IFAC Journal of Systems and Control 13 (2020) 100103

Contents lists available at ScienceDirect

IFAC Journal of
Systems and Control

IFAC Journal of Systems and Control

journal homepage: www.elsevier.com/locate/ifacsc

Combined state and parameter estimation for not fully observable
dynamic systems”™

Christoph Josef Backi *"*, Jan Tommy Gravdahl ¢, Sigurd Skogestad "

2 BASF SE, 67056 Ludwigshafen am Rhein, Germany
b Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
¢ Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 14 January 2019

Received in revised form 4 April 2020
Accepted 20 July 2020

Available online 3 August 2020

In this paper, a simple, yet novel method for state estimation and parameter identification for
dynamic systems is presented. Apart from providing estimates of non-measurable state variables, the
algorithm is also capable of estimating (constant) system parameters. The estimation algorithm is
split in two parts. Firstly, an extended Kalman filter, whose state-space-model is augmented with
quasi-linear expressions for parameter values, providing estimates for the state variables and the
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state variable). It is shown that the algorithm is capable of estimating the state- and parameter-values
in a satisfying manner. The method is best applied offline and the theoretical developments will be
demonstrated in case studies.
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1. Introduction

The problem of combined estimation of state variables and
model parameters for dynamic systems can be attacked by many
methodologies. Some of these are for example (extended) Kalman
filters, for which the state-space is augmented by the parameters
in a quasi-stationary way. In addition, particle filters are often
used in order to estimate state variables and parameter values
of linear and nonlinear systems, but with rather high compu-
tational cost. This work should be seen in the context of the
wide field of system identification, may it be for empirical or
first principle models, static or dynamic relationships, inferential
measurements, etc. For a standard book in system identification,
we refer to Ljung (1999).

The results presented in this paper depict an extension to Backi,
Gravdahl, and Skogestad (2018).
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1.1. Application-oriented aspects

Even though for some applications, models with good approx-
imations of the real behavior of a plant can be found, often the
determination of suitable values for parameters of these models
is not an easy task. This is the case for models that are identified
by empirical analysis such as system identification, but also for
models, which are derived from first principles. In addition, the
values of system parameters can change with progressing time
in operation, may it be caused by fouling, reduction in friction,
and so on. This makes the determination of these parameters a
crucial task in order to approach an as precise representation of
the system as possible to be used in model-based controllers and
estimators.

1.2. Related works

The topic of combined state and parameter estimation and
identification is covered well in the literature. Sole state estima-
tion for linear dynamic systems can often be solved by utilizing
Luenberger-style observers and Kalman filters. These two princi-
ples can also be used to design estimators for nonlinear systems,
but require steady linearization of the dynamic system around
current state trajectories and operating points.

In addition to the Luenberger and Kalman methods, several
nonlinear state observer designs have been developed over the
years. These, however, only hold for specific classes of nonlinear
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systems (Arcak & Kokotovic, 2001; Esfandiari & Khalil, 1992;
Raghavan & Hedrick, 1994; Rajamani, 1998) and there exist no
generalized methods that can be applied for all kinds of systems.
In practice, one would often fall back to Kalman filter solutions,
since it provides some robustness properties.

All of the abovementioned methods require the principles of
observability or at least detectability to be ensured, either for the
case of linear systems as described by Kalman or nonlinear sys-
tems, as e.g. discussed in Hermann and Krener (1977), Marino and
Tomei (1995) and Nijmeijer and van der Schaft (1990) utilizing
Lie-derivatives.

The authors in Yu and Bernstein (2016) established initial
results towards the development of necessary and sufficient con-
ditions for combined state and parameter estimation. Their in-
vestigation holds for classes of linear systems, which inherently
become nonlinear for combined state and parameter estimation.
The original problem is thereby reformulated as an identifiability
problem.

Several works tackle the problem of state and parameter esti-
mation by utilizing Kalman filters and their derivatives. Ma, Ding,
Xiong, and Yang (2016) use several Kalman filtering techniques
for combined state and parameter estimation for Hammerstein
systems in the presence of unknown time delays. Evensen (2009)
utilizes an ensemble Kalman filter strategy for combined state
and parameter estimation based on Monte Carlo techniques,
especially for large systems. In Ding (2014a), the problem of
scarcely available measurements in the context of state and
parameter estimation is solved by state filtering and parame-
ter identification utilizing Kalman and least squares techniques.
In Ding (2014b), an algorithm is introduced that solves the state
and parameter estimation problem for classes of linear systems
in observer canonical form. Thereby, the parameters represent
entries in the system matrix A and the input matrix B of the linear
system, a somewhat similar problem to the linear examples pre-
sented in this paper. Ma and Ding (2015) presents iterative least
squares parameter estimation algorithms, among them a Kalman
filter technique, for linear systems, also in observer canonical
form, while in Ding, Liu, and Ma (2016) a similar problem is
addressed by decomposition methods. As can be seen, the above
listed estimation techniques solve special estimation problems,
may it be large systems, systems in specific forms and under
special circumstances.

Cox (1964) presents a real-time approach for discrete-time
linear systems in the context of combined state and parameter
estimation in an early work on this topic.

Schoén (2006) presents combined state and parameter estima-
tion for differential-algebraic equations, where marginal parti-
cle filters and sequential Monte-Carlo-simulations are utilized to
attack the problem.

The authors in Xu (2016) introduce an iterative method, in this
case for sine signal excitation in order to estimate parameters
of linear systems in the form of transfer functions. Guo and
Ding (2015) applies yet another iterative method to pseudo-linear
autoregressive moving average (ARMA) models.

Generally, the problem of parameter identification and estima-
tion for nonlinear systems is approached by comparing measured
data and model candidates, often in a least-squares manner.
However, other methods exist, such as utilizing conditional Lya-
punov exponents (CLE) as a measure to determine the coupling
between data and model, see Abarbanel, Creveling, Farsian, and
Kostuk (2009) and Creveling (2008). In addition to the CLE, a dy-
namical parameter estimation technique must be implemented,
which acts as an observer in the classical sense. A real-time
algorithm for simultaneous estimation of parameters and iden-
tification of anomaly patterns using escort probabilities is pre-
sented in Rao, Mukherjee, Sarkar, and Ray (2008). Mehrkanoon,

Falck, and Suykens (2012) introduces parameter identification
of dynamical systems incorporating least-squares support vector
machines. The authors claim that their method can be applied to
both time-varying and time invariant dynamics.

1.3. Contributions

An accepted and standard way for combined estimation of
states and parameters is the utilization of (extended) Kalman
filters by augmenting the original dynamic system with quasi-
stationary parameter dynamics. In most cases, this leads for orig-
inally linear systems to become nonlinear, since the parameters
are now treated as new state variables and typically enter the
equations in a nonlinear fashion after augmenting the state space.
As for the original system, the augmented system description
must still provide full observability (detectability) in order to be
able to estimate all state variables, including the parameters. In
the context of this work, observability is defined as introduced
by Kalman (‘linear observability’), meaning that the observability
test including the Jacobian A and the output matrix C must pro-
vide full rank for all feasible values for the state variables. Hence,
the observability matrix should not lose rank for any feasible state
combination.

In this work, a simple and practical method for combined state
and parameter estimation for (non)linear dynamic systems is pre-
sented, where the original system description loses the property
of observability after augmentation of the state-space with the
parameters. A drawback of the method is the rather high compu-
tational effort, since for each set of parameter combinations, one
simulation has to be conducted and evaluated. A big advantage,
however, is the fact that the method can be applied offline,
provided that measurements are available that satisfy properties
of persistence of excitation. A lack of this property might imply
that a reconstruction of the state variables and parameters from
measurement data is not possible at all.

1.4. Remark on identifiability

Although the notion of identifiability naturally arises in the
context of parameter estimation, its application is left out in this
application-oriented paper. Nonetheless, we refer to Godfrey and
DiStefano (1985) and Grewal and Glover (1976) for an overview
and insight into this broad topic, latter including many hands-on
examples.

1.5. Structure of the paper

Sections 2 and 5 introduce the methodology for estimation
of parameters in not fully observable, dynamic systems. In Sec-
tions 3, 4 and 6, nonlinear and linear case studies are presented.
Comments on the proposed methodology and potential future
work follow in Section 7.

2. Methodology

Combined state and parameter estimation applying (extended)
Kalman filters (EKF) is a mature technology and can be viewed
as a standard way to attack and solve problems of this kind.
Nevertheless, these methods solely work for dynamic systems
with the property of full observability, which also must hold after
augmentation of the state space with the parameters as new state
variables for a given output function. Relying on detectability
might be enough in some cases, which means that all unobserv-
able modes are stable. Subsequently, only full observability will
be regarded as a criterion.
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We regard state space models in the form
x=f(x,u) + w(t),
¥ = h(x) + v(t),
where h(x) is assumed to be a linear function Cx with con-
stant output matrix C. In addition, w(t) and v(t) denote pro-
cess and measurement noises with covariance matrices Q =
cov{w(t)w’(t)} and R = cov{v(t)vT(t)}. No covariance is assumed
between w(t) and v(t).

2.1. Extended Kalman filter

Designing an EKF implies that the nonlinear state equations

X = f (% u) are linearized around current state trajectories/
operating points X to obtain the Jacobian
a L
az ) )
3Xj 2

The Jacobian has to be updated subject to the current operating
point of the process and hence the linearization points X; must
be held variable, which implies that the system matrix A will be
time-dependent, hence A = A (t). The state- and therefore time-
varying Jacobian is then utilized to solve the differential matrix
Riccati equation and ultimately obtain the time-varying Kalman
feedback gain K(t)

P(t) = A(t)P(t) + P(H)AT(t) — K(£)CP(t) + Q,
K(t) = P(t)CTR!

in order for the estimated output y = Cx to track the mea-
sured output y and ultimately estimate the unmeasurable state
variables.

In case of additional parameter estimation, the quasi-
stationary dynamics of the parameters p = 0 are included as new
state variables in the state space in the following way

x=f(&p,u),

p=0.

This involves that the Jacobian (1) increases from primarily Axn)
to Antp)x(ntp), Where p is the number of parameters and n
represents the dimension of the system. Furthermore, the output
matrix C must be changed accordingly. Usually, this is performed
by adding zeros to the respective entries in C relating to the
new state variables p, since these cannot be measured, and hence
Cexe = [C O(dim(y)xp)]- Finally, the dynamics of the observer for

the augmented system with &ex = [X f)]T are formulated as
Xext = fext (&ext» u) +K(t) (y - Cext&ext) . (2)
2.2. Observability

The concept of observability defines a measure that shows
if reconstructing unmeasurable, internal states of a system is
possible by solely using external outputs. Thereby, it must hold
that the well-known observability matrix, which links the sys-
tem matrix A(t) with the output matrix C has rank n. At this
point, it should be noted that observability measures particularly
for nonlinear systems exist, as mentioned in the introduction.
In the context of the above observer design relying on steady
update of the Jacobian around the current state trajectories, the
observability matrix must have full rank for all feasible operating
points/time instances. Now, if the original system description is
augmented by the new state variables representing the full set of
parameters £, it might happen that the initially fully observable
system might lose this property. However, often it is the case that

by only adding a subset #2; € &2, full observability still holds for
the system at hand. It is necessary to test for a maximum allow-
able subset 27, which ensures the full observability property. It
is assumed that also for the augmented system, full observability
must hold for all admissible and feasible operating points X; in
order to estimate the state variables and the subset of parameters.
This implies that also in the case of a state- and time-varying
Jacobian the observability matrix must have full rank, ergo not
lose rank after augmentation.

2.3. Determination of unobservable parameters

Determination of the values for the unobservable parameters
Py € Py = #\ P is performed in a Monte-Carlo-fashioned
approach. First, lower and upper bounds for feasible parameter
values p,, and p,, have to be determined and increments between
these bounds must be defined. Then, one simulation for each
combination of the parameters must be conducted. Ultimately, by
defining an objective function to be minimized, the best values for
the unobservable parameters can be found. A feasible objective
function can thereby be the difference between the measured
output y and their respective estimates, since the measurements
present the only information available from the real plant

Lsim

min;’mize J= ||y — CextXent Hl = Z ’y - Cext;(ext| (3)
! t=0
subject to (2),

Du; = Dy; = Dy;»

where, here, the 1-norm is chosen as objective function. The
reason for this is that for small estimation errors, this norm
provides steeper gradients compared to e.g. the 2-norm. Nev-
ertheless, other norms, functions of norms or combinations of
norms present potential objective function as well, depending on
the system at hand.

In this context it must be mentioned that some system models
require persistence of excitation, at least until the parameters
have converged. This can be accomplished by e.g. sinusoidal
reference signals, but some systems naturally provide persistent
excitation since some operating points might lead to limit cycle
oscillations of state variables. In this work, only systems with
cyclic and oscillatory behavior are considered, caused either by
sinusoidal excitation or the dynamics.

2.4. Algorithm

Algorithm 1 generally describes the individual steps to be
performed to run simulations.

3. Case study 1: Nonlinear system

This case study demonstrates the application of the method-
ology from Section 2 to a highly nonlinear system. It is shown in
numerical simulations that the method also delivers satisfactory
result in the presence of added measurement noise. Parameter
estimation for these kind of systems is important if controllers
based on feedback linearization are designed for surge control,
see e.g. Backi, Gravdahl, and Skogestad (2016).

3.1. Mathematical model

We use a Greitzer compressor model in combination with a
close-coupled valve (CCV) formulated in two states. This model
has been previously used in e.g. Gravdahl and Egeland (1997).
A nonlinear state-estimation approach using the design devel-
oped in Arcak and Kokotovic (2001) has been applied to the
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Algorithm 1 Identification Algorithm

1: Initialization

- Design the extended Kalman filter (EKF)

- Find the set of parameters Z, for which the aug-
mentation of the original observer model is still fully
observable

- Determine lower as well as upper bounds for all p,, €
2, and define increments between these bounds

- Choose tuning matrices Q and R for the EKF

- If necessary: Pre-filter noisy measurement

2: Loop

- Define one for-loop for each p,, € 2,

- Run one simulation for each feasible combination within
Py

- Compute the value of the objective function (3) and
stack values

3: Evaluation

- Find parameter combination that gives the smallest
norm — candidates for real parameter values

- Re-run simulation with minimizing parameter combina-
tion

4: Verification

- (Heavy) Oscillations in the error between true value and
estimate? — Parameter combination most likely not
optimal

- Change bounds and | or increments for p,,

- Re-tune EKF and |/ or potentially change the objective
function

- Continue at step 2

model in Backi, Gravdahl, and Gretli (2013), which, just like Backi
et al. (2016), relies on good knowledge of the model parameters.
The equations are transformed to the origin and formulated in
dimensionless variables

. 1
1%=E(¢—<P(W)),

¢=BW(p)—¥—u.

The input u (manipulated variable) represents the pressure drop
across the CCV, the function

@ (W) =y (sen(v + Yol + ol — /o)
indicates the throttle characteristics and the equation
Ve (§) = —ks¢® — katp® — kugh,

describes the compressor characteristics.
The variable ¢ is the dimensionless mass flow (db = puLAf)'

(4)

whereas i represents the dimensionless pressure (w = ﬁ .

The parameter y defines the throttle gain. Note furthermore that
sgn (0) = 0, that time has been normalized by the Helmholtz
frequency, thus T =t wy, and that u > 0.

" v
The parameters are defined as B = -2-,/+ > 0, where U
'S cLc

defines the compressor blade tip speed, a; represents the speed
of sound, V, is the plenum volume, A. stands for the flow area
and L. indicates the length of ducts and compressor. It holds

furthermore that k; = 2% (% 3H (@ - 1) and

w2z \w ) ke = sz (W

ks = 55 with H > 0, W > 0 and ¢ > 0.

Using the compressor characteristics in initial

transformed) coordinates

3 (o 1(do .\
]//O(¢O)=l//oc+H|:l+2(W_l)_2<W_l>:| (5)

the operating point ¥y can be calculated. In addition, the throttle
gain can be determined via the relation y = o (see Gravdahl &
Egeland, 1997). It should be noted that specific operating points
(o, ¢o) cause a limit cycle behavior known as surge.

For convenience, the state variables are defined as ¢ = x; and
¢ = x, hereafter. Furthermore, the parameters kq, k, and ks are
rewritten in terms of H and W, which leads to a reduction of the
number of parameters by one. Eventually, the original system (4)
can be expressed as

X = 1 [Xz -y (Sgn(Xl + Vo)V X1 + Yol — \/%)] ,

B

. H 3H (oo 5
xzzB[—2W3 XZ_ZWZ <W—l)x2 (6)

(non-

where v is defined in (5). The only state that is assumed measur-
able is the pressure, since mass flow generally is more challenging
to measure in real time, and hence y = x; and hence C = [1 0].

3.2. Observer design

The model formulated in (6) is now the basis for the observer
design. The parameters H, W and B are assumed uncertain or
unknown and ultimately the dynamics of the observer including
the quasi-stationary dynamics for the three parameters H, W and
B are

= % |:>?2—V (Sgﬂ(§<1+lzf0),/‘21+12/o‘ —\/%>:| , (7)

PO A ., 3H .
x2=B|:— — B - — (dio—1>?<§
2wW3 2W2 \w

ﬁ%(m >A . }
—— — =2 )X —X—u|,
2W2 \W

H=0, W=0, B=o, (9)

(8)

where 1}0 is defined in (5), but now with H and W. The Jacobian
for the observer dynamics (7)-(9) is calculated to

_ v sgn(x + Vo) 1

I 3 Az A Asgs
A= 23,/‘&1 +1//o‘ ) (10)
-B Ap Ay Ay A
03x5) 5

Xs
where the entries A; are specified in Appendix.

The observability condition introduced in Section 2.2 states
that the above system is not observable for the full set of pa-
rameters & = {H, W, B}. However, by defining 2, = {H} and
hence &, = {W, B}, full observability can be obtained with
Cee = [1 0 0O]. The Jacobian (10) eventually reduces to the
upper left 3-by-3 matrix. . .

A pre-investigation of the parameters W and B is possible
when investigating the Jacobian (10). As mentioned above, W
can only be positive, and the same holds for B. This can also be
deduced from (17)-(18). By investigating the square-roots in the
first two equations in (17), we see that the radicand

Vo, + Hé (11)
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Table 1

Simulation parameters.
Ac Flow area 0.01 m?
B B-Parameter ~0.832
H Coefficient 0.18
Le Length of ducts and compressor 3m
u Compressor blade tip speed 80 ms™!
A Plenum volume 1.5 m?
w Coefficient 0.25
ag Speed of sound 340 m s~!
Yo Operating point for x; 0.533
b0 Operating point for x; 0.3
Vo, Constant 0.3

Qo = diag (1073, 107!, 107'), Ro=10""

must be positive. Solving this equation for W, a lower bound for

W can be determined as a function of Yo, and ¢o, which are

assumed to be known. Ultimately, H is estimated by the EKF.
The other square-root’s radicand |X; + v, +Hé| is simply

1-norm for different values of W and B 1-norm for different values of W and B

1-norm

1-norm for different values of W and B

1-norm

B

Fig. 1. Simulations for different ranges of W and B. The red dots display
the obtained minima, whereas the white/black dots display the real value.
(For interpretation of the references to color in the figure legends, the reader
isreferred to the web version of this article.).

the absolute value of the first radicand (11) plus the estimated
state variable fch. Unfortunately, this radicand can become zero if
—X1 = Yo, + Ha. Yet, by knowing the range of the measured
variable x; and under the assumption that the estimation error
X1 goes to zero fairly fast, a bound for W can be obtained in the
same fashion as for (11).

3.3. Simulations

All simulations were conducted open-loop, i.e. u = 0, with
a fixed-step solver of step size 0.01. Despite the problem being
formulated in continuous-time, performance evaluation was con-
ducted in quasi-discrete-time. This is due to the fact that the
system has been discretized in a consistent way utilizing the
fixed-step solver and is further indicated by using a sum in the
objective function (3). The oscillations in x; and x, are due to the
operating point in the surge area. The simulation parameters are
listed in Table 1 and the Kalman filter tunings are shown below.

3.3.1. Added noise to the measurement of x1

We added noise to the measurement, which was band-limited
white noise with a sample time of 0.01, a noise power of 10~> dB
and a seed of [23341].

Fig. 1 demonstrates that the ranges of W and B can be nar-
rowed down successfully. However, there is a clear bias from
the optimal point, in particular for B, since W can be identified
correctly.

Fig. 2 shows the estimates for x;, x, and H for the obtained
optimal values of W and B. As can be seen, estimation is not
perfect since there exist small oscillations, especially for X, and
H, which is an indicator for not having found the real values of
W and B.

3.3.2. Filtered measurement

To demonstrate, that pre-filtering of the noisy measurement is
advisable, we implemented a moving average filter for the noisy
measurement introduced above. The filter utilized the respective
30 previous and subsequent measurement points to calculate the
average.

Comparing Fig. 3 to Fig. 1, it can be seen that the optimal
values for W and B are much closer to the real values.

Fig. 4 shows the estimates, which are still in an acceptable
range, even for the not optimally identified value of B.

True value (blue), estimate (red)

0 10 20 30 40 50

True value (blue), estimate (red)

0 10 20 30 40 50

True value (blue), estimate (red)
T T T T T

1Error between true value and estimate

0.5

Error x,

T

0

-0.5

0 10 20 30 40 50

o 5Error between true value and estimate

Error x,
o

-0.5
0 10 20 30 40

T[]

o
S

25 30 35 40 45 50
7l

Fig. 2. Real (blue) and estimated (red) states x;, x, and H for the obtained
minima (closest to real values) of W and B for added measurement noise.

1-norm for different values of W and B

1-norm

1-norm for different values of W and B

w 0.24 B

1-norm for different values of W and B

1-norm

1-1%%rm for W=0.25 and different values of B

154
152
150

1-norm

148
146
144

142
081 082 0.83 084 085

Fig. 3. Simulations for different ranges of W and B. The red dots display the
obtained minima, whereas the white/black dots display the real value.



6 CJ. Backi, J.T. Gravdahl and S. Skogestad / IFAC Journal of Systems and Control 13 (2020) 100103

; Filtered value (blue), estimate (red) E1rror between filtered value and estimate

05 < 05
X0 8
05 w0
-1 -0.5
0 10 20 30 40 50 0 10 20 30 40 50
05 True value (blue), estimate (red) o 5Error between true value and estimate
0 >
<& g 0
0.5 ]
-1 -0.5
0 10 20 30 40 50 0 10 20 30 40 50
[ . T[]
True value (blue), estimate (red)
02 T T T T T T T T T
0.15 - -
T 01f o
0.05 - o
0 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

T[]

Fig. 4. Real (blue) and estimated (red) states x;, x, and H for the best obtained
minima (closest to real values) of W and B for the filtered measurement signal.

Filtered (blue), real (red)
T T T

0 5 10 15 20 25 30 35 40 45 50

Error between real and filtered value " [l White noise added to measurement

0.1 0.1

Error x,
IS
Noise
o

-0.1 -0.1

0 10 20 30 40 50 0 10 20 30 40 50
7l s

Error between added and filtered noise
T T T T T

Error noise
=)
é

0 5 10 15 20 25 30 35 40 45 50
[

Fig. 5. Real, filtered and estimated state x; together with remaining noise.

In Fig. 5, we demonstrate the difference between the noisy
measurement, its filtered representation and the estimate. Fur-
thermore, the parts of the noise that could not be filtered are
shown in the bottom plot.

4. Case study 2: Linear system

We base the investigation on a transfer function, G(s) = ﬁ,
which has an oscillatory, marginally stable step response. For this
transfer function, there exist multiple state space representations
with respect to input-output behavior and we use the following
generalized form:

B M

= + u

X: 0 X: r

) Iq] 2 ¢ (12)

_ X1
-t o]

withae = 1,8 = —4and I’ = 1 and ¢ € R\{0}. As one can see,
different realizations of the system model are possible, but the

original parameters have been defined for ¢ = 1. However, the
input-output-relationships are the same even for different values

True value (blue), esti (red)

Error between true value and
0.6 0.01

0.5
0.4

< 0.3 -0.01

Error x,

0.2
-0.02
0.1

0 10 20 30 0 10 20 30
time [s] time [s]

True value (blue), estimate (red)
T T T

0 5 10 15 20 25 30
time [s]

Fig. 6. True value and estimate of state x; together with their error as well as
true value and estimate of parameter S.

of ¢. A difference to the case study presented in Section 3 is the
fact that now one parameter, namely I, is directly affecting the
gain of the input u.

We now define the model for the EKF in the following way

% 0 & o][x] [o
X|=|B 0 X||X|+ | |u
3 0 0 of]|B3B 0 (13)

y=[ 0 o[ % B
since B is the only parameter for which an augmentation of the
system dynamics (12) is still fully observable.

Using the proposed methodology in Section 2 leads to the
result in Fig. 6, where the true and estimated state variable x; and
their corresponding error are displayed together with the true
value and estimate of 8. While the state estimate is acceptable,
the estimate of § is substantially different from its true value.

The values of the parameters « and I" are shown in the plot
of the 1-norm in Fig. 7. A minimum is found for & = 1.8 and
I' = 0.6, which are not the correct values. However, for ¢ ~ 0.58,
the values @ &~ 1.04, 8 & 4 and I =~ 1.03 can be calculated.
These values are close to the values associated with the model
(12), however, 8 shows a clear oscillatory behavior. This calls for
an extension to the proposed methodology in Section 2 in order to
find parameter values that match the measurement even better.

5. Extension to the methodology

Again, as can be seen in the simulation results in Fig. 6,
the estimated variable 8 oscillates around some nominal value
and has a steady offset compared the actual value of S. The
reason for this is found in the chosen norm (3), which appears
to give non-optimal results for this case (see Fig. 7). Therefore,
the methodology should investigate more measures, to obtain a
conclusive result about the parameter values. )

In Fig. 8, it can be seen that all estimated values g reach a
steady-state value (or oscillate around one) after approximately
t = 10 s. Therefore, we propose to run open-loop, forward
simulations for all parameter combinations of « and I” and their
associated values of 8, for which we take the mean values be-
tween t = 10-30 s. The open-loop, forward simulation results
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1-norm for different values of a and I
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Fig. 8. All values of 8 over time, where one value of B corresponds to one
combination of @ and I".

1-norm for different values of a and I" and corresponding ,Bmean
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Fig. 9. 1-norm for all values of « and I" obtained by forward simulations.
Minima are marked with red dots, real values with a white dot.
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Fig. 10. True values and estimates of state x; together with their errors for all
three cases.

are then compared to the measurement, again using the 1-norm Table 2
defined in (3). Parameter values for the three obtained minima.
The extension to the methodology is shown in Algorithm 2. hl r A ¢
Case 1 2 0.5 -2 0.5
Algorithm 2 Validation Algorithm Case 2 0.5 2 -8
1: Calculate the mean value of each parameter in 2 Case 3 (true values) 1 1 —4 1

- Start calculating the mean after reaching a steady-like
state

- This steady-like state includes oscillations around a
steady state

2: Use this mean value in forward simulations

- The mean value has to be simulated together with its
corresponding values of p,,

- Calculate the norm in (3), where CoyXex is NoW replaced
by the result from the forward simulation

The 1-norm for the forward simulations is presented in Fig. 9.
It can be seen that now three minima can be identified, which
are significantly smaller than any other values in the parameter

space. These values are listed in Table 2 and correspond with the

original system (12) for different values of ¢. R

It should be mentioned that the estimated parameters &, 8 and
r correspond to the respective values %a, ¢B and ¢TI” from the
original system (12) and hence using these relations with ¢ = 1

lead to the parameters of the original system (12), namely « = 1,
B=—-4and I =1.
The simulations corresponding to the values presented in Ta-

ble 2 are shown in Figs. 10 and 11.
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Fig. 11. True value and estimates of the parameter § for all three cases.

6. Case study 3: Stable linear system

This case is based on a stable, linear system description

1
Gs) = ———— 14
(s) 712511 (14)
with double pole s;, = —1 and state space representation
. 1
-l L))
. = + u
X X &6
2 E8 v ]|* (15)
- X1
=0 o]
withae=1,8=—-1,y =—-2,5§ = 1and £ € R\{0}.
The model for the EKF is defined in the following way
% 0 & 0 [&] [o
52‘2 = /§ )> 52] %2 + 3 u,
B 0 0 Oof|Bg8 0 (16)

y=[1 0 o][% % &,
which is fully observable.

Simulations have been performed using a biased sinusoidal
input signal u(t) = 2+sin (5t). The results applying the proposed
methodology in Section 2 with its extension in Section 5 are not
visualizable here, since the set of unobservable parameters has
three elements. These are found to be « = 0.5, y = —2 and
8 = 2. These parameters lead to the states provided by the EKF
in Fig. 12.

The results obtained are hence one state space representation
of (14) with &€ = 2, compare (15). By fixing the value of § = 1,
and re-running the simulations only for the parameters « and vy,
the true values « = 1, B = —1 and y = —2 could be obtained.
This, however, is not shown here due to space limitations.

It should be mentioned that the identification of parameters
was not possible for an input signal that was not biased, i.e. for a
sinusoidal input oscillating around zero. However, identification
of parameters was achievable using a step as input function for
the system (14).

7. Discussion

In this work, a simple method for combined state and pa-
rameter estimation for general dynamic systems is introduced.
The main idea is to implement an (augmented) extended Kalman
filter together with an algorithm, which minimizes a criterion
to estimate unmeasurable state variables as well as unknown
parameter values.

The simulation results, especially for the nonlinear system
in Section 3, lead to the conclusion that, in order to increase
performance of the proposed method, pre-processing of the mea-
surement signals is critical. Particularly, filtering high-frequent

True value (blue), il (red) %103 and
25 5
2 0
15 < 5
< 5
1 w -10
0.5 15
0 -20
0 10 20 30 0 10 20 30
time [s] time [s]

True value (blue), estimate (red)
T T T

25 ! ! !
0 5 10 15 20 25 30
time [s]

Fig. 12. True value and estimate of state x; together with their error as well as
true value and estimate of parameter S.

parts of the measurement noise increases performance. In this
work, a moving average filter was implemented in order to fil-
ter the noise. However, it must be noted that the number of
data points, which are included in the filter, should be chosen
carefully. The reason for this lies in the fact that for oscillating
systems, the filtered signal’s amplitude will not reach that of the
original signal for a large number of data points. Nevertheless,
this is not a sole problem of moving average filters, but also for
many other filters that could have potentially been implemented
here, such as standard low-pass filters or the Wiener filter.

Convergence time and hence the required simulation time in
general are heavily depending on the tuning of the extended
Kalman filter. A certain minimum simulation time is needed in or-
der to obtain good estimates for the unobservable parameters p,.
This implies that fast convergence of the EKF is crucial if the pro-
posed method is used in an offline manner with measurements
of limited duration.

A big advantage of the method is that it can still be used if
the set & is empty, and hence no (parameter) states are added
to the EKF. However, identification of parameters as part of the
dynamic system reduces the overall computational cost since it is
computationally more efficient. This means that not the full set of
parameters & has to be identified in the Monte-Carlo fashioned
approach. Therefore, the authors propose to always utilize the
maximum allowable set of parameters # in the EKF.

Persistence of excitation is often crucial to enable the identifi-
cation of model parameters. The method presented in this work is
no exception to that. Nevertheless, in the case studies presented
in this paper, this was not an issue since the dynamic behaviors
of the systems were of oscillatory nature.

Identifiability analysis has not been performed in the present,
application-oriented work. Nonetheless, the authors would like
to emphasize that checking identifiability of parameters is an
important task and might be subject to future work.
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