
Circle criterion observer for a compression system

Bjrnar Bhagen

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Email: bjornar.bohagen@itk.ntnu.no

Jan Tommy Gravdahl

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Email: tommy.gravdahl@itk.ntnu.no

Abstract— Observers for a compression system using turbo
compressors are derived for a model that captures the phenomena
of surge. Both a full order observer for pressure, mass flow and
impeller speed and a reduced order observer for mass flow are
presented. The observers assume measurements of pressures and
impeller speed. Results are validated by simulations.

I. MOTIVATION

Compression systems using turbo compressors, centrifugal

or axial, are exposed to the phenomenons of surge and rotating

stall. Surge is an axisymmtrical oscillation of the flow through

the system, and is recognized by oscillations in system states

such as mass flow and pressure. Rotating stall is a phenomena

appearing locally in the compressor, and is characterized by

the circumferential flow pattern being non-uniform. Both of

these phenomenons are undesirable in a compression system,

as they lead to reduced efficiency and can potentially damage

system components. Therefore, the presence of one or both of

these is considered as unstable operation for the system.

Two different strategies can be used to overcome the prob-

lem of surge and rotating stall: avoidance and active control.

In an avoidance scheme the controller uses feedback to ensure

that the system never enters an operating point in which either

of the phenomenons can appear. In a control perspective this

implies to ensure operation in the open loop stable region.

The active control scheme is fundamentally different from the

avoidance in the sense that feedback is used to stabilize the

closed loop system rather than ensuring operation in some

predefined region. This implies that active control gives the

opportunity to operate in the open loop unstable region of the

system, as opposed to the avoidance scheme.

Mass flow through the system is a variable appearing

repeatedly for feedback in control of compression systems.

However, real time measurement of this variable is, to the

best of our knowledge, troublesome. These sensors tend to be

slow or unreliable, which makes them unsuitable for feedback

in a dynamic system. This motivates the development of a

mass flow observer for these systems. Some previous results

on the subject can be found in [1], [2], [3] and [4].

For a more comprehensive description of surge and stall

phenomena and control, the reader is referred to [5], [6], [7]

and the references therein.

II. BACKGROUND

For observer design we will use an observer based on the

circle criterion, [8], [3], [9], [10]. This observer applies to

systems of the form

ẋ = Ax+Gγ (v) + ψ (u, y) (1a)

yc = Cx, v = Hx (1b)

where γ is a nonlinear vector function of system states, ψ is a

vector of measurable signals, u is system input (assumed to be

an available signal), y = y (t, x, u) is available measurements

and yc is available measurements that is a linear mapping

of system states (typically available measurements of system

states). Note that yc is a subset of y. The observer

˙̂x = Ax̂+K1 (ŷc − yc) +Gγ (w) + ψ (u, y) (2a)

ŷc = Cx̂, w = Hx̂+K2 (ŷc − yc) (2b)

was suggested by [3] for this system, where K1 and K2 are

gains of linear injection terms. Defining the estimate error e =
x − x̂ and using V = eTPe where P = PT > 0, it was

shown that the time derivative of V can be upper bounded

by V̇ ≤ −eTQ1e − 2 (v − w)
T
Q2 (γ (v) − γ (w)) when the

linear matrix inequality (LMI)

[

P (A+K1C) + (A+K1C)
T
P +Q1

GTP +Q2 (H +K2C)

PG+ (H +K2C)
T
Q2

0

]

≤ 0

(3)

is satisfied1. Hence, the equilibrium e = 0 is exponentially

stable if

(v − w)
T
Q2 (γ (v) − γ (w)) ≥ 0, (4)

Q1 > 0 and the LMI (3) has a solution. Choosing Q2 = I ,

a sufficient condition for (4) is
∂γ(v)
∂v

+
(
∂γ(v)
∂v

)T

≥ 0 ∀v.

Alternatively, Q2 can be block diagonal with the function

γ satisfying the multivariable sector condition for the corre-

sponding blocks [8].

For reduced order observer design, system (1) is rewritten

in the form

ẋy = Ayx0 +Gyγ (Hyxy +H0x0) + ψy (u, y) (5a)

ẋ0 = A0x0 +G0γ (Hyxy +H0x0) + ψ0 (u, y) (5b)

1Note that this is an LMI in P , Q1, Q2, R1 = PK1 and R2 = Q2K2,
where the observer gains are calculated from K1 = P−1R1 and K2 =

Q−1

2
R2 after solving the LMI. Existence of P−1 follows from P > 0, and

existence of Q
−1

2
can be guaranteed by requiring Q2 > 0 when solving the

LMI.
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Fig. 1. Compression system

where xy and x0 represents measurable and unmeasurable

states respectively. Then a new variable, χ = x0 + Kxy , is

defined as the basis for observer design. The observer

˙̂χ = Aχχ̂+Gχγ (H0χ̂+Kχxy) + ψχ (u, y) (6a)

x̂0 = χ̂−Kxy (6b)

where Aχ = (A0 +KAy), Gχ = (G0 +KGy), Kχ =
(Hy −H0K) and ψχ (u, y) = ψ0 (u, y) + Kψy (u, y) −
(A0 +KAy)Kxy was suggested in [3] for this system. Anal-

ogous to the full order case, defining e0 = x0 − x̂0 and

using V (e0) = eT0 P0e0 with P0 = PT0 , an upper bound

V̇ (e0) ≤ −eT0 Q1e0 − 2 (v0 − w0)
T
Q2 (γ (v0) − γ (w0)) was

found when the LMI
[

P0 (A0 +KAy) + (A0 +KAy)
T
P0 +Q1

(G0 +KGy)
T
P0 +Q2H0

P0 (G0 +KGy) +HT
0 Q2

0

]

≤ 0

(7)

is satisfied. Following the arguments and requirements of the

full order case, e0 = 0 is exponentially stable. Furthermore, it

was shown in [3] that a reduced-order observer exists if there

is a solution to the full order problem.

III. COMPRESSION SYSTEM MODEL

A classical result in the field of compressor surge modeling

is the model of Greitzer [11], which covers a basic compres-

sion system consisting of a compressor, a plenum volume,

in-between ducting and a throttle as shown in Fig. 1. In [12]

the authors extended the Greitzer model to also incorporate

variable impeller speed. A similar model was derived in [13]

using an approach based on energy analysis, which is the

model used here.

Consider a compression system in which a centrifugal

compressor supplies compressed gas to a duct discharging into

a plenum volume, from which the compressed gas discharges

over a throttle. A model for this system can be taken as

ṗ =
c2a
V

(w − wt (At%, p)) (8a)

ẇ =
A

L
(pc (w,ω) − p) (8b)

ω̇ =
1

J
(τd − τc (w,ω)) . (8c)

where p is the plenum pressure, w is the duct mass flow and

ω is impeller speed. The various functions represents throttle

mass flow wt (At%, p), total pressure downstream compressor

pc (w,ω) and torque experienced by impeller due to compres-

sor fluid flow τc (w,ω). Variable throttle flow through area

At% and drive torque τd are considered as inputs to this

system. Furthermore, the various constants represent speed of

sound at ambient conditions ca, volume of plenum V , cross

section of duct A, length of duct L and inertia of rotating parts

J .

Pressure dynamics is derived by computing the mass bal-

ance of the plenum volume assuming isentropic conditions and

uniform pressure. Mass flow dynamics is derived by comput-

ing the momentum balance of the duct connecting compressor

and plenum assuming incompressible one dimensional flow in

the duct and compressor. Moreover, dynamic effects related to

the compressor stage are assumed small, leaving total pressure

downstream the compressor as a pure mapping from mass flow

and impeller speed. Impeller speed dynamics is derived by

calculating the angular momentum balance.

Models for throttle mass flow and compressor torque are

taken as

wt (At%, p) = kt (At%) sign (p− pa)
√

|p− pa| (9)

τc (w,ω) = kc |w|ω, (10)

where pa is ambient constant pressure, kt is a function reflect-

ing the throttle opening and kc is a compressor torque constant.

The model of throttle mass flow is slightly modified relative

to [13]. The modification involves including the possibility of

variable area throttle and negative mass flow through the valve.

To this end the throttle mass flow is assumed to be symmetrical

terms of positive and negative mass flow as a function of

pressure across the devise. The input At% is assumed to

take on values in the range 0 − 100 (or equivalently 0 − 1)

corresponding to minimum and maximum flow through area

respectively. Furthermore, the function kt (At%) is assumed

positive for all valid values of At% (possibly zero for At% = 0,

when this might represent a completely closed throttle).

For notational convenience of subsequent analysis, system

states, inputs, constants and functions are redefined.

Definition 1: x1 = p, x2 = w, x3 = ω, x =
[
x1 x2 x3

]T
, u1 = At%, u2 = τd, u =

[
u1 u2

]T
,

k1 =
c2

a

V
, k2 = A

L
, k3 = 1

J
, k4 = kt, k5 = pa, k6 =

kc, f1 (u1, x1) = wt (At%, p), f2 (x2, x3) = pc (w,ω) and

f3 (x2, x3) = τc (w,ω).
Furthermore, the approximation

f3 (x2, x3) ≈ k6 tanh (ζx2)x2x3 (11)

will be used for (10) when differentiation of f3
with respect to x2 is required. It can be shown

that limζ→∞ k6 tanh (ζx2)x2x3 → k6 |x2|x3 and
∂f3(x2,x3)

∂x2
= k6k7 (t)x3 where

k7 (t) = ζx2

(
1 − tanh2 (ζx2)

)
+ tanh (ζx2) ∈ [−1.2, 1.2] .

(12)
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The functions of Definition 1 can be shown to satisfy

(a− b) (f1 (u1, a) − f1 (u1, b)) ≥ 0 (13)

(a− b) (f2 (x2, a) − f2 (x2, b)) ≥ 0 (14)

(a− b) (f3 (x2, a) − f3 (x2, b)) ≥ 0 (15)

by using (9), (10) and the fact that downstream pressure is

strictly increasing in impeller speed, [5].

For observer design we assume that plenum pressure, down-

stream compressor pressure, and impeller speed are measur-

able and that system inputs are available. From Definition 1

it then follows that

y =
[
x1 x3 f2

]T
=

[
p ω pc

]T
, (16)

yc = xy =
[
x1 x3

]T
=

[
p ω

]T
, (17)

C =

[
1 0 0
0 0 1

]

, (18)

where yc and xy relates to the full order and reduced order

observer respectively.

IV. FULL ORDER OBSERVER

Even though the observer design for this system was

motivated by the lack of a mass flow measurement, a full

state observer might also offer disturbance rejection for the

measured plenum pressure and impeller speed as well as

incorporating more model information for the estimate of mass

flow. Therefore, we start by deriving a full state observer for

(8).

Proposition 2: If the LMI (3) is solvable for Q2 =
diag {q21, q22, q22}, H = I3×3, C from (18),

A =





0
c2

a

V
0

−A
L

−c2 0
0 −c3 0



 and G =





−1 0 0
0 1 0
0 0 −1



 ,

where q2i ≥ 0, c2 > 0 and c4c2 >
3k2

c

J225 , then (2) with

γ (w) =





c2
a

V
wt (At%, w1)
c2w2 + c3w3

1
J
τc (w2, w3) − c3w2 + c4w

3
3



 ,

ψ (u, y) =





0
A
L
pc − c3ω

1
J
τd + c4ω

3



 ,

is an observer for (8)-(10).

Proof: Using Definition 1 the model (8) can be formu-

lated in the form (1) with

γ =





k1f1 (u1, x1)
c2x2 + α2 (y)

k3f3 (x2, x3) − c3x2 − α3 (y)



 , (19)

ψ =





0
k2f2 (x2, x3) − α2 (y)

k3u− α3 (y)



 , (20)

and the matrixes from Proposition 2, by adding and subtracting

c2x2, α2 (y) and c3x2, α3 (y) in the ẋ2 and ẋ3 equations

respectively. Adding and subtracting linear terms in the un-

knowns and nonlinear terms of known signals is done to get

greater freedom when evaluating the sector property (4) for

γ. Defining v = (v1, v2, v3) = (x1, x2, x3), it follows from

(1b) that H is defined as in Proposition 2. For notational

convenience we now define the vectors z = v − w and

ϕ (t, v, w) = γ (t, v) − γ (t, w), where the time argument

comes from using u1 in γ. Furthermore, by choosing Q2 =
diag {q21, q22, q22} we can rewrite

zTQ2ϕ (t, v, w) = q21z1ϕ1 (t, v1, w1)

+ q22z
T
[2,3]ϕ[2,3]

(
v[2,3], w[2,3]

)

where v[2,3] = (v2, v3), w[2,3] = (w2, w3), z[2,3] = v[2,3] −
w[2,3] and ϕ[2,3] is a vector consisting of the two last compo-

nents of ϕ (t, v, w). This implies that z1 = v1 − w1 and that

ϕ1 (t, v1, w1) is a scalar being equal to the first component of

ϕ (t, v, w). From (19) and (13) it follows that

q21z1ϕ1 (t, v1, w1) = k1q21z1 (f1 (u1, v1) − f1 (u1, w1)) ≥ 0

for q21 ≥ 0 since k1 > 0. For q22z
T
[2,3]ϕ[2,3]

(
v[2,3], w[2,3]

)

we evaluate the multivariable sector property
∂γ[2,3](v[2,3])

∂v[2,3]
+

(
∂γ[2,3](v[2,3])

∂v[2,3]

)T

≥ 0, where γ[2,3] refers to the lower two

elements of (19). The upper left determinants of this matrix

are found by using (19), (11) and (12), and give the conditions

0 < 2c2 (21)

0 < 4c2

(

k3k6 |v2| −
∂α3 (v3)

∂v3

)

−
(

k3k6k7 (t) v3 +
∂α2 (v3)

∂v3
− c3

)2

. (22)

From (21) it is clear that we must require c2 > 0. Furthermore,

by choosing α2 (v3) = c3v3 and α3 (v3) = −c4v3
3 the

inequality (22) is rewritten

4c2k3k6 |v2| +
(
12c2c4 − k2

3k
2
6k

2
7 (t)

)
v2
3 > 0. (23)

Since k7 (t) is in the range of − 6
5 to 6

5 , (12), the inequality (23)

is satisfied if c4c2 >
3k2

3k
2
6

25 . Notice that the constant c3 can

be chosen as any constant (positive, negative and even zero).

These choices for Q2, α2 (v3), α3 (v3) and the requirements

for the gains, ensures validity the multivariable sector property

zTQ2ϕ (v, w) ≥ 0. Inserting for α2 and α3 in (19) and (20)

gives the γ and ψ of Proposition 2.

V. REDUCED-ORDER OBSERVER FOR MASS FLOW

Based on the previous analysis of the full order observer,

we now derive a reduced-order observer for mass flow. As

already mentioned, a reduced-order observer exists if the full

order observer exists, [3].

ThC01.6

3555



Proposition 3: If the LMI (7) is solvable for Q2 =
diag {q21, q22, q22}, C from (3) and

Ay =

[
c2

a

V

−c3

]

, A0 = −c2

Gy =

[
−1 0 0
0 0 −1

]

, G0 =
[
0 1 0

]

Hy =





1 0
0 0
0 1



 , H0 =





0
1
0





where q2i ≥ 0, c2 > 0 and c4c2 >
3k2

c

J225 , then (6) with

γ (w) =





c2
a

V
wt (At%, w1)
c2w2 + c3w3

1
J
τc (w2, w3) − c3w2 + c4w

3
3





ψy =

[
0

k3τd + c4ω
3

]

ψ0 =
A

L
pc −

A

L
p− c3ω

is an observer for (8b).

Proof: The model (8) can be formulated in the form (5)

with

γ =





k1f1 (x1)
c2x2 + α2 (y)

k3f3 (x2, x3) − c3x2 − α3 (y)





ψy =

[
0

k3u− α3 (y)

]

ψ0 = k2f2 (x2, x3) − k2x1 − α2 (y)

and the matrixes from Proposition 3 by adding and subtracting

c2x2, α2 (y) and c3x2, α3 (y) in the ẋ2 and ẋ3 equations

respectively. Since γ is the same as that for the full or-

der case, (19), it is known that choosing α2 (v3) = c3v3
and α3 (v3) = −c4v3

3 with c2 > 0, c3 ∈ R, c2c4 >
k2
3k

2
6

12 and Q2 = diag (q21, q22, q22), q2i ≥ 0 guarantees

zTQ2 (γ (v) − γ (w)) ≥ 0 (where z = v − w).

Remark 4: Proposition 3 can alternatively be formulated by

replacing A0 = 0, G0 =
[
0 0 0

]
and ψ0 = k2pc − k2p.

This follows from the proof of Proposition 3, since γ, (19),

will be unchanged.

VI. SIMULATION

The compressor map used for simulations is the same as

used in [14]. This is a map based on measurement data, for

which third order approximations in both compressor speed

and mass flow are done to make the map continuous in these

variables. Denoting equilibria states by superscript e, it can

be seen from (8) it can be seen that a equilibrium satisfy

we = kt
√
pe − pa (24)

pe = pc (we, ωe) (25)

τed = kcw
eωe (26)

where in all practical cases the desired equilibrium involves

positive valued states and a higher plenum than ambient
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Fig. 2. Equilibrium points represented in compressor map

pressure. Using (24) and (25), the throttle characteristics can

be plotted in the compressor map. This is illustrated in Fig.

2 for two different throttle openings (represented by different

kt’s), where the intersection of compressor and throttle charac-

teristics constitutes the possible equilibria of the system. This

means that freedom to choose a desired operating point for the

compression system using only the drive torque as actuator is

limited to some point on the throttle characteristics.

Using (25) and (26), the torque characteristic can be plotted

in the compressor map. This is illustrated in Fig. 2 for two

constant torque inputs of different amplitude. The system

equilibrium is then given by the intersection of throttle and

torque characteristic.

Simulations will go through a scenario in which the system

is initially operating in point 1 of Fig. 2 (kt = 0.015 and

τd = 250). The system is then driven to operating point 2
(kt = 0.015 and τd = 400) after 100 seconds, which involves

a change of torque input. The system is driven to operating

point 3 (kt = 0.008 and τd = 400) after 600 seconds, which

involves a change in the throttle opening. Change of torque and

throttle opening is done with a step change of the parameter

in question, in series with a first order filter (time constant of

T = 10).

For the described scenario, the throttle openings constitute

equilibrium points for which the compressor characteristics

has a negative and positive slope in w. From the literature it

is well known that a negative slope implies stable equilibria.

For positive slope however, the system need not be stable and

surge can occur.

The open loop response is shown in Fig. 3. This simulation

shows stable behavior for the first two operating points, before

eventually entering surge in the last operating point. From

the plot of compressor speed, it seems like this state is not

oscillating. However, a closer examination reveals relative

small oscillation also for this state.

Simulation of the full order observer from Proposition 2 is
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shown in Fig. 4, using observer gains

K1 =





9.7 · 10−7 −3.1 · 10−14

−1.7 · 10−11 8.0 · 10−19

−2.6 · 10−17 −3.0 · 10−8



 ,

K2 =





10−3 10−1

10−8 10−6

10−5 10−3



 ,

c2 = 102, c3 = 10−4 and c4 = 10−8. The figure shows

observer error, e = x − x̂, and is divided in three columns.

These columns represent different time intervals of the simula-

tion, and the division is done to show the convergence for the

various estimates. The first two columns shows that pressure

and mass flow estimates converges relatively fast with respect

to impeller speed. The third column shows that the observer

error remains zero, also when entering surge.

Simulation of the reduced order observer from Proposition

2 is shown in Fig. 5, using control gains

K =
[
−4.7 · 10−8 1.2 · 10−18

]

0 25 50
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M
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 f

lo
w

Time

50 800 1600

Fig. 5. Error variables for the reduced order observer

and ci’s equal to those of the full order observer. Also here

the time axis is split up to make the convergence visible. As

can be seen from Fig. 4 and Fig. 5, the convergence of the

mass flow estimate for the reduced order observer is in the

range of that for the full order observer.

Measurement noise was simulated by adding normally dis-

tributed random numbers to the measurements. These random

numbers where in the range ±3000 for the measurement of y1
and y3, and ±30 for y2. The result is shown in Fig. 6 and Fig.

7 for the full and reduced order observer respectively. From

Fig. 6 it can be seen that the full order observer suppresses

noise of both pressure and impeller speed measurements, and

the noise on the mass flow estimate is in the range of 1% of

the actual value. The noise on the pressure estimate is only

damped slightly with respect to the measurement, whereas the

noise on the speed estimate is reduced by a factor of 15− 20
relative to the noise on the measurement. From Fig. 7 it can be

seen that the noise on the mass flow estimate for the reduced

order observer is in the range of 10% of the actual value.

Hence, a decade larger than that of the full order observer.

VII. CONCLUDING REMARKS

The inequality (3) is an LMI in P , Q1, Q2 R1 = PK1

and R2 = Q2K2, where R1 and R2 are defined to make the

inequality a LMI. Hence, the control gains are calculated after

solving the LMI (K1 = P−1R1 and K2 = Q−1
2 R2), and no

explicit criteria can be posted for these gains when solving

the LMI. To get small control gains, which is desirable for

disturbance rejection, we generally desire large P and Q2,

and small R1 and R2. Since P and Q2 are positive definite,

these can be made large by minimization of a linear objective

under LMI constraints (by weighing the diagonal elements by

negative values). The Ri’s on the other hand, need not be sign

definite and quadratic. An optimization criteria will therefore

involve minimizing some weight norm of their components

under LMI constraints. However, this is not possible with the

LMI Lab in MATLAB. The same problem will arise for the
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inequality (8), when this is an LMI in P0, Q1, Q2 and R =
P0K.

Tuning of the observer gains for Proposition 2 was therefore

done in several steps. The gain K1 was derived by pole

placement for A+K1C. The gain K2 was derived by a matrix

structure of corresponding dimensions multiplied by a scalar,

where the structure was chosen such that K2,structurey
e
c would

be in the same order of magnitude as xe (where the superscript

e refers to system equilibrium). The resulting K1 and K2 was

then checked with (3) to see if they where possible solutions.

A similar approach was taken when choosing the gain K for

the reduced order observer.

From the simulations where measurement noise has been

added, Fig. 6 and Fig. 7, it can be seen that the full order

observer offers better disturbance rejection for mass flow than

the reduced order observer, even though the convergence rate

for these are in the same range. One possible explanation

for this can be found in the ψ’s for the respective observers.

These functions enter the integrator of the observers directly,

without the chance of reducing their amplitude by observer

gains. They are given by ψ (u, y) = k2y3 − c3y2 for the

mass flow dynamics of the full order observer and ψχ (u, y) =
k2y3 − c3y2
︸ ︷︷ ︸

ψ

−k2y1 +Kψy (u, y)− (A0 +KAy)Kxy for the

reduced order observer. From these equations it is clear that ψχ
represents a more noisy signal than ψ, since ψ is contained in

ψχ in addition to other noisy signals. Moreover, the ψ’s will

be the main limiting factor for disturbance rejection, since

the noise that enters through these can not be reduced by

control gains (some of the signals that enter through ψχ can

be reduced by K, but not all).
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