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Summary

Nanopositioning concerns motion control with resolution down to atomic scale.
Positioning devices with such a capability have applications in numerous areas in
industry and science. Examples include scanning probe microscopy, adaptive op-
tics, hard disk drive systems, and the production and inspection of high-density
semiconductor designs. Scanning probe microscopy is perhaps the most prominent
example, as it is a versatile tool, which can be used for imaging, metrology, and
physical manipulation. In imaging applications, the achievable resolution, or accu-
racy, is the most important performance criterion. For metrology and manipulation,
trueness is also of importance. Additionally, the maximum achievable throughput,
or bandwidth, of nanopositioning systems is an important performance criterion,
as it lays the foundation for fast measuring and manipulation of physical proper-
ties; capturing processes at the time scale which they occur, reducing time and cost
related to metrology, and enabling fabrication of nanoscale features at an industrial
scale.

Nanopostitioning devices ubiquitously use piezoelectric actuators, as such actu-
ators enable fast and frictionless motion. Piezoelectric actuators are as such ideal
for high resolution positioning tasks. Positioning devices utilizing piezoelectric ac-
tuators typically exhibit lightly damped vibration modes, as well as hysteresis and
creep non-linearities. Lightly damped vibration modes limits the achievable band-
width, and hysteresis and creep limits the trueness of such devices. In order to
improve bandwidth and trueness, these phenomena can be countered using feed-
forward and feedback control.

Part I of this thesis presents an adaptive feed-forward technique to compensate
for the hysteresis non-linearity. It is based on the Coleman-Hodgdon model, and
provides an open-loop observer for the hysteretic behavior which can be used to
linearize the output of an actuator which exhibit hysteresis that can be modeled
with said model. The model provides a good description of hysteresis responses that
are symmetric, and the compensation method provides the best performance for
stationary periodic reference trajectory signals. It is also pointed out that hysteresis
can be interpreted as an uncertain gain and an input disturbance, and as such,
regular feedback control using high quality position sensors can also effectively
reduce the effect of hysteresis if the bandwidth is sufficiently high, and if the control
law is robust towards variation in low-frequency gain. The drawback is increased
position noise, due to sensor noise being amplified and fed back into to the actuation
signal.
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Summary

Part II concerns so-called damping and tracking control, and presents several
low-order control schemes to improve bandwidth by damping lightly damped vi-
bration modes, and by doing so, allowing for higher gain in the feedback control
law. A practical tuning procedure is introduced in order to find optimal control law
parameters, using an flatness criterion for the complementary sensitivity function.
The effect of quantization noise due to implementation on digital signal processing
equipment is investigated, and a particular simple damping and tracking control
law is introduced, which consists of an integrator and a low-pass filter. The low-
pass filter can be implemented using the anti-aliasing and reconstruction filters
needed when using digital signal processing equipment, and only the integrator
needs to be implemented digitally. The optimal tuning of this control structure
turns out to limit the bandwidth of the anti-aliasing and reconstruction filters,
and due to the limited bandwidth of the reconstruction filter, quantization noise is
effectively attenuated. This control scheme is then coupled with a repetitive con-
trol scheme, which provides good tracking of periodic reference signals. A simple
time-delay with positive feedback is a model for any periodic signal with a fixed
period, and the repetitive control scheme includes this model in the feedback path,
and can thus null any exogenous periodic signal with that fixed period to the error
signal, due to the internal model principle. A criterion for robust stability of the
damping and tracking control law combined with the repetitive control scheme is
presented, which ensures stability for a prescribed unstructured uncertainty incor-
porating variable gain due to, among other factors, hysteresis, and high-frequency
non-modeled dynamics.

Part III discusses adaptive control for arbitrary reference trajectory signals.
Instrumentation used in nanopositioning systems typically allow for output feed-
back only, and the application of the standard framework for output feedback for
dominantly linear systems, the model reference adaptive control scheme, is investi-
gated. The model reference adaptive control scheme requires the usage of an online
adaptive law in order to learn the parameter values of an uncertain model, and two
common parameter identification schemes, the recursive least-squares method and
the extended Kalman filter, are assessed for their ability to learn the parameters of
a mass-spring-damper system using experimental data recorded using a nanoposi-
tioning device with two different payload configurations in open-loop. The result is
a special pre-filter, which is demonstrated to improve parameter convergence. The
model reference adaptive control scheme is then assessed experimentally, and it is
demonstrated that a further refinement of the pre-filter is needed in order to obtain
reasonable parameter convergence in closed-loop. An integral adaptive law is used
in this case, in order to improve the convergence rate of the parameter estimates.

The main contributions of the thesis are methods for feed-forward and feedback
control that can achieve similar or better performance than existing methods, but
with lower complexity, which improves practical implementability.
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Chapter 1

Introduction

1.1 Nanopositioning

Nanopositioning is a neologism used to refer to positioning devices that have the
capability to generate mechanical displacements down to atomic scale resolution.
Positioning devices with such a capability have applications in numerous areas
in science and industry. Perhaps the most prominent example of motion control
with this type of resolution requirement is found in the field of scanning probe
microscopy [186]. Other application areas of high-resolution motion control can be
found in adaptive optics [217], in modern hard disk drive systems [4], and in the
production and inspection of high-density semiconductor designs [99].

Scanning probe microscopy is a collective term for a vast array of mechanical
surface interrogation and manipulation techniques, which can be done in either a
vacuum, air, or a liquid. Common to all the techniques is the need to position a
physical probe with extremely high resolution.

In modern scanning probe microscopy instruments, this is typically done by
using a lateral positioning mechanism to allow positioning of a point on a sample
under a separate, vertically actuated probe. The probe, typically attached to the
tip of a small cantilever, can then interact with the surface at that point. Due to the
versatility of scanning probe microscopy instruments, it has become an important
tool for surface imaging, metrology, and physical manipulation at the nanoscale.

The origin of the field of scanning probe microscopy, appears to be the in-
vention of the Topografiner [228]. The Topografiner measured the field emission
current between a probe and the surface of an electrically conducting sample, and
used it as a distance measurement. By scanning the surface in a raster pattern
it could then be used to build a topographic image of the surface with nanoscale
resolution. Since then, notable extensions of the operating principles introduced
by the Topografiner, include the scanning tunneling microscope [30], resolving fea-
tures with atomic resolution [31], the atomic force microscope [32], manipulation
of single atoms [72], and so-called video-rate imaging [11].

Imaging applications of scanning probe microscopy aim at collecting qualita-
tive information about the sample surface. Examples of such information can be
the topology, various optical, electrical, and magnetic properties, and mechanical
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1. Introduction

properties, such as friction and roughness. In scanning probe microscopy, these
properties are measured using specialized probes and various types of modulation
of the probe.

For imaging, the resolution, or precision, is one of the most important perfor-
mance specifications. This is because it is of importance to detect the smallest
possible features. For metrology applications, often the same surface information
is sought, but in this context, the trueness of the measured quantities is also of
importance. The trueness accounts for the closeness between the measured mean
value and the true value of the physical property. Trueness is also important for
manipulation applications, in order to repeatedly produce features according to
specifications.

For a survey of scanning probe microscopy imaging, metrology, and manipula-
tion applications and techniques, see [28, 41, 52, 59, 189, 205].

For applications of scanning probe microscopy, one of the main challenges is to
increase the bandwidth, or throughput, for both measurement and manipulation.
Higher throughput is needed to, e.g., reduce the amount of time used to generate a
set of measurements, capture the time evolution of physical processes, reduce costs
related to metrology in industrial processes, and to enable fabrication of nanoscale
features at an industrial scale [44, 58, 97, 191, 209].

1.2 Instrumentation

1.2.1 Positioning Devices
The positioning devices used in scanning probe microscopy systems span from
long-range voice-coil actuated devices [8, 19, 149] to shorter range devices using
piezoelectric actuators [29, 30, 120, 131, 183, 184, 200].

The mechanical design of nanopositioning stages provides fundamental limita-
tions to the achievable performance for any control scheme. The main performance
specifications for nanopositioning stages are the range and the dominant vibra-
tion mode, which preferably is the first vibration mode. The resonant frequency
of the dominant vibration mode is usually the limiting factor for the attainable
bandwidth. One reason is that it can be difficult to control higher-order vibration
modes, as they might be practically uncontrollable; having mode shapes and direc-
tions that are weakly coupled with the mounted actuator. Another reason is that
the control signal amplitude and the amount of power required to drive the system
above the dominant resonance can become prohibitive, as driving amplifiers will
eventually saturate [83, 137].

As a rule of thumb, there is an inverse relationship between range and band-
width, thus to achieve high bandwidth, the range is usually limited [44]. The band-
width can roughly be estimated to be equal to the frequency of the dominant
vibration mode of the mechanical structure.

The Topografiner and the scanning tunneling microscope used a tripod configu-
ration of piezoelectric stack actuators [30, 228]. The piezoelectric tube actuator was
later introduced as an improvement over this design [29]. Compared to the tripod
actuator, the tube actuator increased the achievable range, it had a higher domi-
nant resonant frequency, it experienced less influence from environmental vibration
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1.2. Instrumentation

disturbances, it had smaller physical dimensions, a simpler design which was easier
to manufacture and assemble, and it was less susceptible to thermal drift. As such,
it is perhaps the most proliferate mechanism in the first generations of scanning
probe microscopy systems [5]. A comprehensive analytical model for piezoelectric
tube actuators is presented in [74], and a finite-element model is discussed in [147].

Newer device designs use flexure guided mechanisms [120, 131, 200, 223, 225],
which provide further improvements; as flexure guided mechanisms allow for longer
range, a higher dominant resonant frequency, and experience less cross-coupling and
non-linearity in the actuation directions. The main disadvantages are a less com-
pact design, and in some cases a more elaborate manufacturing process, sometimes
requiring specialized machining tools, such as a wire electrical discharge machine.

Voice coil actuators typically allow for nanopositioning devices with longer
range, compared to devices using piezoelectric actuators [19, 51, 149]. These devices
can then accommodate for large samples and large surface features. Depending on
the design, these devices generally have a much lower bandwidth than devices using
piezoelectric actuators. The designs in [19, 51] uses flexures to guide the motion,
but for longer range motion, guides in the form of bearings is used [149], which
adds the additional problem of friction [8].

1.2.2 Positioning Devices using Piezoelectric Actuators

As piezoelectric actuators can produce large forces, provide frictionless motion,
and the resolution is only limited by instrumentation noise, they are ideal for high-
bandwidth, high-resolution positioning. As such, they are ubiquitous in nanoposi-
tioning devices. An introduction to standard piezoelectric transducer modeling is
found in Appendix A.

Mechanical vibrations

A positioning device utilizing piezoelectric actuators typically exhibits lightly damped
vibration modes. This is a disadvantage, as it limits the usable bandwidth because
reference signals with high frequency components will excite the vibration modes,
prohibiting accurate positioning. It also makes the device susceptible to environ-
mental vibration disturbances, such as sound and floor vibrations. An introduction
to standard mechanical vibration modeling is found in Appendix B.

Hysteresis and creep

The hysteresis and creep non-linearities in piezoelectric actuators is an additional
challenge. These are loss phenomena that prevent the system from having a linear
response, introducing bounded input disturbances dependent on the driving voltage
signal.

Creep is mainly a problem when applying feed-forward control for low-frequency
and static positioning, as the phenomenon can be observed as a slow creeping
motion after applying, e.g., a voltage step to the piezoelectric actuator. An example
of this kind of response is shown in Fig. 1.1.
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Figure 1.1: Piezoelectric actuator creep response to a voltage step.

Hysteresis is a problem for any time-varying reference signal tracking, because
it introduces a rate-independent lag when applying a voltage signal to the actuator,
and consequently to the resulting displacement of the piezoelectric transducer. This
lag can be interpreted as a bounded input disturbance to the system. Examples of
hysteretic responses to sinusoidal voltage signals are shown in Fig. 1.2a.

An introduction to common hysteresis and creep models is found in Appendix C.

Parameter and model uncertainty

The mechanical vibration dynamics of a point on a positioning device structure
can be modeled with very high accuracy using linear ordinary differential equations
for specific operating points. However, there are several sources of parameter and
model uncertainty.

Hysteresis, in addition to introducing an input disturbance, change the effective
gain of the actuator depending on the amplitude and frequency of the driving volt-
age signal [107, 171]. This is illustrated in Fig. 1.2b. The piezoelectric actuator gain
is also dependent on temperature, and reduces over time due to depolarization [25].

In addition, users typically need to position payloads of various masses, thus
resonant frequencies and the effective gain of the mechanical structure change as a
result [140].

The observed dynamic response is also affected by how well the sensors can
be co-located with the actuators [172]. Also, the dominant vibration mode of the
positioning device dynamics is usually designed to have a shape that provides
motion in a desired direction, and higher-order vibration modes are likely to have
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Figure 1.2: Piezoelectric actuator hysteretic responses to sinusoidal voltage signals.

shapes and directions that will make them difficult to control using the mounted
actuator. Thus, the model structure might be uncertain and it will have practically
uncontrollable modes.

1.2.3 High-Resolution Sensors

To enable high-resolution motion control, high-resolution sensors are necessary.
They are needed for system identification when utilizing feed-forward control, and
the performance of the sensor determines the precision and trueness achievable
when using feedback control.

The noise specifications for a sensor is in general much stricter when applied
in feedback control, as the noise will be fed back to the input and will increase
the overall noise level in the system. For system identification, noise is of less
importance, and can then often be reduced substantially by averaging.

The most common types of sensors found in nanopositioning devices are in-
ductive probes [49], capacitive probes [78, 85], piezoelectric transducers [78, 81,
84, 158], strain gauges [81, 192, 195], linear variable differential transformers [188],
optical linear encoders [20, 131], and the Michelson interferometer [149]. Vertical
control of the probe in modern scanning probe microscopy instruments is almost
exclusively done using an optical lever and a charge-coupled device [5].

System identification for the dynamic models is often done using displacement
sensors and dynamic signal analyzer instruments, applying swept-sine or broad-
band noise excitation signals. The first generations of scanning probe microscopy
instruments did not have displacement sensors for the lateral motion, but it is possi-
ble in some circumstances to perform system identification for the lateral dynamics
using vertical measurements from the probe [39, 43].
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1. Introduction

1.2.4 The Signal Chain
The instrumentation dynamics of the components in the signal chain of the control
system should also be considered. The positioning device response will be influ-
enced by the dynamics, saturation limits, and time-delays of amplifiers, sensors,
anti-aliasing and reconstruction filters, as well as digital-to-analog and analog-
to-digital converters. Some of these components exhibit significant non-linear re-
sponses which can introduce systematic errors and noise. Typical examples include
bad calibration of measurement instruments, which measurement principles exhibit
a non-linear characteristic, and noise due to sampling, quantization, and limited
numeric representation precision. These are general instrumentation and measure-
ment limitations, and an introduction can be found in [163].

The implementation of the control laws can typically be done using digital signal
processing equipment, or analog circuit elements. Digital control is the norm for
most modern control systems [9], although the control systems for early scanning
probe microscopy instruments was realized using traditional analog operational
amplifier circuits [130].

Microprocessors or microcontrollers for high-bandwidth digital control is lim-
ited by the attainable closed-loop sampling frequency. As a rule of thumb, the
maximum practical closed-loop sampling frequency for digital signal processing us-
ing microprocessors or microcontrollers is around 100 kHz. This excludes feedback
control for very high bandwidth mechanical systems [191].

In order to increase the sampling frequency, field-programmable gate arrays
(FPGA) can be used [120, 128, 184]. Field-programmable analog arrays (FPAA) is
an analog alternative to FPGAs, and allows for fairly high-order control laws to be
implemented using analog circuit elements, and thus avoids sampling and allows
for high-bandwidth control [129, 190, 199]. Regular operational amplifier circuits
can also be used for high-bandwidth control [78, 85].

The noise performance of a digital control system is limited by the noise floor
determined by both sampling frequency and quantization unit [145, 175, 220]. This
does not seem to be discussed much in literature pertaining to scanning probe
microscopy.

1.2.5 The Environment
Imaging with atomic resolution puts very high requirements on the environmental
conditions in which an instrument operates, even though enabling instrumentation
with sufficient performance is readily available. This includes suppressing mechani-
cal vibration noise from the environment, such as floor vibrations or sound, as well
as controlling ambient conditions, such at the temperature and humidity. Some-
times vacuum or special atmospheric conditions are necessary, as sample surfaces
can oxidize, or meniscus layers can form [41, 130, 229].

1.3 Control Schemes Survey

Motion control for nanopositioning devices appears to be a well-researched field.
The literature regarding scanning probe microscopy appear to be coarsely divided
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1.3. Control Schemes Survey

into research related to vertical and lateral positioning. For scanning probe mi-
croscopy, both vertical and lateral positioning is necessary.

Vertical positioning is often coupled with a specific surface measurement or ma-
nipulation technique [124]. For imaging applications, two common surface measure-
ment techniques are the so-called contact mode and intermittent contact mode [5,
186]. In both these cases, when applying feedback control, the control objective is
to enforce a constant distance from the surface, treating the surface topology as a
disturbance signal. In contact mode, the probe is dragged with constant interaction
force over the sample, where the force exerted on the surface through the probe is
due to the deflection of the cantilever. In intermittent contact mode the cantilever
oscillates with a constant amplitude, and the interaction force determines the am-
plitude. One of the main challenges for the control system design is therefore to
provide high-bandwidth control to suppress arbitrary disturbance signals, in order
to maintain a constant force or a constant oscillation amplitude.

For lateral positioning, the control objective is to provide accurate reference
trajectory tracking. The trajectory is often periodic, such as a triangle-wave signal,
in order to produce the raster pattern needed in imaging applications. Many control
schemes for lateral positioning are therefore geared towards providing accurate
tracking of such signals.

1.3.1 Feed-Forward Control
Inversion techniques

Feed-forward motion control can provide very good tracking results, if accurate
and invertible models can be found for the system to be controlled. For stable,
minimum phase linear systems it is especially straight forward, as it is in princi-
ple possible to obtain perfect tracking by inverting the model of the system and
by applying a sufficiently smooth reference trajectory. In the first generations of
scanning probe microscopy instruments, feed-forward control was used for lateral
positioning. The control signal was then generated simply by using a proportional
reference signal based on the DC-gains of the system, which did not provide any
compensation of creep, hysteresis, and mechanical vibrations [44]. This is sufficient
for low-bandwidth reference trajectories and imaging, where artifacts due to creep
and hysteresis can be removed in image post-processing [20]. However, very good
tracking performance can be achieved for positioning devices using piezoelectric
actuators when utilizing feed-forward control, when combining inverse models of
the hysteresis, creep, and the mechanical vibration dynamics [50, 137, 177].

There are several examples of applying the inverse model of the mechanical
vibration dynamics to reduce motion-induced vibrations [48, 49, 123, 140, 193,
197, 213, 230]. Some of these methods incorporate various optimization methods
in order to deal with parameter and model uncertainty, non-minimum phase zeros,
to limit the control effort, and to handle only partially known reference signals.

Feed-forward inversion and linearization of hysteresis is most often done using
the Preisach model [50, 212], or the Prandtl-Ishlinskii model [116, 159]. Another
class of hysteresis models, called Duhem models, have found some use, such as
in [154], where a static map derived from the Coleman-Hodgdon equations is used.
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Feed-forward inversion of creep has also been investigated, using either static
maps or linear ordinary differential equations [50, 116, 117, 159].

Trajectory generation

Another approach to reduce motion induced vibrations, is input shaping, where
instead of using the plant inverse, the reference signal is chosen or modified in a
manner which avoids excitation of lightly damped vibration modes. In this case,
information about the mechanical vibration dynamics can be used either to reduce
the frequency content of the reference signal, or to shape it to use the dynamic
response of the positioner to good effect. Some examples are found in [83, 200].
Work has also been done in order to reduce dynamic excitation by using sinusoidal
scanning [22, 108, 216], and to use variable resolution in order to reduce the amount
of time needed to cover a sample [10, 40].

1.3.2 Feedback Control
Feedback control can provide better tracking performance when combined with
feed-forward control, since feedback control reduces the sensitivity to unknown
disturbances and plant uncertainties for the controlled system. The main disad-
vantage is the increased noise level due to sensor noise feedback.

Model-based control

Modern model-based control for output feedback on linear systems is commonly
done within the H∞-synthesis framework. It is perhaps the most practical frame-
work for synthesizing robust control laws for arbitrary linear systems, as it guar-
antees a solution to the control design problem by convex optimization [206]. As
such, one would expect that control laws based on H∞-synthesis to be extensively
explored for nanopositioning systems, and several results can be found in the liter-
ature [138, 187, 188, 192, 192, 194, 196, 198, 201, 211, 226]. Polynomial based, or
pole-placement, control [94, 111] has also found some use [14]. Other model-based
control schemes, such as the linear-quadratic-gaussian regulator [94], or model ref-
erence control [94, 111], does not seem to have been applied to nanopositioning
systems. However, such control schemes can be seen as a subset of control schemes
derived using H∞ or H2-synthesis.

Fixed-order, fixed-structure control

Traditional feedback control is often considered to be concerned with the appli-
cation and tuning of the proportional–integral–derivative (PID) control law [17].
For scanning probe microscopy systems, it is the standard choice for vertical con-
trol [5, 194]. For lateral control in later generations scanning probe microscopy
systems, proportional–double-integral–derivative (PIID) control laws and variants
thereof seem to be common, where double integral action is sometimes used to
obtain asymptotic tracking of the flanks of a triangle signal, due to the internal
model principle [20]. In order to increase the bandwidth and asymptotic tracking
performance for these systems, the control laws have sometimes been augmented
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with notch filters, feed-forward control, and by using limited derivative and integral
action, also known as lead-lag control [6, 20, 75, 148, 187, 188, 194, 211, 231].

Since lightly damped vibration modes is the main problem for high-bandwidth
tracking control, the sensitivity due to these modes can be reduced by using the
actuator to increase the damping in the structure.

There exist several control schemes for introducing damping in active struc-
tures. These include fixed-structure, low-order control laws such as positive posi-
tion feedback [76], integral force feedback [174], passive shunt-damping [96], res-
onant control [170] and integral resonant control [13]. For co-located sensors and
actuators, many of the control laws have some good robustness and stability prop-
erties due to positive-realness or negative-imaginariness for certain input-output
pairs [166]. A few damping control schemes using displacement feedback combined
with feed-forward control have been investigated in [15, 26, 179, 202].

Piezoelectric actuators, or transducers, have a so-called self-sensing property,
since any piezoelectric transducer can be used both for actuation and for sensing.
The production of charge when a stress is applied is called the direct piezoelectric
effect, and the production of strain when an electric field is applied is called the
converse piezoelectric effect. By using the charge produced when operating the
actuator, damping can be introduced without additional sensors [12, 82, 127]. The
main advantage of this technique is that there is very little, or no, increase in noise
due to sensor noise feedback.

By using so-called damping and tracking control schemes, reference tracking
performance can be further improved. This is done by coupling a damping con-
trol scheme with an integral control law [14, 78, 85]. The main reason for the
increased performance is that a reduction of the dominant resonant peak of the
system leads to an increased gain margin, enabling much higher gain to be used for
the disturbance-rejecting integral control law [78]. Due to the increased disturbance
rejection, the adverse effects of creep and hysteresis can be reduced significantly.
Environmental and other disturbances should also be reduced.

1.3.3 Other Approaches
Learning-type control

In many applications of nanopositioning devices, reference trajectories and distur-
bances are periodic, or repetitive. This includes, e.g., tracking of raster patterns,
producing a series of identical features in a manufacturing process, or measuring
surfaces with regularities in the topography.

Iterative learning control is a method that attempts to use the error signal
produced by successive periods of a reference signal to produce a feed-forward
control signal that will invert the dynamic response of a systems, and cancel any
deterministic disturbances [35, 160]. There are several examples of the method
being applied to nanopositioning systems [36, 43, 101, 103, 122, 135, 141, 214,
221]. In many of these cases, the method can provide practically perfect reference
tracking.

Repetitive control is another control scheme that is tailored to provide small
errors when using periodic reference signals, or in the presence of periodic distur-
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bances. It is based on the internal model principle, and thus operates by embedding
a model of periodic signals in the control loop [98]. Due to the internal model princi-
ple, any exogenous signal that corresponds to the embedded model will be therefore
be nulled in the error signal. Examples of applications to nanopositioning systems
are found in [16, 155, 156].

Adaptive least mean squares filtering is also a technique that has also been
investigated for use on a nanopositioning device when applying periodic reference
trajectories [77].

Dual-stage actuation

In order to combine long range with high bandwidth, the principle of dual-stage
actuation can be used. When using this technique, the mechanical system is mod-
ified to use a high-bandwidth short-range actuator attached to a low-bandwidth
long-range actuator. The control schemes applied to these systems are often exten-
sions to the ones already mentioned, such as damping and tracking control laws,
and schemes derived using H∞-synthesis. Some examples of dual-stage actuation
can be found in [79, 105, 121, 128, 199].

Charge drive

With regards to the hysteresis in piezoelectric actuators, it is known that it appears
between applied voltage and induced charge [161]. By using a transconductance am-
plifier, or charge drive, rather than a voltage amplifier, the hysteresis can effectively
be eliminated [80, 118, 125].

Non-linear control

The vast majority of feedback control schemes in the literature are linear, likely
due to the fact that the dynamics of nanopositioning devices is dominantly linear
and open-loop stable. Non-linear feed-forward schemes are found in the form of
the hysteresis and creep compensation schemes already discussed. There are some
examples of classic non-linear feedback schemes applied to nanopositioning devices,
in the form of sliding mode control [21, 61, 142].

1.4 Topics of This Thesis

The thesis is divided in three parts. Each part is concerned with a particular topic
in control theory, and its application to nanopositioning devices. In this Section,
the objectives and rationale for the work behind this thesis will first be presented,
followed by a short discussion of the three parts.

1.4.1 Objectives and Rationale
The overall objective for the thesis work was to investigate and develop control
schemes for accurate trajectory tracking for nanopositioning devices, focussing
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on practical and implementable methods, as well as verification of the methods
through physical experiments.

It was therefore necessary to assemble laboratory facilities to experimentally
assess the performance of motion control schemes applied to nanopositioning de-
vices. The main guideline for acquiring laboratory equipment was that it should
preferably be generic and readily available from commercial manufacturers. It was
a goal that the laboratory set-up should resemble, as much as possible, a standard
instrumentation set-up for motion control. It was not a goal to aim for nanometer
accuracy or extremely high bandwidth, but rather have equipment that exhibited
the main characteristics for devices used in nanopositioning applications. As such,
it should be sufficient to verify the general operating principles for any developed
methods for motion control.

By the survey of the current literature on the subject of nanopositioning, it is
apparent that it is well researched, and many approaches for control have been
proposed, experimentally verified, and found to be performing well. In the context
of nanopositioning devices, applied control theory can broadly be categorized into
feed-forward control, standard feedback control using linear filters, and adaptive,
or learning, control. Here, feed-forward control chiefly deals with linear model in-
version and inverse hysteresis operators, feedback control is most often done using
H∞-synthesis or a combination of damping and tracking control laws, and adap-
tive control is done for periodic signals using iterative learning control, or similar
techniques.

A common characteristic for inverse hysteresis operators, iterative learning con-
trol, and control laws found using H∞-synthesis, is that the schemes yield good
results, but can be of high order and computationally demanding. Iterative learning
control is also limited to tracking of periodic reference signals. This may limit the
applicability as implementation may require specialized numerical tools, fast digi-
tal signal processing equipment, and an analog implementation can be practically
difficult or impossible. It is noticeable from the current literature that there is little
discussion on quantization noise, although control laws implemented using modern
analog circuit elements will provide superior noise performance compared to a dig-
ital implementation. Control schemes that are suitable for analog implementation
are the low-order damping and tracking schemes, but many of these schemes lack
tools for systematic tuning.

The above assessment of the state of the art in the field of nanopositioning
has therefore motivated the investigation of control methods that are simpler with
regards to implementation, but will produce similar performance to what has al-
ready been done. The resulting work concerns hysteresis compensation (inversion),
low-order damping and tracking control laws, robust low-order repetitive control,
and robust adaptive control for arbitrary reference signals.

1.4.2 Part I – Feed-Forward Control of Hysteresis

This part contains Chapter 2, which presents a simple adaptive hysteresis com-
pensation scheme. It is based on the material presented in [66, 69], but includes
more extensive analysis and discussion on the method, trajectory generation, the
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hysteresis phenomenon, and how to couple the method with an integral control
law.

1.4.3 Part II – Damping & Tracking Control
Several low-order damping and tracking control schemes are presented and dis-
cussed, as well as a repetitive control scheme for periodic reference trajectory track-
ing. It is based material found in [63] concerning passive shunt damping, material
found in [67] concerning optimal tuning of a modified proportional-integral (PI)
control laws and anti-windup when using a proportional-double-integral (PI2) con-
trol law, material found in [65, 71] concerning the implementation and tuning of all
the presented control schemes, as well as material found in [70] concerning robust
repetitive control.

Chapter 3 presents three damping and tracking control schemes already found
in the literature, as well as three control schemes based on passive shunt damping,
a modified integral control law, and model reference control (MRC). A tuning pro-
cedure for all the control schemes except the MRC scheme is presented. Extensive
analysis of the different control schemes is also presented.

Chapter 4 presents a robust low-order approach to repetitive control for nanopo-
sitioning, based partially on the modified integral control law from Chapter 3.

1.4.4 Part III – Adaptive Control
This part concerns adaptive control for arbitrary reference trajectories, using stan-
dard adaptive control theory in the form of model reference adaptive control
(MRAC). Chapter 5 is based on the material found in [68, 168, 169] concerning ex-
perimental parameter identification for a nanopositioning device, and Chapter 6 is
based on material in [64] concerning implementation issues for a standard MRAC
applied to a nanopositioning device. The work is mainly focussed on techniques
for obtaining parameter convergence, and it is demonstrated experimentally that
a pre-filter is needed to order to achieve this, both in open-loop and closed-loop.

1.4.5 Appendices
The appendices included are a collation of the standard theory on piezoelectricity,
mechanical vibrations, and hysteresis modeling. It is included for reference, as
it forms the theoretical foundation for the system modeling of nanopositioning
devices.
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Chapter 2

Hysteresis Compensation

2.1 Introduction

When applying piezoelectric actuators for low-bandwidth reference trajectory track-
ing, the largest error contribution comes from the hysteresis and creep non-linearities
[44, 58, 137].

Due to hysteresis, the average gain of a piezoelectric actuator depends on the
amplitude of the driving voltage [107, 171]. The observed piezoelectric response
also change over time, as the gain is dependent on temperature variations and
depolarization, as well as other factors [25].

Feedback control effectively reduces the sensitivity to such uncertainty, as well
as the disturbance introduced by hysteresis, if integral action is used [20, 138].
The reduction in error when using feedback control is dependent on the obtainable
closed-loop bandwidth, but it is well known from control engineering literature that
high bandwidth control also increases the overall noise in the system due to sensor
noise [34, 60].

By using a feed-forward scheme in addition to feedback control, better tracking
performance can be obtained. For reduction of the error introduced by hystere-
sis there are several methods based on inversion of the Preisach model or the
Prandtl-Ishlinskii model [50, 116, 137, 159, 212]. In general, performance when us-
ing feed-forward control depends directly on the accuracy of the model [57]. In the
presence of uncertainties and changing responses, online adaptation can be used to
improve the accuracy [114]. Such models tend to be large if an accurate descrip-
tion is required, and can therefore be computationally demanding, and this has led
to specialized field programmable gate array implementations in order to enable
inversion at high bandwidths [212]. An example of a standard implementation of
the discrete Preisach model can be found Appendix C.

Another class of hysteresis models, called Duhem models, have found some use
[154]. Here, the hysteresis compensation comes in the form of a static map derived
from a modified version of the Coleman-Hodgdon model. The main drawback of
using a static map to compensate for a dynamic effect is the difficulty in handling
arbitrary and unknown reference signals, as a dynamic response is both dependent
on initial values and the specific time evolution of an excitation signal.
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Driving a piezoelectric actuator using charge rather than voltage is known to
provide excellent suppression of hysteresis [80, 161]. Even though the hysteresis
disturbance can be suppressed, driving the piezoelectric actuator using charge will
not remove the uncertainty in actuator gain. Also, charge drives are often not
part of existing instrumentation configurations, as voltage amplifiers have been the
standard choice for positioning tasks when using piezoelectric actuators.

2.1.1 Contributions
An online adaptive non-linear feed-forward hysteresis compensation scheme is pre-
sented, based on the dynamic Coleman-Hodgdon model. It is suitable for symmetric
hysteretic responses and certain periodic reference trajectories. Being adaptive, the
method retains good accuracy in the presence of uncertainties in the response, both
with regards to the gain and the shape of the hysteretic response. The method has
low complexity and is amenable to real-time implementation.

Furthermore, experimental results are presented to verify and illustrate the the-
oretical result. The presented method is then applied to a standard instrumentation
configuration, utilizing a capacitive displacement sensor and a voltage drive. In the
experiments it is seen that the error due to hysteresis can be reduced by more than
90% compared to when assuming a linear response.

2.1.2 Outline
The Chapter is organized as follows. In Section 2.2 models for the ideal linear
response and for the hysteretic response are presented. In Section 2.3 two feed-
forward schemes are described, one assuming an ideal linear response, and a scheme
to compensate for the hysteretic behavior, based on the hysteresis model from Sec-
tion 2.2.1. The experimental results when applying the two feed-forward schemes
are presented in Section 2.4. Sections 2.6 and 2.7 describe the details of the deriva-
tion of the hysteresis compensation scheme. Some remarks on the passivity prop-
erties of the Coleman-Hodgdon model, interpreting hysteresis as an uncertain gain
and an input disturbance, and how to augment the presented scheme with an
integral control law are found in Sections 2.8, 2.9, and 2.10, respectively.

2.2 System Description & Modeling

In this section, models for the system are presented. The system at hand is a flexure
based nanopositioning stage with a piezoelectric stack actuator. Using an input
signal with a low fundamental frequency, the system response can be described
using a hysteresis model and a simple mechanical model.

2.2.1 Hysteresis Model
The hysteretic behavior of piezoelectric actuators is due to ferroelectric loss phe-
nomena. The hysteresis exhibited in such actuators will appear between applied
voltage and induced charge [161]. The force developed by the actuator will therefore
exhibit hysteresis when driving such actuators using voltage.
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A phenomenological model that can be used to describe the hysteresis in piezo-
electric actuators is the Coleman-Hodgdon model [18], which is given as

η̇ = βu̇− αη|u̇|+ γ|u̇|u , η(0) = η0 , (2.1)

where u is the input, and η is the output. The parameters must satisfy the condi-
tions α > 0, β > 0, γα > β, and γ

α ≤ 2β, in order for the model to yield a response
that is in accordance with the laws of thermodynamics [45]. This means that the
slope η̇ will have the same sign as the slope u̇, that is dη

du > 0. This is the same as
saying that the output will never move in the opposite direction of the input.

The input-output map generated by the model (2.1) has a symmetric station-
ary response to periodic inputs which are monotonically increasing and decreasing
between two extrema. The model is therefore best suited to describe hysteretic
responses that are dominantly symmetric, and for such periodic input signals. The
solution of the model is defined, however, for a larger class of input signals. The
input signal u must be bounded, piecewise continuous, and connected. This also
implies that the time derivative u̇ exists and is bounded, i.e., u ∈ C0. This includes
signals such as triangle-waves or low-pass filtered steps and square-waves, but not
unfiltered steps and square-waves.

The hysteresis model (2.1) can also be expressed in a different form, with an
identical input-output response. That is, the output η can be found from

η = cu+ ηh (2.2)

where ηh is the solution to

η̇h = −bu̇− aηh|u̇| , ηh(0) = ηh0 . (2.3)

The parameters in this formulation can be found using the parameters in (2.1),
and the relations are

a = α , b = γ − αβ
α

, and c = γ

α
. (2.4)

The derivation of the expressions in (2.2), (2.3), and (2.4) can be found in Sec-
tion 2.6.

The alternative model formulation in (2.2) and (2.3) will be used to develop a
hysteresis compensation scheme in Section 2.3.2.

2.2.2 Mechanical Model
A well designed nanopositioning stage has one dominant vibration mode, which is
due to a piston movement in the desired direction. Any additional vibration modes
will in general have other shapes, and produce motions which are counterproductive
to the desired behavior. A two degree of freedom positioning stage can therefore be
accurately described using the simplified free-body diagram shown in Fig. 2.1, and
the dynamic model will therefore be on the form described in Appendix B. Thus,
the dynamic response for the displacement w (m) of a point on the mechanical
structure in, e.g., the x-direction, is

mẅ + dẇ + kw = fa , (2.5)
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Figure 2.1: Serial kinematic configuation.

where m (kg) is the mass of the moving sample platform, d (N s m−1) is the
damping coefficient, k (N m−1) is the spring constant, and fa (N) is the force
developed by the actuator.

Here it is assumed that reference trajectories, r, will have a fundamental fre-
quency below approximately 1% of the natural undamped frequency ω0 =

√
k/m,

and that the contribution of the damping and inertial forces therefore can be ne-
glected, i.e., dẇ ≈ 0 and mẅ ≈ 0. The forces depending on the velocity and
acceleration of the moving platform will be relatively small when the movements
are slow, that is, the higher frequency components of the reference signal will be
small close to the resonant frequency of the mechanical structure. The displacement
w is therefore taken to be given by Hooke’s law

w = 1
k
fa . (2.6)

Ideally, the actuator has a linear response. This is the standard assumption [2],
and practical modeling of ideal piezoelectric transducers is explained in Section A.5.
In this case, the force developed by the actuator should be

fa = eau ,

where ea (N V−1) is the voltage-to-force gain coefficient. Here it is assumed that the
additional stiffness introduced by the presence of the actuator in the mechanical
structure is accounted for in the spring constant k. The relation between the applied
voltage u and the displacement w, will then be according to (2.6),

w = ea
k
u = Ku , (2.7)

where the lumped parameterK (m V−1), a voltage-to-displacement gain coefficient,
is introduced for convenience.

Since the actuator response is actually hysteretic, using the hysteresis model
(2.1), or equivalently (2.2), provides a more accurate description of the observed
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Figure 2.2: Feed-forward tracking control scheme.

displacement. The displacement will therefore be taken to be the output of the
hysteresis model, i.e.,

w = η . (2.8)

2.3 Feed-Forward Tracking Control

The objective for a tracking control scheme applied to a nanopositioning stage,
is to force the displacement w to follow a specified reference trajectory r. In or-
der to achieve this, feed-forward and feedback control can be used. Feed-forward
techniques can be very effective if an invertible and accurate system model can
be found. Applying feedback will typically reduce sensitivity to model errors and
unknown disturbances, but at the expense of a higher overall noise level.

For positioning devices utilizing piezoelectric actuators, when using reference
trajectories with low fundamental frequencies, the disturbance due to hysteresis is
the main source of error. In this Section, two feed-forward schemes will be described.
The first is simply assuming that the system has a linear response. The second
scheme provides a method for inverting the response of the hysteresis model (2.1).
The overall scheme is illustrated in Fig. 2.2.

2.3.1 Linear Feed-Forward
Assuming that the response of the system is linear, such as in (2.7),

w = Ku ,

the applied voltage signal u should be

u = 1
K
r (2.9)

in order to achieve tracking.
Due to creep and hysteresis, the gain K will depend on the amplitude of the

input signal u. Other effects also affect the observed gain, such as actuator tem-
perature and depolarization. An estimate of the gain, K̂, can be found from input-
output data using, e.g., the least-squares method. Depending on the positioning
device, the gain can change significantly. For the positioning device used in the ex-
periments in Section 2.4, a relative change of more than 150% was observed from
the minimal observable displacement to the maximal displacement.
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As the gain changes depend on the input signal, using a static gain estimate K̂
for feed-forward control can result in very large errors. In order to minimize the
error for all reference signals, an online estimate of K should be used. This can be
achieved by using the recursive least-squares method with the model (2.7) on the
form

z = θϕ

where z = w, θ = K, and ϕ = u. The parameter identification scheme is described
in detail in Appendix D.

2.3.2 Hysteresis Compensation
In this section, a feed-forward scheme that takes into account the hysteresis is
presented. The scheme is based on inverting the response of the hysteresis model
(2.1). Using the relations in (2.2) and (2.8), but defining a new input signal uh,
that is,

w = cuh + ηh , (2.10)

the above relation can be linearized by choosing the input signal

uh = K

c
u− 1

c
η̂h , (2.11)

where η̂h is an estimate of the term ηh. By substituting (2.11) into (2.10), the linear
relationship between voltage u and the expression for the displacement as given in
(2.7) is recovered,

w = cuh + ηh = c

(
K

c
u− 1

c
η̂h

)
+ ηh = Ku ,

if η̂h = ηh. Thus, generating an input signal using (2.9) and applying (2.11), the
error introduced by the hysteresis is removed. In order for this to work, an estimate
of ηh is required.

Assuming the parameters of the hysteresis model (2.1) are known, and the new
set of parameters is found from the relations in (2.4), an estimate of ηh when using
the new input signal uh can be found by substituting (2.11) into (2.3), that is,

˙̂ηh = −bu̇h − aη̂h |u̇h| = −b
(
K

c
u̇− 1

c
˙̂ηh
)
− aη̂h

∣∣∣∣Kc u̇− 1
c

˙̂ηh
∣∣∣∣ . (2.12)

In Section 2.7 it is shown that solving (2.12) is equivalent to solving

˙̂ηh =
{

K −aη̂h−b
−aη̂h−b+c u̇ , u̇ ≥ 0

K aη̂h−b
aη̂h−b+c u̇ , u̇ < 0 , η̂h(0) = η̂h0 . (2.13)

The initial value η̂h0 can in principle be chosen arbitrarily. For the case of periodic
inputs which are monotonically varying between two extrema, the solution will
converge to a stationary input-output map after some cycles of the input signal.
Assuming the system is at rest in an equilibrium where u(0) = 0 and η(0) = 0
when starting the integration, the initial value will be η̂h0 = 0.
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Inspecting (2.1), it can be seen that the parameters appear affinely with signals
comprising of u and η and their time derivatives, i.e., the model can be put on the
form

z = θTϕ (2.14)

where
θ = [α, β, γ]T , (2.15)

ϕ = [−η|u̇|, u̇, |u̇|u]T , (2.16)

and
z = η̇ . (2.17)

Here, θ is the called the parameter vector and ϕ the regressor. Having the model
on the form (2.14) enables the usage of the recursive least-squares method to find
the parameters in θ, as the displacement w = η can be measured, and the applied
voltage u and the time derivative u̇ are known and defined. The relations in (2.4)
can then be used to find the parameters to be used in this hysteresis compensation
scheme. The parameters in the model given by (2.2) and (2.3) can not be identified,
as it is not possible to measure the signal ηh. The parameter identification scheme
is described in detail in Appendix D.

2.4 Experimental Results & Discussion

2.4.1 Experimental Set-Up

The experimental set-up consisted of a dSPACE DS1103 hardware-in-the-loop sys-
tem, an ADE 6810 capacitive gauge and an ADE 6501 capacitive probe from ADE
Technologies, a Piezodrive PDL200 voltage amplifier, the custom-made long-range
serial-kinematic nanopositioner from EasyLab (see Fig. 2.3), two SIM 965 pro-
grammable filters and a SIM983 scaling amplifier from Stanford Research Systems.
Details on the design of nanopositioner can be found in [120].

The capacitive measurement has a sensitivity of 1/5 V/µm and the voltage
amplifier has a gain of 20 V/V. The programmable filters were used as recon-
struction and anti-aliasing filters. The scaling amplifier was used to amplify the
signal from the capacitive gauge in order to maximize the resolution of the quan-
tized signal. With the DS1103 system, a sampling frequency of 50 kHz was used in
all the experiments. For numerical integration, a third-order Runge-Kutta scheme
(Bogacki-Shampine) [62] was used.

The first part of the experiments were done using a triangle-wave reference
signal, where 10% of the signal was replaced by a smooth polynomial around the
extremal points to reduce vibrations. A second set of experiments was done using
a filtered pseudo random binary signal (PRBS). This signal had a length of 38750
samples, a bandwidth of 40 Hz, a ±5 µm range, and was filtered by a second-order
low-pass Butterworth filter with a 10 Hz cut-off frequency. All the experiments
were performed using feed-forward compensation only.
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2. Hysteresis Compensation

Figure 2.3: Nanopositioning stage.

2.4.2 Results & Discussion

The efficacy of the hysteresis model (2.1) and the parameter identification scheme
presented in Section 2.3.2 can be seen from Fig. 2.4. Here a triangle-wave signal
has been applied, but the response is very similar for any periodic input which
is monotonically increasing and decreasing between two extrema. Note that the
observed hysteresis is highly symmetric, and the hysteresis model is therefore well
suited to describe the response. Identified parameters for the hysteresis model can
be found in Tab. 2.1. As can be seen, the parameters depend on the input signal.
The identified parameters appear to provide a good fit to the observed response,
but there is some model discrepancy, especially at the extremal values where the
input signal switches direction.

Fig. 2.5a displays time-series for the reference, measured displacement, and
the error when using the linear feed-forward scheme and a triangle-wave reference
signal. Adapting the gain coefficient K makes it possible to match the extremal
values of the measured response and the reference with very high accuracy, and
the residual error is almost exclusively due to the hysteresis non-linearity. The cor-
responding reference-to-displacement map is shown in Fig. 2.5b. Note that despite
the high accuracy in adapting the gain coefficient K, the hysteretic character of
the response is clearly visible.

Applying the hysteresis compensation scheme proposed in Section 2.3.2, it
can be seen from both the time-series plots in Fig. 2.5c and the reference-to-
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Figure 2.4: The input-output map when using a 5 Hz triangle-wave reference signal
with 5 µm amplitude.

displacement map in Fig. 2.5d, that there is a significant reduction in the error.
The reduction in maximum error is approximately 90% from when applying a lin-
ear feed-forward scheme, to when applying the hysteresis compensation scheme.
Most of the residual error when applying the hysteresis compensation scheme is
due to the model discrepancy near the extremal values of the reference signal.

Assessing the performance under non-ideal conditions was done using the fil-
tered PRBS reference. The continuous repetition of a PRBS sequence is a periodic
signal, but for the duration of the sequence it behaves as a non-periodic signal, and
the filtered signal is therefore not monotonically varying between only two extrema.
The results for the linear feed-forward scheme are shown in Fig. 2.6a, and the re-
sults when using the hysteresis compensation scheme are found in Fig. 2.6b. The
error obtained when using the hysteresis compensation scheme is still significantly
lower than when using the linear feed-forward scheme, producing a reduction in
maximum error of approximately 59%. It is apparent, however, that the effective-
ness is reduced compared to when applying the triangle-wave signal.

The maximum errors observed for some different configurations of the reference
signal are presented in Tab. 2.2. The reduction in error is found as 100×(1−eh/el)
where eh and el are the maximal errors, max(|r − w|), when using the hysteresis
compensation scheme, and linear feed-forward, respectively.

If the parameters of the hysteresis model are fixed, applying the compensation
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2. Hysteresis Compensation

Table 2.1: Identified parameters for the stationary response of the hysteresis
model (2.1) and the linear approximation (2.7).

Reference
α β γ KSignal

2.5 µm 3.26×10−2 1.36×10−1 5.96×10−3 0.141@ 5.0 Hz
5.0 µm 1.91×10−2 1.49×10−1 4.05×10−3 0.156@ 2.5 Hz
5.0 µm 2.10×10−2 1.47×10−1 4.29×10−3 0.155@ 5.0 Hz
7.5 µm 1.59×10−2 1.55×10−1 3.55×10−3 0.165@ 5.0 Hz
Filtered 3.32×10−2 1.36×10−1 6.15×10−3 0.154PRBS

scheme for a different signal than what the parameter were found for, the com-
pensation scheme can produce very poor results. Error figures illustrating this is
summarized in Tab. 2.3. This suggests that the parameter identification scheme
should be running while using the compensation scheme, or that hysteresis model
parameters should be found for a family of reference signals, and that some form
of gain scheduling should be used if a displacement measurement is not always
available while using the equipment.

Due to the low order of the hysteresis model, the parameter identification
scheme requires little computational effort, and can be run online using high sam-
pling rates (in excess of 50 kHz for the experimental set-up when compiled using
the Simulink Coder from an inefficient Simulink implementation). The computa-
tional effort can be somewhat reduced using, e.g., the recursive gradient method
[111] rather than the recursive least-squares method. An efficient implementation
of the parameter identification scheme using a complied programming language
such as C or C++, as was done for the implementation used in the experiments in
Chapter 6, can greatly increase the real-time performance.

2.5 Parameter Identification

The parameter identification scheme used is the recursive least-squares method,
and it is described in Section D.1. For the system at hand, the input signal u
and the time derivative u̇ are known, as u is generated by the expression (2.9),
and by using a reference signal that is differentiable, i.e., r and ṙ being known
and bounded. The displacement w is measured by the capacitive probe, and the
time derivative of this signal is needed to identify the parameters for the hysteresis
model. To avoid pure numerical differentiation, the output z = η̇ = ẇ and regressor
vector ϕ was in this case filtered using proper filters, that is, z̄(s) = sWp(s)w(s),
and ϕ̄(s) = Wp(s)ϕ(s), where Wp(s) is a first-order low-pass filter with a 2.5 kHz
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Table 2.2: Maximum stationary error when using linear feed-forward and the hys-
teresis compensation scheme.

Linear Hysteresis
Feed-Forward Compensation

Reference Absolute Relative Absolute Relative Error
Signal Error Error Error Error Reduction
2.5 µm 0.20 µm 8.3% 0.016 µm 0.67% 92%@ 5.0 Hz
5.0 µm 0.54 µm 11% 0.055 µm 1.1% 90%@ 2.5 Hz
5.0 µm 0.54 µm 11% 0.045 µm 0.92% 92%@ 5.0 Hz
7.5 µm 0.93 µm 13% 0.053 µm 0.72% 94%@ 5.0 Hz
Filtered 0.71 µm 13% 0.30 µm 5.4% 59%PRBS

Table 2.3: Maximum stationary error when using the hysteresis compensation
scheme with parameter values found for a reference signal other than the one
applied.

Reference Absolute Relative
Signal Error Error
2.5 µm 0.28 µm 12% using parameters found for
@ 5.0 Hz 7.5 µm amplitude reference
7.5 µm 0.67 µm 9.2% using parameters found for
@ 5.0 Hz 2.5 µm amplitude reference

cut-off frequency. Pure numerical differentiation is not desired as it will amplify
measurement noise, degrading the performance of the identification scheme. If the
measured signal w contains a bias component, filtering z̄ and ϕ̄ by identical high-
pass filters with a cut-off frequency lower than the lowest frequency component in
the input signal u can be used to improve estimates.

2.6 Derivation of the Equivalent Coleman-Hodgdon Model

Eq. (2.1) can be solved explicitly, by observing that is can be written as

η̇ = (β − αη + γu) (u̇)+ + (β + αη − γu) (u̇)−

where (u̇)+ = u̇ and (u̇)− = 0 when u̇ ≥ 0, and (u̇)+ = 0 and (u̇)− = u̇ when
u̇ < 0. The dependence on time can then be cancelled. What is left are two linear
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ror when using linear feed-forward.
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the stationary measured displacement and er-
ror when using hysteresis compensation.
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(c) Reference-to-displacement map when using
linear feed-forward.
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(d) Reference-to-displacement map when using
hysteresis compensation.

Figure 2.5: Triangle-wave reference at 5 Hz with 5.0 µm amplitude (4.5 µm linear
range), cf. Tabs. 2.1 and 2.2.

differential equations for the two cases. For the case u̇ ≥ 0 the solution of

dη = (β − αη + γu) du ⇒ dη
du + αη = β + γu

can be found as

η = e−h
∫

eh (β + γu) du = e−αu
[

(αβ − γ + αγu)eαu

α2 + C1

]
,

where eh, h =
∫
α du = αu has been used as the integrating factor. This yields

η+ = γ

α
u+ αβ − γ

α2 + C1e−αu , (2.18)

where

η0 = γ

α
u0 + αβ − γ

α2 + C1e−αu0 ⇒ C1 = eαu0

(
η0 −

αβ − γ
α2 − γ

α
u0

)
.
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Figure 2.6: Filtered PRBS reference, cf. Tabs. 2.1 and 2.2.

Similarly, for the case u̇ < 0 the solution is

η− = γ

α
u+ γ − αβ

α2 + C2eαu , (2.19)

where
C2 = e−αu0

(
η0 −

γ − αβ
α2 − γ

α
u0

)
.

The solutions (2.18) and (2.19), can be put on the form

η = γ

α
u+ ηh, (2.20)

which is the form in (2.2), where ηh accounts for the hysteretic behavior. As it
happens, ηh can be taken to be the solution of the differential equation in (2.3),
which is

η̇h = −bu̇− aηh|u̇| . (2.21)
The parameters of this formulation are related to the parameters in (2.1) by

a = α > 0 , b = γ − αβ
α

> 0 , and c = γ

α
> 0 . (2.22)

Eq. (2.3) is similar to a case of the well known Dahl solid friction model [53], except
for the sign of the parameter b. This equation can also be solved for the cases u̇ ≥ 0
and u̇ < 0 in a similar fashion as above, using, e.g., separation of variables. The
solution for u̇ ≥ 0 is

η+
h = 1

a

(
−b− C3e−au

)
= αβ − γ

α2 − 1
α
C3e−αu , (2.23)

where

C3 = eau0 (−b− aηh0) = −αeαu0

(
η0 −

αβ − γ
α2 − γ

α
u0

)
= −αC1 ,
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2. Hysteresis Compensation

and for u̇ < 0 it is
η−h = 1

a
(b− C4eau) , (2.24)

where
C4 = e−au0 (b− aηh0) = −αC2 .

By substitution of (2.23) and (2.24) into (2.20) and using the relations in (2.22), it
can be seen that the two formulations are equivalent, by comparison to (2.18) and
(2.19).

It can be noted that the solution of (2.21), ηh, is bounded. As

lim
u→+∞

η+
h (u) = − b

a
(2.25)

and
lim

u→−∞
η−h (u) = b

a
(2.26)

it is apparent that ‖ηh‖∞ = b
a .

2.7 Derivation of the Hysteresis Compensation Scheme

As was shown in Section 2.3.2, by applying the input (2.11), i.e.,

uh = K

c
u− 1

c
η̂h , (2.27)

using an estimate of ηh, the effect of the hysteresis can be cancelled.
An open-loop observer to estimate ηh can be obtained from (2.3), substituting

uh for the input u, which results in (2.12), that is,

˙̂ηh = −bu̇h − aη̂h |u̇h| = −b
(
K

c
u̇− 1

c
˙̂ηh
)
− aη̂h

∣∣∣∣Kc u̇− 1
c

˙̂ηh
∣∣∣∣ .

This expression can be rewritten as

˙̂ηh =
{

K −aη̂h−b
−aη̂h−b+c u̇ , u̇h ≥ 0

K aη̂h−b
aη̂h−b+c u̇ , u̇h < 0 , (2.28)

but the switching criterion can not be determined causally, as it is dependent on
u̇h and not u̇.

The expression (2.28) can again be solved explicitly by separation of variables
by canceling the dependence on time. For the case u̇h ≥ 0,

dη̂+
h

du = K
−aη̂+

h − b
−aη̂+

h − b+ c
,

which solution is found as

η̂+
h −

c

a
ln (aη̂+

h + b) = Ku+ C5 ,
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where
C5 = η̂h0 −

c

a
ln (aη̂h0 + b)−Ku0 .

This implicit equation can be solved explicitly for ηh as a function of u by using
the Lambert W function [47], denoted LW (·):

η̂+
h = − c

a
LW

(
−1
c

exp
(
−aKu+ aC5 + b

c

))
− b

a
(2.29)

Similarly, for the case u̇h < 0,

η̂−h + c

a
ln (−aη̂−h + b) = Ku+ C6 ,

where
C6 = η̂h0 + c

a
ln (−aη̂h0 + b)−Ku0 ,

and the explicit solution is found as

η̂−h = c

a
LW

(
−1
c

exp
(
aKu+ aC6 − b

c

))
+ b

a
. (2.30)

Now, differentiating (2.29) or (2.30) by u yields

dη̂h
du < 0

in either case. Thus, since
dη̂h
du =

˙̂ηh
u̇
, (2.31)

u̇ ≥ 0 ⇒ ˙̂ηh ≤ 0, and u̇ ≤ 0 ⇒ ˙̂ηh ≥ 0. Therefore u̇h ≥ 0 ⇒ u̇ ≥ 0 and
u̇h < 0⇒ u̇ < 0. This shows that (2.28) is equivalent to (2.13).

The solution of (2.13), η̂h, is also bounded, by similar argument as in Section
2.6, and since LW (0) = 0. Thus ‖η̂h‖∞ = b

a .

2.8 Passivity of the Hysteresis Model

If a storage function is chosen as

V = 1
2

(
cu2 + 1

b
ηh

2
)

+ uηh,

the total derivative of V along the trajectories of (2.2) and (2.3) is

V̇ = cuu̇+ 1
b
ηh (−bu̇− aηh|u̇|) + uη̇h + u̇ηh =

(cu̇+ η̇h)u− a

b
ηh

2|u̇| = η̇u− a

b
ηh

2|u̇| ≤ η̇u ,

thus, the model (2.2) and (2.3) is passive from u to η̇.
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The energy expended in a single traversal of the hysteresis loop (see Fig. 2.4),
if the applied voltage u cycle between a some minimum u(τ0) = u(τ2) = um and
some maximum u(τ1) = uM during a period τ2 − τ0, can be found from the work
done, which is

W = −
∫ τ2

τ0

ηu̇dt = −
∫ τ1

τ0

ηu̇dt−
∫ τ2

τ1

ηu̇dt

= −
∫ uM

um

η+ du−
∫ um

uM

η− du

= −
∫ um

um

cudu︸ ︷︷ ︸
=0

−
∫ uM

um

η+
h du−

∫ um

uM

η−h du.

Since η+
h (uM ) = η−h (uM ) and η+

h (um) = η−h (um), C3 and C4 can be expressed in
terms of um and uM as

η+
h (uM ) = 1

a

(
−b− C3e−auM

)
= 1
a

(b− C4eauM ) = η−h (uM )

η+
h (um) = 1

a

(
−b− C3e−aum

)
= 1
a

(b− C4eaum) = η−h (um)

which yields

C3 = b(eaum − eauM ) csch a(uM − um) < 0
C4 = b(e−aum − e−auM ) csch a(uM − um) > 0 .

The work done can now be found to be

W = 2 b

a2

(
a (uM − um)− 2 tanh a2 (uM − um)

)
. (2.32)

It can be noted that the work is due to the term given in (2.21), and that the new
formulation of the hysteresis model (2.2) and (2.3), yields the same work as found
for the original formulation of the Coleman-Hodgdon model (2.1) [45].

2.9 Hysteresis as an Uncertain Gain & an Input
Disturbance

For the applied voltage signal defined in Section 2.8, the linearized sensitivity K
of (2.7) can be found from, e.g.,

K =
(
cuM + η+

h (uM )
)
−
(
cum + η+

h (um)
)

uM − um
, (2.33)

using the expressions in Section 2.8. Thus, according to (2.33), the gain coefficient
K = ea/k depends on the voltage signal u. Assuming that the stiffness k of the
structure is constant, the gain coefficient ea can therefore be interpreted as un-
certain and input signal dependent. This interpretation is in accordance to the
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results in Section 2.4 and Tab. 2.1, as well as to the measured responses found in
Fig. 1.2b. This relationship is also experimentally investigated in [107, 171]. The
gain coefficient ea is close to constant for a specific stationary voltage signal, and
can then be denominated as the effective gain of the actuator.

It can also be noted that the parameter β in (2.1) is the slope of η at u = 0
when η0 = u0 = 0, thus β and K should be close in numerical value, which provides
a quick verification of the validity of estimates for β, as K is usually known from
linear system identification.

Considering the output to be generated by a linear combination of the input u
and a disturbance term du,

w = 1
k
fa = η = cu+ ηh = K(u+ du) = ea

k
(u+ du) , (2.34)

it is apparent that the actuator force can be expressed as

fa = ea(u+ du) , (2.35)

and the disturbance term is given as

du =
(
k

ea
c− 1

)
u+ k

ea
ηh , (2.36)

which according to the Coleman-Hodgdon model must be bounded, if u is bounded.
This is verified by the inspection of Fig. 2.5a, where the error is almost ex-

clusively due to hysteresis, and is obviously bounded and dependent on the input
signal, having the same fundamental frequency. Boundedness is also implied by the
passivity of the hysteresis model. In the cases where the hysteresis model is not an
exact description of the behavior of the hysteresis phenomenon, it can be under-
stood from the fact that hysteresis in ferroelectric material is a loss phenomenon,
thus dissipating energy and heating up the material. For sustained excitation by
high-bandwidth signals, the temperature of a piezoelectric actuator can therefore
increase substantially. This can be verified in a straight-forward manner by touch-
ing a piezoelectric actuator before and after applying a sinusoidal signal with a
large amplitude and high frequency, but be sure to disconnect the amplifier
in order to avoid electric shock!

The nonlinear behavior can also be interpreted in terms of the frequency spec-
trum of the response of the hysteresis model (2.1) to a sinusoidal input. By def-
inition, a linear system will always produce the same frequencies in the states as
was present in the excitation signal. Hysteresis, on the other hand, will produce
several frequencies in response to excitation by a signal with a single frequency.
An example of this is shown in Fig. 2.7, where a power spectral density estimate
has been found for the hysteresis model (2.1) and the linear model (2.7) excited
by a sinusoidal signal. The hysteresis response has frequency components at odd
harmonics of the fundamental frequency.

When a hysteretic actuator is coupled to a lightly damped mechanical structure,
the vibration modes of the structure can be exited by the harmonics generated by
the hysteresis, if the harmonics coincide with the resonant frequencies. An exam-
ple is shown in Fig. 2.8, where a piezoelectric actuator is driven by two different
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Figure 2.7: Power spectral density estimate for the hysteresis model and the linear
model, when excited using a 1 Hz sinusoid.

sinusoidal voltage signals and the coupled mechanical structure has a dominant
vibration mode with a resonant frequency at 535 Hz. If the input signal has a
frequency of 150.0 Hz, there does not seem to be any significant excitation of any
vibration modes, but if the frequency is increased to 178.3 Hz, which has a first
odd harmonic of 534.9 Hz, the dominant vibration mode is excited.

2.10 Adding Integral Control

The hysteresis compensation scheme requires both signal u and the time derivative
u̇. As such, the scheme lends itself conveniently to an augmentation by an integral
control law.

The integral control law is on the form

uc = ki

∫ t

t0

edτ (2.37)

where
e = r − w . (2.38)

By augmenting the signal u by the output of the control law uc,

u′ = u+ uc , (2.39)
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(b) Measured response using a 30 V amplitude
sinusoid at 178.3 Hz.

Figure 2.8: Excitation of vibration dynamics with a resonant frequency of 535 Hz
by actuator hysteresis.

it is straight forward to see that the time derivative of u′ required to use the
hysteresis compensation scheme is

u̇′ = u̇+ u̇c (2.40)

where
u̇c = kie . (2.41)

Thus, integral action, using, e.g., the modified integral control law presented in
Chapter 3, can be added with minimal increase in complexity, and can be used to
reduce the error due to model discrepancy.

2.11 Trajectory Generation

For scanning applications, the desired reference signal is a triangle wave. A triangle
wave can only be differentiated once and still be defined at the maxima and minima
of the signal. For the purposes of output tracking for a second-order system, this
means that perfect tracking is not possible, since the input required to obtain
tracking is not defined (i.e., of infinite magnitude) at the maxima and minima of
the triangle wave signal. One solution is to remove some part of the triangle wave
and replace it with a sufficiently smooth signal, such as a polynomial of sufficient
degree. This is illustrated in Fig. 2.9.

Of the initial amplitude α of the triangle wave signal, a fraction h = λ/α of
the signal can be chosen that will still be linear, where λ is the amplitude of the
remaining linear segments. An interpolating polynomial must then be found for
the interval δ ∈ [t1, t2] = τp/4 · [1− h, 1 + h] between the linear parts of the signal.
If a twice differentiable reference is desired, the interpolating polynomial will be
second-order, i.e.,

P (t) = p2t
2 + p1t+ p0.
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Figure 2.9: Modified triangle wave.

The coefficients pi can be found solving the linear equations t21 t1 1
2t1 1 0
2t2 1 0

 p2
p1
p0

 =

 λ
4α/τp
−4α/τp


where t1 = τp/4 · (1 − h) and t2 = τp/4 · (1 + h). Similarly, if a higher number of
derivatives is desired, higher order polynomials should be used. With this method,
to ensure that only the highest order derivative necessary will be discontinuous,
the polynomial must be of order np = 2nd − 2, where nd is the number of desired
derivatives.

The first half of the reference signal can now be computed as

r(t) =


4α
τp
t , t ∈ [0, t1)

p2t
2 + p1t+ p0 , t ∈ [t1, t2]

− 4α
τp
t , t ∈ (t2, τp/2)

,

ṙ(t) =


4α
τp

, t ∈ [0, t1)
2p2t+ p1 , t ∈ [t1, t2]

− 4α
τp

, t ∈ (t2, τp/2)
,

and

r̈(t) =

 0 , t ∈ [0, t1)
2p2 , t ∈ [t1, t2]

0 , t ∈ (t2, τp/2)
.

The last half can be generated by inverting the first half and shifting it by τp/2.

2.12 Conclusions

In this Chapter a feed-forward hysteresis compensation scheme was proposed for
piezoelectric actuators. The scheme is based on a reformulation of the Coleman-
Hodgdon model, where the reformulation produces a mathematically equivalent
input-output map. The original Coleman-Hodgdon model can be used for parame-
ter identification, while the reformulation can be used to generate an estimate the
hysteretic response and to linearize the input-output map.
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2.12. Conclusions

Since the parameters used in the scheme are identified online, the method will
provide consistent performance, even when the hysteretic response changes due to
different reference signals and other factors such as depolarization of the material
and actuator temperature.

The proposed method is well suited for the case of symmetric hysteretic re-
sponses and certain periodic reference trajectories. The method has low complexity
and is thus readily applicable for real-time implementation.

Experimental results are presented to illustrate the hysteresis compensation
scheme. The experiments showed that the method reduced the hysteretic behavior
of a piezoelectric actuator significantly, providing a reduction of more than 90%
compared to when when assuming a linear response.

In addition, the reformulation of the Coleman-Hodgdon model has a form that
makes it straight forward to show passivity of the model. The reformulation, since
it is equivalent, has the same energy dissipation for a primitive hysteresis loop as
the original formulation. The response of the model can also be interpreted as an
uncertain gain and an input disturbance, and the hysteresis compensation scheme
can be augmented with a integral control law in a straight forward manner, which
can improve tracking performance.
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Damping & Tracking Control
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Chapter 3

Damping & Tracking Control
Schemes for Nanopositioning

3.1 Introduction

Tracking control for nanopositioning devices can be achieved using feed-forward
and feedback control techniques. Although feed-forward techniques can provide
very good results [44], feedback control may be necessary in order to reduce sen-
sitivity to uncertainty and disturbances. In order to control lightly damped vibra-
tional modes in active structures, several control schemes that introduce damp-
ing have been developed. These include fixed-structure, low-order control laws,
such as positive position feedback [76], integral force feedback [174], passive shunt-
damping [96], resonant control [170], and integral resonant control [13]. By coupling
such schemes with an integral control law, significantly better reference tracking
performance can be achieved. With the exception of passive shunt-damping, this
has been experimentally demonstrated in [14, 78, 85]. The main reason for the
increased performance, is that a reduction of the dominant resonant peak in the
frequency response of the system leads to an increased gain margin, enabling much
higher gain to be used for the reference tracking integral control law [78].

General model-based control laws can also be used, such as H∞-synthesis [206],
the linear-quadratic-gaussian regulator [94], or output feedback control laws found
using pole-placement and model reference control [94, 111]. There are several ex-
amples of control laws derived using H∞-synthesis applied to nanopositioning sys-
tems [138, 187, 188, 192, 192, 194, 196, 198, 201, 211].

The advantage of using fixed-structure, low-order control laws is mostly prac-
tical, as such control laws are simple to implement and have low computational
complexity [9]. The simplicity also makes them feasible for implementation using
analog circuit elements. This can be beneficial, as avoiding sampling and quantiza-
tion reduces the noise floor [175, 220]. The disadvantage of using fixed-structure,
low-order control laws, is a lack of methods for optimal tuning, and this is a
long standing and challenging control engineering problem. Although there exist
some results for fixed-order control problems solved using linear matrix inequal-
ities [56, 73, 95, 104, 109, 113, 210], these methods do not allow for the use of
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unstructured uncertainty, do not guarantee global, or in some cases not even local
convergence, and might not accommodate for control laws where the structure is
fixed in addition to the order.

3.1.1 Contributions
Six different damping and tracking control schemes are presented and applied to
a nanopositioning system for experimental comparison. All the schemes combine
integral action with a control law that introduces damping of the dominant vibra-
tion mode of the system. The damping control schemes considered, are positive
position feedback (PPF), integral resonant control (IRC), integral force feedback
(IFF), and passive shunt-damping (PSD).

A simple damping and tracking control scheme using only a low-pass filter and
an integrator is presented, i.e., a modified integral control law, which will be labeled
as damping integral control (DI). A tuning methodology is also presented, and is
applied to the presented control schemes based on PPF, IRC, IFF, and PSD, as
well as the DI scheme. Furthermore, a pole-placement control scheme in the form
of model reference control (MRC) is also presented.

The presented control schemes based on IRC, IFF, and PPF, closely follows
schemes already presented in the literature. IRC combined with an integral control
law has been applied in [85], and a dual-sensor damping and tracking control scheme
based on IFF has been applied in [78]. PPF combined with an integral control law,
as well as a pole-placement control scheme is applied in [14]. Compared to the pole-
placement control scheme in [14], the MRC scheme presented in this Chapter also
incorporates integral action and low-pass filtering, in order to reduce sensitivity to
disturbances and uncertainty, and to reduce quantization noise. The combination
of PSD and an integral control law has not been investigated before.

3.1.2 Outline
The Chapter is organized as follows. Section 3.2 describes the experimental set-up
as well as the dynamic models needed to develop the control schemes; a model for
the mechanical vibrations of the nanopositioning device, a model for the generated
charge in a piezoelectric actuator due to mechanical displacements, and a model
for the measured response from piezoelectric force transducer. The parameters in
the models are subsequently identified from frequency response data. The control
design and tuning methodology used for all the control schemes is described in
Section 3.3. In Section 3.4 the various control schemes are described and analyzed
in detail. The experimental results are presented and discussed in Section 3.5. In
addition, a simple integral anti-windup scheme is discussed in Section 3.6.

3.2 System Description & Modeling

3.2.1 Description of the Experimental System
The experimental set-up consists of a dSPACE DS1103 hardware-in-the-loop (HIL)
system, an ADE 6810 capacitive gauge, an ADE 6501 capacitive probe from ADE
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Figure 3.1: Custom flexure-guided nanopositioning stage.

Flexures

Position
sensor

ActuatorMoving
platform

Fixed base

w Force
sensor

Figure 3.2: Simplified schematic of the single degree-of-freedom flexure guided po-
sitioning stage.
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Wr WaGp

u ymup yp

du ny

Figure 3.3: System diagram.

Technologies, a Piezodrive PDX200 voltage amplifier, two SIM 965 programmable
filters from Stanford Research Systems, and the custom-made long-range serial-
kinematic nanopositioner shown in Fig. 3.1. The nanopositioner is fitted with a
Noliac SCMAP07-H10 actuator, where one of the stack elements is used as a force
transducer. The transducer current is measured using a Burr-Brown OPA2111 con-
figured with a 10 kΩ resistor, thus having a sensitivity of -10 V/mA. The capacitive
probe has a bandwidth of 100 kHz, and the voltage amplifier with the capacitive
load of the actuator, has a bandwidth in excess of 100 kHz. The voltage amplifier
is also fitted with a current monitor with a sensitivity of 1 V/A, which enables
the current in the actuator circuit to be measured. The capacitive measurement
has a sensitivity of 1/5 V/µm and the voltage amplifier has a gain of 20 V/V.
With the DS1103 board, a sampling frequency of fs = 100 kHz is used for all the
experiments. For numerical integration, a third-order Runge-Kutta scheme [62] is
used.

A diagram of the system used is shown in Fig. 3.3. The positioner dynamics is
represented by Gp(s), the amplifier and reconstruction filter dynamics by Wr(s),
and the sensor and anti-aliasing filter dynamics by Wa(s). The signal u is the
input generated by the digital-to-analog converter, ym is the output from the anti-
aliasing filter, ny is the sensor noise, and du is the input disturbance, mostly caused
by hysteresis, creep, and environmental vibration noise.

3.2.2 Mechanical Model
The nanopositioning stage used is shown in Fig. 3.1, and a simplified schematic is
shown in Fig. 3.2. The serial-kinematic motion mechanism is designed to make the
dominant vibration mode to occur in the actuation direction, generating a piston
motion. More details on the design of this stage can be found in [136].

The displacement is generated using a piezoelectric actuator. Such actuators
generate a force proportional to an applied voltage, as a result of the converse
piezoelectric effect, as described in Section A.5. The applied external force from
the piezoelectric actuator fa (N) can be expressed as

fa = ea(ua + du) , (3.1)

where ea (N V−1) is the effective gain of the piezoelectric actuator from voltage
to force, and ua (V) is the applied voltage. Here it is assumed that the additional
stiffness introduced by the presence of the actuator in the mechanical structure
is accounted for in the mechanical vibration model presented below. Piezoelectric
actuators introduce hysteresis and creep when driven by an external voltage signal.
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3.2. System Description & Modeling

These effects occur in the electrical domain [161], and it is a reasonable assumption
to consider this behavior as a bounded disturbance added to the input, represented
by the term du (V), as discussed in Section 2.9.

As demonstrated in Appendix B, the dynamics due to the applied force fa of
a point w (m) on the flexible structure, as observed by a co-located sensor in a
non-gyroscopic reference frame, is adequately described by the following lumped
parameter, truncated linear model

Gw(s) = ea
w

fa
(s) ≈

nw∑
i=1

βi
s2 + 2ζiωis+ ωi2

+Dr , (3.2)

where nw is the number of vibration modes included. Here, {βi} (m s−2 V−1)
are the control gains, {ζi} are the damping coefficients for each mode, and {ωi}
(rad s−1) are the natural frequencies for the modes. The term Dr (m V−1) is the
residual mode, which is an approximation of the non-modeled higher frequency
modes, and can be included to improve prediction of zero-locations. It produces a
model that is not strictly proper, but as the instrumentation, such as the amplifier
and sensors, have limited bandwidth, Dr can be considered equal to zero for this
system. Eq. (3.2) has a pole-zero interleaving property [172], which is the origin
of positive-realness (passivity) and negative-imaginariness for certain input-output
pairs [166]. The inclusion of instrumentation dynamics, and sensor-actuator pairs
that are not perfectly co-located, will in general invalidate the pole-zero interleaving
property [172].

3.2.3 Charge
When applying passive shunt-damping, the generated charge due to the direct
piezoelectric effect in the actuator circuit is utilized. This is sometimes referred to
as self-sensing. As is shown in Section A.4, or equivalently from the constitutive
equations in stress-charge from Section A.5, the induced charge in the actuator is

q = eaw + Cpua = Cp(ua + αw) ,

where Cp (F) is the capacitance of the piezoelectric stack actuator, and α = ea/Cp
(V m−1) is a constant determining the amount of charge generated by the direct
piezoelectric effect due to the displacement w of the mechanical structure. The
transfer-function from applied voltage ua to induced charge q is therefore

Gq(s) = q

ua
(s) = Cp(1 + αGw(s)) . (3.3)

3.2.4 Force Transducer
The integral force feedback scheme utilizes a co-located sensor in the form of a
piezoelectric force transducer. The force sensor generates a charge, depending on
the applied force, due to the direct piezoelectric effect.

From Section A.5 it is known that the constitutive equations in strain-charge
form provides an expression for the charge in a piezoelectric transducer as

q = dafa + Cp(1 + k2)ua .
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For sensing, there is no applied voltage, thus ua = 0, and the charge on the elec-
trodes of the sensor can be found to be

q = dafa .

Since the force working on the sensor is the same as the force working on the
actuator, the force must be according to the constitutive equations in stress-charge
form,

fa = kaw − eaua ,

and the induced charge in the sensor can be found to be

q = da(kaw − eaua) .

The current or charge produced by the force transducer is typically converted
to a voltage signal using a simple op-amp circuit with a high input impedance and
gain gs (V/C). The output voltage from such a sensor when measuring the charge,
can be found to be [78, 172]

vf = ks(w − kfua) ,

where w is the displacement of the mechanical structure, ua is the applied voltage
to the actuator, kf = ea/ka (m V−1) is the gain of the feed-through term, and
ks = gsdaka (V m−1) is the sensor gain. The transfer-function from applied voltage
ua to measured sensor voltage vf can therefore be found as

Gf (s) = vf
ua

(s) = ks(Gw(s)− kf ) . (3.4)

3.2.5 Identification & Uncertainty
In order to identify the parameters in (3.2), (3.3), and (3.4), the frequency responses
for the displacement, charge, and force are recorded using a SR780 Dynamic Signal
Analyzer from Stanford Research Systems, applying a 150 mV RMS bandwidth-
limited white noise excitation signal. The models are fitted into the procured data
using the MATLAB System Identification and Optimization Toolboxes. As the
noise from the force transducer is orders of magnitude lower than the noise from
the displacement sensor [78], the frequency response for the displacement is inferred
from (3.4). The frequency response obtained using the displacement sensor is used
to find the parameters in (3.3) and (3.4). The responses forGw(s),Gq(s), andGf (s)
are displayed in Figs. 3.4a, 3.5a, and 3.6a, respectively. The identified parameter
values are presented in Tab. 3.1. For the displacement model (3.2), three vibration
modes, nd = 3, are included. By inspection of Fig. 3.4a, it can be seen that the
second mode at 1660 Hz is the dominant piston mode.

The uncertainty of the models can be quantified as unstructured multiplica-
tive perturbations. Since the control schemes considered are either single-input-
single-output (SISO), or single-input-multiple-output (SIMO), the uncertainty de-
scription of the models from the scalar input up to the output vector yp has the
form [100]

ypi = Gi(s)(1 + δi(s)∆i(s))up ; ‖∆i(s)‖∞ ≤ 1 , (3.5)
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Table 3.1: Identified model parameters.

Parameter Value Unit
Displacement model (3.2)

β1 1.80·104 µm s−2 V−1

ζ1 0.0726
ω1 2π·490 rad s−1

β2 2.54·106 µm s−2 V−1

ζ2 0.0196
ω2 2π·1660 rad s−1

β3 4.83·106 µm s−2 V−1

ζ3 0.0312
ω3 2π·3400 rad s−1

Charge model (3.3)
Cp 195 nF
α 3.95 V µm−1

Force model (3.4)
ks 2.52·10−7 V µm−1

kf 0.0451 µm V−1

where i denotes the index into the output vector yp, such that Gi(s) corresponds
to the transfer-function from the input up to the output ypi, and δi(s) is the
corresponding frequency dependent uncertainty weight. The uncertainty weights
{δi(s)} are determined experimentally, for each of the outputs, and are presented in
Figs. 3.4b, 3.5b, and 3.6b. Over-bounding weights were also found to introduce more
conservativeness. The gain uncertainty discussed in Section 2.9 is here downplayed
somewhat as the maximum range of the nanopositioning device will not be used
in the experiments and to simplify the choice of uncertainty weights, as they are
actually coupled.

3.3 Control Design

The control schemes presented will be analyzed with regards to the general control
structure shown in Fig. 3.7.

3.3.1 Performance Measures

The control schemes considered are either single-input-single-output (SISO), or
single-input-multiple-output (SIMO). Considering the general SIMO case, it can
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Figure 3.4: Response and uncertainty for the displacement.
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up Gp
ypC
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r
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Figure 3.7: General control law structure.

be seen that for the control structure in Fig. 3.7, the control input is given as

up = C(s)(r − F (s)yp) , (3.6)

where C(s) is a one-row feed-forward transfer-matrix, and F (s) is a diagonal feed-
back transfer-matrix.

Breaking the loop at the error e of the one-column plant transfer-matrix Gp(s),
the loop transfer-matrix is

L(s) = F (s)Gp(s)C(s) ,

which defines the output sensitivity transfer-matrix SO(s) as

e = SO(s)r = (I + L(s))−1r , (3.7)

where e = r−F (s)yp. The complementary sensitivity transfer-matrix T (s) becomes

yp = T (s)r = Gp(s)C(s)SO(s)r . (3.8)

In addition, the transfer-matrix N(s) from the additive sensor noise ny to the
output yp is

yp = N(s)ny = −T (s)F (s)ny , (3.9)

and the transfer-matrix E(s), measuring the deviation of the plant output yp from
the reference trajectory r, ε = r − yp, is

ε = E(s)r = (I − T (s))r . (3.10)

Note that ε 6= e, if F (s) 6= I.
Breaking the loop at the input up of the plant, the loop transfer-matrix is

LI(s) = C(s)F (s)Gp(s) ,

and the input sensitivity transfer-matrix SI(s) from the disturbance du to the input
up is therefore

up = SI(s)du = (I + LI(s))−1du , (3.11)

which provides the transfer-matrix D(s) from the disturbance du to the output yp
as

yp = D(s)du = Gp(s)SI(s)du . (3.12)
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The performance will be evaluated with regards to the flatness of the response
of T (s), the bandwidth of E(s), the attenuation of the input disturbance du to the
displacement w, and the amplification of sensor noise ny to the displacement w. The
bandwidth of E(s) is defined as the frequency where |E(jω)| first crosses the line of
-3 dB from below in the frequency response diagram. At this frequency the tracking
error ε is 50% of the reference r, thus there is effectively no tracking of frequency
components above the bandwidth. The attenuation of the input disturbance is
measured by the H∞-norm, ‖D(s)‖∞, which corresponds to the peak magnitude
of D(s). The added displacement noise is measured by the H2-norm, ‖N(s)‖2,
which provides the root-mean-square displacement noise response if ny is taken to
be equal to unity variance Gaussian white noise. Thus, the displacement variance
due to sensor noise can be found as σd2 = ‖N(s)‖22σn2.

3.3.2 Robust Stability Measure
The SIMO robust stability criterion described in [100], for multiplicative uncer-
tainty on the form (3.5), can be adapted to the control structure in Fig. 3.7. Robust
stability can be ensured if

sup
ω

ny∑
i=1
|SI(jω)Gi(jω)Ci(jω)Fi(jω)δi(jω)| = γs ≤ 1 , (3.13)

where the matrix elements Ci(s) and Fi(s) correspond to the output ypi, and ny
is the number of outputs. The inverse value of the norm, 1/γs, provides a measure
of the minimum amount of additional multiplicative uncertainty that the system
can tolerate before it becomes unstable, for the given frequency weights, δi.

3.3.3 Tuning
Control design for fixed-structure, low-order control laws using output feedback is a
long-standing and challenging problem in control engineering. A common approach
to output feedback problems, is to useH∞-synthesis. If the control law is allowed to
have any order and every matrix of the control law is freely tunable, H∞-synthesis
guarantees a solution to the control design problem by convex optimization.

For a control law with a fixed structure and with a lower order than the plant,
this approach can not be applied. In general, since model-based control synthesis
is based on model matching, the control law must be of sufficient order with re-
spect to the plant and the control law structure is determined by the plant. The
simplest example of model-based control is perhaps control law synthesis using
pole-placement. In general, for arbitrary pole-placement, producing a proper con-
trol law for a strictly proper plant, the control law must be of order np − 1, where
np is the order of the plant. This produces a closed-loop characteristic polynomial
of order 2np − 1 [94].

Example 3.1:
For the second-order system, np = 2,

w

u
(s) = G(s) = kp

Zp
Rp

= β0

s2 + 2ζ0ω0s+ ω02 ,
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a first-order proper control law of

C(s) = B(s)
A(s) = b1s+ b0

s+ a0
,

can be found for arbitrary pole-placement conforming to the third-order polynomial

P (s) = s3 + p2s
2 + p1s

1 + p0 ,

by solving the Bézout identity

Rp(s)A(s) + kpZp(s)B(s) = P (s) .

The solution for the control law parameters θc = [a0, b1, b0]T is

Sθc = p =

 1 0 0
2ζ0ω0 β0 0
ω0

2 0 β0

a0
b1
b0

 =

p2 − 2ζ0ω0
p1 − ω0

2

p0

 ⇒ θc = S−1p .

Here, three freely tunable control law parameters are needed in order to specify
the poles. If the plant model is of higher order, the control law order grows, and
in general, for a control law of minimal order, no constraints on the control law
structure can be made. Second-order pole-placement is also possible for the second-
order system using a proportional-derivative (PD) control law, but in this case the
control law is not proper, and might cause implementation problems in terms of
noise amplification and insufficient roll-off for the loop transfer-function G(s)C(s)
at higher frequencies, due to the derivative action.

For standard mixed H∞-synthesis, the minimum control law order is also de-
termined by the plant order, but the performance and robust stability weights will
typically add to the complexity of the control law. Moreover, the exact choice of
weighs directly impacts the closed-loop performance. If the resulting control law
is of very high order, practical problems related to numerical stability, discretiza-
tion, and computational complexity can arise. Due to the limited computational
power available when using high sampling frequencies, or if an implementation us-
ing analog circuit elements is desired, the model order should be as low a possible.
Applying model or control law order reduction techniques can provide some rem-
edy, but can in some cases lead to unexpected results, and will in any case add a
complicating step in the control design.

There exist some results for direct synthesis of low-order robust control prob-
lems, solved with the use of linear matrix inequalities. However, these methods do
not allow for the use of unstructured uncertainty, do not guarantee global, and in
many cases not even local, convergence, and might not accommodate for control
laws where the structure is fixed in addition to the order [56, 73, 95, 104, 109, 113,
210].

In other words, there does not exist any general control design method for out-
put feedback using fixed-structure, low-order control laws. A practical optimization
procedure is therefore proposed in order to obtain good tracking performance.
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Tuning Methodology

Control design is often a trade-off between conflicting goals. For nanopositioning
systems, it is desirable to have a high bandwidth for E(s) in order to have good
reference tracking. Also, the system is required to well damped in order to avoid
excessive vibrations. This translates to an absence of peaks in T (s). To counter hys-
teresis and creep, as well as environmental disturbances, D(s) must provide a high
degree of attenuation. In addition, the amplification of sensor noise should be as
small as possible, meaning that N(s) should have the smallest bandwidth possible.
Due to the restriction imposed by the Bode sensitivity integral [94], it is impossi-
ble to meet these criteria simultaneously. As the purpose of damping control is to
reduce peaks in the closed-loop response due to lightly damped vibration modes,
and since ideal tracking performance is achieved when T (s) = 1, it appears that a
good overall performance criterion is the flatness of T (s), i.e., the minimization of

J(θc) = ‖1− |T (jω, θc)|‖2 , (3.14)

by some optimal control law parameter vector θc?.
For the control schemes presented in the following sections, with the exception

of model reference control, a practical and straight forward method to find control
law parameters θc that provide good tracking performance for a particular scheme
is to solve

arg min
θc

J(θc) s.t. Re{λi} ∈ R− ∧ γs < 1 , (3.15)

where {λi} is the set of eigenvalues for the closed-loop system.
The optimization problem can be solved either by using an exhaustive grid

search over a domain of reasonable control law parameter values, as is demonstrated
for the DI scheme in Chapter 4, or by using an unstructured optimization algorithm,
such as the Nelder-Mead method [133]. In this Chapter, all the control schemes were
tuned using the Nelder-Mead method.

3.4 Damping & Tracking Control Schemes

3.4.1 Integral Control Law
An integral control law applied to a mass-spring-damper system has a fairly limited
gain margin. When applied to a lightly damped structure, the integral gain is
primarily limited by the resonant frequency and relative damping of the dominant
vibration mode.

Considering an integral control law

Ci(s) = ki
s

where ki > 0, applied to a mass-spring-damper system

w

u
(s) = β0

s2 + 2ζ0ω0s+ ω02 ,
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Ct Cd Wr Gw Wa
ua w

–
r

–
u

du nw

Figure 3.8: Control structure when using positive position feedback and integral
resonant control.

where β0 > 0, an analytical expression for the maximum gain k∗i that renders
a stable closed-loop system can be found by application of the Routh-Hurwitz
criterion, as

ki <
2ζ0ω0

3

β0
= k∗i . (3.16)

Given a lightly damped system, 0 < ζ0 � 1/
√

2, knowing the resonant frequency
ωp and the amplitude response at resonance |G(jωp)|, cf. Section B.3,

ωp = ω0

√
1− 2ζ02 and |G(jωp)| =

β0

2ζ0ω02
√

1− ζ02 ,

the maximum gain (3.16) can be expressed as

ki <
ωp

|G(jωp)|
< κ1 ·

ωp
|G(jωp)|

= k∗i (3.17)

where κ1
−1 =

√
1− ζ02 ·

√
1− 2ζ02 < 1. This corresponds well with the result

found in [78], where (3.17) is derived by graphical arguments. The example above is
for a single degree of freedom system, but the analysis corresponds well to multiple
degree of freedom systems where there is one dominant vibration mode and no
rigid body modes.

It is clear that the integral gain is limited by both the natural frequency of
the dominant vibration mode, and the amount of damping in the structure. It
can be therefore be conjectured that attenuating the resonant peak or increasing
the resonant frequency improves the gain margin, and thus the bandwidth of the
closed-loop system.

3.4.2 Positive Position Feedback (PPF)
Damping and tracking control using positive position feedback (PPF) [76, 172]
combined with an integral control law can be implemented using the control struc-
ture in Fig. 3.8. This is equivalent to the control scheme in [14]. The damping
control law consists of a low-pass filter with negative gain

Cd(s) = −kd
s2 + 2ζdωds+ ωd2 , (3.18)

were kd > 0 is the control law gain, ζd the damping coefficient and ωd is the cut-off
frequency. The tracking control law, is an integral control law with a negative gain,
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which will be inverted by the negative gain of the filter (3.18),

Ct(s) = −kt
s

. (3.19)

Here, kt > 0 is the gain of the integral term.
To analyze the nominal performance of the control scheme, the control struc-

ture in Fig. 3.8 can be put on the equivalent formulation adhering to the control
structure in Fig. 3.7. The feed-forward filter is found as

C(s) = Wr(s)Cd(s)Ct(s) , (3.20)

and the feedback filter is found as

F (s) = Wa(s)(1 + C−1
t (s)) . (3.21)

Using the above expressions, and assuming

Gp(s) = Gw(s) ,

it is straight forward to find the transfer-functions for the sensitivity (3.7), the
complementary sensitivity (3.8), the noise attenuation (3.9), the error attenuation
(3.10), and the disturbance rejection (3.12). Here, Wr(s) = Wa(s), and are second-
order Butterworth filters with cut-off frequency at 20 kHz.

The robust stability with regards to the multiplicative model uncertainty can
be evaluated using the stability criterion (3.13), using (3.8), (3.20) and (3.21).

There are four tunable control law parameters

θc = [kd, ζd, ωd, kt]T ,

the feedback filter gain kd, the damping ratio ζd, the cut-off frequency ωd, and
the tracking integral control law gain kt. The optimal control law parameters for
(3.18) and (3.19) found when solving (3.15) are presented in Tab. 3.2. The resulting
nominal frequency responses for T (S), E(s), and D(s) are shown in Fig. 3.16a.

Table 3.2: Optimal parameters for (3.18) and (3.19).

Parameter Value
kd 2.32·108

ζd 0.564
ωd 2π·1470
kt 2.31·104

Additional Analysis

Stability of the PPF scheme is straight forward to analyze considering the negative-
imaginary property of the low-pass filter (3.18) and the mechanical vibration model
(3.2) [166].
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Inverting the gain of the low-pass filter (3.18), i.e.,

C̄(s) = kd
s2 + 2ζdωds+ ωd2 , (3.22)

it is known that this is a strictly negative-imaginary (SNI) transfer-function [166].
The mechanical vibration model (3.2) is also SNI, as it is a linear combination of
SNI transfer-functions, where each transfer-function has the same form as (3.22),
and since the real constant termDr does not influence the negative imaginary prop-
erties. Negative imaginariness can also be established by the pole-zero interleaving
property described in Appendix B, as ∠Gw(jω) ∈ [−180◦, 0◦].

Since both transfer-functions are SNI, the positive feedback connection of C̄(s)
and Gw(s) is therefore internally stable if C̄(0)Gw(0) < 1.

However, the closed-loop transfer-function

Tppf (s) = −C̄(s)Gw(s)
1− C̄(s)Gw(s)

= Cd(s)Gw(s)
1 + Cd(s)Gw(s) ,

is not negative-imaginary (NI), and further analysis using negative-imaginary prop-
erties can not be done. Also, including instrumentation dynamics and not having
perfect co-location of the sensor and actuator precludes the usage of NI analysis. It
should be noted, however, that with reasonably good co-location for the dominant
vibration modes, and instrumentation with significantly higher bandwidth than
the dominant vibration modes, modeling the control law and plant dynamics using
(3.18) and (3.2) provides a good approximation and good results in practice.

3.4.3 Integral Resonant Control (IRC)
Damping and tracking control applying integral resonant control (IRC) [13] to
introduce damping can also be implemented using the control structure in Fig. 3.8.
In this control scheme [85] the damping control law is

Cd(s) = −kd
s+ kdDf

. (3.23)

Eq. (3.23) is the result of rearranging the IRC scheme to a form suitable for tracking
control [85], consistent with the control structure in Fig. 3.8. Here, kd > 0 is the
called the integral damping gain, while Df > 0 is a feedthrough term. The tracking
control law is

Ct(s) = −kt
s

, (3.24)

where kt > 0 is the gain of the integral term.
As this scheme uses the same control structure as the one using PPF in Sec-

tion 3.4.2, the scheme can be analyzed using the same equivalent formulation with
regards to the general control structure in Fig. 3.7, i.e., with

C(s) = Wr(s)Cd(s)Ct(s) (3.25)

and
F (s) = Wa(s)(1 + C−1

t (s)) . (3.26)
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Figure 3.9: Control structure when using integral force feedback.

Here, Wr(s) = Wa(s), and are second-order Butterworth filters with cut-off fre-
quency at 20 kHz.

There are three tunable control parameters

θc = [Df , kd, kt]T ,

the feedthrough term Df , the integral damping gain kd, and the tracking integral
control law gain kt. The optimal control law parameters for (3.23) and (3.24) found
when solving (3.15) are presented in Tab. 3.3. The resulting nominal frequency
responses for T (S), E(s), and D(s) are shown in Fig. 3.16b.

Table 3.3: Optimal parameters for (3.23) and (3.24).

Parameter Value
Df 0.116
kd 8.75·104

kt 7.12·103

Remark 3.1. Inverting the gain of the transfer-function (3.23), i.e.,

C̄(s) = kd
s+ kdDf

,

it is known that it is a strictly negative-imaginary transfer-function [27, 166]. The
exact same arguments can then be made for internal stability as in the PPF case,
assuming perfect co-location and no instrumentation dynamics.

3.4.4 Integral Force Feedback (IFF)
The dual-sensor damping and tracking control scheme proposed in [78], is based on
integral force feedback (IFF) [172, 174], and can be implemented using the control
structure shown in Fig. 3.9, where Gf (s) is described in (3.4).

The advantage of using this scheme, is that the piezoelectric force transducer
has a noise density orders of magnitude lower than a capacitive probe, thus allowing
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high bandwidth, but with substantially lower displacement noise due to feedback.
The drawback is reduced range, as the force sensor replaces parts of the actuator,
and additional instrumentation to amplify the charge generated by the transducer.
The force sensor also requires good calibration, and the response is slightly non-
linear, but this is an insignificant source of error at higher frequencies.

The control scheme requires an integral control law,

Ci(s) = ki
s
, (3.27)

to be implemented, where ki > 0 is the gain. In addition, two splitting filters, a
low-pass and a high-pass filter, must be implemented. The low-pass filter is given
as

Wlp(s) = ωf
s+ ωf

, (3.28)

while the high-pass filter is given as

λWhp(s) = λ
s

s+ ωf
, (3.29)

where the gain λ is found as

λ =
∣∣∣∣Gw(0)
Gf (0)

∣∣∣∣ . (3.30)

The cut-off frequency ωf determines split between the frequency range for where
to use displacement feedback, and where to use force feedback. For the implemen-
tation, this was chosen to be ωf = 2π · 50. Better noise properties can be achieved
by reducing ωf , but this is limited to some extent by the need to high-pass filter
the force measurement. The high-pass filter is used both to allow the use of the
capacitive probe measurement at low frequencies, and to remove bias components
in the charge measurement. As the force transducer response is slightly non-linear,
sufficient bandwidth for the capacitive probe measurement is required to improve
linearity.

This is a single-input-multiple-output (SIMO) system, and the measurement
vector is given as

yp = [w, vf ]T , (3.31)
while the input is the applied voltage ua. With regards to Fig. 3.7, the plant
transfer-matrix is

Gp(s) = [Gw(s), Gf (s)]T , (3.32)
the feed-forward transfer-matrix is given as

C(s) = [Wr(s)Ci(s), −Wr(s)Ci(s)] , (3.33)

and the feedback transfer-matrix is given as

F (s) =
[
WlpWa(s) 0

0 λWhpWa

]
. (3.34)

Here, Wr(s) = Wa(s), and are second-order Butterworth filters with cut-off fre-
quency at 20 kHz.
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There is one tunable control parameter

θc = ki ,

the integral gain ki. The optimal control law parameter for (3.27) found when
solving (3.15) is presented in Tab. 3.4. It can also be found using a root-locus plot,
or an approximate analytical expression [78, 172]. The resulting nominal frequency
responses for T (s), E(s), and D(s) are shown in Fig. 3.16c.

Table 3.4: Optimal parameter for (3.27).

Parameter Value
ki 1.37·105

Additional Analysis

Neglecting the instrumentation dynamics and assuming perfect co-location, stabil-
ity of the IFF scheme can be analyzed using the negative-imaginary property of
(3.4) and the product of (3.27) and (3.29), i.e.,

C̄(s) = λWhp(s)Ci(s) = λki
s+ ωf

. (3.35)

By the definition of a strictly negative-imaginary (SNI) transfer-function [166],
the transfer-function (3.4) is SNI since all the poles of Gf (s) are in the open left
half of the complex plane, and since

j [Gf (jω)−Gf (−jω)] = ks

nw∑
i=1

4βiζiωiω
(ωi2 − ω2)2 + (2ζiωiω)2 > 0 ∀ ω > 0 .

Similarly, for (3.35), the pole of C̄(s) is in the open left half of the complex plane,
and

j
[
C̄(jω)− C̄(−jω)

]
= 2λkiω
ωf 2 + ω2 > 0 ∀ ω > 0 ,

thus (3.35) is also SNI. The positive feedback connection of Gf (s) and C̄(s) is
therefore internally stable, if C̄(0)Gf (0) < 1.

Closing the loop for the force feedback path in Fig. 3.9 yields

Ḡw(s) = w

ua
(s) = Gw

1− λWhp(s)Ci(s)Gf (s)

for the response from applied voltage ua to the displacement w, which is stable by
the above arguments. This is not a negative-imaginary (NI) transfer-function, and
further analysis using NI properties can not be done.
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us

q

+ uq=αw

Cp
+

R L

Z(s) ua

Figure 3.10: Actuator circuit with shunt.
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Figure 3.11: Control structure when using passive shunt-damping.

Now, closing the loop for the displacement feedback path in Fig. 3.9 yields

T11(s) = w

r
(s) = Ci(s)Ḡw(s)

1 +Wlp(s)Ci(s)Ḡw(s)
=

Ci(s)Gw(s)
1 + Ci(s)(Wlp(s)Gw(s)− λWhp(s)Gf (s)) ,

and for a model Gw(s) with more than one vibration mode, or if instrumentation
dynamics is included, no algebraic roots can be found. However, using a sufficiently
low cut-off frequency ωf , the complementary sensitivity function from r to w can,
since Wlp(s) +Whp(s) = 1, be approximated as

T11(s) = Ci(s)Gw(s)
1− λCi(s)Gf (s) +Wlp(s)Ci(s) (Gw(s) + λGf (s)) ≈

Ci(s)Gw(s)
1− λCi(s)Gf (s) ,

which is an unconditionally stable transfer-function [81]. It corresponds to the case
when only applying IFF without the high-pass filter [172], and feed-forward filtering
the reference through the integral control law. The approximation is also valid for
instrumentation dynamics with sufficiently high bandwidth.

3.4.5 Passive Shunt-Damping (PSD)
Passive shunt-damping [96] can introduce damping by adding an inductor and a
resistor in series with the piezoelectric actuator, which acts as a capacitor, due
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to the large dielectric constant of the piezoelectric material. Tuning the resulting
LCR-circuit for maximal damping creates a resonant LCR-circuit that works anal-
ogously to a tuned mechanical absorber. This is physically realized as shown in Fig.
3.10. Adding an integral control law for tracking, results in the control structure
shown in Fig. 3.11, where Gq(s) is as given in (3.3). As discussed below, this config-
uration does not result in the same tuning of the LCR-circuit when optimizing for
a flat frequency magnitude response for the complementary sensitivity function,
compared to the case when optimizing for maximum damping (in the absence of
the integral control law).

The transfer-function for the added shunt in Fig. 3.10 is

Z(s) = sL+R , (3.36)

where L (H) is the inductance, and R (Ω) is the resistance. The integral control
law is

Ci(s) = ki
s
, (3.37)

where ki > 0 is the gain.
This can be interpreted as a single-input-multiple-output (SIMO) system, where

the measurement vector is given as

y = [d, vf ]T , (3.38)

and the input is the applied voltage ua. With regards to Fig. 3.7, the plant transfer-
matrix is

Gp(s) = [Gw(s), Gq(s)]T , (3.39)

the feed-forward transfer-matrix is

C(s) = [Wr(s)Ci(s), sZ(s)] , (3.40)

and the feedback transfer-matrix is given by

F (s) =
[
Wa(s) 0

0 1

]
. (3.41)

Here, Wr(s) = Wa(s), and are second-order Butterworth filters with cut-off fre-
quency at 20 kHz.

There are three tunable control parameters

θc = [L, R, ki]T ,

the shunt inductance L, the shunt resistance R, as well as the tracking integral
control law gain ki. The optimal control law parameters for (3.36) and (3.37) found
when solving (3.15) are presented in Tab. 3.5. The resulting nominal frequency
responses for T (S), E(s), and D(s) are shown in Fig. 3.16d.

The shunt was implemented using an inductor constructed using a closed ferrite
core and approximately 45 turns of copper wire. A potentiometer was used to
implement the required resistance. The inductor and resistor were tuned to their
required values using an Agilent U1733C LCR meter.
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Table 3.5: Optimal parameters for (3.36) and (3.37).

Parameter Value
L 49.5 mH
R 613 Ω
ki 7.50·104

Additional Analysis

By Kirchhoff’s law, the voltages in the mesh loop in Fig. 3.10 sum up to

us = sqZ(s) + ua = (1 + sGq(s)Z(s))ua ,

where Z(s) is the shunt impedance (3.36), us is the source voltage, and ua is
the applied voltage to the actuator. The source voltage us from the amplifier is
therefore filtered by the filter

Ws(s) = ua
us

(s) = 1
1 + sGq(s)Z(s) ,

before being applied to the actuator.
The time derivative of (3.3), sGq(s), is a positive-real (PR) transfer-function [166],

i.e., ∠jωGq(jω) ∈ [−90◦, 90◦], since all the poles of Gq(s) are in the closed left half
of the complex plane, and since

∠jGq(jω) + ∠jGq(−jω) = αCp

nw∑
i=1

4βiζiωiω2

(ωi2 − ω2)2 + (2ζiωiω)2 ≥ 0 ∀ ω ∈ R .

The transfer-function Z(s) is a strictly positive-real (SPR) transfer-function [166],
i.e., ∠Z(jω) ∈ (−90◦, 90◦), since Z(s) have no poles, and since

Z(jω) + Z(−jω) = 2R > 0 ∀ ω ∈ R .

The negative feedback interconnection of sGq(s) and Z(s) is therefore internally
stable.

This can also be interpreted as a feedback connection from ẇ, as it is known
that sGw(s) is a positive-real transfer-function [166], and since it can be shown
that

Ws(s) = Wf (s)
1 + sGw(s)Fs(s)

, Wf (s) = 1
1 + sZ(s)Cp

, Fs(s) = αCpZ(s)Wf (s) ,

using (3.3). It is straight forward to show that Fs(s) is a SPR transfer-function,
thus the negative feedback interconnection of sGd(s) and Fs(s) is internally stable.

It should be noted that the values for L and R found using (3.15) are not the
same as when optimizing for maximum damping. Maximum damping is measured
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with regards to the increase in disturbance rejection when adding the shunt to the
piezoelectric actuator, i.e.,

D̄(s) = w

du
(s) = Gw(s)

1 + sGw(s)Fs(s)
.

For applications when reduced sensitivity to environmental disturbances is desired,
and there is no need for reference tracking or if reference tracking is preformed by
feed-forward control, this can be achieved solving, e.g.,

arg min
R,L

∥∥D̄(jω,R, L)
∥∥

2 . (3.42)

For the system at hand, this results in L = 46.6 mH and R = 165 Ω, which
produces a resonant LCR-circuit response, due to the much smaller resistance
value. An approximate value for the inductance can also be found assuming the
shunt-circuit forms an harmonic oscillator with an undamped natural frequency
equal to the undamped natural frequency of the vibration mode that should be
damped. Then the inductance will be

L ≈ 1
Cpω22 = 47.1mH . (3.43)

The resonant response can be seen in Fig. 3.12a, which displays the response of
Wf (s), which accounts for the LCR-circuit alone.

An example of the decreased input disturbance sensitivity due to the presence of
a shunt tuned for maximum damping is shown in Fig. 3.13. Here, experimental time
responses to the signal us = Wf (s)−1r, r being a triangle-wave signal, are shown.
It is immediately apparent that the excitation of a vibration mode is significantly
reduced due to the shunt.

The response obtained forWf (s) when using the values of L and R from Tab. 3.5
is almost identical to that of a second-order low-pass Butterworth filter with cut-off
frequency ωc =

√
1/LCp.

From Fig. 3.12b, which displays the response ofWs(s), where also the generated
charge is taken into account, it can be seen that for the values from Tab. 3.5,
the response is still very similar to the Butterworth filter, although there is some
additional damping introduced due to the uq = αGw(s) term in (3.3).

Since

Ḡw(s) = w

us
(s) = Gw(s)

1 + sZ(s)Gq(s)
= Ws(s)Gw(s) =

Wf (s)Gw(s)
1 + sGw(s)Fs(s)

= Wf (s)D̄(s)

when the shunt is present, the source voltage us is filtered by Ws(s) before it is
applied to the actuator, or equivalently, the source voltage us can be seen as a input
disturbance filtered byWf (s), where Fs(s) can be interpreted to be a feedback filter.
Responses for D̄(s) and Ḡw(s) are shown in Figs. 3.12c and 3.12d, respectively, for
different parameter values for L and R. Although the parameter values obtained
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Butterworth filter.
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Figure 3.12: Results when considering passive shunt-damping alone, using different
optimality criteria.

when solving (3.42) provides greater damping of the dominant vibration mode, the
parameter values obtained when solving (3.15) produces the flattest response for
T11(s) when also including feedback using the integral control law (3.37).

For tracking control, using the optimality criterion (3.14), this means that the
shunt can be approximated by a low-pass Butterworth filter, which is done in
Section 3.4.6, where the anti-aliasing and reconstruction filters are used to introduce
damping.

It might also be noted that when using passive shunt-damping, the low-pass
filter Ws(s) makes the use of the anti-aliasing filter Wa(s) unnecessary. However,
a potential practical problem when implementing the shunt using passive compo-
nents, is to find a high-quality inductor with a sufficiently high inductance value,
especially when the dominant resonant frequency is fairly low, due to (3.43).
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Figure 3.13: Time-series of the response when applying feed-forward control when
shunt circuit is present, using us = Wf (s)−1r.

3.4.6 Damping Integral Control (DI)

As noted in Section 3.4.5, the optimal values for the resistance and inductance for
the shunt, when solving (3.15), result in a low-pass filter when connected to the ca-
pacitance of the actuator, with approximately the same response as a second-order
low-pass Butterworth filter. Implementing a control scheme on a microcontroller
or a computer, there must be anti-aliasing and reconstruction filters present in or-
der to avoid aliasing and to reduce quantization noise. Instead of applying a shunt
circuit, the reconstruction and anti-aliasing filters that are already present as part
of the instrumentation can be used, as long as the cut-off frequency is below the
Nyquist frequency. The resulting control structure is shown in Fig. 3.14.

Similarly to the case when using passive shunt-damping, only an integral control
law needs to be implemented, i.e.,

Ci(s) = ki
s
, (3.44)

where ki > 0 is the gain. The cut-off frequency, ωc, for the filters Wr(s) and Wa(s)
must be tuned as well. Here it is assumed that Wr(s) = Wa(s) for simplicity. The
filters used in the experimental set-up are second order Butterworth filters, i.e.,

Wr(s) = Wa(s) = ωc
2

s2 +
√

2ωcs+ ωc2
. (3.45)

The combined filter Wr(s)Wa(s) is of fourth order, but the closed-loop response of
the system is almost identical to the case when using a passive shunt. The added
benefit is that the shunt is no longer needed, and that off-the-shelf programmable
filters that are easy to tune can be used.
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Ci Wr Gw Wa
ua w

–
r u

du nw

Figure 3.14: Control structure when introducing damping by applying a low-pass
filter in the signal chain, in this case by utilizing the filter Wr(s)Wa(s).

Table 3.6: Optimal parameters for (3.44) and (3.45).

Parameter Value
ωc 2π·2150
ki 6.68·104

Formulating the control scheme in terms of the general control structure in
Fig. 3.7, the feed-forward filter is

C(s) = Wr(s)Ci(s) (3.46)

and the feedback filter is
F (s) = Wa(s) . (3.47)

There are two tunable control parameters

θc = [ωc, ki]T ,

the filter cut-off frequency ωc, and the tracking integral control law gain ki. The
optimal control law parameters for (3.44) and (3.45) found when solving (3.15) are
presented in Tab. 3.6. The resulting nominal frequency responses for T (S), E(s),
and D(s) are shown in Fig. 3.16e.

Additional Analysis

The combined control law, consisting of (3.44) and (3.45), has an extra degree of
freedom, in the choice of the cut-off frequency ωc of the filters (3.45). In the simplest
form, the control law consist of an integrator and a second-order low-pass filter, and
is applied to a second-order mass-spring-damper system. The closed-loop system is
therefore, at minimum, of fifth order, and has no algebraic roots. The control law
has two free parameters, ki and ωc. The control law will therefore not lend itself to
polynomial coefficient matching. The practical solution is to investigate the effects
of the low-pass filters in the signal chain using numerical analysis.

This is done in Fig. 3.15, where the eigenvalue loci for the closed-loop system
is plotted as a function of the cut-off frequency ωc. Here, Gd(s) together with C(s)
and F (s), as defined in (3.46) and (3.47), is used.

The integral control law gain ki is in this example set using (3.17). It is ap-
parent that tuning the integral control law to the stability margin k∗i = 1.75 · 104,
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Figure 3.15: Eigenvalue loci for the closed-loop system as a function of the filter
cut-off frequency ωc. The loci are symmetric about the real axis.

the system is either unstable or close to being unstable when using high cut-off
frequencies for the anti-aliasing and reconstruction filters. However, as the root
loci in Fig. 3.15 indicate, reducing the cut-off frequencies for the filters, all eigen-
values can be moved further into the left-half plane, and there appears to be an
optimal value for the cut-off frequency. By moving the poles further into the right
half-plane, the gain margin for the closed-loop system will be larger. This should
allow for a higher closed-loop bandwidth.

It should be noted the reducing the cut-off frequency ωc all the way towards
zero, one of the modes close to the origin will move into the right half-plane. There
is therefore a domain of values of ωc for which the system is stable.

Inspecting Fig. 3.15, one might expect that minimizing the maximum value of
the real part of the eigenvalues for the closed-loop system as a function of the cut-
off frequency ωc will provide the fastest system. For the model Gd(s), this results
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in
arg min
ωc∈R+/{0}

[arg max
Re(λ)∈R−

[det(A(ωc)− λI) = 0]] = 2π · 1110 rad/s , (3.48)

where A(ωc) is a state matrix realization for the closed-loop system for a given
ωc. Solving (3.48) will move all the eigenvalues as far into the left-half plane as
possible, but will not necessarily result in the flattest response when increasing
the integral control gain ki to take advantage of the increased gain margin. The
closed-loop pole locations are also dependent on the value of ki, thus solving (3.15)
seem to be a better approach, as it provides optimal values for both ki and ωc.

According to the results in Section 3.4.5, one might expect the optimal cut-off
frequency ωc to be close to

√
1/LCp = 2π · 1620 rad/s, and the integral gain ki

close to be close to the value in Tab. 3.5. Using these values in the filters C(s)
and F (s) as defined in (3.46) and (3.47), provides a fairly flat response for the
complementary sensitivity function, but as would be expected, better results are
obtained using the values in Tab. 3.6.

An advantageous side-effect of tuning the anti-aliasing and reconstruction fil-
ters to a cut-off frequency close to the bandwidth of the resulting complementary
sensitivity function, is an effective attenuation of quantization noise and higher-
frequency sensor noise. This provides an improvement in the actual displacement
noise floor of the system. A similar effect is obtained using passive shunt-damping,
but in that case only quantization noise is attenuated. For good noise attenuation,
it is ideal that the bandwidths of the anti-aliasing and reconstruction filters are
as low as possible, and this idea is also applied in the control design of the model
reference control in Section 3.4.7.

For the experimental set-up, the anti-aliasing and reconstruction filters have a
user-programmable cut-off frequency ωc. However, most filter topologies are fairly
straight forward to tune, especially the state-variable topology. One-component
filters with the state-variable topology are readily available from major producers
of integrated circuits.

3.4.7 Model Reference Control (MRC)
The model reference control (MRC) [111] objective is to make the plant output yp
track the output of a reference model ym. Similar to polynomial-based control, or
pole-placement [94, 111], MRC provides a control law for arbitrary closed-loop pole
placement, but also allows for arbitrary minimum phase zero placement. A second-
order pole-placement control law, similar to the control law in Example 3.1, was
applied to a nanopositioning stage in [15]. The synthesis equations for the MRC
scheme are summarized in Appendix E.

For the MRC design, the displacement model of the system Gw(s) is truncated
to only include the dominant piston mode at 1660 Hz, the second mode of the
positioning stage,

G̃w(s) = Gd(0)
β2/ω22

β2

s2 + 2ζ2ω2s+ ω22 . (3.49)

This is done in order to keep the control law order as low as possible, and to avoid
excitation of the vibration modes above the dominant mode. The above model is
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augmented with an integrator, in order to reduce the sensitivity to plant uncertainty
at lower frequencies. In addition, the anti-aliasing and reconstruction filters Wr(s)
andWa(s) are incorporated into the control design. The filters provide an additional
degree of freedom when tuning the control law, and can be used to attenuate
non-modeled high-frequency dynamics, as well as to attenuate quantization and
sensor noise. The complete plant model, with regards to the synthesis equations in
Appendix E, is thus taken to be

G̃p(s) = 1
s
G̃w(s)Wr(s)Wa(s) , (3.50)

and is of seventh-order. In addition to the plant model G̃p(s), there are two addi-
tional design choices with regards to the control law; the reference model Wm(s)
and the output filter 1/Γ(s). The main limiting factor in determining these filters,
is the uncertainty of the plant model, which for the system at hand is mostly due
to non-modeled high-frequency dynamics.

For simplicity, the reference model Wm(s) is chosen to be a seventh-order But-
terworth filter with cut-off frequency ωm. Since the plant model G̃p(s) does not
have any zeros, Λ(s) should be a polynomial of sixth order. The zeros of Λ(s)
were chosen to have a Butterworth pattern with radius ωl. The anti-aliasing and
reconstruction filters have a user-programmable cut-off frequency ωc, which can be
tuned, given that ωc is below the Nyquist frequency.

The design problem is as such reduced to three tunable control parameters

θc = [ωc, ωm, ωl]T ,

the cut-off frequencies ωc, ωm, ωl. The reference model is a Butterworth filter,
which is maximally flat by definition. The optimality criterion described in Equa-
tion (3.14) is therefore satisfied for all ωm, ωl, and ωc that render a stable closed-
loop system. The cut-off frequencies were therefore tuned manually, attempting to
obtain the highest bandwidth for E(s) while still having a robustly stable closed-
loop system. The control law parameters used are presented in Tab. 3.7.

The implementation of the scheme is done by moving the integrator in (3.50) to
the feed-forward filter, i.e., compared to the scheme as presented in Appendix E,
the feed-forward filter (E.7) is augmented as

C̃(s) = 1
s
C̄(s) , (3.51)

but the feedback filter (E.8) is left as it is, i.e.,

F̃ (s) = F̄ (s) . (3.52)

The parameters for the feed-forward filter C̄(s) and feedback filter F̄ (s) are found
using (E.5) and (E.6).

With regards to the general control structure in Fig. 3.7, the analysis in terms
of the sensitivity (3.7), complementary sensitivity (3.8), noise attenuation (3.9),
error attenuation (3.10), and disturbance rejection (3.12) is done using

Gp(s) = Gw(s) , (3.53)
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C(s) = C̃(s)Wr(s) , (3.54)

and
F (s) = F̃ (s)Wa(s) . (3.55)

The resulting nominal frequency responses for T (S), E(s), and D(s) are shown in
Fig. 3.16f.

Table 3.7: Control law parameters for MRC.

Parameter Value
ωc 2π·3000
ωm 2π·2000
ωl 2π·2250

3.5 Experimental Results & Discussion

The six different control schemes were implemented on the hardware-in-the-loop
system, and the tracking performance when using a triangle-wave reference signal
with a fundamental frequency of 80 Hz and an amplitude of 1 µm was recorded
for each scheme. The fundamental frequency of the reference signal was chosen in
order for the 21st harmonic of the signal to be close to the dominant vibration
mode. The displacement for all the schemes was measured on a separate channel
using an anti-aliasing filter with a 35 kHz cut-off frequency. The generated current
from the force transducer was measured, and integrated numerically. The cut-off
frequency for the anti-aliasing filter for this measurement was always set to 20 kHz,
for all the experiments.

3.5.1 Results
Nominal frequency responses for the various schemes are presented in Figs. 3.16a,
3.16b, 3.16c, 3.16d, 3.16e, and 3.16f. The measures from Section 3.3 are summarized
in Tab. 3.8. Note that the values for 1/γs are not directly comparable between SISO
and SIMO systems.

The results when tracking a triangle-wave reference signal are presented in
Figs. 3.17 and 3.18. The maximum error (ME) ranges from 15% to 24%, and the
root-mean-square error (RMSE) ranges from 0.11 µm to 0.20 µm. The error values
are also summarized in Tab. 3.8. Note that tracking performance can be increased
by adding feed-forward, but this is not done in order for the error signals to be
significantly larger than the noise in the measured displacement signal, to avoid
obfuscating the actual results achieved due to feedback.

3.5.2 Discussion
The best performing control schemes in terms of the error are the scheme using
integral force feedback (IFF) and the model reference control (MRC) scheme. The
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(a) Positive position feedback (PPF).
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(b) Integral resonant control (IRC).
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(c) Integral force feedback (IFF).
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(d) Passive shunt-damping (PSD).
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(e) Damping integral control (DI).
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(f) Model reference control (MRC).

Figure 3.16: Nominal frequency responses.
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Table 3.8: Bandwidth of E(s), ||N(s)||2 from nw to w, ||D(s)||∞ from du to w,
1/γs, root-mean-square error (RMSE), and maximum error (ME) obtained for the
control schemes.

Scheme BW ||N(s)||2 ||D(s)||∞ 1/γs RMSE ME

PPF 318 Hz 61.1 191×10−3 1.66 0.194 µm 0.231 µm

IRC 369 Hz 78.4 281×10−3 1.01 0.173 µm 0.213 µm

IFF 329 Hz 12.6 424×10−4 1.14 0.123 µm 0.146 µm

PSD 338 Hz 60.0 139×10−3 1.14 0.178 µm 0.218 µm

DI 372 Hz 58.6 204×10−3 1.66 0.197 µm 0.235 µm

MRC 434 Hz 55.2 295×10−5 1.26 0.108 µm 0.159 µm

worst performance is obtained when using positive position feedback (PPF) and the
damping integral control (DI) scheme, while when using integral resonant control
(IRC) and passive shunt-damping (PSD), errors in the middle of the range are
obtained.

The error figures in terms of ME and RMSE can be changed by the control law
tuning, but a reduction in RMSE typically leads to an increase in ME, due to a
more oscillatory response.

The MRC scheme is the most complex scheme. It requires the implementa-
tion of a sixth-order and a seventh-order filter; a total of thirteen integrators. By
comparison, the IFF based scheme only requires three integrators, but with the
disadvantage of reduced range due to the force transducer. It also requires more
instrumentation and good calibration. On the other hand, the noise performance is
superior, due to the extremely low noise density of the force transducer, although
this benefit is lost for a digital implementation, due to quantization noise and
digital-to-analog converter (DAC) artifacts, as discussed below.

The simplest control schemes to implement on a digital platform are the PSD
based scheme and the DI scheme, as they only require the implementation of one
integrator. The DI scheme is the simplest with regards to extra instrumentation,
as it is not necessary to add a shunt circuit, although for the PSD based control
law, the anti-aliasing filter is not necessary. For an analog implementation, the DI
scheme, and the schemes based on PPF, IRC, and PSD are almost equivalent in
terms of complexity. The MRC scheme is likely too complex for an efficient analog
implementation.

With regards to the DI scheme, it should also be noted that since many existing
nanopositioning systems already include an integral control law as well as anti-
aliasing and reconstruction filters, a significant increase in performance can be
achieved by no other changes than adjusting the filter cut-off frequencies and the
integral gain.

As quantization noise is the dominant noise source in the experimental system,
it is not possible to obtain reliable closed-loop noise measurements. However, due to
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Figure 3.17: Steady-state tracking performance when applying a 1 µm amplitude,
80 Hz triangle-wave reference signal. Displacement measurement signals and refer-
ence signals.

the low noise and high sensitivity of the force transducer, the effect of quantization
noise and DAC artifacts can be measured. An example of this is shown in Fig. 3.19,
where the time derivative of the force measurement is shown when using the IFF
based scheme and the MRC scheme. The MRC scheme, as well as the PSD and
DI scheme, has a low-pass filter with a low cut-off frequency before the voltage is
applied to the piezoelectric actuator, and so the noise and disturbances coming from
the DAC are effectively attenuated. For the PPF, IRC, and IFF based schemes,
the reconstruction filter has a cut-off frequency of 20 kHz, and thus the non-ideal
DAC behavior is much more noticeable. This beneficial effect can also be achieved
when using PPF and IRC schemes by implementing the damping control law Cd(s)
using analog components, as it takes the form of a low-pass filter in either case,
but implementing the whole scheme using analog components by adding an analog
integrator might then be a better option.

Overall, the performance is fairly similar among the six proposed schemes.
However, since the control schemes are implemented using digital signal processing
equipment, the noise performance of the PSD, DI, and MRC scheme will be better
due to the attenuation of quantization noise.
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Figure 3.18: Steady-state tracking performance when applying a 1 µm amplitude,
80 Hz triangle-wave reference signal. Error signals.

3.6 PI2 Anti-Windup Using Conditional Integrators

To improve tracking performance when using low-bandwidth reference signals, dou-
ble integral action can be added to the tracking control law. In scanning probe
microscopy applications, double integral action is sometimes used to obtain asymp-
totic tracking of the flanks of a triangle signal, due to the internal model princi-
ple [20].

If the integral control law 3.44 in Section 3.4.6 is augmented with a proportional
and a double integral term, i.e.,

Cpii(s) = s2kp + ski + kii
s2 , (3.56)

still using the optimal tuning for the cut-off frequency ωc and the integral gain
ki, the maximum double integral gain that renders a robustly stable closed-loop
system is kii ≈ 8.0 · 107 when using a proportional gain kp = 1.

This allows for slightly better tracking of reference signals with a low funda-
mental frequency. On the other hand, the PI2 control law also introduces a new
complex conjugate pole pair which can lead to an oscillatory response if excited,
so the tracking performance for high-bandwidth reference signals deteriorate.

Using high-gain integral and double integral action makes the closed-loop sys-
tem susceptible to integral windup. This is particularly a problem for for high
precision positioning, since signals will often be scaled to reduce noise and to max-
imize resolution. For example; it is common to adjust the amplification of the signal
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Figure 3.19: Time derivative of force measurement; when having a filter with high
cut-off frequency vs. low cut-off frequency in the signal chain before the voltage is
applied to the piezoelectric actuator. The effect of quantization noise and digital-
to-analog-converter artifacts are much more noticeable when there the cut-off fre-
quency is high.

from the digital-to-analog converter (DAC) such that the maximum output of the
DAC corresponds to the maximum mechanical deflection desired, utilizing the full
range of the DAC and thus maximizing the resolution. This leaves a small mar-
gin before saturation, and will make a control law with integral action prone to
windup in the presence of disturbances such as measurement bias and uncertainties
such as variable effective gain. To retain some level of performance and avoid large
transients, an integral anti-windup scheme should be used.

Among the large assortment of anti-windup schemes (see, e.g., [185] for a sur-
vey), the conditional integrator scheme of [203] is used in the following. It is straight
forward to analyze and implement for control laws with integral action of any or-
der. The effectiveness of the scheme is demonstrated by simulations for both input
and output saturation, and by experiment for input saturation.

In order for the anti-windup scheme to effectively limit the control actuation
signal, the control law should include a feed-forward term, such that the residual
error, and consequently the control signal generated by the feedback control law,
is fairly small.
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(a) Positive position feedback (PPF).
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(b) Integral resonant control (IRC).
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(c) Integral force feedback (IFF).
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(d) Passive shunt-damping (PSD).
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(e) Damping integral control (DI).
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(f) Model reference control (MRC).

Figure 3.20: Tracking performance.
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For low-bandwidth reference signals the feed-forward control law (2.9), i.e.,

u = 1
K
r ,

where
K = Gw(0) ,

is sufficient to produce a fairly small residual error ε = r − yp, similar to the error
seen in Fig. 2.5a. The overall control law is therefore taken to be

up = Ci(s)e+ 1
K
r . (3.57)

Remark 3.2. If the proportional term in (3.56) is small, i.e., kpe ≈ 0, the control
law can also be augmented with the hysteresis compensation scheme from Chapter 2
in a similar manner as discussed in Section 2.10.

3.6.1 Conditional Integrators as an Anti-Windup Scheme
The conditional integrator control scheme is based on continuous sliding mode
control with integral action, and is designed to only provide integral action if the
value for the so-called sliding mode variable is below some given threshold.

The sliding mode variable is defined as

ς = k0σ1 + k1σ2 + kεε, (3.58)

where the error ε is defined as ε = ym − r. The signals σ1,2 are generated by the
system

σ̇1 = σ2
σ̇2 = −k0σ1 − k1σ2 + µ sat (ς/µ) . (3.59)

Using (3.58) and (3.59), and if the sign of the DC-gain of the plant is positive, the
control signal is produced by

uc = −βc sat (ς/µ) , (3.60)

thus uc ∈ [−βc, βc].
In the above expressions, the saturation function sat(·) is used. This function

is defined as
sat(z) =

{
z if |z| ≤ 1
sgn(z) if |z| > 1 ,

where sgn(z) denotes the sign of the quantity z. The parameter µ > 0 is used to
set the threshold of saturation for the sliding mode variable ς, and the parameter
βc > 0 determines the maximum value of the control signal.

By inspecting the expressions for the control law, (3.58), (3.59), and (3.60), the
differential equations in (3.59) can be manipulated into the form

σ̇1 = σ2
σ̇2 = kεε− k0σ1 − k1σ2 − kεε+ µ sat (ς/µ)

= kεε− ς + µ sat (ς/µ)
= kεε+ µ

βc
(uc − u∗c) ,

(3.61)
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where u∗c has been introduced, which is (3.60) without saturation, i.e.,

u∗c = −βc (ς/µ) . (3.62)

Saturation occurs when the absolute value for the sliding mode variable ς is
above the value of µ. The control law therefore has two modes of operation; the
unsaturated mode, when |ς| ≤ µ, and the saturated mode, when |ς| > µ.

If |ς| ≤ µ, it corresponds to the unsaturated case, and thus uc = u∗c . The system
represented by (3.59) or (3.61) becomes

σ̇1 = σ2
σ̇2 = kεε ,

and it can be seen that the signals σ1,2 are time integrals of the error ε, scaled by
the constant kε.

The control signal (3.60) is in this case given as

uc = kpe+ ki

∫ t

t0

e dτ + kii

∫ t

t0

∫ τ

t0

e dτ ′ dτ (3.63)

where e = −ε,

kp = βc
µ
kε , ki = βc

µ
k1kε , and kii = βc

µ
k0kε ,

which can be recognized as a PI2 control law.
In the unsaturated mode, stability and tracking performance can then be de-

termined by analyzing the closed-loop system using (3.63) with control law gains
kp, ki, and kii. For a set of control gains, {kp, ki, kii}, the parameters for (3.58)
and (3.59) are found as

kε = µ

βc
kp , k1 = ki

kp
, and k0 = kii

kp
.

When |ς| > µ, the saturated case occurs, and uc 6= u∗c . The system (3.59), or
(3.61), becomes

σ̇1 = σ2
σ̇2 = −k0σ1 − k1σ2 + µ sgn(ς) , (3.64)

and the control output (3.60) becomes the constant

uc = −βc sgn(ς) . (3.65)

Inspecting (3.64), it can be seen that if the characteristic equation

λ2 + k1λ+ k0 = 0

is Hurwitz, the state vector (σ1, σ2) converges exponentially to (±µ/k0, 0), depend-
ing on the sign of the sliding mode variable ς, and this behavior prevents windup
in the control law. By the Routh-Hurwitz criterion, the characteristic equation will
be Hurwitz if k0,1 > 0.
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(b) Output saturation.

Figure 3.21: Simulated responses to input and output saturation with and without
integral anti-windup scheme.

Stability Analysis

In the above analysis of the anti-windup scheme, the control signal uc can either
be the constant (3.65) in the saturated case, or generated by (3.63) for the unsat-
urated case. The system will therefore switch between a mode where feedback is
applied, and a mode where it is driven in open-loop. The behavior of the system in
the saturated case is then determined by the open-loop dynamics. The open-loop
system as depicted in Fig. 3.3 consists of a series of stable sub-systems, i.e.,

Wr(s)Gw(s)Wa(s) ,

and in the absence of feedback, the location of the eigenvalues remains unchanged.
Thus, If the closed-loop system when using (3.56) is stable, the overall system is
stable.

Simulation Examples

The effectiveness of the anti-windup scheme when applying the control law (3.57)
is demonstrated in Fig. 3.21, where displacement responses with and without the
anti-windup scheme are shown for a triangle-wave signal with 1 µm amplitude and
10 Hz fundamental frequency. Here the system model as presented in Section 3.2 is
used. In addition to the control law parameter values already given above, βc = 1
and µ = 1 is used.

The results for the first example are shown in Fig. 3.21a, where the input voltage
is limited to be up ∈ [−25, 100] V. The second example is shown in Fig. 3.21b, and
displays the responses when the sensor output is limited to be ym ∈ [−10, 0.9] µm.
In either case, it can be seen that the large transient due to integral windup is
eliminated.

80



3.7. Conclusions

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Time (s)

D
is

pl
ac

em
en

t (
µm

)

 

 

Without anti-windup
With anti-windup

Figure 3.22: Experimental response to input saturation with and without integral
anti-windup scheme.

Input Saturation Experiment

The effectiveness of the anti-windup scheme was also experimentally verified for an
input saturation, using the above PI2 control law, implemented on the experimental
platform used in Chapter 2. The result is shown Fig. 3.22. The reference signal has
a fundamental frequency of 5 Hz and an amplitude of 1 µm. Here, a saturation in
the control signal was introduced using a SIM 964 analog limiter from Stanford
Research Systems on the output from the digital-to-analog converter. As can be
seen, without anti-windup there are large transients and long settling times, which
are practically eliminated when using the anti-windup scheme.

3.7 Conclusions

Six fixed-structure, low-order control schemes for damping and tracking control for
a nanopositioning device have been presented in this study and their performance
has been assessed experimentally. Investigated schemes were based on positive posi-
tion feedback (PFF), integral resonant control (IRC), integral force feedback (IFF),
and passive shunt-damping (PSD), in addition to damping integral control (DI) and
model reference control (MRC). A systematic tuning method was also presented
for the DI scheme, and the schemes based on PPF, IRC, IFF, and PSD.
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Overall, the performance was fairly similar among the schemes, but features
of notice is the noise performance of the IFF based scheme and the simplicity of
the DI scheme. It was also demonstrated that when implementing control schemes
on a digital platform, it is beneficial to use control schemes that reduce the effect
of quantization noise and digital-to-analog-converter artifacts by using low-pass
filers with low cut-off frequencies before the input to the actuator. Of the schemes
investigated, this is most easily done using the MRC and DI scheme, as well as the
PSD based scheme. It was also demonstrated that the noise benefits of using the
IFF based scheme is lost for a digital implementation, due to quantization noise
and digital-to-analog converter artifacts.

In addition, a simple integral anti-windup scheme was presented. Simulation
results demonstrated the effectiveness of the scheme, both for input and output
saturation. Experimental results demonstrating the effectiveness for the case of
input saturation was also presented.
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Chapter 4

Robust Repetitive Control

4.1 Introduction

Recently, repetitive control (RC) has been introduced for nanopositioning sys-
tems [16, 155]. The RC scheme is based on the internal model principle [86, 87],
and it is specifically tailored to track periodic reference trajectories and attenuate
periodic disturbances. The internal model is implemented using a time-delay inside
of a positive feedback loop, and corresponds to any periodic signal with a period
equal to the time-delay [98]. By inclusion of the internal model in the control law,
any exogenous signal that conforms to the model is nulled in the error signal, due to
the internal model principle [98]. For reference trajectory tracking, the RC scheme
only requires the period of the reference trajectory to be known. This makes the
RC scheme robust towards plant uncertainty since the nulling property is indepen-
dent of the plant dynamics, i.e., it provides robust tracking performance as long
as the closed-loop system is stable. Compared to traditional feedback and feedfor-
ward control laws, the tracking error when using RC diminishes as the number of
operating periods increases.

In many nanopositioning applications, the period of the reference signal is
known in advance, which makes RC useful. Compared to iterative learning con-
trol [35, 36, 101, 135, 160, 221], RC does not require resetting the initial conditions
at the start of each iteration step, and is far less computationally demanding. A
convenient feature is that an RC scheme can be plugged into an existing feed-
back loop to enhance performance with minimal changes to the existing control
system [42, 98, 215].

The performance and stability of RC depends on the dynamics of the controlled
system [98, 110]. Particularly, sharp resonant peaks can degrade performance and
even make creating a stable RC scheme difficult. To provide more feasible system
dynamics, the damping integral (DI) control law from Section 3.4.6 is applied
to minimize the effect of the highly resonant dynamics of the nanopositioning
stage. The DI control law also reduces the sensitivity of uncertain dynamics and
attenuates the hysteresis and creep disturbances. This gives the overall control law
(when also including the RC scheme) better robustness properties.

As discussed in Chapter 3, there are several well known methods for introducing
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damping to a flexible structure, and they can be augmented with integral action to
obtain good tracking performance. All of these control schemes, as well as control
schemes based on H∞-synthesis, are good alternatives to the DI control law.

The rationale for choosing the DI control law is based on noise performance
and computational complexity. In order to achieve the lowest possible noise floor,
the highest possible sampling frequency should be used. As the DI scheme only
requires an integrator to be implemented, it introduces negligible computational
complexity to the overall control scheme. As such, the sampling frequency will al-
most exclusively be determined by the computational complexity of the RC scheme.
Also, since the anti-aliasing and reconstruction filters when using the DI scheme
are tuned to have a minimal bandwidth, quantization and sensor noise is kept at a
minimum. An additional feature is that the overall control scheme will not require
any changes in instrumentation; utilizing components already present in typical
nanopositioning systems.

Pertaining to robust RC, work has been done with regards to uncertainties in
signal period [155, 156, 167, 208] and plant uncertainty [139, 165, 222, 224]. These
results are not immediately applicable in this work, as the period for the reference
signal is known, and the chosen structure of the overall control scheme and type of
uncertainty differs from what has been previously studied.

4.1.1 Contributions
The presented work is practically oriented, and the objective is to obtain high
performance for periodic position reference tracking for a nanopositioning device,
in the sense that the tracking error should be as small as possible. It is also desirable
to construct a control law with a minimum of computational complexity, in order to
maximize the closed-loop sampling frequency and to simplify the implementation.

The control scheme consists of the damping integral control law presented in
Section 3.4.6, and a plug-in repetitive control scheme, as described in [42, 98, 215].
The RC scheme is analyzed in continuous time, and high-order numerical integra-
tion is used in the discrete time implementation. The rationale behind this is that
the resulting control scheme will be directly translatable to an analog implemen-
tation, using, e.g., a bucket-brigade device [176], and that it makes it simpler to
adjust the time-delay in fractions of the sampling period. A fractional delay fil-
ter [132] can then be used in the implementation to improve the accuracy of the
chosen time-delay.

A specific form of the plug-in RC scheme is chosen in order to produce proper
filters in the control law. To ensure robust stability, a stability criterion in the fre-
quency domain for multiplicative plant perturbations is found. A tuning procedure
aimed at maximizing the bandwidth and minimizing the order of the RC scheme
is also described. Lastly, a tuning procedure for adjusting the time-delay in the
internal model is described. Adjusting the time-delay is necessary to improve the
accuracy of the pole locations in the internal model when it is bandwidth limited
to ensure stability.

The control approach is applied to a custom-designed piezo-based nanoposition-
ing system. Results are presented to demonstrate the effectiveness of the overall
control scheme, where the maximum tracking error for scanning at 100 Hz and
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400 Hz is measured at 0.22% and 1.9%, respectively, of the total positioning range.
The scheme also has very low computational requirements, making it possible to
use closed-loop sampling frequencies exceeding 100 kHz on standard hardware-in-
the-loop equipment.

4.1.2 Outline
The Chapter is organized as follows. In Section 4.2 the system model and the plant
uncertainty is presented. The overall control law consists of the RC scheme and a
modified PI law, which are both discussed in Section 4.3. The tuning procedure for
the different parts of the overall control scheme is presented in Section 4.4. Lastly,
experimental results are presented and discussed in Section 4.5.

4.2 System Description & Modeling

The system under consideration consists of a custom-designed serial-kinematic
nanopositioning stage, anti-aliasing and reconstruction filters, a voltage amplifier,
a capacitive displacement sensor, and a computer equipped with digital-to-analog
and analog-to-digital converters for implementing the control scheme. As the am-
plifier and sensor used in the experimental set-up have very fast dynamics, they
have been neglected in the system analysis.

4.2.1 Mechanical Model
The nanopositioning stage used in this work is shown in Fig. 2.3, where the serial-
kinematic motion mechanism is designed such that the first vibration mode is
dominant and occurs in the actuation direction, generating a piston motion. More
details on the design of this stage can be found in [120]. The simplified free body
diagram for the mechanism is displayed in Fig. 2.1, and by this model the corre-
sponding second-order differential equation to describe the dynamics in, e.g., the
x-direction, is given by

mẅ + dẇ + kw = fa , (4.1)

where m (kg) is the mass of the sample platform, as well as any additional mass
due an attached payload, d (N s m−1) is the damping coefficient, and k (N m−1)
is the spring constant. Here it is assumed that the additional stiffness introduced
by the presence of the actuator in the mechanical structure is accounted for in the
spring constant k.

The piezoelectric actuator is modeled as a force transducer, generating a force
proportional to the applied voltage, as described in Section A.5. The applied ex-
ternal force from the piezoelectric actuator fa (N) is

fa = ea(ua + du) , (4.2)

where ea (N V−1) is the effective gain of the piezoelectric actuator from voltage to
force, and ua (V) is the applied voltage. The piezoelectric actuator will introduce
hysteresis and creep when driven by a voltage signal. It is a reasonable assumption
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Figure 4.1: Measured frequency response for x-axis of the nanopositioning stage
and the model (4.3) using parameter values from Tab. 4.1.

to consider this behavior as a bounded disturbance added to the input, represented
by the term du (V), as discussed in Section 2.9.

The transfer-function from the voltage input ua to the displacement w (m) for
the flexible structure is

Gw(s) = w

ua
(s) = β0

s2 + 2ζω0s+ ω02 , (4.3)

where β0 = ea/m (m s−2 V−1), ζ = c/2
√
mk, and ω0 =

√
k/m (s−1). See Ap-

pendix B for a general description of the dynamics of flexible structures.
The frequency response for the x-direction is recorded using a SR780 Dynamic

Signal Analyzer from Stanford Research Systems using a 200 mV RMS bandwidth-
limited white noise excitation. The response is displayed in Fig. 4.1. The model (4.3)
is fitted to the frequency response data using the MATLAB System Identification
Toolbox, and the resulting parameter values are presented in Tab. 4.1. The re-
sponse of the model (4.3) using these parameters is also displayed in Fig. 4.1 for
comparison, where good agreement is achieved up to approximately 2 kHz.

4.2.2 Uncertainty
As can be seen from Fig. 4.1, the actual response of the first vibration mode is
well approximated by the second-order model (4.3), and the second-order model is
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Table 4.1: Identified parameters for the model (4.3).

Parameter Value Unit
β0 2.17·106 µm s−2 V−1

ζ 16.3·10−3 -
ω0 2π · 704 s−1

sufficient to describe the dominant dynamics of the system. However, in order to
assess the robustness properties of the proposed control scheme, the uncertainties
of the system must be accounted for.

As can be seen in Fig. 4.1, the system contains vibration modes above the dom-
inant (first) vibration mode, particularly the second vibration mode is clearly visi-
ble. It should be noted that higher-order vibration modes are likely to have shapes
and directions that will make them difficult to control using the mounted actuator
(along the x-direction). The control law therefore needs sufficient attenuation at
higher frequencies to avoid excitation of the higher order vibration modes. For the
experimental set-up, the payload mass is constant, and no change is expected for
the resonant frequencies.

The system also has a fair amount of uncertainty with regards to the parameters.
The parameter that seems most susceptible to change is the effective gain ea,
as discussed in Section 2.9. The effective gain ea is mainly determined by the
piezoelectric material used in the actuator, the amount of polarization, and the
driving voltage amplitude, as the amount of deflection generated changes with
voltage amplitude due to hysteresis. The dependency of the effective gain on the
input amplitude is demonstrated in Fig. 1.2b, and is measured for the system at
hand in Fig. 4.2. Here, the relative change of the low-frequency gain K = ea/k =
β0/ω0

2 is recorded as a function of input voltage amplitude (using a sinusoidal
input signal at 10 Hz). The relative change of the gain was found to be up to 80%
≈ -2 dB at an amplitude of 100 V compared to the gain at 50 mV.

The peak amplitude response of the first and higher order vibration modes did,
however, not seem to change as a function of input voltage amplitude. It is pointed
out that this is difficult to measure over a large domain, as fairly low input am-
plitudes would lead to excessively large displacements when the system is excited
using frequencies close to the first dominant resonant frequency. A reasonable as-
sumption in this case would then be that the uncertainty in gain diminishes when
approaching the first resonance from below. Some confirmation for this assump-
tion can be found in the fact that, when the assumption is made during control law
tuning, it results in a stable closed-loop system using the actual nanopositioning
stage.

To assess the robustness of the proposed control scheme with regards to the
uncertainties discussed, the uncertainty of the system model is taken into account
as a multiplicative perturbation to the nanopositioner dynamics,

w = Gw(s)(1 + δw(s)∆w(s))ua ; ‖∆w(s)‖∞ ≤ 1 . (4.4)

The uncertainty weight δw(s) is determined experimentally. As the uncertainty
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Figure 4.2: Relative change in low-frequency gain for the piezoelectric actuator due
to the input voltage amplitude (using a sinusoidal input at 10 Hz).
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Figure 4.3: Open-loop uncertainty weight δw(s), using experimental data and as
over-bounding transfer-function.

apparently is very large at low frequencies, but difficult to measure over a large
frequency domain, an over-bounding transfer-function is proposed. These uncer-
tainty weights are shown in Fig. 4.3.

4.3 Control Structure

The control law combines a plug-in repetitive control scheme and a proportional-
integral control law as illustrated in Fig. 4.4. The PI control law is modified to in-
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Figure 4.4: System block diagram.

clude the anti-aliasing and reconstruction filters,Wa(s) andWr(s). As was demon-
strated in Section 3.4.6, this modified PI control law can be used for damping and
tracking control.

4.3.1 Repetitive Control
Repetitive control tracks or rejects arbitrary periodic exogenous signals of a fixed
period τp (s). This is achieved by embedding a model of the reference r or dis-
turbance du signal into the feedback loop. The minimal and exact realization of a
model for any periodic signal with period τp is given by [224]

Γ1(s) = e−τps

1− e−τps
. (4.5)

For an appropriate initial function, this model can generate any signal with the
given period τp, as it contains poles at s = j2πn/τp, for n = 0, 1, 2, 3, ...,∞. How-
ever, the minimal realization is not suitable for implementation on most systems
since it requires the system to be bi-proper, that is, to have relative degree n? = 0,
in order to be stable in closed-loop. The remedy is to introduce a stable low-pass
filer Q(s) in the model [98], i.e.,

Γ2(s) = Q(s)e−τps

1−Q(s)e−τps
.

By doing so, all the poles will shift into the complex left half-plane by an amount
depending on the frequency; thus, at higher frequencies the new pole location is
farther away from the original location than at lower frequencies. This means that
the model is no longer exact, and importantly, the nulling property with respect
to the exact model (4.5), especially at higher frequencies, is degraded.

In this work, the structure shown in Fig. 4.5a is used to implement the RC
scheme, and the transfer-function is given by

Γ(s) = p

ē
(s) = R(s)e−τ̃ps

1−Q(s)e−τ̃ps
. (4.6)

Two modifications have been introduced, the output filter R(s), defined below, and
a modified delay τ̃p. By modifying the time-delay in the RC block, the shift in the
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Figure 4.5: Repetitive control scheme block diagrams.

poles due to Q(s) can be partially compensated for. A method for minimizing the
tracking error by tuning τ̃p is given in Section 4.4.2.

Inspecting Fig. 4.4, the closed-loop sensitivity function for the overall system is

S(s) = ε

r
(s) = 1

1 + L̄(s) + L̄(s)Γ(s)
= 1
P (s) , (4.7)

where L̄(s) = Wa(s)Gw(s)Wr(s)Cpi(s). The stability of the closed-loop system is
determined by the denominator P (s) = 1 + L̄(s) + L̄(s)Γ(s).

The sensitivity and complementary sensitivity function without the presence of
the repetitive control scheme is denoted as

S̄(s) = ε

r
(s) = 1

1 + L̄(s)
and T̄ (s) = w

r
(s) = L̄(s)S̄(s) ,

respectively. By inserting the expression for Γ(s), multiplying the numerator and
denominator of 1/P (s) by S̄(s), and rearranging, the sensitivity function for the
closed-loop system when adding the repetitive control scheme takes the form

S(s) = 1
P (s) = S̄(s)(1−Q(s)e−τ̃ps)

1− (Q(s)− T̄ (s)R(s))e−τ̃ps
. (4.8)

With reference to Fig. 4.5b, it can be seen that given a bounded reference r and sta-
ble transfer-functions S̄(s) and Q(s), the small-gain theorem provides the criterion
for the stability of the closed-loop system as [98]∥∥Q(s)− T̄ (s)R(s)

∥∥
∞ < 1 , (4.9)

with |e−jτ̃pω| = 1 ∀ ω ∈ R.
The output filter R(s) is constructed as

R(s) = WT
−1(s)Q(s) , (4.10)

introducing a stable all-pole filter WT (s), which provides for some flexibility in
meeting the stability criterion. Using a unity-gain low-pass filter Q(s), the simpler
criterion ∥∥1−WT

−1(s)T̄ (s)
∥∥
∞ < 1 , (4.11)
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for selecting an appropriate filter WT (s) can be used. The selection of WT (s) is
described in Section 4.4.2.

Finally, to assess the robustness of the RC scheme, a multiplicative perturbation
for the closed-loop complementary sensitivity is used, i.e.,

w = T̄ (s)(1 + δ̂w(s)∆̂w(s))r ; ‖∆̂w(s)‖∞ ≤ 1 , (4.12)

where

δ̂w(s)∆̂w(s) = S̄(s)δw(s)∆w(s)
1 + T̄ (s)δw(s)∆w(s)

⇒ |δ̂w(jω)| ≤ |S̄(jω)δw(jω)| . (4.13)

Incorporating the uncertainty into the criterion (4.9), the robust stability criterion∣∣Q(jω)− T̄ (jω)R(jω)
∣∣ < 1−

∣∣T̄ (jω)δ̂w(jω)R(jω)
∣∣ , (4.14)

is obtained.

4.3.2 Damping-Tacking Control
The nanopositioning stage is a lightly damped structure. Inspecting the stability
criterion for the RC scheme (4.9), it is expected that large peaks in the comple-
mentary sensitivity function T̄ (s) can reduce the applicable bandwidth and gain,
depending on how well the output filter R(s) is able to match the inverse closed-loop
dynamics T̄ (s). Due to the inclusion of a damping and tracking control law C(s),
the robustness and bandwidth possible for the overall control scheme is increased,
as this control law will reduce the sensitivity to plant uncertainty, as measured by
the sensitivity function S̄(s), i.e., since [60, 119]

S̄(s) = ∂T̄ (s)/T̄ (s)
∂Gw(s)/Gw(s) = Gw0(s)

T̄0(s)
∂T̄ (s)
∂Gw(s)

∣∣∣∣
NOP

,

using a nominal operating point (NOP) for all the parameters in the transfer-
functions.

As discussed in Section 3.4.6, a simple, effective, and robust damping and track-
ing control law for a lightly damped structure can be obtained by augmenting an
integral control law by a second or higher-order low-pass filter, and optimally tun-
ing the integral gain and cut-off frequency.

Since the control law is implemented in discrete time using digital-to-analog and
analog-to-digital converters, anti-aliasing and reconstruction filters must be present
in order to mitigate aliasing effects and quantization noise. By including these
filters in the control law, an extra degree of freedom can be added for the tuning
of the control law, which is the cut-off frequency of the filters. The nominal choice
for the cut-off frequency would usually be close to the Nyquist frequency if high
bandwidth is required. In order to mitigate the effects of aliasing and quantization
on the system, it is desirable to choose a low cut-off frequency, but this usually
impacts the closed-loop stability margins negatively. However, using the damping
integral control law, the optimal cut-off frequency turns out to be close to the first
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resonant frequency, which has to be well below the Nyquist frequency to avoid
aliasing.

Using the proposed tuning procedure from Chapter 3 it is therefore possible to
utilize the filters to good effect; damping the dominant vibration mode, reducing
the sensitivity to plant uncertainty and disturbances, and reducing the impact of
aliasing and quantization on the system. Compared to a regular integral control law
the damping integral control law will also marginally reduce the overall noise level
due to sensor noise, even when not considering the added noise due to quantization.

Proportional-Integral Control Law

In this Chapter, a proportional-integral (PI) control law is used, rather than the
integral control law used in Section 3.4.6, in the hopes that a slightly higher band-
width can be achieved. This would be due to the increased effective stiffness in-
troduced by the proportional action, which should increase the allowable integral
gain.

A PI control law is typically given as

Cpi(s) = kps+ ki
s

, (4.15)

where kp and ki are the proportional and integral gains, respectively. The anti-
aliasing and reconstruction filters are here taken to be second-order low-pass But-
terworth filters

Wa(s) = Wr(s) = ωc
2

s2 +
√

2ωcs+ ωc2
, (4.16)

where ωc is the cut-off frequency. For convenience they are chosen to be identical
when tuning the control law. The modified PI control law is therefore

C(s) = Wa(s)Cpi(s)Wr(s) . (4.17)

Proportional Gain Margin

When applying a proportional control law

Cp(s) = kp

to the second order system (4.3), in the ideal case with perfect sensors and actua-
tors, it is straight forward to verify that the closed-loop system has an unlimited
stability margin, that is, kp can be chosen arbitrarily large. The proportional action
increases the effective stiffness of the system, and the product ζω0

3 in (3.16) will
therefore be larger, and thus proportional action should increase the allowable gain
when combined with integral action.

However, in the presence of phase-lag, the margin for a proportional control
law is rather limited. Considering for instance sensor dynamics in the form of the
first-order low-pass filter with cut-off frequency ωc

Wy(s) = ωc
s+ ωc

, (4.18)

92



4.4. Control Scheme Tuning & Analysis

in cascade with (4.3), the margin k∗p for the combined system determined by the
Routh-Hurwitz criterion is

kp <
2ζω0(ω0

2 + 2ζω0ωc + ωc
2)

ωcβ0
= k∗p . (4.19)

With parameter values from Tab. 4.1, and considering the specifications for a fast
state-of-the-art capacitive probe from ADE Technologies (ADE 6810), which is
well described by (4.18) with ωc = 2π · 100 rad/s, the gain is limited to kp / 40.
Adding more low-pass characteristic elements degrades the limit even more, and
the increased performance due to proportional action is therefore modest.

4.4 Control Scheme Tuning & Analysis

The tuning and analysis of the damping and tracking control law and the repetitive
control scheme is presented below.

4.4.1 Damping & Tracking Control Law
The damping and tracking control law is as presented in Section 3.4.6, with the
addition of proportional action. As the proportional gain is limited by phase-lag
due to instrumentation, it is set to a constant, low value. The tuning procedure is
then identical with the method presented in Chapter 3.

Effects of Low-Pass Filters in the Signal Chain

The modified PI control law (4.17) has an extra degree of freedom, in the choice of
the cut-off frequency of the filters (4.16). As discussed in Section 3.4.6, damping can
be introduced and the overall bandwidth can be increased, by adjusting the cut-off
frequency ωc. For the system used in the experimental set-up for this Chapter, this
is illustrated in Fig. 4.6a. Setting the control gains to kp = 1 and ki = k∗i ≈ 1300,
i.e., setting the PI control law gains close to the margin of stability, the eigenvalue
loci of the closed-loop system is generated by varying the cut-off frequency ωc of
the anti-aliasing and reconstruction filters.

As can be seen from the detail in Fig. 4.6b, using filters with a cut-off frequency
equal to the Nyquist frequency, ωc = ωn = 2π · 50 rad/s, the system is unstable.
The Figs. 4.6a and 4.6b indicate, however, that reducing the cut-off frequency for
the filters, all eigenvalues can be moved further into the left-half plane. Minimizing
the maximum value of the real part of the eigenvalues for the closed-loop system
as a function of the cut-off frequency ωc resulted in

arg min
ωc∈R+/{0}

[arg max
Re(λ)∈R−

[det(A(ωc)− λI) = 0]] ≈ 2π · 584 rad/s , (4.20)

where A(ωc) is a state matrix realization for the closed-loop system for a given ωc.
Thus, setting ωc = 2π · 584 rad/s, produces the fastest modes for this system with
the selected control gains.

By inspecting Figs. 4.6a and 4.6b, it is evident that by using the computed
optimal value for the cut-off frequency, the stability margins for the closed-loop
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Figure 4.6: Eigenvalue loci for the closed-loop system as a function of the filter
cut-off frequency ωc. The loci are symmetric about the real axis.

Table 4.2: Optimal parameters for (4.17).

Parameter Value
ωc 2π·737
ki 8.33·103

system will be larger. This should allow for a larger closed-loop bandwidth. The
new stability margin is found numerically to be about 12 · k∗i , thus reducing the
cut-off frequency increases the integral gain limit significantly.

As pointed out in Section 3.4.6, the closed-loop pole locations depend on both
ki and ωc, and for the PI control law, also kp. Optimal values for ki and ωc was
therefore found solving (3.15), keeping kp fixed. As different values for kp that
generated a stable closed-loop system did not seem to impact the bandwidth no-
ticeably, this gain value was set to kp = 1. The optimal control law parameters for
(4.17) with kp = 1 found when solving (3.15) are presented in Tab. 4.2.

As an example of the feasibility of the cost-function (3.14), the surface of the
cost-function in a neighborhood of the optimal values is shown in Fig. 4.7. For this
system it can be seen that the cost-function provides a smooth and convex surface,
and that the solution of (3.15) for a reasonable domain of control law parameters
is unique.

It might also be interesting to compare the optimal tuning with a nominal
tuning for the control law (4.17). A nominal tuning of the anti-aliasing and recon-
struction filters corresponds to using ωc = ωn, i.e., the Nyquist frequency. Tuning
the PI control law for maximum bandwidth in this case requires the highest possi-
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Figure 4.7: Surface of the cost-function (3.14). Here, ωc = 2πfc.

ble gain for the proportional and integral term, but due to the undamped vibration
mode, high gain provides little robustness, and from Fig. 4.6b it can be seen that
the system is unstable for ωc = ωn and ki ≈ k∗i . Using the control law parameters
from Tab. 4.2, a gain margin of ∆K = 5.81 dB and a phase margin of Ψ = 61.6◦
is found for the loop transfer-function. To obtain similar robustness properties, a
comparable gain and phase margin when using ωc = ωn is found for kp = 1 and
ki = 650, which yields ∆K = 5.18 dB and Ψ = 96.3◦.

The resulting frequency responses for sensitivity and complementary sensitivity
functions for the two control law configurations are displayed in Figs. 4.8a and 4.8b.
As can be seen from Fig. 4.8a, the optimal tuning very effectively attenuates the
resonant peak, from 18 dB in the nominal case, to 0.88 dB in the optimal case.
From Fig. 4.8b it can be seen the there is a significant increase in closed-loop
bandwidth; from approximately 13 Hz in the nominal case to approximately 110
Hz in the optimal case.

Due to the increased bandwidth, the effect of input disturbances du on the
output are reduced. The effects can be measured by the input sensitivity func-
tion (3.11), i.e., S̄(s), which provides the amount of attenuation of input distur-
bances du to the input ua. By inspection the response of S̄(s) in Fig. 4.8b, it can
be seen that the suppression of external disturbances is in general better for the
optimally tuned control law. Disturbances will have a higher degree of suppression
at lower frequencies, but less suppression in a narrow band close to the dominant
resonant peak. Due to the restriction posed by the Bode sensitivity integral, there
is no suppression outside of the bandwidth of the control law.
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Figure 4.8: Amplitude and phase responses, using nominal and optimal tuning.

Noise Performance

With regards to sensor noise performance, the transfer-function from sensor noise
to displacement is measured by (3.9), i.e., −T̄ (s). As an example, the approximate
effect of the displacement sensor noise can be evaluated. The sensor used has a
bandwidth of 100 kHz, and the root-mean-square (RMS) noise is measured to be
less than 2.5 nm. Assuming that the noise spectrum is fairly flat, the spectral
density of the noise is √

Snw (jω) ≈ 7.9 pm/
√
Hz .

Computing the RMS value of the noise response for −T̄ (s), i.e.,

σw =
√
Snw
· ‖ − T̄ (s)‖2 ,

for both the nominally and optimally tuned control law, provides an estimate of
the RMS position noise due to sensor noise. It turns out to be σw = 0.34 nm for
the nominal tuning, and σw = 0.31 nm for the optimal tuning. Thus, even though
the bandwidth of the control law is increased by about an order of magnitude, the
noise contribution due to sensor noise is slightly decreased.

Robustness

The robustness of the modified PI control law with regards to the uncertainties
displayed in Fig. 4.3 is determined. The criterion [206]

‖δw(s)T̄ (s)‖∞ < 1 = 0 dB (4.21)

is evaluated, and the results are shown in Fig. 4.9. As can be seen, the control
law allows for very large uncertainty in high-frequency dynamics. This means that
the presence of higher order modes will not interfere with the stability. If the
vibration modes above the first mode should be more closely spaced and have
higher peak magnitudes than what is the case for the system at hand, anti-aliasing
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Figure 4.9: Evaluation of robust stability criterion |δw(jω)T̄ (jω)| for the modified
PI control law.

and reconstruction filters with a higher roll-off rate can be used. It should be
noted that the nominal tuning do not satisfy (4.21) when using the over-bounding
uncertainty weight, due to the presence of the undamped resonant peak, thus the
suggested gain margin in Section 4.4.1 is not sufficient in this case.

4.4.2 Repetitive Control Law

Choosing R(s) and Q(s)

The repetitive control scheme has inherent robustness against plant uncertainty
due to the nulling property. However, robust tracking performance is not the same
as robust stability. Considering the stability criterion for the repetitive control
law (4.11), the ideal choice for the included filter would be WT (s) = T̄ (s), as
this would produce the minimum of the norm (4.11). As such, a sufficient choice
for WT (s) would be a filter that matches T̄ (s) sufficiently to meet the stability
criterion. The filter WT (s) should be of minimal order, to reduce computational
complexity, and the specific choice of the filter can also provide some flexibility in
meeting the robust stability criterion (4.14).

The complementary sensitivity function T̄ (s) has seven poles and one zero, and
thus has relative degree n? = 6. By inspection of Figs. 4.8a and 4.8b one can infer
that the complementary sensitivity function has a response that closely resembles
a sixth-order all-pole low-pass filter. In order to minimize the order of WT (s), the
zero in T̄ (s) can be neglected.

Due to the frequency response of T̄ (s), WT (s) is chosen to be a sixth-order
Butterworth filter with DC-gain 1/kT , and it is assumed that WT (s) ≈ T̄ (s). An
optimal choice for the cut-off frequency ωT and DC-gain kT for WT (s) is found
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minimizing the cost-function

JT (kT , ωT ) = sup{|Q(jω)− T̄ (jω)R(jω, ωT , kT ))|
+ |T̄ (jω)δ̂w(jω)R(jω, ωT , kT ))| : ω ∈ R} , (4.22)

whereR(jω, ωT , kT ) = WT (jω, ωT , kT )−1Q(jω). The evaluation of the cost-function
must satisfy JT (k?T , ωT ?) < 1 in order for the system to be robustly stable. The
closed-loop uncertainty weight δ̂w(s) for the system, using experimental data and
the overbounding approximation, are shown in Fig. 4.11. The approximation is
used for the optimization.

The filter Q(s) must be chosen before performing the optimization. This is done
with consideration to the filter R(s), and chosen to be a unity-gain sixth-order
Butterworth filter, such that R(s) = WT

−1Q(s) is a proper filter. By inspection of
the frequency response in Fig. 4.1, a cut-off frequency for Q(s) is chosen in order to
attenuate the second and higher order vibration modes, in order to satisfy (4.14).
A cut-off frequency ωQ = 2π · 2000 rad/s provided sufficient attenuation, yielding
the optimal values k?T ≈ 0.45 and ωT ? ≈ 2π · 580 when minimizing (4.22).

The surface of the cost-function in a neighborhood of the optimal values is
shown in Fig. 4.10. As can be seen, there is a domain along a line segment, or
narrow area, where the sensitivity of the cost-function is low, and thus there are
several values for kT and ωT that evaluate to approximately the same cost. This
means that the value of kT and ωT can be increased while still being robustly
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Table 4.3: Optimal parameters for WT (s) and WQ(s).

Parameter Value
kT 0.45
ωT 2π·580
ωQ 2π·2000
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Figure 4.11: Closed-loop uncertainty weight δ̂w(s), using experimental data and as
an over-bounding transfer-function.

stable. Adjusting kT and ωT impacts the transient response and the specific form
of the closed-loop frequency response. There could therefore be other values of
these parameters that provide faster convergence or less sensor noise contribution.
Choosing WT (s) = T̄ (s) will essentially eliminate the transient response, since it
yields P (s) = 1 in (4.8), but it will not impact the stationary response as long as
the reference signal conforms to the internal model.

The evaluation of (4.14) is shown in Fig. 4.12, and demonstrates that the choice
of ωQ and the optimal values for kT and ωT indeed provide robust stability of the
closed-loop system.

It should be noted at this point that the choice of WT (s) = T̄ (s) does not
provide as good results when evaluating (4.14). In this case the cut-off frequency
must be ωQ < 2π · 1700 to be robustly stable. As the bandwidth of Q(s) is one
of the most important factors for obtaining good reference trajectory tracking, ωQ
should be as high as possible.

It should also be noted that (4.14) appears to provide a somewhat conservative
result. By tuning the system manually, it is possible to increase the cut-off frequency
for Q(s) to ωQ = 2π · 3000, while decreasing the DC-gain to kT = 0.275, keeping
ωT that same. This tuning violates (4.14), but provides a larger bandwidth for the
RC scheme, and thus increases the tracking performance.
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Figure 4.12: Evaluation of stability criteria (4.9) and (4.14).

Tuning of the Time-Delay

Inspecting the sensitivity function (4.8), note that the numerator contains the
expression

Z̃(s) = 1−Q(s)e−τ̃ps .

Had the exact model (4.5) been used, the expression would have been

Z(s) = 1− e−τps ,

which evaluates to

L−1 [(1− e−τps)r(s)
]

= r(t)− r(t− τp) = 0 ∀ t > τp ,

when r(t) = 0 ∀ t < 0 and r(t) = r(t + τp). Thus, disregarding the initial value
response of the system, the reference signal is perfectly nulled in the error after one
period τp of the reference signal, and perfect tracking is obtained. For the actual
implementation

L−1 [(1−Q(s)e−τ̃ps)r(s)
]

= r(t)− r̃(t− τ̃p)

where r̃(t) = Q(t) ∗ r(t) 6= r(t), is used. Since the filter Q(s) alters the reference
signal, perfect tracking can not be obtained. The residual error depends both on
Q(s) and the time-delay τ̃p, and thus, a simple method to improve the tracking
performance is to adjust τ̃p.

By filtering the intended reference signal by Z̃(s), it is possible to numerically
evaluate the amount of suppression, or nulling, of the reference signal. By adjust-
ing τ̃p = τp − τδ by varying τδ, an optimal τδ that produces the best tracking
performance can be found, i.e., minimizing

J(τδ) =
∥∥L−1 (Z̃(s, δ)

)
∗ r(t)

∥∥
2 , t ∈ [τpm, τp(m+ 1)] ,
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Table 4.4: Optimal values for τδ at various reference frequencies for Q(s) with
ωQ = 2π · 2000 rad/s.

fp τδ

25 Hz 3.07709 · 10−4 s

50 Hz 3.08076 · 10−4 s

100 Hz 3.08384 · 10−4 s

200 Hz 3.08982 · 10−4 s

400 Hz 3.09129 · 10−4 s
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Figure 4.13: Zero locations for different configurations of Z̃(s), using τp = 1/200 s.

where τδ ∈ (0, τp), and m is a positive integer to make sure τpm is large enough for
the transient response of Q(s) to have died out. Results are presented in Tab. 4.4.
Note that it is possible to implement time-delays with a non-integer multiple of
the sampling time using Thiran approximation [132].

An example of the effect on the zero locations of Z̃(s) is shown in Fig. 4.13.
Here the amplitude response of Z̃(s) is computed with and without the filter Q(s),
for τp and τ̃p, using fp = 200 Hz.
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Noise Performance

Sensor noise performance for the case when including the RC scheme in the feed-
back loop, can be measured using −T (s), where

T (s) = L̄(s) + L̄(s)Γ(s)
1 + L̄(s) + L̄(s)Γ(s)

= T̄ (s)(1− (Q(s)−R(s))e−τ̃ps)
1− (Q(s)− T̄ (s)R(s))e−τ̃ps

.

As in the example for the modified PI control law, a noise spectral density of√
Snw

(jω) ≈ 7.9 pm/
√
Hz ,

is assumed. The RMS value of the noise response for −T (s) is then

σw =
√
Snw
· ‖ − T (s)‖2 .

This value depends on the time-delay value τ̃p, but upper and lower bounds for the
amplitude response that are independent of the time-delay value can be found as∣∣1− |Q(jω)−R(jω)|

∣∣
1 +

∣∣Q(jω)− T̄ (jω)R(jω)
∣∣ ≤ |T (jω)| ≤ 1 + |Q(jω)−R(jω)|∣∣1− ∣∣Q(jω)− T̄ (jω)R(jω)

∣∣ ∣∣ .
An example of the power spectral density for −T (s) is shown in Fig. 4.14, using
τ̃p = 1, together with the upper and lower bound, and the power spectral density
for −T̄ (s).

The RMS value of the noise response for the power spectral density in Fig. 4.14
for −T (s) can be computed to be σw = 0.48 nm, by numerically integrating the area
under the curve and taking the square root. This means that the noise contribution
is larger when adding the RC scheme, compared to when using the modified PI
control law alone.

Numerically integrating the area under the bounds and taking the square root,
yields 1.5 nm for the upper bound and 0.098 nm for the lower bound. The bounds
are therefore not very tight.

Assuming that R(s) = T̄−1(s)Q(s), the complementary sensitivity function is

T (s) = T̄ (s) +Q(s)S̄(s)e−τ̃ps ,

and a bound for the H2-norm can be found as

‖−T (s)‖2 = ‖T (s)‖2 ≤ ‖T̄ (s)‖2 + ‖Q(s)S̄(s)‖2 .

Another approximate estimate can therefore be found computing√
Snw ·

(
‖T̄ (s)‖2 + ‖Q(s)S̄(s)‖2

)
,

which yields σw = 0.90 nm in this case.
If the bandwidth of Q(s) is significantly larger than T̄ (s), and if |T̄ (jω)| +

|S̄(jω)| ≈ 1, the spectral density can be seen to be dominated by the filter Q(s).
Thus, yet another approximation for the noise contribution be found computing√

Snw
· ‖Q(s)‖2 ,

which yields σw = 0.50 nm in this case.
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Figure 4.14: Power spectral densities for −T̄ (s) and −T (s), with upper and lower
bounds.

Summary of the Tuning Procedure

The tuning procedure can be summarized to the following steps:
1. Identify the parameters of the model (4.3) for the dominant vibration mode

in the system.
2. Construct the uncertainty weight δw(s) in (4.4).
3. Find the optimal parameters for the anti-aliasing and reconstruction filters

and the integral control law by solving (3.15).
4. Verify the stability of the modified PI control law using (4.21). If non-modeled

high-frequency dynamics is a problem, anti-aliasing and reconstruction filters
with a higher roll-off rate should be used.

5. Compute the uncertainty weight δ̂w(s) using (4.13).
6. Choose an appropriate filter WT (s) with the cut-off frequency ωT and the

DC-gain kT as tunable parameters, using, e.g., (4.11).
7. Chose an appropriate order and cut-off frequency ωQ for the unity-gain

low-pass filter Q(s). The cut-off frequency must be chosen in order to pro-
vide sufficient attenuation of high-frequency dynamics. The filter R(s) =
WT (s)−1Q(s) should be proper.

8. Find the optimal values for ωT and kT using (4.22).
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9. Verify the stability of the overall control scheme using (4.14). If high-frequency
dynamics is a problem, reduce the cut-off frequency ωQ.

4.5 Experimental Results & Discussion

To validate the performance and robustness of the proposed control scheme, exper-
iments were performed for tracking a modified triangle-wave reference signal, using
different fundamental frequencies and amplitudes, as well as tuning parameters for
the PI control law and the combined PI and RC control law.

4.5.1 Description of the Experimental System

The experimental set-up consisted of a dSPACE DS1103 hardware-in-the-loop sys-
tem, a ADE 6810 capacitive gauge and ADE 6501 capacitive probe from ADE
Technologies, a Piezodrive PDL200 voltage amplifier, the custom-made long-range
serial-kinematic nanopositioner (see Fig. 2.3), two SIM 965 programmable filters
and a SIM983 scaling amplifier from Stanford Research Systems. The capacitive
measurement has a sensitivity of ks = 1/5 V/µm and the voltage amplifier has
a gain of 20 V/V. With the DS1103 board, a sampling time of Ts = 1 · 10−5 s
(fs = 100 kHz) was used for all the experiments. For numerical integration, a
fourth-order Runge-Kutta scheme [62] was used.

The scaling amplifier was used to modify the sensitivity of the capacitive gauge
in order to maximize the resolution obtained from the analog-to-digital converter.
The sensitivity was set to ks = 3.25/5 V/µm for the largest reference signal am-
plitude, and ks = 6.5/5 V/µm for the smallest reference signal amplitude. The
quiescent noise in the system was measured. The measured time-series and power
spectral density (PSD) estimates for the two sensitivity settings are presented in
Fig. 4.15 for reference. The noise floor is determined by the performance of the
analog-to-digital converter (ADC), and for an ideal ADC the noise spectral den-
sity due to quantization is determined as [145, 175]

Sq(jω) = 1
fs

∆qr
2

6 , (4.23)

where the quantization resolution ∆qr is determined by ∆qr = Radc/2nb where
Radc is the range and nb is the word length (number of bits) of the ADC. The
hardware-in-the-loop system used has a range of Radc = 20 V and a word length
of nb = 16 bits. The signal-to-noise ratio is better than 83 dB, which means that,
depending on the method used [3, 145, 175], the effective number of bits is between
13 and 15. Assuming the best case scenario of nb = 15 effective bits, the noise floor
Snf (jω) = ks

2Sq(jω) should be -118 dB/Hz for the sensitivity setting for large
signals and -124 dB/Hz for the sensitivity setting for small signals. Considering
again Fig. 4.15b, it is reasonable to assume that the noise contribution is dominated
by quantization noise above 1 kHz.
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Figure 4.15: Measured quiescent noise from displacement sensor filtered by the
anti-aliasing filter.

4.5.2 Results
Two results from the experiments are presented in Fig. 4.16 and 4.18. The first
result is for scanning at 25 Hz when using a nominal and optimal tuning of the
PI control law. As the nominal tuning proposed in Section 4.4.1 turned out the
render an unstable control law, it was necessary to reduce the nominal integral
gain to ki = 525. Fig. 4.16a displays the steady-state measured deflection signals
ym = Wa(s)w, and Fig. 4.16b shows the power spectral density (PSD) estimate
of the measured steady-state error signals ē = Wa(s)r − ym. The second result is
when scanning at 200 Hz using the optimally tuned PI control law and the repeti-
tive control law. Fig. 4.18a displays the initial transient response of the measured
deflection and error, Fig. 4.18b the steady-state measured deflection and Fig. 4.18d
the steady-state measured error. Fig. 4.18c is a PSD estimate of the steady-state
error. In Fig. 4.18e the steady-state control input u is shown. A summary of all the
experiments performed are presented in Tab. 4.5.

The results of the experiments in Tab. 4.5 are rated using both the maximum
error (ME) and the root-mean-square error (RMSE), both in absolute terms with
respect to the measured deflection, and relative to the maximum value of the
reference signal for ME, and the RMS value of the reference signal for RMSE.

4.5.3 Discussion
Considering Fig. 4.16a and the results for the PI control law in Tab. 4.5, it is
immediately apparent that the bandwidth is increased, as the tracking error for
the 25 Hz fundamental frequency signal decreases from 80% when using the nominal
tuning to 12% when using the optimal tuning. From Fig. 4.16b, it is also evident
that damping is introduced, as the prominent peak appearing around 750 Hz1, due
to the mechanical resonance, is reduced by about 40 dB/Hz.

1The frequency resolution is low due to windowing of the data prior to computing the power
spectral density.
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Figure 4.16: PI control law performance when using nominal and optimal tuning.
Reference at 25 Hz with 14.25 µm amplitude (27 µm linear range).

With regards to the RC performance, as can be seen from Tab. 4.5, the closed-
loop error using references with low fundamental frequency yields errors close to
the measurement noise. The performance depends both on the gain kT and the
bandwidth of the filter Q(s). The error decreases when increasing the bandwidth
for Q(s), as the pole locations in the filtered signal model will correspond better
to the pole locations in the ideal signal model.

Since the filtered signal model does not correspond perfectly to the reference
signal, the gain kT influences the tracking performance. A higher value for kT will
decrease the error for reference signals with high fundamental frequencies, but not
for low fundamental frequencies, where a larger gain results in amplification of
measurement noise. Some of the error at low fundamental frequencies is due to the
quantization noise, as the quantization noise floor is reached within the bandwidth
of the RC. The gain kT also influences the time-constant for the transient response
envelope, that is, larger kT results in faster convergence to steady state. As the
fundamental frequency increases, the error increases, as would be expected, since
the bandwidth of the RC scheme is mostly determined by the filter Q(s). The choice
of kT will therefore mostly encapsulate the trade-off between noise performance,
tracking performance, and convergence rate, whereas the bandwidth of Q(s) should
be chosen as large as possible while still ensuring stability in closed-loop.

Inspecting Fig. 4.18a, the transient response and convergence to steady state is
clearly visible. There is some saturation in the deflection measurement, suggesting
that the scheme has some robustness towards the saturation non-linearitites in
the system. From Fig. 4.18d it can be seen that the maximum error occurs at the
maxima and minima of the reference signal, thus, increasing the linear proportion of
the reference signal will also increase the maximum error, which is to be expected.
The PSD estimate for the error signal in Fig. 4.18c has very prominent peaks at
odd harmonics of the fundamental frequency up to the bandwidth of the RC. In
this case, most of the error is therefore due to the limited bandwidth of the control
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(b) Steady-state measured deflection ym.
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(c) Power spectral density estimate of the error
in steady-state.
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(e) Steady-state input voltage u.

Figure 4.17: Reference at 25 Hz with 14.25 µm amplitude (27 µm linear range).

107



4. Robust Repetitive Control

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−10

0

10

Time (s)

D
ef

le
ct

io
n 

(µ
m

)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−10

0

10

Time (s)

Er
ro

r (
µm

)

(a) Initial transient measured deflection ym and measured error ε.

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
−15

−10

−5

0

5

10

15

Time (s)

D
ef

le
ct

io
n 

(µ
m

)

 

 
Reference
Measurement

(b) Steady-state measured deflection ym.
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(c) Power spectral density estimate of the error
in steady-state.
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(e) Steady-state input voltage u.

Figure 4.18: Reference at 200 Hz with 14.25 µm amplitude (27 µm linear range).
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Table 4.5: Norms of the measured error ε in steady-state, using various configura-
tions and reference signals. fp and 2λ denotes the fundamental frequency and linear
range, respectively, of the reference signal. Entries marked with “†” are obtained
using a tuning that violates the robust stability criterion (4.14).

fp
(Hz)

2λ
(µm) kT

fQ
(kHz)

ME abs.
(µm)

ME rel.
(%)

RMSE
abs.
(µm)

RMSE
rel.
(%)

When using nominally tuned PI control law
25 27.0 – – 11 80 7.1 83

When using optimally tuned PI control law
25 27.0 – – 1.7 12 1.0 12
200 27.0 – – 16 120 9.8 110

When using PI control law and repetitive control law
25 13.5 0.450 2 0.0034 0.048 0.00067 0.016
25 13.5 0.100 3† 0.0023 0.032 0.00053 0.012
25 13.5 0.275 3† 0.0036 0.050 0.00091 0.021
25 27.0 0.350 2 0.0048 0.033 0.0011 0.013
25 27.0 0.450 2 0.0072 0.050 0.0017 0.020
50 27.0 0.450 2 0.011 0.077 0.0028 0.032
100 27.0 0.450 2 0.031 0.22 0.010 0.12
200 13.5 0.450 2 0.61 0.91 0.025 0.59
200 13.5 0.275 3† 0.030 0.44 0.012 0.27
200 27.0 0.450 2 0.12 0.86 0.047 0.55
400 13.5 0.450 2 0.12 1.9 0.064 1.6

law. The voltage range of the signal in Fig. 4.18e should also be noted. In this case
the full range of the amplifier, ±110 V is used, and it provides a hard limit with
regards to the spectral content and the range of the reference signal, as well as the
bandwidth of the control law. Increasing either one of these properties in this case,
would have resulted in saturation in the amplifier.

4.6 Conclusions

It has been demonstrated through experiments that by using a damping proportional-
integral control law and a well configured plug-in repetitive control scheme, it is
possible to achieve a maximum error of less than 1% relative to the reference signal,
at reference signal frequencies exceeding 25% of the dominant resonant frequency
of a nanopositioning stage. The methods used are straight forward to implement
and tune, and the overall control scheme is applicable for tracking control on flexi-
ble smart structures in general. Additionally, the control scheme is computationally
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light, and is therefore well suited for implementation on both microcontrollers and
field-programmable-arrays. It should also be implementable using analog compo-
nents and a bucket-brigade device, which could be beneficial with regards to quan-
tization noise, which is the dominant source of noise in the system. The proposed
scheme can also be implementable on existing hardware configurations for nanopo-
sitioning, as it requires very small, or no, modifications to a standard configuration.
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Chapter 5

Online Parameter Identification

5.1 Introduction

When applying damping control, or damping and tracking control, to highly reso-
nant flexible structures, it is possible to find optimal control law parameters that
will maximize the introduced damping, as was demonstrated in Chapter 3. Find-
ing the optimal control law parameters requires knowledge of the dynamics of the
flexible structure at hand. The approach in Chapter 3 was to use an accurate de-
scription of the dynamics obtained from frequency response data, and the optimal
control law parameters was found using an optimization scheme incorporating these
data. This would also be the typical approach taken when using H∞-synthesis.

In some applications, system parameters can be expected to change during op-
eration. As discussed in Section 1.2.1 and Chapter 2, parameter uncertainty in
nanopositioning devices is experienced in the effective gain for the piezoelectric
actuator and the resonant frequencies. The effective gain is influenced by the pres-
ence of hysteresis, actuator temperature and age, as well as payload mass. The
main cause of change in resonant frequencies is due to variable payload mass. In
scanning probe microscopy applications, the most severe example of this is when
the sample must be contained in, e.g., liquid cells with heating elements [85].

Due to changing system model parameters, feed-forward and feedback control
law parameters should be adjusted accordingly to maintain optimal performance.
An example of the reduction in performance that can occur if the system model
parameters does not correspond to the actual system was discussed in Section 2.4,
where a set of hysteresis model parameters were applied under different conditions
than what they where found for, resulting in poor reference trajectory tracking.

It is apparent that control schemes for such devices can benefit from some form
of online adaptation or learning to maintain optimal performance, or even stability,
during operation.

For periodic reference trajectories, this has been studied on the form of iterative
learning control (see Sections 1.3 and 4.1). Here, the method often relies on batch
processing of measurement data, as the implementation of iterative learning con-
trol methods can be very computationally demanding, but can provide practically
perfect reference tracking. Feedback in the form of repetitive control, as discussed
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in Chapter 4, also provides a method which is asymptotically invariant to plant
uncertainties for periodic exogenous signals.

Standard online parameter identification techniques [111, 204], however, does
not seem to have been studied extensively for experimental systems that can
be modeled as mass-spring-damper systems. Such techniques include the gradi-
ent method, recursive least-squares method, and the extended Kalman filter. One
example applying the extended Kalman filter can be found for a geometric mass-
spring system in [90].

Parameter identification with good accuracy is immediately applicable when
using feed-forward model inversion [44], and for model reference adaptive con-
trol [111], and could contribute to better performance for reference trajectory
tracking and disturbance rejection for arbitrary signals.

5.1.1 Contributions
Two common schemes for online parameter identification are compared experimen-
tally in order to assess their ability to learn the parameters for a simple second-
order linear model (a mass-spring-damper model) of the vibration dynamics in a
nanopositioning device in open-loop. The schemes investigated are the recursive
least-squares method (RLS) and two different versions of the extended Kalman
filter (EKF); continuous EKF and hybrid EKF.

The main contribution is the specific choice of pre-filters for the various signals
involved in the identification method. It is demonstrated using measured time-
series data acquired when operating a standard experimental set-up, that these
filters have to be present in order to obtain reasonable parameter convergence.

5.1.2 Outline
The Chapter is organized as follows. The system is described in Section 5.2, in-
cluding the plant model, the signal chain, and how to select the pre-filters needed
to obtain parameter estimate convergence. This is followed by a description of how
to apply the RLS and EKF methods to the plant model in Section 5.3. The exper-
iments are described in Section 5.4, as well as implementation specific details, such
as choice of initial values and various tunable parameters. The results from the
experiments are presented in Section 5.5, followed by a discussion in Section 5.6.

5.2 System Description & Modeling

5.2.1 Mechanical Model
As has been discussed in previous Chapters, the dynamics of the flexible structure
of a nanopositioning device is often adequately described by a lumped parameter,
truncated linear model. The positioning stage used in the experiments is shown in
Fig. 2.3. This is a well-designed positioning stage which has one dominant vibra-
tion mode with a mode shape that generates a piston-like motion. The governing
differential equation for the displacement w (m) of a point on the structure is
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Figure 5.1: Measured frequency response for one axis of the nanopositioning stage,
and the corresponding response using the model (5.2) with parameter values from
Tab. 5.1, with and without payload attached to the sample platform.

therefore
mẅ + dẇ + kw = fa ,

where m (kg) is the mass of the moving sample platform, d (N s m−1) is the
damping coefficient, k (N m−1) is the spring constant, and fa (N) is the force
developed by the actuator. The applied force fa (N) is accurately described using
the expression

fa = ea(ua + du) ,
where ea (N V−1) is the effective gain of the piezoelectric actuator, ua (V) is the
applied voltage, and du (V) is the disturbance generated by hysteresis and creep.
The transfer-function from applied voltage to displacement is

Gw(s) = w

ua
(s) = β0

s2 + 2ζω0s+ ω02 = b0
s2 + a1s+ a0

, (5.1)

and denoting x1 = w, the state-space formulation for the system is given as

ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + b0u,

(5.2)

where β0 = b0 = ea/m (m s−2 V−1), a0 = k/m (s−2), a1 = d/m (s−1), ζ =
c/2
√
mk, and ω0 = 2πf0 =

√
k/m (s−1).
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Table 5.1: Identified parameters for the model (5.2), for two payload configurations,
using frequency response data.

Parameter Value Unit Parameter Value Unit
1) With payload on sample platform

b0 0.808·106 µm/s2V b0/a0 0.114 µm/V
a0 7.06·106 1/s2 f0 423 Hz
a1 77.6 1/s ζ 0.0146

2) Without payload on sample platform
b0 1.07·106 µm/s2V b0/a0 0.116 µm/V
a0 9.21·106 1/s2 f0 483 Hz
a1 86.8 1/s ζ 0.0143

The frequency response for y-axis of the positioner was recorded, with and
without a payload of approximately 24.75 g attached to the sample platform, using
bandwidth-limited white noise excitation. The physical implementation of the two
payload configurations is shown in Fig. 5.2. The two responses are displayed in
Fig. 5.1. The model (5.2) was fitted to the frequency response data using the
MATLAB System Identification Toolbox, and the resulting parameter values are
presented in Tab. 5.1. The response of the model (5.2) using these parameters are
also displayed in Fig. 5.1.

As can be seen, the actual response of the first vibration mode is well approxi-
mated by the model. There are higher order modes in the system, and the second
vibration mode is clearly visible in Fig. 5.1. The higher order modes have fairly neg-
ligible magnitude responses in comparison to the first, thus a second-order model
should be sufficient to describe the dominant dynamics of the system. The mea-
sured phase response in Fig. 5.1 is not only in the range between -180◦ and 0◦,
indicating that the sensor is not perfectly co-located with the actuator.

5.2.2 Signal Chain
The complete system used in the experiments consisted of the nanopositioning
stage, a reconstruction filter, an anti-aliasing filter, an amplifier, and a displacement
sensor, as well as a standard hardware-in-the-loop (HIL) system. The signal chain
is shown schematically in Fig. 5.3.

The sampling frequency used was 10 kHz. The anti-aliasing and reconstruction
filters, Wa(s) and Wr(s) were configured as second-order low-pass Butterworth
filters with conservative cut-off frequencies at 1 kHz. The amplifier, given the ca-
pacitive load of the piezoelectric actuator, provided a bandwidth of approximately
10 kHz, and the displacement sensor was configured with a bandwidth of 100 kHz.
The dynamic response of both the amplifier and the capacitive probe can accurately
be described using a first-order low-pass filter.

As the reconstruction and anti-aliasing filters noticeably impact the observed
dynamics, these were taken into account when generating the input signal fed to
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(a) With payload attached. (b) Without payload attached.

Figure 5.2: Payload configurations.
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Figure 5.3: Signal chain for the overall system.
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Figure 5.4: Signals fed to identification schemes.

the identification schemes, as shown in Fig. 5.4. This ensured that the input signal
ũ would match the change in gain and phase introduced by these filters in the
measured signal ỹm. The effects of the amplifier and the displacement sensor were
neglected, as it would be impossible to implement replicas of these filters digitally
with the chosen sampling frequency.

To improve the results obtained from the parameter identification schemes, a
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pre-filter, Wp(s), was used. This was chosen with consideration to the sensitivity
functions for the parameters of the model. For a transfer-function, i.e., Gw(s), the
Bode sensitivity function with respect to some parameter θ, is defined as

S
Gw(s)
θ

∆= ∂Gw(s)/Gw(s)
∂θ/θ

= θ0

Gw(s)0

∂Gw(s)
∂θ

∣∣∣∣
NOP

,

using a nominal operating point (NOP) for all the parameters in the transfer-
function [119].

The sensitivity functions for the parameters b0, a0, and a1 in the system model
(5.2), using the parameters found for the system with payload as the NOP, are
displayed in Fig. 5.5. Most notably, the parameter related to damping, a1, has very
little impact on the observed output at low and high frequencies. For parameter
identification it is considered good practice to concentrate signal power in the
frequency domains that contain peaks in the sensitivity functions. This is done in
order to maximize the information content of the signals used, i.e., some norm on
the Fisher information matrix [144].

The pre-filter was chosen to be a band-pass filter, using a first-order high-pass
filter with a lower cut-off frequency of flc = 100 Hz, and a resonant second-order
low-pass filter, with a natural frequency of

fc = 450 ≈ 483 + 423
2 Hz,

and a damping ratio of ζ = 0.1, thus amplifying the frequency content close to the
resonant peaks of the two configurations (with and without payload):

Wp(s) = s

s+ 2πflc
(2πfc)2

s2 + 2ζπfcs+ (2πfc)2 (5.3)

When applying the RLS method, numerical first and second derivatives of the
displacement signal are needed. In order to generate proper transfer-functions for
filtering the displacement signal, the low-pass filter should be at least second-order.
To keep the order of the pre-filter at a minimum, the high-pass filter was chosen
to be first-order, and the low-pass filter second-order.

5.3 Identification Schemes

5.3.1 Application of the Recursive Least-Squares Method
The recursive least-squares (RLS) method summarized in Section D.1. Here the
specific application of the method to the system model (5.1) is described.

The model (5.1) can be put on the form

ẅ + a1ẇ + a0 = b0ua ⇒ z = θTϕ

where a parameter vector θ can be found as

θ = [b0, a1, a0]T ,
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Figure 5.5: Sensitivity functions for the parameters b0, a0, and a1, using data from
Tab. 5.1.

which yields a regressor vector ϕ as

ϕ = [ua, −ẇ, −w]T ,

and the output z of the model as

z = ẅ .

To avoid pure numerical differentiation, the output z and regressor vector ϕ
should be generated using proper filters. Also, taking into consideration the signal
chain in Fig. 5.3 as is done in Fig. 5.4, the output and regressor is generated using

z = s2Wp(s)ym
and

ϕ = [Wr(s)Wa(s)Wp(s)u, −sWp(s)ym, −Wp(s)ym]T .

Since the pre-filter (5.3) has relative degree n? = 2, the resulting filters in the
expression above are at least bi-proper.

5.3.2 Application of the Extended Kalman Filter
Two versions of the extended Kalman filter (EKF) were implemented, the contin-
uous time version which is described in Section D.3.1, and the hybrid (combined
continuous and discrete time) version which is described in Section D.3.2.
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Applying the EKF to the model (5.2), the state vector x = [x1, x2]T is aug-
mented to also include the parameter vector θ = [b0, a0, a1]T. The augmented
state vector χ is therefore

χ =
[
x
θ

]
=
[
x1 x2 a0 a1 b0

]T
.

The state and input matrix can be parameterized as

A(θ) =
[

0 1
−a0 −a1

]
, B(θ) =

[
0
b0

]
,

which yields the output matrix

C(θ) =
[
1 0

]
.

The Jacobians required to compute the error covariance matrix P and Kalman
gain K can be found to be

F (x, θ, u) =


0 1 0 0 0
−a0 −a1 −x1 −x2 u

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

and
H(x, θ) =

[
1 0 0 0 0

]
.

The above expressions are used both in the continuous and the hybrid version
of the extended Kalman filter. The signals fed to the filters were generated as
illustrated Fig. 5.4, i.e., the measurement y and the input u used in the expressions
in Section D.3 were taken to be y = ỹm and u = ũ.

5.3.3 Parameter Convergence
The RLS method will theoretically converge to the correct parameter values when
using a sufficiently rich input signal (which results in a PE regressor vector) [111,
144]. For the EKF there does not exist any general proof of convergence. The EKF
can provide good performance, but the convergence properties for the estimates
are susceptible to the choice of initial values and covariance tuning, as well as the
input signal [33, 91, 143, 180]. For this particular system, neither method provided
good overall performance without careful pre-filtering of the signals used.

5.4 Experiments

5.4.1 Instrumentation
The experiment set-up consisted of the long-range serial-kinematic nanoposition-
ing stage from EasyLab shown in Fig. 2.3, already described in Sections 2.2.2 and
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4.2.1, as well as a Piezodrive PDL200 linear voltage amplifier (20 V/V), an ADE
6810 capacitive gauge and ADE 6501 capacitive probe from ADE Technologies
to measure displacement (5 µm/V), and two SIM 965 programmable filters from
Stanford Research Systems, used as anti-aliasing and reconstruction filters. The ac-
tuation signal and measured response were generated and recorded using a dSPACE
DS1103 hardware-in-the-loop board, at a sampling frequency of fs = 10 kHz.

The capacitance of the piezoelectric actuator was measured to be Cp ≈ 700 nF;
thus the amplifier would, according to the specifications, provide a first-order low-
pass filter dynamic response with a cut-off frequency of 10 kHz. The specifications
for the capacitive gauge and probe state that the response should be like a first-
order low-pass filter with a cut-off frequency of 100 kHz. The programmable filters
were both configured as second-order Butterworth filters with cut-off frequencies
at 1 kHz. This provided sufficient bandwidth to capture the dynamic response of
the positioner, as the dominant resonant frequency for this system occurs at less
than 500 Hz.

5.4.2 Performed Experiments

Two experiments were performed. One used a pseudo random binary signal (PRBS)
[144] as the input to the system, and one used a more typical signal for this particu-
lar kind of device: a smoothed triangle-wave. The PRBS was generated to provide
frequency content in the band from 0 to 1 kHz. The triangle-wave signal had a
fundamental frequency of 10 Hz. Both signals had an amplitude of 1 V.

The PRBS yielded a high level of excitation, and thus provided an ideal response
with regards to parameter identification. The triangle-wave signal, on the other
hand, yielded a low excitation of the dynamics of the system, and therefore provided
a much more challenging task for the parameter identification schemes.

Both experiments were performed by first attaching the payload, a small block
of steel weighing 24.75 g, to a magnet fixed to the sample platform. Measurements
of the displacement were then recorded for approximately 100 seconds with the
payload attached, before the payload was removed (while the system was running),
and approximately 100 seconds more was recorded with the payload detached.

5.4.3 Implementation & Tuning

For all methods the fourth-order Runge-Kutta scheme [62] was used for numerical
integration of the continuous-time differential equations. All methods were initial-
ized with the initial parameter estimates:

θ0 = [b0, a1, a0]T0 =
[
5 · 105, 7 · 101, 6 · 106]T

For the EKFs, the initial state estimates were set to zero, i.e., x̂1(0) = x̂2(0) = 0.
Note that in the implementation, θ = [b0, a1, a0]T for RLS, and θ = [a0, a1, b0]T
for EKF.
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RLS

The applied RLS method provides two tuning parameters, the forgetting factor
κf , and the initial covariance matrix P (0). The initial covariance matrix will only
affect the initial transient of the parameter estimates, thus, convergence rate is
mostly determined by κf . It was found that the maximal forgetting factor that did
not make the norm of the covariance matrix P grow excessively large was about
κf = 0.25. The initial covariance matrix was set to

P (0) = diag
([

1 · 106, 1 · 10−1, 1 · 107]) ,
which provided a fairly fast initial convergence rate. The choice was motived by
the results in Fig. 5.5; a large variance is expected for b0, and an even larger for
a0, whereas a small variance is expected for a1.

Continuous EKF & Hybrid EKF

The EKFs required tuning of the covariance parameters R, Rd, and Q, and the
initial error covariance matrix P (0). The measurement noise variance was found
to be σ2

y ≈ 1.6 · 10−6 µm2, thus Rd = σ2
y for the hybrid EKF, and R = RdTs for

the continuous EKF, where Ts = 1/fs is the sampling period The process noise
spectral density matrix Q was tuned for each dataset, opting to find a balance
between fast convergence and small transients.

Good results when applying triangle-wave excitation were obtained when using:

Q1 = diag
([

1 · 10−12, 1 · 10−6, 6 · 108, 5 · 10−2, 1 · 106])
When using PRBS excitation, the variances in the parameter estimates were very
large when using the above tuning. Reducing the spectral densities for the param-
eters improved the results, and good results for the dataset was obtained using:

Q2 = diag
([

1 · 10−12, 1 · 10−6, 2 · 105, 2 · 10−4, 2 · 103])
The initial error covariance matrix was in all cases set to:

P (0) = 10 ·Qi

In the hybrid EKF, the continuous part was run at a faster rate than the sampling
frequency. For both datasets we found that a step length of Ts/4 produced good
results (yielding a rate of 40 kHz).

5.5 Results

5.5.1 Parameter Estimates
The parameter estimates when using triangle-wave signal excitation are presented
in Fig. 5.6, and the parameter estimates when using PRBS excitation are shown
in Fig. 5.7.

To obtain some form of validation of the parameter estimates, the following
procedure was used: the mean value of each parameter estimate time-series was
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Table 5.2: RMSE of simulated vs. measured responses in nm. Measurement noise
is approximately 1.26 nm RMS.

EKF RLS HEKF Tab. 5.1
With payload on sample platform

PRBS 20.2 70.8 70.0 96.9
Triangle-wave 1.67 1.66 1.65 1.92

Without payload on sample platform
PRBS 29.7 83.1 68.5 31.7

Triangle-wave 1.70 1.72 1.70 2.44

computed for ∆t1 ∈ (75, 100) s and ∆t2 ∈ (175, 200) s. Using these values, the
response of the model (5.2) was computed for ∆t1 and ∆t2, using the input signal
and mass configuration for which the parameter values were found. The simulated
responses were then compared to the measured responses. Tab. 5.2 summarizes the
resulting root-mean-square-errors (RMSE). The RMSE when using the values in
Tab. 5.1 are also shown.

5.6 Discussion

The RLS method, the continuous EKF, and the hybrid EKF all perform well for
parameter identification on this system when applying the pre-filter Wp(s) to the
signals used. Judging by the results in Tab. 5.2, the continuous EKF provides
the best estimates overall. It is interesting to note that the parameters obtained
using frequency response data provided the worst performance, suggesting that the
parameters changed in the brief period between recording each dataset, and that
the optimal parameter values are dependent on the input signal.

For all the schemes, the first transient is somewhat faster than the second
transient. This is likely to be due to the step-like input experienced when the
input signal is turned on, which generates a large excitation which might have
been beneficial with regards to convergence, and that the elements of the error
covariance matrix converges to smaller values after some time, providing less gain
in the estimate update equations. When removing the mass, a brief, but fairly
large, external disturbance was introduced into the measurements, adding biases
to the parameter estimates.

Using PRBS excitation, all schemes converged to reasonable values, even with-
out the pre-filter Wp(s) and careful tuning of process noise spectral densities re-
quired by the EKFs. Using the pre-filter and better tuning further improved the
results.

Using triangle-wave excitation, none of the schemes converged to reasonable
values without using a high-pass filter. When a high-pass pre-filter was employed,
all schemes improved significantly. Using the resonant low-pass filter in addition
to the high-pass filter, i.e., Wp(s), improved the results, especially the estimates
obtained using RLS.
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Figure 5.6: Parameter estimates when using triangle-wave excitation. The time-
series have been down-sampled to 1 Hz.
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For the EKFs, it was observed that different spectral density settings would lead
to different, but small, biases in the parameter estimates. Some settings would also
lead to very poor transient behavior, with very large excursions and slow conver-
gence. For some settings, the parameter estimates would diverge and asymptotically
approach steady-state values far from the values obtained using RLS and frequency
response data; this is in accordance with the results in [143]. Thus, global conver-
gence to one unique solution is not guaranteed when using EKF for parameter
identification on this system.

When using PRBS excitation, the variance in the parameter estimates from
the EKFs was rather large. Reducing the process noise spectral densities improved
this, but reducing them too much led to divergence; the amount of reduction in
parameter estimate variance was therefore limited. The RLS method had a much
more consistent behavior with regards to parameter estimate variance, as well as
transient behavior, when using different excitations.

The EKFs provide a convenient method to trade off between rate of conver-
gence and the variance in the parameter estimates, by tuning the process noise
spectral densities. Tuning the forgetting factor in the RLS method did not provide
as dramatic effects on convergence rate, and it consistently seemed rather slow
with regards to convergence rate. Using a non-normalized regressor increased the
parameter convergence rate for RLS, but at the expense of larger transients and
weaker properties for the signals in the estimation scheme.

As can be seen from Figs. 5.6 and 5.7, there are noticeable biases in the pa-
rameter estimates for each parameter identification scheme, and the biases also
appear to depend on the excitation signal. Some bias can be attributed to the
configuration of the pre-filter, Wp(s), as well as the tuning of the process noise
spectral densities. There is likely some influence from the hysteresis effect in the
piezoelectric actuator, though most of this effect should have been removed by the
high-pass filter.

The parameter estimates found using each of the EKFs are very similar, but
most noticeably they differ in the obtained value for a0. This difference did not seem
to depend on spectral density tuning. The slightly different transient behavior, on
the other hand, was tuning dependent. It can be conjectured that with more careful
tuning, the transient behavior can be made more similar.

The quality of the estimates produced by the RLS method were highly depen-
dent on the pre-filter, and different filter configurations led to different biases. The
RLS method produced noticeably different estimates than the EKFs. Tuning the
forgetting factor and the initial covariance matrix only influenced the transient
behavior and the variance of the parameter estimates. The mean values obtained
asymptotically were the same.

5.7 Conclusions

The RLS method, the continuous EKF, and the hybrid EKF all performed well for
parameter identification on this system, when applying a pre-filter to the signals
used. The RLS method was particularly sensitive to the configuration of the pre-
filter. The RLS method provided slower convergence than the extended Kalman

126



5.7. Conclusions

filters, but it performed in a more consistent manner with regards to the input sig-
nal. The extended Kalman filters needed careful tuning to yield good performance
and to avoid divergence. It was found that the continuous EKF provided the overall
best performance, yielding parameter values that produced the least discrepancy
between model response and measured response.
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Chapter 6

Robust Adaptive Control

6.1 Introduction

As the dynamic response of typical nanopositioning devices has a fair amount of
uncertainty, both inherently and due to the specific application, the control laws
used also need to have sufficient robustness. This was taken into account for the
damping and tracking control laws in Chapter 3 and the repetitive control scheme
in Chapter 4.

Although the dynamic response is uncertain, it is dominantly linear and can
be well described for specific operating points. As was demonstrated in Chapter 5,
it is possible to obtain good parameter estimates for a linear mass-spring-damper
model applied to a nanopositioning device operated in open-loop. Nanopositioning
devices should therefore be amenable to model based adaptive control, which in
principle can provide higher and more consistent performance than standard robust
static control schemes.

Much of the work pertaining to learning or adaptive type of control for nanopo-
sitioning has been done for periodic reference and disturbance signals, in the form
of iterative learning control, as discussed in Sections 1.3 and 4.1. The repetitive
control scheme discussed in Chapter 4 is also asymptotically invariant to plant
uncertainty.

For reference trajectory tracking and disturbance rejection of arbitrary signals,
however, the signal repetitiveness can not be exploited. Non-repetitive signals can
for example occur in manipulation and fabrication tasks based on user interaction,
and for vertical topography tracking on irregular sample surfaces.

For adaptive control of linear systems, the model reference adaptive control
(MRAC) framework [111] is arguably the most exhaustively researched. As such,
it is interesting to assess the performance of MRAC applied to a nanopositioning
device. The main goal in this Chapter is to implement a standard MRAC scheme,
and to make the minimum amount of changes to the standard scheme in order for
it to work as intended.
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6.1.1 Contributions
The standard indirect model reference adaptive control (MRAC) framework is ap-
plied in this Chapter in order to develop a complete adaptive control scheme for
a nanopositioning device of common design. The MRAC implementation used in
this Chapter is a straight forward extension to the model reference control (MRC)
design presented in Section 3.4.7. Extension comes in the form of the implemen-
tation of a suitable adaptive law, and the specifics of the implementation of the
control law in order to accommodate for time varying parameters.

As was demonstrated in Chapter 5, there are some important considerations
to be made with regards to how to obtain parameter convergence for the adaptive
law. The most important observation was that a special pre-filter needed in order
to obtain parameter convergence. When operating in closed-loop, the choice of
pre-filter must be further refined.

A similar type of experiment as in Chapter 5 is conducted, where the pay-
load mass is changed while operating the nanopositioning device. This experiment
provides a good indication of the ability the adaptive law has to track changes in
model parameters. The resulting control scheme is believed to be a well performing
MRAC scheme, although the comparison would be the standard textbook imple-
mentation, which does not work at all. The experimental results should therefore
be indicative of the performance that can be expected applying MRAC to this
particular type of systems.

6.1.2 Outline
The Chapter is organized as follows. In Section 6.2 the system model used in
Chapter 5 is reviewed. This forms the basis for the adaptive law. The system model
as used in Section 3.4.7 and Chapter 4 is also discussed, as it forms the basis for
the control law. Some background and discussion on the model reference adaptive
control (MRAC) scheme is presented in Section 6.3. Specific design choices for the
control law and the adaptive law are discussed in Section 6.4. Finally, experimental
results for the specific implementation of the MRAC scheme are presented and
discussed in Section 6.5.

6.2 System Description & Modeling

The experimental system used in this Chapter is almost identical to the system
used in Chapter 5. This is a fairly typical device configuration in systems used for
motion control in general. As described in Section 5.2, it consists of the positioning
mechanism shown in Fig. 2.3, as well as additional necessary instrumentation,
including anti-aliasing and reconstruction filters, a voltage amplifier, a capacitive
displacement sensor, and a standard hardware-in-the-loop (HIL) system.

As was the case for the model reference control (MRC) scheme in Section 3.4.7,
a plant model which includes the dynamics for the nanopositioning stage, as well
as the dynamics of the anti-aliasing and reconstruction filters, is used. A more
complete model would also include the amplifier and sensor dynamics, and the
time-delay incurred by the zero-order-hold (ZOH) elements in the digital-to-analog
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Table 6.1: Identified parameters for the model (6.1), using frequency response data.

Parameter Value Unit Parameter Value Unit
1) With payload on sample platform

b0 1.97·106 µm/s2V b0/a0 0.109 µm/V
a0 18.1·106 1/s2 f0 677 Hz
a1 127 1/s ζ 0.0149

2) Without payload on sample platform
b0 2.33·106 µm/s2V b0/a0 0.107 µm/V
a0 21.9·106 1/s2 f0 744 Hz
a1 131 1/s ζ 0.0140

converter (DAC) and analog-to-digital converter (ADC). The attainable sampling
rate is fast enough for the phase-lag due to the ZOH elements to be insignificant
within the bandwidth of the control law, and the amplifier and sensor dynamics is
faster than what is possible to represent with a discretized model when using the
attainable sampling rate. A higher order model results in a control law of higher
order, which also reduces the attainable sampling rate. The main reason for using
the highest possible sampling rate is that the noise floor due to the DAC and ADC,
given a fixed quantization unit, can only be reduced by increasing the sampling
rate, cf. Section 4.5.1. The sampling rate also determines the accuracy and stability
of the numerical integration scheme [62].

This plant model is the model which has the highest practically obtainable
accuracy for this system. A diagram of the plant model is found in Fig. 3.3.

6.2.1 Mechanical Model

The mechanical model used is as presented in Section 5.2.1, and is also equivalent
to the model used in Section 3.4.7. Denoting the deflection w (m), the transfer-
function from applied voltage ua (V) to the displacement for the nanopositioning
stage is

Gw(s) = w

ua
(s) = β0

s2 + 2ζω0s+ ω02 = b0
s2 + a1s+ a0

, (6.1)

noting that β0 = b0 and ω0 = 2πf0.
The frequency response is recorded for the x-axis (the y-axis was used in Chap-

ter 5), using bandwidth-limited white noise excitation. As was the case in Chap-
ter 5, the system is operated in two different payload configurations. The pay-
load mass is approximately 15.7 g. The responses are displayed in Fig. 6.1. The
model (6.1) is fitted to the frequency response data using the MATLAB System
Identification Toolbox, and the resulting parameter values are presented in Tab. 6.1.
The response of the model (6.1) using these parameters is also displayed in Fig. 6.1
for comparison.
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Figure 6.1: Measured frequency response and model response, for the two payload
configurations, and corresponding model fits.

6.2.2 Anti-Aliasing & Reconstruction Filters

The anti-aliasing and reconstruction filters, Wa(s) and Wr(s) respectively, are
second-order Butterworth filters, and are chosen to be identical, Wr(s) = Wa(s),
for convenience. They have a transfer-function of the form

Wa(s) = Wr(s) = ωc
2

s2 +
√

2ωcs+ ωc2
, (6.2)

where ωc is the cut-off frequency. As the cut-off frequency ωc for the anti-aliasing
and reconstruction filters used in the experimental set-up is user programmable,
the filters provide an extra degree of freedom for the control law tuning. As noted
in Section 3.4.7, the filters can be used to attenuate non-modeled high-frequency
dynamics, as well as to attenuate quantization and sensor noise, given that the
cut-off frequency ωc is below the Nyquist frequency. The cut-off frequency selection
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can also to some degree improve the nominal closed-loop sensitivity response and
robustness properties.

6.2.3 Complete Plant Model
The complete model for the system presented in Fig. 3.3 is

ym
u

(s) = Wa(s)Gw(s)Wr(s) .

The usage of this model for the design of the MRAC scheme will not provide good
performance with respect to the closed-loop sensitivity function, as it will have
constant gain at low frequencies. Due to external disturbances, introduced by the
hysteresis and creep non-linearities, and in order to reduce the impact of model un-
certainty, it is advisable to add integral action to the control law [157]. The response
of the closed-loop sensitivity function at lower frequencies will then improve. This
can be done by augmenting the system with an integrator, implemented as part
of the control scheme. The plant model, with regards to the synthesis equations in
Appendix E, used is thus

G̃p(s) = 1
s
Gw(s)Wr(s)Wa(s) , (6.3)

which is the same structure as for (3.50). The overall model order is np = 7.

6.2.4 Model Uncertainty
The uncertainty in the nanopositioner dynamics is due to specific user applications,
as well as inherent properties in the actuator and mechanical structure.

Users will typically need to position payloads of various masses, and therefore
the resonance frequencies and the effective control gain of the mechanical structure
will change every time a new payload is attached [140]. This is clearly demonstrated
by inspecting the frequency responses for the two payload configurations in Fig. 6.1,
and the corresponding parameter values for the model (6.1) in Tab. 6.1.

As can be seen from Fig. 6.1, the response of the first vibration mode is well
approximated by the second-order model (6.1) using the identified parameters in
Tab. 6.1, for both payload configurations. It is evident that there exist higher order
modes in the system, and the second and third vibration modes are clearly visible
in Fig. 6.1. These higher order modes have relatively small magnitude responses in
comparison to the first, and they have shapes and directions that will make them
difficult to control using the mounted actuator; thus the only practical solution is
to avoid exiting these modes by limiting the bandwidth of the control law.

As discussed in Section 1.2.1 and Chapter 2, another second source of uncer-
tainty is due to the piezoelectric actuator, which has inherent variations in the
effective control gain due to changes in actuator temperature, offset voltage, dis-
placement range, as well as due to depolarization of the piezoelectric actuator. The
hysteresis and creep non-linearities present in all piezoelectric actuators are the
main contributors to the change in effective gain, and this is directly dependent
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Figure 6.2: Relative change in low-frequency gain b0/a0 for the piezoelectric actu-
ator due to the input voltage amplitude (using a sinusoidal input at 10 Hz).

on the offset voltage and input voltage amplitude, or displacement range. The de-
pendence on input voltage amplitude for the x-axis of the nanopositioning device
is shown in Fig. 6.2, where the relative change of the low-frequency gain b0/a0 is
recorded as a function of the amplitude (when using a 10 Hz sinusoid). The relative
change of the gain is found to be over 90% at an amplitude of 100 V compared to
the gain at 100 mV. This is more than what was found in Fig. 4.2 in Chapter 4, and
could be due to changes in polarization after extended use and the modifications
done when adding the magnetized sample holder.

To assess the nominal robustness of the proposed control scheme, the uncer-
tainty of the mechanical model is taken into account as a multiplicative perturba-
tion to the positioner dynamics,

w = Gw(s)(1 + δw(s)∆w(s))ua ; ‖∆w(s)‖∞ ≤ 1 . (6.4)

The uncertainty weight δw(s) is determined experimentally for the two payload
configurations, and incorporating the uncertainty of the effective gain, an over-
bounding uncertainty weight is found and shown together the experimentally de-
termined uncertainties in Fig. 6.3.

6.3 Model Reference Adaptive Control

As the only measurement available in the system is the displacement of the sam-
ple platform, a control scheme for the system must use output-feedback. Readily
available adaptive control schemes for output-feedback includes model reference
adaptive control (MRAC) [111], L1 adaptive output-feedback control [106], and
adaptive observer backstepping [126]. MRAC and adaptive observer backstepping
can formally provide asymptotic output tracking.
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Figure 6.3: Open-loop uncertainty weight δw(s), for the two payload configurations
and an over-bounding approximation.

L1 adaptive output-feedback control provides an disturbance observer adapt-
ing to the discrepancy between the plant output and a reference model, and the
stability and performance will depend on the choice of reference model and a low-
pass filter which is non-trivial to find in general. For a first-order reference model,
however, it is fairly straight forward to find these filters. The control scheme will
in that case be equivalent to a proportional-integral (PI) control law [106], and the
tuning procedure for the modified PI control law used in Chapter 4 also provide
good performance for the first-order reference model L1 adaptive control scheme.

Adaptive observer backstepping is dependent on non-linear damping terms,
which can lead to impractically large actuation forces, and also produces very
complicated control laws. The MRAC scheme was deemed to be the most feasible
choice. The control law and adaptive law is decoupled, such that the control law
and adaptive law can be designed separately. The design procedures for the control
law and adaptive law are also fairly straight forward.

6.3.1 Control Scheme Description
Model reference adaptive control (MRAC), and the static variety, model refer-
ence control (MRC) is described in Appendix E. As described in Appendix E, the
MRAC scheme consists of a control law and an adaptive law, that can be designed
independently and then combined using the certainty equivalence principle [111].
An MRAC scheme can generally be implemented in direct and indirect form. The
main difference is that for the direct form, the control law parameters are esti-
mated directly, whereas for the indirect form, the plant parameters are estimated
and subsequently mapped to the control law parameters.

The chosen plant model order is np = 7, which for the direct case requires
2np = 14 parameters to be estimated. As only three plant parameters, b0, a1, and
a0, are uncertain and require estimation, employing an indirect MRAC reduces
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the complexity and computational requirements of the parameter identification
significantly. In addition, experience suggests that parameter convergence is much
more difficult to achieve with a larger number of estimated parameters.

The indirect MRAC scheme requires the application of a normalized adaptive
law, which is necessary for the stability properties of the indirect MRAC scheme,
according to Theorem 6.6.2 in [111]. Normalization ensures boundedness of the
measured signals used in the adaptive law.

Applicable (normalized) adaptive laws include the gradient method based on
either instantaneous or integral cost functions, and the least-squares method. The
(normalized) recursive least-squares method was used in Chapter 5, together with
the extended Kalman filter. For the extended Kalman filter there does not exist
any general proofs of convergence, and the estimates are not guaranteed to be
bounded. Stability can therefore not be established theoretically when using the
extended Kalman filter for parameter estimation.

All four of the above mentioned methods were implemented and applied to-
gether with the MRAC control law, and for the system at hand all four methods
provided reasonable parameter convergence, given that the signals used were care-
fully pre-filtered. The gradient method based on the integral cost function (integral
adaptive law) behaves similarly to the least-squares method, but with the added
benefit of user selectable convergence rate. The method also provides theoretical
stability results for the overall scheme, and was therefore chosen to be used in the
implemented MRAC scheme. The integral adaptive law is described in Section D.2.

6.4 Design Choices

6.4.1 Control Law
In this Section, the control law design from Section 3.4.7 is reviewed. Assuming
good knowledge of the plant model Gp(s), there are two main design choices with
regards to the control law, which is the choice of the reference model Wm(s) and
the output filter 1/Λ(s). The main limiting factor in determining these filters, is the
uncertainty of the plant model, which for the system at hand is due to non-modeled
high-frequency dynamics. As described in Section E.2, the nominal control law can
also be expressed in terms of the feed-forward filter

C̄(s) = c0Λ(s)
Λ(s)− θ1

Tα(s)
and feedback filter

F̄ (s) = −θ2
Tα(s) + θ3Λ(s)

c0Λ(s) ,

i.e., the control law can be written as
up = C̄(s)(r − F̄ (s)yp) .

The complementary sensitivity function for a set of nominal plant parameter esti-
mates can then be found as

T (s) = C̄(s)Gp(s)
1 + C̄(s)F̄ (s)Gp(s)

.
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Since T (s) = Wm(s), the stability criterion

‖F̄ (s)Wm(s)δw(s)‖∞ < 1 (6.5)

can be used to choose Wm(s) and 1/Λ(s) to obtain robustness against uncertain
dynamics.

For simplicity, the reference model Wm(s) was chosen to be a seventh order
Butterworth filter with cut-off frequency ωm, i.e.qm = 0 and pm = 7, and since
the plant model Gp(s) does not have any zeros, the polynomial Λ(s) should be of
degree np− 1 = 6, and the zeros of Λ(s) was chosen to have a Butterworth pattern
with radius ωl.

The plant model includes the reconstruction and anti-aliasing filters,Wr(s) and
Wa(s), both having the user-programmable cut-off frequency ωc. As already noted,
the filters can be used to attenuate non-modeled high-frequency dynamics, as well
as to attenuate quantization and sensor noise, given that the cut-off frequency
ωc is below the Nyquist frequency. The cut-off frequency selection can also to
some degree improve the nominal closed-loop sensitivity response and robustness
properties.

The nominal tuning of the control law depends on the choice of ωm, ωl, and ωc.
As the plant is open-loop stable, and since it is augmented with an integral state,
the performance in terms of the sensitivity function

S(s) = 1
1 + C̄(s)F̄ (s)Gp(s)

of the nominal closed-loop system is in general improved by choosing a bandwidth
as high as possible for the reference model Wm(s) and the output filter 1/Λ(s),
i.e., choosing ωm and ωl as large as possible.

The choice of ωc is not as straight forward, as there can be found an optimal
value which minimizes ‖S(s)‖∞. By a course exhaustive grid search over ωm, ωl,
and ωc, evaluating (6.5) when using the nominal parameters for the two payload
configurations from Tab. 6.1, an approximate optimal value for ωc, and the ap-
proximate highest bandwidth for Wm(s) and 1/Λ(s) without violating (6.5) was
selected, and the result is shown in Tab. 6.2. The nominal frequency responses of
the complementary sensitivity function, T (s), the transfer-function (3.10) from r
to ε, E(s), the transfer-function (3.12) from du to w, and the sensitivity function
S(s) using the parameters in case 1) in Tab. 6.1 are shown in Fig. 6.4. As can be
seen, the expected bandwidth is approximately 150 Hz.

The evaluation of the robust stability criterion (6.5) is shown is Fig. 6.6, for
the over-bounding uncertainty weight in Fig. 6.3.

The control law is implemented as shown in Fig. 6.5. With reference to the aug-
mented plant model (6.3), the filtersWr(s),Wa(s) and the nanopositioning device,
modeled as Gw(s), are physical components, whereas the integrator is implemented
in software. The control law (E.1) is therefore modified to be

up = 1
s

(
θ1

T α(s)
Λ(s)up + θ2

T α(s)
Λ(s)yp + θ3yp + c0r

)
.
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Table 6.2: Control law parameters for MRAC.

Parameter Value
ωc 2π·1100
ωm 2π·900
ωl 2π·900
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Figure 6.4: Nominal responses for T (s), E(s), D(s), and S(s).
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Figure 6.5: The MRAC control law structure.
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Figure 6.6: Evaluation of the robust stability criterion (6.5).

6.4.2 Adaptive Law

For the integral adaptive law, as presented in Section D.2, values for the forgetting
factor κf , the normalization constant α0, and the gains in Γ, must be selected. In
addition, the selected reference signal should at minimum produce a sufficiently
rich input signal (which results in a PE regressor vector).

The integral adaptive law will theoretically provide convergence to the correct
parameter values when using a sufficiently rich input signal [111, 144]. However,
for the system at hand, none of the four parameter identification schemes tried
(the gradient method based on instantaneous or integral cost functions, the least-
squares method, and the extended Kalman filter) provided reasonable parameter
convergence without careful pre-filtering of the signals used. As was done in Chap-
ter 5, a pre-filter Wp(s) must also be selected.

The main limitation for the selection of κf , α0, and Γ is the numerical stability
of the adaptive law. If either κf or Γ are too large, or if α0 is too small, depending
on the selected numerical integration scheme and step size, the adaptive law can
become unstable. As long as the adaptive law remains stable, the choice of κf , α0,
and Γ does not seem to influence the mean values of the stationary response for the
estimated parameter values. The mean values will mostly depend on the pre-filter
Wp(s). However, the choice of κf , α0, and Γ determines the rate of convergence,
as well as the amount of averaging, and thus how much fluctuation there will be
in the estimates due to noise and other disturbances.

The choice of the pre-filter is done considering the concepts of dominantly rich
signals and experiment design, as they provide guidance on how to choose input
signals that should provide better parameter estimates under non-ideal conditions.

The deterministic concept of dominantly rich signals [111] provides conditions
on the choice of an input signal in the presence of non-modeled dynamics and
bounded disturbances, in order to obtain small biases in the parameter estimates.
Summarily, the input signal should be chosen to excite the dominant dynamics of
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the system to a level that dominates the disturbances, and have a spectral content
that avoids excitation of non-modeled dynamics.

Somewhat similarly, the stochastic concept of experiment design [93, 182], pro-
vides methods to construct input signals of finite power that will maximize con-
ditions on the Fisher information matrix, which should then provide parameter
estimates with minimal variance when using measurements corrupted by colored
noise. The Fisher information matrix in the frequency domain involves the pa-
rameter sensitivity functions for the plant model. A finite energy signal will then
typically be optimal for some condition on the information matrix if the spec-
tral content is concentrated in frequency domains where the parameter sensitivity
functions of a model have peaks. An optimal input signal in this sense should also
improve the convergence rate of the parameter estimates [150].

As designing an optimal input signal is usually not feasible for arbitrary track-
ing control tasks, a practically feasible solution is to find a pre-filter which empha-
sizes certain frequency domains in the signals used in the parameter identification
scheme [144, 157], as discussed in Chapter 5. In addition to provide more optimal
signals with regards to the information matrix, the pre-filter is also beneficial since
it can attenuate disturbances and non-modeled effects; thus a more dominantly
rich signal.

A heuristic approach is chosen in order to select a reasonable pre-filter Wp(s).
As prior knowledge of approximate parameter values is available from frequency re-
sponse data, a nominal model reference control law (MRC) is found. Data collected
from the plant while running in closed-loop using the MRC then provide a reason-
able approximation to the expected input signal and noise correlation when using
the MRAC. Using these data off-line, different filter choices are tested, according
to the following considerations.

As was demonstrated in Chapter 5, the parameter sensitivities of a mass-spring-
damper system suggest an emphasis on a frequency domain around the expected
resonance frequencies of the system, a bandpass filter. As the scheme requires
differentiation of the measured deflection, the bandpass filter must have a relative
degree equal to the highest order of differentiation needed, so that the filters will
be proper. To provide some low-pass filtering, the relative degree should be higher.

Choosing only a bandpass filterW1(s) with a narrow passband around expected
dominant resonant frequencies results in poor low-frequency gain estimation for this
system, i.e., the ratio b0/a0 is too low. Adding another bandpass filter in parallel,
with a narrow passband around the fundamental frequency of the reference signal
and a selectable gain k2W2(s), increases the parameter identification accuracy. The
gain k2 can not be too large, as it will impact the accuracy of parameters depending
on the natural frequency and damping coefficient, a1 and a0. The filter that is used
is thus

Wp(s) = W1(s) + k2W2(s) , (6.6)

where the cut-off frequencies for W1(s) is [f l1, fh1 ] = [475, 900] and for W2(s) is
[f l2, fh2 ] = [fr − 10, fr + 10], fr being the fundamental frequency of the reference
signal. The filter gain was chosen to be k2 = 0.01. The chosen pre-filter is shown
in Fig. 6.7.
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For the model (6.1), assuming a displacement measurement w, the parameter
vector θ in the parametric model (D.1) is here denoted θp as given as

θp = [b0, a1, a0]T .

The regressor vector is then found as

ϕ = [ua, −ẇ, −w]T ,

and the output of the model is z = ẅ. To account for the known dynamics in the
reconstruction and anti-aliasing filters, determined by the cut-off frequency ωc, and
incorporating the pre-filter, the output z and regressor ϕ is constructed as

z = s2Wp(s)ym

and
ϕ(s) = [Wr(s)Wa(s)Wp(s)up, −sWp(s)ym, −Wp(s)ym]T ,

as illustrated in Fig. 5.4.
Reasonable values for κf , α0, and Γ, trading-off convergence rate and forgetting

rate or averaging, were found as κf = 2, α0 = 0.001, and

Γ = diag
([

5 · 106, 5 · 101, 5 · 107]) .
The parameter vector θ for the plant model (6.3), G̃p, is determined by the

convolution of the polynomials in the numerator and denominator ofWr(s),Wa(s),
and Gw(s), as well as the integrator 1/s. The parameter mapping from the adaptive
law to the control parameters is therefore θp → θ → θ̄c, where

θ̄c =
[
θ1

T, θ2
T, θ3, c0

]T
.

6.5 Experimental Results & Discussion

6.5.1 Description of the Experimental System
The experimental set-up consisted of a Dell Optiplex 760 computer equipped with
a PCI-6221 data acquisition board from National Instruments, running the xPC
Target real-time operating system for hardware-in-the-loop simulations, a ADE
6810 capacitive gauge and ADE 6501 capacitive probe from ADE Technologies, a
Piezodrive PDL200 voltage amplifier, the custom-made long-range serial-kinematic
nanopositioner (see Fig. 2.3), two SIM 965 programmable filters, and a SIM983 scal-
ing amplifier from Stanford Research Systems. With the xPC Target, a maximum
sampling frequency of fs = 40 kHz was achieved for the complete MRAC scheme,
and used for all the experiments. For numerical integration, a third-order Runge-
Kutta scheme (Bogacki-Shampine) [62] was used. In order to achieve a higher
sampling frequency, the adaptive law and parameter mapping was implemented
using the C programming language.
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Figure 6.7: Pre-filter Wp(S).

6.5.2 Experiments
Four experiments are performed to assess the tracking and parameter estimation
performance. A triangular reference signal with a fundamental frequency fr = 50
Hz is used, which is sufficiently rich for parameter estimation for this system. The
control bandwidth is approximately 150 Hz, thus using a relatively high funda-
mental frequency should help elucidate model discrepancies and disturbances in
the system response. First, the ability to track parameter changes is evaluated by
adding a payload of 15.7 g while the system is running. Next, three experiments
were done to find the asymptotic parameter estimates for various configurations,
as well as the stationary tracking error.

6.5.3 Results & Discussion
The experimental results are presented in Figs. 6.8 and 6.9, and Tab. 6.3.

From Fig. 6.8 it is evident that reasonable parameter convergence is achieved,
and the adaptive law is able to track parameter changes when the payload is added
after approximately 5 seconds. There are discrepancies in the estimates compared
to the values in Tab. 6.1, especially for the b0 and a1 parameters. The discrepancy
for b0 is mainly due to the larger driving voltage amplitude used in the experiment,
compared to the amplitude used to find the frequency response. The discrepancy for
a1 is likely due to the presence of colored noise due to feedback and the hysteresis
disturbance, since the parameter sensitivity for the model (6.1) with respect to a1
is very small, as was pointed out in Chapter 5. The small oscillations in the a1
estimate is due to noise, and can be reduced by decreasing, e.g., the corresponding
gain in Γ, at the expense of slower convergence.

By inspection of case 1) and 2) in Tab. 6.3, it can seen that the estimates
for the natural frequency and the damping ratio is underestimated in case 1), and
overestimated in case 2). This is likely due to the tuning of the pre-filter, as the bias
change, and the accuracy improves, by fine tuning of the pre-filter to the specific
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Table 6.3: Asymptotic values for the estimates for the parameters in the model (6.1)
and stationary tracking errors for the MRAC scheme for various configurations.

1) No payload; 50 Hz, 3 µm amp. triangle-wave ref.
b0 2.79·106 µm/s2V b0/a0 0.130 µm/V
a0 21.4·106 1/s2 f0 737 Hz
a1 297 1/s ζ 0.0321
RMSE: 0.113 µm RMSE relative: 6.52 %
Max. error: 0.213 µm Max. relative error: 7.31 %

2) Payload; 50 Hz, 3 µm amp. triangle-wave ref.
b0 2.33·106 µm/s2V b0/a0 0.131 µm/V
a0 17.8·106 1/s2 f0 672 Hz
a1 32.9 1/s ζ 0.00390
RMSE: 0.101 µm RMSE relative: 5.82 %
Max. error: 0.186 µm Max. relative error: 6.40 %

3) Payload; 50 Hz, 6 µm amp. triangle-wave ref.
b0 2.46·106 µm/s2V b0/a0 0.144 µm/V
a0 17.1·106 1/s2 f0 657 Hz
a1 -95.0 1/s ζ -0.0115
RMSE: 0.282 µm RMSE relative: 8.15 %
Max. error: 0.520 µm Max. relative error: 8.94 %

configuration. Case 2) and 3) demonstrate the ability to track the change in low-
frequency gain b0/a0 due to change in displacement range, as should be expected
by the results in Fig. 6.2, but there is also a noticeable change in the estimated
natural frequency and damping ratio, which also depend on the pre-filter tuning.

As already noted in Section 6.4.2, the low-frequency gain is always underesti-
mated. This can be seen by looking at Fig. 6.9, where it is apparent that the system
response overshoots the reference. This can be confirmed by fixing the parameter
estimates and manually increasing the b0 estimate, in which case the error can be
reduced.

6.6 Conclusions & Future Works

6.6.1 Conclusions
A working implementation of a MRAC scheme has been demonstrated, and the
experimental results obtained provide an indication of the achievable performance
that can be expected when applied to a flexible smart structure. The main chal-
lenge was to achieve reasonable convergence for the parameter estimation scheme,
and this was demonstrated to be possible by the use of a special pre-filter. One
major limitation with regards to performance is the difficulty in having simulta-
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Figure 6.8: Estimated parameters when adding a payload to the sample platform,
using a 50 Hz triangle-wave reference signal with 3 µm amplitude. The time-series
have been down-sampled to 40 Hz.
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Figure 6.9: Stationary response, with payload on the sample platform, using a
50 Hz triangle-wave reference signal with 3 µm amplitude.

neous accurate estimation of the parameters determining the low-frequency gain
and the parameters dependent on the damping ratio and natural frequency of the
system. This is most likely due to the presence colored noise due to feedback and
the hysteresis and creep nonlinearities, which also causes bounded disturbances,
and necessitates integral action in the control law. The suppression of these distur-
bances are dependent on the achievable control law bandwidth, which main limiting
factor is the presence of non-modeled and practically uncontrollable higher-order
vibration modes.

6.6.2 Future Works
The parameter estimation is very sensitive to the choice of pre-filter Wp(s), the ac-
tual plant parameters, the chosen control law parameters, and reference signal. To
improve on the parameter estimation performance, it might be possible to find bet-
ter choices for Wp(s), and the application of more elaborate identification schemes,
specifically tailored for closed-loop identification such as the recursive instrumental
variable method [88], should be investigated.

In order to make the control scheme more robust in general, well known tech-
niques such as parameter projection and adaptation dead-zones should be used to
avoid large parameter drift. Since integral action is added to the control law, a
suitable anti-windup scheme should also be added.

Some performance improvement for the MRAC scheme presented can possibly
be achieved by a better nominal tuning of the control law, which is determined
by the choice of reference model Wm(s), anti-aliasing and reconstruction filters
Wr(s),Wa(s), and output filter 1/Λ(s).
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Appendix A

Piezoelectric Transducers

This Appendix is a summary of the standard theory on piezoelectric transducers.
It is collated from material found in [1, 2, 7, 23–25, 38, 54, 55, 62, 112, 115, 134,
162, 164, 171–173]. Some details are added to clarify the usage of the theory.

A.1 Piezoelectricity

Piezoelectricity is the ability of some materials to generate an electric charge in
response to applied mechanical stress. If the material is not short-circuited, the
generated charge induces a voltage across the material that can be measured by a
voltmeter. The piezoelectric effect is reversible, and an applied electric field gen-
erates strain in the material, resulting in a change in geometry, which can be
measured by a pair of calipers. The production of charge when a stress is applied is
called the direct piezoelectric effect, and the production of strain when an electric
field is applied is called the converse piezoelectric effect.

The direct effect is illustrated in Fig. A.1, which shows a cylinder of piezoelec-
tric material under a no-load condition, and subjected to a tensile stress and a
compressive stress. The generated charge is due to a change in dipole moment, and
appears as a voltage that can be measured, analogous to a voltage appearing on
the terminals of a capacitor that has been charged.
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Figure A.1: Illustration of the direct piezoelectric effect.
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Figure A.2: Illustration of the converse piezoelectric effect.

The converse effect is illustrated in Fig. A.2, which shows a cylinder of piezo-
electric material when applying an electric field with polarity in the same direction
as the poling axis, which produces a positive strain (lengthening) along the poling
axis, and when applying an electric field with polarity in the opposite direction
of the poling axis, which produces a negative strain (shortening) along the poling
axis.

The direct piezoelectric effect was discovered in 1880 by the Pierre and Jacques
Curie during experiments on crystals of tourmaline, quartz, topaz, cane sugar,
and Rochelle salt. The existence of the converse piezoelectric effect was predicted
by Gabriel Lippmann in 1881 and the existence was experimentally confirmed by
Pierre and Jacques Curie. The 20 natural crystal classes capable of piezoelectricity,
and the physical properties involved, were rigorously defined using tensor analysis
by Woldemar Voigt in 1910. The first step toward an engineering application was
taken in 1916 by Paul Langevin, who constructed an underwater ultrasonic source
consisting of a piezoelectric quartz element sandwiched between steel plates, which
was one of the first sonar devices, used for submarine detection.

The piezoelectric effect is anisotropic, and can only be found in materials whose
crystal structure has no center of symmetry. In addition to naturally occurring
materials, some modern synthetic materials exhibit piezoelectricity. These include
lead zirconate titanate, a ceramic, and polyvinylidene fluoride, a polymer, which
are commonly used in transducers, as they have high piezoelectric constants.

Most materials used for transducers are ferroelectric, and for these materials
piezoelectricity always occur below a certain temperature called the Curie tem-
perature. The most common example of a ferroelectric is lead zirconate titanate
(PZT), which has the chemical formula Pb[ZrxTi1−x]O3, x ∈ [0, 1]. The material
can be considered to be a mass of minute crystallites. These crystallites have dif-
ferent properties above and below the Curie temperature, and an elementary cell
of PZT material is illustrated in Fig. A.3, for these two states.

Above the Curie temperature, the structure is centrosymmetric with negative
and positive charge sites coinciding, so there are no dipoles present in the material,
and it is said to be paraelectric. Below the Curie temperature, the elementary cell
has a built-in electric dipole, due to a tetragonal symmetry, where the negative and
positive charge sites do no longer coincide. The dipoles are aligned in regions called
Weiss domains, generating a net dipole moment for a domain, but the domains
throughout the material are randomly oriented, and the net macroscopic effect
is therefore zero for the whole material. The dipoles can be aligned, however, in

150



A.1. Piezoelectricity

O2- Pb2+ Ti4+, Zr4+

+

–

Figure A.3: Lead zirconate titanate (Pb[ZrxTi1-x]O3) (PZT) elementary cell, above
the Curie temperature (left) and below (right).
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Figure A.4: Electric dipole moments in Weiss domains, before (left), during (mid-
dle), and after (right) polarization.

a process called poling. If the material is poled, some Weiss domains are grown
at the expense of others, such that the net dipole moment can be noticed on a
macroscopic scale.

The poling process involves heating the material above the Curie temperature
and subsequently cooling the material in the presence of a high electric field. The
electric field aligns the dipoles, and the dipoles become fixed below the Curie tem-
perature, thus making the material permanently piezoelectric. This is illustrated in
Fig. A.4. The property is lost if the material is reheated above the Curie tempera-
ture, if an excessive electric field is applied in the direction opposed to the poling
direction, or due to excessive vibrations. The dipoles also naturally tend to change
alignment over time, a process known as aging.

The word piezoelectricity means “electricity by pressure”, and is derived from
the Greek piezein, which means to push.
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Figure A.5: Electromechanical relations in crystals (piezoelectricity). Tensor ranks
of the variables are shown in parentheses, and tensor ranks of the properties are
shown in square brackets.

A.1.1 Piezoelectric Constitutive Equations
Materials exhibiting piezoelectric effects can also exhibit electrothermal effects (py-
roelectricity) and thermoelastic effects, but this will not be considered here. The
tensor relationships describing piezoelectric effects are presented diagrammatically
in Fig. A.5. The tensor description here gives multilinear relationships between vari-
ables through constant properties, and is considered to be a small-signal model. It
will therefore not explain the non-linear effects observed in piezolectric transducers,
such as hysteresis and creep. The tensor relationships are given in matrix form.

Piezoelectric constitutive equations can be found on several different forms,
which are equivalent. The properties used are measured under different conditions,
but properties found using one set of conditions can be transformed to another set
of conditions using certain relationships.

Four equivalent forms of the constitutive equations

The strain-charge form of the constitutive equations are given as

ε = sEσ + dTE (A.1)
D = dσ + κσE , (A.2)

the stress-charge form as

σ = cEε− eTE (A.3)
D = eε+ κεE , (A.4)

the strain-voltage form as

ε = sDσ + gTD (A.5)
E = −gσ + βσD , (A.6)
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and the stress-voltage form as

σ = cDε− hTD (A.7)
E = −hε+ βεD . (A.8)

The symbols used for for the variables are:
ε strain (m/m), second order tensor
σ stress (N/m2), second order tensor
E electric field (V/m), first order tensor
D electric displacement (C/m2), first order tensor

The symbols used for for the properties are:
s elastic compliance (m2/N), fourth order tensor
c elastic stiffness (N/m2), fourth order tensor
e piezoelectric strain-charge modulus (C/m2), third order tensor
d piezoelectric stress-charge modulus (m/V) = (C/N), third order tensor
g piezoelectric stress-voltage modulus ((V m)/N) = (m2/C), third order tensor
h piezoelectric strain-voltage modulus (V/m) = (N/C), third order tensor
κ permittivity (dielectric constant) (F/m) = (C/(V m)), second order tensor
β impermittivity (m/F), second order tensor

The measurement conditions used when finding a property is indicated by a su-
perscript. A property found under a constant electric field is denoted ()E . In this
case the electrodes are short circuited (closed circuit). Conversely, a property mea-
sured under a constant electric displacement is denoted ()D, and this means that
the electrodes are not connected (open circuit). A property found under constant
stress is denoted ()σ. The material is then free to expand, and is not mechanically
constrained in any way. The converse situation is when a property is found under
constant strain, which is denoted ()ε. In this case, the material is clamped, which
means that it is mechanically constrained and unable to expand in any direction.

()E closed circuit condition
()D open circuit condition
()σ constant stress (free) condition
()ε constant strain (clamped) condition

Example A.1:
Referring to the illustration in Fig. A.1, the generated charge is due to

D = dσ ,

and there is no applied electric field, only applied stress. Similarly, referring to
Fig. A.2, the generated strain is due to

ε = dTE

when applying an electric field, and there is no stress due to the absence of me-
chanical constraints.
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Property transformations

Transforming the properties used in the different forms of the constitutive equations
can be done using the following relationships. To transform from strain-charge form
to stress-charge form the properties are transformed by

cE =
(
sE
)−1

e = dcE

κε = κσ − edT ,

and from stress-charge form to stress-voltage form by

βε = (κε)−1

h = βεe

cD = cE + eTh ,

from strain-charge form to strain-voltage form by

βσ = (κσ)−1

g = βσd

sD = sE − dTg ,

and from strain-voltage form to stress-voltage form by

cD =
(
sD
)−1

h = gcD

βσ = βε + hdT .

A.2 Matrix Notation

Due to symmetry in various tensors, it is possible to reduce the number of coeffi-
cients needed in a tensor, and this makes it possible to use matrix notation, which
often simplifies calculations. Matrix notation requires that the coordinate system is
aligned with the orthotropy axes of the material, and that the direction of polariza-
tion is along direction 3. The orthotropy axes are the axes for which the properties
are measured. Orthotropic materials are anisotropic, which means the their prop-
erties depend on the direction in which they are measured. An isotropic material,
in contrast, has the same properties in every direction. The coordinate system and
designation of the different axes are illustrated in Fig. A.6. Translational directions
are designated from 1 to 3, and rotational directions from 4 to 6.

Different materials belong to different crystal classes, which all have differ-
ent symmetry properties. The most common material used for transducers is lead
zirconate titanate. This material belongs to the tetragonal class 4mm, and the spe-
cific structure for the various matrices in the strain-charge form of the constitutive
equations for this class are illustrated in Fig. A.7.
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Figure A.6: Designation of the axes and directions for variables and properties.

zero component
non-zero component
equal components

Figure A.7: Structure of the matrices for the compliances, piezoelectric moduli,
and dielectric constants belonging to the tetragonal class 4mm.

The full matrices for the strain-charge can then be written out as

ε1
ε2
ε3
ε4
ε5
ε6

D1
D2
D3


=



sE11 sE12 sE13 0 0 0 0 0 d31
sE12 sE11 sE13 0 0 0 0 0 d31
sE13 sE13 sE33 0 0 0 0 0 d33
0 0 0 sE44 0 0 0 d15 0
0 0 0 0 sE44 0 d15 0 0
0 0 0 0 0 sE66 0 0 0

0 0 0 0 d15 0 κσ1 0 0
0 0 0 d15 0 0 0 κσ1 0
d31 d31 d33 0 0 0 0 0 κσ3





σ1
σ2
σ3
σ4
σ5
σ6

E1
E2
E3


.

The matrices for the other forms of the constitutive equations can be found
from the transformations given in the previous section. The values for the various
coefficients can sometimes be obtained from manufacturers, but are often of little
practical value, as variations between batches of material and the specifics of the
geometrical configuration, manufacturing, and mounting of a transducer will alter
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sE11 12.3 10−12 m2/N
sE33 15.5
sE44 39.0
sE66 32.7
sE12 -4.05
sE13 -5.31
d31 -123 10−12 m/V
d33 289
d15 496
κσ1/κ0 1475 κ0 = 8.854 · 10−12 F/m
κσ3/κ0 1300
ρ 7.5 103 kg/m3

Curie point 328 ◦C

Table A.1: Typical properties of one type of lead zirconate titanate (PZT-4).

the properties actually observed. The parameters will also change with tempera-
ture, the frequency of applied stimuli, and due to depolarization. Also, some of
the coefficients are not actually constant, notably the permittivity κ. The electric
displacement is determined by the polarization P , which when assuming that the
material is isotropic with regards to this property is given as

P = κ0χE ,

where χ is the dielectric susceptibility. The electric displacement is therefore given
as

D = κ0E + P = κ0(1 + χ)E = κE .

The dielectric susceptibility for ferroelectric materials can only be considered con-
stant when used in a small-signal model. It can not be considered a constant when
there are large variations of the electric field intensity E. In those cases it is rather
a function of the electric field intensity, and this is the cause of hysteresis. An indi-
cation of the small-signal behavior, compared to the large-signal behavior, can be
inferred from Fig. 1.2b.

As an example, some typical property values of one type of lead zirconate
titanate (PZT-4) are presented in Tab. A.1.

A.3 Stack Actuator Blocking Force

As an example of how to perform calculations using the tensor relationships pre-
sented, the expression for the blocking force for a piezoelectric stack actuator found
in the following.
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Figure A.8: Stack actuator free body diagram, the blocking force is fa.
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Figure A.9: Stack actuator diagram.

The blocking force is the amount of force developed by the actuator, working
against the internal stiffness of the actuator and any attached mechanical structure.
A free body diagram is provided in Fig. A.8.

A piezoelectric stack consists of multiple layers of piezoelectric material. The
stack is designed such that the applied electric field is in parallel to the poling
direction of the ceramic. This causes the developed force to work on any attached
mechanical structure in the same direction. The blocking force of the actuator can
be found by assuming that the stack is clamped in the poling direction, but free
to expand in other directions. All forces are also assumed to be working along
the poling direction, as well as the applied electric field. These conditions can be
summed up as

ε3 = 0, ε1 6= 0 , ε2 6= 0
σ1 = σ2 = 0, σ3 6= 0 ,

and

E1 = E2 = 0, E3 6= 0 .

This is a typical mounting configuration in many applications. The geometry of
this configuration when using a stack actuator is shown in Fig. A.9.

The strain-charge form of the constitutive equations (A.1) under the stated
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conditions yield

ε1 = sE13σ3 + d31E3 (A.9)
ε2 = sE13σ3 + d31E3, (A.10)

while from the stress-charge form (A.3), the stress in the poling direction is ex-
pressed as

σ3 = cE13ε1 + cE13ε2 − e33E3. (A.11)

Substituting (A.9) and (A.10) into (A.11) yields

σ3 = 2cE13
(
sE13σ3 + d31E3

)
−
(
2d31c

E
13 + d33c

E
33
)
E3 = 2cE13s

E
13σ3 − d33c

E
33E3 ,

since
e33 = 2d31c

E
13 + d33c

E
33 .

This provides the stress on an element in the poling direction as

σ3 = −d33
(
cE33 − 2cE13ν

)
E3.

where ν is (the dimensionless) Poisson’s ratio

ν = −ε1

ε3
= −ε2

ε3
= −s

E
13σ3

sE33σ3
= −s

E
13
sE33

= cE13
cE11 + cE12

,

since

sE13 = cE13
2(cE13)2 − cE33(cE11 + cE12)

,

sE33 = − cE11 + cE12
2(cE13)2 − cE33(cE11 + cE12)

.

The geometry of one stack element should be well approximated by a rectangu-
lar cuboid, with length, or thickness, t, and having a surface area of A for the faces
normal to the direction of the length. Any forces working on an attached mechan-
ical structure should be distributed over these faces, and any voltage applied over
electrodes on these faces, must be distributed over the thickness. The stress on the
element due to a force fa in the poling direction, distributed over the surface area
A, should therefore be

σ3 = fa
A
,

and electric field due to the applied voltage ua over the thickness t of the element
is

E3 = ua
t
.

In a static configuration there should now be a balance of stress in the element as

fa
A

= −d33
(
cE33 − 2cE13ν

) ua
t
,
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and thus the blocking force developed by the piezoelectric element is

fa = −d33

[(
cE33 − 2cE13ν

)
A

t

]
ua .

If n elements are stacked on top of each other with each of them having the thickness
t = `/n, ` being the length of the stack, and if it is recognized that the stiffness of
the stack will be given as

ka =
(
cE33 − 2cE13ν

)
A

`
(N/m) ,

an expression for the developed blocking force for a stack actuator is obtained as

fa = −nd33kaua . (A.12)

By also allowing motion along the poling direction, ε 6= 0, the stress, σ3, can
be found as

σ3 =
(
cE33 − 2cE13ν

)
ε3 − d33

(
cE33 − 2cE13ν

)
E3 . (A.13)

Since the strain of the element is defined as the ratio of the increase in length, or
displacement, w, of the element, and the original length, t. That is,

ε3 = w

t
,

and (A.13) can be put on the form

fa = kaw − nd33kaua . (A.14)

A.4 Charge in Actuator Circuit

As another example, the expression for the charge in the actuator circuit is found
for a piezoelectric stack. From the strain-charge form of the constitutive equations
the generated electric displacement in the poling direction of a piezoelectric element
is found when

ε1 6= 0 , ε2 6= 0 , ε3 6= 0
σ1 = σ2 = 0, σ3 6= 0
E1 = E2 = 0, E3 6= 0

as
D3 = d33σ3 + κσ33E3 . (A.15)

Here, the stack is also allowed to move along direction 3. The strains ε1 and ε2 due
to a uniaxial stress σ3 on the element can be found using Hooke’s law as

ε1 = sE13σ3

ε2 = sE13σ3 ,
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and these relationships can be used to solve for the resulting stress σ3 due to the
strain ε3 as

σ3 = cE13ε1 + cE13ε2 + cE33ε3 = 2cE13s
E
13σ3 + cE33ε3 ,

which yields
σ3 =

(
cE33 − 2cE13ν

)
ε3 , (A.16)

where ν is Poisson’s ratio. The strain of the element is defined as the ratio of the
increase in length, or displacement, w, of the element, and the original length, t.
That is,

ε3 = w

t
.

The generated charge q on the surface area A of the n rectangular cuboid
elements will be

q = nAD3 . (A.17)

Thus, using (A.15), yields

q = nA (d33σ3 + κσ33E3) . (A.18)

Substituting in the expressions (A.16), ε3 = w/t, E3 = ua/t, and t = `/n yields

q = nA
(
d33
(
cE33 − 2cE13ν

)
ε3 + κσ33E3

)
= nd33kaw + κσ33A

`
ua ,

where
Cp = κσ33A

`
(C/V)

is recognized as the capacitance of the stack. The expression for the charge in the
actuator circuit is therefore

q = nd33kaw + Cpua . (A.19)

A.5 One-Dimensional Transducers

As previously noted, the values for the various coefficients as obtained from data
sheets provided by manufacturers are often not accurate, and the actual observed
response from a system is dependent on the specifics of the geometrical configu-
ration, manufacturing, and mounting of a transducer. Property values also change
with temperature, and due to depolarization, or aging, and other factors. Trans-
ducers are also typically always working with regards to one direction only. The
interconnection with other systems produce lumped parameter expressions, where
individual identification of various parameters in the expression might be impossi-
ble. From a practical perspective, it is therefore convenient to regard all transduc-
ers to be one-dimensional, with unknown parameters. The derivation of models are
then much simplified, and system identification can be done once a model structure
is determined.
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As the two examples in the previous Sections show, the stress-charge form of
the constitutive equations can, for a stack actuator operating in one direction, be
put on the form [

fa
q

]
=
[
ka −ea
ea Cp

] [
w
ua

]
, (A.20)

where ea = nd33ka (N/V = C/m). Similarly, the strain-charge form can be ex-
pressed as [

w
q

]
=
[
1/ka da
da Cp(1 + k2)

] [
fa
ua

]
, (A.21)

where da = ea/ka (m/V = C/N), and

k2 = n2d33
2ka

Cp
, (A.22)

which is a constant sometimes used in the literature, called the electromechani-
cal coupling factor. It provides a measure of the ratio of energy converted from
electrical to mechanical energy, or vice versa, i.e., it is an efficiency measure.

161





Appendix B

Mechanical Vibrations

A summary of standard modeling techniques of mechanical vibrations, or structural
dynamics, is presented. The summary is based on material found in [7, 62, 92, 152,
153, 172, 173, 178, 219, 227].

B.1 Distributed-Parameter Structures

A common experimental testbed for vibrating systems is a beam, where one end
is clamped, and the other is free to vibrate, and which is fitted with a piezo-
electric actuator patch which applies a force to a small area. This system is well
approximated using classical Euler-Bernoulli beam theory. Solving the forced Euler-
Bernoulli equation demonstrates all the steps required to obtain a set of ordinary
linear differential equations as a model for a distributed parameter system.

The Euler-Bernoulli beam theory is applicable to describe small lateral elastic
deformations in slender beams. A slender beam is a beam where the ratio between
the length ` and the height h is large, i.e., `� h. With reference to Fig. B.1, then
the length of the beam is aligned with the x-axis, and the displacement from the
neutral axis is along the z-axis, and is denoted w(x, t). External force is denoted
f(x, t), and is assumed to have a distribution per unit length along the length
of the beam, which is `. In Euler-Bernoulli theory, it is assumed that there is no
rotational moment of inertia, no shear deformation effects, and that the bending

x
w
ℓ

z

f(x)

Figure B.1: Clamped-free beam, with external force.
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moment is given by the constitutive equation

Y I(x)∂
2w

∂x2 (x, t) , (B.1)

where Y is Young’s modulus, and I(x) is the moment of inertia about the y-axis.
Young’s modulus describes the response of some material to linear strain, and is
therefore generalized by the elastic stiffness tensor c.

Combining the force and moment balance for an infinitesimal element of the
beam and using the Euler-Bernoulli assumptions yields the partial differential equa-
tion

∂2

∂x2

[
Y I(x)∂

2w

∂x2 (x, t)
]

+ ρ(x)∂
2w

∂t2
(x, t) = f(x, t) , (B.2)

where ρ(x) is the mass density of the beam. Now, if in addition it is assumed that
the moment of inertia is constant, that there is a linear distribution of mass, and
that a force u(t) is applied at a point xu, i.e.,

f(x, t) = δ(x− xu)u(t) , (B.3)

where δ(x) is the Dirac delta, then the equation becomes

ρcs
2 ∂

4w

∂x4 (x, t) + ρ
∂2w

∂t2
(x, t) = δ(x− xu)u(t) , cs2 = Y I

ρ
. (B.4)

Eq. (B.4) can be solved in two steps. First, the unforced solution is found, i.e.,
when f(x, t) = 0, by assuming the solution is on the form

w(x, t) =
∞∑
i=1

qi(t)φi(x) . (B.5)

Substituting (B.5) into (B.4) yields expressions on the form

cs
2φ

(4)
i (x)qi(t) + φi(x)q̈i(t) = 0 (B.6)

which can be solved by separation of variables, that is, by solving the two ordinary
differential equations

cs
2φ

(4)
i (x)
φi(x) = − q̈i(t)

qi(t)
= Ki , (B.7)

where Ki > 0 is a constant, as it must satisfy both differential equations simulta-
neously. Defining the constant as Ki = ωi

2 = cs
2λi

4, the two differential equations
can be expressed as

q̈i(t) + ωi
2qi(t) = 0 , (B.8)

and
φ

(4)
i (x)− λi4φi(x) = 0 . (B.9)

Eq. (B.8) is the differential equation for an harmonic oscillator, while the general
solution to (B.9) is given by

φi(x) = Ai cosλix+Bi sinλix+ Ci coshλix+Di sinhλix , (B.10)
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and φi(x) is called a shape function. The coefficients Ai, Bi, Ci, Di of (B.10) depend
on the boundary conditions of the partial differential equation. For the case when
there is one clamped end and one free end, the boundary conditions for the clamped
end are

w(0, t) = 0 , ∂w
∂x

(0, t) = 0 , (B.11)

which means it has zero elastic deformation and zero elastic angle, and for the free
end they are

∂w2

∂x2 (`, t) = 0 , ∂w
3

∂x3 (`, t) = 0 , (B.12)

which means that it has zero bending moment and zero shear force. By differenti-
ating (B.10) and equating with the boundary conditions, a set of linear equations
is obtained, which is

1 0 1 0
0 1 0 1

− cosλi` − sinλi` coshλi` sinhλi`
sinλi` − cosλi` sinhλi` coshλi`


︸ ︷︷ ︸

Acf


Ai
Bi
Ci
Di


︸ ︷︷ ︸

bc

=


0
0
0
0


︸ ︷︷ ︸

0

=


φ(0)
φ′(0)
φ′′(`)
φ′′′(`)

 .

(B.13)
Non-trivial solutions of the equations Acfbc = 0 are found when detAcf = 0, i.e.,

1 + cosλi` coshλi` = 0 . (B.14)

This is a transcendental equation with infinitely many solutions {λi}, which defines
the set {Ai, Bi, Ci, Di}. The solutions {λi} must be found numerically, or can be
found in standard tables. The numerical values for the clamped-free case are:

λ1` ≈ 1.8751041
λ2` ≈ 4.69409113
λ3` ≈ 7.85475743
λ4` ≈ 10.99554074
λ5` ≈ 14.13716839

λi` ≈
(2i− 1)π

2 , i > 5

For each λi, there is also a corresponding natural frequency in (B.8) which
is ωi = csλi

2. It might be noted that for increasingly higher modes, the accuracy
of the predicted modes is reduced. This is because the rotation of a infinitesimal
beam element can no longer be considered negligible compared to the translation
for higher order modes, as the curvature for the modes becomes more severe. This
will therefore invalidate the Euler-Bernoulli assumptions.

For the shape function φi(x), the coefficients Ai, Bi, Ci, Di for the clamped-free
beam can be expressed in terms of Ai using Ci = −Ai, Di = −Bi, and

Bi = αiAi , αi = −cosλi`+ coshλi`
sinλi`+ sinhλi`

, (B.15)
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Figure B.2: The first three shape functions for a clamped-free beam of unit length.

such that
φi = Ai [cosλix− coshλix+ αi(sinλix− sinhλix)] . (B.16)

The first three shape functions for the clamped-free case are shown in Fig. B.2 for
a beam of unit length and Ai = 1.

Normalizing the coefficients Ai such that∫ `

0
ρ[φi(x)]2 dx = 1 (B.17)

the complete solution to the initial value problem is given by (B.5), (B.16), and

qi(t) = qi(0) cosωit . (B.18)

For specified boundary conditions, the solutions {φi(x)} are called eigenfunc-
tions of (B.9), and it can be shown that they are orthogonal in the sense that they
satisfy, if they are normalized according to (B.17),∫ `

0
ρ[φi(x)φj(x)] dx = δij , (B.19)

and ∫ `

0
ρ[φ′′i (x)φ′′j (x)] dx = λiδij , (B.20)

where δij is the Kronecker delta.
Next, the forced solution is found. As the solution is assumed to be on the

form (B.5), the partial differential equation (B.4) can be expressed as

∞∑
j=1

ρcs
2qj(t)φ(4)

j (x) + ρq̈j(t)φj(x) = δ(x− xu)u(t) . (B.21)
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Substituting in (B.9), i.e., φ(4)
j (x) = λj

4φj(x), and using ωj2 = cs
2λj

4, yields

∞∑
j=1

ρφj(x)
[
ωj

2qj(t) + q̈j(t)
]

= δ(x− xu)u(t) . (B.22)

Now, by using the Galerkin method, (B.22) is multiplied by φi(x) and integrated
over the domain x ∈ [0, `], which yields∫ `

0
φi(x)

∞∑
j=1

ρφj(x)
[
ωj

2qj(t) + q̈j(t)
]

dx =
∫ `

0
φi(x)δ(x− xu)u(t) dx . (B.23)

Using the orthogonality property (B.19), and the fact
∫∞
−∞ = h(x)δ(x− a) = h(a),

yields
ωi

2qi(t) + q̈i(t) = φi(xu)u(t) , (B.24)

which has the Laplace transform

qi(s) = φi(xu)
s2 + ωi2

u(s) . (B.25)

If the displacement is measured at a point xy along the beam,

y(t) = w(xy, t) , (B.26)

the transfer-function from the applied force can be found to be, using (B.5),

G(s) = y

u
(s) =

∞∑
i=1

φi(xy)φi(xu)
s2 + ωi2

. (B.27)

If the applied force, or actuator, and the measurement, or sensor, are co-located,
that is if xy = xu = x0, the transfer-function (B.27) have some special properties.
The Fourier transform is then

G(jω) =
∞∑
i=1

βi
ωi2 − ω2 . (B.28)

where βi = φi(x0)2, which is the square of the value of the shape function at
the chosen point x0. The function (B.28) is real valued and have infinitely many
singular points where

lim
ω→ωi

−
G(jω) = +∞

and
lim

ω→ωi
+
G(jω) = −∞

and since
d

dωG(jω) =
∞∑
i=1

2βiω
(ω2
i − ω2)2 > 0 ∀ ω > 0 (B.29)
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Figure B.3: The real valued Fourier transform G(jω) of the transfer-function G(s).
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Figure B.4: The gain and phase diagram for the transfer-function G(s).

the function G(jω) is monotonously increasing between each singular point. This
means that (B.27) has infinitely many poles {ωi} and zeros {zi}, and, as illustrated
in Fig. B.3, the poles and zeros are interleaved, i.e.,

ω1 < z1 < ω2 < z2 < ω3 ... (B.30)

which renders a phase angle ∠G(jω) that is always between -180◦ and 0◦, as illus-
trated in Fig. B.4.

Also, if the measurement is velocity, that is, if y(t) = ẇ(xy, t) is measured, then

168



B.2. Lumped-Parameter Structures
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Figure B.5: Clamped-free point masses, with generalized external force.

the transfer-function is

H(s) = y

u
(s) =

∞∑
i=1

sβi
s2 + ωi2

. (B.31)

This can be seen to be a passive, or positive real, transfer-function, as each term
of the sum is (marginally) stable and has relative degree one, i.e., the phase angle
∠H(jω) is always between -90◦ and 90◦, and this is therefore equivalent to a parallel
interconnection of passive systems.

If the actuator and sensor are not co-located, i.e., xy 6= xu, it may be that φi(xy)
and φi(xu) have opposite signs for certain i. In this case the transfer-function G(s)
will no longer satisfy the pole-zero interleaving property, and H(s) will no longer
be passive.

The location of the actuator and sensor is also of significance for two additional
reasons. If the actuator is located at a point xu where φi(xu) = 0, then the control
input u(t) will have no influence on the mode i. This is equivalent to having a
mode that is not controllable. Similarly, if the sensor is located at a point xy where
φi(xy) = 0, then the mode i will not be noticeable in the measurement y, which is
equivalent to having a mode that is not observable.

B.2 Lumped-Parameter Structures

It is usually not feasible to work with an infinite series on the form (B.27), and
models derived using continuum mechanics tend to reduce in accuracy for higher
order modes. Discrete lumped mass models of finite order n is often used as an
approximation, and an example of such a system is shown in Fig. B.5. Such models
can be found by, e.g., spatial discretization using finite element methods, by trun-
cating the expression in (B.27), or by parameter identification using experimental
time-series or frequency data.

The general expression for the equations of motion governing the dynamic re-
sponse of non-gyroscopic, discrete, flexible structure with a finite number of degrees
of freedom is

Mẅ +Dẇ +Kw = τ(t) , (B.32)

where M is the real positive definite and symmetric mass matrix, while D and K
are the real positive semi-definite and symmetric damping and stiffness matrices,
respectively. Here, w denotes the vector of generalized displacements, and τ(t) is a
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vector of generalized forces. With respect to the structure in Fig. B.5, the dynamics
can be described using a mass matrix on the form

M =


m1 0 0 0
0 m2 0 · · · 0
0 0 m3 0

...
. . . 0

0 0 0 0 mn

 ,

a stiffness matrix on the form

K =



k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 · · · 0

0 −k3
. . .

...
... kn−1 + kn −kn

0 0 · · · −kn kn

 ,

and a damping matrix on the form

D =



d1 + d2 −d2 0 0
−d2 d2 + d3 −d3 · · · 0

0 −d3
. . .

...
... dn−1 + dn −dn

0 0 · · · −dn dn

 .

The damping matrix is used to model energy dissipation, but dissipation mecha-
nisms are often not well known. The classical dissipation model is Rayleigh damp-
ing, in which case the damping matrix has the form

D = αM + βK . (B.33)

With regards to the structure in Fig. B.5, Rayleigh damping corresponds to the
case when α = 0.

The undamped natural frequencies {ωi} can be found from the eigenvalue prob-
lem

(M−1K − ωi2I)φi = 0 ,

where φi is the associated eigenvector to the eigenvalue ωi2. SinceM is positive def-
inite and K is positive semi-definite,M−1K is diagonalizable and has non-negative
eigenvalues. Assuming that the eigenvalues are non-repeated, an eigenvector basis
can be found as

Φ = [φ1, φ2, · · · , φn] .

It is common, however, to solve the eigenvalue problem using Cholesky decompo-
sition. Then the mass matrix is decomposed into

M = LLT , (B.34)
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where L is a lower triangular non-singular real matrix. The eigenvalue problem can
then be restated using

φi = L−Tpi (B.35)

as
(L−1KL−T − ωi2I)pi = 0 , (B.36)

where L−1KL−T is a real symmetric matrix. Assuming that the eigenvalues are
non-repeated, another eigenvector basis can be found as

P = [p1, p2, · · · , pn] ,

which in addition is orthogonal, since L−1KL−T a real symmetric matrix. The
eigenvalues are the same for M−1K and L−1KL−T, but the eigenvectors are dif-
ferent. Normalizing the eigenvectors such that

PTP = I , (B.37)

then the basis becomes orthonormal, and the matrix L−1KL−T is then diagonalized
as

P−1(L−1KL−T)P = Ω2 . (B.38)

Since Ω2 is diagonal, it has a principal square root Ω, where the undamped natural
frequencies {ωi} appear on the diagonal, i.e.,

Ω = diag{ωi} . (B.39)

The relation between the Φ and P is given by

Φ = L−TP , (B.40)

and Φ is called the modal matrix, and it is orthonormal with respect to the mass
matrix, as well as orthogonal with respect to the stiffness matrix, i.e.,

ΦTMΦ = I (B.41)

and
ΦTKΦ = Ω2 . (B.42)

If Rayleigh damping is assumed, the similarity transform defined by Φ can be used
to find the modal damping ratios {ζi} on the diagonal of the diagonal matrix

Z = 1
2
(
αΩ−1 + βΩ

)
= diag{ζi} . (B.43)

This follows from
ΦTDΦ = αI + βΩ2 = 2ZΩ . (B.44)

Now, by using the similarity transform defined by Φ, the displacement vector
w can be transformed to the modal coordinates q using

w = Φq , (B.45)
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and this puts the equations of motion on the form

q̈ + 2ZΩq̇ + Ω2q = Φ−1τ(t) . (B.46)

Taking the Laplace transform of (B.46), yields

q(s) = [Is2 + 2ZΩs+ Ω2]−1ΦTτ(s) , (B.47)

where, due to the fact that Z and Ω are diagonal matrices,

[Is2 + 2ZΩs+ Ω2]−1 = diag
{

1
s2 + 2ζiωis+ ωi2

}
. (B.48)

Now, since w = Φq, the Laplace transform of (B.32) can be expressed as

G(s) = w

τ
(s) = Φ[s2I + s2ZΩs+ Ω2]−1ΦT , (B.49)

which due to the diagonal matrix (B.48) can again be written as

G(s) =
n∑
i=1

φiφi
T

s2 + 2ζiωis+ ωi2
. (B.50)

This is analogous to (B.27) (for the case when there is no damping), i.e., the
system is a parallel interconnection of independent mass-spring-damper systems.
The index into the transfer transfer matrix, e.g., Gkl(s), expresses an input-output
relationship, determining the response of degree of freedom k to a force applied at
degree of freedom l. For a co-located actuator and sensor pair, k = l. With reference
to the structure in Fig. B.5, there is only one force working on the structure, i.e.,

τ = Bu = [1, 0, 0, · · · , 0]T u , (B.51)

and assuming that there is a co-located sensor, the measured displacement will be

y = w1 = Cw = BTw . (B.52)

The corresponding transfer-function is then given by G11(s), or

y

u
(s) = CG(s)B = G11(s) =

n∑
i=1

βi
s2 + 2ζiωis+ ωi2

, (B.53)

where βi = φi(k)φi(l) = φi(1)2. The transfer-functions for discrete lumped mass
models for co-located actuator and sensor pairs will have the same properties as
for the distributed mass case in the previous section.

In many practical situations, if the model has been obtained using the finite
element method, or by solving the continuous partial differential equations, the
model is often too large. It is then customary to truncate the model by introducing
an approximation to the higher order modes by a static feed-through term R, called
a residual mode. That is, the transfer-function is approximated by

y

u
(s) ≈

m∑
i=1

βi
s2 + 2ζiωis+ ωi2

+R , (B.54)
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where

R =
n∑

i=m+1

βi
ωi2

, (B.55)

which can be seen to be the static response, or DC-response, of the higher order
modes. The feed-through term R causes the transfer matrix to become not strictly
proper, and typically improves the accuracy of the predicted zero locations.

B.3 Some Facts About Second-Order Systems

The dynamics of many nanopositioning devices is sufficiently described by a single
mass-spring-damper system. As such, it is of interest to summarize some facts
about such systems, i.e., second-order differential equations.

The dynamics of a non-autonomous mass-spring-damper system is described
by the second-order system

mẅ + cẇ + kw = f(t) , (B.56)

where k is the spring constant, c is the damping coefficient, and m is the mass.
For this system, the undamped natural (angular) frequency ω0 and damping ratio
ζ are defined as

ω0 =
√
k

m
and ζ = c

2
√
mk

,

thus, with β0 = 1/m, (B.56) can be written

ẅ + 2ζω0ẇ + ω0
2w = β0f(t) . (B.57)

For (B.57), the damped natural frequency is found as

ωd = ω0
√

1− ζ2 . (B.58)

When u(t) = 0, the system is autonomous. The damped natural frequency is the
frequency an autonomous underdamped system (ζ < 1) will oscillate with given a
set of initial values (x0, ẋ0) 6= (0, 0).

The resonant frequency for (B.57) is

ωp = ω0
√

1− 2ζ2 . (B.59)

The resonant frequency is the frequency at which the non-autonomous system will
have the maximum amplitude response. The amplitude response will only have a
peak when 0 ≤ ζ < 1/

√
2.

The Laplace transform of (B.57) is

G(s) = β0

s2 + 2ζω0s+ ω2
0
. (B.60)

The amplitude response is found from the Fourier transform (s = jω) as

|G(jω)| = β0√
(ω02 − ω2)2 + (2ζω0ω)2

= β0√
∆(ω)

. (B.61)
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Differentiating (B.61) with respect to the angular frequency ω yields

d
dω |G(jω)| = −1

2∆(ω)−3/2∆′(ω) ,

where
∆′(ω) = 4ω(ω2 − ω0

2(1− 2ζ2)) .

Thus, it should be straight forward to verify that

arg max
ω∈R+

|G(jω)| = ωp ,

if 0 < ζ < 1/
√

2, and if ζ ≥ 1/
√

2,

arg max
ω∈R+

|G(jω)| = 0 .

For 0 < ζ < 1/
√

2 the amplitude response at ω = ωp is

|G(jωp)| =
β0

2ζω02
√

1− ζ2
. (B.62)
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Appendix C

Hysteresis & Creep Models

This Appendix includes a short introduction to two common frameworks for mod-
eling hysteresis, as well as a brief description of two creep models that occur fre-
quently in the literature.

The first framework for modeling hysteresis is the class of models that can
be put on the form of the Duhem model. One such model, called the Coleman-
Hodgdon model, is discussed very briefly, as this is the model used to develop the
hysteresis compensation scheme in Chapter 2. The other framework is the Preisach
model, which has many features in common with the Prandtl-Ishlinskii model. The
Preisach model is discussed in some detail, in order to illustrate the differences in
how it operates and how it is implemented, compared to the Coleman-Hodgdon
model.

This Appendix is collated from material found in [45, 46, 53, 58, 114, 135, 146,
151, 218].

C.1 Hysteresis

The word hysteresis is derived from Greek, and means “to lag behind”. A common
definition is that it is a rate-independent, non-linear, multi-branch input-output
map, where the branching occurs at successive extrema of the input. In many
physical systems this is seen as the output lagging behind the input between input
extrema, generating loops in the input-output map. The term rate-independent
means that the branches of such hysteresis non-linearities are determined only by
past extremum values, and not the rate of the input variations. Hysteresis is a
dynamical relationship, as the output y(t0) at any instant t0 depends on both the
current value of the input u(t0) and an internal memory variable. Internal memory
implies that for equal instantaneous inputs u(t0) = u(t1), different values of the
output y(t0) 6= y(t1) can occur, depending on the state of the internal memory.
Due to rate-independence, the input-output map is invariant with respect to time
scaling. This means that the input-output relationship y = Hu generates the same
input-output map for u(t) and u(at + b) for any a, b ∈ R. This is different from
many other types of dynamical systems, which also exhibit a lagging effect, but
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where the lagging effect is dependent on the rate of input variations. For a linear
dynamical system, this would be called phase-lag.

Hysteresis occurs in almost all ferromagnetic and ferroelectric materials. It also
occurs in other areas, and examples include systems with friction, elastic and su-
perconductive materials, adsorption in porous media, and economics.

C.2 The Duhem Model

The Duhem model for hysteresis dates from 1897, in a work by Pierre Duhem, and
focusses on the fact that the output can only change its character when the input
changes direction. This model uses a phenomenological approach, postulating an
integral operator or differential equation to model a hysteretic relation. A Duhem
model is given by the general differential equation

η̇ = fI(u, η)(u̇)+ + fD(u, η)(u̇)−, η(0) = η0 (C.1)

where the expressions (u̇)+ and (u̇)− are interpreted using the definitions

(u̇)+ := |u̇|+ u̇

2

(u̇)− := |u̇| − u̇2
and which satisfy

(u̇)+ + (u̇)− = |u̇| .
This means that (u̇)+ = u̇, u̇ > 0, and (u̇)+ = 0, u̇ < 0. Conversely, (u̇)− = 0, u̇ > 0,
and (u̇)− = u̇, u̇ < 0. The function fI(u, η) then determines the output when
the input is increasing, and fD(u, η) when the input is decreasing. Models on
the form (C.1) are useful as phenomenological models because the functions and
parameters can be fine-tuned to match experimental results in a given situation.

C.2.1 The Coleman-Hodgdon Model
Coleman and Hodgdon have investigated the Duhem model for ferromagnetic hys-
teresis, but the model has also been used to describe ferroelectric hysteresis. The
Coleman-Hodgdon model, as well as some analysis of the model, is presented in
Chapter 2. The form of the model studied in Chapter 2 is best suited to describe
hysteretic responses that are symmetric, and for cases where the input signals vary
monotonously between two extremal points.

The model is given as

η̇ = βu̇− αη|u̇|+ γ|u̇|u , η(0) = η0 . (C.2)

Thus,
fI(u, η) = β − αη + γu and fD(u, η) = β + αη − γu .

Two salient observations from the analysis in Chapter 2, is that the model
defines branches, and the branching occurs every time the input changes direction.
An example of the behavior for the parameter values

α = 0.06 , β = 0.5 , γ = 0.02
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Figure C.1: Delayed relay operator.

using a sinusoidal input, and u0 = um = −30 for the increasing branch, and
u0 = uM = 30 for the decreasing branch can be seen in Fig. C.5. Note that
the parameter values are chosen somewhat arbitrarily, and does not satisfy the
thermodynamical conditions from Section 2.2.1.

C.3 The Preisach Model

The Preisach model is also a phenomenological model of hysteresis, but can be given
a physical interpretation in terms of Weiss domains. The Preisach model is perhaps
the most powerful scalar model of hysteresis among those that are known so far.
This model was proposed by the physicist Ferenc Preisach in 1935 to represent
scalar ferromagnetism, but has also seen widespread use to model other hysteresis
phenomena.

The basis of the model is the delayed relay operator, Rα,β which is defined for
an arbitrary continuous input u for the initial state at t = 0 as

r(0) = Rα,βu(0) =

 −1 if u(0) ≤ β
ξ0 if β < u(0) < α
1 if u(0) ≥ α

,

where ξ0 ∈ {−1, 1} is the initial state of the relay, and for t ∈ (0, τ ] as

r(t) = Rα,βu(t) =

 −1 if t1 ∈ (0, τ ] s.t. u(t1) < α, u(t) ≤ β,∀ t ∈ (t1, τ ]
r(0) if β < u(t) < α,∀ t ∈ (0, τ ]

1 if t1 ∈ (0, τ ] s.t. u(t1) > β, u(t) ≥ α,∀ t ∈ (t1, τ ]
.

The delayed relay operator is illustrated in Fig. C.1. The output r behaves “lazily”,
in the sense that the relay output remains unchanged, as long as the input-output
pair {u, y} belongs to the union of the bold lines in Fig. C.1. The relay has memory
in the form of the state ξ ∈ {−1, 1}, which determines the output of the relay in
addition to the input u.
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u(t) w(t)

Figure C.2: Preisach model.

If an infinite set of delayed relay operators is considered, assuming α ≥ β, then
the Preisach hysteresis model characterizes the output η of a hysteretic system as
the superposition of weighted relays as

η(t) = Hu(t) =
∫∫

α≥β
µ(α, β)Rα,βu(t) dα dβ , (C.3)

where µ(α, β) is a weight function, associated with a relay element Rα,β . Eq. (C.3)
is illustrated in Fig. C.2. The relay elements represents hysteresis non-linearities
with local memories, and the memory is represented by the state ξ ∈ {−1, 1}.
This can be interpreted as modeling the switching behavior of individual (e.g.,
magnetic or electric) dipoles within a material. The weight function µ(α, β) ≥ 0 is
an integrable function defined for the half-plane

S = {(α, β) : α ≥ β, α ≤ αm, β ≤ βm} .

The set S is called the Preisach plane, while µ(α, β) is the Preisach density function.
For every point (α, β) of S, there exists a unique relay Rα,β .

Assume µ(α, β) has support S, and define, for a given continuous piecewise
monotone input u(·) and time t,

S+(t) = {(α, β) ∈ S : Rα,βu(t) = 1} ,
S−(t) = {(α, β) ∈ S : Rα,βu(t) = −1}.

Then the boundary L(t) = S+(t)∩S−(t), called the Preisach state, is a descending
“staircase” with vertices at values of α or β corresponding to a subset of previous
local maxima or minima of the input u(·), see Fig. C.3. The final link of L(t) is
attached to α = β at (u(t), u(t)) by a vertical segment when u(·) is decreasing at
t, and by a horizontal segment when u(·) is increasing at t. Eg. (C.3) can therefore
be reformulated as

η(t) =
∫∫

S+(t)
µ(α, β)u(t) dα dβ −

∫∫
S−(t)

µ(α, β)u(t) dα dβ .

The operator H is characterized to a large extent by the evolution in time of S+(t),
S+(t) and the measure µ(α, β).
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Figure C.3: Preisach plane.

The Presiach model has two salient properties, which are the wiping out property
and the congruence property. The wiping out property can be formulated as when-
ever u(t) attains a local maximum, all vertices on L(t) with “up”-switching values
α less than this maximum are wiped out. Conversely, each local minimum of u(·)
wipes out all vertices on L(t) with “up”-switching values β greater than this min-
imum. So only the alternating dominant input extrema are stored by the Preisach
model, other input extrema are wiped out. The congruence property means that all
primitive hysteresis loops corresponding to the same extreme values of input are
congruent. If u(t) varies monotonously between two consecutive extremal values
um and uM , then for all initial states, the resulting loops are congruent. That is,
they have the same shape.

To implement the Preisach model numerically, the Preisach plane can be dis-
cretized. Perhaps the simplest method for doing this, is to partition S into sub-
regions as shown in Fig. C.4. Within each sub-region, the relays are assumed to
switch, up (+1) or down (-1), simultaneously depending on the applied input u(·),
and the weighting values µ associated with all the relays in each sub-region are the
same. As a result, the Preisach model (C.3) takes the form

η(t) =
nq∑
i=1

µiAiRiu(t) + η0 , (C.4)

where nq represents the total number of sub-regions, µi is the weighting value for
the relay Ri in the ith sub-region of area Ai, and η0 is the bulk contribution to
the output from sub-regions outside of the Preisach plane. If the Preisach plane
has been partitioned into nh levels uniformly along the β and α axes, the total
number of sub-regions is nq = (nh(nh + 1))/2. The number of relays that needs to
be implemented is therefore nq.

Assuming the possible (α, β) pairs are scaled to accommodate maximum and
minimum input values, um and uM , i.e., αm ≥ uM and βm ≤ um, the weights {µi}
can be found by sampling the input u and output η of a hysteretic system, in order
to obtain a primitive hysteresis loop. The primitive hysteresis loop is found by
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Figure C.4: Preisach plane partitioning for nh = 5 levels.

cycling the input monotonously from a minimum um to a maximum uM and back
to the minimum uM . Since the Preisach model might not capture all observed
effects in a real hysteretic system, this is best done under stationary conditions
using a periodic input signal. The resulting time-series {η(tk)} and {u(tk)}, of
length nt, is then used to construct an over-determined system of linear equations
on the form

η(t1)
η(t2)
...

η(tnt
)

 =


A1R1u(t1) A2R2u(t1) . . . AqRqu(t1)
A1R1u(t2) A2R2u(t2) . . . AqRqu(t2)

...
A1R1u(tnt

) A2R2u(tnt
) . . . AqRqu(tnt

)



µ1
µ2
...
µnq

+ η0 . (C.5)

This can be put on the more compact form

cη = Aubµ + η0 , (C.6)

where cη is nt × 1, Au is nt × nq, and bµ is nq × 1. The least-squares fit for
bµ = [µ1, µ2, ..., µnq

]T is then found using, e.g., the pseudo-inverse as

bµ = Au
+(cη − η0) . (C.7)

The input-output map generated by the discrete Preisach model fitted to a
hysteresis loop generated using the Coleman-Hodgdon model (C.2) can be seen in
Fig. C.5. The smooth path is generated by the Coleman-Hodgdon model, and the
staircase formed path is generated by the discrete Preisach model. Here nh = 50
levels were used, translating to nq = 1275 relays, thus, the Preisach model becomes
orders of magnitude more computationally demanding than the Coleman-Hogdon
model for reasonable model accuracy.
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Figure C.5: Input-output map generated by the Coleman-Hogdon model and the
discrete Preisach model.

C.4 Creep Models

Piezoelectric actuators exhibit a rate-dependent non-linearity in addition to the
rate-independent hysteresis. This effects is known as creep, and can typically be
observed as a slow change, or creep, in the displacement measurement after a
constant voltage is applied to the actuator. Experimental data to illustrate the
effect are show in Fig. C.6. The effect can also be observed as a slow lengthening or
shortening if the actuator is mechanically loaded by a tensile or compressive force,
respectively.

The effect it mainly a problem for open-loop, or feed-forward, control. Feed-
forward control is common in older scanning probe microscopy instruments, and
when noise amplification due to feedback is unacceptable.

There are two models for creep that commonly appear in the literature, both
are phenomenological. The first model is a non-linear model, which is

w(t) = w0

(
1 + γ log t

t0

)
,

where t0 is the time at which some constant stimuli is applied, w0 is the displace-
ment at that time, and the constant γ is used to fit the model to experimental
data. The model is not very convenient to use for arbitrary excitation signals, due
to the need to handle the initial condition and since limz→0 log(z) is undefined.
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Figure C.6: Piezoelectric actuator creep response to a voltage square-wave.

The second model is more convenient with regards to arbitrary input sig-
nals, and consists of a superposition of linear first-order low-pass filters with a
feedthrough term, i.e.,

Gc(s) = 1
k0

+
m∑
i=1

1
dis+ ki

.

This can be considered as a series of springs and dampers, where {k0, ki} are the
spring constants and {di} are the damping constants. The first spring constant k0
provides the initial static displacement, and the remaining spring-damper elements
models the low-frequency creep motion. One advantage of this model is that it
is straightforward find the inverse G−1

c (s), and the feed-forward actuation signal
can be found for sufficiently smooth reference signals. Another advantage is that
it can be combined with a model of the vibrational dynamics of the system and be
explicitly accounted for during control design.
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Appendix D

Online Parameter Identification
Schemes

The parameter identification schemes used in Chapters 2, 5, and 6 are summarized
below. The presentation provides some background and technical details, but is
aimed at explaining how the schemes were implemented. This Appendix is collated
from material entirely found in [33, 37, 62, 88, 89, 91, 102, 111, 143, 180, 181, 204,
207].

D.1 Recursive Least-Squares Method

The least-squares method is perhaps the best known method for parameter iden-
tification. It can be used in recursive and non-recursive form. It works by fitting
experimental data to a given model by minimizing the sum of the squares of the
difference between the computed response from the model and the actual measured
response. Noise and disturbances in the measured signal is then expected to have
less effect on the accuracy of the resulting parameter estimates.

The starting point is a model of the system, assuming the measured response
z can be described as a vector of model parameters θ appearing affinely with a
vector of known signals, ϕ, called the regressor,

z = θTϕ . (D.1)

The objective of the method is to find a good estimate of the vector of parameter
values, θ̂. By computing the estimated response

ẑ = θ̂Tϕ

the estimate error ε can be formed as

ε = z − ẑ
m2 (D.2)

where m2 is a normalization signal defined below in (D.4). The (modified) least-
squares estimate of the parameters is obtained by minimizing the cost-function

J(θ̂) = 1
2

∫ t

0
e−κf (t−τ)ε2m2 dτ + 1

2e
−κf t(θ̂ − θ̂0)TQ0(θ̂ − θ̂0) , (D.3)

183



D. Online Parameter Identification Schemes

where a forgetting factor κf > 0 is introduced to discount past data in order to
achieve exponential convergence. The matrix Q0 is used to weigh the significance
of the initial parameter estimates, θ̂0, in minimizing the cost-function.

The above expressions can be used to derive both the recursive and the non-
recursive form of the least-squares method. The recursive form is of interest, as it
is amenable to online implementation. The parameter update law is then given by

˙̂
θ = Pεϕ , θ(0) = θ0

The matrix P is called the covariance matrix, and can be found by computing

Ṗ =
{
κfP − PϕϕTP

m2 , if ‖P‖ ≤ R0
0 otherwise

, P (0) = Q−1
0 .

The initial covariance matrix must be symmetric and positive definite, P (0) =
Q−1

0 = Q−T
0 > 0. By using the forgetting factor κf when updating the covariance

P , there is a possibility for P to grow without bound. To avoid this, some norm
on P , ‖P‖, is not allowed to grow larger than R0, by stopping the update of
P by setting Ṗ = 0. The initial covariance matrix should therefore also satisfy
‖P (0)‖ ≤ R0.

The normalization signal m2 can be constructed in various ways. Here it is
taken to be

m2 = 1 + ns
2, ns

2 = ϕTPϕ . (D.4)

Normalization ensures boundedness of the signals used in the identification scheme.
This method is referred to as modified least-squares with forgetting factor. It has

the properties ε, εns, θ̂, ˙̂
θ, P ∈ L∞ and ε, εns, ˙̂

θ ∈ L2. In addition it has the formal
property that if the regressor ϕ is persistently exciting (PE), then θ̂ converges
exponentially to θ.

It should also be noted the to avoid pure numerical differentiation when esti-
mating parameters of an linear differential equation of degree n, the output z and
regressor vector ϕ should be filtered by a filter with relative degree nf ? ≥ n.

D.1.1 Persistency of Excitation

A piecewise continuous signal vector ϕ : R+ → Rn is said to be persistently exciting
(PE) in Rn with a level of excitation α0 > 0 if there exist constants α1, T0 > 0
such that

α1I ≥
1
T0

∫ t+T0

t

ϕϕT dτ ≥ α0I, ∀t ≥ 0 .

For linear single-input-single-output (SISO) models, a PE regressor vector is
obtained if the input signal u is sufficiently rich. In brief, an input signal is suf-
ficiently rich if it contains more frequency components than half the number of
unknown parameters in the model.
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D.2. Integral Adaptive Law

D.2 Integral Adaptive Law

The gradient method based on the integral cost function (integral adaptive law)
behaves similarly to the least-squares method, but with the added benefit of a user
selectable convergence rate, and it eliminates the need for the initial covariance
matrix Q−1

0 .
The method recursively minimizes the cost-function

J(θ̂) = 1
2

∫ t

0
e−κf (t−τ)ε2m2 dτ , (D.5)

which is identical to (D.3), except for the term including the inverse of the initial
covariance matrix Q−1

0 . Eq. (D.5) includes the estimate error ε as defined in (D.2),
the normalization signal m2 defined below in (D.6), and a forgetting factor κf > 0
to discount past data in order to achieve exponential convergence. Applying the
gradient method, ˙̂

θ = −Γ∇J(θ̂), to find the minimum of (D.5) results in the
recursive expressions

˙̂
θ = −Γ(Rθ̂ +Q) , θ̂(0) = θ̂0

Ṙ = −κfR+ ϕϕT

m2 , R(0) = 0

Q̇ = −κfQ−
zϕ

m2 , Q(0) = 0

where Γ = ΓT > 0 is the adaptive gain, and the normalization signal m2 is con-
structed as

m2 = 1 + ns
2 , ns

2 = α0ϕ
Tϕ , α0 > 0 . (D.6)

This method has the properties ε, εns, θ̂, ˙̂
θ, P ∈ L∞, ε, εns, ˙̂

θ ∈ L2, and

lim
t→∞

| ˙̂θ| = 0 .

The method has the formal property that if the regressor ϕ is persistently exciting
(PE), and ns, ϕ ∈ L∞, then θ̂ will converge exponentially to θ, and for Γ = γ0I,
the convergence rate can be made arbitrarily large by increasing the value of γ0.

D.3 Extended Kalman Filter

The extended Kalman filter is a popular method for recursive parameter identifi-
cation. It is based on a weighted least-squares criterion, but unlike the recursive
least-squares method and the integral adaptive law, both the parameters and the
states of the system are estimated.

D.3.1 Continuous Extended Kalman Filter
A general non-linear system is described by

ẋ = f(x, u) + w
y = h(x) + v

(D.7)
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where x ∈ Rn are the states, y ∈ Rm are the measurements, u ∈ Rl is the input,
and w and v are zero-mean Gaussian white noise processes, described uniquely by
the process noise covariance Qδ(t), and the measurement noise covariance Rδ(t),
respectively:

E[w(t)w(τ)T] = Qδ(t− τ)
E[v(t)v(τ)T] = Rδ(t− τ)

The extended Kalman filter (EKF) is obtained when the states of the system (D.7)
are estimated by linearizing about state trajectory of the filter. Linearization is
done by computing the Jacobians

F = ∂f

∂x

∣∣∣∣
x̂

, H = ∂h

∂x

∣∣∣∣
x̂

.

Now the state estimates x̂ can be computed by solving

x̂(0) = E[x(0)]
P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T]

˙̂x = f(x̂, u) +K[y − h(x̂)]
K = PHTR−1

Ṗ = FP + PFT +Q−KHP ,

where P is the error covariance, and K is the Kalman gain. The above recursion
is equivalent to minimizing the cost function

J(x̂) = 1
2(x̂− x̂(0))TP (0)−1(x̂− x̂(0))

+ 1
2

∫ t

0

(
(y − h(x̂))TR−1(y − h(x̂)) + wTQ−1w

)
dτ

subject to ẋ = f(x, u) +w. To summarize; large measurement noise covariance pa-
rameters will penalize the use of measurements, and large process noise covariance
parameters will penalize the use of predicted states from the system model. P (0)−1

has the same effect as Q0 in (D.3).
The extended Kalman filter can be used for parameter identification by mod-

eling unknown parameters as Wiener processes. Consider the linear system

ẋ = A(θ)x+B(θ)u+ w

y = C(θ)x+ v

with unknown parameters θ ∈ Rp. By augmenting the state vector to include
the unknown parameters, χT = [xT, θT], the non-linear system χ̇ = f(χ, u) + w,
y = h(χ) + v is obtained, where

f(χ, u) =
[
A(θ)x+B(θ)u

0

]
h(χ) = C(θ)x .
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The Jacobians F and H for this system are found as

F =
[
A(θ) ∂

∂θ [A(θ)x+B(θ)u]
0 0

]
x̂,θ̂

,

H =
[
C(θ) ∂

∂θ [C(θ)x]
]
x̂,θ̂

.

D.3.2 Hybrid Extended Kalman Filter
When using a numerical integration scheme for solving continuous time differential
equations, a smaller step size should provide more accurate results. Applying a
continuous-discrete, or hybrid, version of the EKF (HEKF) might therefore improve
the accuracy of the estimates, since the continuous part of the method can be run
at a higher rate than the sampling rate.

The system response (D.7) is now modified to the hybrid system

ẋ = f(x, uk) + w
yk = h(xk) + vk

where yk is sampled sequence of measurements, uk is the input sequence, and vk
is a Gaussian white noise sequence, and the noise properties are given by

E[w(t)w(τ)T] = Qδ(t− τ)
E[vkvT

i ] = Rdδki

where Rd ≈ R/Ts, and Ts is the sampling period. Using the initial values

x̂0 = E[x(0)] and P0 = E[(x(0)− x̂0)(x(0)− x̂0)T],

the state estimates x̂k for k = 1, 2, 3, ... are computed by the hybrid EKF in two
parts.

(1) The a priori state estimates and error covariance, from time-step k − 1 to
k− (i.e., for the sampling period Ts), are found by solving

ẋ = f(x, uk−1)
Ṗ = FP + PFT +Q,

where the initial values are given by x̂(0) = x̂k−1 and P (0) = Pk−1.
(2) Given the a priori estimates x̂−k = x̂(kTs) and error covariance P−k = P (kTs),

the a posteriori state estimates x̂k and error covariance Pk are found by computing:

Kk = P−k H
T(HP−k H

T +Rd)−1

x̂k = x̂−k +Kk(yk − h(x̂−k ))
Pk = (I −KkH)P−k (I −KkH) +KkRdK

T
k

D.3.3 Convergence Properties for the Extended Kalman Filter
For the extended Kalman filter (EKF) there does not exist any general proof of
convergence. The EKF can provide good performance, but the convergence prop-
erties for the estimates are susceptible to the choice of initial values and covariance
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tuning, as well as the input signal. As in the case for the recursive least-squares
method and the integral adaptive law, the input signal used when applying the
EKF must provide sufficient excitation in some sense for the state and parameter
estimates to converge. In many practical applications, this happens for signals that
are PE.
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Appendix E

Model Reference Adaptive Control
& Model Reference Control

A brief and somewhat simplified summary of the model reference adaptive con-
trol (MRAC) and the model reference control (MRC) schemes is presented. The
summary is entirely based on material from [111].

E.1 Model Reference Adaptive Control

The objective for the model reference adaptive control (MRAC) scheme is to output
measurement yp of a plant with uncertain parameters perfectly track the output
of a reference model ym. The scheme consists of a control law and an adaptive
law, where the adaptive law is used to learn the parameter values of the uncertain
plant model. The convergence of the plant parameter estimates ensures output
tracking. The control law and an adaptive law can be designed independently and
then combined using the certainty equivalence principle. The adaptive law can for
example be the recursive least-squares method as presented Section D.1 or the
gradient method based on the integral cost function as presented Section D.2.

An MRAC scheme can generally be implemented in direct and indirect form.
The main difference is that for the direct form, the control law parameters are
estimated directly, whereas for the indirect form, the plant parameters are esti-
mated and subsequently mapped to the control parameters. If only some plant
parameters are unknown, the indirect MRAC typically reduces the complexity and
computational requirements of the parameter identification scheme significantly.

The plant model can be expressed as

yp
up

(s) = Gp(s) = kp
Zp(s)
Rp(s)

.

It is assumed that Rp(s) and Zp(s) are monic polynomials. The polynomial Zp(s) is
also Hurwitz, and is of degree mp. In addition, the degree np of Rp(s), the relative
degree n? = np − mp of Gp(s), and the sign of the high-frequency gain kp are
known.
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Λ(s)

α(s)
Λ(s)

θ1
T

c0 Gp(s)

θ2
T

up

ypr

Figure E.1: The MRAC control law structure.

The reference model

ym
r

(s) = Wm(s) = km
Zm(s)
Rm(s)

consists of the monic Hurwitz polynomials Zm(s) and Rm(s) of degrees qm and
pm, respectively, where pm = np, and the relative degree nm? = pm − qm = n?.

The control law, as shown in Fig. E.1, is given by

up = θ1
T α(s)

Λ(s)up + θ2
T α(s)

Λ(s)yp + θ3yp + c0r (E.1)

where
α(s) = [snp−2, snp−3, ..., s, 1]T for np ≥ 2
α(s) = 0 for np = 1 (E.2)

and
Λ(s) = Λ0(s)Zm(s) (E.3)

is a monic and Hurwitz polynomial of degree np − 1. Thus, Λ0(s) is a monic and
Hurwitz polynomial of degree n0 = np − 1− qm.

By using the control law structure in Fig. E.1 it is possible to generate the
required signals using the scalar products of the time varying parameters in the
vectors θ1 and θ2 and the signal vectors generated by the two linear time invariant
filters given by α(s)

Λ(s) . This greatly simplifies the implementation and the stability
analysis of the MRAC scheme.

The control law parameter vector is

θ̄c =
[
θ1

T, θ2
T, θ3, c0

]T
and should be chosen such that the closed-loop complementary sensitivity function
matches the reference model, i.e.,

yp
r

(s) = T (s) = Wm(s) = ym
r

(s) .
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Figure E.2: General control structure.

With the above control law, the closed-loop complementary sensitivity is given by

T (s) = c0kpZp(s)Λ(s)2

Λ(s)
[(

Λ(s)− θ1
Tα(s)

)
Rp(s)− kpZp(s)

(
θ2

Tα(s) + θ3Λ(s)
)]

= km
Zm(s)
Rm(s) . (E.4)

By choosing
c0 = km

kp
, (E.5)

eq. (E.4) can be written as the Bézout identity

θ1
Tα(s)Rp(s) + kpZp(s)

(
θ2

Tα(s) + θ3Λ(s)
)

= Λ(s)Rp(s)− Zp(s)Λ0(s)Rm(s) ,

which again can be expressed as

Sθc = p , (E.6)

where θc = [θ1
T, θ2

T, θ3]T and S is a (2np− 1) × (2np− 1) Sylvester matrix that
depends on the coefficients of the polynomials Rp(s), kpZp(s) and Λ(s), and p is a
(2np − 1) vector with the coefficients of the polynomial

Λ(s)Rp(s)− Zp(s)Λ0(s)Rm(s) .

For the indirect scheme, the adaptive law is used to learn the uncertain plant
parameters θ of Gp(s). For a specific choice of a reference model Wm(s) and an
output filter 1/Λ(s), the control law parameters θ̄c are determined by using the
parameter mapping θ → θ̄c defined by (E.5) and (E.6).

E.2 Model Reference Control

The model reference control (MRC) scheme is equivalent to the MRAC scheme,
excluding the adaptive law. The MRC objective is also to make the plant output
yp perfectly track the output of a reference model ym, but it is assumed that the
plant parameters are constant and known. This makes is possible to dispense of
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the structure in Fig. E.1, and to use linear time invariant filters exclusively. The
control law can then be expressed in the form of the general control structure in
Fig. E.2.

The MRC control law is therefore given by

up = C̄(s)(r − F̄ (s)yp) ,

where C̄(s) is a feed-forward filter given as

C̄(s) = c?0Λ(s)
Λ(s)− θ?1

Tα(s)
, (E.7)

and F̄ (s) is a feedback filter given as

F̄ (s) = −θ
?
2

Tα(s) + θ?3Λ(s)
c?0Λ(s) . (E.8)

This can be seen from (E.4), since

c?0Λ(s)kpZp(s)(
Λ(s)− θ?1

Tα(s)
)
Rp − kpZp(s)

(
θ?2

Tα(s) + θ?3Λ(s)
)

=
c?

0Λ(s)
Λ(s)−θ?

1
Tα(s)kp

Zp(s)
Rp(s)

1 + c?
0Λ(s)

Λ(s)−θ?
1

Tα(s)

(
− θ

?
2

Tα(s)+θ?
3 Λ(s)

c?
0Λ(s)

)
kp

Zp(s)
Rp(s)

= C̄(s)Gp(s)
1 + C̄(s)F̄ (s)Gp(s)

= T (s) .

The polynomials α(s) and Λ(s) are still as defined in (E.2) and (E.3), and the
feed-forward and feedback filters are determined by the known plant parameters
θ? of Gp(s), the chosen reference model Wm(s) and output filter 1/Λ(s), since the
control law parameters θ̄?c are determined by using the parameter mapping θ? → θ̄?c
defined by (E.5) and (E.6).
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