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Abstract

Novel control laws for a compression system using only the drive torque as control input are presented. Stabilization of any desired operating
point is achieved with static or dynamic feedback. The stability results are derived using backstepping and passivity techniques.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Towards low mass flows, the stable operating region of cen-
trifugal compressors is bounded due to the occurrence of surge.
This phenomenon is characterized by oscillations in system
states such as pressure and mass flow. This is undesirable since
it introduces the possibility of severe damage to the machine
due to vibrations and high thermal loading resulting from low-
ered efficiency.

Compressor performance is usual described using a compres-
sor map as in Fig. 1. This map describes the relation between
compressor pressure ratio, mass flow and speed, using constant
speed lines in a flow-pressure coordinate system. Surge is an
unstable operational mode of the compressor and the stability
boundary in the compressor map is called the surge line. This
line divides the compressor map in two regions, where the re-
gion to the left and right of the surge line corresponds to open
loop stable and unstable operation, respectively.

Traditionally, compressors have been controlled by using
surge avoidance schemes. Such schemes use various means in
order to keep the operating point of the machine away from
the region where surge occurs. Typically, a surge control line is
drawn at a distance from the surge line, leaving a surge margin
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in the compressor map. The surge avoidance scheme then en-
sures operation to the right or at the surge control line, see
Fig. 1. This method restricts the operating range of the machine
to the region in which the system is open loop stable, resulting
in limited efficiency and operational range.

Active surge control is fundamentally different from surge
avoidance. In an active surge control scheme the open loop
unstable region of the compressor map is sought stabilized
with feedback rather than avoided. Thus, the possible operat-
ing regime of the machine is enlarged. This approach was first
introduced by Epstein, Ffowcs Williams, and Greitzer (1989),
and since then a number of results have been published. Dif-
ferent actuators have been used and examples include recy-
cle, bleed and throttle valves, gas injection, variable guide
vanes and drive torque. For an overview consult Gravdahl and
Egeland (1999), van de Wal (1998), and Willems and de Jager
(1999).

In this paper we propose control schemes using only the drive
torque to actively stabilize a compression system. The idea was
initially introduced in Gravdahl, Egeland, and Vatland (2002),
and further pursued in BZhagen and Gravdahl (2005, 2006).

2. Model

A classical result in the field of compressor surge modeling
is the model of Greitzer (1976), which covers a basic compres-
sion system consisting of a compressor, a plenum volume, a
throttle and in-between ducting. In Fink, Cumpsty, and Greitzer
(1992) the authors extended the Greitzer model to also
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Fig. 1. Compressor map and related definitions.
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Fig. 2. Compression system.

incorporate variable impeller speed, in addition to duct mass
flows and plenum pressure. A similar model was derived in
Gravdahl and Egeland (1999), which is the model to be used
here.

Consider a compression system working between two pres-
sure reservoirs, as illustrated in Fig. 2. A centrifugal compres-
sor supplies compressed gas to a duct which discharges into
a plenum volume, from which the compressed gas discharges
over a throttle. Plenum pressure dynamics is derived by evalu-
ating the mass balance of the plenum volume, assuming isen-
tropic conditions, ideal gas and uniform pressure. Duct mass
flow dynamics is derived by evaluating the momentum balance
of the duct connecting compressor and plenum assuming in-
compressible one-dimensional flow in the duct. Furthermore,
dynamic effects related to the compressor stage are assumed
small, leaving pressure downstream the compressor as a pure
mapping of mass flow and impeller speed. Impeller speed
dynamics is derived by evaluating the angular momentum
balance of the rotating parts. This is where the drive torque
appears, assumed to be at our disposal as system input. Follow-
ing Gravdahl and Egeland (1999), the resulting model, which
is experimentally validated in Gravdahl, Willems, de Jager, and
Egeland (2004), for this system is given by

ṗ = c2

V
(w − wt(p)), (1)

ẇ = A

L
(pc(w, �) − p), (2)

�̇ = 1

J
(�d − �c(w, �)), (3)

where p is plenum pressure, w is duct mass flow and � is im-
peller speed. Mass flow through the throttle is given by wt(p),
pressure downstream compressor is denoted pc(w, �) and load
torque on the impeller due to compressor fluid flow is given
by �c(w, �). Furthermore, c is the speed of sound at ambient
conditions, V is the volume of plenum, A is the duct cross sec-
tion of duct, L is the length of duct and J is inertia of rotating
parts. Models for throttle mass flow and compressor torque are
given by

wt(p) = kt sign(p − pa)
√|p − pa|, (4)

�c(w, �) = �r2|w|�, (5)

where kt reflects the throttle opening, pa is the ambient pres-
sure, � is a slip factor and r is impeller radius. The model
for throttle mass flow is slightly different from Gravdahl and
Egeland (1999), allowing reverse flow also for this component.
To this extent the throttle flow is assumed to be symmetric
with respect to pressure difference. Pressure downstream the
compressor has the same qualitative form as the map shown in
Fig. 1, but an explicit expression will not be given here. A
model for this pressure can be derived from fit of experimental
data, e.g. polynomial Willems (2000), or be based on theoreti-
cal models Gravdahl et al. (2004). Furthermore, it is known that
pressure downstream the compressor increases with increasing
impeller speed.

Fact 1. Pressure downstream the compressor, pc(w, �), is
strictly increasing with increasing impeller speed, �. Further-
more, it is assumed that �pc(w, �)/�w is upper bounded.

The control laws to be derived do not depend on a specific
structure for the mapping pc(w, �), but rather on an overall
property related to its gradients. More specifically, we will re-
quire for one of the control gains, say c, that

c� sup

⎧⎪⎪⎨
⎪⎪⎩

�pc(w, �)

�w
+ �

�pc(w, �)

��

⎫⎪⎪⎬
⎪⎪⎭

, (6)

where � is some arbitrary small positive constant. From Fact 1
it is known that the impeller speed gradient is strictly positive
and the compressor map shows that the mass flow gradient
is positive only between zero mass flow and surge line. This
implies that c must be positive. Furthermore, these observations
suggest that c is bounded.

From (1)–(5) it can be seen that a equilibrium, (·)e, satisfy
we = kt

√
pe − pa, pc(w

e, �e) = pe and �e
d = �r2we�e when

for all practical cases the desired equilibrium involves positive
mass flow. For notational convenience of subsequent sections
we let ¯(·)=(·)−(·)e denote deviation from a desired equilibrium.

3. Control laws

In this section control laws to asymptotically stabilize a de-
sired equilibrium of (1)–(3) are presented, when considering
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�d as input. The control inputs are based on a backstepping
approach presented in Section 4.

Proposition 2. Either of the control inputs �d = �a or �d = �b,
where

�a = −c4(�̄ + c3w̄) + c3
AJ

L
(pc(w, �) − p) + �r2|w|�

�b = − c4(�̄ + c3w̄) + c3
AJ

L
(pc(w, �) − p)

+ �r2|w|(�e − c3w̄),

will make the desired equilibrium globally asymptotically stable
when c3 is chosen according to (6) and c4 > 0.

Proof. See Section 4. �

The next proposition extends the control laws by adding a
passive control part �passive, which can be either static or dy-
namic. For the static part we consider �passive = �(t, u�) where
u� = �̄ + c3w̄ and for the dynamic part we consider a system
�passive defined by �̇ = f (�, u�) and �passive = h(�, u�), where
u� and �passive are system input and output, respectively.

Proposition 3. Either of the control inputs �d = �a − �passive
or �d = �b − �passive where �a and �b as in Proposition 2, and

• �passive is given by the time-varying memoryless passive func-
tion �, will make the desired equilibrium globally asymptot-
ically stable.

• �passive is given by the strictly passive or output strictly pas-
sive and zero state observable system �passive for which a
positive definite and radially unbounded storage function ex-
ists, will make the desired equilibrium globally asymptoti-
cally stable.

• �passive is given by the passive system �passive for which a pos-
itive definite and radially unbounded storage function exists,
will make system states converge the desired equilibrium.

Proof. See Section 4. �

From Proposition 2 we recognize the term −c4u� for both
implementations. This term can be “replaced” by a saturated
alternative by choosing c4 vanishingly small and implementing
the passive part as �passive = sat(c4,passiveu�).

4. Proofs

By a closer inspection of the model (1)–(3), it is clear that
it is in a pure-feedback form, Krstić, Kanellakopoulos, and
Kokotović (1995). It is prevented from being in strict-feedback
form since � do not appear affine in (2), but through the map-
ping pc(w, �). The practical implication of this is that stepping
back on � becomes somewhat more complicated. Using back-
stepping to stabilize the compressions system was also done in
Krstić, Fontaine, Kokotović, and Paduano (1998), where flow
through the throttle was used as control input.

Using (1)–(3) the system can be expressed in error variables

˙̄p = k1(w̄ + f1(p̄)), (7)

˙̄w = k2(f2(w̄, �̄) − p̄), (8)

˙̄� = k3(u + f3(w̄, �̄)), (9)

where

f1(p̄) = we − wt(p̄ + pe), (10)

f2(w̄, �̄) = pc(w̄ + we, �̄ + �e) − pe, (11)

f3(w̄, �̄) = �e
d − �c(w̄ + we, �̄ + �e), (12)

u = �d − �e
d (13)

and constants are given by k1 = c2/V , k2 =A/L and k3 =1/J .

Remark 4. From (10)–(12), (4)–(5) and Fact 1 it can be rec-
ognized that

(a − b)(f1(a) − f1(b)) < 0,

(a − b)(f2(w̄, a) − f2(w̄, b)) > 0,

(a − b)(f3(w̄, a) − f3(w̄, b))�0,

and f1(0) = f2(0, 0) = f3(0, 0) = 0.

The design starts by defining z1 = p̄ as the first backstepping
variable and considering w̄ of (7) as virtual control. This intro-
duces the second variable z2=w̄−�2(z1) where �2 is the related
stabilizing function. The time derivative of V1(z1) = 1

2d1z
2
1 is

then expressed in terms of z1 and z2, V̇1(z1) = d1k1z1f1(z1) +
d1k1z1z2 + d1k1z1�2(z1), where it is known from Remark 4
that z1f1(z1) is negative definite in z1. This implies that �2 is
not absolutely needed to introduce a term to make V̇1 nega-
tive definite in z1. Even if a choice different from �2(z1) = 0
might be beneficial later in the design, it is preferred to keep
the structural complexity of the controller low.

The second backstepping variable, z2 = w̄, then consid-
ers �̄ of (8) as virtual control. This introduces the third
error variable z3 = �̄ − �3(z1, z2), where �3 is the related
stabilizing function. The time derivative of V2(z1, z2) =
V1(z1) + 1

2d2z
2
2 is then expressed in terms of z1, z2 and

z3, V̇2(z1, z2) = d1k1z1f1(z1) + d2k2z2f2(z2, �3(z1, z2)) +
d2k2z2f̄2(z1, z2, z3) where f̄2(z1, z2, z3) = f2(z2, z3 +
�3(z1, z2)) − f2(z2, �3(z1, z2)) and the choice d1 = d2k2/k1
has been made in order to cancel out cross terms of z1z2.
The term z2f2(z2, �3(z1, z2)) is used in the same manner
as Gravdahl et al. (2002), by choosing �3(z1, z2) = −c3z2
and require c3 to satisfy (6). This gives the upper bound
z2f2(z2, �3(z2))� − kc3z

2
2, where kc3 is identical to � of (6).

For the third and final backstepping variable, z3 =
�̄ + c3z2, our control input u now appears. Using the upper
bound on V̇2, the time derivative of V3(z) = V2(z1, z2) +
1
2d3z

2
3 is upper bounded by V̇3(z1, z2, z3)�d1k1z1

f1(z1) − d2k2kc3z
2
2 + d2k2z2f̄2(z2, z3) + d3k3z3(u + f3(z2,

z3 − c3z2) + c3(k2/k3)(f2(z2, z3 − c3z2) − z1)), where
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f̄2(z1, z2, z3) = f̄2(z2, z3) due to the choice of �3. Applying
the mean value theorem, it can be shown that z2f̄2(z2, z3) =
(�f2(z2, l)/�l)z2z3 where l ∈ L(�3, z3 − c3z2).1 The resulting
cross term z2z3 is now dominated by using the already present
quadratic term in z2 and a quadratic term in z3 introduced by
the control law

u = u1 + u2 + u3 and u1 = −c4z3, (14)

where c4 is a positive constant and inputs other than u1 will be
clarified in subsequent discussion. For notational convenience
let kc3 = k′

c3 + �2 and c4 = c′
4 + �3, where the �2 and �3 are

arbitrarily small positive constants. The upper bound on V̇3 is
now rewritten

V̇3(z)� − d3k3W3(z) − d3k3z
T
2,3Q(t, z)z2,3

+ d3k3z3g(u2, z) + d3k3z3u3, (15)

g(u2, z) = u2 + f3(z2, z3 − c3z2)

+ c3
k2

k3
(f2(z2, z3 − c3z2) − z1), (16)

W3(z) = −d1k1

d3k3
z1f1(z1) + d�2z

2
2 + �3z

2
3, (17)

Q(t, z) =

⎡
⎢⎢⎣

dk′
c3 −1

2
d

�f2(z2, l)

�l

−1

2
d

�f2(z2, l)

�l
c′

4

⎤
⎥⎥⎦ , (18)

where z= (z1, z2, z3), z2,3 = (z2, z3) and d = d2k2/d3k3. From
(17) and Remark 4 it can be recognized that W3(z) is positive
definite in z. The matrix (18) is considered as a function of t and
z since the exact point at which �f2(z2, l)/�l is evaluated is not
known, when l is some point on a line segment defined by z2
and z3. By evaluating the upper left determinants it can be seen
that Q(t, z) > 0 when c′

4k
′
c3 > (d/4)(�f2(z2, l)/�l)2. Choosing

d sufficiently small, the region of z for which Q(t, z) > 0 can be
made arbitrarily large, assuming that �f2(z2, l)/�l is bounded
for bounded z. It follows that Q(t, z) is positive definite if it
can be assumed that this gradient is globally bounded. Hence,
in view of the assumption in Fact 1, an upper bound on (15) is
given by

V̇3(z)� − d3k3W3(z) + d3k3z3g(u2, z) + d3k3z3u3. (19)

Let now the control input u2 be used to cancel all terms of g and
choose u3 =0, as is the case for the first equation of Proposition
2 (�d =�e

d +u1+u2). Then we can conclude that z=0 is globally
asymptotically stable since V3 is positive definite and radially
unbounded in z and V̇3 is negative definite in z. Moreover, it
can be recognized that z1f1(z1)� − �1z

2
1 for some positive

�1 semi globally, by which it is concluded that z = 0 is semi
globally exponentially stable.

An alternative formulation for compressor torque in (16)
is f3(z2, z3 + �3) = f3(z2, �̄) − f3(z2, �3) + f3(z2, �3),
where it has been used that �̄ = z3 + �3. From Remark 4
it can be seen that d3k3z3g(u2, z)�d3k3z3g

′(u2, z) where

1 L(a, b) is the line segment joining the points a and b.

g′(u2, z) = u2 + f3(z2, �3) + c3(k2/k3)(f2(z2, z3 + �3) − z1),
since z3(f3(z2, �̄) − f3(z2, �3))�0 and d3k3 > 0. Hence, an
alternative upper bound for (19) is V̇3(z)� − d3k3W3(z) +
d3k3z3g

′(�d , z)+d3k3z3u3. The second equation of Proposition
2 then results from choosing u2 to cancel all terms of g′ and u3=
0. Then the stability results follows from the same arguments
as made for the previous control input.

Either of the choices for u2 implies that V̇3(z)� −
d3k3W3(z)+d3k3z3u3 which again implies that ż=fz(z, u3) is
strictly passive from u3 to z3 (Khalil, 2002). Hence, it is known
that u3 = −�(t, z3), where � is a time-varying memoryless
passive function (z3�(t, z3)�0), makes z = 0 globally asymp-
totically stable. Furthermore, it is known that a strictly passive
system in feedback interconnection with a strictly passive or
output strictly passive and zero state observable system makes
the overall system asymptotically stable. This is exploited to
generate a control input u3 from a system, say �u3 defined
by żu3 = fu3(zu3, z3) and yu3 = h(zu3, z3), where u3 = −yu3.
Hence, if any of the aforementioned passivity properties
holds for �u3 with a positive definite storage function we
have that (z, zu3) = (0, 0) is asymptotically stable (Khalil,
2002). Assume now that �u3 is only passive. Considering the
function V (z, zu) = (1/d3k3)V3(z) + Vs(zu3), where Vs is the
storage function for �u3, we have that V̇ (z, zu)� −d3k3W3(z).
This implies limt→∞ W3(z) = 0 and from (17) it follows that
limt→∞ z = 0. These passive considerations are summarized
in Proposition 3.

5. Simulations

The model used for simulation is based on a laboratory in-
stallation consisting of a small supercharger driven by a elec-
trical motor, a valve, a plenum volume and in-between ducting.
Pressure downstream the compressor is generated in terms of
compressor characteristic, pc(w, �) = �c(w, �)pa, where pa
is the atmospheric ambient pressure and �c(w, �) is the char-
acteristic shown in the compressor map of Fig. 1. Furthermore,
we assume that this pressure is measured (pc is implemented
as a measurement in the control laws). Numerical values de-
scribing the installation are shown in Table 1, where (·)a de-
notes ambient conditions and the speed of sound at ambient
conditions is given by c = √

	aRT a.
Simulation starts in a open loop stable operating point

(pe, we, �e) = (1.48 × 105, 0.43, 3343). Then a reduction
of drive torque drives the system to a new open loop sta-
ble operating point (pe, we, �e) = (1.25 × 105, 0.31, 2410)

at time = 50 s. Finally, a reduction of the throttle opening
drives the system to a open loop unstable operating point

Table 1
Parameters used for simulation

Ambient System Compressor

pa = 101 325 Pa V = 0.1 m3 r = 65 × 10−3 m
Ta = 300 K A = 5 × 10−3 m2 � = 0.9
R = 287 J/kg K L = 3.6 m
	a = 1.4 J = 0.039 kg m2
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(pe, we, �e) = (1.51 × 105, 0.22, 3318) at time = 200 s. All
transitions between the operating points are done by a step
change through a first order low pass filter with time constant
Tf = 10. This is done to get reasonable magnitudes for the
control input during transients. A simulation of the open loop
response is shown in Fig. 3, where it can be seen that the system
eventually enters surge. By first glance it seems like the impeller
speed do not oscillate in surge, but a closer inspection revealed
that also this state oscillated with a frequency of approximately
5.6 Hz.

The gain related to the compressor map inequality (6) must
be chosen c3 = 1250 to achieve stability. System response for
control laws of Proposition 2 are shown in Fig. 4 for c4 =10−3.
From this figure it can be seen that �a makes system states
converge just in time for change of operating point, while con-
verging somewhat faster for control input �b. When choosing
c4 = 0 the control law �a resulted in system states not con-
verging in time for change in equilibrium, whereas �b made
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Fig. 5. Black and grey lines represent Propositions 3 and 2, respectively.

the states converge just in time for equilibrium change. When
choosing c4 = 10−2 the system states converges relatively fast
for both �a and �b. Reducing c3 resulted in system states oscil-
lating (system entered surge). All this indicates that c3 is play-
ing the role of stabilizing, whereas c4 makes the system states
converge to the desired equilibrium.

To illustrate on possible choice for the passive control part,
white noise of amplitude 0.01 and 100 was added to the mea-
surements of mass flow and impeller speed respectively. The
amplitudes of these signals are in the magnitude of 10% of
the measured value. This resulted in the same qualitative time
response as in the noise free case, with white noise super-
imposed on the control input. To suppress the effect of mea-
surement noise on control input, the passive control input was
implemented as a first order low pass filter with saturation
of the output, �̇ = −(1/Tpassive)� + (c4,passive/Tpassive)u� and
�passive = sat(�). The various control parameters where cho-
sen as c4 = 0, c4,passive = 10−2, Tpassive = 0.03 and a satura-
tion of 1.5 N m. The time constant was chosen so that the cut
off frequency is approximately that of the surge frequency and
c4,passive was chosen to replace c4. System response is shown in
Fig. 5, when using �b. This figure also shows the corresponding
control input when using the control law of Proposition 2. It
can be seen that the system converges faster than the simulation
shown in Fig. 4. This is due to using a gain, c4,passive, which is
a decade higher than the gain, c4, used in the previous simula-
tion. Furthermore, it can be seen that noise on the control input
is considerably reduced when using the passive control law.

6. Concluding remarks

The control laws require feedback from all system states,
downstream compressor pressure, compressor torque and some
model specific constants. Pressure downstream the compres-
sor is used in both �a and �b, whereas the explicit expression
for compressor torque is used in �a only. Feedback from this
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pressure and torque can be done either by measurement or as
functions of mass flow and impeller speed. Furthermore, it is
known that measurement of mass flow is difficult, especially in
transients. This implies that a mass flow observer must be inte-
grated in the control laws before implementation on an actual
plant. One such observer can be found in BZhagen, Stene, and
Gravdahl (2004).

Tuning of control gains should start with choosing c3 suffi-
ciently large to achieve stability, since the gain c4 can be cho-
sen arbitrarily small in view of Proposition 2. Then the gain c4
can then be increased to improve convergence (alternatively be
implemented with saturation as discussed in Section 3). More-
over, it is believed that best results is obtained by using Propo-
sition 3 and choosing c3 as small as possible so that stability
is achieved. Then use a dynamic part introduced by �passive for
performance. The motivation for this is found in disturbances,
since a dynamic controller can offer low pass filtering in addi-
tion to gain. Furthermore, a dynamic control law can also offer
integral action on its error variable which might improve steady
state performance in the presence of model uncertainty.

When implementing the control law with models of down-
stream compressor pressure and compressor torque, these im-
plementations are subject to model uncertainties. The models
enters the control law when using u2 to cancel all terms in (16).
Since the cancellations are in the span of the actual control in-
put u2 (matching condition), it is a simple exercise to extend
the control laws with nonlinear damping to compensate for
model uncertainties. The same arguments holds for extending
to adaptive control laws for AJ/L and �r2, in the case when
these constants are unknown or slowly varying.

For the current simulations, the gain c3 had to chosen rel-
atively high. Therefore no measurement noise was added to p
or pc because this resulted in unrealistic control inputs when
operating left of the surge line. The compressor characteristic
was implemented with third order polynomial approximations
of mass flow and impeller speed Willems (2000), based on data
from the open loop stable region and theoretical points for zero
mass flow. This implies that the theoretical compressor char-
acteristic is derived without the explicit knowledge of com-
pressor behavior in the open loop unstable region. Hence, the
value needed for c3 for an actual system should be determined
experimentally.
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