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Abstract: A systematic analysis of the mobility of closed chain manipulators with passive joints
is given. The main observation presented in this paper is that the mobility of the manipulator,
considering the passive joints only, should always be zero. Further, for the manipulator to be
fault tolerant, the mobility should remain zero when actuator failure occurs for an arbitrary
joint. We present a simple approach to the problem of finding the smallest set of active joints
for which the manipulator remains equilibrated with respect to free swinging joint failure in any
joint.

1. INTRODUCTION

This paper discusses the effect that passive joints have on
the mobility of parallel manipulators. The main motivation
and also the main example used throughout the paper
is joint failure. We study the ability of the mechanism
to remain equilibrated when free-swinging joint failure
(FSJF) occurs, see Tinós et al. [2006].

We will denote a manipulator equilibrated if it can resist a
wrench in an arbitrary direction, either through kinematic
constraints or through actuator torques. We obtain this if
the manipulator, considering the passive joints only, has
mobility equal to zero, i.e. we do not want the passive
joints to allow any motion when the active joints are
locked. If this property is satisfied this is the same as
guaranteeing that manipulator does not have an unstable
singularity, following the classification in Matone and Roth
[2006].

For non-overconstrained mechanisms, i.e. there are no re-
dundant constraints, we can apply the well known Grübler
formula. The active joints can be chosen arbitrarily as
long as the manipulator remains non-overconstrained and
the self-motion is considered. For overconstrained mecha-
nisms, there are many different approaches to determine
mobility. In Dai et al. [2006] the mobility of the mechanism
is found from the constraint space. The constraints of
the system are found systematically and the redundant
constraints are identified. The mobility is then found
by adding the degrees of freedom represented by these
redundant constraints to the Grübler formula for non-
overconstrained mechanisms. This approach illustrates
well the effect of redundant constraints in the mechanism.

The mobility can also be found by the motion space as
in Rico et al. [2003] and Rico et al. [2006]. The degree of
freedom of the motion of the end effector is first found.
Then the degree of freedom of the self-motion manifold
of each chain is added. By this approach the redundant
constraints are not found directly. This approach also gives
valuable in-sight on where to place redundant actuators in
the mechanism.

A systematic and rigorous analysis of the mobility of
closed chain mechanisms based on the theory of twists is
presented. The mobility is used to determine the minimum
set of active joints needed for the manipulator to be
equilibrated and fault tolerant. In From and Gravdahl
[2008] we present several examples of how to apply the
theory presented to different mechanisms.

2. RIGID BODY MOTION

This section gives the background of mathematical mod-
elling of rigid body motion. For a detailed overview of the
topic, the reader is referred to Murray et al. [1994] and
Meng et al. [2007].

We will use the special Euclidean group SE(3) to represent
the configuration space of a rigid body. In addition to its
group structure, SE(3) is a differentiable manifold, and is
what is known as a Lie group. SE(3) is thus a matrix Lie
group and can be written by homogeneous coordinates

SE(3) =

{[

R p
0 1

]

| p ∈ R
3, R ∈ SO(3)

}

(1)

where SO(3) is the 3-dimensional special orthogonal
group. An element g ∈ SE(3) represents a rotation and
displacement of a rigid body relative to a reference config-
uration. The manifold structure of SE(3) is given by

Φ : SO(3) n R
3 → SE(3) : (R, p) 7→

[

R p
0 1

]

. (2)

Associated with every Lie group G is its Lie algebra g

which is defined as the tangent space of G at the identity
e and is written as g , TeG. A vector space V is a Lie
algebra if there exists a bilinear operation given by the
matrix commutator [v1, v2] = v1v2−v2v1. The Lie algebra
se(3) of SE(3) consist of all 4 × 4 matrices

se(3) =

[

ω̂ v
0 0

]

(3)

where v ∈ R
3 and ω̂ is the skew-symmetric matrix

representation of ω ∈ R
3



ω̂ =

[

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]

∈ so(3). (4)

An element of se(3) can be represented by the twist

coordinates ξ =
[

vT ωT
]T

∈ R
6 which can be identified

with the twist ξ̂ ∈ se(3) by the map

∧ : R
6 → se(3) : ξ =

[

v
ω

]

7→ ξ̂ =

[

ω̂ v
0 0

]

∈ se(3). (5)

The exponential map

exp : se(3) → SE(3) : ξ̂ 7→ eξ̂ (6)

defines a local diffeomorphism taking the zero vector of

se(3) to the identity element of SE(3). Physically eθξ̂,
θ ∈ R corresponds to a screw motion along the axis
of a fixed ξ. Denote by Lg and Rg the left and right
translation map, respectively. The differential Lg∗ of Lg

defines the body velocity and the differential Rg∗ of Rg

defines spatial 1 velocity of a rigid body. Then for a
trajectory g(t) ∈ SE(3), t ∈ (−ε, ε), the body velocity of
the rigid body is given by

V̂ b = Lg(t)−1∗ · ġ(t) =

[

RTṘ RTṗ
0 0

]

=

[

ω̂ v
0 0

]

(7)

while the spatial velocity is given by V̂ s = Rg−1∗ · ġ. The
body and spatial velocities are related by the Adjoint map

V s = AdgV
b (8)

where g = (R, p) and

Adg =

[

R p̂R
0 R

]

. (9)

We will write the twist of joint i as Gi and the twist system
of chain j as

Mj = (G1,G2, . . . ,Gn). (10)

The twist system describes the motion of the end effector
of the open chain (Meng et al. [2007]).

We will introduce the following notation from Dai et al.
[2006] to represent sets of twists or wrenches. Braces {·}
are used to indicate a set that contains unique elements
while angle brackets 〈·〉 are used to indicate multisets
which may contain multiple entries of each element. We
will use cardinality (card) to give the number of elements
in 〈Mj〉 or {Mj}. For {Mj}, the cardinality is equal to
the dimension. Let the parallel manipulator

M = M1||M2|| · · · ||Mk (11)

consist of k serial manipulator sub-chains that share a
common base and a common end effector. The set of end-
effector motions is defined as (Meng et al. [2007])

CM = CM1
∩ CM2

∩ · · · ∩ CMk
, (12)

where CMj
is the set of rigid transformations that Mj

generates without loop constraints. CM defines the con-
figurations of the end effector with the loop constraints
imposed.

We are interested in the passive motion, i.e. the motion
due to the passive joints when the active joints are fixed.
We denote this by

MP = MP1||MP2|| · · · ||MPk (13)

1 In this context, spatial means that the velocity is given with

respect to a globally defined coordinate system. We will also use

spatial for the 3-dimensional space, as opposed to the planar case.

where MPj consists of only the passive joints of manipu-
lator j.

Although only the passive joints are considered, the twists
of the passive joints depend on the configuration of the
active joints. The twist of joint i is given by

G′
i = Adg(i−1)

Gi (14)

where gi ∈ SE(3) is the transformation from the base to
joint i. We will assume it implicitly understood that the
twists, as written in (10), are transformed according to
(14), and thus write G for G′.

We will find the mobility D considering the passive joints
only. If the mobility of the mechanism is zero we conclude
that the mechanism is equilibrated with respect to any
external force. On the other hand, if D > 0 an additional
condition needs to be satisfied for the mechanism to be
equilibrated. This is not considered in this paper. We
will denote a mechanism equilibrated if the following is
satisfied:

Definition 2.1. A manipulator M is denoted equilibrated

with respect to an external wrench Fext =
[

fT τT
]T

where

f, τ ∈ R
3, if M, either through kinematic constraints or

through actuator torque, can produce a wrench opposite
to Fext, i.e. M can produce the wrench −kFext for some
k > 0.

Note that we do not require that the manipulator is able
to resist any external wrench, only that it can produce a
wrench of a given type and direction.

3. OVERCONSTRAINED MECHANISMS

Grübler’s formula gives the mobility of mechanisms with
linearly dependent constraints (non-overconstrained). For
the three-dimensional Euclidean space, Grübler’s formula
is given by

D = 6N −
n
∑

i=1

(6 − fi), (15)

where fi is 1 for the 1-dimensional lower pairs and we write

D = 6N − 5n. (16)

When the constraints are not linearly independent, the
mechanism is over-constrained, i.e. some of the constraints
are redundant and have no effect on the mobility. Based
on the approach in Dai et al. [2006] we first identify the
constraints that are common for all chains and eliminate
the redundancy in this set. This set is easily identified as
the intersection of the constraint space of all the chains.
Further the constraints that constrain each chain to the
end-effector motion, the end effector constraint system,
are identified and again the redundant constraints are
found from this set. The approach presented in Dai et al.
[2006] is based on the screw system of the mechanism and
represents the constraint space as reciprocal screws. Here,
we apply the same general idea as in Dai et al. [2006]. The
approach is based on an analysis of the sub-algebras and
sub-manifolds of the Lie Algebra se(3) and their cotangent
spaces.

The approach is general in the sense that no classification
of the mechanism is required. As pointed out in Rico et al.
[2003], the classification of the mechanism is not needed



to determine its mobility. However, in our setting, the
classification is important in the sense that it tells us where
to place the active joints. As for the non-overconstrained
case, the active joints cannot be placed arbitrarily in the
mechanism. We will see that only in very special cases can
the active joints be arbitrarily placed in the mechanism.

The approach in Dai et al. [2006] is based on the constraint
space formulation. It is also shown that the mobility can
be found by the motion space as in Rico et al. [2003]
and Rico et al. [2006]. By this approach the chains are
also classified and it is straight forward to determine
the effect a passive joint has on the mechanism. We
will use the motion space approach to set up a set of
simple rules on where to place the active joints in the
mechanism in order for the mechanism to be equilibrated.
This set of rules naturally leads to an approach on how to
choose actuator redundancy most efficiently to make the
manipulator resistant to joint failures.

3.1 The Constraint Space

To find the mobility from the constraint space as in Dai
et al. [2006], we start by denoting the motion space of the
chain j as

Mj = (G1,G2, . . . ,Gnj
) (17)

where Gi is the twist of joint i and nj is the number
of joints in chain j. Recall that braces {·} are used to
indicate a set that contains unique elements while angle
brackets 〈·〉 are used to indicate multisets which may
contain multiple entries of each element. If the twists of
the joints in chain j are linearly independent we have
that

∑nj

i=1 fi = card{Mj}. If this is not the case, then
∑nj

i=1 fi = card〈Mj〉 > card{Mj} and the chain is
redundant in itself, i.e. it may have self-motion. In this
case singularities may also occur in the chain. This will
not be considered further.

We will denote the constraint system of chain j as

M
C

j = M
⊥

j (18)

where M
⊥

j = {F ∈ R
6 | F · V = 0,∀ V ∈ Mj} which is

the vanishing of the reciprocal product of Ball (Lipkin and
Duffy [2002]). This represents the constraints imposed on
the end effector by chain j. Note that we cannot identify

the self-motion from M
C

j .

Further we will define mechanism motion as the union of
all the twists in the system

MM = M1 ∪M2 ∪ · · · ∪Mk, (19)

evaluated at g ∈ CM1
∩ · · · ∩ CMk

. The end-effector
constraints is given as the union of the constraints of each
chain,

M
C

E = M
C

1 ∪M
C

2 ∪ · · · ∪M
C

k (20)

evaluated at g ∈ CM1
∩ · · · ∩ CMk

. From this we can find
the constrained motion of the end effector

ME = (M
C

E)⊥. (21)

The intersection of all the constraints are further given by

M
C

M = M
C

1 ∩M
C

2 ∩ · · · ∩M
C

k , (22)

or alternatively

M
C

M = (MM )⊥. (23)

With the notation of braces and angle brackets, each of
the subsets introduced in this section is given by

{MM} =

k
⋃

j=1

Mj , 〈MM 〉 =

k
∑

j=1

Mj ,

{M
C

E} =

k
⋃

j=1

M
⊥

j , 〈M
C

E〉 =

k
∑

j=1

M
⊥

j ,

{ME} =

k
⋂

j=1

Mj , {M
C

M} =

k
∑

j=1

M
C

j ,

{ME} = {M
C

E}
⊥ {M

C

M} = {MM}⊥

{ME} = 〈M
C

E〉
⊥, {M

C

M} = 〈MM 〉⊥.

Thus, the collection of all constraints is given in 〈M
C

E〉,
including repeated elements. The first step is to factorise
out all the constraints that are common for all chains.
The “directions” of the end effector represented by these
constraints can be considered the most robust directions
as they are constrained by all the sub-chains in the
mechanism. The constraints that are common for all sub-
chains is given by {M

C

M}. We will say that a single
subchain cannot have redundant constraints (as seen from
the other chains or the end effector). This is always true.

Because {M
C

M} is the same for all chains we will write

〈M
C

M 〉 = k · {M
C

M}. (24)

We see that 〈M
C

M 〉 is (k − 1) times redundant.

For each chain we can factorise out this part by taking

{M
C

j } = {M
C

M} ∪ {M
C

Cj}. (25)

We can add the multisets of Equation (25) and get

〈M
C

E〉 = 〈M
C

M 〉 + 〈M
C

C〉

= k · {M
C

M} + 〈M
C

C〉. (26)

As the redundancy in 〈M
C

M 〉 is already dealt with, we can

focus on 〈M
C

C〉 which may also be redundant. We start by
writing

〈M
C

C〉 = {M
C

C} + 〈M
C

ν 〉. (27)

Here, {M
C

C} is the linearly independent part which re-

stricts the motion of the end effector to ME , while 〈M
C

ν 〉 is
the collection of the constraints that are linearly dependent

of the entries in {M
C

C}. Thus, the redundancy given by the

term 〈M
C

C〉 in Equation (26) is given by card〈M
C

ν 〉. The
total redundancy of the system is given by

card〈M
C

Eν〉 = (k − 1)card{M
C

M} + card〈M
C

ν 〉. (28)

Finally, we also note that 〈M
C

Eν〉 can also be factorised
out from

〈M
C

E〉 = {M
C

E} + 〈M
C

Eν〉. (29)

3.2 The Modified Grübler Formula

The Grübler formula does not take redundant constraints
into consideration. Redundant constraint are constraints
that do not reduce the mobility of the end effector or
the chains. We therefore need to add these to the Grübler



formula. The Modified Grübler formula as presented in Dai
et al. [2006] is given by adding (28) to (15)

D = dN −
n
∑

i=1

(d− fi) + (k − 1) · card{M
C

M}+ card〈M
C

ν 〉

(30)
where d is the dimension of the space, normally 3 or 6.
This expression identifies the redundant constraints. It
also gives the mobility due to self-motion. It does not,
however, identify very easily due to what joints these
motions occur. This is considered in more detail in the
next section.

3.3 The Motion Space

The mobility of the mechanism tells us how many active
joints are needed for the mechanism to be equilibrated.
However, it does not tell us what joints can be set as
passive and what joints need to be active. In the following,
we will show that an alternative to the Modified Grübler
formula given in (30) can be found from the motion space
and we will show how this approach naturally leads to the
classification of different types of overconstrained joints.
This is the same classification of overconstrained chains
as in Rico et al. [2003] and Rico et al. [2006]. Further, in
the next section, we will use this to set up a set of simple
rules on where the active joints need to be placed, i.e. how
many active joints need to be placed in each chain, as well
as their position in the chain.

Exceptional Linkages In Rico et al. [2003], two sub-
chains that have an intersection, but for which the motion
space of one sub-chain is not a subspace of the other, is
denoted exceptional linkage. We refer to the work of Hervé
[1978] for a formal definition of exceptional, trivial and
paradoxical linkages. Paradoxical linkages are not treated
here. In Rico et al. [2006] this is generalised to the case
of arbitrarily many chains. Here we will look at it from a
different view in order to get a deeper understanding of
the mobility criteria.

We start by finding the mobility of the end effector. This
is given by the intersection of the motion space of each
chain

{ME} =

k
⋂

j=1

{Mj}, (31)

evaluated at g ∈ CM1
∩ · · · ∩ CMk

. Thus the mobility of
the end effector is given by card{ME}. Each chain may
also have a mobility independent of the mobility of the
end effector. This is the self-motion and is given by the
total number of freedoms in the chain and substracting
the dimension of the open loop end-effector motion of the
chain.

card{Msm}j =

nj
∑

i=1

fi − card{Mj},

card{Msm} =

k
∑

j=1

(

nj
∑

i=1

fi − card{Mj}

)

. (32)

The total mobility of the mechanism is then given by
adding (32) to (31). We will write this as a proposition and
provide a different proof than that of Rico et al. [2006].

Proposition 1. The total mobility of a mechanism is given
by the degree of freedom of the end effector, given in
Equation (31) and the self-motion of the chain, given in
Equation (32) by

D = card{ME} +

k
∑

j=1

(

nj
∑

i=1

fi − card{Mj}

)

,

= card{ME} +

n
∑

i=1

fi −
k
∑

j=1

card{Mj}. (33)

Proof 1. (sketch) We need to show that a) the degree of
freedom of the end effector is given by the dimension of
{ME} in Equation (31); and b) that the self-motion of
each chain is given by Equation (32).

a) The degree of freedom of the end effector is given by
the dimension of {ME} in Equation (31). This follows
directly from Meng et al. [2007].

b) The dimension of the self-motion manifold can be
found in most textbooks on robotics (e.g. Murray
et al. [1994]) to be the dimension of the null of the
Jacobian N (J), which is given as dim(N (J)) = nj −
m where nj is the number of joints and m is the
dimension of the end-effector motion. This equivalent
to (32).

We are mainly concerned with the effect of adding a joint
to the chain. Adding a joint to a chain M will have
the same effect as making one joint passive when only
the passive joints of the manipulator are considered, i.e.
adding a joint to MP . In this section we look at the
effect of adding a joint to the mechanisms and in the
next section we use these results to analyse in what case
the manipulator is equilibrated. We will use the reasoning
in Proposition 1 and the observation that a joint that
increases the dimension of the end effector motion of the
open chain, but not of the closed chain, will always be
locked. Then there are three different outcomes of adding
a joint to the manipulator:

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The dimension of the self-motion manifold of the

chain increases by one.
•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− The joint will be locked and the mobility of the

system does not change.
•
∑nj

i=1 fi, card{Mj} and card{ME} increase by one.
− The mobility of the end effector increases by one.
− The dimension of the self-motion manifold of the

chain does not increase.

Thus, by checking the dimension of card{Mj} and

card{ME} we can effectively find the effect that a joint
failure has on the mobility of the mechanism.

Trivial Linkage of Type I In Rico et al. [2006] the case
when all the sub-chains generate the same motion

{Mj} = {ME} for j = 1 . . . k (34)

is denoted trivial linkages. In this case the mobility is found
directly from (33) by



D = card{ME} +
k
∑

j=1

(

nj
∑

i=1

fi − card{ME}

)

= card{ME} − k · card{ME} +
k
∑

j=1

(

nj
∑

i=1

fi

)

=

n
∑

i=1

fi − (k − 1) · card{ME}. (35)

In this case there are only two different outcomes:

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The dimension of the self-motion manifold of the

chain increases by one.
•
∑nj

i=1 fi and card{Mj} increase by one.
− The joint will be locked and the mobility of the

system does not change.
•
∑nj

i=1 fi, card{Mj} and card{ME} increase by one.
− Impossible

Trivial Linkage of Type II The case when the entire
motion of the end-effector, connected by two sub-chains,
can be determined and is restricted by one chain is
denoted trivial linkage. As they only consider single loops,
the constraints of the other chain does not affect the
mobility of the end effector. In our setting, we define the
corresponding multi-loop classification of trivial linkage as
the following. Assume that we have E′ manipulators that
all generate ME and M ′ manipulators that all generate
MM , where ME ⊂ MM . Then the total mobility of the
system is given by ME and the internal mobility of each
of the chains. The internal mobility of the chains in ME

and MM must, however, be treated differently. This can
be generalised to ME1

⊂ ME2
⊂ · · · ⊂ MM .

The total mobility of the system is then given by

D = card{ME} +

k
∑

j=1

(

nj
∑

i=1

fi − card{Mj}

)

= card{ME} +
∑

E

(

nj
∑

i=1

fi − card{ME}

)

+
∑

M

(

nj
∑

i=1

fi − card{MM}

)

(36)

=
n
∑

i=1

fi − (E′ − 1) · card{ME} − M ′ · card{MM}

where
∑

E sums over all the chains that generate ME and
∑

M sums over all the chains that generate MM . Also in
this case there are three different outcomes which we will
divide into two classes:
For j ∈ M ,

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The dimension of the self-motion manifold of the

chain increases by one.
•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− The joint will be locked and the mobility of the

system does not change.
•
∑nj

i=1 fi, card{MM} and card{ME} increase by one.
− Impossible.

j ∈ E,

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The dimension of the self-motion manifold of the

chain increases by one.
•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− The joint will be locked and the mobility of the

system does not change.
•
∑nj

i=1 fi, card{MM} and card{ME} increase by one.
− The mobility of the end effector increases by one.
− The self-motion of the chain does not increase.

4. FAULT TOLERANCE

In this section, we look into the effect of FSJF in par-
allel manipulators and how the results from the previous
section can be used to prevent that the mechanism turns
inequilibrated. For a general treatment and an approach on
how to identify joint failure see Tinós et al. [2006]. In this
case, as the number of passive joints in the manipulator
increases by one, the mobility of MP may remain zero or
increase by one. Let m be the number of active joints in
M. When MP does not allow any motion after the joint
failure, we have

Dm = 0
FSJF

====⇒ Dm−1 = 0 (37)

and the manipulator remains equilibrated with respect to
external forces. When MP allows a 1 DOF motion as a
result of the joint failure, i.e.

Dm = 0
FSJF

====⇒ Dm−1 = 1, (38)

the mechanism is not fault tolerant.

We are interested in the condition for which Dm−1 = 0. As
seen in the previous section, the effect of a free-swinging
joint failure depends on the joint. We start by setting up
a set of rules that determines if a joint failure will increase
the mobility of MP . This can also be used as a design
criterion to guarantee the mechanism to be fault tolerant.
We do that by determining where to put the actuator
redundancy most effectively in order for the manipulator
to be resistant to a joint failure of any joint.

In the following we will find the conditions for which the
mechanism is equilibrated for all the different outcomes of
joint failure found in Section 3.3.

Exceptional Linkages

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The end effector is equilibrated. Chain j will only

remain equilibrated if it is actuator redundant.
The redundancy must be in the set of joints in
which the self-motion occurs.

•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− No action needed. Both end effector and chains

are equilibrated.
•
∑nj

i=1 fi, card{Mj} and card{ME} increase by one.
− The mobility can be compensated with actuator

redundancy in any joint that is not locked for the
motion generated by MP .

The last case illustrates an important difference between
the overconstrained and non-overconstrained case. For



the non-overconstrained case the active joints can be
placed arbitrarily in the mechanisms while for the non-
overconstrained case, the active joints must be chosen so
that they generate the end-effector motion. In the non-
overconstrained case this is taken care of by applying the
planar and spatial Grübler formula to the mechanism. For
the overconstrained case, the motion of the end effector
must be considered.

Trivial Linkage of Type I

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The end effector is equilibrated. Chain j will only

remain equilibrated if it is actuator redundant.
The redundancy must be in the set of joints in
which the self-motion occurs.

•
∑nj

i=1 fi and card{Mj} increase by one.
− No action needed. Both end effector and chains

are equilibrated.
•
∑nj

i=1 fi, card{Mj} and card{ME} increase by one.
− Will never occur.

Trivial Linkage of Type II .
For j ∈ M ,

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The end effector is equilibrated. Chain j will only

remain equilibrated if it is actuator redundant.
The redundancy must be in the set of joints in
which the self-motion occurs.

•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− No action needed. Both end effector and chains

are equilibrated.
•
∑nj

i=1 fi, card{MM} and card{ME} increase by one.
− Will never occur.

For j ∈ E,

•
∑nj

i=1 fi increases by one while card{Mj} does not.
− The end effector is equilibrated. Chain j will only

remain equilibrated if it is actuator redundant.
The redundancy must be in the set of joints in
which the self-motion occurs.

•
∑nj

i=1 fi and card{Mj} increase by one while card{ME}
does not.
− No action needed. Both end effector and chains

are equilibrated.
•
∑nj

i=1 fi, card{MM} and card{ME} increase by one.
− The mobility can be compensated with actuator

redundancy in any joint that is not locked for the
motion generated by MP .

From the results presented in this section, we see that we
can easily verify if redundant actuation is needed when
joint failure occurs for a given active joint. If joint failure
does not lead to self-motion it may be compensated for
by another redundant actuated joint that is not locked
for this motion. These cases are important to recognise
in order to not place unnecessary many active joints in
the mechanism. If, on the other hand, the joint failure
leads to self-motion, a redundant actuated joint is always
needed in the respective chain. These observations lead to
a simple rule on how to place the redundant active joints
to guarantee that the manipulator remains equilibrated
when actuator failure occurs for an arbitrary joint.

5. CONCLUSION

A set of rules on how to place redundant actuators in
parallel mechanisms to guarantee that the manipulator
remains equilibrated when actuator failure occurs is pre-
sented. The manipulator is said to be equilibrated when
the manipulator, considering the passive joints only, has
no mobility. Actuator failure can be divided into three
main classes. The first is when no redundant actuation
is needed as the joint for which the actuator failure occurs
will be locked. The second case is when the actuator failure
occurs in a set of joint which generates an internal motion
of a sub-chain. In this case actuator redundancy must
be placed in this set of joints. When the joint does not
generate an internal motion and is not locked, actuator
failure can be compensated by redundancy in any part of
the mechanism which is not locked, including a joint that
generates internal motion. By identifying the type of the
linkage we can eliminate some of the cases above.
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