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Abstract— Explicit solutions to constrained linear MPC
problems can be computed by solving multi-parametric
quadratic programs (mpQP), where the parameters are the
components of the state vector. The solution to the mpQP is
a piecewise affine (PWA) function, which can be evaluated
at each sample to obtain the optimal control law. The on-
line computation effort is restricted to a table-lookup, and the
controller can be implemented on inexpensive hardware as
fixed-point arithmetics can be used. This is highly desirable for
systems with limited power and CPU resources. An example
of such systems is micro-satellites, which is the focus of this
paper. In particular, the explicit MPC (eMPC) approach is
applied to the SSETI/ESEO micro-satellite project, initiated
by the European Space Agency (ESA). The theoretical results
are supported by simulations.

I. INTRODUCTION

The purpose of this paper is twofold. First, we establish
a nonlinear model of a micro-satellite, with thrusters and a
reaction wheel as actuators. Secondly, we propose a strategy
to solve the attitude control problem for this satellite.

However, unlike preceding work, typically carried out
using PD- or LQ-control [12], Lyapunov design procedures
[2]-[3], sliding mode [4]-[5], adaptive- or quaternion feed-
back techniques [6]-[8],H∞ orH2/H∞ [9]-[11], the focus
of this paper will be on explicit Model Predictive Control.
This approach is shown to be a highly potential scheme,
which should be considered if constraints need to be taken
into account, while real-time optimization is impossible due
to computational limitations. To the best knowledge of the
authors, this approach has not yet been applied to attitude
control of spacecrafts.

Stability proofs are not considered at this point. A poten-
tial approach is to search for piecewise quadratic Lyapunov
functions by solving a convex optimization problem. In [13]
this was done using linear matrix inequalities (LMIs).

When implementing the solution, an important thing to
keep in mind is that the actuating thrusters are on-off by
nature. A bang-bang modulation scheme with dead-zone
will be utilized to address this problem.

The structural data and satellite model is based on the
SSETI micro-satellite project, initiated by ESA.

The results in this paper are based on the work in [1].
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A. Explicit Model Predictive Control

When solving an MPC problem the control action, or
equally, the solution, is obtained by computing an open-loop
optimal sequence of control inputs on a predefined horizon,
once for each time sample. The first control input in the
sequence is then applied to the plant, and the optimization
is repeated with the new initial conditions and on the
new horizon, shifted one step ahead. Due to the shifted
horizon, the termreceding horizon controlis commonly
used interchangeably with MPC. For the remainder of this
section, the process to be controlled can be described by a
discrete-time, deterministic linear state-space model, that is

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k),

(1)

where x(k) ∈ Rn is the state variable,u(k) ∈ Rm is
the input variable,A ∈ Rn×n, B ∈ Rm×m, and (A,B)
is a stabilizable pair. If we now consider the regulator
problem, that is, the problem of driving the state vector
to the origin, the traditional MPC solves the following
optimization problem for the currentx(k)

min
U,s

{J (U, s,x(k))} subject to:

ymin − s ≤ yk+i|k ≤ ymax + s, i = 1, . . . , N
umin ≤ uk+i ≤ umax, i = 1, . . . ,M − 1
uk+i = Kxk+i|k, M ≤ i ≤ N − 1
xk|k = x(k)
xk+i+1|k = Axk+i|k + Buk+i, i ≥ 0
yk+i = Cxk+i|k, i ≥ 0

(2)

where the cost function we seek to minimize is given as

J = ρ‖s‖2
2 + xT

k+N |kPxk+N |k

+ ΣN−1
i=0

{
xT

k+i|kQxk+i|k + uT
k+iRuk+i

}
,

(3)

and U , [uT
k, . . . ,uT

k+M−1]
T, s ,

[
sT
k, . . . , sT

k+N−1

]T
,

R = RT > 0, Q = QT≥ 0, P = PT > 0, xk+i|k is the
prediction ofx(k + i) at time k, M and N are input and
constraint horizons. When the final cost matrixP and
gain matrix K are calculated from the algebraic Riccati
equation, under the assumptions that the constraints are
not active for i ≥ M and i ≥ N , (2) exactly solves
the constrained infinite horizon LQR problem for (1),



with weight matricesR and Q. The additional variable
s ∈ Rns is a vector containing slack variables, while
the term‖s‖2 is the L2-norm of s, and ρ is the penalty
weight of the slack variables. Note that using theL2-norm
is only one way of including slack variables. The slack
variables are defined in such a way that they are nonzero
only if the output constraints are violated, yet heavily
penalized in the cost function, so that the optimizer has a
strong incentive to keep them zero if possible. If we have
ρ = ∞, or equallys = 0, the MPC problem in (2) obtains
its most simple form, only involvinghard constraints.
For some applications the latter is the only applicable,
e.g. physical limitations of components or saturation in
actuation. The consequence of including hard constraints
is that infeasibility may occur. This can for instance be
the case if initial conditions are infeasible, if noise causes
the output to go outside the feasible solution space in the
next time step, or if there are serious model uncertainties.
Obviously, this needs to be addressed in real applications,
where the introduction of slack variables is one possibility.

1) From linear MPC to mpQP:It is shown in [14], with
ρ = ∞, that the MPC problem (2) can be reformulated as

Vz(x(k)) = min
z

{
1
2
zTHz

}
subject to: Gz ≤ W + Sx(k),

(4)

wherez , U + H−1FTx(k), U is defined as in (2), and
x(k) is the current state, which can be treated as a vector
of parameters. We have thatz ∈ Rnz , H ∈ Rnz×nz ,
G ∈ Rq×nz , W ∈ Rq×1, and S ∈ Rq×n. Note that
H > 0 since R > 0. This is a strong result, as the
problem formulated in (4) is strictly convex, and the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient
conditions for optimality, giving an unique solution.

As shown in [14], the mpQP in (4) can be solved by
applying the KKT conditions

Hz + GTλ = 0, λ ∈ Rq,

λr (Grz−Wr − Srx(k)) = 0, r = 1, . . . , q,
λ ≥ 0,

Gz−W − Sx(k) ≤ 0,

(5)

where the superscriptr on a matrix denotes therth row,
while q is the number of inequalities in the optimization
problem. The number offree variablesis nz = m ·N .

A key observation is that (4) is solved explicitly for all
x. It is shown in [14] that the solutionz∗(x(k)), hence
U∗(x(k)), is a continuous piecewise affine (PWA) function
defined over a polyhedra partition. Consequently, the on-
line effort is limited to evaluating this PWA function.

Even though not derived for the case of including slack
variables, both (4) and (5) can easily be extended to cover
this situation, by defining the augmenting matricesH̃ ∈
Rñz×ñz , G̃ ∈ Rq×ñz , and z̃ , [z, s]T ∈ Rñz . The number
of free variables now becomes̃nz = nz + ns.

B. SSETI/ESEO

The Student Space Exploration& Technology Initiative
(SSETI) comprises several satellite projects. The specific
satellite to be studied in this paper is the European Student
Earth Orbiter (ESEO). Through the project, students from
different European universities participate in designing,
building and operating a micro-satellite. In addition to
the satellite, the project includes the payload carried by
the spacecraft and the associated ground systems. A short
summary of structural data is given in Table I.

TABLE I

SSETI/ESEO PARAMETERS

Parameter Value

Satellite inertia matrix,I diag(4.250, 4.337, 3.664) [kg m2]
Axial wheel inertia,Is 4 · 10−5 [kg m2]
Axial wheel placement,Λ [0, 1, 0]T

Nominal thruster torque,Knom [0.0484, 0.0484, 0.0398]T [Nm]
Maximum applied wheel torque 0.0020 [Nm]
Maximum wheel velocity 527 [rad/s] ≈ 5032 rpm

II. MODELLING

In this section, a model describing a satellite with
thrusters and aL-wheel cluster is derived. The notation is
based on [16] and [17].

A. Kinematics

Due to their nonsingular parametrization, the Euler pa-
rameters are chosen to represent the kinematics. The Euler
parameters are defined in terms of the angle-axis parameters
θ andk, and the mapping is defined as

η = cos
θ

2
, ε = k sin

θ

2
(6)

which gives the corresponding rotation matrix

R(η, ε) = 1 + 2ηε× + 2ε×ε×. (7)

From the properties of the rotation matrix, it can be
shown that

Ṙb
o = (ωb

bo)
×
Rb

o = −(ωb
ob)

×
Rb

o (8)

whereωb
ob is defined as the angular velocity of the body

frame Fb relative the orbit frameFo, measured inFb,
and Rb

o is the rotation matrix fromFb to Fo. The orbit
frame has its origin located at the center of mass of the
satellite. Its z-axis is always nadir pointing (towards the
center of Earth), while its x-axis is pointing in the direction
of the forward velocity. The y-axis completes a right-
hand coordinate system. From (7) and (8), the kinematic
differential equations can be found as

η̇ = −1
2
εTωb

ob (9a)

ε̇ =
1
2

[
η1 + ε×

]
ωb

ob (9b)



B. Dynamics

The equations of motion for aL-wheel gyrostat can be
written as

ḣb = τe −
[
J−1(hb −Λha)

]
× hb (10a)

ḣa = τa (10b)

whereha is theL× 1 vector of the axial angular momenta
of the wheels,τe is the3× 1 vector of the external torque
acting on the body, not including wheel torques,τa is the
L × 1 vector of the internal axial torques applied by the
platform to the wheels, andΛ is the 3 × L matrix whose
columns contain the axial unit vectors of theL momentum
exchange wheels. Letωb

ib denote the angular velocity of the
body frameFb relative to an inertial frameFi, measured
in Fb. Then, the vectorhb is the total angular momentum
of the spacecraft in the body frame, given as

hb = Jωb
ib + Λha (11)

whereJ is the inertia-like matrix defined as

J , I−ΛIsΛT (12)

The matrix I is the inertia of the spacecraft, including
wheels, and the matrixIs = diag{Is1, Is2, ..., IsL} contains
the axial moments of inertia of the wheels. The axial angular
momenta of the wheels can be written in terms of the
body angular velocity and the axial angular velocities of
the wheels relative to the body,ωs, as

ha = IsΛTωb
ib + Isωs (13)

Note thatωs = [ωs1,ωs2, ...,ωsL]T is anL× 1 vector, and
that these relative angular velocities are those that would for
instance be measured by tachometers fixed to the platform.

Equation (10) can also be written in terms of angular
velocities. By definingµ , [hb,ha]T and υ , [ωb

ib,ωs]T

we can write (11) and (13) in the compact form

µ = Γυ, whereΓ =
[

I ΛIs

IsΛT Is

]
(14)

Clearly, we can findωb
ib and ωs from υ = Γ−1µ, or

equally, we can writeυ̇ = Γ−1µ̇. By utilizing the matrix
inversion lemma, together with (14), we get that[

ω̇b
ib

ω̇s

]
=

[
J−1 −J−1Λ

−ΛTJ−1 ΛTJ−1Λ + I−1
s

] [
ḣb

ḣa

]
(15)

which can be written as

ω̇b
ib = J−1

[
−(ωb

ib)
×(Iωb

ib + ΛIsωs) + τe

]
−Λτa (16a)

ω̇s = ΛTJ−1
[
(ωb

ib)
×(Iωb

ib + ΛIsωs)− τe

]
+

[
ΛTJ−1Λ + I−1

s

]
τa (16b)

As can be seen from (16), the angular velocities are given
in Fb relative toFi, while the kinematics in (9) are relative
to Fo. However, it would be preferable if we in the model

could represent the attitude ofFb relative toFo. This can
be done by utilizing the relation

ωb
ib = ωb

ob + Rb
oω

o
io and ω̇b

ib = ω̇b
ob + Ṙb

oω
o
io (17)

whereωo
io = [0,−ω0, 0]T, andω0 is assumed constant and

equal to the mean angular velocity ofFo, given inFi. This
implies circular orbits. For the remainder, we letci denote
the i’th column of the rotation matrixRb

o. We also include
the gravity gradient as a disturbance, that isτe = τ + τg,
where τ is the torque provided from thrusters, while the
gravity gradient is given as

τg = 3ω2
0 [c3 × (Ic3)] . (18)

By utilizing (8) and (17), we can rewrite (16) as

ω̇b
ob = f̂inert + f̂τ + f̂g + f̂add (19a)

ω̇s = f̄inert + f̄τ + f̄g (19b)

where

f̂inert = J−1
[
−(ωb

ob − ωoc2)×(
I [ωb

ob − ωoc2] + ΛIsωs

)]
f̄inert = ΛTJ−1

[
(ωb

ob − ωoc2)×(
I [ωb

ob − ωoc2] + ΛIsωs

)]
f̂τ = J−1τ − J−1Λτa

f̄τ = −ΛTJ−1τ +
[
ΛTJ−1Λ + I−1

s

]
τa

f̂g = J−1
[
3ω2

0c3 × (Ic3)
]

f̄g = −ΛTJ−1
[
3ω2

0c3 × (Ic3)
]

f̂add = ωoċ2

III. ATTITUDE CONTROL BY MEANS OF
EXPLICIT MPC

In the following, the explicit MPC controller is computed
based on the work and algorithms in [15], and some aspects
considering implementation are discussed.

The complete nonlinear model (9) and (19) is written as

ẋ = f(x,u) = [ω̇b
ob, ω̇s, η̇, ε̇]T (20)

whereωb
ob , [ω1, ω2, ω3]T, ωs , ωs, ε , [ε1, ε2, ε3]T, and

u , [τ T, τ T
a]T = [τ1, τ2, τ3, τa]T.

A. Explicit MPC controller for the SSETI/ESEO satellite

As we consider a linear MPC approach in this paper, it is
necessary to linearize the nonlinear model (20). By choos-
ing the equilibrium pointp equal toxp = [04, 1,03]T,up =
04, which equals the scenario whereFb coincides withFo

and the angular velocity of the wheel is zero, it can be found
that the linearized model can be written as

∆ẋ = Ac∆x + Bc∆u (21)



where the matricesAc andBc are given as

Ac =



0 0 (1−kx)ω0 0
0 0 0 0

(kz−1)ω0 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1

2 0

0 −8kx ω2
0 0 0

0 0 −6 kyi22 ω2
0

κ 0
0 0 0 −2kzω2

0

0 0 6 kyi22 ω2
0

κ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(22a)

Bc =



1
i11

0 0 0
0 1

κ 0 − 1
κ

0 0 1
i33

0
0 − 1

κ 0 i22
κ Is

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(22b)

where we usedI = diag(i11, i22, i33), kx = i22−i33
i11

, ky =
i11−i33

i22
, kz = i22−i11

i33
, andκ = i22 − Is for short.

From the system matrix in (22a), we immediately con-
clude that the linearized system is uncontrollable, as the
terms corresponding to the stateη equal zero. However, the
linearized system is found to be stabilizable, and omitting
η, also controllable. Also note that we can utilize the fact
that the Euler parameters satisfyη2 + εTε = 1, making us
able to keep track of, and updateη in an open-loop manner.

Before we can apply the mpQP algorithm, (21) is con-
verted into an equivalentdiscrete-timeform by utilizing a
modified first-order hold approach. The sampling time is
chosen asTs = 0.1 [sec], and when deriving the controller,
η is omitted, introducing the new state vectorx̃ ∈ R7.

TABLE II

SUMMARY OF TUNING PARAMETERS

Parameter Value

Q diag{200, 200, 200, 5 · 10−7, 1, 1, 1}
R diag{100, 200, 100, 1}

N (horizon) 2

ρ (slack) 8 · 10−5

The tuning parameters used for deriving the explicit MPC
controller are summarized in Table II. Furthermore, the

parameter space, in which solve the mpQP, is chosen as

−[1, 1, 1, 1000, 1, 1, 1]T ≤ x̃ ≤ [1, 1, 1, 1000, 1, 1, 1]T (23)

while the desirable constraints are given as

umax = −umin =


0.0484
0.0484
0.0398
0.0020

 , |ωs| ≤ 527. (24)

The constraints onu are chosen based on the nominal
thruster torques and maximum wheel torque, given in Table
I, while the constraint on the wheel angular velocity was
defined by the SSETI project due to power consumption.

The solution of the mpQP, obtained from the discrete-
time version of (21), Table I and II, and (24), gives a poly-
hedral partition over the parameter space in (23), consisting
of 2867 regions. If we denote each of these polyhedra asXi,
wherei is the specific region, thenXi ⊂ R7. Examples of
planar intersections are shown in Fig. 1. Each polyhedron
contains an optimal control law such that ifx̃(k) ∈ Xi then

u(k) = Kix̃(k) + ki. (25)
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Fig. 1. Polyhedral partition,N = 2 andρ = 8 · 10−5



B. Bang-bang modulation

A bang-bang modulation scheme can be applied for
dealing with the on-off nature of the actuating thrusters. The
technique is best explained through Fig. 2, whereKnom is
the nominal thruster torques, andu∗ is given according to

u∗ : sign(u) =

{
−1 if u ≤ −dz,

1 if u ≥ dz.
(26)

Other techniques also exist in solving this problem, one
being pulse-with pulse-frequency (PWPF) modulation [6].

Fig. 2. Bang-bang modulation with dead-zone

IV. SIMULATIONS

The closed-loop simulations in this section have been
performed with the complete nonlinear model (20), where
initial conditions for the dynamics and kinematics, as well
as initial Keplerian orbital elements, are given in Table III.

Usually control requirements for a satellite are specified
according to the diversified situations it is expected to face
during its lifetime. However, only thenominal mode will
be considered at this point, which means that the best
obtainable result is whenever the body frameFb coincides
with the orbit frameFo.

In the plots the Euler parameters have been transformed
into Euler angles [deg].

A. Case I

No noise is present in this case, and the bang-bang
modulation is not applied. The results are given in Fig. 3,
and as can be seen, the state trajectories converge to zero
while keeping actuation and states within their constraints.

B. Case II

Similar scenario as in Case I, but also including measure-
ment noise according to Table IV. Bang-bang modulation is
used for realizing the on-off nature of the thrusters, where
the dead-zone,dz, is chosen based on performance as well
as fuel consumption. The results are given in Fig. 4. As
in Case I, we obtain a desired behavior while none of the
constraints are violated.

V. CONCLUSIONS

It has been shown that explicit solutions to constrained
linear MPC problems can be computed for the attitude
control problem by solving multi-parametric quadratic pro-
grams (mpQP). Through theory and simulations the ap-
proach has shown to be highly potential, and it should be
considered if constraints need to be taken into account.

TABLE III

SUMMARY OF SIMULATIONS

Case I and II Initial condition Set-point Unit
ωb

ob {−0.05, 0.15,−0.08} {0, 0, 0} rad/s
ωs 400 0 rad/s
Euler angles (XYZ) {−25, 60, 90} {0, 0, 0} deg

Keplerian elements Initial condition Unit
[i, ω, Ω, ν] {7, 178,−10, 0} deg
a 17125 km
e 0.0 -

TABLE IV

RMS ERRORS IN STATES

States Errors Unit
ωb

ob {0.0035, 0.0052, 0.0035} rad/s
ωs 0.5 rad/s
Euler angles (XYZ) {0.1, 0.1, 0.1} deg
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Fig. 3. Case I,N = 2 andρ = 8 · 10−5
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Fig. 4. Case II,N = 2 andρ = 8 · 10−5


