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Abstract: With the goal of performing robotic intervention tasks reliably with high accuracy
under uncertainty and unknown disturbances, robust control methods such as sliding mode
are appealing. However, contact forces cannot be considered as disturbances in this setting
and compliance to the unknown contact geometry and forces is crucial. Impedance control and
passivity-based techniques can guarantee closed-loop stability when interacting with passive
environments, but at the loss of precision. In this paper, we use the generalized super-twisting
algorithm to obtain a controller which achieves the desired impedance even with disturbances
like ocean currents and model errors. Global asymptotic stability is proved under perturbations
with a bounded time derivative. The performance of the proposed super-twisting impedance
control law is demonstrated in simulations of an underwater vehicle. It is compared with pure
impedance control and first-order sliding mode and achieves the desired impedance with respect
to the contact force despite model errors and ocean currents, with a continuous control input.
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1. INTRODUCTION

When robots are interacting physically with the environ-
ment, pure position control is often not a good approach.
This is due to the lack of control over the interaction
force. Infeasible references can then easily lead to ex-
cessively large contact forces, especially when including
integral action, which is typically used to compensate
for disturbances. In that case, if the reference position
is inside an object, the contact force preventing further
penetration, will cause the integral of the error to grow,
thereby increasing the control input and the contact force
until some physical limits are reached. Force control also
has its limitations, however, being prone to position drift
and instabilities. With the goal of robust and stable inter-
action, it is clear that both the position and the force need
to be considered.

In our previous work (Dyrhaug et al., 2023) we showed how
pure tracking control of position can be made robust and
combined in a strict task-priority framework. However,
when interacting with the environment, the contact force
should be taken into account to ensure stable interaction.

Impedance control (Hogan, 1984) is one of the most used
methods for interaction. The goal is to impose a desired
dynamic relationship between the interaction variables,
typically the contact force and the position/velocity. In
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this way, stable interaction behavior can be achieved in
uncertain environments. However, in the presence of dis-
turbances and model errors, there will be a loss of precision
in both the position and force response. Moreover, the
desired impedance with respect to the contact force is
only attained when there are no model errors or other
perturbations than the contact force. That is not the case
in the underwater domain, so it is desirable to make the
method more robust. If not, the degree of disturbance
rejection is limited to the desired impedance. This will
give insufficient disturbance rejection when there are large
model uncertainties and environmental disturbances while
simultaneously a compliant contact behavior is desired.

The geometry and mechanics of the task impose con-
straints on the possible forces and motions. It is natural
to divide the task space into complementary subspaces
that are either position- or force controlled. This is the
framework of hybrid position/force control (Raibert and
Craig, 1981). While it allows for direct force control, the
method involves switching when the constraints change.
Impedance control, on the other hand, does not, and we
will thus use an impedance control approach in this work.

The impedance controller can be made robust by em-
ploying sliding mode techniques. Dai et al. (2020) ap-
ply the generalized impedance control to an intervention-
AUV with an arm in simulation and conduct experiments
with a force sensor rigidly attached to the body of the
vehicle. They define the sliding variable following Chan
and Chen (2001), and employ a simple first-order sliding
mode controller, with a saturation function to mitigate
chattering. Nicolis et al. (2020) use a different definition of
the sliding surface and employ a super-twisting algorithm.
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101017697-CRÈME. The work is also supported by the Research
Council of Norway through the Centres of Excellence funding
scheme, project No. 223254 – NTNU AMOS.

this way, stable interaction behavior can be achieved in
uncertain environments. However, in the presence of dis-
turbances and model errors, there will be a loss of precision
in both the position and force response. Moreover, the
desired impedance with respect to the contact force is
only attained when there are no model errors or other
perturbations than the contact force. That is not the case
in the underwater domain, so it is desirable to make the
method more robust. If not, the degree of disturbance
rejection is limited to the desired impedance. This will
give insufficient disturbance rejection when there are large
model uncertainties and environmental disturbances while
simultaneously a compliant contact behavior is desired.

The geometry and mechanics of the task impose con-
straints on the possible forces and motions. It is natural
to divide the task space into complementary subspaces
that are either position- or force controlled. This is the
framework of hybrid position/force control (Raibert and
Craig, 1981). While it allows for direct force control, the
method involves switching when the constraints change.
Impedance control, on the other hand, does not, and we
will thus use an impedance control approach in this work.

The impedance controller can be made robust by em-
ploying sliding mode techniques. Dai et al. (2020) ap-
ply the generalized impedance control to an intervention-
AUV with an arm in simulation and conduct experiments
with a force sensor rigidly attached to the body of the
vehicle. They define the sliding variable following Chan
and Chen (2001), and employ a simple first-order sliding
mode controller, with a saturation function to mitigate
chattering. Nicolis et al. (2020) use a different definition of
the sliding surface and employ a super-twisting algorithm.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)



500	 Jan Inge Dyrhaug  et al. / IFAC PapersOnLine 58-20 (2024) 499–505

The use of a second-order sliding mode controller allows
for a stronger reduction of chattering without sacrificing as
much accuracy. However, the stability proof is only carried
out for a first-order algorithm.

In this work, we use the sliding variable of generalized
impedance control (Yao et al., 1994; Chan and Chen,
2001) which gives a flexible parametrization and does not
require acceleration measurements. In order to compare
the method with the pure impedance controller, we set
the desired force equal to zero. We integrate this in a
second-order sliding mode scheme, which, compared to Dai
et al. (2020), allows for a stronger reduction of chatter-
ing without sacrificing as much accuracy. Specifically, we
employ the generalized super-twisting algorithm (GSTA)
(Moreno, 2009), which only requires knowledge of the slid-
ing variable and not its time derivative, in contrast to other
second-order sliding mode algorithms, and also provides a
continuous control input. Moreover, we use quaternions to
represent the orientation without singularities.

We present a stability analysis of the resulting closed-
loop system, showing that global asymptotic stability is
achieved under a large class of disturbances with bounded
time derivatives. In a special case, the result is strength-
ened to finite-time stability. This is stronger than pre-
vious results which only showed practical stability with
a continuous approximation of first-order sliding mode.
The performance of the control system is evaluated in
simulations of an underwater vehicle and show that the
desired impedance can be achieved in the presence of
significant model errors and environmental disturbances
such as ocean currents.

The paper is organized as follows. First, we provide some
background material on robust interaction control in Sec-
tion 2. Then, we develop our proposed super-twisting
impedance controller in Section 3 and apply the control
method on an underwater vehicle. In Section 4, we present
the stability analysis. The simulation results are presented
in Section 5. Finally, in Section 6, we summarize the results
and future work.

2. BACKGROUND

In this section we present some required details of existing
interaction control methods to introduce the required
notation and background for our approach.

2.1 Impedance control

Commonly, the desired dynamic behavior is that of a mass-
spring-damper system

Mdes
¨̃x+Ddes

˙̃x+Kdesx̃ = Fc (1)

with x̃ being the position error, Fc the contact force
and Mdes, Ddes and Kdes representing the desired inertia,
damping and stiffness, respectively. In other words, the
impedance control problem can be viewed as a model fol-
lowing problem, where the desired impedance is achieved
if the interaction variables are related by (1).

As an example of the implementation of impedance con-
trol, consider the standard manipulator equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext (2)

where q denotes the configuration variables (typically
joint angles), M is the inertia matrix, C is the Corio-
lis/centrifugal matrix, g denotes the gravitational torques,
τ denotes the actuator output torques and τext = τc+τdist
is the sum of the contact force and disturbances. The
desired impedance in the operational space is given by a
dynamical relationship of the form

Λdes
¨̃x+Ddes

˙̃x+Kdesx̃ = Fext, (3)

where x̃ = x−xd, ẋ = J(q)q̇ and τext = J⊤Fext, and in case
of an invertible Jacobian J , the operational space inertia
is Λ = J−⊤MJ−1 and the Coriolis-centrifugal matrix is
µ = J−⊤(C−MJ−1J̇)J−1. Often, the desired inertia Λdes,
damping Ddes and stiffness Kdes are chosen as constant,
diagonal matrices to give a decoupled response.

With the above notation, the classical impedance con-
troller is given by (Ott, 2008, Ch. 3)

τ = g(q) + J(q)⊤(Λ(x)ẍd + µ(x, ẋ)ẋ)

− J(q)⊤Λ(x)Λ−1
des(Kdesx̃+Ddes

˙̃x)

+ J(q)⊤(Λ(x)Λ−1
des − I)Fext. (4)

Note that feedback of the external force Fext is needed to
shape the inertia, which can be problematic in practice
due to noncolocation of the sensor and the actuators,
leading to delays and potentially instability issues (Hogan,
2022). In order to avoid force feedback, one can keep
the natural inertia Λ(x). Since the desired inertia matrix
in this case depends on the position x, it is natural
that also the desired damping should vary accordingly.
A procedure for this based on the generalized eigenvalue
decomposition of symmetric matrices is given in Ott (2008,
Sec. 3.3). Since the dynamics in that case become coupled
and nonlinear, it requires a more complicated analysis.
However, in the absence of disturbances, uniform global
asymptotic stability is still achieved (Ott, 2008, Sec. 3.2).

It should also be noted, that the above-mentioned con-
troller only achieve the desired impedance with respect to
the contact force when there are no model errors or other
perturbations than the contact force, i.e. τext = τc in (2).
That is not the case in the underwater domain, so it is
desirable to make the method more robust. Otherwise, the
closed loop operational space dynamics instead become

Λdes
¨̃x+Ddes

˙̃x+Kdesx̃ = Fc + ΛdesΛ
−1Fdist, (5)

where the disturbance drives the system, distorted by the
ratio of desired and natural inertia, ΛdesΛ

−1. As noted
by Dietrich and Ott (2020), this distortion can destroy
dissipativity properties of for example unmodeled velocity-
dependent friction and destabilize the closed-loop system.

2.2 Sliding mode impedance control

Sliding mode impedance control can be implemented with
a suitable definition of the sliding surface. In Nicolis
et al. (2020), an integral formulation is used to avoid the
feedback of accelerations, by defining

σ =

∫ t

t0

(Mdes
¨̃x+Ddes

˙̃x+Kdesx̃− Fc)dτ (6)

which is the integral of (1), hence the desired impedance
is achieved when σ̇ = 0. It is therefore quite natural
to employ a second-order sliding mode algorithm, which

can ensure that both σ and σ̇ converge to zero in finite
time. However, note that σ = 0 is not required to obtain
the desired dynamics (1). The use of the super-twisting
algorithm will ensure that σ̇ and therefore the control
input is continuous, in contrast to first-order methods, in
which σ̇ is discontinuous.

Specifically, in this work, we will use the generalized
super-twisting algorithm (GSTA) (Moreno, 2009). Com-
pared with the standard super-twisting algorithm (Levant,
1993), the GSTA contains extra terms to counteract the
effects of state-dependent perturbations that can grow
exponentially in time. The super-twisting algorithm is also
unique in that it only requires knowledge of the sliding
variable and not its time derivative, in contrast to other
second-order sliding mode controllers.

2.3 Generalized sliding mode impedance control

In order to incorporate force references, one can replace the
contact force F in (6) with the force error F̃c = Fc − Fc,d:

Mdes
¨̃x+Ddes

˙̃x+Kdesx̃ = Kf F̃c. (7)

This has been called generalized impedance control (Yao
et al., 1994; Chan and Chen, 2001). The effect of this is
that force tracking is achieved when the position errors are
zero. However, if the position references are inaccurate, the
resulting force will approach the sum of the reference force
and the force dictated by the stiffness Kdes of the virtual
spring. Chan and Chen (2001) also formulate a dynamic
compensator (rewritten with our notation):

ζ̇ = Aζ +Kpzx̃+Kvz
˙̃x−KfzF̃c (8)

where ζ is the state-vector of the compensator, A is any
negative semi-definite matrix, and Kpz, Kvz and Kfz are
specified so that the target model (7) is achieved in the
sliding mode. The switching function is defined as

s = ˙̃x+ F1x̃+ F2ζ (9)

where F1 and F2 are constant; F2 also being nonsingular.

This definition of the sliding variable has the advantage of
more design freedom than the formulation in (6), as the
matrices A, F1 and F2 can be tuned. Typically, however,
they are chosen as diagonal. Moreover, the sliding variable
does not depend directly on acceleration, even when Mdes

is not constant, and the integral of the impedance equation
(7) is not forced to zero. Therefore, this is the sliding
variable formulation we will use, but with Kf = 0 and
Fd = 0 to compare with the pure impedance controller.

3. SUPER-TWISTING IMPEDANCE CONTROL

In this section we present our proposed control approach.
The method combines the generalized impedance control
concept of (7) and the sliding mode formulation of (9) with
the generalized super-twisting algorithm (Moreno, 2009).
To illustrate its effectiveness, we apply the method on the
control of an underwater vehicle.

3.1 Dynamic model

The dynamic model of the underwater vehicle expressed
in the body-frame is (Fossen, 2021, Sec. 8.1)

Mν̇r + C(νr)νr +D(νr)νr + g(η) = τ + τc + τdist (10)

where η = (p, q) is the configuration of the vehicle,
consisting of the position p and orientation represented
by a unit quaternion q, and ν = (v, ω) is the linear and
angular velocity of the vehicle and νr = ν − νc is the
velocity relative to the ocean current. M is the inertia
matrix, C is the Coriolis/centrifugal matrix, D is damping
and g is gravitational and buoyancy forces. In more detail,
M and C contain both rigid body and hydrodynamic
added mass, i.e., M = MRB+MA and C = CRB+CA. The
actuator output is τ , and the contact wrench is represented
with τc. The term τdist represents a lumped uncertainty
containing matched model errors and disturbances. We
will also define τ̄dist to be the equivalent disturbance when
the effect of the ocean current is considered unknown and
the model uses estimates of M , C, D and g, i.e.,

τ̄dist = τdist+Mν̇c+C(ν)ν−C(νr)νr+D(ν)ν−D(νr)νr

+ M̃ν̇ + C̃(ν)ν + D̃(ν)ν + g̃(η) (11)

with x̃ = x̂− x here denoting estimation errors.

3.2 Super-twisting impedance control

We will solve the following control objective:

Control problem: Design a control law τ(t, η, ν, τc) for
(10) which despite disturbances asymptotically gives the
closed-loop system the impedance defined by

Md
˙̃ν +Ddν̃ +Kdη̃ = τc, (12)

with ν̃ = ν−νd and η̃ = (p− pd, q̃v), where q̃v is the vector
part of the error quaternion q̃ = q∗d ⊗ q. No knowledge of
the current νc or the disturbance τdist is assumed, and
only estimates of M , C, D and g. We do assume that
measurements or estimations of η, ν and τc are available.

If we were to derive the ideal controller, similar to (4), we
would choose the control law

τ = Mν̇r,d + C(νr)νr +D(νr)νr + g(η)

−MM−1
d (Kdη̃ +Ddν̃)

+ (MM−1
d − I)τc − τdist. (13)

One difference with respect to (4) is that we seek to cancel
the effect of the disturbance τdist and obtain a desired
impedance with respect to the contact force τc only. How-
ever, since the disturbance τdist and the current velocity νc
are unknown, this control cannot be implemented. In this
work, we will thus employ the generalized super-twisting
algorithm (GSTA) to compensate for this disturbance.

Inspired by (9), we define the sliding variable

s = ν̃ + F1η̃ + F2ζ (14)

ζ̇ = Aζ +Kpz η̃ +Kvz ν̃ −Kfzτc (15)

with gains related by (21). Note that ˙̃η ̸= ν̃ because of the
orientation part. For the error quaternion

˙̃q =

[
− 1

2q
⊤
v

1
2 (qwI3 + S(qv))

]
ω̃ = T (q̃)ω̃ (16)

where qw denotes the real part and qv the vector part of the
quaternion, and S(·) is the skew symmetric cross product
matrix. Focusing on the vector part, we have that

˙̃qv =
1

2
(q̃wI3 + S(q̃v))ω̃ =: U(q̃)ω̃ (17)

so

˙̃η =

[
˙̃p
˙̃qv

]
=

[
ṽ

U(q̃)ω̃

]
=

[
I3 03
03 U(q̃)

]
ν̃. (18)
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can ensure that both σ and σ̇ converge to zero in finite
time. However, note that σ = 0 is not required to obtain
the desired dynamics (1). The use of the super-twisting
algorithm will ensure that σ̇ and therefore the control
input is continuous, in contrast to first-order methods, in
which σ̇ is discontinuous.

Specifically, in this work, we will use the generalized
super-twisting algorithm (GSTA) (Moreno, 2009). Com-
pared with the standard super-twisting algorithm (Levant,
1993), the GSTA contains extra terms to counteract the
effects of state-dependent perturbations that can grow
exponentially in time. The super-twisting algorithm is also
unique in that it only requires knowledge of the sliding
variable and not its time derivative, in contrast to other
second-order sliding mode controllers.

2.3 Generalized sliding mode impedance control

In order to incorporate force references, one can replace the
contact force F in (6) with the force error F̃c = Fc − Fc,d:

Mdes
¨̃x+Ddes

˙̃x+Kdesx̃ = Kf F̃c. (7)

This has been called generalized impedance control (Yao
et al., 1994; Chan and Chen, 2001). The effect of this is
that force tracking is achieved when the position errors are
zero. However, if the position references are inaccurate, the
resulting force will approach the sum of the reference force
and the force dictated by the stiffness Kdes of the virtual
spring. Chan and Chen (2001) also formulate a dynamic
compensator (rewritten with our notation):

ζ̇ = Aζ +Kpzx̃+Kvz
˙̃x−KfzF̃c (8)

where ζ is the state-vector of the compensator, A is any
negative semi-definite matrix, and Kpz, Kvz and Kfz are
specified so that the target model (7) is achieved in the
sliding mode. The switching function is defined as

s = ˙̃x+ F1x̃+ F2ζ (9)

where F1 and F2 are constant; F2 also being nonsingular.

This definition of the sliding variable has the advantage of
more design freedom than the formulation in (6), as the
matrices A, F1 and F2 can be tuned. Typically, however,
they are chosen as diagonal. Moreover, the sliding variable
does not depend directly on acceleration, even when Mdes

is not constant, and the integral of the impedance equation
(7) is not forced to zero. Therefore, this is the sliding
variable formulation we will use, but with Kf = 0 and
Fd = 0 to compare with the pure impedance controller.

3. SUPER-TWISTING IMPEDANCE CONTROL

In this section we present our proposed control approach.
The method combines the generalized impedance control
concept of (7) and the sliding mode formulation of (9) with
the generalized super-twisting algorithm (Moreno, 2009).
To illustrate its effectiveness, we apply the method on the
control of an underwater vehicle.

3.1 Dynamic model

The dynamic model of the underwater vehicle expressed
in the body-frame is (Fossen, 2021, Sec. 8.1)

Mν̇r + C(νr)νr +D(νr)νr + g(η) = τ + τc + τdist (10)

where η = (p, q) is the configuration of the vehicle,
consisting of the position p and orientation represented
by a unit quaternion q, and ν = (v, ω) is the linear and
angular velocity of the vehicle and νr = ν − νc is the
velocity relative to the ocean current. M is the inertia
matrix, C is the Coriolis/centrifugal matrix, D is damping
and g is gravitational and buoyancy forces. In more detail,
M and C contain both rigid body and hydrodynamic
added mass, i.e., M = MRB+MA and C = CRB+CA. The
actuator output is τ , and the contact wrench is represented
with τc. The term τdist represents a lumped uncertainty
containing matched model errors and disturbances. We
will also define τ̄dist to be the equivalent disturbance when
the effect of the ocean current is considered unknown and
the model uses estimates of M , C, D and g, i.e.,

τ̄dist = τdist+Mν̇c+C(ν)ν−C(νr)νr+D(ν)ν−D(νr)νr

+ M̃ν̇ + C̃(ν)ν + D̃(ν)ν + g̃(η) (11)

with x̃ = x̂− x here denoting estimation errors.

3.2 Super-twisting impedance control

We will solve the following control objective:

Control problem: Design a control law τ(t, η, ν, τc) for
(10) which despite disturbances asymptotically gives the
closed-loop system the impedance defined by

Md
˙̃ν +Ddν̃ +Kdη̃ = τc, (12)

with ν̃ = ν−νd and η̃ = (p− pd, q̃v), where q̃v is the vector
part of the error quaternion q̃ = q∗d ⊗ q. No knowledge of
the current νc or the disturbance τdist is assumed, and
only estimates of M , C, D and g. We do assume that
measurements or estimations of η, ν and τc are available.

If we were to derive the ideal controller, similar to (4), we
would choose the control law

τ = Mν̇r,d + C(νr)νr +D(νr)νr + g(η)

−MM−1
d (Kdη̃ +Ddν̃)

+ (MM−1
d − I)τc − τdist. (13)

One difference with respect to (4) is that we seek to cancel
the effect of the disturbance τdist and obtain a desired
impedance with respect to the contact force τc only. How-
ever, since the disturbance τdist and the current velocity νc
are unknown, this control cannot be implemented. In this
work, we will thus employ the generalized super-twisting
algorithm (GSTA) to compensate for this disturbance.

Inspired by (9), we define the sliding variable

s = ν̃ + F1η̃ + F2ζ (14)

ζ̇ = Aζ +Kpz η̃ +Kvz ν̃ −Kfzτc (15)

with gains related by (21). Note that ˙̃η ̸= ν̃ because of the
orientation part. For the error quaternion

˙̃q =

[
− 1

2q
⊤
v

1
2 (qwI3 + S(qv))

]
ω̃ = T (q̃)ω̃ (16)

where qw denotes the real part and qv the vector part of the
quaternion, and S(·) is the skew symmetric cross product
matrix. Focusing on the vector part, we have that

˙̃qv =
1

2
(q̃wI3 + S(q̃v))ω̃ =: U(q̃)ω̃ (17)

so

˙̃η =

[
˙̃p
˙̃qv

]
=

[
ṽ

U(q̃)ω̃

]
=

[
I3 03
03 U(q̃)

]
ν̃. (18)
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Now, differentiating (14) we get

ṡ = ˙̃ν + F1
˙̃η + F2ζ̇ = ˙̃ν + F̄1ν̃ + F2ζ̇ (19)

with F̄1 = F1

[
I3 03
03 U(q̃)

]
. The rest of the derivation is

analogous to Chan and Chen (2001). Substituting (15) into
(19) and using (14) to eliminate ζ, we get that

Md
˙̃ν +Ddν̃ +Kdη̃ = τc +Md(ṡ− F2AF−1

2 s) (20)

when choosing

Kvz = F−1
2 (M−1

d Dd − F̄1 + F2AF−1
2 ) (21a)

Kpz = F−1
2 (M−1

d Kd + F2AF−1
2 F1) (21b)

Kfz = F−1
2 M−1

d . (21c)

We then use a second-order sliding mode controller to
enforce the desired impedance robustly. The total control
of the super-twisting impedance controller is

τGSTA-IC = τnom + M̂(τGSTA(s, z)− F2AF−1
2 s) (22)

where the nominal control is

τnom = M̂ν̇d + Ĉ(ν)ν + D̂(ν)ν + ĝ(η) + (M̂M−1
d − I)τc

− M̂M−1
d (Kdη̃ +Ddν̃) (23)

and the sliding mode part is

τGSTA(s, z) = −k1ϕ1(s) + z (24a)

ż = −k2ϕ2(s) (24b)

where ϕ1(s) = ⌈s⌋ 1
2 +βs and ϕ2(s) =

1
2⌈s⌋

0+ 3
2β⌈s⌋

1
2 +β2s

using the short-hand notation ⌈a⌋b = |a|b sgn(a), with all
functions evaluated element-wise. The desired wrench is
mapped to the thruster inputs by

u = B†τ (25)

where B is the thruster allocation matrix and † denotes
the Moore–Penrose pseudoinverse.

4. STABILITY ANALYSIS

Inserting the controller (22) into the dynamics (10), one
obtains the following closed-loop dynamics:

˙̃ν+M−1
d (Ddν̃+Kdη̃−τc) = τGSTA−F2AF−1

2 s+M̂−1τ̄dist.
(26)

Using (20) we get that

ṡ = τGSTA(s, z) + M̂−1τ̄dist. (27)

Defining φ = M̂−1τ̄dist, this equation can be written
component-wise as

ṡi = −k1ϕ1(si) + zi + φi (28)

which is a special case of the setting considered by (López-
Caamal and Moreno, 2019, Theorem 1). Following their
notation using superscripts as indexes, splitting the per-
turbation into a vanishing part φ1 and a remainder φ2,
and defining z1 := s and z2 := z + φ2, our closed-loop
system can be written as

d

dt
z1 = −K1ϕ1(z1) + z2(t) + ρ1(t, z1, z2) (29a)

d

dt
z2 = −K2ϕ2(z1) + ρ2(t, z1) (29b)

with ρ1 = φ1 and ρ2 = φ̇2. Note that (s, ṡ) → (0, 0)
is implied by (z1, z2) → (0, 0), since ϕ1(0) = 0 and ρ1

vanishes when z1 = z2 = 0.

The first three assumptions of (López-Caamal and Moreno,
2019, Theorem 1) are satisfied with our choice of the
functions ϕ1 and ϕ2, and assumption four is fulfilled since
in our case K1 = k1I and K2 = k2I are chosen as diagonal
matrices and J is diagonal. The last assumption is on the
perturbations, and assumes that they can be written in
terms of ϕ1(z1) and z2 as

ρ1(t, z1, z2) = G1(t)ϕ1(z1) +G3(t)z2 (30a)

ρ2(t, z1) = G2(t)ϕ2(z1) (30b)

where the matrices Gi are bounded. Note that our ϕ2(s)
contains the term ⌈s⌋0 = sgn(s), which is able to compen-
sate for nonvanishing perturbations ρ2. Since the highest-
order term in ϕ2(s) is linear, even perturbations φ2 with a
time derivative that is linear in s can be handled. Looking
at the expression (11) we see that the highest order term
in ν is of second order, with quadratic damping.

With the knowledge of bounds on the elements of Gi, one
can design gainsKi that render the origin of (29) stable. In
particular, if the matrices Gi are diagonal, (López-Caamal
and Moreno, 2019, Corollary 1) gives simple conditions for
robust finite-time stability. The results of the above are
summarized in the following proposition:

Proposition 1. Consider the closed-loop system (29) given
by the dynamics (10) and the controller (22). Given that
the perturbation ρ is bounded as described in (30), there
exist gains k1, k2 such that (z1, z2) = (0, 0) is a glob-
ally asymptotically stable equilibrium point of (29), and
(s, ṡ) thus converge asymptotically to (0, 0). If, moreover,
the matrices Gi of (30) are diagonal, and the gains are
chosen according to (López-Caamal and Moreno, 2019,
Algorithm 1), the the origin (z1, z2) = (0, 0) is finite-time
stable and (s, ṡ) thus converge to (0, 0) in finite time.

5. SIMULATIONS

In this section we will perform a simulation study to in-
vestigate the performance of the generalized super-twisting
impedance controller (22-24) proposed in Section 3. Fur-
thermore, we will compare it to the performance of a pure
impedance controller, as given in (23), and with a first-
order sliding mode impedance controller

τFOSM-IC = τnom − M̂Ks sat(s/ϵ) (31)

with τnom given by (23), the sliding variable s given by
(14) and sat(·) being the element-wise saturation function

sat(x) =

{
x if |x| < 1

sgn(x) if |x| ≥ 1.
(32)

The simulation was conducted using a model implemented
in MATLAB/Simulink, using ode1 with a fixed time step
of 0.0001 due to the rapid switching in the sliding mode
controller. The intervention task is to make contact and
push on a wall, which is located at x = xc = 1 with
kc = 100, 000 N/m. The vehicle starts at rest at the origin,
with no rotation. The position reference trajectory is a step
from 0 to 1.01 m at t = 1 s, smoothed with a third-order
lowpass filter with cutoff frequency ωn = 2, so that the
desired acceleration becomes continuous. This deviation
emulates an uncertainty in the position of the wall, in
addition to producing a certain force when in contact. The
orientation reference was set to qd = (1 0 0 0), which was
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Fig. 1. Position trajectory with pure impedance control.

also the initial orientation. The parameters of the sliding
variable were chosen as A = −100I, F1 = F2 = I and
Kf = I and the desired impedance parameters were Md =
M , Kd = diag(150, 1500, 1500, 50, 50, 50) and Dd from the
procedure given in (Ott, 2008, Sec. 3.3) and mentioned in
Sec. 2.1. Together, this gives an expected stationary value
of 1.5 N for the contact force. The vehicle is subjected to a

constant irrotational current, vc = Vc [cos(βc) sin(βc) 0]
⊤

in the world frame, with Vc = 0.5 m/s and βc = 2π/3,
pushing the vehicle away from the wall and to the left. The
GSTA parameters were set to k1 = 5, k2 = 10 and β = 5.
The parameters of the first-order sliding mode controller
(31) were set to Ks = 19 and ϵ = 10−3.

5.1 Hydrodynamic parameters and contact modeling

The hydrodynamic parameters used were identified from
experiments on a BlueROV1 (Sandøy, 2016, Sec. 4.2.3),
see Table A. The mass was 7.31 kg, the inertia dyadic
was implemented as Ibb = 0.16I3 and the vector from the
center of the body frame to the center of gravity was
rbbg = (0, 0, 0.00019) m. Under the assumption that the
vehicle has starboard-port symmetry with yg = 0 and
Ixy = Iyz = 0, the inertia matrix has a special structure,
see (Fossen, 2021, Eq. 8.8). The Coriolis/centrifugal matrix
was parametrized independently of the linear velocity v
according to Fossen (2021, Eq. 3.63). The damping matrix
was implemented as (Fossen, 2021, Eq 8.10)

D(νr) = − diag(Xu+Xuu|ur|, Yv+Yvv|vr|, Zw+Zww|wr|,
Kp +Kpp|p|,Mq +Mqq|q|, Nr +Nrr|r|). (33)

The contact force was modeled as a stiff linear spring along
the x-axis, i.e.

Fc,x =

{
−kc(x− xc) if x > xc

0 otherwise
(34)

with the rest of the components of τc equal to zero.

5.2 Simulation results

We start by presenting the simulation results with the
pure impedance controller (23), followed by the first-
order sliding mode impedance controller (31) and finally
the proposed super-twisting impedance controller (22)
to illustrate how the different elements of the proposed
control law act to achieve both robustness and compliance.
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Figures 1-3 show the simulation results with the impedance
controller (23). As Fig. 1 shows, the impedance controller
is not able to fully compensate for the unknown current
and does not quite reach the wall, even though the refer-
ence goes slightly into it. Contact is thus not established,
due to the unknown current, whereas the expected sta-
tionary value of the contact force is 1.5 N, with a desired
stiffness Kd of 150 N/m in the x-direction and a 0.01 m
position error. Obviously, moving the reference further into
the wall or increasing the stiffness in the x-direction would
establish contact, but it would need to be tuned depending
on the stiffness of the environment and the amount of
disturbance, which may vary over time.

We then performed simulations with the first-order sliding
mode impedance control (FOSMC) (31). Figures 4 and 5
show that contact is now achieved with a force of almost
1.5 N, but the desired impedance is still not achieved
exactly (Fig. 6), as expected because of the boundary
layer. Notice also that the sliding variable is well inside the
boundary layer at all times, and Fig. 7 shows the actuation
force, which therefore does not chatter, except for an initial
transient. However, making the boundary layer ϵ smaller
or increasing the control gainKs induces severe chattering.

The GSTA controller (22-24), on the other hand, handles
the unknown ocean current nicely and achieves the de-
sired impedance, as can be seen from Fig. 9 where the
contact force stabilizes at the expected value of 1.5 N,
in accordance with the imposed impedance relation. As
can be seen by comparing Fig. 11 with Fig. 3, the sliding
mode controller expectedly uses more control effort than
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also the initial orientation. The parameters of the sliding
variable were chosen as A = −100I, F1 = F2 = I and
Kf = I and the desired impedance parameters were Md =
M , Kd = diag(150, 1500, 1500, 50, 50, 50) and Dd from the
procedure given in (Ott, 2008, Sec. 3.3) and mentioned in
Sec. 2.1. Together, this gives an expected stationary value
of 1.5 N for the contact force. The vehicle is subjected to a

constant irrotational current, vc = Vc [cos(βc) sin(βc) 0]
⊤

in the world frame, with Vc = 0.5 m/s and βc = 2π/3,
pushing the vehicle away from the wall and to the left. The
GSTA parameters were set to k1 = 5, k2 = 10 and β = 5.
The parameters of the first-order sliding mode controller
(31) were set to Ks = 19 and ϵ = 10−3.

5.1 Hydrodynamic parameters and contact modeling

The hydrodynamic parameters used were identified from
experiments on a BlueROV1 (Sandøy, 2016, Sec. 4.2.3),
see Table A. The mass was 7.31 kg, the inertia dyadic
was implemented as Ibb = 0.16I3 and the vector from the
center of the body frame to the center of gravity was
rbbg = (0, 0, 0.00019) m. Under the assumption that the
vehicle has starboard-port symmetry with yg = 0 and
Ixy = Iyz = 0, the inertia matrix has a special structure,
see (Fossen, 2021, Eq. 8.8). The Coriolis/centrifugal matrix
was parametrized independently of the linear velocity v
according to Fossen (2021, Eq. 3.63). The damping matrix
was implemented as (Fossen, 2021, Eq 8.10)

D(νr) = − diag(Xu+Xuu|ur|, Yv+Yvv|vr|, Zw+Zww|wr|,
Kp +Kpp|p|,Mq +Mqq|q|, Nr +Nrr|r|). (33)

The contact force was modeled as a stiff linear spring along
the x-axis, i.e.

Fc,x =

{
−kc(x− xc) if x > xc

0 otherwise
(34)

with the rest of the components of τc equal to zero.

5.2 Simulation results

We start by presenting the simulation results with the
pure impedance controller (23), followed by the first-
order sliding mode impedance controller (31) and finally
the proposed super-twisting impedance controller (22)
to illustrate how the different elements of the proposed
control law act to achieve both robustness and compliance.

0 5 10 15 20

Time (seconds)

-6

-4

-2

0

2

4
#10

-3

s
1

s
2

s
3

s
4

s
5

s
6

0 0.02 0.04 0.06 0.08 0.1
-2

0

2

#10
-3

Fig. 2. Sliding variable with pure impedance control.
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Fig. 3. Actuation force τ with pure impedance control.

Figures 1-3 show the simulation results with the impedance
controller (23). As Fig. 1 shows, the impedance controller
is not able to fully compensate for the unknown current
and does not quite reach the wall, even though the refer-
ence goes slightly into it. Contact is thus not established,
due to the unknown current, whereas the expected sta-
tionary value of the contact force is 1.5 N, with a desired
stiffness Kd of 150 N/m in the x-direction and a 0.01 m
position error. Obviously, moving the reference further into
the wall or increasing the stiffness in the x-direction would
establish contact, but it would need to be tuned depending
on the stiffness of the environment and the amount of
disturbance, which may vary over time.

We then performed simulations with the first-order sliding
mode impedance control (FOSMC) (31). Figures 4 and 5
show that contact is now achieved with a force of almost
1.5 N, but the desired impedance is still not achieved
exactly (Fig. 6), as expected because of the boundary
layer. Notice also that the sliding variable is well inside the
boundary layer at all times, and Fig. 7 shows the actuation
force, which therefore does not chatter, except for an initial
transient. However, making the boundary layer ϵ smaller
or increasing the control gainKs induces severe chattering.

The GSTA controller (22-24), on the other hand, handles
the unknown ocean current nicely and achieves the de-
sired impedance, as can be seen from Fig. 9 where the
contact force stabilizes at the expected value of 1.5 N,
in accordance with the imposed impedance relation. As
can be seen by comparing Fig. 11 with Fig. 3, the sliding
mode controller expectedly uses more control effort than
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Fig. 4. Position trajectory with the first-order sliding mode
impedance control.
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Fig. 5. Contact force trajectory with first-order sliding
mode impedance control.
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Fig. 6. Sliding variable with first-order sliding mode
impedance control.

the pure impedance controller, but there is not much chat-
tering. Compared with the FOSMC (Fig. 7), the GSTA
obtains much stronger robustness with a similar control
effort, and with less chattering. This is most visible in
the short initial transient in the inset zoom, where the
GSTA gives a continuous control and the FOSMC switches
rapidly during the first fraction of a second. The difference
is also clear from the sliding variable, Figs. 6 and 10.

To test the robustness further, the same case was run
without the nominal control (23), that is, with only the
GSTA term. Still, the controller manages to compensate
for the disturbances and enforce the desired impedance.
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Fig. 7. Actuation force τ with first-order sliding mode
impedance control.
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Fig. 8. Position trajectory with super-twisting impedance
control.
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Fig. 9. Contact force trajectory with super-twisting
impedance control.

As Fig. 11 shows, the actuator output is virtually identical
to the that of the full controller including (23). However,
due to the lack of the nominal control, the sliding mode
term needs to compensate more, as we do not utilize the
knowledge of the system dynamics. This is evident from
Fig. 12 which shows the increased size of the integral term.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of achieving
robustness while also achieving compliant contact behavior
for interaction operations. To this end, we proposed an
approach where we combine generalized impedance control
with the generalized super-twisting algorithm. Stability of
the closed-loop system was analyzed and global asymptotic
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Fig. 10. Sliding variable with super-twisting impedance
control.
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Fig. 11. Actuation force τ with super-twisting impedance
control. With nominal control in solid line and with-
out nominal control in dashed line.
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Fig. 12. Comparison of the force part of the GSTA integral
term. With nominal control in solid line and without
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stability was proved for a large class of disturbances with
bounded time derivatives. The result was strengthened
to finite-time stability with stronger assumptions on the
disturbance. The resulting control law was applied to an
underwater vehicle and tested in a simulation study. The
simulations showed that the proposed controller provides
good robustness properties with regard to unknown dis-
turbances like ocean currents, while remaining compliant
to the contact force. Moreover, the control input is con-
tinuous, and chattering is reduced significantly compared
to the first-order sliding mode, without having to tune
a boundary layer and give up some robustness. In future

works, the method is to be tested in experiments to further
investigate its practicality.

Appendix A. HYDRODYNAMIC PARAMETERS

Symbol Value Symbol Value Symbol Value

Xu̇ -5.5 Xu -4.03 Xuu -18.18
Yv̇ -12.7 Yv -6.22 Yvv -21.66
Zẇ -14.57 Zw -5.18 Zww -36.99
Kṗ -0.12 Kp -0.07 Kpp -1.55
Mq̇ -0.12 Mq -0.07 Mqq -1.55
Nṙ -0.12 Nr -0.07 Nrr -1.55
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control.
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control. With nominal control in solid line and with-
out nominal control in dashed line.
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stability was proved for a large class of disturbances with
bounded time derivatives. The result was strengthened
to finite-time stability with stronger assumptions on the
disturbance. The resulting control law was applied to an
underwater vehicle and tested in a simulation study. The
simulations showed that the proposed controller provides
good robustness properties with regard to unknown dis-
turbances like ocean currents, while remaining compliant
to the contact force. Moreover, the control input is con-
tinuous, and chattering is reduced significantly compared
to the first-order sliding mode, without having to tune
a boundary layer and give up some robustness. In future

works, the method is to be tested in experiments to further
investigate its practicality.
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