
PI2-Controller Applied to a Piezoelectric
Nanopositioner Using Conditional
Integrators and Optimal Tuning

Arnfinn Aas Eielsen ∗ Mernout Burger ∗

Jan Tommy Gravdahl ∗ Kristin Y. Pettersen ∗

∗Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 7491 Trondheim, Norway

(e-mail: {arnfinn.aas.eielsen,mernout.burger,
jan.tommy.gravdahl,kristin.ytterstad.pettersen}@itk.ntnu.no).

Abstract: For tracking control of nanopositioning stages using piezoelectric actuators, con-
trollers with integral action can be employed to robustly track a reference in the presence
of hysteresis, creep, and plant parametric uncertainties. In any practical configuration of
instrumentation for this application, saturations will be present. Thus, a controller with integral
action is prone to windup, which typically cause large transients and long settling times, and
will in general degrade performance and potentially damage equipment. In this paper it is
demonstrated that conditional integrators provides a very accessible and convenient framework
for introducing anti-windup for any order integral controller, and the effectiveness is verified
experimentally. Also, the influence reconstruction and anti-aliasing filters have on the stability
limits for PI and PI2 controllers is investigated, and a novel tuning procedure is proposed in
order to obtain the best performance for the overall system. It is demonstrated experimentally
that optimal tuning can damp resonances and increase bandwidth.
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1. INTRODUCTION

A typical system for high precision positioning, found in
systems for scanning probe microscopy, optical alignment,
and data storage (see e.g. Devasia et al. [2007] for a sur-
vey), consists of several elements in addition to the actual
mechanical positioning stage. It includes high-resolution
position sensors, low-noise amplifiers, a fast computer or
micro-controller to implement the control algorithm, fast
and high-resolution digital-to-analog and analog-to-digital
converters to interface sensors and actuators, as well as
reconstruction and anti-aliasing filters to reduce aliasing
phenomenons and quantization noise. These elements will
typically be limited in usable input and output range, as
well as exhibit low-pass characteristic behavior. Signals
can therefore saturate, and amplitude attenuation and
phase lag will occur as a signal propagates through a
cascaded interconnection of components.

Tracking reference trajectories for nanopositioning sys-
tems is often performed using integral or double integral
controllers, due to plant parametric uncertainties and the
presence of disturbances such as hysteresis and creep. For
high precision positioning, signals will often be scaled to
reduce noise and to maximize resolution. For example; it
is common to adjust the amplification of the signal from
the digital-to-analog converter (DAC) such that the max-
imum output of the DAC corresponds to the maximum
mechanical deflection desired, utilizing the full range of
the DAC and thus maximizing the resolution. This leaves a
small margin before saturation, and will make a controller
with integral action prone to windup in the presence of
disturbances such as measurement bias and variable con-

trol gain. To retain some level of performance and avoid
large transients, an integral anti-windup scheme should be
used. Among the large assortment of anti-windup schemes
(see e.g. Rundqwist [1991] for a survey), the conditional
integrator scheme of Seshagiri and Khalil [2005] is used
in the following. It is straight forward to analyze and
implement for integral controllers of any order. The use
of conditional integrators is demonstrated experimentally
to practically eliminate any adverse effects due to windup.

It is to be expected that any low-pass characteristic
element in the signal chain will influence the stability and
performance of a closed-loop system. When applying a
discrete controller to a continuous system, anti-aliasing
and reconstruction filters must be present to attenuate
frequency content above the Nyquist-frequency to avoid
aliasing, as well as to reduce quantization noise. Low-pass
filters applied for such a task are often easily parameterized
and adjustable with respect to the cut-off frequency. The
filters dynamics will often also be dominant compared
to other elements in the signal chain. Thus, taking these
filters into account when analyzing and tuning the closed-
loop system could therefore provide a very accessible
performance improvement. It is demonstrated that for the
experimental system used, the optimal tuning increases
the bandwidth with more than an order of magnitude.

2. SYSTEM DESCRIPTION AND MODELING

We consider a system consisting of a mechanical posi-
tioning stage, anti-aliasing and reconstruction filters, as
well as a feedback controller and a feed-forward filter. A
diagram of this system is shown in Fig. 1. As the amplifier
and sensor used in the experimental set-up have very fast



dynamics, they have been mostly neglected in the following
analysis. We note that all signals in the diagram have
limited range in practice, and can saturate.
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Fig. 1. System Diagram.

2.1 Positioning Stage

A second order system should be a very good approxi-
mation to the displacement dynamics of a well designed
nanopositioning stage. Given the model for a second order
system (A.2), which is

ẍ+ 2ζω0ẋ+ ω0
2x = β0u, (1)

we can find estimates of the parameter values for the
damping coefficient ζ, natural undamped frequency ω0,
and the control gain β0, using frequency response data.
Identified parameters for the nanopositioner used in the
experiments are presented in Tab. 1.

Table 1. Identified parameters for the position-
ing stage, using the parameterization in (1).

Parameter Value Unit
ζ 0.0139 1
ω0 2π × 781 1/s
β0 2.36× 106 1/s2· µm/V

As can be seen, ζ � 1/
√

2, which indicates that the
positioning stage has a very large resonance peak at
ωp ≈ ω0.

2.2 Anti-Aliasing and Reconstruction Filers

For convenience, the anti-aliasing and reconstruction fil-
ters used were identical, i.e.

Waa(s) = Wrc(s).

In the experimental setup, they were second-order low-
pass Butterworth filters. The filter dynamics can therefore
also be described by (1). Given the parameterization of
(1), the parameter values that render a second-order low-
pass Butterworth filter response for the model are given
in Tab. 2.

Table 2. Second order Butterworth filter pa-
rameters, using the parameterization in (1).

Parameter Value Unit

ζ 1/
√
2 1

ω0 ωc = 2πfc 1/s
β0 ωc

2 1/s2

The filter has one tunable parameter, the cut-off frequency
ωc = 2πfc. In the experimental system, a dSPACE 1103
hardware-in-the-loop system was used to implement the
control system. This system can reliably be used with a
sampling period of τs = 20 µs. To mitigate aliasing and
quantization effects, the cut-off frequency for both the
anti-aliasing and the reconstruction filter should be lower
than the Nyquist-frequency fc ≤ fn = 0.5/τs = 25 kHz
[Proakis and Manolakis, 1995].

2.3 Feed-Forward Filter

Considering Fig. 1, the ideal feed-forward filter from the
reference r to the voltage applied to the reconstruction
filter u, would be to use the inverse of the dynamical
models for the reconstruction filter and the positioning
stage, i.e.

uF (s) = Wrc
−1(s) ·G−1(s) · r(s).

The parameter values for the parameters {ζ, ω0, β0} in
the actual implementation of the reconstruction filter are
constant, and therefore using the inverse model with con-
stant parameters is very accurate. The parameter values
for the positioning stage do, on the other hand, change
quite noticeably with temperature, offset voltage, load,
displacement range, as well as due to depolarization of the
piezoelectric actuator and perhaps other unknown factors.

The experimental setup provided only position measure-
ment. Generating the time derivatives of the position mea-
surement using standard techniques, such as numerical
differentiation, high-gain observers, or using the Luen-
berger observer, introduced noise and/or large estimation
errors. Standard implementations of on-line parameter
identification schemes, such as the gradient or the least-
squares method, did not provide good parameter estimates
when trying to estimate the parameters {ζ, ω0, β0} for the
positioning stage.

We therefore opted to approximate the relationship be-
tween applied voltage, ua, and the measured deflection, y,
as a static gain:

y(s) = G(s)ua(s) ≈ Kdua(s)

The coefficient Kd = β0/ω0
2 was estimated on-line using

least-squares. To accommodate for the reconstruction filter
Wrc and the amplifier gain Ka, the feed-forward filter F
used was chosen to be

uF =
1

KdKaωc2

(
r̈ +
√

2ωcṙ + ωc
2r
)
, (2)

where ωc is the cut-off frequency for the filter. Using this
formulation, the reference signal r should be piecewise
continuous and sufficiently smooth.

2.4 Controller

The control signal applied to the system is a linear com-
bination of the feed-forward filter uF and the feedback
controller uK , i.e. u = uF + uK . The feed-forward filter
then achieves coarse positioning, and the feedback con-
troller should then reduce the residual error.

Triangle-wave trajectories are common when applying
nanopositioning devices in scanning probe microscopy,
thus the chosen controller was geared towards providing
good tracking performance when using such references.
As noted in Section 2.3, the instrumentation only provide
position measurement, and it was difficult to obtain good
parameter estimates on-line. Generating time derivatives
from the output and an inverting feed forward yielded
fairly poor results. Therefore, in order to robustly track
a triangle-wave reference signal with reasonable accuracy,
a PI2-controller was employed. As the triangle-wave refer-
ence consists of a series of ramps, the double integral action
should provide exponential convergence of the output to
the flanks of the reference signal. The controller was imple-
mented using conditional integrators in order to add anti-
windup in the presence of saturations. The anti-aliasing



and reconstruction filters were included in the analysis,
and both filters and controller were tuned optimally to
reduce resonance and increase bandwidth.

The details of the controller derivation will be presented
in Section 3, and the stability and tuning analysis is
presented in Section 4.

3. PI2-CONTROLLER WITH ANTI-WINDUP USING
CONDITIONAL INTEGRATORS

Adding anti-windup to a controller with integral action
will in general retain some level of performance and avoid
large transients if saturations occur. In this section we
show how conditional integrators [Seshagiri and Khalil,
2005] can be used to achieve anti-windup for the chosen
PI2 controller. The conditional integrator framework is
seen to provide a very straight forward implementation
and analysis, and the scheme can easily be extended to
controllers with integral action of any order. The condi-
tional integrator control scheme is based on continuous
sliding mode control with integral action, and is designed
to only provide integral action if the value for the so-called
sliding mode variable is below some given threshold.

We define the sliding mode variable as

ς = k0σ1 + k1σ2 + k2ε, (3)

where the error ε is defined as ε = υ − ρ, and ρ and υ
are the reference signal r and the output y filtered by the
anti-aliasing filter, that is,

ρ(s) = Waa(s)r(s) and υ(s) = Waa(s)y(s).

The signals σ1,2 are generated by the system

σ̇1 = σ2
σ̇2 = −k0σ1 − k1σ2 + µ sat (ς/µ) . (4)

Using (3) and (4), and if the sign of the control gain of the
plant is positive, the control signal is produced by

uK = −βK sat (ς/µ) , (5)

thus uK ∈ [−βK , βK ].

In the above expressions, the saturation function sat(·) is
used. This function is defined as

sat(z) =

{
z if |z| ≤ 1
sgn(z) if |z| > 1,

where sgn(z) denotes the sign of the quantity z. The
parameter µ > 0 is used to set the threshold of saturation
for the sliding mode variable ς, and the parameter βK > 0
determines the maximum value of the control signal.

By inspecting the equations for the controller, (3), (4), and
(5), (4) can be manipulated into the form

σ̇1 = σ2
σ̇2 = k2ε− k0σ1 − k1σ2 − k2ε+ µ sat (ς/µ)

= k2ε− ς + µ sat (ς/µ)

= k2ε+
µ

βK
(uK − u∗K) ,

(6)

where we have introduced u∗K , which is (5) without satu-
ration, i.e.

u∗K = −βK (ς/µ) . (7)

Saturation occurs when the absolute value for the sliding
mode variable ς is above the value of µ. The controller
therefore has two modes of operation; the unsaturated
mode, when |ς| ≤ µ, and the saturated mode, when |ς| > µ.

When |ς| ≤ µ, we have the unsaturated case, and thus
uK = u∗K . The system represented in (4) or (6) becomes

σ̇1 = σ2
σ̇2 = k2ε,

and we see that the signals σ1,2 are time integrals of the
error ε, scaled by the constant k2.

The control signal (5) is in this case given as

uK = kpe+ ki

∫ t

t0

e dτ + kii

∫ t

t0

∫ τ

t0

e dτ ′ dτ (8)

where e = −ε,

kp =
βK
µ
k2, ki =

βK
µ
k1k2, and kii =

βK
µ
k0k2,

which we recognize as a PI2-controller.

In the unsaturated mode, stability and tracking perfor-
mance can then be determined by analyzing the closed-
loop system using (8) with controller gains kp, ki, and kii.
For a set of control gains, {kp, ki, kii}, the parameters for
(3) and (4) are found as

k2 =
µ

βK
kp, k1 =

ki
kp
, and k0 =

kii
kp
.

When |ς| > µ, the saturated case occurs, and uK 6= u∗K .
The system (4), or (6), becomes

σ̇1 = σ2
σ̇2 = −k0σ1 − k1σ2 + µ sgn(ς), (9)

and the control output (5) becomes the constant

uK = −βK sgn(ς). (10)

Inspecting (9), we see that if the characteristic equation

λ2 + k1λ+ k0 = 0

is Hurwitz, the state vector (σ1, σ2) converges exponen-
tially to (µ/k0, 0) or (−µ/k0, 0), depending on the sign of
the sliding mode variable ς, and this behavior prevents
windup in the controller. By the Routh-Hurwitz criterion,
the characteristic equation will be Hurwitz if k0,1 > 0.

4. STABILITY ANALYSIS

In the above analysis of the anti-windup scheme, we see
that the control signal uK can either be the constant (10)
in the saturated case, or generated by (8) for the unsat-
urated case. The system will therefore switch between a
mode where feedback is applied, and a mode where it
is driven in open-loop. The behavior of the system in
the saturated case is then determined by the open-loop
dynamics. The overall system as depicted in Fig. 1 consists
of a series of stable sub-systems. For the open-loop system

Gol(s) = Wrc(s) ·G(s) ·Waa(s)

we note that in the absence of feedback, the location of
the eigenvalues remains unchanged.

In the unsaturated case, the closed-loop system will be of
order eight if we only consider the filter dynamics and
use the second-order approximation to the mechanical
dynamics. Analytic analysis is therefore cumbersome and
does not provide good insight into the stability conditions
and performance. To analyze the closed-loop behavior, we
first investigate the closed-loop stability considering only
the mechanical dynamics G(s), and derive some rules of
thumb for choosing the controller gains kp and ki, since
the obtained stability limits correspond well with what can
be obtained using graphical techniques. Next, we provide
some numerical analysis in order to determine the closed-
loop stability and performance of the overall system.



4.1 Proportional Gain Margin

When applying a proportional controller

u = kpe

to the second order system (1), in the ideal case with
perfect sensors and actuators, it is easy to verify that the
closed-loop system has an unlimited stability margin, that
is, kp can be chosen arbitrarily large. In the presence of
phase-lag this margin is severely limited. Considering e.g.
sensor dynamics in the form of the first-order low-pass
filter with cut-off frequency ωc = 2πfc

ẋ = −ωcx+ ωcu = −2πfcx+ 2πfcu (11)

in cascade with (1) we find, using the Routh-Hurwitz
criterion, that the margin k∗p for the combined system is
given as

kp <
2ζω0(ω0

2 + 2ζω0ωc + ωc
2)

ωcβ0
= k∗p. (12)

With parameter values from Tab. 1, and considering
the specifications for a fast state-of-the-art capacitive
probe from ADE Technologies (ADE 6810), which is well
described by (11) with fc = 100 kHz, we find that kp / 35.
Adding more low-pass characteristic elements degrades
the margin even more, until the allowable control gain
is too low to produce noticeable effects in the sensitivity
function, N(s) = e

r (s).

4.2 Integral Gain Margin

Considering an integral controller

u = ki

∫ t

t0

e dτ

applied to (1), the stability margin k∗i , again using Routh-
Hurwitz criterion, can be found to be

ki <
2ζω0

3

β0
= k∗i . (13)

Given a lightly damped system, 0 < ζ � 1/
√

2, knowing
the resonance frequency ωp and the amplitude response
at resonance |G(jωp)|, we can express this, by using (A.4)
and (A.7), as

ki <
ωp

|G(jωp)|
< κ · ωp

|G(jωp)|
= k∗i

where κ−1 =
√

1− ζ2 ·
√

1− 2ζ2 < 1, which corresponds
well with the result found in Fleming et al. [2010].

We note that adding proportional action to the above
controller, the effective stiffness of the system increases.
The product ζω0

3 will therefore be larger, and thus the
margin becomes larger.

4.3 Interim Summary

Summarizing the above analysis, it is clear that the when
the damping coefficient ζ is small, the proportional gain is
severely limited due to low-pass characteristic elements in
the signal chain. The integral gain is also limited by the
damping coefficient, and a good estimate of the gain limit
can be found knowing only the resonance frequency and
the magnitude of the amplitude response at resonance.
It can be therefore be conjectured that attenuating the
resonance peak (or increasing the resonance frequency)
improves both gain margins.

4.4 Effects of Low-Pass Filters in the Signal Chain

For a more thorough investigation of the stability margins
and closed-loop bandwidth for the system, the reconstruc-
tion and anti-aliasing filters were added to the model.
Setting the control gains to kp = 0.1, ki = k∗i , and
kii = 0, i.e. using a PI-controller with control gains on
the margin of stability, the eigenvalue loci of the closed-
loop system was generated by varying the cut-off frequency
ωc = 2πfc of the reconstruction and anti-aliasing filters.
These eigenvalue loci are presented in Fig. 2.
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Fig. 2. Eigenvalue loci for the closed-loop system as a
function of the filter cut-off frequency ωc. The loci
are symmetric about the real axis. In the detail from
the upper-right corner, ωc = 0 is indicated by a circle,
ωc = ωo a triangle, ωc = ωn a diamond shape, and
ωc =∞ a square.

As can be seen, using filters with a cut-off frequency equal
to the Nyquist frequency, 2πfc = ωc = ωn = 2πfn, where
fn = 25 kHz, the system is unstable. The plot indicates
however, that reducing the cut-off frequency for the filters,
all eigenvalues can be moved further into the left-half
plane. Minimizing the maximum value of the real part of
the eigenvalues for the closed-loop system as a function of
the cut-off frequency fc resulted in

arg min
fc∈R+

[arg max
Re(λ)∈R−

[det(A(fc)− λI) = 0]] ≈ 850 Hz

where A(fc) is a state matrix realization for the closed-
loop system for a given fc. Thus, setting ωc = ωo = 2πfo,
fo = 850 Hz, will produce the fastest modes for this
system.

By inspecting Fig. 2, it is evident that by using the
computed optimal value for the cut-off frequency, the
stability margins for the closed-loop system will be larger.
This should allow for a larger closed-loop bandwidth. The
new stability margin was found numerically to be about
14.8 · k∗i . To produce the flattest possible response for the
complementary sensitivity function, an optimal value of ki
was found as

arg min
ki∈[0,14.8·k∗i ]

‖1− |M(jω, α)| ‖2 ≈ 7.5 · k∗i .

Using the optimal cut-off frequency and the above opti-
mal integral gain should produce the flattest frequency
response when using a PI-controller, and it yielded a gain
margin of ∆K = 5.93 dB and a phase margin of Ψ = 57.2◦.

Adding double integral action, it was difficult to find a
good optimality criterion, as a large double integral gain



would introduce peaking, i.e. a new resonance peak in
the closed-loop system. In a similar vein as above, the
objective function

J(ki, kii) = ‖1− |M(jω, α, kii)| ‖2 (14)

was evaluated numerically to determine what combination
of gains, ki and kii, would produce the flattest frequency
response. The result is presented in Fig. 3. As can be seen,
the objective function is convex along the direction for ki,
but increasing in the direction for kii. Using ki = 8.4 · k∗i
and kii = 5.7×106 rendered ∆K = 4.36 dB and Ψ = 29.3◦.

Using a cut-off frequency equal to the Nyquist-frequency,
(14) did not produce a convex behavior for gains within
the stability margins, thus the optimal value for ki would
be on the stability limit, and the optimal value for kii
would be zero. Thus, the gains were chosen to match the
gain margin above, while avoiding excessive peaking. Using
ki = 0.60 · k∗i and kii = 105 yielded ∆K = 4.15 dB and
Ψ = 44.5◦.

The resulting frequency responses are displayed in Fig.
4. As can be seen, the optimal tuning increases the
bandwidth with more than an order of magnitude.
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Fig. 3. Numerical evaluation of the objective function
(14), using fc = 850 Hz. Dark areas represents low
values, and light areas represents high values. Minimal
values occurring while tracing the abscissa have been
indicated by dots.

5. EXPERIMENTAL RESULTS

To validate the results, four experiments were performed.
Tracking a reference signal, r ∈ C2, results were recorded
when using the nominal tuning, the optimal tuning, as well
as when using anti-windup and with anti-windup turned
off.

The experimental set-up consisted of a dSPACE DS1103
hardware-in-the-loop board, a ADE 6810 capacitive gauge
and ADE 6501 capacitive probe from ADE Technologies, a
Piezodrive PDL200 voltage amplifier, a long-range serial-
kinematic nanopositioner from easyLab, as well as two SIM
965 programmable filters from Stanford Research Systems.

The results while tracking a reference with a fundamental
frequency of 50 Hz and an amplitude of 1 µm, using
optimal and nominal tuning are presented in Figs. 5 and
6. The increased bandwidth makes it possible to reduce
the root-mean-square error from 67 nm when using the
nominal tuning, to 14 nm when using the optimal tuning.
Inspection of the spectral content of the error signals in
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the Nyquist frequency, fn = 25 kHz, or the optimal
frequency fo = 850 Hz.

Fig. 6, reveals that the power of the 781 Hz component in
the signal, due to the prominent resonance in the system,
was reduced from -63 dB/Hz to -75 dB/Hz.

The effectiveness of the anti-windup scheme is demon-
strated in Fig. 7. The reference signal has a fundamen-
tal frequency of 5 Hz and an amplitude of 1 µm. Here,
saturation in control signal was introduced using a SIM
964 analog limiter from Stanford Research Systems on
the output from the digital-to-analog converter. As can be
seen, without anti-windup there are large transients and
long settling times, which are practically eliminated when
using the anti-windup scheme.

6. CONCLUSIONS

For a PI2-controller applied to a nanopositioner, two very
accessible techniques has been demonstrated to improve
the performance when tracking a reference trajectory.
An anti-windup scheme based on conditional integrators
practically eliminated large transients and long settling
times that occurred when signals in the system saturated.
Also, by optimally tuning the reconstruction and anti-
aliasing filters, that always are present when implementing
a controller in discrete time, bandwidth of the closed-loop
system was increased by more than an order of magnitude,
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resulting in smaller tracking errors and attenuation of the
mechanical resonance present in the nanopositioner.

It is interesting to note that by utilizing the reconstruction
and anti-aliasing filters in this fashion, one obtains very
similar results as when applying integral resonance control
[Fleming et al., 2009], but with the added advantage of
using equipment already present in the signal chain.
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Appendix A. SOME FACTS ABOUT
SECOND-ORDER SYSTEMS

The dynamics of a non-autonomous mass-spring-damper
system is described by the second-order system

mẍ+ cẋ+ kx = βu(t) (A.1)

where k is the spring constant, c is the damping coeffi-
cient, m is the mass, and β is the control gain. For this
system, the undamped natural (angular) frequency ω0 and
damping ratio ζ are defined as

ω0 =

√
k

m
and ζ =

c

2
√
mk

,

thus, with β0 = β
m , (A.1) can be written

ẍ+ 2ζω0ẋ+ ω0
2x = β0u(t). (A.2)

For (A.2) we find the damped natural frequency as

ωd = ω0

√
1− ζ2. (A.3)

When we have u(t) = 0, the system is autonomous. The
damped natural frequency is the frequency an autonomous
underdamped system (ζ < 1) will oscillate with given a set
of initial values (x0, ẋ0) 6= (0, 0).

The resonant frequency for (A.2) is

ωp = ω0

√
1− 2ζ2. (A.4)

The resonant frequency is the frequency at which the non-
autonomous system will have the maximum amplitude
response. The amplitude response will only have a peak
when 0 ≤ ζ < 1/

√
2.

The Laplace transform of (A.2) is

G(s) =
β0

s2 + 2ζω0s+ ω2
0

. (A.5)

The amplitude response is found from the Fourier trans-
form (s = jω) as

|G(jω)| = β0√
(ω0

2 − ω2)2 + (2ζω0ω)2
=

β0√
∆(ω)

. (A.6)

Differentiating (A.6) with respect to the angular frequency
ω we find

d

dω
|G(jω)| = −1

2
∆(ω)−3/2∆′(ω)

where
∆′(ω) = 4ω(ω2 − ω0

2(1− 2ζ2)),
thus it should be straight forward to verify that

arg max
ω∈R+

|G(jω)| = ωp

if 0 < ζ < 1/
√

2, and if ζ ≥ 1/
√

2

arg max
ω∈R+

|G(jω)| = 0.

For 0 < ζ < 1/
√

2 the amplitude response at ω = ωp is

|G(jωp)| =
β0

2ζω0
2
√

1− ζ2
. (A.7)


