
Singularity-Free Dynamic Equations of

Spacecraft-Manipulator Systems

P̊al J. From
∗
Kristin Y. Pettersen

∗
Jan T. Gravdahl

∗

∗ Engineering Cybernetics, Norwegian University of Science &
Technology, Norway

Abstract: In this paper we derive the singularity-free dynamic equations of spacecraft-
manipulator systems using a minimal representation. Spacecraft are normally modeled using
Euler angles, which leads to singularities, or Euler parameters, which is not a minimal
representation and thus not suited for Lagrange’s equations. We circumvent these issues by
introducing quasi-coordinates which allows us to derive the dynamics using minimal and
globally valid non-Euclidean configuration coordinates. This is a great advantage as the
configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient
and singularity-free formulation of the dynamic equations with the same complexity as the
conventional Lagrangian approach. The closed form formulation makes the proposed approach
well suited for system analysis and model-based control. This paper focuses on the dynamic
properties of free-floating and free-flying spacecraft-manipulator systems and we show how to
calculate the inertia and Coriolis matrices in such a way that this can be implemented for
simulation and control purposes without extensive knowledge of the mathematical background.
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1. INTRODUCTION

A good understanding of the dynamics of spacecraft-
manipulator systems is important as these systems are
emerging as an alternative to human operation in space
(Hughes, 2002; Moosavian and Papadopoulos, 2007). Op-
erations include assembling, repair, refuelling, mainte-
nance and operations of satellites and space stations. Due
to the enormous risks and costs involved with launching
humans into space, robotic solutions evolve as the most
cost-efficient and reliable solution.

Modeling spacecraft-manipulator systems is quite different
from standard robot modeling. Firstly, the manipulator
is mounted on a free-floating (unactuated) or free-flying
(actuated) spacecraft. There is thus no obvious way to
choose the inertial frame. Secondly, the motion of the
manipulator affects the motion of the base, which results
in a set of dynamic equations different from the fixed-
base case due to the dynamic coupling. Finally, we need
to consider the effects of the free fall environment.

Robustness of these systems is still a major concern for
space operators. We therefore derive the singularity-free
dynamic equations of spacecraft-manipulator systems us-
ing a Lagrangian framework. It is a well known fact that
the kinematics of a rigid body contains singularities if the
Euler angles are used to represent the orientation and the
joint topology is not taken into account. One solution to
this problem is to use a non-minimal representation such
as the unit quaternion. These are, however, not generalized
coordinates and can thus not be used in Lagrange’s equa-
tions. This is a major drawback when it comes to modeling
vehicle-manipulator systems as most methods used for
robot modeling are based on the Lagrangian approach.

It is thus a great advantage if also the vehicle dynamics
can be derived from the Lagrange equations.

The use of Lie groups and algebras as a mathematical
basis for the derivation of the dynamics of multibody
systems can be used to overcome this problem (Selig,
2000). We then choose the coordinates generated by the
Lie algebra as local Euclidean coordinates which allows
us to describe the dynamics locally. For this approach
to be valid globally the total configuration space needs
to be covered by an atlas of local exponential coordinate
patches. The appropriate equations must then be chosen
for the current configuration. The geometric approach
presented in Bullo and Lewis (2004) can then be used to
obtain a globally valid set of dynamic equations on a single
Lie group, such as a spacecraft with no robot attached.

Even though combinations of Lie groups can be used
to represent multibody systems, the formulation is very
complex and not suited for implementation in a simulation
environment. In Kwatny and Blankenship (2000) quasi-
coordinates was used to derive the dynamic equations of
fixed-base robotic manipulators using Poincaré’s formu-
lation of the Lagrange equations. In Kozlowski and Her-
man (2008) several control laws using a quasi-coordinate
approach were presented, but only robots with conven-
tional 1-DoF joints were considered. Common for all these
methods is, however, that the configuration space of the
system is described as q ∈ Rn. This is not a problem when
dealing with 1-DoF revolute or prismatic joints but more
complicated joints such as ball-joints or free-floating joints
then need to be modeled as compound kinematic joints
(Kwatny and Blankenship, 2000), i.e., a combination of
1-DoF simple kinematic joints. For joints that use the
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Fig. 1. Model setup for a robot attached to a vehicle with
coordinate frame Ψb and inertial reference frame Ψ0.

Euler angles to represent the orientation this leads to
singularities in the representation.

In this paper we follow the generalized Lagrangian ap-
proach presented in Duindam and Stramigioli (2008)
which allows us to combine the Euclidean joints and more
general joints, i.e., joints that can be described by the Lie
group SE(3) or one of its ten subgroups, and we extend
these ideas to spacecraft-manipulator systems. There are
several advantages in following this approach. The use of
quasi-coordinates, i.e., velocity coordinates that are not
simply the time derivative of the position coordinates,
allows us to include joints (or transformations) with a
different topology than that of Rn. For example, for a
spacecraft we can represent the transformation from the
inertial frame to the spacecraft body frame as a free-
floating joint with configuration space SE(3) and we avoid
the singularity-prone kinematic relations between the in-
ertial frame and the body frame velocities that normally
arise in deriving the spacecraft dynamics (Hughes, 2002).

This approach differs from previous work in that it allows
us to derive the dynamic equations of vehicle-manipulator
systems for vehicles with a configuration space different
from Rn. The dynamics are expressed (locally) in expo-
nential coordinates φ, but the final equations are evaluated
at φ = 0. This has two main advantages. Firstly, the
dynamics do not depend on the local coordinates as these
are eliminated from the equations and the global position
and velocity coordinates are the only state variables. This
makes the equations valid globally. Secondly, evaluating
the equations at φ = 0 greatly simplifies the dynamics and
make the equations suited for implementation in simula-
tion software. We also note that the approach is well suited
for model-based control as the equations are explicit and
without constraints. The fact that the configuration space
of the spacecraft is a Lie group also simplifies the imple-
mentation. Even though the expressions in the derivation
of the dynamics are somewhat complex, we have several
tools from the Lie theory that allows us to write the final
expressions in a very simple form.

The paper is organized as follows. Section 2 gives the
detailed mathematical background for the proposed ap-
proach. This section can be skipped and practitioners

mainly interested in implementation can go straight to
Section 4. Section 3 presents the state of the art in
spacecraft-manipulator modeling and in Section 4 the dy-
namic equations for spacecraft-manipulator systems and
the effects of the free-floating base are treated in detail.
To the authors best knowledge spacecraft-manipulator sys-
tems have not been studied in detail in literature using
the framework presented here. The matrix representation
of the dynamics and how to implement this is presented
in great detail which allows the readers to implement this
in a simulation or control environment without having to
perform all the detailed computations themselves.

2. DYNAMIC EQUATIONS OF
VEHICLE-MANIPULATOR SYSTEMS

We extend the classical dynamic equations for a serial
manipulator arm with 1-DoF joints to include the motion
of the spacecraft.

2.1 Vehicle-Manipulator Kinematics

Consider the setup of Figure 1 describing a general n-link
robot manipulator arm attached to a vehicle. Choose an
inertial coordinate frame Ψ0, a frame Ψb rigidly attached
to the vehicle, and n frames Ψi (not shown) attached to
each link i at the center of mass with axes aligned with
the principal directions of inertia. Finally, choose a vector
q ∈ Rn that describes the configuration of the n joints.
Using standard notation (Murray et al., 1994), we describe
the pose of each frame Ψi relative to Ψ0 as a homogeneous
transformation matrix g0i ∈ SE(3) of the form

g0i =

[
R0i p0i
0 1

]

∈ R
4×4 (1)

with rotation matrix R0i ∈ SO(3) and translation vector
p0i ∈ R3. This pose can also be described using the vector
of joint coordinates q as

g0i = g0bgbi = g0bgbi(q). (2)

The vehicle pose g0b and the joint positions q thus fully
determine the configuration state of the robot. We use
g0b (6 DoF) to represent the vehicle configuration, but the
actual configuration space of the vehicle may be a subspace
of SE(3) of dimension m < 6. In our case, a spacecraft has
configuration space SO(3) with dimension m = 3. In the
case of m < 6 we define a selection matrix H ∈ R6×m such
that the twist is given by

V b0b = HṼ b0b, (3)

where Ṽ b0b ∈ Rm determines the m-dimensional velocity
state of the vehicle. The spatial velocity of each link can
be expressed using twists:

V 0
0i =

[
v00i
ω0
0i

]

= V 0
0b + V 0

bi = Adg0b

(

HṼ b0b + Ji(q)q̇
)

(4)

where v00i and ω0
0i are the linear and angular velocities,

respectively, of link i relative to the inertial frame, Ji(q) ∈
R6×n is the geometric Jacobian of link i relative to Ψb, the
adjoint is defined as Adg :=

[
R p̂R
0 R

]
∈ R6×6, and p̂ ∈ R3×3

is the skew symmetric matrix such that p̂x = p× x for all
p, x ∈ R3. The velocity state is thus fully determined given
the twist V b0b of the vehicle and the joint velocities q̇.



2.2 Vehicle-Manipulator Dynamics

The previous section shows how the kinematics of the
system can be described in terms of the (global) state
variables g0b, q, V

b
0b, and q̇. To derive the dynamics of

the complete mechanism (including the m-DoF between
Ψ0 and Ψb) in terms of these state variables, we follow the
generalized Lagrangian method introduced by Duindam
and Stramigioli (2008). This method gives the dynamic
equations for a general mechanism described by a set
Q = {Qi} of configuration states Qi (not necessarily Eu-
clidean), a vector v of velocity states vi ∈ Rni , and several
mappings that describe the local Euclidean structure of
the configuration states and their relation to the velocity
states. More precisely, the neighborhood of every state Q̄i
is locally described by a set of Euclidean coordinates φi ∈
Rni as Qi = Φi(Q̄i, φi) with Φi(Q̄i, 0) = Q̄i. Φi(Q̄i, φi)
defines a local diffeomorphism between a neighborhood of
0 ∈ Rni and a neighborhood of Q̄i.

We start by deriving an expression for the kinetic co-
energy of a mechanism, expressed in coordinates Q, v, but
locally parameterized by the coordinate mappings for each
joint. For joints that can be described by a matrix Lie
group, this mapping can be given by the exponential map
(Murray et al., 1994). Let φ ∈ se(n,R) be the Lie algebra
of SE(3), then the exponential map exp(φ) is given by

eφ̂ = I + φ̂+
φ̂2

2
· · · =

∞∑

n=0

φ̂n

n!
(5)

where I (no subscript) is the identity matrix. The dynam-
ics are thus expressed in local coordinates φ for configu-
ration and v for velocity, and we consider Q a parameter.
After taking partial derivatives of the Lagrangian function,
we evaluate the results at φ = 0 (i.e. at configuration Q) to
obtain the dynamics expressed in global coordinates Q and
v as desired. We note that even though local coordinates
φ appear in the derivations of the various equations, the
final equations are all evaluated at φ = 0 and hence these
final equations do not depend on local coordinates. The
global coordinates Q and v are the only dynamic state
variables and the equations are valid globally, without the
need for coordinate transitions between various areas of
the configuration space. Note also that taking the partial
derivatives of the Lagrangian and evaluating at φ = 0
greatly simplifies (5) and the closed form expressions of the
exponential map is not needed. This fact greatly simplifies
the final equations.

In general, the topology of a Lie group is not Euclidean.
When deriving the dynamic equations for spacecraft from
the Lagrangian, this is normally dealt with by introducing
a transformation matrix that relates the local and global
velocity variables. However, forcing the dynamics into
a vector representation in this way, without taking the
topology of the configuration space into account, leads to
singularities in the representation or other deficiencies. To
preserve the topology of the configuration space we will
use quasi-coordinates, i.e. velocity coordinates that are
not simply the time-derivative of position coordinates, but
given by a linear relation. Thus, there exist differentiable
matrices Si such that we can write vi = Si(Qi, φi)φ̇i for
every Qi. For Euclidean joints this relation is given by the
identity map while for joints with a Lie group topology we
can use the exponential map to derive this relation.

Given a mechanism with coordinates formulated in this
generalized form, we can write its kinetic energy as
T (Q, v) = 1

2v
TM(Q)v with M(Q) the inertia matrix in

coordinates Q and v the stacked velocities of the vehicle
and the robot joints. The dynamics then satisfy

M(Q)v̇ + C(Q, v)v = τ (6)

with τ the vector of external and control wrenches (collo-
cated with v), and C(Q, v) the matrix describing Coriolis
and centrifugal forces given by

Cij(Q, v) :=
∑

k,l

(
∂Mij

∂φk
S−1
kl −

1

2
S−1
ki

∂Mjl

∂φk

)∣
∣
∣
∣
φ=0

vl (7)

+
∑

k,l,m,s

(

S−1
mi

(
∂Smj

∂φs
−
∂Sms

∂φj

)

S−1
sk Mkl

)
∣
∣
∣
∣
∣
∣
φ=0

vl.

We refer to Duindam and Stramigioli (2008) for details. To
apply this general result to systems of the form of Figure 1,
we write Q = {g0b, q} as the set of configuration states

where g0b is the Lie group SO(3), and v =
[

(V b0b)
T q̇T

]T
as

the vector of velocity states. The local Euclidean structure
for the state g0b is given by exponential coordinates, while
the state q is itself globally Euclidean. Mathematically,
we can express configurations (g0b, q) around a fixed state
(ḡ0b, q̄) as

g0b = ḡ0b exp





6∑

j=1

bj(φb)j



 , qi = q̄i + φi ∀ i ∈ {1 . . . n}

with bj the standard basis elements of the Lie algebra
so(3). From expression (4) for the twist of each link in
the mechanism, we can derive an expression for the total
kinetic energy. Let Ib ∈ R6×6 and Ii ∈ R6×6 denote the
constant positive-definite diagonal inertia tensor of the
base and link i (expressed in Ψi), respectively. The kinetic
energy Ti of link i then follows as

Ti =
1

2

(
V i0i
)T
IiV

i
0i

=
1

2

(

(Ṽ b0b)
THT + q̇TJi(q)

T

)

AdTgib IiAdgib

(

HṼ b0b + Ji(q)q̇
)

=
1

2

[
(

Ṽ b0b

)T

q̇T
]

Mi(q)

[

Ṽ b0b
q̇

]

=
1

2
vTMi(q)v (8)

with Mb =
[
Ib 0
0 0

]
∈ R(m+n)×(m+n) for the vehicle and

Mi(q) :=

[
HT AdTgib IiAdgib H HT AdTgib IiAdgib Ji
JT

i AdTgib IiAdgib H JT

i AdTgib IiAdgib Ji

]

(9)

for the links. The total kinetic energy of the mechanism is
given by the sum of the kinetic energies of the mechanism
links and the vehicle, that is,

T (q, v) =
1

2
vT

([
Ib 0
0 0

]

+

n∑

i=1

Mi(q)

)

︸ ︷︷ ︸

inertia matrix M(q)

v (10)

with M(q) the inertia matrix of the total system. Note
that neither T (q, v) nor M(q) depend on the pose g0b nor
the choice of inertial reference frame Ψ0. We can now write
(6) in block-form as follows
[

MV V MT

qV

MqV Mqq

] [
˙̃
V b0b
q̈

]

+

[
CV V CV q
CqV Cqq

] [

Ṽ b0b
q̇

]

=

[
τV
τq

]

(11)

Here the subscript V refers to the first m entries and q the
remaining n−m entries.



2.3 Vehicles with Configurations Space SE(3)

The configuration space of a free-floating vehicle, such as
a spacecraft, can be described by the matrix Lie group
SE(3). In this case we have the mapping (Duindam, 2006)

V b0b =

(

I −
1

2
adφV

+
1

6
ad2φV

− . . .

)

φ̇V (12)

with adp =
[
p̂4...6 p̂1...3

0 p̂4...6

]

∈ R6×6 for p ∈ R6 relating

the local and global velocity variables. The corresponding
matrices Si can be collected in one block-diagonal matrix
S ∈ R(6+n)×(6+n) given by

S(Q,φ) =





(

I −
1

2
adφV

+
1

6
ad2φV

− . . .

)

0

0 I



 . (13)

We note that when differentiating with respect to φ
and substituting φ = 0 this simplifies the expression
substantially.

To compute the matrix C(Q, v) for our system, we can
use the observations that M(q) is independent of g0b,
that S(Q,φ) is independent of q, and that S(Q, 0) ≡ I.
Furthermore, the partial derivative of M with respect to
φV is zero since M is independent of g0b, and the second
term of (7) is only non-zero for the CV V block of C(Q, v).
Firstly, CV V depends on both the first and the second term

in (7). We have i, j = 1 . . . 6. Note that
∂Mij

∂φk
= 0 for k < 7

and
∂Sij

∂φk
= 0 for i, j, k > 6. This simplifies CV V to

Cij(Q, v) =
6+n∑

k=7







∂Mij

∂φk
−

1

2

∂Mjk

∂φi
︸ ︷︷ ︸

=0







∣
∣
∣
∣
∣
∣
∣
∣
φ=0

vk (14)

+
6∑

k=1

(
∂Sij

∂φk
−
∂Sik

∂φj

)
∣
∣
∣
∣
∣
φ=0

(M(q)v)k.

Furthermore, if we write S = (I − 1
2 adφV

+ 1
6 ad

2
φV

− . . .)
we note that after differentiating and evaluating at φ = 0,
∑ ∂Sij

∂φk
is equal to − 1

2 adek where ek is a 6-vector with 1

in the kth entry and zeros elsewhere. Similarly,
∑

∂Sik

∂φj
is

equal to 1
2 adek . This is then multiplied by the kth element

of M(q)v when differentiating with respect to φk so that

CV V (Q, v) =

6∑

k=1

∂MV V

∂qk
q̇k − ad(M(q)v)V (15)

where (M(q)v)V is the vector of the first 6 entries (corre-
sponding to V b0b) of the vector M(q)v.

CV q(Q, v), i.e., i = 1 . . . 6 and j = 7 . . . (6+n), is found in a

similar manner. First we note that
∂Mjk

∂φi
= 0 for i = 1 . . . 6

and that
∂Sij

∂φk
= 0 and ∂Sik

∂φj
= 0 for j = 7 . . . (6 + n), so

only the first part is non-zero and we get

CV q(Q, v) =
6∑

k=1

∂MV q

∂qk
q̇k (16)

Finally, the terms CqV and Cqq depend only on the first
part of (7) and can be written as (From et al., 2009)

CqV =

n∑

k=1

∂MqV

∂qk
q̇k −

1

2

∂T

∂q

(
[
MV V MT

qV

]
[

V b0b
q̇

])

, (17)

Cqq =

n∑

k=1

∂Mqq

∂qk
q̇k −

1

2

∂T

∂q

(
[
MqV MT

qq

]
[

V b0b
q̇

])

. (18)

The C-matrix is thus given by

C(Q, v) =

n∑

k=1

∂M

∂qk
q̇k (19)

−
1

2





2 ad(M(q)v)V 0
∂T

∂q

(
[
MV V MT

qV

]
[

V b0b
q̇

])
∂T

∂q

(
[
MqV MT

qq

]
[

V b0b
q̇

])



.

2.4 Vehicles with Configurations Space SO(3)

The dynamics of a vehicle-manipulator system for a vehicle
with configuration space SO(3) are derived in the same
way. The velocity state is thus fully determined by only
three variables and we choose H so that

V b0b = HṼ b0b, H = [03×3 I3×3]
T
. (20)

The corresponding matrices Si ∈ R(3+n)×(3+n) can be
collected in one block-diagonal matrix S given by

S(Q,φ) =





(

I −
1

2
φ̂V +

1

6
φ̂2V + . . .

)

0

0 I



 . (21)

The precise computational details of the partial derivatives
follow the same steps as for the SE(3) case except for CV V .

Note that
∂Mij

∂φk
= 0 for k < 4 and

∂Sij

∂φk
= 0 for i, j, k > 3.

When differentiating and evaluating at φ = 0 the matrices
∑ ∂Sij

∂φk
are equal to − 1

2 êk where ek is a 3-vector with 1

in the kth entry and zeros elsewhere. Similarly,
∑

∂Sik

∂φj
is

equal to 1
2 êk. We then get

CV V (Q, v) =

6∑

k=1

∂MV V

∂qk
q̇k − ̂(M(q)v)Ṽ (22)

where (M(q)v)Ṽ is the vector of the first three entries of

the vector M(q)v (corresponding to Ṽ b0b).

3. STATE OF THE ART
SPACECRAFT-MANIPULATOR DYNAMICS

3.1 State of the Art Spacecraft Dynamics

The attitude of a spacecraft is normally described by the
Euler parameters, or unit quaternion. This is motivated by
their properties as a nonsingular representation. We note
that this is not the minimal representation, nor general-
ized coordinates, and thus not suited for the Lagrangian
approach. Also, when transforming back to Euler angles
from the unit quaternion representation a singularity is
present for θ = ±π

2 . Any positive rotation ψ about a
fixed unit vector n can be represented by the four-tuple

Q =
[

η εT
]T
, where η = cos (ψ2 ) ∈ R is the scalar part

and ε = sin (ψ2 )n ∈ R3 the vector part. The kinematic
differential equations can now be given by (Hughes, 2002)

η̇ = −
1

2
εTω0

0b, ε̇ =
1

2
(ηIb + ε̂)ω0

0b (23)



where ω0
0b is the angular velocity of the body frame with

respect to the orbit frame and Ib the spacecraft inertia
matrix. The attitude dynamics are given by

Ibω̇
0
0b + ω̂0

0bIbω
0
0b = τ. (24)

3.2 State of the Art Spacecraft-Manipulator Dynamics

The equations of motion of a spacecraft-manipulator sys-
tem can be written as

M(Q)v̇ + C(Q, v)v = τ. (25)

Here, v =
[

ṙT0 (ω0
0b)

T q̇T
]T

where r0 is the position of

the center of mass of the spacecraft, ω0
0b the angular

velocity of the spacecraft and q is the joint position of
the manipulator.

Alternatively we can use the center of mass of the whole
system to represent the translational motion. Then v =
[

ṙTcm (ω0
0b)

T q̇T
]T

where ṙcm is the linear velocity of the
center of mass of the spacecraft-manipulator system. This
is decoupled from the angular velocity ω0

0b and the inertia
matrix for a free-flying spacecraft-manipulator system can
be written as (Dubowsky and Papadopoulos, 1993)

M =





mI 0 0
0 Mωω MT

qω

0 Mqω Mqq



 (26)

where m is the total mass of the system. The Euler angle
rates Θ̇0b relate to ω0

0b by

Θ̇0b = TΘ0b
(Θ0b)ω

0
0b. (27)

Again TΘ0b
(Θ0b) is singular at isolated points. The control

torques are given by τ =
[
τTv τTω τTq

]T
where τv is the

spacecraft forces, τω is the spacecraft moments, and τq is
the manipulator torques.

Other models are also available depending on the actuators
available to control the spacecraft. In the case where
τv, τw 6= 0 (free-flying space robots) the center of mass of
the system is not constant, but described by the variable

rcm of Equation (25) if we let v =
[

ṙTcm (ω0
0b)

T q̇T
]T
. If no

external forces act on the system and the spacecraft is not
actuated, the center of mass does not accelerate, i.e., the
system linear momentum is constant and ṙcm = 0. This
can be used to simplify the equations to an n-dimensional
system with inertia matrixMr =Mqq−MqωM

−1
ωωM

T

qω and
we get the reduced system by eliminating ω

Mr(Q)q̈ + Cr(Q, v)q̇ = τq. (28)

The attitude of the spacecraft is then found from

ω = −M−1
ωωM

T

qω q̇. (29)

4. THE PROPOSED APPROACH

4.1 Configuration space SE(3)

The configuration space of a spacecraft can be described by
the Lie group SE(3) with respect to an orbit-fixed frame.
The dynamic equations can be written as
[

MV V MT

qV

MqV Mqq

] [

V̇ b0b
q̈

]

+

[
CV V CV q
CqV Cqq

] [

V b0b
q̇

]

=

[
τV
τq

]

(30)

where

C(Q, v) =

n∑

k=1

∂M

∂qk
q̇k (31)

−
1

2





2 ad(M(q)v)V 0
∂T

∂q

(
[
MV V MT

qV

]
[

V b0b
q̇

])
∂T

∂q

(
[
MqV MT

qq

]
[

V b0b
q̇

])



.

The dynamics are singularity-free and with state variables

Q = {g0b ∈ SE(3), q ∈ Rn} and v =
[

(V b0b)
T q̇T

]T
∈ R6+n,

and valid for both for actuated and unactuated spacecraft.

4.2 Configuration space SO(3)

For free-floating spacecraft we have τV = 0 and rcm is thus
decoupled from the angular velocity of the spacecraft so
we write the kinetic energy of link i of the system as

Ti =
1

2

[

(ω0
0b)

T q̇T
]
Mi(q)

[

ω0
0b
q̇

]

=
1

2
vTMi(q)v (32)

where

Mi(q) :=

[
HT AdTgib IiAdgib H HT AdTgib IiAdgib Ji
JT

i AdTgib IiAdgib H JT

i AdTgib IiAdgib Ji

]

.

and the inertia matrix is given by substituting this into
(10) and H given as in (20). The configuration space is
then given by Q = {R0b, q}.

The upper left part of the Coriolis matrix then becomes
(following the mathematics of (20-22))

CV V (Q, v) =

n∑

k=1

∂MV V

∂qk
q̇k − ̂(M(q)v)Ṽ (33)

where (M(q)v)Ṽ is the vector of the first three entries

of the vector M(q)v (corresponding to Ṽ b0b = ω0
0b). The

dynamic equations can now be written by (30) with

velocity state v =
[

(ω0
0b)

T q̇T
]T

and configuration space
Q = {R0b, q}. Again we note that the singularity that
normally arises when using the Euler angles is eliminated
and the state space (Q, v) is valid globally.

Alternatively we can re-write the mass matrix as

Mr =Mqq −MqVMV VM
T

qV . (34)

The Coriolis matrix is then found by

Cr(Q, v) =

n∑

k=1

∂Mr

∂qk
q̇k −

1

2

∂T

∂q
(Mrv) (35)

withMr as in (34) and the dynamics are described by (28).

Computing the Partial derivatives of M(q1, . . . , qn) The
partial derivatives of the inertia matrix with respect to
q1, . . . , qn are computed by

∂M(q1, . . . , qn)

∂qk
= (36)

n∑

i=k

([
HT

JT

i

] [
∂T Adgib
∂qk

IiAdgib +AdTgib Ii
∂Adgib
∂qk

]

[H Ji]

)

+

n∑

i=k+1









0m×m

∂TJi

∂qk
AdTgib IiAdgib H

. . .

. . .

HT AdTgib IiAdgib
∂Ji

∂qk
∂TJi

∂qk
AdTgib IiAdgib Ji + JT

i AdTgib IiAdgib
∂Ji

∂qk









 .



Proposition 1. Express the velocity of joint k as V
(k−1)
(k−1)k =

Xk q̇k for constant Xk. The partial derivatives of the
adjoint matrix is given by

∂Adgij
∂qk

=







Adgi(k−1)
adXk

Adg(k−1)j
for i < k ≤ j

−Adgi(k−1)
adXk

Adg(k−1)j
for j < k ≤ i

0 otherwise

Proof: To prove this, we write out the spatial velocity of
frame Ψk with respect to Ψ(k−1) when i < k ≤ j:

X̂k q̇k = V̂
(k−1)
(k−1)k = ġ(k−1)kg

−1
(k−1)k =

∂g(k−1)k

∂qk
gk(k−1)q̇k

where X̂ :=
[

X̂ω Xv

0 0

]

. Comparing these terms we get

∂R(k−1)k

∂qk
= X̂ωR(k−1)k,

∂p(k−1)k

∂qk
= X̂ωp(k−1)k +Xv.

We can use this relation in the expression for the partial
derivative of Adg(k−1)k

:

∂Adg(k−1)k

∂q
=

[
∂R(k−1)k

∂qk

p̂(k−1)k
∂qk

R(k−1)k+p̂(k−1)k

∂R(k−1)k
∂qk

0
∂R(k−1)k

∂qk

]

=

[
X̂ω X̂v

0 X̂ω

] [
R(k−1)k p̂(k−1)kR(k−1)k

0 R(k−1)k

]

= adXk
Adg(k−1)k

(37)

It is now straight forward to show that

∂Adgij
∂qk

= Adgi(k−1)

∂Adg(k−1)k

∂qk
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)j
. (38)

The proof is similar for j < k ≤ i.

Implementation We first define the vector

ξ = (M(q)v)V =






(M(q)v)1
...

(M(q)v)m




 =

[
MV V MT

qV

]
[

V b0b
q̇

]

.

This gives the adjoint part of the second part of (19) as

adξ =










0 −ξ6 ξ5 0 −ξ3 ξ2
ξ6 0 −ξ4 ξ3 0 −ξ1
−ξ5 ξ4 0 −ξ2 ξ1 0
0 0 0 0 −ξ6 ξ5
0 0 0 ξ6 0 −ξ4
0 0 0 −ξ5 ξ4 0










. (39)

The lower part of the second term in (19) is found from

∂T

∂q
(M(q)v)V =













∂(Mv)1
∂q1

∂(Mv)2
∂q1

· · ·
∂(Mv)6
∂q1

∂(Mv)1
∂q2

∂(Mv)2
∂q2

· · ·
∂(Mv)6
∂q2

...
. . .

...
∂(Mv)1
∂qn

∂(Mv)2
∂qn

· · ·
∂(Mv)6
∂qn













(40)

where
∂(Mv)j
∂qk

is calculated as

∂(Mv)j
∂qk

=

6+n∑

i=1

∂Mji

∂qk
vi. (41)

The second part of (18) is computed in the same way. We

thus only need to compute the partial derivative ∂M(q)
∂qi

once and use the result in the both in the first and second
part of (19).

5. CONCLUSIONS

In this paper the dynamic equations of spacecraft-
manipulator systems are derived based on Lagrange’s
equations. The main contribution is to close the gap be-
tween manipulator dynamics which are normally derived
based on the Lagrangian approach and spacecraft dynam-
ics which are normally derived using other approaches
in order to avoid singularities. The proposed framework
allows us to derive the dynamics of spacecraft using a min-
imal, singularity-free representation based on Lagrange’s
equations which naturally extends to include also the ma-
nipulator dynamics. This is derived for the first time in
this paper using the proposed framework.
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