in carrots and
other row crops. The robotic prototype platform for Asterix is
shown in Figure 1 and the localization and attitude estimation
for this robot has been described in [6]. In the following
sections we will focus on the design and control of the DOD
array of nozzles and the control strategy, while we also present
our experimental results accompanied with some of the fluid
dynamic theory of droplet stability. Droplet stability for at least
15 cm is necessary for this application.

A. Valve and nozzle limitations
The valve and nozzle used are of type INKX0514300A

and INZA4710975H respectively, from The Lee Company, as
illustrated in Figure 2. The requirement on resolution of control
decides what time of the season a system is effective. The
control resolution will have a practical lower limit depending
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Fig. 2. A VHS valve, INKX0514300A, with minstack mountings and nozzle,
INZA4710975H, from The Lee Company.

on the droplet accuracy. If the droplets have an accuracy
of ±2.5 mm there is no need to have finer resolution than
5 mm×5 mm as it would result in many droplets missing the
target. The sideways resolution is only a function of nozzle
placement, ref. [4] used one row with a spacing of 10.5 mm.
Their results and calculations showed that the system was not
suitable for targeting weeds smaller than 11 mm×11 mm. Ref.
[3] used a similar system with resolution of control about
100 mm2. Thus neither system will be efficient in the early
stages of the season when the weeds are still smaller than
100 mm2.

The resolution in driving direction can be controlled by the
frequency of the valves and the velocity of the vehicle. For
instance, ref. [3] used a valve limited to a maximum frequency
of 80 Hz, and the demand for control resolution was 100 mm2,
thus limiting the velocity of the vehicle to 0.8 m/s.

Flat fan nozzles are an alternative that allows for smaller
weeds to be targeted by spraying a small patch. Recent work
has investigated the efficiency of patch spraying with flat fan
nozzles [7]. These tests showed promising results for spraying
of 100 mm×100 mm patches. When working with row crops,
especially carrots, a DOD application with finer resolution is
interesting, as the seeds are placed close to each other and
weed in between should be controlled. The use of flat fan
nozzles in row crops was also examined in ref. [3], where
DOD was found beneficial.

Solenoid valves have an upper limit for droplet frequency,
and for some microdispensing valves this limit may be hun-
dreds of hertz. However, due to the required droplet volume,
the real upper limit may end up around 100 Hz, as a higher
frequency would further reduce the volume. Relevant volumes
per droplet for a DOD herbicide application lies between 1µL
and 5µL, and on-times of about 10 ms.

One aspect that needs to be considered when dealing with
valve opening time intervals of a few milliseconds, is the fluid
dynamics. The fluid in a straight tube can be modelled as an
equivalent electrical circuit [8]. This can then be applied to
simulate the fluid response in the nozzle under ideal conditions.
Increasing the diameter or decreasing the length of the nozzle
will result in increased volume rate deposition, but may alter
the properties for the droplet in flight.

B. Droplet formation
A droplet produced by a DOD system consists of two or

three sections, the main droplet, the filament and a tail. The
filament is a cylindrical stream of flow following the main
droplet, while the tail is a thin flow behind the filament. The
different parts are illustrated in Figure 3. For more information
consult [9].

Main drop

Filament

Tail

Satellites

Fig. 3. Droplet definitions

The relative importance to the filament stability from
surface friction and viscosity can be expressed through the
Ohnesorge number:

Oh =
η√
ρσR

(1)

where η, ρ and σ are the viscosity, density and surface tension
of the liquid, respectively, while R denotes the radius of
the cylindrical filament [10]. Furthermore, the initial filament
aspect ratio, Λ = L/2R, will decide if the filament breaks up
or not, L is the length of the filament. The critical value for
filament breakup, Λc, increases with Oh [10].

When the droplet is falling, a number of scenarios may
occur: the filament may be absorbed into the main droplet, it
may break at the main droplet thus creating a single satellite
droplet or a Rayleigh-Platou instability may occur, creating
multiple satellite droplets [9].

Satellite droplets are small droplets lagging behind the
main droplet, often caused by the disintegration of the tail
or filament. Without wind and other disturbances that could
be present for a DOD application in movement, the satellite
droplets will typically catch up with the main droplet and
coalesce with it, and the dispensed fluid volume reaches the
target as a single droplet [11]. An image sequence illustrating
this is presented in Figure 8. This is a result of less drag on
the satellites as they are smaller and travel in the wake of the
main droplet. This will happen under ideal conditions, but how
the satellites will behave in the field is not certain. Most of
the research described above are results from ink jet printers
with droplets much smaller than what is needed for herbicide
applications. However, ref. [12] verifies that the theory applies
for larger droplets as well, which is more relevant for this
project.

The Weber number is of importance when studying the
droplets in air, and is defined as, [13]:

We =
ρu2d

σ
(2)

Where ρ is the density of air, u the droplet velocity, d
the droplet diameter and σ the surface tension. With the
assumption of spherical droplets, the droplet is stable if its
Weber number is below the critical Weber number, which lies
between 10 and 40 [14].
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Solenoid

24V 24V

Fig. 4. PWM H-bridge valve driver for a single solenoid

C. Herbicide efficiency with DOD

By far the most common herbicide in use today is
glyphosate. It has been widely used through the past 40 years
[15], and a water solution of glyphosate is a natural and
common choice for DOD weed control [5].

Tests on the efficiency of single droplets of herbicide is
presented in [16]. The tests were done with seeds of Solanum
nigrum planted in pots under outdoor conditions. Results
showed that approximately 0.8µg of glyphosate per plant
reduced the biomass by 95 % when applied by hand.

In field trials with a DOD system, the microspray system
was set to dispense droplets of 2.5µL with 5µg glyphosate
each. The system achieved 82 % efficiency when the average
dose per plant was 22.6µg. This is only about 4 % of the
recommended application [16].

II. VALVE CONTROL

In DOD applications the ideal solenoid valve would open
and close instantaneously, and the droplet size would be
directly proportional with the opening time of the valve. Any
physical solenoid valve has a response time τ , which allows
for the solenoid coil to charge and the plunger to open. In
selecting a valve for DOD applications, one should focus on
achieving a response time significantly smaller than the open
time, τ < Topen.

Several methods are in use for valve control. Typical config-
urations are: Single voltage source controlled by a transistor.
This is a simple driver, but it takes longer to open the valve, as
the voltage cannot be higher than the hold voltage as it may
burn off the coil. Thus charging the coil takes longer than
using a higher voltage source. Spike and hold drivers with
two different voltage sources, one for the spike and another
for the hold voltage. They are more complex, but achieve a
much faster response. Common for both configurations when
closing the valve is that the energy in the coil is burnt off
over two diodes in reverse series parallel to the valve. Another
solution is to use PWM control to create a spike and hold
driver equivalent, with diodes to discharge the coil. However,
if the PWM is extended to a full H-bridge, it can be used to
discharge the energy in the coil.

Fig. 5. The DoD demand control unit with one valve and nozzle mounted
for an experimental setup.

A. Comparison of PWM and Schottky for solenoid discharge

The main idea for controlling the valve with PWM is that
only one voltage source is needed, in a traditional spike and
hold driver, two sources are needed, as the spike voltage will
overheat the valve if applied for too long. When using PWM
the voltage source can be adjusted to fit the spike voltage,
that way a large spike followed by a PWM signal to reduce
the voltage to the hold value will simulate a spike and hold
driver circuit. The PWM control can discharge the solenoid
by reversing the voltage over the diode for a significant time,
so the current in the coil reaches zero. It is important that
the current avoids excessive undershoot as this may open the
valve for a short duration before it is closed. This solution
will be detailed below. The schematic principle for one single
valve driver is presented in Figure 4. When closing the valve,
the voltage is reversed over the valve, thus discharging the
energy in the coil. The discharge time is reduced with increased
voltage, just as the opening time is reduced by increased spike
voltage. The Schottky diode solution discharges the coil by
burning off the energy in the coil over two schottky diodes in
reverse series.

When using the PWM method, the voltage across the valve
is limited to the spike voltage, but when using diodes the
voltage can be increased further. 50 V reverse voltage is quite
common for the schottky diodes for small solenoids with a
hold value of about 3.5-4.5 V. The time to close the valve with
an internal resistance of 40 Ω, inductance of 12 mH, and hold
voltage of 4 V can be calculated for the different solutions.
The current response of a resistor in series with an inductor
follows the first order response:

I(t) = I0 + (I1 − I0)(1− e−t/τ ) (3)

where I(t) is the current at time t, I0 is the initial current,
I1 is the steady state current for the final solution and τ is
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TABLE I
ELECTRICAL CHARACTERISTICS FOR THE LEE INKX0514300A VALVE

FROM DATASHEET

Description Value

Resistance 40 Ω

Inductance 12 mH
Hold voltage 4 V

TABLE II
EXPERIMENTAL AND CALCULATED REVERSE VOLTAGE SPIKE TIMES,

WHERE THE FINAL CURRENT IS THE EXPECTED OVERSHOOT OR RESIDUE
CURRENT IN THE SOLENOID COIL.

Description Negative spike duration (ms) Final current

Theoretical Experimental (mA)

Scottky 0.0231 - 0
Ideal PWM 24V 0.0463 0.05 -8.31
Control PWM 24V - 0.10 -99.15

the time constant. For the PWM solution with 24 V the time
to reduce the current level to zero is 0.0463 ms while using
50 V diodes results in a time of 0.0231 ms. This is about
half the time, but represent a very small portion of the time
which the valve is open. A typical open time interval for the
solenoid is Topen = 8 ms. The response time of the valve is
about τ ≈ 0.3 ms. The effect on the tail will be examined by
experiments to ascertain whether this control strategy works
or not.

The complexity of the control configurations is another
aspect that needs to be inspected. For a microdosing system it
is important to have a fast response circuit as a spike and hold
circuit. There are many solutions for such a driver, but the main
difference discussed here is how to discharge the energy in the
coil. Regardless of the solution chosen the PWM approach will
result in fewer components than the schottky diode solution for
a valve matrix. This is achieved by using a half H-bridge for
all the valves, in addition to a half H-bridge that is common for
all valves. That way two diodes for each valve is avoided and
only two more transistors are needed. This makes the circuit
less complex and easier to control.

Another advantage for the PWM control is the need of
just one voltage source. A solution to remove one voltage
source for the spike and hold driver is to use a voltage
regulator to produce the hold voltage. The problem here is
that when the number of valves increases, several regulators
are needed as the current becomes larger. The reduction in
components influences the cost of the final PCB as well.
Another significant advantage is that the PWM solution is more
flexible. If the valve is replaced, the only requirement for the
new valve is that the spike voltage needed does not exceed the
initial design specifications. Thus only software adjustment is
required instead of modifying the circuit.

B. Negative spike time
The negative spike time of the PWM circuit must be

carefully chosen. The electrical characteristics of the valve are

Fig. 7. Experimental setup with valves and pressurized liquid container, for
early experiments with droplet formation, as shown in Figure 6 and 8.

presented in Table I. Using the first order response of the RL
circuit as in Equation 3 the exact time can be derived. The
timing and currents are presented in Table II. As calculated
before the time for closing the valve under ideal conditions is
0.0463 ms. In practice the resolution in time may have to be
limited. The important part is to have the current close to zero
so the plunger is not activated again. The residue current will
be burnt off over the diodes in the transistors.

To test how the closing time influences the droplet, a test rig
was set up. This was done with a black and white high speed
camera, PROMON 501 from AOS Technolohies. To provide
sufficient light for shooting with 1000 fps a LED panel was
placed behind the nozzle pointing directly at the camera. The
valve was operated by the PCB controlled from a computer.
The rest of the setup consisted of a pressurized liquid container
with water and tubing, as shown in Figure 7. The pressure was
set to 0.4 bar, which produces droplets with an initial velocity
of about 4 m/s. In this experiment regular tap water was used.

The main test was to see how the time resolution affected
the droplet, initially two spike times were chosen. The re-
quirement was that both times should be realistic regarding
how the system will be programmed for the field. For the first
test the spike duration was set to 0.1 ms, while for the second
test it was 0.05 ms. The calculations represented in Table II
shows the theoretical times for discharging the energy in the
coil and the theoretical residue current for the experimental
times. A spike duration of 0.1 ms should result in a current of
-99.15 mA, while 0.05 ms result in an undershoot of -8.31 mA.
A current larger than 87.5 mA is enough to hold the valve open.
Thus the larger spike duration may cause the valve to start
opening again. In this test it was of interest to see how such
an undershoot affects the droplets properties. An undershoot
of -8.31 mA should not be enough to actuate the valve at all,
thus the difference should be observable.

C. Results

The experimental setup was designed with one valve with
a pressure of 0.4 bar. The spike voltage was set to 24 V and
the hold voltage to 3.96 V. The only difference in the two tests
was the negative spike duration. Figure 6a shows the end of
the droplet using a spike duration of 0.1 ms, while Figure 6b
shows the end of the droplet when using 0.05 ms for the spike
duration. For the first test a thin secondary tail is observable
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(a) Test 1, tail, Uhold = 3.96 V, tspike = 0.1 ms (b) Test 2, tail, Uhold = 3.96 V, tspike = 0.05 ms

Fig. 6. High speed footage of the droplet tail with a pressure of 0.4 bar, 1000 fps. Figure (a) show the extra tail resulting from the reverse spike overshoot.

before it breaks into many small satellite droplets. This is
however avoided in the second test. Common for both tests
is that the filament is beginning to break up. The length of
the filament makes it unstable as described previously. The
breakup of the tail in Figure 6a is similar to filament breakup,
but because it is so much thinner than the filament it breaks
up faster and to smaller droplets.

Under ideal conditions the satellite droplets will overtake
the main droplet, but in practice, the robot will be moving
and the presence of wind may affect the satellites differently
than the main droplet. Thus the filament breakup and the tail
breakup should minimized. This is to reduce the possibility
of satellite droplets not merging with the main droplet and
missing the target.

III. DISCUSSION

For the autonomous weed control application to work, the
DOD system must be very accurate. The accuracy does not
solely depend on target precision, but the presence of satellite
droplets and their behavior. It is crucial that the satellites
coalesce with the main droplet, or that they both hit the same
spot. Therefore the droplets tail should be minimized, as the
tail will split up in much smaller droplets than the filament.

The usual method for driving solenoid valves in this kind
of a application is by a spike and hold driver circuit, with two
diodes in reverse series to discharge the energy in the coil.
However the described method is based on a full H-bridge, for
PWM control. The maximum voltage is chosen as the spike
voltage, thus a long spike will open the valve before the PWM
control limits the voltage to the hold value. When closing the
valve the energy in the coil is discharged with a significant
negative spike. The spike time has been calculated using the
first order response of a RL-circuit when the inductance and
resistance of the valve is known.

Tests of how this control strategy performs confirms the
theory, as a long spike time resulted in a thin secondary tail,

Fig. 8. 1200 fps image sequence of a water droplet with initial velocity of
4 m/s (illustration taken from ref. [17]). The filament first break up to satellites,
which then drift in the wake of the main droplet, and join the droplet.

while a spike time of appropriate length avoided this. The long
spike time started to actuate the plunger when it should be
closed, but the small undershoot for the appropriate time did
not actuate the plunger at all.

Thus the spike time of 0.05 ms is close enough to the
theoretical time for closing the valve. A possible solution for
decreasing the filament break up in this application is to use a
larger nozzle and shorter on-time. That way the circumference-
to-length ratio is increased for droplets with the same volume.
The time before the filament breaks up is thus increased,
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and the filament will break up in larger and fewer droplets.
Manipulation of the liquid to increase the Ohnesorge number
is another solution for decreasing filament breakup. However,
this is likely to influence the Weber number and stability of
the droplet.

The main disadvantage of PWM control is the increase in
time for discharging the energy, as the diodes can be chosen
with a higher voltage level. This is not as easy with the
PWM solution, as the higher the voltage, the more robust the
components must be. This is due to the increase in voltage
when using only one source will influence the robustness of
the components, especially the transistors, used in the PWM
control.

However there have not been observed any significant
negative effects of the slower closing of the PWM solution
compared to the Schottky closing. Thus an increase in the
voltage is not necessary.

Breakup of the filament was observed in the tests, but
this will occur regardless of the control strategy, and might
be decreased with increased nozzle diameter. The theory and
calculations regarding the valve control was confirmed by the
experimental setup. The tail was avoided although the closing
time is increased compared to the diode solution, thus the
advantages of the PWM control strategy may be exploited.
This includes a more flexible design with regards to the valves
and fewer components are needed for the circuit. The main
focus is to make sure that the negative spike time does not
undershoot too much as this will create a tail that should be
minimized.

Theory regarding the Ohnesorge number and filament
breakup finds that a liquid with low surface tension and
high viscosity reduces the filament breakup as the Ohnesorge
number increases. However when the droplets have to travel a
significant distance before hitting their targets it is important
that the droplets do not disintegrate. The increased stability of
the droplet leads to more satellites due to increased filament
breakup. Under ideal conditions the satellites from filament
breakup will merge with the main droplet, but this may not
be the case in the field. Clearly the best solution would be
to avoid filament breakup while maintaining a stable droplet
in air. A compromise between the Ohnesorge number and
the Weber number is of importance when shooting droplets a
significant distance. This is due to the requirement of a stable
droplet throughout the whole flight, while trying to minimize
the filament breakup.

IV. CONCLUSION

A valve controller has been developed for drop on demand
weed control, using a full H-bridge design and PWM voltage
regulation to generate the spike and hold voltages. In contrast
with common design practices with solenoid drives, we have
not included the discharge diodes. The solenoid discharge is
instead done by applying a reverse voltage to the solenoid.

The timing of the reverse voltage has to be calculated using
the solenoid inductance given from the datasheet. If the reverse
spike is held longer the solenoid may reopen and dispense a
secondary tail, which will create additional satellite droplets.

If the reverse spike is not long enough the residue current will
discharge over the protective diodes in the H-bridge drivers.

The design results in fewer components per solenoid, but
demands accurate timing of the reverse voltage spike. The
PWM allows for arbitrary spike and hold voltages up to
the supply voltage, which for this project has been 24 V.
The experiments also illustrate the filament breakup and its
connection with the Ohnesorge number, while the Weber
number is essential to the stability of droplets in flight.
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Abstract—Vehicles which operate in agricultural row crops,
need to strictly follow the established wheel tracks. Errors in
navigation where the robot sways of its path with one or more
wheels may damage the crop plants.

The specific focus of this paper is on an agricultural robot
operation in row cultures. The robot performs machine vision
detecting weeds within the crop rows and treats the weeds by
high precision drop-on-demand application of herbicide.

The navigation controller of the robot needs to follow the
established wheel tracks and minimize the camera system offset
from the seed row. The problem has been formulated as a
Nonlinear Model Predictive Control (NMPC) problem with the
objective of keeping the vision modules centered over the seed
rows, and constraining the wheel motion to the defined wheel
tracks.

The system and optimization problem has been implemented
in Python using the Casadi framework. The implementation has
been evaluated through simulations of the system, and compared
with a PD controller. The NMPC approach display advantages
and better performance when facing the path constraints of
operating in row crops.

I. INTRODUCTION

An agricultural robot for weed control in row-crops is under
development. The weed control is done by drop-on-demand
herbicide application, where the weed is first identified by a
camera system and then targeted by a drop-on-demand nozzle
array. The focus of the project is on computer vision, robot
integration and navigation [1].

The project share its ambition of autonomous weed control
with many other research projects on robotic weed control.
The review by Slaughter 2008 presents an overview of the
field [2].

Fig. 1. The wheeled mobile robot developed for weed control in row crops.

The robotic platform has two front wheels with electro
motors and two rear castor wheels, Figure 1. The robot has a
monocular downward facing RGB camera primarily used for
two purposes: Classification of crop and weed plants as part
of the spray-on-demand system [3], and for visual odometry
measurements as input to the localization filter and crop-row
detection.

The visual crop-row estimate will be fused with a forward
looking camera for crop-row detection. This information forms
the input to the row following controller.

Crop-row following has been well explored within the field
of agricultural robotics, and similar applications can be found
in [4].

Application of Non-linear Model predictive control (NMPC)
in agriculture has been described in [5], and [6] where an
actuated trailed implement is controlled to follow field rows.

To the authors knowledge there has not been publications
on NMPC applications for robotics in row crops with specific
constraints on the wheels to minimize crop damage.

A. Minimizing crop damage

A review of autonomous navigation in agriculture is pre-
sented in [7], where the performance of various approaches
are compared.

A study of guiding principles in design of robots for
agriculture revealed that the most important factor for the end
users were minimizing crop damage [8].

Other controllers described in the review article [7], does
not incorporate the constraints on navigation directly. This
motivates our research on using an NMPC based design
where the path constraints can be directly implemented in the
controller, adding an additional barrier against damaging the
crop.

B. Wheel tracks in row cultures

The production method for most vegetables is row cultures,
where the plant rows are set with a fixed intermediate distance
between the wheel tracks. The centre to centre distance of
the wheel tracks are typically 1.65 m to 1.80 m in European
agriculture, 4.

The robots and vehicles operating in the field are restricted
to these wheel tracks to avoid damage of the crop, as illustrated
in Figure 2.

II. MODELLING AND SIMULATION

The robot can be modelled as a unicycle-like robot assuming
non-slip conditions. Differentially steered robot designs are
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Fig. 2. The robot illustrated has a path-following algorithm seeking to
maintain the camera module centered over the seed row. A sideways error
will lead the controller to turn to correct the error. A small turn can easily
lead the rear castor wheels to enter the sow bed and damage the crop.

very common in many applications, and numerous publica-
tions present kinematic and dynamic models for this class of
robots.

Industrial motor controllers and commercial robot platforms
normally provide the control inputs as linear and angular
velocity set-points, not as torque or voltage set-points. A dy-
namic model with the motor controllers included and velocities
as inputs will be advantageous when it comes to implementing
the actual robot.

Such a model has been presented [9] and the formulation
has been used as the basis for modelling and simulation in
this paper. The robot in our project differs from the model
schematic presented in [9]: In contrast to the schematic, this
robot has the differential drive wheels in front, and trailing
castor wheels in rear. Consistency with the schematic is
maintained by describing relevant parameters with negative
sign, as shown in Figure 3. The camera and spray unit has
been mounted centrally at the virtual wheel axis in field
experiments, which leaves the tracking point, h, at a = 0.

d
uω

-c

h G

-b

-a

x

y

C

Fig. 3. The unicycle model from [9] can be applied to the robot with
differential drive and passive castor wheels. The robot tracking point is located
in h, which is the origin of the robot frame. The point h is a distance −a
behind the virtual front wheel axis. G is the center of gravity, −b behind the
virtual front wheel axis. The track width of the robot is d, and the rear castor
wheels, C, is at a distance −c from the virtual wheel axis. The robot has a
forward velocity, u, and an angular velocity ω.

The dynamic model is written as [9]:

ẋ = f(x(t),u(t),θ) + δ (1)
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
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(2)

where (x, y) is the position in the base frame, and ψ is the
robot orientation or heading, (u, ω) are the linear and angular
velocities and uref and ωref are the input signals of the
system: linear and angular velocity.

The two vectors are identified model parameters, and para-
metric uncertainties. The uncertainty vector

δ = [ δx δy 0 δu δω ]T (3)

represent slip velocities and effects of uneven ground with
its first two elements. The two last elements are functions of
physical parameters as mass, inertia, wheel and tire diameters,
parameters of the motors, and wheel ground interaction forces.

The parameters in the vector θ are functions of the robots
physical parameters, such as its mass m, inertia IZ about
G, the electrical resistance Ra of the DC motors with motor
constant ka, the friction coefficient Be, reduction gear inertia
Ie, radius of the wheel r, nominal radius of the tire Rt,
and the distances b and d. The model assumes a PD motor
control loop with gains kPT > 0, kPR, kDT and kDR. The
equations for θ were presented in [9], and methods for online
parameter identification and an adaptive controller has been
presented [10]. The parameter equations are reproduced here
for reference:
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(mRtr + 2Ie) + 2rkDT

)
(2rkPT )
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(Ied
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)
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)
d/(2rkPR) + 1

(4)
For the simulations in this paper, we have used a set of

parameters identified from indoor experiments with a robot
comparable to our:

θ =




θ1
θ2
θ3
θ4
θ5
θ6



=


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0.19
0.14
0.02
1.00
0.16
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


(5)

The disturbances in the δ have been left at zero for the
simulations shown here, while it does provide a possible input
for perturbing the system in simulation.

The model has been implemented in Python using the
Casadi framework [11] and a Runge Kutta 4 integrator scheme

2. Conference and journal papers

32



for time simulation.
For this implementation, the robot is assumed to navigate

relative to a local coordinate frame aligned with the crop row,
as illustrated in Figure 2.

A. Reference PD controller

A PD controller has been implemented for reference and
comparison with the NMPC controller. The controller has been
tuned to stay within the constraints when operating with a
tracking error less than half the allowed region. That is y ∈
[− τw2 , τw2 ].

The controller has been implemented as a P controller
driving both the sideways tracking error and the heading
to zero. For small heading angles, the time-derivative of
y approximates to the heading ψ, and the controller can
be though of as a PD controller. The velocity reference is
constant.

vref = 0.3m s−1 (6)
ωrefPD = −kpy − kdψ (7)

where the tuning constants has been set to:

kp = 0.70 kd = 0.49 (8)

III. FORMULATING THE OPTIMAL CONTROL PROBLEM

Fig. 4. The feasible wheel track area where a robot can operate without
damaging the crop, based upon experience from field test during spring 2014.

The objective for the robot is to maintain a constant velocity
while centring the camera systems over each crop row. At the
same time, the rear castor wheels should be constrained to the
wheel tracks, not to damage the crop.

The position of the rear castor wheels can be expressed in
vector notation in the BODY frame, wB , and rotated into the
ROW frame, wR, to find the wheels’ positions. The calculation
for the left rear castor wheel becomes:

wB
l =

[
c
d
2

]
(9)

wR
l = R(ψ)wB

l +

[
x
y

]R
(10)

=

[
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− sin(ψ) cos(ψ)

] [
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2

]
+

[
x
y

]R
(11)

=

[
c cos(ψ) + d

2 sin(ψ) + x
−c sin(ψ) + d

2 cos(ψ) + y

]
(12)

Only the y-component is of interest in the ROW frame, and
the constraint for the left castor wheel can be written with

respect to the distance between two tracks τd and the width
of each wheel track τw, illustrated in Figure 4, as:

−τd − τw
2

≤ −c sin(ψ) + d

2
cos(ψ) + y ≤ τd − τw

2
(13)

If the robot track width and the row track width are equal,
τd = d, the constraint will be symmetric for the left and right
wheel, for small deviations of y, and it will be sufficient to
consider one wheel constraint.

The quadratic cost function describes the robots deviation
from the row centre line, and deviation from the reference
velocity:

minimize
x

∫ T

t0

(y − yrow)2 + (u− usetpoint)2dt (14)

subject to ẋ = f(x(t),u(t),θ)

−τd − τw
2

≤ c sin(ψ) + d

2
cos(ψ) + y ≤ τd − τw

2

A. Inverse proportional limit on the feasible control space
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Fig. 5. The allowed range of steering angles ψ as a function of the tracking
error. The regions marked in red, are outside the track width. If the robot
enters the red region the front wheels are outside the wheel tracks, and the
robot will diverge from the row. The NMPC controller with constraints can
only be used within the white region. Two trajectories starting with a sideways
error of 0.1 meter are shown in the plot, one with the NMPC controller and
one with the PD controller. Note that the NMPC controller closely follows
the constraint in steering angle.

The kinematics of the system leaves us in a special case
when we apply the constraint to the rear castor wheel. An
analogy of this scenario is driving a forklift alongside a wall.
As the forklift approaches the wall, it will be increasingly
impossible to turn away from the wall, as its rear end needs
to swing out to turn.

The robot and the wheel tracks scenario leave us with the
same situation. The allowed and stable region of steering, or
vehicle angles, are shown in Figure 5.

A typical path following algorithm using a PID-type con-
troller, would proportionally increase its control input as the
error increases. The feasible control region for this problem
leaves us with a set of controls which does not fit well with
a proportional control strategy: As the tracking error increase,
say to 0.1 m, the maximum vehicle angle to counter the error is
reduced by a factor of two. This limitation on the feasible state
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space can be taken as an argument for implementing a NMPC
controller to utilize the limited control space optimally.

IV. IMPLEMENTATION

The system has been implemented in Python using the
Casadi framework [11]. The chosen method for solving the op-
timization problem (14), is a direct multiple shooting method.

The infinite horizon problem is reformulated to a finite
discretized nonlinear problem. The time horizon has been
limited to 5 seconds, and the control input has been discretized
to N = 20 steps.

The second step is to parameterize the system of differential
algebraic equations (DAE) by multiple shooting. We also
exploit the quadratic form of the cost function, by using
the Gauss-Newton method to solve the sequential quadratic
program (SQP). The implementation follow the details given
in [12]. A more advanced implementation applied to auto-
mobile collision avoidance, follows the same implementation
approach [13].

The QP problem is solved at each iteration by using the
IPOPT library [14]. The QP problem is initialized with the
last state at every iteration as an aid to the QP solver.

The system has been simulated without disturbances, δ =
0, from various perturbed initial conditions to investigate
the system behaviour. The target velocity has been set to
usetpoint = 0.3m s−1 and the crop row is at the origin of
the coordinate system, yrow = 0

V. RESULTS

The NMPC controller has tested by starting the system
in several different initial conditions. Figure 7 show the
system recovering from a small tracking error, with the NMPC
controller and the reference PD controller. Note the increasing
curve of ψ as the robot gains increasingly more headroom to
navigate. Figure 8 show the states of the NMPC controller
in the time domain. This scenario is also illustrated in the
time domain in Figure 8 and with respect to the constraints in
Figure 5.

The NMPC controller use two iterations to converge to
the optimal trajectory, and steers the robot in the opposite
direction with the first control input, as shown in Figure 6.
Figure 9 and 10 show the system from an initial condition
close to the boundary constraint. The recovery of the robot is
significantly slower, and the amplitude of ψ is limited by the
path constraint.

In addition to the displayed figures, the NMPC controller
has been initialized in several infeasible initial conditions.
The trajectory then diverge from the desired trajectory for as
long as the path constraint can be met. These scenarios break
the assumption of small y deviations, which the symmetry
assumption of the path constraint relies on.

VI. DISCUSSION

Looking at Figure 7 it is interesting to see the increasing
correction in heading, as the robot approach the desired
trajectory. This is the opposite of behaviour of a PID based
controller, as illustrated by the reference PD controller. The
NMPC controller maintains the rear castor wheels on the path
constraint, until the target is reached. The PD controller is not
able to converge as quickly without violating the constraints.
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Fig. 6. With the system initialized at [x, y] = [0 0.1] the NMPC controller
use the first to iterations to converge to the optimal solution. The first
prediction can be seen as the green dotted line, and the current prediction
is shown as the red dots.

Figures 9 and 10 illustrate the characteristic of the con-
strained controller: If the tracking error is sufficiently large,
the controller is left with close to no headroom for navigation,
and the convergence is slow. If the front wheels are at, or
outside the boundary the solution will diverge. The reference
PD controller is outside its intended region of operation, and
it violates the constraint in heading angle.

For operation outside the feasible region, the constraint
should be reformulated without the symmetry assumption
for the castor wheel constraints. This assumption relies on
small deviations in angle and lateral position, and will be
increasingly inaccurate outside the wheel tracks.

Another control strategy should be implemented to handle
operation outside the feasible region. Some alternative solu-
tions may be:

• Drop the velocity reference from the cost function, and
add a quadratic term in the heading, ψ. This will allow
the robot to reverse back into the wheel tracks and correct
it’s heading and position.

• Drop or expand the path constraint to allow the robot to
quickly get back to the path, and accept damage to the
crop for a short section.

• Switch to a different type of controller with desired
dynamics and let that bring the robot back into the
feasible region.

In a real field implementation these strategies need to be
evaluated with practical considerations in mind.

The implementation of the inequality constraints are rela-
tively straight forward, within the multiple shooting method.
One can easily imagine applying such a strategy to vehicles
and robots with more complex kinematics or environments, an
example pointing in that direction is presented in [5].

The oscillations in ωref as the system reaches the trajectory
is caused by the NMPC controller exploiting its knowledge of
the motor controller and system dynamics to maximize the
system response. This behaviour may be problematic when
faced with inaccuracies in the estimated parameters θ. For
example: If the robot is significantly lighter than estimated;
this may lead to oscillations in the control. A term to dampen
control inputs can be considered in the cost function.
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Fig. 7. A comparison of the reference PD controller with the NMPC controller, with sideways error and heading angle as the robot moves along the row.
The robot was initialized at [x, y] = [0 0.1]. The NMPC controller follow the constraint in heading angle, and converge faster than the PD controller. The
same trajectories are also illustrated in figure 5.
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Fig. 8. The robot states and NMPC control inputs shown in the time domain, when initialized at [x, y] = [0 0.1]. After the robot has accelerated, the rear
castor wheel follow the edge of the constraint until the y target is reached just before t = 4s. Note that the robot heading, ψ, increase in amplitude, as more
headroom for navigation is available. When the target is reached it quickly steers the heading back to zero. The NMPC controller oscillates here to maximize
the response from the motor controllers.

The computational performance of the algorithm has not
been systematically evaluated, but the run-time is consistently
below 50 ms per iteration. Further optimizations may be
implemented for real-time applications, and there exists code
generation tools within the Casadi framework, which may be
useful, [12].

VII. CONCLUSION

A crop row following controller has been formulated with
special focus on constraining the motion of the trailing castor
wheels to the wheel tracks. The implementation uses Nonlinear
Model Predictive Control (NMPC) with a direct multiple
shooting method, and a Gauss-Newton quadratic objective.

The implementation is flexible with regards to expressing
the constraints and it can be suitable for real-time implemen-
tations. The controller needs to be expanded to operate on a
global frame with an arbitrary model of the crop row, and the
implementation needs to be verified in experiments.

The kinematic limitations of a trailed castor wheel with path
constraints has been investigated. The limited range of feasible
control inputs can be an argument for applying constrained
model based control, such as this NMPC application, over
other control methods. An NMPC approach will better utilize
the available control room, and in row crops the NMPC
controller can provide safety against damaging the crop.
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Abstract—This paper describes the development of several
controllers to handle a trajectory tracking problem for a dif-
ferentially wheeled robot. Both simulations and tests on a real
robot were performed. A simple kinematic controller has been
implemented to calculate desired velocities based on current
position and trajectory. In order to also consider the current
velocities, i.e. the dynamics of the system, the output of this
controller was used as input to a dynamic controller derived from
a nonlinear model. The dynamic controller was made adaptive
by using an on-line parameter estimation scheme to estimate the
unknown parameters of the nonlinear model. Lastly, a direct
model reference adaptive controller (MRAC) based on a linear
model was derived and implemented as an alternative to the
adaptive dynamic controller.

Index Terms—Mobile robots, differentially wheeled robots,
trajectory tracking, adaptive control, system identification, agri-
cultural robotics,

I. INTRODUCTION

This paper presents part of the ongoing research for devel-
oping an agricultural robot that autonomously navigates in row
crops while identifying and precision spraying individual weed
leaves with herbicide. The robot is a differentially steered robot
with two rear mounted caster wheels, and may be modeled as
a unicycle-like robot. A picture of the prototype during testing
in row crops is shown in Fig. 1.

Previous research on the project includes development of
a precision drop-on-demand nozzle for herbicide application
[1], a model predictive row controller [2] to minimize poten-
tial crop damage during operation and attitude estimation in
agricultural robotics [3].

The nozzle array presented in [1] is intended to only be
slightly wider than the row crops, meaning that the robot has
to follow the row crops precisely. A small offset could mean
that the weed is out of reach for the nozzles, leaving the weed
untreated. This motivates the research in this paper to find a
trajectory tracking controller that minimizes the tracking error.

Another aspect to consider is changing physical properties
of the robot. For example, the weight of the robot will change
as herbicide and fuel is consumed. To ensure satisfactory
performance at all times, several adaptive approaches that
update the controller gains continuously have been tested.

Unicycle-like robots are used extensively in all kinds of
fields and numerous models and controllers have been de-
scribed in publications. In this paper a nonlinear model
proposed in [4] has been used for simulations. The same

Fig. 1. A picture of the prototype robot on a field test.

model was also used in [5] to develop an adaptive dynamic
controller, which has been implemented and tested here but
with a different adaptation law. In [6] an adaptive controller
using adaptive backstepping is presented. [7] developed a
model reference adaptive controller (MRAC) for the tracking
problem, but only simulations were performed. A similar
direct MRAC has been derived here and implemented on the
robot for testing.

The most important contribution of this paper is the com-
parison of two different adaptive controllers implemented on
the same robot. The author is not aware of any previous
implementations of the MRAC controller presented here on
a real robot.

Different approaches to row crop guidance systems has
been thoroughly explored and reviewed in [8]. However, this
paper focuses merely on tracking a smooth and well defined
trajectory without considering how to obtain the trajectory.
The results obtained should be applicable to most unicycle-
like robots.

II. MATHEMATICAL MODEL

The model used for simulations and some of the controller
designs in this paper was presented in [4]. It is given as



ẋ
ẏ

ψ̇
u̇
ω̇




=




u cosψ − aω sinψ
u sinψ + aω cosψ

ω
θ3
θ1
ω2 − θ4

θ1
u

− θ5θ2uω −
θ6
θ2
ω




+




0 0
0 0
0 0
1
θ1

0

0 1
θ2




[
uref
ωref

]
+




δx
δy
0
δ̄u
δ̄ω




(1)

where h =
[
x y

]T
is the position, ψ is the heading angle, u

is forward velocity, ω is angular velocity and a is the distance
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Fig. 2. Drawing of unicycle-like robot with centered rear mounted caster
wheel, similar to the robot all tests were performed on.

from center of wheel axis to h as shown in Fig. 2. Motor
inputs are given as velocities instead of torque values, which
means that the motor controller is assumed to have a PID
controller or similar. θ is a collection of physical parameters
derived in [4] and included here for reference:

θ1 =

(
Ra
ka

(mRtr + 2Ie) + 2rkDT

)
/(2rkPT )

θ2 =

(
Ra
ka

(Ied
2 + 2Rtr(Iz +mb2)) + 2rdkDR

)
/(2rdkPR)

θ3 =
Ra
ka
mbRt/(2kPT )

θ4 =
Ra
ka

(
kakb
Ra

+Be

)
/(rkPT ) + 1

θ5 =
Ra
ka
mbRt/(dkPR)

θ6 =
Ra
ka

(
kakb
Ra

+Be

)
d/(2rkPR) + 1

(2)
where Ra is motor resistance, ka motor torque multiplied by
gear ratio, kb motor voltage multiplied by gear ratio, r wheel
radius, Ie motor moment of inertia, Be motor viscous friction
coefficient, kPT , kDT , kPR, kDR are PID motor controller
gains, Iz moment of inertia about vertical axis at center of
mass, m mass.

δ =
[
δx δy 0 δ̄u δ̄ω

]T
(3)

represent the uncertainties of the system caused by wheel slips
and forces exerted by the caster wheel. For the purpose of this
paper it has been assumed that δ = 0.

III. CONTROLLER DESIGN

In many cases unicycle-like robots operate at low speeds
and often inhibit low moment of inertia. In other words, the
dynamics of u and ω are so fast that in many cases one may
simplify u ≈ uref , ω ≈ ωref and only study the kinematic
model given by


ẋ
ẏ

ψ̇


 =



uref cosψ − aωref sinψ
uref sinψ + aωref cosψ

ωref


 (4)

For larger robots operating at higher speeds the dynamics can-
not simply be ignored. In the next sections, various controller
designs are considered.

A. Trajectory Tracking Controller

Let hd(t) =
[
xd(t) yd(t)

]T
denote the time varying

reference trajectory for the robot. Only the reference posi-
tion is considered, he the The tracking error is defined as
h̃ =

[
xd − x yd − y

]T
. The kinematics from (1) may be

written as 

ẋ
ẏ

ψ̇


 =




cosψ −a sinψ
sinψ a cosψ

0 1



[
u
ω

]
(5)

Recalling that h = [x y]T

ḣ =

[
ẋ
ẏ

]
=

[
cosψ −a sinψ
sinψ a cosψ

] [
u
ω

]
= A

[
u
ω

]
(6)

Multiplying (6) with the inverse of A gives[
u
ω

]
= A−1

[
ẋ
ẏ

]
=

[
cosψ sinψ
− 1
a sinψ 1

a cosψ

] [
ẋ
ẏ

]
(7)

A controller based on inverse kinematics is proposed in [5]:
[
ucref
ωcref

]
=

[
cosψ sinψ
− 1
a sinψ 1

a cosψ

]
ẋd + lx tanh

(
kx
lx
x̃
)

ẏd + ly tanh
(
ky
ly
ỹ
)

 (8)

where kx, ky > 0 are controller gains and lx, ly > 0
are saturation constants. ucref and ωcref are desired forward
and angular velocities, respectively. The controller is shown
in [5] to have an asymptotically stable equilibrium at the
origin h̃ =

[
0 0

]T
under the assumption of u = ucref

and ω = ωcref . The name trajectory tracking controller and
kinematic controller both refer to the same controller for the
rest of this paper.

Note that it is not necessary to explicitly control the desired
heading, as discussed in [5]. Due to the non-holonomic nature
of a differentially wheeled mobile robot, the heading will be
tangent to the trajectory path given small position errors. Any
heading deviation from the tangent will cause a change in
position errors, so proving stability for the position will be
sufficient.

B. Dynamic Controller

The kinematic controller will work adequately as long as the
dynamics of the system are fast enough, i.e. the assumption
of u ≈ ucref and ω ≈ ωcref is reasonable. In cases where the
dynamics are too slow to be ignored or high precision tracking
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is required, the kinematic controller alone may no longer be
sufficient.

Consider the dynamic part of (1)
[
u̇
ω̇

]
=

[
θ3
θ1
ω2 − θ4

θ1
u

− θ5θ2uω −
θ6
θ2
ω

]
+

[ 1
θ1

0

0 1
θ2

] [
uref
ωref

]
(9)

Rearranging gives[
uref
ωref

]
=

[
θ1u̇− θ3ω

2 + θ4u
θ2ω̇ + θ5uω + θ6ω

]
(10)

Which may be written as[
uref
ωref

]
=

[
θ1 0
0 θ2

] [
u̇
ω̇

]
+

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
θ

(11)
Motivated by the inverse dynamics in (11), [5] proposes the
controller given as[
uref
ωref

]
=

[
θ1 0
0 θ2

] [
σ1

σ2

]
+

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
θ

(12)
where

σ =

[
σ1

σ2

]
=

[
u̇cref + k1ũ

ω̇cref + k2ω̃

]
,

ũ = ucref − u
ω̃ = ωcref − ω

(13)

and k1, k2 > 0 are constant gains. In order to implement (12),
the values of θ must be known. Measuring or otherwise ob-
taining the parameters needed to calculate θ may prove hard,
thus the need to estimate θ becomes a necessity. Replacing θ
with the estimate θ̂ in (12) gives

νref = D̂σ +Eθ̂ (14)

where

νref =

[
uref
ωref

]
, E =

[
0 0 −ω2 u 0 0
0 0 0 0 uω ω

]
,

D̂ =

[
θ̂1 0

0 θ̂2

]
, θ̂ =

[
θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6

]T (15)

Following is a stability analysis similar to what was done in
[5]. (11) may be written as

νref = Dν̇ +Eθ (16)

Similarly, (14) is written

νref = D̂σ +Eθ̂ = Gθ −Gθ̃ = Dσ +Eθ −Gθ̃ (17)

where θ̃ = θ − θ̂ and

G =

[
σ1 0 −ω2 u 0 0
0 σ2 0 0 uω ω

]
, D =

[
θ1 0
0 θ2

]
(18)

(13) may be written as

σ =

[
σ1

σ2

]
= ν̇cref +Kν̃ (19)

where K = diag(k1, k2). Combining (16), (17) and (19)

Dν̇ +Eθ = Dν̇cref +DKν̃ +Eθ −Gθ̃ (20)
˙̃ν = −Kν̃ +D−1Gθ̃ (21)

where ˙̃ν = ν̇cref − ν̇ describes the error dynamics of the
system. For this analysis, θ is considered known, i.e. θ̂ = θ,

reducing (21) to
˙̃ν = −Kν̃ (22)

Consider the following Lyapunov-like function

V =
1

2
ν̃TP ν̃ (23)

where P = P T > 0. Differentiating (23) along the solution
of (22) gives

V̇ = −ν̃TPKν̃ < 0 ∀ ν̃ 6= 0 (24)

Which means that V̇ is negative definite and global asymptotic
stability can be concluded.

C. On-line Parameter Estimation

The dynamic controller given by (14) needs a good estimate
θ̂ in order to perform well. One approach to estimate θ̂ is to
log a test run with sufficiently excited input signal and use
an off-line system identification technique, e.g. least-squares
method. Another approach is to estimate θ̂ on-line using an
adaptation law ˙̂θ. This section shows the derivation of ˙̂θ using
the gradient method, which is motivated by the minimization
of a cost function.

Consider (10) written on the form

νref = ϕTθ =

[
u̇ 0 −ω2 u 0 0
0 ω̇ 0 0 uω ω

]
θ (25)

where νref = [uref ωref ]T . Filtering both sides gives

νref
Λ(s)

=
ϕTθ

Λ(s)
=

1

Λ(s)

[
su 0 −ω2 u 0 0
0 sω 0 0 uω ω

]
θ

(26)
Which may be written as the parametric model

z = ΦTθ (27)

where z =
νref

Λ(s) , ΦT = ϕT

Λ(s) and Λ(s) is chosen to be a
Hurwitz polynomial of degree one, e.g. Λ(s) = s + 1. Note
that z and Φ are available measurements, while θ is unknown.
An estimate of z denoted ẑ is generated as

ẑ = ΦT θ̂ (28)

where θ̂ is the currently best estimate of θ. A normalized
estimation error is defined as

ε = (MTM)−1(z − ẑ) = (MTM)−1(z −ΦT θ̂) (29)

where MTM = I +Ns
TNs is a diagonal matrix that nor-

malizes the estimation error, and Ns
TNs is another diagonal

matrix for design of the normalized signal. The reason for this
normalization is to ensure boundedness, i.e.

ΦM−1 ∈ L∞ (30)

If Φ ∈ L∞, then M = I is sufficient. If it is not, choosing

MTM = I + ΦTΦ (31)

will ensure (30) is satisfied [9, p. 172]. An instantaneous cost
function J(θ̂) is defined as

J(θ̂) =
1

2
εTMTMε =

1

2
(z −ΦT θ̂)T (MTM)−1(z −ΦT θ̂)

(32)
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Fig. 3. Block diagram of the model reference adaptive controller.

The gradient of (32) is

∆J(θ̂) = −Φ(MTM)−1(z −ΦT θ̂) = −Φε (33)

Motivated by this, the following adaptation law for generating
θ̂(t) is proposed

˙̂
θ = −Γ∆J(θ̂) = ΓΦε (34)

where Γ = ΓT > is a diagonal gain matrix. According to [9,
p. 175], (34) ensures that

1) θ̂, ε ∈ L∞
2) ε,Ns

T ε, ˙̂θ ∈ L∞
independent of the boundedness properties of Φ. In other
words, both parameters and estimation errors should remain
bounded. It does not, however, ensure that θ̃(t) = θ(t) −
θ̂(t) → 0 as t → ∞. To ensure that the parameters θ̂ do in
fact converge to their actual value θ, Φ must be persistently
excited (PE), i.e., it satisfies [9, p. 254]

α1I ≥
1

T0

∫ t+T0

t

Φ(τ)ΦT(τ) dτ ≥ α0I, ∀t ≥ 0 (35)

for some T0, α0, α1 ≥ 0. It is in general difficult to show that
Φ is PE for an input signal νref , and especially in a case like
this where Φ has some nonlinear elements.

D. Adaptive Dynamic Controller

The results from section III-B and section III-C may be
combined to form an adaptive dynamic controller. The on-line
parameter estimation operates independently from the dynamic
controller and vice versa, making it a modular design. This
may prove beneficial in cases where parameter estimation is
only needed parts of the time, or if it is desirable to run
parameter estimation without running the dynamic controller.
The control laws are given by

νref = D̂σ +Eθ̂, ˙̂θ = ΓΦε (36)

where the notation is the same as in section III-B and section
III-C.

E. Direct Model Reference Adaptive Controller

In this section, a simple direct Model Reference Adaptive
Controller (MRAC) scheme as shown in Fig. 3 is derived.
The concept is to design a model of similar structure to the
plant (robot), let the tracking reference be an input to the
model, and make the output of the plant track the output of the
model. For the direct MRAC approach, this is made possible

by developing adaptation laws for the controller gains directly
without having to identify actual system parameters.

Consider a simplified, linear model of the dynamics of (1)
given by [

u̇
ω̇

]
=

[
au+ buref
cω + dωref

]
(37)

where a, b, c, d are unknown system parameters (not the same
as those introduced in Fig. 2). In this case, u and ω are
considered decoupled and will be analyzed separately. A
reference model um for u is chosen to be

u̇m = −amu+ bmu
c
ref (38)

Laplace transforming (37) and (38) gives

u =
b

s− auref , um =
bm

s+ am
ucref (39)

The following control law is proposed

uref = −k∗uu+ l∗uu
c
ref (40)

Inserting (40) into (39) gives

u =
bl∗u

s− a+ bk∗u
ucref , um =

bm
s+ am

ucref (41)

It is desirable to make the transfer functions of (41) equal.
Choosing

l∗u =
bm
b
, k∗u =

a+ am
b

(42)

ensures equal transfer functions. However, it is not possible to
implement since the values of a and b are unknown. Instead
of using the control law (40), a control law using estimates of
k∗u and l∗u is proposed

uref = −ku(t)u+ lu(t)ucref (43)

where ku(t) and lu(t) are the currently best estimates of k∗u
and l∗u, respectively. Adding and subtracting b(−k∗uu+l∗uu

c
ref )

to u̇ yields

u̇ = au+ buref + b(−k∗uu+ l∗ur)− b(−k∗uu+ l∗ur) (44)

which, after combining with (42), may be written as

u̇ = −amu+ bmu
c
refu+ b(k∗uu− l∗uucref + uref ) (45)

Laplace transforming (45) gives

u =
bm

s+ am
ucref

︸ ︷︷ ︸
=um

+
b

s+ am
(k∗uu− l∗uucref + uref ) (46)
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Define the tracking error eu = u− um to obtain

eu =
b

s+ am
(k∗uu− l∗uucref + uref ) (47)

Since k∗u and l∗u are unknown, our best estimate of the tracking
error êu is

êu =
b

s+ am
(ku(t)u− lu(t)ucref + uref ) (48)

Inserting uref from (43) into (48) simply gives êu = 0, i.e. the
estimated tracking error is zero. Note that the estimation error
εu = eu− êu = eu = u−um is equal to the tracking error eu.
Combining (43) and (47) while defining the gain parameter
estimation errors k̃u(t) = ku(t)− k∗u, l̃u(t) = lu(t)− l∗u gives

eu =
b

s+ am
(−k̃uu+ l̃uu

c
ref ) (49)

ėu = −ameu + b(−k̃uu+ l̃uu
c
ref ) (50)

Consider the Lyapunov-like function

V =
1

2
e2
u +

|b|
2γ1

k̃2
u +

|b|
2γ2

l̃2u (51)

with γ1, γ2 > 0. Differentiating (51) along the solution of (49)
gives

V̇ =− ame2
u + |b|k̃u

(
−euu sgn(b) +

1

γ1
k̇

)

+ |b|l̃u
(
euu

c
ref sgn(b) +

1

γ2
l̇

) (52)

Choosing

k̇u = γ1euu sgn(b), l̇u = −γ2euu
c
ref sgn(b) (53)

ensures

V̇ = −ame2
u ≤ 0 (54)

Thus it is shown that V̇ is negative semi definite, V has
an upper bound V (0) and bounded below by zero, i.e.
0 ≤ V (t) ≤ V (0). From the boundedness of V (t) and
(51), it is clear that eu, k̃u, l̃u ∈ L∞. ucref , the output of
the kinematic controller (8), is bounded, so ucref ∈ L∞. The
transfer functions of (41) are in L1, and it follows from [9,
p. 80] that u, um ∈ L∞. This means that all signals of (49)
are bounded and ėu ∈ L∞. From [9, p. 74] it follows that
since V (t) is bounded from below and non-increasing, it has
a finite limit as t→∞, denoted V∞. It can also be seen that

||eu||2 =

(∫ ∞

0

e2
u(τ)dτ

)1/2

=

(∫ ∞

0

− 1

am
V̇ (τ)dτ

)1/2

=

(
1

am
(V (0)− V∞)

)1/2

(55)
which is clearly bounded, so that eu ∈ L2. Finally, [9, p. 80]
shows that since ėu, eu ∈ L∞ and eu ∈ L2, then eu(t) → 0
as t→∞.

The results obtained show that the tracking objective of
making the output of the plant u(t) track the output of the
reference model um(t) is achieved. It does not, however,
guarantee that ku(t), lu(t) → k∗u, l

∗
u as t → ∞, i.e. the poles

of the plant may differ from those of the reference model. This

should be of less concern, since ku(t), lu(t) are bounded and
the true values of k∗u, l

∗
u are not of any real importance.

In a very similar manner the same results are found for ω.
A summary of the control laws are given in Table I.

A modification that was done to provide for a more robust
implementation was to add a small feedback loop to (53) to
get

k̇u = γ1euu sgn(b)− αku, l̇u = −γ2euu
c
ref sgn(b)− βlu

(56)
where 0 < α << 1 and 0 < β << 1.

TABLE I. Control Laws for The MRAC

Plant Reference Model Control Law

u = b
s−a

uref um = bm
s+am

ucref

uref = −ku(t)u+ lu(t)ucref ,
k̇u = γ1euu sgn(b)

l̇u = −γ2euucref sgn(b)

eu = u− um

ω = d
s−c

ωref ωm = dm
s+cm

ωc
ref

ωref = −kω(t)ω + lω(t)ωc
ref ,

k̇ω = γ3eωω sgn(d)

l̇ω = −γ4eωωc
ref sgn(d)

eω = ω − ωm

IV. SIMULATIONS AND REAL RUNS

Simulations were performed using Matlab/Simulink, while
real runs were performed on the robot shown in Fig. 4. The
dimensions of the robot are approximately c = 1.1 m and
d = 1.0 m using the notation from Fig. 2. The robot is
running Robot Operating System (ROS) and all controllers
were implemented in C++. The motor controller has a low
level PID controller that uses individual motor velocities as
setpoints, and motor acceleration can be saturated to ensure
slower dynamics. Without limits on acceleration the dynamics
were so fast that all controllers had equal performance. For
both simulations and tests on the real robot the following figure
eight trajectory was used:

xd(t) = re sin(2ωet)

yd(t) = re(cos(ωet)− 1)
(57)

For both simulations and real runs re = 0.6 m and ωe =
0.3 rad/s. The distance from wheel axle to h was cho-
sen to be a = 0.10 m. The simulated system uses θ =[
1.0 0.4 0.2 1.1 0.2 0.9

]T
and initial estimates θ̂0 =[

1.0 1.0 0 1.0 0 1.0
]T

are used for the dynamic and
adaptive dynamic controllers. The on-line parameter estima-
tion method was tested in simulations where θ is known to
ensure that the estimated θ̂ converges to its actual value θ.
It was found that θ̂ does indeed converge correctly while
attempting to track the figure eight, which means that the input
signal is sufficiently excited to ensure convergence.

A comparison of all controllers is shown in Fig. 8. The
estimated parameters during a real run are shown in Fig. 5
and Fig. 6. Controller inputs during a real run are shown in
Fig. 7. It is clear from Fig. 8 (a) and (e) that the kinematic
controller alone does not provide sufficient performance in this
case. The dynamic controller shows good performance given
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Fig. 4. A picture of the robot used for the tests. The robot uses a rear caster
wheel.
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Fig. 5. Controller gains for the MRAC during a real run. All controller gains
have initial values of 0.5.

fairly accurate estimates θ̂. The adaptive dynamic controller
appears to be able to improve upon the performance of the
dynamic controller as θ̂ adapts (shown in Fig. 6).

In Fig. 8 (i) and (j) the motor acceleration saturation limit
was increased to make the system a bit faster. It is interesting
that the MRAC improves greatly when the dynamics are faster,
while the adaptive dynamic controller has almost identical
performance to the case with slower dynamics.

V. CONCLUSION

Two different adaptive dynamic controllers for tracking a
trajectory were implemented on a differentially wheeled robot
and compared with non-adaptive kinematic and dynamic con-
trollers. The MRAC configuration, which the author has been
unable to find previous papers presenting real implementations
of, delivered the best performance of all controllers on a
system with fairly slow dynamics, while the other adaptive
dynamic controller had equal or better performance on a very
slow system.
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Fig. 8. Comparison of all the controllers with a relatively slow system and two selected runs on a faster system.
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Abstract

Visual Odometry (VO) is increasingly a useful tool for robotic navigation in a variety of applications,
including weed removal for agricultural robotics. The methods of evaluating VO are often computationally
expensive and can cause the VO measurements to be significantly delayed with respect to a compass, wheel
odometry, and GPS measurements. In this paper we present a Bayesian formulation of fusing delayed
displacement measurements. We implement solutions to this problem based on the unscented Kalman
filter (UKF), leading to what we term an unscented multi-point smoother. The proposed methods are
tested in simulations of an agricultural robot. The simulations show improvements in the localization
RMS error when including the VO measurements with a variety of latencies.

Keywords: Robot Navigation, Sensor fusion, Agricultural Robotics

1 INTRODUCTION

Figure 1: A prototype of the Asterix robot.

In recent years Agricultural Robotics has been an in-
creasingly important research topic, and there are nu-
merous publications presenting unmanned ground ve-
hicles and robot platforms, (Bogue, 2016; Biber et al.,
2012; Jørgensen et al., 2007; Molstad et al., 2014; Grim-

stad et al., 2015, 2016). Most agricultural platforms
rely heavily on GPS for navigation. RTK GPS sys-
tems may provide localization accuracy of ±0.02 m un-
der ideal conditions. The cost of an RTK GPS system
may hinder the adaption of mobile robots in agricul-
ture, and the signal conditions often reduce the posi-
tion accuracy.

Visual-aided navigation may provide several bene-
fits for agricultural robots, and lessen the dependence
on expensive RTK GPS systems. The work presented
here has sprung out from a research project by Adigo
AS, in cooperation with the Norwegian University of
Science and Technology and the Norwegian Institute
of Bioeconomy Research (NIBIO).

An agricultural robot for high precision drop-on-
demand herbicide application for row crops is under
development. The robot uses a downward facing cam-
era to identify weeds and a nozzle array applies the

doi:10.4173/mic.2017.1.1 c© 2017 Norwegian Society of Automatic Control
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herbicide as the robot passes over them, (Urdal et al.,
2014; Utstumo and Gravdahl, 2013; Utstumo et al.,
2015).

Weed control is a vital part of agriculture, and au-
tonomous robotic weed control has become an impor-
tant research area. The review by Slaughter et al.
(2008) illustrates the potential of robotic weed control,
and presents several similar systems to the one which
is the focus of this paper.

The same images used for plant classification may
also be used to compute visual odometry (VO) mea-
surements. In this paper, VO measurements are as-
sumed to be frame-to-frame rotation and displace-
ments that the robot has undergone between two over-
lapping images.

The VO technique considered finds a set of match-
ing features in two subsequent images. These features
are used to reconstruct the movement of the camera
by minimization of the transformation that matches
one set to the other. This is similar to wheel odometry
(WO) which uses the wheel encoders to reconstruct the
movement of the robot. Unlike the WO measurements,
VO will be unaffected by any skidding and sliding of
the wheels. Both VO and WO are relative displace-
ments with respect to a previous state of the system.
Absolute measurements, such as GPS, provide mea-
surements with respect to a known coordinate frame.

The feature identification and matching algorithms
introduces a latency between when a picture is taken,
and when the measurement becomes available. We re-
fer to this time as processing delay. This processing
delay may be more than one second in non-optimized
implementations, to an order of milliseconds in imple-
mentations as described in Forster et al. (2014), or with
dedicated hardware and tight coupling of inertial and
VO measurements as in Goldberg and Matthies (2011).

The processing delay for the VO measurement is
characteristically different from the other available sen-
sors such as compass, GPS, wheel encoders, which are
considered instantaneous in this paper. The process
of detecting and matching feature points, and solving
for the displacement measurement, is not necessarily
fixed. It may vary with the number of feature points
processed.

The camera is triggered by a hardware GPIO line.
This allows us to know when a picture is taken with
the same time reference as the GPS, compass and other
measurements.

For the fusion of relative displacement measure-
ments, a method called stochastic cloning (Mourikis
et al., 2007) was considered. This method “clones”
the state estimates when a measurement should have
arrived, augmenting the state vector used by the fil-
ter, thus maintaining the cross-covariances between

the current state of the system and the time when
a measurement should have arrived. Practical exam-
ples of stochastic cloning can be found in Romanovas
et al. (2013) for visual-inertial/magnetic data fusion,
in Van der Merwe and Wan (2004) under the name la-
tency compensation, and in Mourikis et al. (2009) for
spacecraft entry, descent and landing.

Similar to Van der Merwe and Wan (2004), we use
the UKF as opposed to the EKF. The EKF often suf-
fers from providing covariance estimates that are lower
than the actual covariance, something which can be
very detrimental in precision agriculture where the de-
cision to spray or not may be directly based on the
covariance estimate. Instead we use the Unscented
Kalman filter (UKF), which through the unscented
transform (UT) deals more directly with non-linearities
by choosing a strategic set of sample points (Julier and
Uhlmann, 1997).

The main contributions of this paper are

• A presentation of a Bayesian framework for de-
layed displacement fusion, which build upon the
method of stochastic cloning.

• An implementation of a novel fixed-point
smoother termed unscented multi-point smoother.

• A description of the relation between stochastic
cloning and the proposed framework.

The remainder of this paper is structured as follows: in
Section 2 the Bayesian formulation of delayed displace-
ment measurement fusion is presented. The dependen-
cies in the basic model and the delayed displacement
scenario are presented with Hidden Markov models.
These are used to formulate a Bayesian filter capable
of fusing the delayed displacement measurement. In
Section 3 the unscented multi-point smoother is im-
plemented. First Gaussian assumptions are applied
to the filter algorithm, such that the algorithm is de-
scribed using an augmented state vector for a mul-
tivariate Gaussian distribution. Then the unscented
transform is briefly described for evaluating the nec-
essary expectations and covariances. In Section 4 the
robot simulation setup is described, followed by sim-
ulation results. In Section 5 potential future work is
outlined.

2 BAYESIAN FORMULATION
In this section we present the Bayesian formulation of
fusion with delayed displacement measurements, using
graphical models to indicate stochastic dependencies.

2
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xk-1

zk-1

xk xk+1

zk zk+1

... ...

Figure 2: Hidden Markov Model of the basic sys-
tem (1)-(2) with state vector x, and
measurement vector z. Green arrows
represent (1) and red represent (2).

2.1 Basic System
The basic underlying system considered in this paper
is

xk+1 = f(xk) + wk (1)
zk = h(xk) + vk (2)
wk = N (wk; 0, Qk) (3)
vk = N (vk; 0, Rk) (4)

where x ∈ RL is the state vector of pose, forward ve-
locity, and rotational velocity, z are the measurements
from the fast sensors, compass, GPS, and WO. The
process noise wk and measurement vk is considered
additive Gaussian. In Fig. 2 a Hidden Markov model
is presented where there is no delay on any measure-
ments, and there are no displacement measurements.
The green arrows indicate the transition model, (1),
showing how the next state is only conditioned on the
previous state. The red arrow indicates the measure-
ment model, (2), and how the likelihood of the mea-
surement is only conditioned on the current state. We
desire to find the probability density function (pdf) of
the current state given the measurements, p(xk|z0:k).
For the basic system this can be done with a recursive
Bayesian filter (Thrun et al., 2005).

2.2 Delayed Displacement Measurements
The delayed displacement measurement model is

dn = h̃(xl,xm) + ṽn (5)
ṽn = N (ṽn; 0, R̃n) (6)

where dn is the delayed displacement measurement de-
pendent on two previous states xl and xm, and ṽn is
Gaussian noise. The Hidden Markov model of the sys-
tem is given in Fig. 3. At time tl the first picture is
taken, and at time tm the second picture is taken. The
displacement measurement becomes available at time
tn. We desire to find the distribution p(xn|z0:n,dn).

xl

z l

xm

zm

xn

zn

... ...

dn

Figure 3: Hidden Markov model showing a de-
layed displacement measurement dn be-
ing dependent on the states xl and xm,
but arriving at tn. Green arrows repre-
sent (1), red arrows represent (2), and
blue arrows represent (5).

As the delayed displacement measurement is depen-
dent on two previous states, optimal fusion of dn re-
quires a joint distribution of xl, xm and xn.

In reality, the displacement measurements are de-
pendent on the underlying features’ poses relative to
the camera’s pose at time tl and tm. The simplifica-
tion of the displacement measurement as a function of
the states is based on Mourikis et al. (2007).

With an initial distribution p(x0), from t0 until tl,
the measurements z0:l are fused iteratively using the
recursive Bayes filter up to p(xl|zl). From there on
the filter must maintain xl. This can be done by aug-
menting the state vector by a “clone” xc

l of xl at time
tl. This leads to a joint density as

p(xl,x
c
l |zl) = p(xc

l |xl)p(xl|zl) (7)

where p(xc
l |xl) is a Dirac delta distribution. Thus,

even if p(xl|zl) is Gaussian, the joint density will not
be Gaussian unless a regularization constant ε is used.
Under Gaussian assumptions,

p(xl,x
c
l |zl) = N (xc

l ;xl, εI)N (xl; x̂l|l, Pl|l). (8)

A just as straightforward, and in principle more gen-
eral, solution to the delayed fusion problem follows
from “extending” the state vector when the first pre-
diction after time tl is done:

p(xl,xl+1|zl) = p(xl+1|xl)p(xl|zl) (9)

which under Gaussian assumptions is

p(xl,xl+1|zl) =
N (xl+1; f(xl), Ql)N (xl; x̂l|l, Pl|l). (10)

3
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This is referred to as extending, and occurs as an al-
ternative to prediction at timestep tl+1. In this spirit,
we can make further extensions as required. In par-
ticular, we also extend at time tm+1 to arrive at the
joint distribution p(xl,xm,xm+1|zm), which, when it-
eratively fusing z with a recursive Bayes filter leads to
p(xl,xm,xn|zn).

When a picture has been taken at a timestep, the
next predict step in the filter is replaced with an ex-
tend step. A system where the camera is not synchro-
nized with the filter will face the additional challenge of
estimating the clock synchronization and trigger time.

With the joint distribution p(xl,xm,xn|zn), the
delayed displacement measurement dn is fused using
Bayes theorem according to

p(xl,xm,xn|zn,dn) =
µp(dn|xl,xm)p(xl,xm,xn|zn) (11)

where µ is the normalization constant and p(dn|xl,xm)
is the likelihood of the displacement measurement.
Note that the likelihood is specified conditional on both
xl and xm, but not on xn. If no other displacement
measurements depend on the states xl and xm, the
states are marginalized from the joint distribution by

p(xn|zn,dn) =∫

xl

∫

xm

p(xl,xm,xn|zn,dn)dxmdxl (12)

which under Gaussian assumptions is simply done by
omitting the parts of the expectation vector and co-
variance matrix associated with xl and xm.

In Alg.1 the delayed displacement fusing filter algo-
rithm is outlined. This algorithm is a Bayesian on-
demand smoother. When a picture has been taken,
the state vector is extended with the predicted state.
And after updating with a displacement measurement,
any unnecessary old states are marginalized. The list
of state indices when the pictures have been taken is
denoted K. The set N contains the current index i
only if a displacement measurement is available. The
augmented state vector xS contains all the states main-
tained in the joint distribution.

The purpose of the list S is to keep track of the
corresponding state indices. In the algorithm ∪ is used
to append an index, and \ is used to remove indices.
The function ind(d) returns the indices associated with
a displacement measurement d (e.g. l and m) that
can be marginalized. The function ind and the list
S are used to handle the case when a picture is used
for more than one displacement measurement. This is
generally the case, as an image generates displacement

Algorithm 1 Bayesian delayed displacement fusion
Require: p(x0), K, N

1: S ← {0}
2: for i = 1 to i =∞ do
3: Predict:
4: if i ∈ K then {picture taken}
5: p(xS ,xi|z0:i−1) = p(xi|xi−1)p(xS)
6: S ← S ∪ {i}
7: else
8: p(xS ,xi|z0:i−1) =∫

xi−1
p(xi|xi−1)p(xS)dxi−1

9: S ← S \ {i− 1}
10: S ← S ∪ {i}
11: end if
12: Update:
13: if i ∈ N then {displacement available}
14: p(xS |z0:i,di) = µp(zi,di|xS)p(xS |z0:i−1)
15: A← ind(di)
16: p(xi|z0:i,di) =

∫
xA
p(xS |z0:i,di)dxA

17: S ← S \A
18: else
19: p(xS |z0:i,di) = µp(zi|xi)p(xS |z0:i−1)
20: end if
21: end for

measurements both together with the preceeding and
the succeeding image.
K is updated by the camera triggering before each

iteration and N is updated before the update step by
the VO module indicating a displacement measurement
being ready. The filter acts similar to a fixed-point
smoother with the capability of formulating the points
to be smoothed on-demand, a “multi-point” smoother.

3 UNSCENTED MULTI-POINT
SMOOTHER

In this section we look at an unscented multi-point
smoother based on Alg.1. First we describe more thor-
oughly what the Gaussian assumptions means for our
augmented state vector xS , then we present impor-
tant properties of the unscented transformation, and
show how the method in this paper relates to stochas-
tic cloning.

3.1 Gaussian Assumption
To implement Alg.1 with a UKF as the underlying fil-
ter, one must define how the extension method, (10),
under Gaussian assumptions, behaves for the aug-
mented state vector xS . Consider the case where we

4
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are extending at time tk

p(xS ,xk|zk−1) = p(xk|xS)p(xS |zk−1) =

N
([

xS

xk

]
;
[
E(xS)
E(xk)

]
,

[
Var(xS) Cov(xS ,xk

Cov(xk,xS) Var(xk)

])
.

(13)

The notation Cov(xS ,xk) is shorthand for

Cov(xS ,xk) =




Cov(xS1 ,xk)
...

Cov(xk−1,xk)


 (14)

where S1 indicates the oldest index in the list of state
indices S. The newest index is always k−1. The mean
and covariance of xS is maintained by the filter. We
must evaluate the parts associated with xk. In the
following section we describe E(xk) and Var(xk) with
the unscented transform. For the cross-covariances be-
tween xS and xk, (14), consider S+ to be a list of state
indices containing the same indices as S, with the last
index, k−1 replaced with k. Then the cross-covariance
between xS and xS+ is by definition

Cov(xS ,xS+) =



Var(xS1) . . . Cov(xS1 ,xk)
... . . . ...

Cov(xk−1,xS1) . . . Cov(xk−1,xk)


 . (15)

Hence, evaluating the cross-covariance between xS and
xS+ , and extracting the rightmost columns of size L,
gives us (14). This augmented system keeps all but the
last state the same between each iteration.

xS+ = fa(xS) =




xS1

xS2
...

f(xk−1)


+




0
0
...

wk−1


 (16)

zk = ha(x+
S ) + vk = h(xk) + vk. (17)

The augmented version of the displacement measure-
ment model h̃ must know which states in the aug-
mented state vector xS correspond to the imminent
displacement measurement

dn = h̃a(xS) + ṽn. (18)

3.2 Unscented Transform
In this section we briefly introduce the unscented trans-
form and the properties that need to be evaluated for
Alg.1.

The basic premise of the unscented transform is that
it is easier to approximate a probability distribution
than a nonlinear function (Julier and Uhlmann, 2002).
This is done by propagating a set of deterministically
chosen sigma-points through the nonlinear function.
For a nonlinear transformation

y = f(x) (19)

where x ∈ RL is a Gaussian random variable of dimen-
sion L. Sigma-points can be defined by the selection
scheme

Y0 = E(x) (20)
Yh = E(x) +

√
(L+ λ)Var(x)i (21)

Yj = E(x)−
√

(L+ λ)Var(x)i (22)
w0 = 1/(L+ λ) (23)

wh,j = 1/2(L+ λ) (24)

for h = 1, ..., L, i = 1, ..., L, and j = L + 1, ..., 2L + 1,
where λ is a tuning parameter defining the spread of
the sigma-points around the expected value (Van der
Merwe, 2004).

The subscript i of the matrix Var(x) denotes its ith
column vector. From Van der Merwe (2004), under the
Gaussian assumption, the mean, covariance and cross-
covariance are constructed from the sigma-points by

E(y) =
2L+1∑

i=0
wiYi, (25)

Var(y) =
2L+1∑

i=0
wi (Yi − E(y)) (Yi − E(y))T

, (26)

and

Cov(x,y) =
2L+1∑

i=0
wi (X i − E(x)) (Yi − E(y))T

. (27)

These methods allow us to evaluate the expecta-
tion, covariance, and cross-covariance of the augmented
system described in the previous section, and the un-
scented multi-point smoother can be constructed.

3.3 Remark on Stochastic Cloning
If the underlying filter is an EKF, then f(xk) ≈ Fkxk.
The cloning procedure of (7) without a regularization
constant constructs the augmented expectation state
vector x̂S|k, and covariance matrix PS

k|k of the filter
according to

5
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x̂S|k =
[
x̂k|k
x̂k|k

]
(28)

PS|k =
[
Pk|k Pk|k
Pk|k Pk|k

]
. (29)

This does not describe a Gaussian distribution as the
covariance matrix is singular. When performing the
prediction step, an UKF will fail as it relies on the
Cholesky factorization of the state covariance matrix,
which is only unique on nonsingular matrices. On the
other hand, an EKF can readily perform the prediction
step with an augmented transition model giving the
expectation state vector and covariance matrix given
by

x̂S+|k =
[

x̂k|k
Fkx̂k|k

]
(30)

and

PS+|k =
[
Pk|k Pk|kFT

k

FkPk|k FkPk|kFT
k +Qk

]
, (31)

which is identical to the extension method described
in this paper. It is interesting to note that by Schur’s
complement, we require non-zero process noise to en-
sure that the distribution remains Gaussian through
an extend step.

3.4 Remark on Smoothing

The filter algorithm, Alg.1, performs optimal fixed-
point smoothing of the augmented states under the
assumption that the model can be described by (1),
(2) and (5). If the transformations are highly nonlin-
ear, the unscented transform will also encounter prob-
lems. As such, it is debatable whether the smooth-
ing procedure is beneficial. When absolute measure-
ments are available from e.g. GPS or a compass, it
was observed that the covariance associated with an
old augmented state diminished to the point where the
delayed displacement measurement was assumed to be
more accurate than it actually was. To remedy this, for
the simulation with high process delay and low cam-
era framerate, the covariance associated with the oldest
augmented state had a lower threshold it could not de-
crease below. This was used on the pose of the robot
as these were the states affected by the absolute mea-
surements.

4 ROBOT SIMULATION
4.1 System
The robot is modeled as a unicycle-like robot with no-
slip conditions. The kinematic model for the system is
based on the model by Cruz and Carelli (2006), with
a change where the castor wheel is at the rear end of
the robot,

ẋ =




ẋ
ẏ

ψ̇
u̇
ω̇




=




u cosψ − aω sinψ
u sinψ + aω cosψ

ω
0
0




(32)

where x and y is the robot’s east-north position, ψ is
yaw, u is the forward speed, and ω is the yaw rate.
The kinematic model (32) was implemented by using
the forward Euler method and Gaussian process noise
was added:

ẋ = fc(x) (33)
xk+1 = xk + fc(xk)(tk+1 − tk) + wk. (34)

We assume that the onboard sensors are not de-
layed, except for the visual odometry measurements,
when setting up the observation mapping h(xk), (2).
We model the onboard RTK-GPS, compass, and wheel
odometry, as direct measurements of the position,
(x, y), the heading (ψ), and linear and angular veloci-
ties (u, ω) respectively. The measurements are assumed
to be affected by additive Gaussian measurement noise.

The measurement dn is rotated by the oldest picture
frame,

dn =
[
R(−ψk) 0

0 1

]

xm − xk

ym − yk

ψm − ψk


+ ṽn (35)

where R(·) is the 2D rotation matrix. Using the
simulink models and controller of Martins (2013) the
robot was simulated with a timestep of 0.05 s, follow-
ing a figure eight trajectory. As the robot is heavy
and slow moving, the process noise is negligible. The
acronym JUKF is used for the delayed displacement
fusing UKF in reference to the joint distribution. The
kinematic controller has an upper bound of 1.5 m/s in
these simulations.

For the simulations, the errors of the filter estimates
are 



x̃k

ỹk

ψ̃k

ũk

ω̃k




= xk − x̂k|k. (36)
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ψ
x

y

Figure 4: Simulation of the robot showing pose er-
ror with respect to time. Simulated with
τC = 3s and τD = 2s. Purple indicates
UKF, green indicates JUKF.

u
ω

Figure 5: Simulation of the robot showing velocity
error with respect to time. Simulated
with τC = 3s and τD = 2s. Purple indi-
cates UKF, green indicates JUKF.

4.2 Simulation Results
In Test 1 the time between images, τC , is 0.25 s, and
the processing delay, τD is 0.2 s. The RMS errors are
given in Tab. 1. The JUKF fusing the delayed dis-
placement measurements has a lower RMS error than
the UKF not fusing the delayed displacement measure-
ment.

In Test 2 the time between images is 2 s, and the
processing delay is 1 s. The RMS errors are given in
Tab. 2. The JUKF fusing the delayed displacement

Table 1: RMS errors of the simulation Test 1, τC =
0.25s, τD = 0.2s.

x y ψ u ω
UKF 0.272287 0.239938 0.089938 0.100554 0.045322
JUKF 0.040214 0.043980 0.034718 0.017865 0.032077

Table 2: RMS errors of the simulation Test 2, τC = 2s,
τD = 1s

x y ψ u ω
UKF 0.262771 0.233008 0.098997 0.101097 0.058464
JUKF 0.093007 0.115435 0.065567 0.051329 0.053759

measurement has a lower RMS error than the UKF
not fusing the delayed displacement measurement.

In Test 3 the time between images is 3 s, and the pro-
cessing delay is 2 s. The RMS errors are given in Tab.
3. See Fig. 4 for the error in pose with respect to time,
and Fig. 5 for error in velocities with respect to time.
The purple line is the UKF, the green is the JUKF.
Note that whenever a VO measurement is fused, the
error in JUKF decreases, causing a sawtooth effect.

In Test 4 the time between images is 5 s, and the
processing delay is 3 s. The RMS errors are given in
Tab. 4. In this test a covariance threshold was ap-
plied to the covariances associated with the oldest x,
y and ψ. Without the covariance threshold, the JUKF
did not have lower RMS errors than the UKF. At this
frame rate, the pictures are not expected to overlap
for the robot under typical field conditions. This test
was included to show that the algorithm show improve-
ment in the localization RMS error for cases beyond the
worst expected latencies.

5 Future Work and Discussion
The algorithm proposed in this paper handles a mild
case of out-of-sequence measurements, in the sense that
displacement measurements are only processed after
several GPS and compass measurements have been
processed, i.e. out-of-sequence. The key to handling
this is the ind function, declaring which augmented
states are to be marginalized.

In the simulations presented here, we have only con-
sidered GPS and compass measurements in addition to
VO. In practice, most platforms will also have inertial

Table 3: RMS errors of the simulation Test 3, τC = 3s,
τD = 2s

x y ψ u ω
UKF 0.251910 0.249378 0.099966 0.101343 0.058235
JUKF 0.138441 0.117433 0.081633 0.072851 0.056340
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Table 4: RMS errors of the simulation Test 4, τC = 5s,
τD = 4s.

x y ψ u ω
UKF 0.278994 0.252959 0.098941 0.102308 0.057945
JUKF 0.265563 0.244570 0.09856 0.097869 0.057328

sensors available, which may be included in the mea-
surement model. When using MEMS sensors, it would
also be natural to include the gyro and accelerometer
biases in the filter.

Finally, this work employed a full-state represen-
tation as opposed to an error-state representation,
which has been used for visual odometry as described
in Mourikis and Roumeliotis (2007). In continua-
tion of this research, it may be interesting to investi-
gate how error-state smoothing relates to the Bayesian
paradigm.

6 Conclusion
This paper has proposed a Bayesian framework for the
fusion of delayed displacement measurements. This led
to a multi-point smoother capable of defining fixed-
points to be smoothed on demand according to the
GPS, WO, and compass measurements. This filtering
technique may prove useful in other scenarios where
fixed-points to be smoothed are formulated while the
filter is running.

By using the unscented transform, the filter was able
to use the smoothing effects of the fusion method for its
benefits. The filter maintains estimates of the state the
robot was in when a picture was taken, smoothed by
the absolute measurements. The VO fusing methods
improved the localization RMS error for a variety of
latencies.
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Abstract

Vegetables and other row-crops represent a large share of the agriculural production. There is a large variation in
crop species, and a limited availability in specialized herbicides. The robot presented here utilizes systematic growing
techniques to navigate and operate in the field. By the use of machine vision it seperates seeded vegetable crops from
weed, and treat each weed within the row with individual herbicide droplets, without affecting the crop. This allows for
the use of herbicides that would otherwise harm the crop and results in a significant reduction in herbicide use.

The robot is tailored to this purpose with cost, maintainability, efficient operation and robustness in mind. The three-
wheeled design is unconventional, and the design maintains maneuverability and stability with the benefit of reduced
weight, complexity and cost.

Indoor pot trials with four weed species demonstrated that the Drop-on-Demand system (DoD) could control the weeds
with as little as 7.6 µg glyphosate or 0.15 µg iodosulfuron per plant. The results also highlight the importance of liquid
characteristics for droplet stability and leaf retention properties. The common herbicide glyphosate had no effect unless
mixed with suitable additives. A field trial with the robot was performed in a carrot field, and all the weeds were
effectively controlled with the DoD system applying 5.3 µg of glyphosate per droplet. The robot and DoD system
represent a paradigm shift to the environmental impact and health risks of weed control, while providing a valuable tool
to the producers.

Keywords: precision agriculture, drop-on-demand, weed control, agricultural robotics,

1. Introduction

The production of row crops represent a significant portion
of the overall food production in the world. This produc-
tion is composed of large variety of crops of which each
individual crop has a smaller volume. In contrast to major
crops such as corn, soy and cereal, the vegetable crops
have a smaller selection of available herbicides. In the past
20 years we have seen a significant increase in herbicide
resistant weeds (Heap, 2014), while the availability of her-
bicides has been reduced by regulations due to health and
environmental concern. The end result is an increasingly
challenging situation for farmers who are left with fewer
efficient herbicides.

Weed control is one of the most important factors in all
agricultural production. Weeds compete with crop plants
for moisture, nutrients and sunlight and will have a sig-
nificant negative impact on yield without sufficient weed
control. Typical weed control methods for row crops in-
clude a combination of pre-emergence herbicide application,

∗Corresponding author
Email address: trygve@adigo.no (Trygve Utstumo)

pre-emergence tillage, mechanical row harrowing and post-
emergence herbicide application - if a selective herbicide or
crop resistance is available, (Slaughter et al., 2008; Fenni-
more et al., 2016).

In 2008, the European Commission withdrew the approval
for several herbicides, among them herbicides with
Propachlor as the active ingredient (European Commission,
2008). The herbicide was a health risk and had been
documented contaminating ground water and harmful to
aquatic life. The consequence to farmers of some cabbages
and rutabaga was that they lost access to their most
effective herbicide. In Norway this spurred a joint project
with farmers and the Norwegian Extension Service in the
search for alternative weed control methods, which one
could say marked the start of the work presented here.

The weed that occur in between rows, inter-row weeds,
can be controlled by row-harrowing, flaming or shielded
spraying. Whereas the in-row weeds pose a greater chal-
lenge for the farmers. In lack of selective post-emergence
herbicides they are left with few other options than manual
in-row hoeing by hand, which is much more expensive than
conventional spraying.
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In the past 10 - 20 years we have seen a significant push
to bring new methods to the farmers to control in-row
weeds. And for transplanted crops, there are methods
available with vision-controlled in-row harrowing such as
the Garford Robocrop In-row weeder, Steketee IC Weeder
and F. Poulsen Engineering Robovator. The transplanted
crops are relatively sparse and allow for these methods, as
well as selective spraying where two notable examples are
the companies BlueRiver Technologies and Ecorobotix.

Seeded crops present a greater challenge as there isn’t
enough room in between crop plants to allow for a me-
chanical hoe to pass in and out of the crop row. Herbicide
application either requires a selective herbicide which does
not harm the crop, or a better resolution application to not
affect the crop. DoD herbicide application, Figure 1, is one
of the most promising technologies for controlling weeds
in the plant row (Fennimore et al., 2016; Slaughter et al.,
2008). The resolution in this paper is taken to the extreme
by controlling individual droplets of herbicide, Figure 1.

The essence of DoD spraying is to detect the weeds within
the plant row, and selectively shoot droplets of herbicide
on those weed leaves. By targeting only the weed leaves,
the crop and soil are left unaffected, which allows for the
use of broad spectre herbicides that would normally harm
the crop.

Figure 1: Visualization on Drop-on-Demand herbicide application.

Figure 2: The 2017 Asterix robot prototype in field trials in Central
Norway.

We have focused much of our attention to carrots, as we
consider it a good example of the more challenging crops.

It is a seeded culture which account for 6.25 % of Europe’s
harvested area for vegetables, with 2.6 million Ha. It is a
high value crop with a gross production value for Europe
above 3 billion USD in 2014 (FAO, 2014).

Carrot competes poorly with weeds especially in the early
stages, as documented by Swanton et al. (2010) in a field
trial in Ontario, Canada. The critical weed-free period
for carrots was found to be 450 growing-degree-days (3
to 6 weeks at 10 to 20°C), or until the carrot plants have
reached the six-leaf stage.

While there are commercially available products for in-row
mechanical hoeing, we are not aware of other commercially
viable projects providing a DoD weed control system. This
paper will present the newly developed autonomous robot
platform shown in Figure 2, and a novel system for drop-on-
demand (DoD) application of herbicide. Finally, successful
results from laboratory and field tests are reported.

We also present a system for flushing the valves, and han-
dling excess spray liquid.

2. State of the art

The available products for guided hoeing and selective thin-
ning are paving the way for further advances in automatic
weed control in speciality crops. Our attention will be
focused on precision-spray application targeting individual
weeds - a domain which is yet to see its first commercially
available solution.

One of the first demonstrations of a Precision-Spray robot
was by Lee, Slaughter, and Giles as early as 1999. They
developed a robot for controlling weeds in tomato crops.
The robot was equipped with an Cohu RGB camera which
information was digitized to 256x240 pixels at 8 bit per
channel. The processing was done by a 200 MHz Pentium
Pro CPU running MSDOS. The system recognized 73 %
of the tomato plants and 69 % of the weeds, and was able
to treat 48 % of the weeds at a speed of 0.8 km/h.

Nearly 20 years has passed since then, and while the robots
has become incrementally better, we are yet to see weeding
robots make an impact on the use of herbicides in agricul-
ture. A thorough overview of this field can be found in
Fennimore et al. (2016) or Slaughter et al. (2008), while
we here will focus on a few relevant technical aspects.

2.1. Drop-On-Demand herbicide application

A challenge presented by Lee et al. (1999) is to increase the
accuracy, precision and efficacy of the herbicide application.
This effort involves everything from the design of the droplet
forming mechanism, the fluid dynamics of the droplets,
the droplets retention on the weed leaves, the choice of
active ingredient, to the motion estimation and targeting
algorithm.
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Most of the previously presented systems for DoD herbicide
application has either used adapted industrial print-heads
(Lund and Mathiassen, 2010; Midtiby et al., 2011) or an ar-
ray of solenoid valves and needles (Søgaard and Lund, 2005;
Lee et al., 1999; Nieuwenhuizen, 2009) to form droplets.
There is also a presented paper by Basi et al. (2012) where
a pneumatic valve is presented for better dosing and for-
mation of individual droplets. The fluid dynamics of the
in-flight droplets has been investigated by Lund and Math-
iassen (2010) and Lund and Olsen (2010). They describe
the disintegration of droplets and the effects of altering the
viscosity and surface tension of the fluid. We expanded on
this and also explored the effect of the electrical control
signal to the solenoid valve on the droplet formation in our
experiments presented in Urdal et al. (2014).

Lund and Mathiassen (2010) and Lund et al. (2006) demon-
strated that herbicide droplets formulated with glyphosate
(27µg per plant) can effectively control Solanum nigrum
L., (Black Nightshade) a weed which is resistant to most
selective herbicides. Midtiby et al. (2011) presented a
simulated row crop trial where plants passed under the
system on a conveyor belt at 0.5 m/s. The system was able
to effectively control weeds larger than 11x11 mm, which
gave good results on Brassica napus L. (oilseed rape) and
to some extent Tripleurospermum inodorum(L) Sch. Bip.
(Scentless Mayweed). Koukiasas et al. (2016) demonstrated
that Galium aparine L. (Cleavers) is effectively controlled
with 19.3 µg of glyphosate per plant.

2.2. Leaf Classification

Weed and crop classification has largely followed the classi-
cal approach of segmenting plant material from the back-
ground soil, for subsequent classification based on shape,
color and texture features. Several systems have incorpo-
rated a Near-Infrared (NIR) channel to enhance the soil
segmentation, e.g.: Nieuwenhuizen (2009). These classi-
fiers has been demonstrated with high accuracy. They
are however highly reliant on shape features and do not
demonstrate satisfactory robustness when challenged by
overlapping leaves and irregularities such as specular re-
flection from water droplets. There has been much effort
invested in improving these algorithms (Fennimore et al.,
2016). One example is Haug et al. (2014), who was able
to circumvent the reliance on segmenting individual plants
by implementing a form of sliding-window classifier. As a
result, the classifier was robust to overlapping leaves.

In recent years there has been an important shift in Com-
puter Vision towards deep learning. In nearly all domains
we see classification tasks being taken over by deep con-
volutional neural networks (Deep CNN). These methods
are also making their way into weed detection. One out of
several examples is Milioto et al. (2018), who demonstrate
pixel-wise semantic segmentation into weed and crop.

2.3. State-of-the art in Agricultural Robotic Platforms

There is a significant body of research and industrial push
towards robotization in agriculture. There are philosophies
towards automating tractors, building specialized robots
for each task and towards making highly versatile and
modular robots. A selection of comparable robots that
have been presented for weed control is shown in Figure 3.

(a) DeepField Robotics BoniRob,
photo courtesy of Bosch AG

(b) Ecorobotix, photo courtesy
of Ecorobotix Ltd

(c) Thorvald II platform, photo
courtesy of Saga Robotics AS.

(d) AgBot II, photo courtesy of
Queensland University of Tech-
nology

Figure 3: A selection of other robot platforms presented in litterature.

Modularity has been uphold as an important design criteria
for the Armadillo (Nielsen et al., 2012), Naïo Dino from
Naïo Technologies and the Thorvald II platform (Grimstad
and From, 2017) which can be customized to different
configurations. Thorvald II, BoniRob, (Figure 3a and 3c),
and Naïo Dino have drive and steering on all four wheels.
This enables holonomic control of the robot: The robot can
navigate freely in all directions, handle tight environments
such as greenhouses and the front and rear wheels can
follow the same tracks through a turn. This comes at the
cost of having 8 motors for steering and drive.

The AgBot II shown in Figure 3d and presented by Bawden
et al. (2017) is a robot platform for weed control, set up
with differential drive front wheels and two rear castor
wheels. The design emphasizes modularity and ease of on-
site assembly of the system. A docking container covered
with solar panels provide the power needs for charging, and
the system has been tested with a range of chemical and
mechanical weed control implements (McCool et al., 2018).

A more minimalistic approach has been taken by the Swiss
company Ecorobotix who are working on a fully solar
powered robot, Figure 3b, which applies a micro-dose of
herbicide by two robotic parallel arms.

The systems described above are intended to be a represen-
tative selection, and not an exhaustive review of the field,
as there are several other systems that could have been
mentioned.
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3. System requirements and specification

In this section we will present the requirements for the
robot. We have performed experiments and data collec-
tion in cooperation with vegetable producers for ten years.
Through this work we have built up an understanding of
the challenges at hand and how a robotic system for weed
control can generate value for the farmer.

We have worked with producers of carrots, leeks, salad,
cabbages, bush beans and spinach in Norway and Germany,
while we have the most experience with carrots. The
farmers we have cooperated with run a combination of
conventional and organic production.

We envision the robot to be a tool for the farmer that
integrate well with their existing growing practices, that
does not require alteration on the cultivation practices.
With regards to in-row weeding, the challenge and need
is stronger with seeded cultures, than with transplanted
cultures. A requirement for our system is to work with
seeded row cultures. A set of design requirements are listed
in Table 1, and detailed in the following paragraphs.

Table 1: Main technical specifications of the robot in-row weeding
system

Description Value Unit
Vehicle mass 300 kg
Nominal speed 0.8 m/s
Transport speed 1.4 m/s
Nominal incline 5 degree
Max incline1 40 degree
Track width 1.6 - 2.1 m
DoD operation width 168 mm
DoD resolution 6 mm

1 Max incline for short time loads, e.g. trailer ramps,
thresholds etc.

3.1. Cultivation methods

We are using carrots as a proxy for a larger group of row
cultures with comparable cultivation methods. Carrots are
seeded in three rows on a flat lifted bed, or on two ridges
in between the wheel tracks, as illustrated in Figure 4.
Each row is typically double- or triple-seeded in carrot
cultivation, a triple row has typically 5 cm spacing between
the seed lines. The track width vary between producers,
i.e. the width from center of the left wheel to the center
of the right. One producer will typically run all their
equipment at the same track width and it is usually in the
range of 1.6 to 2.1 m. Some larger productions use wider
machinery for bed forming and seeding. Distance between
tracks are then triple or wider, apart with continuous beds
or ridges between. This is more common in transplanted

Track width Track width

Figure 4: Carrots are typically triple-seeded in three rows on a lifted
bed (left), or on two ridges between the tracks in the field (right).
The track width is the distance across the row, measured from the
center of the wheels of the machinery.

crops such as salads and cabbages, while it is also used by
some producers of carrots, turnips, spinach etc.

The system must have one DoD unit for each crop row, and
be height adjustable to adapt for the different cultivation
methods. The width of the crop rows and seed-lines define
the operational area for the DoD array. We need to control
weeds in the crop row with a sufficient margin to overlap
with the conventional tools for inter row weed control, such
as guided harrows and weed brushes.

3.2. Robot and operational requirements

Setting requirements for the robotic platform is more about
interpreting the producers needs, than it is an exact science.
Together with producers we have envisioned several use
cases and scenarios for the robot. The robot is designed to
be a highly specialized tool for in-row weed control, focused
on that task alone. The focus allows for a tailored and
lightweight robotic platform.

The design requirement for the robot is a gross weight under
300 kg, both with regards to minimizing soil compaction
and to limit the risk in human robot interaction. A target
nominal operation speed of 0.8 m/s was selected on the basis
of safety, area coverage and timing requirements imposed
on the DoD system.

The fields and operation area is normally relatively flat,
and we have set a nominal 5 degree incline specification.
This will allow sufficient headroom for the variety of fields,
and to some extent account for wet or high friction soil
conditions. The extreme climbing requirement at 40 degree
has been chosen to allow loading on and off trailers, and
climbing over thresholds to access the field.

The system should come at a low cost of adaptation. The
system does not require significant new infrastructure, and
the robot is able to operate continuously throughout a
working day. The robot is able to transport itself between
fields, and for longer distances it can easily be loaded on a
trailer with ramps.

3.3. Operator health and environment

The handling, loading and mixing of herbicides integrate
with existing work flows, and does not present additional
exposure of herbicides to the operator or environment.
Variable rate application presents a challenge to predicting
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the amount of herbicide required for a field. Excess herbi-
cide is to be diluted and dispensed according to label, or
transferred to a process for hazardous waste.

4. Robot design

The overall design goal is to make a specialized robot, best
adapted to the task at hand: Efficient weed control in row
crops. This implies that we have not attempted to design
a modular and versatile robot - rather a simple, robust,
maintainable and cost efficient system for DoD weed control
in row crops.

4.1. Three wheeled design

Figure 5: The off center 3-wheel configuration of the robot, allows for
a lighter design with fixed wheel suspension, and only two motorized
axes.

A common cost-effective robot design is using differential
drive front wheels and rear castor wheels as the robot
presented by Bawden et al. (2017). If you were to reduce
to one castor wheel, Figure 5, the conventional design is to
center the rear wheel. This is obviously not a good design
for row crops, as the wheel would damage the crop - one
could say it would trample the salad. Therefore we propose
to use one off-center rear castor wheel. This necessitates a
design with special care to weight distribution and stability.

A four-wheel design would require wheel suspension for
the wheels to maintain ground contact when moving over
uneven ground. The operational speed of the vehicle is
sufficiently low such that we do not require a wheel sus-
pension system from a vibration perspective. Three wheel
design are not common, and we believe they have been
disregarded in design of agricultural robot, as a symmetric
design would not be suitable for operations in row crops.

By designing the system with a asymmetrical three-wheel
configuration, we obtain a minimal wheel configuration
while maintaining the systems suitability for operations in
row crops. By designing the robot ground up, we obtain
a highly cost-effective robot with a minimum of movable
parts and good handling capabilities and stability.

4.2. Hybrid drive

The robot should be able to operate nearly continuously.
The power requirements are outside of what can be deliv-
ered by solar panels on the available surface area, and the
robot should require a minimum of additional infrastruc-
ture for its operation. Therefore the Asterix robot has been

designed as a hybrid vehicle with a 48 V DC backbone and
a four-stroke generator. The generator satisfies the average
energy demands, while a battery bank ensures sufficient
power during peak demand.

4.3. Concept for herbicide application

The resolution of the DoD array is determined by the crop
culture and types of weeds we seek to control. The system
is required to operate in the dense seed line of carrots,
and effectively control weeds at early stages, including
grass weeds with thin leaves. We have balanced these
requirements, the technical feasibility and cost of a nozzle
array, and arrived at a 6 mm lateral spacing of the DoD
nozzles.

The longitudinal resolution is governed by the velocity of
the robot and the DoDs maximum dispensing frequency.
We have designed the system to maintain a 6 mm resolution
at 0.8 m/s. The DoD modules are setup with 28 nozzles,
giving an operational width of 168 mm, which leaves a
margin for the row harrows towards the seed lines.

The spray controller and nozzle array is described further
in (Urdal et al., 2014).

4.4. Camera system and vision processing

The vision unit employs an Nvidia Jetson TK1, with an
embedded camera unit using the Omnivision 4682 4MP
sensor. The computer, camera and LED flash is embed-
ded in the DoD unit, making the unit fully modular and
compact design, Figure 6. The DoD modules are mounted
on a height adjustable beam, to account for variations in
height between the wheel tracks and crop rows.

The vision pipeline is illustrated in Figure 7. The raw
images are debayered to the RGB and HSV color space.
The Hue and Saturation channels are used for segmentation
of plant material from soil, which forms the mask. The
mask is processed to separate individual leaves, and reduce
noise. For each connected component in the resulting image,
we compute a feature vector based on shape, texture and
color. A support vector machine classifies each feature
vector as either weed or crop which is used to generate a
spray map. The corresponding crop map is used to mask
out a safety margin in the spray map.

The spray map is transferred to the spray controller, which
continuously estimates the relative motion by integrating
the wheel encoder signals received over CAN-bus. The
time-stamp of the spray-map, and the motion estimation
is used to localize the current position of the valve array
relative to the spray map. When a valve enters an active
cell of the spray map, the valve is triggered and a droplet
is dispensed on the weed, accounting for the droplet flight
path and vehicle velocity.
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Figure 6: The Blythii module is a self-contained module for the
machine vision and droplet application. The interface to the robot is
the supply and return line for spray liquid, 48 VDC, CAN-bus and
ethernet.

4.5. Navigation unit

The navigation unit is based on the same computer hard-
ware as the DoD modules, with the addition of peripherals
for connectivity through mobile LTE/3G, WiFi when avail-
able, a GPS module and a forward facing camera for row
detection. It also has an embedded CAN-bus module to
connect to the backbone and command the Brushless DC
(BLDC) motor controller.

The computer runs the open source Robotic Operating
System (ROS), and for localization we utilize the Extended
Kalman filter in the ROS package robot_pose_ekf. We
use the forward facing camera to detect the seed lines:
We assume a flat surface in front of the robot, and per-
form a homography transform of the image to obtain an
orthonormal perspective. The image is segmented using a
threshold on Green over Red*Blue channels, which become
the input for a Hough Transform detecting straight lines in
the image. We group the resulting line candidates to left,
center and right, filter away outliers. The remaining line
candidates are forwarded as measurements to a dedicated
extended Kalman Filter estimating the current crop row
location and heading in the global reference frame. The
process is illustrated in the screenshot from the ROS /
Gazeebo simulator in Figure 8. In our experience the flat
surface assumption holds well in most field conditions, for
the limited field of view that we operate with.

RAW HSV Mask Features

Computer Vision Pipeline

Debayering Segmentation
Feature

Extraction
Classification

Spray controller

Valve

Control

Spray

Map

Motion estimation

Wheel encoders

Spray

Map

Figure 7: Every 200 ms the Blythii module captures an image,
segments and classifies the image to generate a spray map. This
is transferred to the Spray Controller which estimates its motion and
excites the solenoid valves according to the spray map.

Figure 8: The simulator of the system is used to develop the row
following algorithms, and headland turning. The upper right shows
the view of the forward facing camera. Using a homography transform
with the assumption of a flat surface in front of the robot, we convert
the image to an ortonormal view as shown in the lower images.

We have previously presented a non-linear model predictive
control algorithm for row following Utstumo et al. (2015).
The purpose of the controller is to prevent the rear castor
wheel from damaging the crop, by limiting the steering
control input. The complex implementation and our expe-
rience with path following controllers presented in Dørum
et al. (2015), has led us to utilizing a simple line follow-
ing algorithm, which better handle the context switching
between row following and navigation in the headlands to
enter the next row.

4.6. Valve flushing and management of excess spray liquid

While we have performed experiments to test and improve
our precision and accuracy, we have experienced issues with
clogged nozzles and residues of the spray liquid inside the
valves. In the development, we have emphasized robustness
and repeatability of our valve system, while this has not
been given much attention in the literature.

The herbicides are to a varying degree corrosive liquids,
and will leave residues if they are left in the valve system.
The residue may prevent the valves from sealing properly,
and we are left with a leaking valve, potentially damaging
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crop plants. To obtain a robust and reliable DoD system
we have implemented measures to counter these effects.
Our most important tool in this context is to regularly
flush the valves, and ensure that the valves are clean when
left unused for an extended period of time.

Tank A

Tank B

Pump

Filter

Manometer

Return valve

DoD module connectors

Return line

Supply line

Flush line

Tank C

Figure 9: The spray liquid system supplies pressurized spray liquid
to the DoD modules. The liquid continuously circulates through the
DoD modules to ensure that the liquid is properly mixed.

In Figure 9, the system and its functionality is illustrated.
The spray liquid in the main tank is continuously circulated
by the pump. The liquid goes through a filter to remove any
particles that could clog the valves and nozzles. The liquid
circulates out using the supply line to all the DoD units,
where some of the liquid end up as droplets deposited on
weed leaves. The bulk of the liquid circulate back through
the return valve, which regulates the pressure in the system.

To flush and clean the valves and supply lines, we have
fitted the robot with two extra tanks. Tank A holds the
spray liquid, while Tank C holds clean water for flushing
the system. The return liquid from a flushing operation
goes to tank B.

With a variable rate application of herbicide, it is required
to do an estimate of the herbicide use through a field, and
minimize the number of refills and the remaining amount
left at the end of treating a field. Any remains in the
herbicide tank will either need to enter a waste manage-
ment system, or for some herbicides they may be properly
deposited on organically active soil, as specified by their
label.

5. Efficacy of single herbicide droplets

The objective of these pot trials was to find a liquid suitable
for DoD application and with good weed control properties
at the relevant growth stages, i.e. two - five true leaves.

5.1. Materials and methods

Table 2: In each of the two pot trials performed on February 4 (A)
and 12 (B) 2016, there was one control (water) and four different
herbicide treatments. The Active Ingredient (A.I.) of both Roundup
Flex Plus and Glyfonova Plus is glyphosate, while Hussar OD is based
on iodosulfuron. Each liquid was diluted in two steps, and the plants
were treated with 3 droplets of 1.1 µg volume each.

Trade name A.I. 1. 2. A.I. Dose
conc dil. dil. conc plant

g/L % % g/L µg

A11 -
A2 Glyfonova plus 360 2.8 2.0 0.20 0.61
A3 Glyfonova plus 360 2.8 25.0 2.52 7.56
A4 Hussar OD 100 10.0 0.5 0.05 0.15
A5 Hussar OD 100 10.0 10.0 1.00 3.00

B11 -
B2 Glyfonova plus 360 2.8 2.0 0.20 0.61
B3 Glyfonova plus 360 2.8 25.0 2.52 7.56
B4 Roundup Flex Plus 480 2.1 2.0 0.20 0.61
B5 Roundup Flex Plus 480 2.1 25.0 2.52 7.56

1 Same base solution as A- and B-, no A.I.

In these trials, we have focused on finding an appropriate
application and dose for four common weeds in carrot crops.
Tripleurospermum inodorum (L.) Sch. Bip, (Scentless May-
weed), is a challenging weed as it carries visual similarities
to the carrot leaves in early stages. In addition it is resis-
tant towards aclonifen, which is the most commonly used
herbicide in carrots, so it requires an additional herbicide,
like metribuzin, to be controlled by conventional spraying.
The first leaves of Chenopodium album L., (Fat-hen), have
a hairy and waxy-coated surface. Water droplets typically
bounce off its leaves, and it presents an important adhesion
test for our DoD system. Poa annua L., (Annual mead-
owgrass), is an annual grass weed and Stellaria media (L.)
Vill., (Common Chickweed), is an annual broadleaf weed.

The technical setup is analogous to what was presented by
Urdal et al. (2014). We are using the same control circuit
and the same solenoid valve and nozzle (INKX0514300A
and INZA4710975H) from The Lee Company.

This experiment was performed as two separate pot trials,
which were sprayed on February 4 (Trial 1) and February
12 (Trial 2) in 2016. As an extension to previous studies
on DoD herbicide application, which use glyphosate as
the active ingredient, we have included iodosulfuron in
our experiments. The herbicide solutions are described in
Table 2. In each of the pot trials, there was a control which
received three droplets of our base solution containing
only the blue dye and additives for liquid properties. Each
herbicide was first diluted with water, and then diluted with
the base solution, as described in Table 2. In total there
was 200 pots with one weed plant per pot. There was 5
pots for each combination of species and liquid formulation,
(4 x 10). There was one weed plant per pot, and there were
5 replicate pots for each combination of weed species and
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Figure 10: The fresh weight of the four weed species in the two pot trials, 25 (trial 1) and 17 (trial 2) days after herbicide treatment (cf. Table
2). A1 and B1 serve as controls, represented by the leftmost bar in each plot. The error bars are one standard deviation from the mean, and
the letters above indicate the grouping by the Tukey test. In trial 1 only the two treatments with iodosulfuron, A4 and A5, gave significant
reduction in weed biomass compared to the control, A1 (water only). In trial 2, the two treatments with high dose of glyphosate, B3 and B5,
gave significant reduction in weed biomass.

Figure 11: Chenopodium album L. after DoD application of liquid A3
with glyphosate. The liquid had very poor leaf retention properties,
and satellite droplets were formed mid-air. No liquid is visible on
the leaves, while the yellow liquid sensitive test strips highlight the
droplets by turning blue. The droplets have either disintegrated in-air
or bounced off the leaves.

liquid formulation. In total 200 pots (5 replicates x 4 weed
species x 5 liquid formulations x 2 trials) were included.

The droplet volume was measured to 1.16 µL by dispensing
1000 droplets into a container on a digital scale. This
measure was verified by dispensing 1000 droplets into a 1.5
ml graduated test-tube.

The above ground biomass for each pot was cut and weighed
on March 1. The fresh-weight datasets of the aboveground
biomass per species and trial were analysed separately us-
ing ANOVA GLM considering replicate pots and liquid

Figure 12: Stellaria media (L.) Vill. after DoD application of liquid
A5 with iodosulfuron. The three applied droplets have spread and
achieved good contact with the leaf.

formulations as random and fixed factors, respectively. The
resulting means were compared using Tukey test at sig-
nificance level = 0.05. Model assumptions like normal
distribution of residuals and equal variances were tested
by Anderson-Darling test and visual inspection of residual
plots.

5.2. Results and observations

Treatments A2 and A3 with glyphosate in the first trial had
poor droplet quality. We observed satellite droplets being
formed mid-air and poor leaf retention. Nearly no herbicide
was retained on the leaves as can be seen in the example
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in Figure 11. The A4 and A5 solutions with iodosulfuron
produced well formed droplets and had high leaf retention,
as shown in Figure 12. The liquid viscosity and surface
tension was adjusted by using high speed photography and
experience from earlier experiments (Urdal et al., 2014)
for the following pot trials. Four liquids with glyphosate
was tested in Trial 2, where the leaf retention and droplet
performance was good.

In trial 1, the glyhosate treatments, i.e. A2 and A3, gave no
weed control effect, whereas the iodosulfuron treatments,
i.e. A4 and A5, gave very good control Figure 10. The lack
of effect of the glyphosate droplets was unexpected.

The groups A2, B2, B4 and A3, B3, B5 have the same
active ingredient and dose, but different liquid properties.
The liquid formulation in A2 and A3 treatments had poor
leaf retention properties. After having revisited the liquid
viscosity and surface tension, the high doses of glyhosate
formulations in trial 2, i.e. B3 and B5, demonstrated a
good ability to control weeds. With 7.56 µg glyphosate per
plant we could effectively control the four weed species.

6. Field trial on efficacy of Drop-on-Demand

Figure 13: The robot at the start of the field trial. Only the center
of the three carrot rows was used in the experiment.

Throughout the past years the Asterix robots has been in
the field with a team of vegetable farmers in Norway. To
perform an end-to-end test with a new build of the robot
and to document the efficacy of the system, we set up a
trial in 2017.

6.1. Materials and methods

A part of the field was seeded with carrot in late August
after the regular harvest specifically for this trial. The trial
had two different treatments, herbicide (glyhosate) and
unsprayed control, and each treatment was replicated ten
times in a randomized block design. The plots treated were
2 m long, and were laid out along the crop rows. The areas
assessed were 12 cm wide and 1 m long. The field is shown

in Figure 13 and two plots before and after treatment are
shown in Figure 14.

The trial was designed to evaluate the effect of the DoD
system in the field. To eliminate errors from misclassifi-
cation, all weed and carrot plants were treated. The trial
represents an end-to-end test of the camera system, plant
detection, generation of the spray-map, motion estimation,
droplet target and shooting and the overall robot system.

The robot treatment was done September 28, and the
plots were surveyed for number of carrot and weed plants
(by species), by a skilled and experienced person in weed
assessment October 2, and October 19. The observed weeds
and their average occurrence in the plots on October 2 is
presented in Table 3, on average there was 548 carrot plants
per m2. Images were recorded of all plots with a hand-
held camera the two latter days (Figure 16). Since the
air temperature was relatively low, the four days between
robot treatment and first weed assessment was considered
unproblematic.

Table 3: The weeds observed in the field trial October 2 with their
occurence per m2 as an average over the 10 plots surveyed.

English name Latin name plants
m2

Scentless Mayweed Tripleurospermum inodo-
rum (L.) Sch. Bip.

186.4

Annual meadowgrass Poa annua L. 126.5
Fanweed Thlaspi arvense L. 73.5
Field pansy Viola arvensis Mur. 9.8
Prickly sowthistle Sonchus asper (L.) Hill 4.5
Purple Deadnettle Lamium purpureum L. 1.5
Fumitory Fumaria officinalis L. 1.5
Storksbill Erodium cicutarium (L.)

L’Hér.
0.8

We have utilized the images to estimate the relative green
index (RGI) of each plot, to evaluate the efficacy of the
treatment, in conjunction with the field observations. The
RGI is computed by first computing the Triangular Green-
ness Index (TGI) (Raymond Hunt et al., 2011) of each
pixel: TGI = 1.0Green − 0.39Red − 0.61Blue. We then
segment the images using the average Otsu threshold value
for all the images (Otsu, 1979). The RGI is the number of
pixels above threshold divided by total pixels.

6.2. Droplet volume and herbicide liquid

The spray mixture was the same as in treatment B3 of
the pot trial described in Table 2. The active ingredient
was glyphosate in a concentration of 2.52 g/L. The droplet
sizes was estimated by shooting 1000 droplets through 7
individual nozzles into an empty container on a digital
scale. The scale has a precision of 0.1 g, and the resulting
volume per droplet is estimated to 2.1 µL per droplet.
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Figure 14: Two uppermost images: same plot (plot No. 1001) before
and 17 days after glyphosate application with the robot. Two bottom
images: untreated plot (plot No. 1002) October 2 and 19.

6.3. Experimental results

On Oct 19, the control plots were considered to have a
substantial weed infestation, and the surveyor opted to
document the plots by images, rather than counting in-
dividual weeds. The treated plots were surveyed and the
only observed weeds were 12 seedlings of Poa annua L.,
(Annual meadowgrass), an average 10 plants per m2. It is
possible that the P. annua seedlings were too small to have
been detected by the vision system, or accurately targeted
by the DoD system at the time of treatment. Their size
however indicate that they have emerged after treatment.

We have analyzed the difference in RGI between the two
treatments (glyphosate and unsprayed control) by a pair-
wise Tukey method and 95 % confidence interval. Model
assumptions like normal distribution of residuals and equal
variances were tested by Anderson-Darling test and visual
inspection of residual plots. The two groups were signif-
icantly different, and on average the treated plots had a
reduction in RGI by 6.3 % and the untreated an increase
by 5.6 % of the image area, as shown in Figure 15.

The RGI measure will include leaves that have died, but still
green enough to pass the threshold. To evaluate the systems
ability to control weeds in the field, we rely on both the
RGI assessment and the field observations by the surveyor.
All the treated plots were surveyed after treatment, and P.
annua (Annual meadowgrass) was the only weed present.
The P. annua seedlings had likely emerged after treatment.
The RGI measures show an increase in green index for all
untreated plots, thus we consider the trial a demonstration
of successful weed control.

7. Discussion

The lab trials demonstrate that the four selected weeds can
be effectively controlled by DoD application of herbicide
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Figure 15: The change in relative green index in the treated and
untreated plots, with error bars of one standard error. The letter
indicate the grouping by Tukey HSD test. There was growth in the
untreated plots, and a reduction in green index in the treated plots.

with doses as low as 7.56 µg glyphosate or 0.15 µg iodosul-
furon, per plant. In field conditions we have demonstrated
total weed control with the system using droplets with 5.3
µg glyphosate content.

7.1. Reduced herbicide application

We sprayed approximately 10 % of the area with our droplet
spacing of 6 mm in the field trial, which is analogue to
an application of 191 gram glyphosate per hectare. The
label application for Glyfonova Plus ranges from 540 g/ha
to 2880 g/ha depending on the types of weeds and weed
pressure (Cheminova AS, 2015). This yields a herbicide
saving in the range of 73 to 95 % comparing with label
glyphosate application. Based on our findings from the lab
trials, we expect to reduce the droplet size to 1 µL and
that the weeds will cover less than 5 % of the area we treat,
reducing our glyphosate application rate to below 50 g/ha.

A more relevant comparison is towards the commonly used
selective herbicides in carrots today. The combination of
aclonifen and metribuzin is the most common application
in conventional production of carrots, with a maximum of 3
treatments with a total application of 1050 g/ha aclonifen
and 106 g/ha metribuzin.

A treatment scheme with the robot and the DoD system,
would consist of 2-3 treatments in combination with me-
chanical weed control in between the rows. Building on
the experience from the lab and field trials, we would esti-
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mate a total application of 50 - 150 g/ha glyphosate. This
represent a ten-fold reduction in applied herbicide.

7.2. Reducing environmental and health risks

The amount of herbicide used is the main factor regarding
the benefits towards health and environmental impact. All
the herbicides we are dealing with are toxic to aquatic
organisms, and to a varying extent they pose a health risk.
Metribuzin is toxic if swallowed, and aclonifen is known
to cause allergic skin reactions and is suspected of causing
cancer.

The herbicides we replace them with have less severe health
risks associated with them, even with the health impact of
glyphosate being under heavy debate it is clear that the
selective herbicides such as aclonifen and metribuzin pose
a greater health risk. Iodosulfuron and glyphosate does
not have health risk classifications beyond its potential to
causing eye damage.

A DoD system produces larger droplets than a regular
sprayer, and most importantly it does not produce aerosols.
This reduces the exposure to operators and people near
the field. The design of the robot and its implementa-
tion in the producers workflow will have to minimize the
operators exposure to the herbicides, and enable a safe
waste management system for excess herbicide and empty
containers.

7.3. Impact on need for manual weeding in vegetable crops

While the environmental and health benefits of the system
are significant, the DoD method will not see adaptation
with vegetable producers unless it provides value to the
producer. From experience we know that producers are
frequently having to resort to manual weeding. They may
be dealing with herbicide tolerant weeds or the weather con-
ditions have not allowed for efficient herbicide application.
Manual weeding is very much a candidate for automation,
it strikes two out of three on the phrase “Dull, Dirty and
Dangerous”. The labour is inherently seasonal, and find-
ing skilled labour willing and able to take on the work is
challenging - and vulnerable to changes in immigration
legislation as many are migrant workers.

A DoD robot can increase the quality of weeding, reduce
the reliance on seasonal workers and improve food quality
as the product is not affected by the herbicides.

8. Conclusion

The robot presented here has been designed with the spe-
cific task of Drop on Demand herbicide application in mind.
The robot is tailored to this purpose with cost, maintain-
ability, efficient operation and robustness in mind. The
three-wheeled design is unconventional, and the design

maintains maneuverability and stability with the benefit
of reduced weight, complexity and cost. The robot and
DoD-system is adjustable to account for differences in cul-
tivation methods, number of crop rows, track width and
height of the crop row. The forward facing camera, and
navigation unit enables row following through the field. A
combination of vision and GPS localization detects the end
of a row, and aids the navigation in the headlands.

The current DoD modules treat a width of 168 mm with
individual droplets of herbicide, spaced 6 mm apart. The
efficacy of the DoD method is investigated in lab trials with
four weed species, including one grass species and three
dicot species. The weeds are effectively controlled by 7.6
µg glyphosate, and 0.15 µg iodosulfuron per plant.

The robot effectively control all weeds in the field trial
with a ten-fold reduction of herbicide use. The field trial
serves to demonstrate that our DoD system is a capable
alternative to conventional spraying. The DoD system can
reduce the amount of herbicides used by more than 90
%, utilize herbicides with lower environmental and health
risks, reduce or even eliminate the need of manual in-row
weeding.
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Chapter 3

Concluding Remarks

The work presented here is part of the larger e�ort by Adigo AS and cooperat-
ing partners towards robotic in-row weed control. The robot and Drop-on-Demand
(DoD) system are to provide reliable in-row weed control and reduce the overall
environmental impact of weed control in row cultures. Robotic weeding has built
momentum over the past decade where a wide range of actors in academia and in
industry have been working towards more e�cient and sustainable weed control in
row cultures, (Fennimore et al., 2016). Producers of transplanted crops are success-
fully utilizing guided hoes and rotating disc implements like the Garford In-Row
weeder (Tillett et al., 2008), and are able to demonstrate an economic bene�t of
robotic weeding in transplanted crops (Fennimore et al., 2014). From experience
working with producers, we know that there is a strong pull for robotic methods
also for seeded cultures and the producers are eager to see the methods mature
and become available.

3.1 Localization and Navigation

The Non-linear Model Predictive Controller (NMPC) presented in Section 2.3
demonstrates the use of NMPC for navigation constrained to the crop rows, while
preventing the controller to sway the wheels into the crop row and subsequently
damage the crop. The framework is also suitable for implementing other constrains
for operation in other environments, such as greenhouses or con�ned spaces.

The adaptive controller and a Model Reference Adaptive Controller (MRAC)
presented in Section 2.4, can provide accurate tracking also with varying �eld
conditions and payload which will in�uence the controller response.

3.2 Drop-on-Demand Weed Control

The DoD modules treat a width of 168 mm with individual droplets of herbicide,
spaced 6 mm apart. The e�cacy of the DoD method is investigated in lab trials
with four weed species and 8 formulations of herbicide.

Iodsulfuron has not previously been presented as an active ingredient for DoD
application. It provides a valuable alternative to the much debated herbicide glyphosate.
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3. Concluding Remarks

Out of the liquid formulations presented in the pot trial in Section 2.6, the iodosul-
furon formulations demonstrated the best weed control capabilities. The weeds were
e�ectively controlled by 7.6 µg glyphosate, and 0.15 µg iodosulfuron per plant.

The robot e�ectively controlled all weeds in the �eld trial with an estimated
application of 191 g/ha glyphosate. This represent more than a ten-fold reduction
of herbicide use, and use of a herbicide with lower environmental and health im-
pact than the selective herbicides used today. The �eld trial serves to demonstrate
that a DoD system is a capable alternative to conventional spraying, and may re-
place manual weeding weeding where weeds have become resistant to the selective
herbicides.

3.3 Future Work

The work presented in this thesis represent an important contribution in the tran-
sition of DoD weed control from �a promising research concept� towards an appli-
cable tool for producers. The project successfully demonstrate the core technology
of DoD weed control by controlling weeds in pot and �eld trials. The presented
robot is designed for the task at hand, and a broader approach to the work process
has been considered, with the system for spray liquid handling as one example.

Section 2.1 and 2.5 are small steps towards utilizing visual odometry and in-
ertial measurements for localization. Autonomous operation in agriculture, most
commonly seen in tractor auto-steer systems and somewhat in autonomous mobile
�eld robots is heavily reliant on RTK GPS. The GPS systems provide su�cient
accuracy for row following, but an autonomous robot will have to rely on additional
sensors for situational awareness and collision avoidance.

The advances in Visual Inertial Navigation Systems (VINS) in the past 10
years has been driven by navigation for robotics, and in later years in autonomous
cars and in Virtual and Augmented Reality systems utilizing inside-out tracking.
These systems demonstrate high accuracy and high framerate tracking on low-
power devices. The author expects that we will see utilization of these methods
also in agricultural robotics in the coming years. This will aid agricultural robots
to achieve situational awareness and higher levels of autonomy.

3.4 The Asterix project

This thesis concludes the scope of the Industrial PhD project, while the larger e�ort
moves ahead led by Adigo AS. There is much work ahead on the path towards full
scale in-row weed control, and the project will continue to span the full width from
research and engineering to business development.

As part of the Horizon 2020 Work Program in the European Union, the SME
instrument funds high-potential innovation developed by small to medium enter-
prises (SMEs). The European Commision states that the program will support
groundbreaking innovative ideas for products, services or processes that are ready
to conquer global markets.
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3.4. The Asterix project

Figure 3.1: One of the prototype robots during a parsley �eld trial in 2018.

The SME instrument has received more then 46 700 applications and is highly
competitive. In the period 2014 - 2017 only 8 % of Phase 1 and 4.8 % of Phase 2
applications has received funding.

Adigo completed the SME Instrument Phase 1 in 2017 and in July 2018 the
Asterix project was selected for Phase II with a grant of 1.7 million ¿ and a total
budget of 2.4 million ¿ for the coming two years1. This will be invested towards
maturing the technology, piloting and preparations to commercialise the product.
The Horizon 2020 SME award is a strong indicator to the projects innovation
potential which also serves to attract additional investment.

The project continues with an increased velocity, and the robots will increas-
ingly be roaming vegetable �elds Figure 3.1. The robot receives attention from
producers all over Europe, who reach out to inquire about the robots availability
and applicability to other crops.

1EIC SME Instrument data hub, https://sme.easme-web.eu/?p=829983
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