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Adaptive feed-forward hysteresis compensation for piezoelectric actuators
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Piezoelectric actuators are often employed for high-resolution positioning tasks. Hysteresis and creep
nonlinearities inherent in such actuators deteriorate positioning accuracy. An online adaptive non-
linear hysteresis compensation scheme for the case of symmetric hysteretic responses and certain
periodic reference trajectories is presented. The method has low complexity and is well suited for
real-time implementation. Experimental results are presented in order to verify the method, and it
is seen that the error due to hysteresis is reduced by more than 90% compared to when assuming a
linear response. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739923]

I. INTRODUCTION

Micro- and nanopositioning devices often employ piezo-
electric actuators. Such actuators provide a fast and friction
free response, and the resolution is only limited by instrumen-
tation noise. For low-speed reference trajectory tracking, the
largest error contribution comes from the hysteresis and creep
nonlinearities.1, 2 The error introduced by these nonlinearities
can be reduced by using feed-forward or feedback control, or
by driving the actuator by charge rather than voltage.

Due to hysteresis, the average gain of a piezoelectric ac-
tuator depends on the amplitude of the driving voltage.3 The
observed piezoelectric response also changes over time, as the
gain is dependent on temperature variations and depolariza-
tion, as well as other factors.4 Feedback control effectively
reduces the sensitivity to such uncertainty, as well as the dis-
turbance introduced by hysteresis, if integral action is used.5

The reduction in error when using feedback control is depen-
dent on the obtainable closed-loop bandwidth, but high band-
width control also increases the overall noise in the system.6, 7

By using a feed-forward scheme in addition to feedback
control, better tracking performance can be obtained. For re-
duction of the error introduced by hysteresis, there are several
methods based on inversion of the Preisach model, or variants
thereof.8, 9 In general, performance when using feed-forward
control depends directly on the accuracy of the model.10 In
the presence of uncertainties and changing responses, on-line
adaptation can be used to improve the accuracy.9 Such models
tend to be large if an accurate description is required, and can
therefore be computationally demanding.

Driving a piezoelectric actuator using charge rather
than voltage is known to provide excellent suppression of
hysteresis.11, 12 Even though the hysteresis disturbance can
be suppressed, driving the piezoelectric actuator using charge
will not remove the uncertainty in actuator gain. Also, charge
drives are often not a part of existing instrumentation config-
urations, as voltage drives have been the standard choice for
positioning tasks when using piezoelectric actuators.

a)Electronic mail: arnfinn.aas.eielsen@itk.ntnu.no.
b)Electronic mail: jan.tommy.gravdahl@itk.ntnu.no.
c)Electronic mail: kristin.y.pettersen@itk.ntnu.no.

In this paper, an online adaptive nonlinear feed-forward
hysteresis compensation scheme is presented. It is suitable for
symmetric hysteretic responses and certain periodic reference
trajectories. Being adaptive, the method retains good accuracy
in the presence of uncertainties in the response, both with re-
gards to the gain and the shape of the hysteretic response. The
method has low complexity and is amenable to real-time im-
plementation.

Furthermore, experimental results are presented to verify
and illustrate the theoretical result. The presented method is
then applied to a standard instrumentation configuration, uti-
lizing a capacitive displacement sensor and a voltage drive. In
the experiments, it is seen that the error due to hysteresis can
be reduced by more than 90% compared to when assuming a
linear response. It should be noted that it is straightforward to
augment the method using, e.g., an integral control law to fur-
ther reduce the tracking error, although this is not discussed
further in this paper.

The paper is organized as follows. In Sec. II, models
for the ideal linear response and for the hysteretic response
are presented. In Sec. III, two feed-forward schemes are de-
scribed, one assuming an ideal linear response, and a scheme
to compensate for the hysteretic behavior, based on the hys-
teresis model from Sec. II. The experimental results when ap-
plying the two feed-forward schemes are presented in Sec. IV.
Appendices A, B, and C are provided to describe the details
of the parameter identification scheme used, and the details of
the derivation of the hysteresis compensation scheme.

II. SYSTEM MODEL

In this section, models for the system are presented. The
system at hand is a flexure based nanopositioning stage with a
piezoelectric stack actuator. Using an input signal with a low
fundamental frequency, the system response can be described
using a hysteresis model and a simple mechanical model.

A. Hysteresis model

The hysteretic behavior of piezoelectric actuators is due
to ferroelectric loss phenomena. The hysteresis exhibited in
such actuators will appear between applied voltage and in-
duced charge.11 The force developed by the actuator will
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therefore exhibit hysteresis when driving such actuators us-
ing voltage.

A phenomenological model that can be used to de-
scribe the hysteresis in piezoelectric actuators is the Coleman-
Hodgdon model,13 which is given as

ẇ = βu̇ − αw|u̇| + γ |u̇|u, w(0) = w0, (1)

where u is the input, and w is the output. The parameters must
satisfy the conditions α > 0, β > 0, γ

α
> β, and γ

α
≤ 2β in

order for the model to yield a response that is in accordance
with the laws of thermodynamics.14 This means that the slope
ẇ will have the same sign as the slope u̇, that is dw

du
> 0. This

is the same as saying that the output will never move in the
opposite direction of the input.

The input-output map generated by the model (1) has a
symmetric stationary response to periodic inputs, which are
monotonically increasing and decreasing between two ex-
trema. The model is therefore best suited to describe hys-
teretic responses that are dominantly symmetric, and for such
periodic input signals. The solution of the model is defined,
however, for a larger class of input signals. The input signal u
must be bounded, piecewise continuous, and connected. This
also implies that the time derivative u̇ exists and is bounded,
i.e., u ∈ C 0. This includes signals such as triangle-waves or
low-pass filtered steps and square-waves, but not unfiltered
steps and square-waves.

The hysteresis model (1) can also be expressed in a dif-
ferent form, with an identical input-output response. That is,
the output w can be found from

w = cu + wh, (2)

where wh is the solution to

ẇh = −bu̇ − awh|u̇|, wh(0) = wh0. (3)

The parameters in this formulation can be found using the
parameters in (1), and the relations are

a = α , b = γ − αβ

α
, and c = γ

α
. (4)

The derivation of the expressions in (2), (3), and (4) can be
found in Appendix B.

The alternative model formulation in (2) and (3) will
be used to develop a hysteresis compensation scheme in
Sec. III B.

B. Mechanical model

The dynamics of a well designed nanopositioning stage
can be accurately approximated as a linear mass-spring-
damper system. For the displacement of a point x on the me-
chanical structure, the dynamics is therefore described by

mẍ + dẋ + kx = f, (5)

where m is the mass of the moving platform, d is the damping
coefficient, k is the spring constant, and f is the force devel-
oped by the actuator.

Here, it is assumed that reference trajectories, r, will have
a fundamental frequency below approximately 1% of the nat-
ural undamped frequency ω0 = √

k/m, and that the contribu-
tion of the damping and inertial forces therefore can be ne-

Linear
Feed-forward

Positioner
Dynamics

r u uh x

Hysteresis
Compensation

Hysteretic
Response

FIG. 1. Feed-forward tracking control scheme.

glected, i.e., dẋ ≈ 0 and mẍ ≈ 0. The forces depending on
the velocity and acceleration of the moving platform will be
relatively small when the movements are slow, that is, the
higher frequency components of the reference signal will be
small close to the resonant frequency of the mechanical struc-
ture. The displacement x is therefore taken to be given by
Hooke’s law

x = 1

k
f. (6)

Ideally, the actuator has a linear response, which is the
standard assumption.15 In that case, the force developed by
the actuator should be

f = kau, (7)

where ka is the voltage-to-force gain coefficient. The relation
between the applied voltage u and the displacement x, will
then be according to (6),

x = ka

k
u = Ku, (8)

where the lumped parameter K, a voltage-to-displacement
gain coefficient, is introduced for convenience.

Since the actuator response is actually hysteretic, using
the hysteresis model (1), or equivalently (2), provides a more
accurate description of the observed displacement. The dis-
placement will therefore, in this paper, be taken to be the out-
put of the hysteresis model, i.e.,

x = w. (9)

III. FEED-FORWARD TRACKING CONTROL

The objective for a tracking control scheme applied to a
nanopositioning stage is to force the displacement x to fol-
low a specified reference trajectory r. In order to achieve this,
feed-forward and feedback control can be used. Feed-forward
techniques can be very effective if an invertible and accurate
system model can be found. Applying feedback will typically
reduce sensitivity to model errors and unknown disturbances,
but at the expense of a higher overall noise level.

For positioning devices utilizing piezoelectric actuators,
when using reference trajectories with low fundamental fre-
quencies, the disturbance due to hysteresis is the main source
of error. In this section, two feed-forward schemes will be de-
scribed. The first is simply assuming that the system has a
linear response. The second scheme provides a method for in-
verting the response of the hysteresis model (1). The overall
scheme is illustrated in Fig. 1.

A. Linear feed-forward

Assuming that the response of the system is linear, such
as in (8),

x = Ku, (10)
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the applied voltage signal u should be

u = 1

K
r, (11)

in order to achieve tracking.
Due to creep and hysteresis, the gain K will depend on

the amplitude of the input signal u. Other effects also affect
the observed gain, such as actuator temperature and depolar-
ization. An estimate of the gain, K̂ , can be found from input-
output data using, e.g., the least-squares method. Depending
on the positioning device, the gain can change significantly.
For the positioning device used in the experiments in Sec. IV,
a relative change of more than 150% was observed from the
minimal observable displacement to the maximal displace-
ment.

As the gain changes depend on the input signal, using a
static gain estimate K̂ for feed-forward control can result in
very large errors. In order to minimize the error for all refer-
ence signals, an online estimate of K should be used. This can
be achieved by using the recursive least-squares method with
the model (8) on the form

z = θϕ, (12)

where z = x, θ = K, and ϕ = u. The parameter identification
scheme is described in detail in Appendix A.

B. Hysteresis compensation

In this section, a feed-forward scheme that takes into ac-
count the hysteresis is presented. The scheme is based on in-
verting the response of the hysteresis model (1). Using the
relations in (2) and (9), but defining a new input signal uh,
that is,

x = cuh + wh, (13)

the above relation can be linearized by choosing the input sig-
nal

uh = K

c
u − 1

c
ŵh, (14)

where ŵh is an estimate of the term wh. By substituting (14)
into (13), the linear relationship between voltage u and the
expression for the displacement as given in (8) is recovered,

x = cuh + wh = c

(
K

c
u − 1

c
ŵh

)
+ wh = Ku, (15)

if ŵh = wh. Thus, generating an input signal using (11) and
applying (14), the error introduced by the hysteresis is re-
moved. In order for this to work, an estimate of wh is required.

Assuming the parameters of the hysteresis model (1) are
known, and the new set of parameters is found from the rela-
tions in (4), an estimate of wh when using the new input signal
uh can be found by substituting (14) into (3), that is,

˙̂wh = −bu̇h − aŵh|u̇h|

= −b

(
K

c
u̇ − 1

c
˙̂wh

)
− aŵh

∣∣∣∣Kc u̇ − 1

c
˙̂wh

∣∣∣∣ . (16)

FIG. 2. Nanopositioning stage.

In Appendix C, it is shown that solving (16) is equivalent
to solving

˙̂wh =
{

K −aŵh−b

−aŵh−b+c
u̇, u̇ ≥ 0

K aŵh−b

aŵh−b+c
u̇, u̇ < 0

, ŵh(0) = ŵh0. (17)

The initial value ŵh0 can in principle be chosen arbitrarily.
For the case of periodic inputs which are monotonically vary-
ing between two extrema, the solution will converge to a
stationary input-output map after some cycles of the input
signal. Assuming the system is at rest in an equilibrium where
u(0) = 0 and w(0) = 0 when starting the integration, the ini-
tial value will be ŵh0 = 0.

Inspecting (1), it can be seen that the parameters appear
affinely with signals comprising of u and w and their time
derivatives, i.e., the model can be put on the form

z = θTϕ, (18)
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FIG. 3. The input-output map when using a 5 Hz triangle wave reference
signal with 5 μm amplitude.
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TABLE I. Identified parameters for the stationary response of the hysteresis
model (1) and the linear approximation (8).

Reference
signal α β γ K

2.5 μm
3.26 × 10−2 1.36 × 10−1 5.96 × 10−3 0.141

@ 5.0 Hz
5.0 μm

1.91 × 10−2 1.49 × 10−1 4.05 × 10−3 0.156
@ 2.5 Hz
5.0 μm

2.10 × 10−2 1.47 × 10−1 4.29 × 10−3 0.155
@ 5.0 Hz
7.5 μm

1.59 × 10−2 1.55 × 10−1 3.55 × 10−3 0.165
@ 5.0 Hz
Filtered

3.32 × 10−2 1.36 × 10−1 6.15 × 10−3 0.154
PRBS

where

θ = (α, β, γ )T, (19)

ϕ = (−w|u̇|, u̇, |u̇|u)T, (20)

and z = ẇ. Here, θ is the called the parameter vector and ϕ

the regressor. Having the model on the form (18) enables the
usage of the recursive least-squares method to find the pa-
rameters in θ , as the displacement x = w can be measured,
and the the applied voltage u and the time derivative u̇ are
known and defined. The relations in (4) can then be used to
find the parameters to be used in this hysteresis compensation
scheme. The parameters in the model given by (2) and (3) can-
not be identified, as it is not possible to measure the signal wh.
The parameter identification scheme is described in detail in
Appendix A.

IV. RESULTS

A. Experimental setup

The experimental setup consisted of a dSPACE DS1103
hardware-in-the-loop system, an ADE 6810 capacitive gauge,
and an ADE 6501 capacitive probe from ADE Technologies, a
Piezodrive PDL200 voltage amplifier, the custom-made long-
range serial-kinematic nanopositioner from EasyLab (see
Fig. 2), two SIM 965 programmable filters, and a SIM983
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FIG. 4. Triangle-wave reference at 5 Hz with 5.0 μm amplitude (4.5 μm linear range). (a) Time-series for the reference signal, and the stationary measured
displacement and error when using linear feed-forward. (b) Time-series for the reference signal, and the stationary measured displacement and error when
using hysteresis compensation. (c) Reference-to-displacement map when using linear feed-forward. (d) Reference-to-displacement map when using hysteresis
compensation.



085001-5 Eielsen, Gravdahl, and Pettersen Rev. Sci. Instrum. 83, 085001 (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time [s]

D
is

pl
ac

em
en

t [
µm

]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Er
ro

r [
µm

]

Reference
Measurement
Error

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time [s]

D
is

pl
ac

em
en

t [
µm

]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Er
ro

r [
µm

]

Reference
Measurement
Error

(b)

FIG. 5. Filtered PRBS reference. (a) Time-series for the reference signal, and the stationary measured displacement and error when using linear feed-forward.
(b) Time-series for the reference signal, and the stationary measured displacement and error when using hysteresis compensation.

scaling amplifier from Stanford Research Systems. The ca-
pacitive measurement has a sensitivity of 1/5 V/μm and the
voltage amplifier has a gain of 20 V/V. The programmable
filters were used as reconstruction and anti-aliasing filters.
The scaling amplifier was used to amplify the signal from the
capacitive gauge in order to maximize the resolution of the
quantized signal. With the DS1103 system, a sampling fre-
quency of 50 kHz was used in all the experiments. For numer-
ical integration, a third-order Runge-Kutta scheme (Bogacki-
Shampine) was used.

The first part of the experiments were done using a tri-
angle wave reference signal, where 10% of the signal was re-
placed by a smooth polynomial around the extremal points
to reduce vibrations. A second set of experiments were done
using a filtered pseudo random binary signal (PRBS). This
signal had a length of 38 750 samples, a bandwidth of 40 Hz,
a ±5 μm range, and was filtered by a second-order low-pass
Butterworth filter with a 10 Hz cut-off frequency.

B. Experiments

The efficacy of the hysteresis model (1) and the parame-
ter identification scheme presented in Sec. III B can be seen
from Fig. 3. Here, a triangle-wave signal has been applied,
but the response is very similar for any periodic input, which
is monotonically increasing and decreasing between two ex-
trema. Note that the observed hysteresis is highly symmetric,
and the hysteresis model is therefore well suited to describe
the response. Identified parameters for the hysteresis model
can be found in Table I. As can be seen, the parameters de-
pend on the input signal. The identified parameters appear to
provide a good fit to the observed response, but there is some
model discrepancy, especially at the extremal values where
the input signal switches direction.

Figure 4(a) displays time-series for the reference, mea-
sured displacement, and the error when using the linear feed-
forward scheme and a triangle-wave reference signal. Adapt-
ing the gain coefficient K makes it possible to match the ex-

tremal values of the measured response and the reference with
very high accuracy, and the residual error is almost exclu-
sively due to the hysteresis nonlinearity. The corresponding
reference-to-displacement map is shown in Fig. 4(b). Note
that despite the high accuracy in adapting the gain coefficient
K, the hysteretic character of the response is clearly visible.

Applying the hysteresis compensation scheme proposed
in Sec. III B, it can be seen from both the time-series plots in
Fig. 4(c) and the reference-to-displacement map in Fig. 4(d)
that there is a significant reduction in the error. The reduction
in maximum error is approximately 90% from when applying
a linear feed-forward scheme, to when applying the hysteresis
compensation scheme. Most of the residual error when apply-
ing the hysteresis compensation scheme is due to the model
discrepancy near the extremal values of the reference signal.

Assessing the performance under non-ideal conditions
was done using the filtered PRBS reference. The continu-
ous repetition of a PRBS sequence is a periodic signal, but
for the duration of the sequence, it behaves as a non-periodic

TABLE II. Maximum stationary error when using linear feed-forward and
the hysteresis compensation scheme.

Linear Hysteresis
feed-forward compensation

Reference Absolute Relative Absolute Relative Error
signal error (μm) error (% ) error (μm) error (% ) reduction (%)

2.5 μm
0.20 8.3 0.016 0.67 92

@ 5.0 Hz
5.0 μm

0.54 11 0.055 1.1 90
@ 2.5 Hz
5.0 μm

0.54 11 0.045 0.92 92
@ 5.0 Hz
7.5 μm

0.93 13 0.053 0.72 94
@ 5.0 Hz
Filtered

0.71 13 0.30 5.4 59
PRBS
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TABLE III. Maximum stationary error when using the hysteresis compen-
sation scheme with parameter values found for a reference signal other than
the one applied.

Reference Absolute Relative
signal error (μm) error (%)
2.5 μm Using parameters found for

0.28 12
@ 5.0 Hz 7.5 μm amplitude reference.
7.5 μm Using parameters found for

0.67 9.2
@ 5.0 Hz 2.5 μm amplitude reference.

signal, and the filtered signal is therefore not monotonically
varying between only two extrema. The results for the linear
feed-forward scheme are shown in Fig. 5(a), and the results
when using the hysteresis compensation scheme are found in
Fig. 5(b). The error obtained when using the hysteresis com-
pensation scheme is still significantly lower than when us-
ing the linear feed-forward scheme, producing a reduction in
maximum error of approximately 59%. It is apparent, how-
ever, that the effectiveness is reduced compared to when ap-
plying the triangle-wave signal.

The maximum errors observed for some different con-
figurations of the reference signal are presented in Table II.
The reduction in error is found as 100 × (1 − eh/el), where
eh and el are the maximal errors, max(|r − x|), when using
the hysteresis compensation scheme, and linear feed-forward,
respectively.

If the parameters of the hysteresis model applying the
compensation scheme for a different signal than what the
parameter were found for, the compensation scheme can
produce very poor results. Error figures illustrating this are
summarized in Table III. This suggests that the parameter
identification scheme should be running while using the com-
pensation scheme, or that hysteresis model parameters should
be found for a family of reference signals, and that some form
of gain scheduling should be used if a displacement measure-
ment is not always available while using the equipment.

V. CONCLUSIONS

In this paper, a feed-forward hysteresis compensation
scheme is proposed for piezoelectric actuators. The scheme
is based on a reformulation of the Coleman-Hodgdon model,
where the reformulation produces a mathematically equiva-
lent input-output map. The original Coleman-Hodgdon model
can be used for parameter identification, while the reformu-
lation can be used to generate an estimate the hysteretic re-
sponse and to linearize the input-output map. Since the pa-
rameters used in the scheme are identified online, the method
will provide consistent performance, even when the hysteretic
response changes due to different reference signals and other
factors such as depolarization of the material and actuator
temperature. The proposed method is well suited for the case
of symmetric hysteretic responses and certain periodic refer-
ence trajectories. The method has low complexity and is thus
readily applicable for real-time implementation. Experimen-
tal results are presented to illustrate the hysteresis compen-
sation scheme. The experiments showed that the method re-

duced the hysteretic behavior of a piezoelectric actuator sig-
nificantly, providing a reduction of more than 90% compared
to when when assuming a linear response.
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APPENDIX A: PARAMETER IDENTIFICATION

The least-squares method16 is perhaps the best known
method for parameter identification. It can be used in recur-
sive and non-recursive form. It works by fitting experimental
data to a given model by minimizing the sum of the squares of
the difference between the computed response from the model
and the actual measured response. Noise and disturbances in
the measured signal is then expected to have less effect on the
accuracy of the resulting parameter estimates.

Here, it is used in the recursive form to estimate the pa-
rameters, α, β, and γ , for the hysteresis model (1), and the
linear gain coefficient K in (8).

The starting point is a model of the system, assuming the
measured response z can be described as a vector of model pa-
rameters θ appearing affinely with a vector of known signals,
ϕ, called the regressor:

z = θTϕ. (A1)

The objective of the method is to find a good estimate of the
vector of parameter values, θ̂ . By computing the estimated
response

ẑ = θ̂Tϕ, (A2)

the estimate error ε can be formed as

ε = z − ẑ

m2
, (A3)

where m2 is a normalization signal (defined below). The least-
squares estimate of the parameters is obtained by minimizing
the cost-function

J (θ̂ ) = 1

2

∫ t

0
e−λ(t−τ )ε2m2 dτ + 1

2
e−λt (θ̂ − θ̂0)TQ0(θ̂ − θ̂0),

(A4)
where a forgetting factor λ > 0 is introduced to discount past
data in order to achieve exponential convergence. The matrix
Q0 is used to weigh the significance of the initial parameter
estimates, θ̂0, in minimizing the cost-function.

The above expressions can be used to derive both the
recursive and the non-recursive forms of the least-squares
method. Here, the recursive form is applied, as it is amenable
to online implementation. The parameter update law is then
given by

˙̂θ = Pεϕ , θ (0) = θ0. (A5)
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The matrix P is called the covariance matrix, and can be found
by computing

Ṗ =
{

λP − PϕϕTP

m2 , if ‖P ‖ ≤ R0

0 otherwise
, P (0) = Q−1

0 . (A6)

The initial covariance matrix must be symmetric and posi-
tive definite, P (0) = Q−1

0 = Q−T
0 > 0. By using the forget-

ting factor λ when updating the covariance P, there is a possi-
bility for P to grow without bound. To avoid this, some norm
on P, ‖P‖, is not allowed to grow larger than R0, by stopping
the update of P by setting Ṗ = 0. The initial covariance ma-
trix should therefore also satisfy ‖P(0)‖ ≤ R0.

The normalization signal m2 can be constructed in vari-
ous ways. Here, it is taken to be

m2 = 1 + ns
2, ns

2 = ϕTPϕ. (A7)

Normalization ensures boundedness of the signals used in the
identification scheme.

This method is referred to as modified least-squares with
forgetting factor. It has the properties ε, εns, θ̂ , ˙̂θ, P ∈ L∞,
and ε, εns,

˙̂θ ∈ L2. In addition, if the regressor ϕ is persis-
tently exciting (PE), then θ̂ converges exponentially to θ . A
piecewise continuous signal vector ϕ : R+ → Rn is said to
be PE in Rn with a level of excitation α0 > 0 if there exist
constants α1, T0 > 0 such that

α1I ≥ 1

T0

∫ t+T0

t

ϕϕT dτ ≥ α0I, ∀t ≥ 0. (A8)

For the system at hand, the input signal u and the time
derivative u̇ are known, as u is generated by the expression
(11), and by using a reference signal that is differentiable,
i.e., r and ṙ being known and bounded. The displacement
x is measured by the capacitive probe, and the time deriva-
tive of this signal is needed to identify the parameters for
the hysteresis model. To avoid pure numerical differentiation,
the output z = ẇ = ẋ and regressor vector ϕ was in this case
filtered using proper filters, that is, z̄(s) = sWp(s)x(s), and
ϕ̄(s) = Wp(s)ϕ(s), where Wp(s) is a first-order low-pass fil-
ter with a 2.5 kHz cut-off frequency. Pure numerical differ-
entiation is not desired as it will amplify measurement noise,
degrading the performance of the identification scheme. If the
measured signal x contains a bias component, filtering z̄ and
ϕ̄ by identical high-pass filters with a cut-off frequency lower
than the lowest frequency component in the input signal u can
be used to improve estimates.

APPENDIX B: DERIVATION OF THE ALTERNATIVE
VERSION OF THE COLEMAN-HODGDON MODEL

Equation (1) can be solved explicitly, by observing that
is can be written as

ẇ = (β − αw + γ u)(u̇)+ − (β + αw − γ u)(u̇)−, (B1)

where (u̇)+ = u̇ and (u̇)− = 0 when u̇ ≥ 0, and (u̇)+ = 0 and
(u̇)− = u̇ when u̇ < 0. The dependence on time can then be
cancelled. What is left are two linear differential equations for

the two cases. For the case u̇ ≥ 0, the solution of

dw = (β − αw + γ u) du⇒ dw

du
+ αw = β + γ u (B2)

can be found as

w = e−h

[∫
eh (β + γ u) du + C1

]
, (B3)

= e−αu

[
(αβ − γ + αγu)eαu

α2
+ C1

]
, (B4)

where h = ∫
α du = αu has been used. This yields

w+ = γ

α
u + αβ − γ

α2
+ C1e−αu, (B5)

where

w0 = γ

α
u0 + αβ − γ

α2
+ C1e−αu0

⇒ C1 = eαu0

(
w0 − αβ − γ

α2
− γ

α
u0

)
. (B6)

Similarly, for the case u̇ < 0, the solution is

w− = γ

α
u + γ − αβ

α2
+ C2eαu, (B7)

where

C2 = e−αu0

(
w0 − γ − αβ

α2
− γ

α
u0

)
. (B8)

The solutions (B5) and (B7), can be put on the form

w = γ

α
u + wh, (B9)

which is the form in (2), where wh accounts for the hysteretic
behavior. As it happens, wh can be taken to be the solution of
the differential equation in (3), which is

ẇh = −bu̇ − awh|u̇|. (B10)

The parameters of this formulation are related to the parame-
ters in (1) by

a = α , b = γ − αβ

α
, and c = γ

α
. (B11)

Equation (3) is similar to a case of the well known Dahl solid
friction model,17 except for the sign of the parameter b. This
equation can also be solved for the cases u̇ ≥ 0 and u̇ < 0 in
a similar fashion as above, using, e.g., separation of variables.
The solution for u̇ ≥ 0 is

w+
h = 1

a
(−b − C3e−au) = αβ − γ

α2
− 1

α
C3e−αu, (B12)

where

C3 = eau0 (−b − awh0)

= −αeαu0

(
w0 − αβ − γ

α2
− γ

α
u0

)
= −αC1, (B13)

and for u̇ < 0 it is

w−
h = 1

a
(b − C4eau), (B14)

where

C4 = e−au0 (b − awh0) = −αC2. (B15)
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By substitution of (B12) and (B14) into (B9) and using the
relations in (B11), it can be seen that the two formulations are
equivalent, by comparison to (B5) and (B7).

APPENDIX C: DERIVATION OF THE HYSTERESIS
COMPENSATION SCHEME

As was shown in Sec. III B, by applying the input (14),
i.e.,

uh = K

c
u − 1

c
ŵh, (C1)

using an estimate of wh, the effect of the hysteresis can be
cancelled.

An open-loop observer to estimate wh can be obtained
from (3), substituting uh for the input u, which results in (16),
that is,

˙̂wh = −bu̇h − aŵh |u̇h|

= −b

(
K

c
u̇ − 1

c
˙̂wh

)
− aŵh

∣∣∣∣Kc u̇ − 1

c
˙̂wh

∣∣∣∣ . (C2)

This expression can be rewritten as

˙̂wh =
{

K −aŵh−b

−aŵh−b+c
u̇, u̇h ≥ 0

K aŵh−b

aŵh−b+c
u̇, u̇h < 0

, (C3)

but the switching criterion cannot be determined causally, as
it is dependent on u̇h and not u̇.

The expression (C3) can again be solved explicitly by
separation of variables by canceling the dependence on time.
For the case u̇h ≥ 0,

dŵ+
h

du
= K

−aŵ+
h − b

−aŵ+
h − b + c

, (C4)

which solution is found as

ŵ+
h − c

a
ln (aŵ+

h + b) = Ku + C5, (C5)

where

C5 = ŵh0 − c

a
ln (aŵh0 + b) − Ku0. (C6)

This implicit equation can be solved explicitly for ŵh as a
function of u by using the Lambert W function,18 denoted
W (·):

ŵ+
h = − c

a
W

(
−1

c
exp

(
−aKu + aC5 + b

c

))
− b

a
.

(C7)

Similarly, for the case u̇h < 0,

ŵ−
h + c

a
ln (−aŵ−

h + b) = Ku + C6, (C8)

where

C6 = ŵh0 + c

a
ln (−aŵh0 + b) − Ku0, (C9)

and the explicit solution is found as

ŵ−
h = c

a
W

(
−1

c
exp

(
aKu + aC6 − b

c

))
+ b

a
. (C10)

Now, differentiating (C7) or (C10) by u yields

dŵh

du
< 0, (C11)

in either case. Thus, since

dŵh

du
=

˙̂wh

u̇
, (C12)

u̇ ≥ 0 ⇒ ˙̂wh ≤ 0, and u̇ ≤ 0 ⇒ ˙̂wh ≥ 0. Therefore, u̇h

≥ 0 ⇒ u̇ ≥ 0 and u̇h < 0 ⇒ u̇ < 0. This shows that (C3) is
equivalent to (17).
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