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Abstract

A novel aproach to active surge control is presented. A
centrifugal compressor driven by an electrical motor is
studied, and the drive itself is used for surge control,
thus elliminating the need for additional actuators. It is
shown that by using the rotational speed of the motor as
control, previous unstable operating points to the left
of the surge line can be made globally exponentially
stable. It is also shown that using the torque of the
drive as control ensures exponential convergence. The
proposed method is simulated on a compressor model
using an approximation of a real compression system.

1 Background

Surge is an unstable operation mode of centrifugal com-
pressors, which occurs when the operating point of the
compressor is located to the left of the surge line, which
is the stability limit in the compressor map. The phe-
nomenon is manifested as oscillations of the mass flow,
pressure rise and rotational speed of the compressor.
Surge is highly undesired, and can cause severe damage
to the machine. Traditionally, surge has been avoided
using a surge avoidance scheme. Such schemes use var-
ious measures to keep the operating point of the com-
pressor away from the surge line. Typically, a surge
control line is drawn at a distance from the surge line,
and the surge avoidance scheme ensures that the op-
erating point does not cross this line. This method
restricts the operating range of the machine, and ef-
ficiency is limited. Usually a recycle line around the
compressor is used as actuation. Active surge control
is fundamentally different to surge avoidance in that the
unstable phenomenon is sought to be stabilized instead
of avoided. Thus the operating regime of the compres-
sor is enlarged.

Active surge control of compressors was first introduced
by [1], and since then a number of results have been
published. Different actuators have been used, and ex-
amples include recycle, bleed and throttle valves, gas
injection, variable guide vanes and a number of others.
For an overview, consult [2] or [3]. In this work we
propose to use the electrical drive of the compressor as
a means of active surge control, as depicted in Figure
1. The advantage of this is that the drive is already
present, and no additional actuation device is required.
This means that the compressor can be operated at a
low flow without recycling, and there is a potential for
reduced energy consumption of the compressor.
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Figure 1: The compression system considered cosists of
a centrifugal compressor driven by an electrical
motor.
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Figure 2: The compressor, plenum, throttle system of [4]

2 Model

2.1 Dynamics
A classical result in the field of compressor surge mod-
eling is the model of Greitzer [4] who modelled a ba-
sic compression system consisting of a compressor, a
plenum volume, a throttle valve and in-between duct-
ing as shown in Figure 2. In order to study the drive
torque as control variable for surge control, we need a
model that takes variable speed into account. In [5], the
Greitzer-model was further developed, and rotational
speed was included as a state in the model. A similar
model was derived in [6], using an approach based on
energy based analysis. Experimental results confirming
the model of [6] were presented in [7] and [8]. In this
paper we will employ the compressor model derived in
[6]. The model is derived by calculating the mass bal-
ance of the plenum volume, integrating the one dimen-
sional Euler equation (the momentum balance) over the
length of the exit duct, and calculating the torque bal-



ance of the rotating shaft. The model is written

ṗ =
a201
Vp
(m−mt) (1)

ṁ =
A1
Lc
(Ψc(m,ω)p01 − p) (2)

ω̇ =
1

J
(τd − τc) , (3)

where p is the plenum pressure, m is the compressor
mass flow, ω is the rotational velocity of the shaft,
Ψc(m,ω) is the compressor characteristic, mt is the
throttle flow, A1 is the throughflow area, Lc is the duct
length, Vp is the plenum volume, p01 is the ambient
pressure, a01 is the sonic velocity at ambient conditions,
J is the inertia of all rotating parts, and τd and τc is the
drive torque and compressor load torque, respectively.
The throttle flow is given by

mt = kt
√
p− p01,

where kt > 0 is a parameter proportional to throttle
opening. The compressor torque τ c is calculated as

τ c = |m|r2σU2, (4)

where r2 is the impeller diameter, σ is the slip factor
and U2 is the impeller tip speed. The drive torque
τd will be used as the control variable. For a detailed
derivation of the model, consult [6] and [8]. We will
study the dynamics around an equilibrium point. The
equilibrium values are denoted by (·)0, while deviations
from the equilibrium are denoted by (b·). The deviations
from the equilibrium are written

m̂ = m−m0, p̂ = p− p0, ω̂ = ω − ω0

m̂t = mt −mt0, bΨc = Ψc −Ψc0
where the equilibrium values must satisfy m0 = mt0
and p0 = Ψc0. The model (1)-(3) in new coordinates
(b·) is written

˙̂p =
a201
Vp
(m̂− m̂t)

˙̂m =
A1
Lc

³bΨcp01 − p̂´ , (5)

˙̂ω =
1

J
(bτd − bτ c) ,

while the dynamics of the plenum pressure and the mass
flow only are written

˙̂p =
a201
Vp
(m̂− m̂t) (6)

˙̂m =
A1
Lc

³bΨcp01 − p̂´
For controller design we will assume that control vari-
able is the angular velocity ω of the compressor shaft.
Then later we will study the effect of the fact that the
control variable is the electrical motor torque τd , while
ω is controlled by an internal high gain loop.

2.2 Compressor map
2.2.1 Introduction: In order to simulate the

response of the compression system, a measured com-
pressor map from a real centrifugal compressor will be
used. A number of operating points on each measured
constant speed line will be used to calculate a third or-
der polynomial approximation to the speed lines. The
third order polynomial is accepted in the literature (see
e.g.[4]) as a suitable approximation of the speed lines.
The zero-mass flow point will also be used in the calcu-
lations of the speed lines, and the third order form also
gives the negative flow part of the characteristic.

2.2.2 Calculation of the zero-mass-flow
pressure rise: Due to centrifugal effects, a centrifu-
gal compressor will produce a pressure rise even at zero
flow. This zero-mass-flow pressure rise can be found by
studying the rothalpy I, which is a conserved quantity,
[9]:

I = h+
1

2
W 2 − 1

2
U2,

where h is specific enthalpy,W is relative speed between
the fluid and the blades, and U is tangential impeller
speed. Since the rothalpy I is unchanged between the
inlet (subscript 1) and the outlet (subscript 2) of the
impeller, we have that

∆h = h2 − h1 = 1

2

¡
U22 − U21

¢− 1
2

¡
W 2
2 −W 2

1

¢
,

where U1 and U2 are the tangential velocities at inlet
and outlet, and W1 and W2 are the relative velocities
between the moving fluid and the rotating blades at in-
let and outlet. At zero mass flow, the relative velocities
W1 and W2 vanish, and we have

∆h|m=0 =
1

2

¡
U22 − U21

¢
=

π2N2

2

¡
D22 −D21

¢
. (7)

Assuming isentropic pressure rise,

Ψc(m,ω) =
p02
p01

=

µ
1 +

∆h

cpT01

¶ κ
κ−1

,m > 0. (8)

holds, for details see [8], and by combining (7) and (8),
we get at zero mass flow

Ψc(0, N) = Ψo =

µ
1 +

π2N2(D22 −D21)
2cpT01

¶ κ
κ−1

, (9)

where N = 2πω is the rotational speed in rounds per
second. The zero-flow-pressure rise has been calculated
using (9) for five different speeds. These values, as well
as three points on each measured speed line (shown as
circles) are shown in Figure 3.

2.2.3 Polynomial approximation of com-
pressor map: Also shown in Figure 3 are the third
order polynomial approximations of the speed lines at
five different speeds. The approximations are calcu-
lated using the Matlab function polyfit, and for the
five chosen speed lines, results are:

Ψc(m, 300) = 1.602− 0.063m+ 0.167m2 − 0.044m3,

Ψc(m, 340) = 1.829− 0.097m+ 0.183m2 − 0.030m3,

Ψc(m, 400) = 2.251− 0.144m+ 0.191m2 − 0.024m3,

Ψc(m, 460) = 2.809− 0.166m+ 0.178m2 − 0.018m3,

Ψc(m, 500) = 3.270− 0.205m+ 0.174m2 − 0.015m3.
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Figure 3: The measured speed lines (solid lines) and the
polynomial approximations (dashed lines).

A compressor map is also continuous in the rotational
speed, so in order to simulate the system, there is a need
for making the approximated map also continuous in
rotational speed. For this reason, the coefficients of the
third order polynomials in are chosen to be functions
of rotational speed. The polynomial approximation for
each speed line can be written as

Ψc(m,N) = c0 (N)+c1 (N)m+c2 (N)m
2+c3 (N)m

3,

where the functions

ci (N) = ci0 + ci1N + ci2N
2 + ci3N

3

are calculated by using polynomial approximation yet
again. This approach was also taken by [10], using sec-
ond order polynomials ci (N) = ci0 + ci1N + ci2N2.
However, in our case it is necessary to use third order
polynomials. This comes clear when inspecting Figure
4, where the polynomial coefficients of the five polyno-
mials are plotted as a function of rotational speed. As
can be seen, a fairly good fit can be made with third
order. For c0 (N), the zero-mass-flow pressure rise, it
is seen from the figure that a linear approximation is
sufficient. The resulting approximated compressor map
which will be used in simulations is shown in Figure 5.

3 Controller design

3.1 Surge control
The new feature of the proposed method is that we let
the shaft velocity ω̂ be a function of the mass flow m̂,
thereby ensuring that the compressor can be operated
to the left of the surge line without going into surge.
We first assume that the shaft speed ω is our input
control variable, and we will later consider the case that
instead the drive torque τd is the control. The following
theorem can now be stated:

Theorem 1 The control law

ω̂ = −cm̂, (10)
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Figure 4: The coefficients ci as functions of speed N
(solid lines), and their polynomial approxima-
tions (dashed lines).
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Figure 5: The approximated compressor map.

where the gain c is chosen according to

c >
∂bΨc.∂m̂

∂bΨc.∂ω̂
(11)

makes the origin of (6) globally exponentially stable.

Proof: Consider the Lyapunov function candidate

V =
Vp
a201
p̂2 +

L

A
m̂ > 0,∀ (m̂, p̂) 6= (0, 0) (12)

The time derivative along the solutions of the nonlinear
system (6) is

V̇ =
a201
Vp
p̂ ˙̂p+

L

A
m̂ ˙̂m = p̂(m̂− m̂t) + m̂

³bΨcp01 − p̂´
= V̇1 + V̇2 = −p̂m̂t (p̂, p0) + m̂bΨc (m̂, ω̂) p01 (13)



The throttle, or load, is assumed to be passive in the
sense that it consumes energy from the compressor,
which implies

V̇1 = −p̂m̂t (p̂, p0) < −kpp̂2 < 0,∀p̂ 6= 0 (14)

for some kp > 0, where kp depends on the slope of the
throttle characteristic. This is illustrated in Figure 6.
In order to prove stability, we now have to show that
V̇2 < 0. In open loop, the compressor characteristicbΨc (m̂, ω̂) is monotonically increasing in m̂ for m̂ < 0,
that is

∂bΨc (m̂, ω̂)
∂m̂

> 0,∀m̂ < 0.

This is illustrated in Figure 7. We now chose

ω̂ = −cm̂.

As bΨc (m̂, ω̂)¯̄̄
m̂=0

= 0, a sufficient condition forbΨc (m̂,−cm̂) to be located in the 2nd and 4th
quadrant in the (m̂, bΨc)-coordinate system is thatbΨc (m̂, ω̂)¯̄̄

ω̂=−cm̂
is monotonically decreasing, that is

dbΨc (m̂, ω̂)
dm̂

=
∂bΨc
∂m̂

+
∂bΨc
∂ω̂

∂ω̂

∂m̂
=

∂bΨc
∂m̂
− c∂

bΨc
∂ω̂

< 0

which is satisfied provided c is chosen according to (11).

As bΨc (m̂, ω̂)¯̄̄
ω̂=−cm̂

now is monotonically decreasing

and passing through the origin, that is located in the
1st and 3rd quadrants, we have that

V̇2 = m̂bΨc (m̂,−cm̂) p01 < 0,∀m̂ 6= 0. (15)

Moreover, V̇2 can always be bounded from above as

V̇2 = m̂bΨc (m̂,−cm̂) p01 < −kmm̂2,∀m̂ 6= 0. (16)

for a constant km > 0. From (16) it follows that

bΨc (m̂,−cm̂) p01 < −kmm̂, m̂ > 0. (17)

As bΨc (m̂,−cm̂) p01 is monotonically decreasing and
passing through the origin, bΨc (m̂,−cm̂) p01is also
bounded from above by the tangent through the ori-
gin, that is

bΨc (m̂,−cm̂) p01 < p01 dbΨc (m̂,−cm̂)
dm̂

m̂.

By choosing

km = −p01 d
bΨc (m̂,−cm̂)

dm̂

¯̄̄̄
¯
m̂=0

(17) and (16) follows. A similar argument can be made
for the case m̂ < 0. By (14) and (16), we now have that

V̇ = V̇1 + V̇2 < −kpp̂2 − kmm̂2 < −kV,∀ (m̂, p̂) 6= (0, 0)
and the result follows.
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Figure 6: Calculation of V̇1.
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Figure 7: Calculation of V̇1.

It is seen from (10) that the gain c has a lower bound
given by the ratio between the sensitivity of the char-
acteristic Ψc with respect to the mass flow m, and the
sensitivity of Ψc with respect to the shaft speed ω.
This result is related to another well known result in
compressor control (see e.g. [11] or [6]): When using
a close coupled valve (CCV) to stabilize a centrifugal
compressor, the control law gain must be greater than
the sensitivity of the characteristic Ψc with respect to
the mass flow m. The CCV-approach aims at using
the pressure drop over the valve to create a combined
compressor and valve characteristic with negative slope
in the equilibrium and thereby ensuring stability. The
approach in this study achieves the same effect without
imposing an unwanted pressure drop in the compression
system. The proposed controller ensures that in closed
loop the compressor characteristic has a negative slope
in the equilibrium. This can bee seen from the plot ofbΨc (m̂,−cm̂) in Figure 7.
Also worth noticing is that, according to Chetaev’s in-
stability theorem, the equilibrium is unstable if the
weaker sector nonlinearity (15) does not hold. This
agrees with the well-known result that if ω is kept con-



stant, that is ω̂ = 0, then the compressor is unstable to
the left of the surge line.

If we take the shaft dynamics (3) into consideration and
follow the same procedure as in the proof of Theorem 1,
the time derivative of the Lyapunov function candidate
(12) along the trajectories of (6) is,

V̇ < −kpp̂2 − kmm̂2 + m̂δ(t), (18)

where δ = A/LeΨc and eΨc := Ψc(m,ω) − Ψc(m,ωd) is
the error in the compressor pressure Ψc due to the shaft
dynamics related to the convergence of ω to the desired
value ωd = ω0−cm̂. It is seen that the system will con-
verge exponentially towards the equilibrium whenever

km |m̂| > |δ(t)| . (19)

Therefore, if the shaft dynamics are sufficiently fast so
that δ(t) converges quickly to zero, the system will con-
verge to a small area around the equilibrium with ex-
ponential rate of convergence.

Disturbances may be treated in a similar way. Assume
that there are disturbances to the system so the dy-
namics are

˙̂pp =
a201
Vp
(m̂− m̂t) + δp

˙̂m =
A1
Lc

³bΨcp01 − p̂p´+ δm (20)

Then the time derivative of the Lyapunov function can-
didate becomes

V̇ < −kpp̂2 − kmm̂2 + p̂δp + m̂δm,

which shows that V will decrease as long as

kpp̂
2 + kmm̂

2 > p̂δp + m̂δm.

In fact the state vector x̂ = (p̂ m̂)T will converge expo-
nentially to the region

kx̂k < β :=
max (δp, δm)

min (kp, km)
.

Note that this is valid for all disturbances without any
upper bound on (δp, δm). The scalar kp is given by the
slope of the throttle characteristic, while km is given
by the mass flow gain c. It is seen that min (kp, km)
has an upper bound, which is kp. It will make sense
to select the gain c so that km is of the same magni-
tude as kp. Satisfactory results will then be obtained
provided that the disturbances (δp, δm) are sufficiently
small so that kx̂k < β gives acceptable operation of the
compressor around the equilibrium. This depends on
the disturbance specifications and the slope kp of the
throttle curve.

3.2 Velocity control
Let the electrical motor torque be generated by τd =
τ̂ + τ0 where τ0 = τc0 is the torque required in the
equilibrium point, and τ̂ = K1 (ωd − ω) is the feedback
control law that is used to obtain the desired shaft speed
ωd = ω0 − cω̂. The resulting control law is

τd = −K1ω̂ −K2m̂+ τ0

where the feedback gain for the mass flow is K2 = K1c.
In practical implementations we propose the use of in-
tegral action to generate the term τ0. The integral term−KI

R
ω̂(t0)dt0 is included in order to keep the compres-

sor at the desired speed, and can be regarded as part
of the performance control system, see Figure 1. This
gives the control law

τ = −K1ω̂ −K2m̂−KI
Z

ω̂(t0)dt0. (21)

By using the analysis presented in equations (18) to
(19), it can be concluded that applying a drive torque
according to (21) ensures that the states of the system
(5) converges exponentially to a small region around
the origin.

4 Simulations

4.1 Surge
In this section it is illustrated that the model is capa-
ble of simulating surge, the instability which will be
stabilized in the next section. Results are presented
from simulations of the compressor system when it is
driven into surge by a drop in mass flow. The com-
pressor is initially operating in a stable operating point
close to m ≈ 5 kg/s, when a throttle change induces a
drop in mass flow of 20%, consequently driving the com-
pressor over the surge line down to about m ≈ 4 kg/s,
and ultimately ending up in a deep surge condition.
The compressor response to this disturbance is shown
in Figure 8. A constant drive torque is used. The com-
pressor undergoes deep surge with oscillations in mass
flow, pressure rise and shaft speed.
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Figure 8: Compressor response when the operating point
is driven over the surge line.

4.2 Simulation of active surge stabilization
Simulations of the proposed active surge control ap-
proach will now be presented. The idea is to control
the compressor speed with feedback from the mass flow
so that the compressor can operate in a stable mode
even to the left of the surge line and thereby avoiding



the unstable operation demonstrated in the simulations
above.

The controller is implemented with the input torque
given by (21), with a desired shaft speed of ωd =
400/s = 24000 rpm. In this simulation, the controller is
active at all times, and as the same mass flow drop as in
the surge simulation above is introduced at t = 5s, the
compressor remains stable. This can bee seen in Fig-
ure 9, where the mass flow, pressure rise, shaft speed
and drive torque are plotted as a function of time. The
mass flow is reduced from 4.9 kg/s to 4.2 kg/s, a value
that in open loop would cause the compressor to surge.
In this controlled case it remains stable. The peak in
the applied torque from the drive as seen in the lower
left plot of Figure 9 is expected to be within the perfor-
mance envelope of the drive. The reason for the slightly
increased speed as the torque is reduced is that the com-
pressor torque is reduced with reduced mass flow as can
be seen from equation (4). From simulations it is found
that the speed control by using drive torque has quite
good performance. As can be seen from Figures 9 and
10, the desired speed of 24000 rpm is not quite reached.
This deviation lies within the small region around the
equilibrium, as concluded in section 3.2. As can be seen
in Figure 10, the new stable operating point is located
to the left of the surge line, illustrating the capability
of the control system to achieve active surge control.
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Figure 9: Active surge control using drive torque.

5 Conclusion

Active surge controllers for a centrifugal compressor
driven by an electrical motor have been designed. This
is a new approach to the active surge control problem.
The use of the rotational speed as control variable ren-
ders the equilibrium globally exponentially stable, and
the use of the drive torque as control ensures expo-
nential convergence. The control manipulates the com-
pressor map in such a way that the compressor sees a
negative compressor characteristic slope even to the left
of the surge line. Simulations confirmed the theory.
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