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Abstract—Explicit solutions to constrained linear MPC  A. Explicit Model Predictive Control

problems can be computed by solving multi-parametric . .
quadratic programs (mpQP), where the parameters are the When solving an MPC problem the control action, or

components of the state vector. The solution to the mpQP is €qually, the solution, is obtained by computing an open-loop
a piecewise affine (PWA) function, which can be evaluated optimal sequence of control inputs on a predefined horizon,
at each sample to obtain the optimal control law. The on- gnce for each time sample. The first control input in the
line computation effort is restricted to a table-lookup, and the sequence is then applied to the plant, and the optimization
controller can be implemented on inexpensive hardware as . . - "
fixed-point arithmetics can be used. This is highly desirable for IS repeqted W'th_ the new initial conditions and on f[he
systems with limited power and CPU resources. An example NeW horizon, shifted one step ahead. Due to the shifted
of such systems is micro-satellites, which is the focus of this horizon, the termreceding horizon controis commonly
paper. In particular, the explicit MPC (eMPC) approach is  ysed interchangeably with MPC. For the remainder of this
applied to the SSETI/ESEO micro-satellite project, initiated  gaction. the process to be controlled can be described by a
by the European Space Agency (ESA). The theoretical results . - L :
discrete-time deterministic linear state-space model, that is

are supported by simulations.
I. INTRODUCTION x(k +1) = Ax(k) + Bu(k) "

The purpose of this paper is twofold. First, we establish y(k) = Cx(k),
a nonlinear model of a micro-satellite, with thrusters and where x(k) € R™ is the state variablen(k) € R™ is
reaction wheel as actuators. Secondly, we propose a stratepg input variable A € R**", B € R™*™, and (A, B)
to solve the attitude control problem for this satellite. is a stabilizable pair. If we now consider the regulator
However, unlike preceding work, typically carried outproblem, that is, the problem of driving the state vector
using PD- or LQ-control [12], Lyapunov design procedureso the origin, the traditional MPC solves the following
[2]-[3], sliding mode [4]-[5], adaptive- or quaternion feed-optimization problem for the current(k)
back techniques [6]-[8]H Or Ha2/Ho [9]-[11], the focus . .
of this paper will be on explicit l\//lodel Predictive Control. Itr}fél{j(U’s’x(k))} subject to:
This approach is shown to be a highly potential scheme, .
which should be considered if constraints need to be taken Ymin ~ 8 < Yktilk < Ymax £, i=1,...,N

into account, while real-time optimization is impossible due ~ "min f E““ S u“j\}"’! ,:<1’]\'7' M -1 )
to computational limitations. To the best knowledge of the ~ Wk+i = (;kﬂlk’ st N-1
Xklk = X

authors, this approach has not yet been applied to attitude
control of spacecrafts.

Stability proofs are not considered at this point. A poten-
tial approach is to search for piecewise quadratic Lyapunayhere the cost function we seek to minimize is given as
functions by solving a convex optimization problem. In [13] 5 T
this was done using linear matrix inequalities (LMIs). J = plsllz + gy v PXrrnk

When implementing the solution, an important thing to + o {X-kr+i|kQXk+i\k + u-krﬂRuk’H}v (3)
keep in mind is that the actuating thrusters are on-off by
nature. A bang-bang modulation scheme with dead-zo A T T T A [T T T
will be utilized to address this problem. EniURT_JE’“’Q' Ssualn e o B Shanal

The structural data and satellite model is based on theegiction of;c(k +i) at_tirr'1ek, M and N arkeﬂi‘r’:put and
SSETI micro-satellite project, initiated by ESA. constraint horizons. When the final cost matiix and

The results in this paper are based on the work in [1]. gain matrix K are calculated from the algebraic Riccati
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Xititrilk = AXppipp + Buggi, 0 >0
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with weight matricesR and Q. The additional variable B. SSETI/ESEO

s € R"™ is a vector containing slack variables, while The Student Space Exploratida Technology Initiative

the term||s|; is the £o-norm of s, and p is the penalty (SSET) comprises several satellite projects. The specific
weight of the slack variables. Note that using #ignorm  gatejiite to be studied in this paper is the European Student
is only one way of including slack variables. The slackzarih Orbiter (ESEO). Through the project, students from
variables are defined in such a way that they are nonzegfxterent European universities participate in designing,
only if the output constraints are violated, yet heavilyyjiding and operating a micro-satellite. In addition to
penalized in the cost function, so that the optimizer has @e satellite, the project includes the payload carried by
strong incentive to keep them zero if possible. If we havg,q spacecraft and the associated ground systems. A short

p = oo, or equallys = 0, the MPC problem in (2) obtains symmary of structural data is given in Table |.
its most simple form, only involvinghard constraints.

For some applications the latter is the only applicable,
e.g. physical limitations of components or saturation in
actuation. The consequence of including hard constraints
is that infeasibility may occur. This can for instance be

TABLE |
SSET/ESEO PARAMETERS

the case if initial conditions are infeasible, if noise cause Parameter Value

- . i . Batellite inertia matrixI diag(4.250,4.337,3.664) [kg m?]
the output to go outside the feasible solution space in th@yial wheel inertia,I. 4-107° [kg m?]
next time step, or if there are serious model uncertaintiesixial wheel placementA [0,1,0]"

Obviously, this needs to be addressed in real applicationglominal thruster torqueKom  [0.0484,0.0484,0.0398]T [Nm]

. . . . - aximum applied wheel torque 0.0020 [N
where the introduction of slack variables is one possibility..imum Wﬂgel velocity a 527 [rad/s] z[ 56%]2 rpm

1) From linear MPC to mpQP1t is shown in [14], with

p = oo, that the MPC problem (2) can be reformulated as Il. MODELLING
V.(x(k)) = min {1zTHz} In this section, a model o_lescrit_)ing a satellite_ Wi_th
z |2 (4) thrusters and d.-wheel cluster is derived. The notation is
subject to: Gz < W + Sx(k), based on [16] and [17].

wherez = U + H'F'x(k), U is defined as in (2), and A. Kinematics
x(k) is the current state, which can be treated as a vectorpe tg their nonsingular parametrization, the Euler pa-

of parameters. We have that € R"-, H € R™*",  yameters are chosen to represent the kinematics. The Euler

G € R, W € R, andS € R?™". Note that parameters are defined in terms of the angle-axis parameters
H > 0 since R > 0. This is a strong result, as the g angk, and the mapping is defined as

problem formulated in (4) is strictly convex, and the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient n = cos 97 € — ksing (6)
conditions for optimality, giving an unique solution. 2 2

As shown in [14], the mpQP in (4) can be solved bywhich gives the corresponding rotation matrix

applying the KKT conditions R(1,€) = 1 + 2ne* + 2eX €. @)
Hz+G'A=0, \eRY
M (G"z—=W"—8"x(k))=0, r=1,...,q,
A >0,
Gz — W — Sx(k) <0,

From the properties of the rotation matrix, it can be
(5) shown that
. X X
Rg = (wp,) Ry = —(wgy) Ry (®)

where the superscript on a matrix denotes the™ row, wherew?, is defined as the angular velocity of the body

while ¢ is the number of inequalities in the optimizationframe b]:l? relative the orbit 'frame}‘o, measured in]:b.’
problem. The number dfee variablesis n, = m - N and R, is the rotation matrix from#;, to F,. The orbit
A key observation is that (4) is solved explicitly for all frame_ has its ongin located at th_e cente_r of mass of the
x. It is shown in [14] that the solutiom*(x(k)), hence satellite. Its z-axis IS glways_ngdlr pm_ntm_g (towqrds _the
U*(x(k)), is a continuous piecewise affine (PWA) functioncenter of Earth), whlle_ Its x-axis Is pointing In the d|regt|on
defined over a polyhedra partition. Consequently, the on‘?—f the forward velocity. The y-axis completes a ”ght',
line effort is limited to evaluating this PWA function. hgnd co.ordlnate.system. From (7) and (8), the kinematic
Even though not derived for the case of including slacKlifferential equations can be found as
variables, both (4) and (5) can easily be extended to cover R S (9a)
this situation, by defining the augmenting matridds € o= € Wob
My Xy X7z 5 A Nz 1
R , G € R?”": andz = [z,s] € R"-. The number . [+ ] w! (9b)

. ~ €
of free variables now becomeés, = n, + n,. 2



B. Dynamics could represent the attitude @, relative toF,. This can
The equations of motion for &-wheel gyrostat can be P& done by utilizing the relation

rien as Wy = wh + Rl and &l = &f,+ Rwy,  (17)
h, = 7.—[J '(h,—Ah,)] xh 10a
- I (b ] ’ (10a) wherew?, = [0, —wo, 0]", andwy is assumed constant and
h, = 7, (10b)

equal to the mean angular velocity &%, given inF;. This

whereh, is the L x 1 vector of the axial angular momenta implies circular orbits. For the remainder, we tgtdenote
of the wheels, is the3 x 1 vector of the external torque the i'th column of the rotation matriR?. We also include
acting on the body, not including wheel torques, is the the gravity gradient as a disturbance, thatris= 7 + 7y,
L x 1 vector of the internal axial torques applied by thevhere T is the torque provided from thrusters, while the
platform to the wheels, and is the 3 x L matrix whose 9ravity gradient is given as
columns contain the axial unit vectors of themomentum
exchange wheels. Let}, denote the angular velocity of the
body frameF, relative to an inertial framer;, measured
in F,. Then, the vectoh, is the total angular momentum

T, = 3wj [cz x (Ics)]. (18)

By utilizing (8) and (17), we can rewrite (16) as

of the spacecraft in the body frame, given as Wby = finert + fr+ g+ fada (19a)
o wnert T ad
h, = Jw!, + Ah, (11) Ws = finert + fr + fy (19b)
whereJ is the inertia-like matrix defined as where
a T .
J=1- AI&A (12) finert = ‘]_1 [_(wlo)b - WOCZ)X
The matrix I is the inertia of the spacecraft, including (Iwl, — woea] + ALw,)]
wheels, and the matrik, = diag{Is1, 5o, ..., Isz} contains Finert = ATI L [(Wh — woe2)”

the axial moments of inertia of the wheels. The axial angular

b
momenta of the wheels can be written in terms of the (I [wap, — woe2] +AIS°”S)]

body angular velocity and the axial angular velocities of fro= It —J7'AT,
the wheels relative to the body,, as fro= AT [ATTTAST Y 7,
h, = I,ATw!, + Lw, (13) fo = I [3wics x (Ics)]
P ATyl 2
Note thatw, = [w1,wss2, ..., wsz]' is anL x 1 vector, and fo = —A'I7[3wges x (Ieg)]

that these relative angular velocities are those that would for fadd = wo€a

instance be measured by tachometers fixed to the platform.
Equation (10) can also be written in terms of angular

velocities. By definingu = [hy, h,]T andv £ [w}, w,]T

we can write (11) and (13) in the compact form

I1l. ATTITUDE CONTROL BY MEANS OF
EXPLICIT MPC

I Al In the following, the explicit MPC controller is computed
p=Tv, wherel' = [ISAT I, ] (14) " pased on the work and algorithms in [15], and some aspects
considering implementation are discussed.
Clearly, we can findw}, and w, from v = T'~'u, or  The complete nonlinear model (9) and (19) is written as
equally, we can writey = I'"'f. By utilizing the matrix
inversion lemma, together with (14), we get that x = f(x,u) = Wb, ws, 7, €] (20)

wh J1! ~J 1A h b oo T N N T
{ _zb:| _ {_ATJ—l ATI-1A +IS_1] [hﬂ (15) wherew, £ (w1, wa,ws] , ws = ws, € = [€1,€,€3]", and

Ws u é [TTvT;]T - [TlaTQa TBvTa]T-

which can be written as o )
A. Explicit MPC controller for the SSETI/ESEO satellite

-b —1 b\ X b
o= I [ —(wh) (wy, + Alyw; A . . L L
Wib [ (i)™ (Twiy + ALws) + 7] As we consider a linear MPC approach in this paper, it is
—AT, (16a) necessary to linearize the nonlinear model (20). By choos-
ws = AT [(wh)*(Awh, + ALw;) — 7] ing the equilibrium poinp equal tox? = [0%,1,0°%]T, u? =
FATITA 4T (16b) 0%, which equals the scenario whefg coincides withF,

and the angular velocity of the wheel is zero, it can be found

As can be seen from (16), the angular velocities are giveRat the linearized model can be written as
in F, relative toF;, while the kinematics in (9) are relative

to F,. However, it would be preferable if we in the model Aax = A.ax + B.au (22)



where the matriced\. and B, are given as

parameter space, in which solve the mpQP, is chosen as

0 0 (-kwo O —[1,1,1,1000,1,1,1]T < X% < [1,1,1,1000,1,1,1]" (23)
0 0 0 0 while the desirable constraints are given as
(’“Z‘O”“"’ 8 8 8 0.0484
A, = | 0.0484 -
0 0 0 0 Umaz = Umin = 00398 ) |ws| = 527 (24)
i 0 0 0 0.0020
0 % 0 0 The constraints omi are chosen based on the nominal
L 0 0 % 0 thruster torques and maximum wheel torque, given in Table
0 sk w? 0 0 I, while the constraint on the wheel angular velocity was
o0 6k a2 defined by the SSETI project due to power consumption.
0 0 ran The solution of the mpQP, obtained from the discrete-
0 0 0 —2k.wj time version of (21), Table | and Il, and (24), gives a poly-
0 0 6 kyizo wo 0 29 hedral partition over the parameter space in (23), consisting
0 0 " 0 (22a) of 2867 regions. If we denote each of these polyhedt#;as
wherei is the specific region, the&; c R”. Examples of
0 0 0 0 planar intersections are shown in Fig. 1. Each polyhedron
0 0 0 0 contains an optimal control law such thatifk) € X; then
_0 0 0 i 0. u(k) = K;x(k) + k;. (25)
L 0 0 0
211
0 1 0 1 1000
0 0o L o0
1 o %
BC _ 0 s 0 HQIzs (22b) 500
0 0 0 0
0 0 0 0 .
0O 0 0 0 =0
(0 0 0 0]
where we used = diag(i11, i22, ig3), kr = 2255, k, = 500
Wi |, = i221.;;11, andk = iy — I, for short.
From the system matrix in (22a), we immediately con-

clude that the linearized system is uncontrollable, as the = -1

1000 )
0.5 1

-0.5 0
2

terms corresponding to the stateequal zero. However, the
linearized system is found to be stabilizable, and omitting
n, also controllable. Also note that we can utilize the fact
that the Euler parameters satisfy + €"e = 1, making us
able to keep track of, and updajen an open-loop manner.

Before we can apply the mpQP algorithm, (21) is con-
verted into an equivalerdiscrete-timeform by utilizing a
modified first-order hold approach. The sampling time is
chosen ag’; = 0.1 [sec], and when deriving the controller,
n is omitted, introducing the new state vecfor R”.

TABLE I
SUMMARY OF TUNING PARAMETERS

Parameter [ Value |
Q diag{200, 200, 200,5 - 107, 1, 1,1}
R diag{100, 200, 100, 1}
N (horizon) 2
p (slack) 8-107°

The tuning parameters used for deriving the explicit MPC
controller are summarized in Table Il. Furthermore, the

w

0.5

Moo

(a) waws-plane

Fig. 1.

-500 500

0
(0]
s

(b) wsea-plane

Polyhedral partitionN =2 andp = 8 - 10~°

1000



B. Bang-bang modulation

A bang-bang modulation scheme can be applied fot
dealing with the on-off nature of the actuating thrusters. The—;

technique is best explained through Fig. 2, wh&rg,,,, is
the nominal thruster torques, and is given according to
-1 if u<—dz,

u, : sign(u) = 1 fu>ds (26)

Other techniques also exist in solving this problem, one
being pulse-with pulse-frequency (PWPF) modulation [6].

u —dz

W, | - Uy
s Kpom

Fig. 2. Bang-bang modulation with dead-zone

IV. SIMULATIONS

The closed-loop simulations in this section have been
performed with the complete nonlinear model (20), where
initial conditions for the dynamics and kinematics, as well®
as initial Keplerian orbital elements, are given in Table IlI.

Usually control requirements for a satellite are specified4]
according to the diversified situations it is expected to faceIS]

during its lifetime. However, only th@ominal mode will

be considered at this point, which means that the best

obtainable result is whenever the body frarfgcoincides
with the orbit frameF,.

In the plots the Euler parameters have been transformef]

into Euler angles [deq].
A. Case |

B. Case Il

Similar scenario as in Case |, but also including measurer1]
ment noise according to Table IV. Bang-bang modulation is
used for realizing the on-off nature of the thrusters, wher
the dead-zonalz, is chosen based on performance as we
as fuel consumption. The results are given in Fig. 4. As
in Case I, we obtain a desired behavior while none of th&l

constraints are violated.

V. CONCLUSIONS

It has been shown that explicit solutions to constrainefs)
linear MPC problems can be computed for the attitude
control problem by solving multi-parametric quadratic Proqyg)
grams (mpQP). Through theory and simulations the ap-
proach has shown to be highly potential, and it should b&7]

considered if constraints need to be taken into account.

TABLE Ill
SUMMARY OF SIMULATIONS

8

No noise is present in this case, and the bang-bané]
modulation is not applied. The results are given in Fig. 3ig
and as can be seen, the state trajectories converge to zero
while keeping actuation and states within their constraintsl.

2

[14]

Case | and Il Initial condition Set-point  Unit
wh, {-0.05,0.15,—-0.08}  {0,0,0} rad/s
ws 400 0 rad/s
Euler angles (XYZ) {—25, 60,90} {0,0,0} deg
Keplerian elements Initial condition Unit
[4,w, Q, V] {7,178, —10,0} deg
a 17125 km
e 0.0 -
TABLE IV
RMS ERRORS IN STATES
States Errors Unit
wb, {0.0035,0.0052,0.0035}  rad/s
ws 0.5 rad/s
Euler angles (XYZ) {0.1,0.1,0.1} deg
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