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Abstract— In many applications of nanopositioning, such as
scanning probe microscopy, tracking fast periodic reference
trajectories with high accuracy is highly desirable. Repetitive
control (RC) is a simple and effective scheme to obtain good
tracking of such reference trajectories. However, the highly
resonant dynamics of the positioning stage combined with
hysteresis and creep behavior in the piezoelectric actuator
can degrade performance and even make creating a stable
RC system difficult. In this paper, a damping proportional-
integral (PI) controller is combined with a repetitive controller
for robustness and high performance. Compared to a regular
PI controller, the modified PI controller introduces damping,
increases the bandwidth, and reduces the overall noise level
due to feedback. Also, due to the integral action, the hysteresis
and creep nonlinearities inherent in the piezoelectric actuator
is minimized. A novel method for tuning the PI controller
is proposed. The control approach is applied to a custom-
design flexure-guided nanopositioning system with a domi-
nant resonance of approximately 725 Hz. Experimental results
demonstrate the effectiveness of the overall control scheme,
and the maximum tracking error for scanning at 100 Hz and
400 Hz is measured at 0.27% and 2.7%, respectively, of the
total positioning range.

I. INTRODUCTION

Nanopositioners employed in applications that include
scanning probe microscopy require tracking of fast periodic
reference trajectories with high accuracy [1], [2]. These
positioning systems also involve moving payloads of various
masses. The resonance frequencies and the effective control
gain of the mechanical structure will therefore change every
time a new payload is attached. Because the majority of
nanopositioning designs use piezoelectric actuators, inherent
variations in the effective control gain due to changes in actu-
ator temperature, offset voltage, displacement range, as well
as due to depolarization of the piezoelectric actuator must
be taken into account. Piezoelectric actuators also introduce
disturbances due to hysteresis and creep. Herein, a damp-
ing proportional-integral (PI) controller is combined with a
repetitive controller (RC) and a novel tuning methodology is
proposed. Compared to regular PI control, the proposed PI
controller introduces damping, increases the bandwidth, and
reduces the overall noise level due to feedback. The proposed
PI controller utilizes the instrumentation already present in
the signal chain, and provides a very low complexity control
solution which is on par with more complex control schemes,
such as controllers based on H∞ synthesis [3], although the
latter can in principle provide higher bandwidth by attempt-
ing to control higher frequency dynamics. Additionally, the
integral action helps to minimize the tracking error due to
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hysteresis and creep nonlinearities inherent in the piezoactua-
tor. The proposed approach offers good asymptotic tracking
and robustness for tracking periodic reference trajectories,
and experimental results are presented to demonstrate the
efficacy of the approach.

Recently, repetitive control has been introduced for
nanopositioning systems [4]. The repetitive control scheme is
based on the internal model principle [5] and it is specifically
tailored to track periodic reference trajectories. At the heart
of the controller is a signal generator that provides high
gain at the harmonics of the reference trajectory. RC can be
easily implemented digitally using a pure delay inside of a
positive feedback loop [6]. Compared to traditional feedback
and feedforward controllers [2], [7], the tracking error of RC
diminishes as the number of operating periods increases. The
controller generally requires only the period of the reference
trajectory to be known [6]. In many nanopositioning appli-
cations (such as scanning probe microscopy), the period of
the reference signal is known in advance which makes RC
attractive. Compared to iterative learning control (ILC) [8]–
[11], RC does not require resetting the initial conditions at
the start of each iteration step. It is pointed out that ILC
for hysteretic systems require a cycling process to reset the
initial conditions at the beginning of each iteration [11]. For
convenience, an RC can be plugged into an existing feedback
loop to enhance performance.

The performance and stability of RC depends on the
dynamics of the controlled system [12], [13]. Particularly,
sharp resonance peaks can degrade performance and even
make creating a stable RC system difficult. To provide
more feasible system dynamics, a damping PI controller is
proposed and combined with RC to minimize the effect of the
highly resonant dynamics of the nanopositioning stage [14].
A novel tuning procedure is proposed to optimally tune the PI
controller for robustness and good tracking performance. The
control approach is applied to a custom-designed piezo-based
nanopositioning system. Results are presented to demonstrate
the effectiveness of the overall control scheme, where the
maximum tracking error for scanning at 100 Hz and 400 Hz
is measured at 0.27% and 2.7%, respectively, of the total
positioning range. The scheme also has very low computa-
tional requirements, where closed-loop sampling frequency
of 100 kHz can be obtained on a regular personal computer.

II. SYSTEM DESCRIPTION AND MODELING

The system under consideration consists of a custom-
designed serial-kinematic nanopositioning stage, anti-
aliasing and reconstruction filters, a piezo voltage amplifier,
a capacitive displacement sensor, and a computer equipped
with digital-to-analog and analog-to-digital converters for
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Fig. 1: System block diagram.

implementing the control scheme. The controller combines
a plug-in repetitive controller and a PI feedback controller
as shown in Fig. 1. As the amplifier and sensor used in the
experimental set-up have very fast dynamics, they have been
mostly neglected in the system analysis.

The nanopositioning stage used in this work is shown
in Fig. 2, where the serial-kinematic motion mechanism is
designed such that the first vibration mode is dominant and
occurs in the actuation direction (piston mode). The simpli-
fied free body diagram for the mechanism is displayed in the
inset image in Fig. 2, and by this model the corresponding
second-order differential equation to describe the dynamics
(where subscript “x” indicates the x direction) is given by

mxẍx(t) + cxẋx(t) + kxxx(t) = fx(t) , (1)

where mx (kg) is the mass of the sample platform, as well as
any additional mass due an attached payload, cx (N s m−1)
is the damping coefficient, and kx (N m−1) is the spring
constant. The applied external force from the piezoelectric
actuator fx (N) is

fx(t) = βua(t) + dh(t) , (2)

where β (N V−1) is the effective gain1 of the piezoelectric
actuator from voltage to force, and ua(t) (V) is the applied
voltage. The piezoelectric actuator will introduce hysteresis
and creep when driven by a voltage signal. It is a reasonable
assumption to consider this behavior as a bounded distur-
bance added to the input [15], represented by the term dh(t).

Denoting the output y = xx, the transfer function for the
nanopositioning stage is

G(s) =
y

ua
(s) =

b0
s2 + a1s+ a0

=
b0

s2 + 2ζω0s+ ω0
2
,

(3)
where b0 = β/m (m s−2 V−1), a0 = k/m (s−2), a1 = c/m
(s−1), ζ = c/2

√
mk (-), and ω0 =

√
k/m (s−1).

The frequency response for the x axis is recorded using
a SR785 Dynamic Signal Analyzer from Stanford Research
Systems with bandwidth-limited white noise excitation. The
response is displayed in Fig. 3. The model (3) is fitted to
the frequency response data using the MATLAB System
Identification Toolbox, and the resulting parameter values
are: b0 = 2.81 · 106 µm s−2 V−1; a0 = 2.08 · 107 s−2;
a1 = 79.4 s−1; ζ = 8.72 · 10−3; and ω0 = 2π · 725 s−1.
The response of the model (3) using these parameters is also
displayed in Fig. 3 for comparison.

As can be seen, the actual response of the first vibration
mode is well approximated by the second-order model (3).
There are higher order modes in the system, and the second

1Mainly determined by the material, amount of polarization, and the
driving voltage amplitude (as the amount of deflection generated changes
with voltage amplitude due to hysteresis).
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Fig. 2: Experimental serial-kinematic nanopositioning stage.

and third vibration modes are clearly visible in Fig. 3. The
higher order modes have negligible magnitude responses
in comparison to the first, thus the second-order model is
sufficient to describe the dominant dynamics of the system.
It should also be noted that higher order vibration modes
are likely to have shapes and directions that will make them
difficult to control using the mounted actuator.

As already discussed, the system has uncertainty with
regards to the parameters, and the chosen model for the
nanopositioning stage does not include high frequency dy-
namics. A reasonable stability margin is therefore needed to
handle these uncertainties and the controller needs sufficient
attenuation at higher frequencies to avoid excitation of the
higher frequency dynamics of the nanopositioning stage. To
assess the robustness of the proposed control scheme, the
uncertainty of the system model is taken into account as a
multiplicative perturbation to the positioner dynamics, i.e.,

Gp(s) = G(s)(1+wG(s)∆G(s)); |∆G(jω)| ≤ 1 ∀ ω . (4)

The uncertainty weight wG(s) is determined experimentally,
and an approximate overbound is found. These results are
shown in Fig. 4.
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Fig. 3: Measured frequency response (solid line) for x axis
of the nanopositioning stage and the model (3) (dash line).
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Fig. 4: Open-loop uncertainty weight wG(s), using experi-
mental data and as overbounding transfer function.

III. CONTROLLER DESIGN AND TUNING

A. Repetitive Controller

Repetitive control intends to track or reject arbitrary peri-
odic signals of a fixed period Tp, by embedding a model of
the reference r or disturbance d signal in the controller. The
transfer function for the RC configuration shown in Fig. 5(a)
is given as

w

ε
(s) = Γ (s) =

R(s)e−T̃ps

1−Q(s)e−T̃ps
, (5)

where Q(s) is a unity-gain low-pass filter, and R(s) is
an output filter, defined below. It is pointed out that the
low pass filter Q(s) inherently shifts all the poles into
the complex left half-plane, with an amount dependent on
frequency, so at higher frequencies the new pole location
is father away from the original location than at lower
frequencies. This will degrade the nulling property of the
controller at the fundamental and harmonic frequencies of
the reference signal. A modified T̃p is introduced to obtain
some compensation for the shift in pole locations due to
Q(s). A method for minimizing the tracking error by tuning
T̃p is given in Section III-F.

By inspection of Fig. 1, the closed-loop sensitivity func-
tion for the overall system is found as

e

r
(s) = S(s) =

1

1 + Ḡ(s)C(s) + Ḡ(s)C(s)Γ (s)
=

1

∆(s)
,

(6)
where Ḡ(s) = Wr(s)G(s)Wa(s). The stability of the closed-
loop system is determined by the denominator

∆(s) = 1 + Ḡ(s)C(s) + Ḡ(s)C(s)Γ (s) . (7)

Now, consider the sensitivity S̄(s) and complementary
T̄ (s) sensitivity function without the presence of the repeti-
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Fig. 5: (a) Plug-in repetitive controller. (b) Equivalent repre-
sentation of the sensitivity function Eq. (9).

tive controller

S̄(s) =
1

1 + C(s)Ḡ(s)
and T̄ (s) = C(s)Ḡ(s)S̄(s). (8)

Then, by inserting the expression for Γ (s), multiplying the
numerator and denominator of 1/∆(s) by S̄(s), and rear-
ranging, the sensitivity function for the closed-loop system
when adding the repetitive controller becomes

S(s) =
1

∆(s)
=

S̄(s)(1−Q(s)e−T̃ps)

1− (Q(s)− T̄ (s)R(s))e−T̃ps
. (9)

With reference to Fig. 5(b), it can be seen that given a
bounded reference r(t) and stable transfer functions S̄(s)
and Q(s), the small-gain theorem provides the criterion for
the stability of the closed-loop system as [16]∥∥Q(s)− T̄ (s)R(s)

∥∥
∞ < 1 , (10)

where it is noted that |e−jT̃pω| = 1 ∀ ω ∈ R.
The output filter R(s) is constructed as

R(s) = WT
−1(s)Q(s) , (11)

introducing a stable all-pole filter WT (s), which provides
for some flexibility in meeting the stability criterion. Using
a unity-gain low-pass filter Q(s), the following somewhat
simpler criterion∥∥1−WT

−1(s)T̄ (s)
∥∥
∞ < 1 (12)

can be used for selecting an appropriate filter WT (s).
To assess the robustness of the RC, a multiplicative

perturbation for the closed loop complementary sensitivity
is used, that is:

T̄p(s) = T̄ (s)(1+wT (s)∆T (s)); |∆T (jω)| ≤ 1 ∀ ω , (13)

where

wT (s)∆T (s) =
S̄(s)wG(s)∆G(s)

1 + T̄ (s)wG(s)∆G(s)
⇒

|wT (jω)| ≤ |S̄(jω)wG(jω)|. (14)

Incorporating the uncertainty into the criterion (10), we
obtain the robust stability criterion:∣∣Q(jω)− T̄ (jω)R(jω)

∣∣ < 1−
∣∣T̄ (jω)wT (jω)R(jω)

∣∣ .
(15)

B. Damping Proportional Integral Controller
The nanopositioning stage is a lightly damped structure

as shown by the measured frequency response in Fig. 3.
Inspecting the stability criterion for the repetitive controller,
one can expect that large peaks in the complementary sen-
sitivity function T̄ (s) can reduce the applicable bandwidth
and gain for the repetitive controller, depending on how well
the output filter R(s) is able to match the inverse closed-
loop dynamics. Introducing a robust damping and tracking
controller should increase the robustness and bandwidth
possible for the overall control scheme.

A simple, effective, and robust damping and tracking
controller for a lightly damped structure can be obtained by
modifying and optimally tuning a proportional integral (PI)
controller. Since the controller is implemented in discrete



time using digital-to-analog and analog-to-digital converters,
reconstruction and anti-aliasing filters must be present in
order to mitigate anti-aliasing effects and quantization noise.
By including these filters in the controller, an extra degree
of freedom can be added for the tuning of the controller,
which is the cut-off frequency of the filters. Compared to a
regular PI controller the modified PI controller will introduce
damping, increase the bandwidth, and reduce the overall
noise level due to feedback. Also, due to the integral action,
the hysteresis and creep nonlinearities introduced by the
piezoelectric actuator will be effectively suppressed.

A PI controller is typically given as

C(s) =
kps+ ki

s
, (16)

where kp and ki are the proportional and integral gain,
respectively. Here the filters are taken to be second-order
low-pass Butterworth filters

Wa(s) = Wr(s) =
ωc

2

s2 +
√

2ωcs+ ωc2
, (17)

where ωc is the cut-off frequency. For convenience they are
taken to be identical when tuning the controller. The modified
PI controller is therefore

C̄(s) = Wa(s)C(s)Wr(s) . (18)

C. Proportional Integral Controller Tuning
The procedure for obtaining the optimal tuning of the PI

controller follows the work in [14]. First, consider an integral
controller

CI(s) = ki
1

s

applied to (3). The stability margin k∗i using the Routh-
Hurwitz criterion can be found to be

ki <
a0a1
b0

=
2ζω0

3

β0
= k∗i . (19)

Given a lightly damped system, 0 < ζ � 1/
√

2, knowing
the resonance frequency ωp and the amplitude response at
resonance |G(jωp)|,

ki <
ωp

|G(jωp)|
< κ · ωp

|G(jωp)|
= k∗i , (20)

where κ−1 =
√

1− ζ2 ·
√

1− 2ζ2 < 1.
By adding proportional action to the above controller, the

effective stiffness of the system increases. The product ζω0
3

will therefore be larger, and thus the margin becomes larger.
Considering (20), it can be conjectured that in order to in-

crease the bandwidth of the controller, introducing damping,
i.e. reducing |G(jωp)|, would be effective.

D. Effects of Low-Pass Filters in the Signal Chain
The modified PI controller (18) has an extra degree of

freedom, that is in the choice of the cut-off frequency of the
filters (17). By adjusting the cut-off frequency ωc, damping
can be introduced and the overall bandwidth can be in-
creased. This is illustrated in Fig. 6. Setting the control gains
to kp = 1 and ki = k∗i = 588, i.e., setting the PI-controller
gains close to the margin of stability, the eigenvalue loci of
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Fig. 6: Eigenvalue loci for the closed-loop system as a
function of the filter cut-off frequency ωc. The loci are
symmetric about the real axis. The optimal root locations
according to (21) are indicated by dots.
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Fig. 7: Detail from the upper-right corner of Fig. 6. The
eigenvalue when ωc → 0 is indicated by a circle, ωc = ωc

†

a star, ωc = ωn a diamond shape, and ωc → +∞ a square.

the closed-loop system is generated by varying the cut-off
frequency ωc of the reconstruction and anti-aliasing filters.

As can be seen from the detail in Fig. 7, using filters with
a cut-off frequency equal to the Nyquist frequency, ωc =
ωn = 2πfn, where fn = 50 kHz, the system is unstable.
The Figs. 6 and 7 indicate, however, that reducing the cut-
off frequency for the filters, all eigenvalues can be moved
further into the left-half plane. Minimizing the maximum
value of the real part of the eigenvalues for the closed-loop
system as a function of the cut-off frequency ωc resulted in

ωc
† = arg min

ωc∈R+/{0}
[arg max
Re(λ)∈R−

[det(A(ωc)− λI) = 0]] ≈

2π · 610 rad s−1, (21)

where A(ωc) is a state matrix realization for the closed-loop
system for a given ωc. Thus, setting ωc = ωc

† = 2πfo,
where fo = 610 Hz, will produce the fastest modes for this
system with the selected control gains.

By inspecting Figs. 6 and 7, it is evident that by using the
computed optimal value for the cut-off frequency, the stabil-
ity margins for the closed-loop system will be larger. This
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Fig. 9: Amplitude and phase response for the sensitivity
function S̄(s) = e

r (s) (PI control), using nominal and
optimal tuning.

should allow for a larger closed-loop bandwidth. The new
stability margin is found numerically to be about 23.9 · k∗i .
As the optimal cut-off frequency is somewhat sensitive to
the choice of control gains, the optimal values for both the
cut-off frequency and the integral gain is found minimizing

JC(ki, ωc) =
∥∥1−

∣∣T̄ (jω, ki, ωc)
∣∣∥∥

2
, (22)

attempting to produce the flattest possible response for the
complementary sensitivity function. As larger values of kp
resulted poorer closed-loop response, this gain value is set
to a fixed low value of kp = 1 V/µm.

Evaluating the cost-function (22) resulted in

[ki
†, ωc

†] = arg min
ki∈[0,23.9·k∗i ], ωc∈R+/{0}

[JC(ki, ωc)] ≈

[7050 V s−1 µm−1, 2π · 728 rad s−1] .

Using the optimal cut-off frequency and integral gain should
produce the flattest frequency response when using a PI-
controller, and it yielded a gain margin of ∆K = 5.78 dB
and a phase margin of Ψ = 61.6◦.

This result can be compared to a nominal tuning, which
corresponds to reconstruction and anti-alias filters using

ωc = ωn, and tuning the PI controller gains to match the gain
margin of the optimal tuning. Using kp = 1 and ki = 150
yields ∆K = 5.71 dB and Ψ = 97.7◦. The resulting
frequency responses for the complementary sensitivity and
sensitivity for the nominal and optimal configurations are
displayed in Fig. 8 and 9. The optimal tuning effectively
attenuates the peak in Fig. 8, from 24 dB in the nominal
case, to 1.3 dB in the optimal case, and by inspection
of Fig. 9 a significant increase in closed-loop bandwidth
can be seen; from approximately 4 Hz in the nominal
case to approximately 100 Hz in the optimal case. The
increase in bandwidth provides better tracking performance
and suppression of input disturbances, such as due to the
hysteresis effect.

The robustness of the PI with regards to the uncertainties
displayed in Fig. 4 is determined. The criterion [17]

‖wG(s)T̄ (s)‖∞ < 1 = 0 dB (23)

is evaluated, and the results are shown in Fig. 10.
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E. Choosing R(s) and Q(s)

Considering the stability criterion for the repetitive con-
troller (12), the ideal choice for the included filter would
be WT (s) = T̄ (s), as this would produce the minimum of
the norm (12). A sufficient choice for WT (s) would be a
filter that attenuates T̄ (s) sufficiently to meet the stability
criterion.

The complementary sensitivity function T̄ (s) has relative
degree nr = 6. As the closed loop response of the system
using the modified PI controller is fairly well behaved,
WT (s) is chosen to be a sixth-order Butterworth filter with
dc-gain kT , and it is assumed that WT (s) ≈ T̄ (s). An
optimal choice for the cut-off frequency ωT and dc-gain kT
for WT (s) is found minimizing the cost-function

JT (kT , ωT ) =
∥∥1−WT

−1(s, ωT , kT )T̄ (s)
∥∥
∞ , (24)

which resulted in k†T ≈ 0.43 and ωT † ≈ 2π · 570.
The filter Q(s) is now chosen, in consideration of the

filter R(s), to be unity-gain sixth-order Butterworth filter,
such that R(s) = WT

−1Q(s) would be a realizable filter.
In order to obtain robust stability, the criterion in (15)

is evaluated in order to find a suitable cut-off frequency
for Q(s), in order to attenuate the second and higher order
vibration modes. A cut-off frequency ωQ = 2π ·2000 rad s−1
provided sufficient attenuation. Evaluation of (15) also sug-
gested that kT and ωT should be reduced somewhat to



kT = 0.3 and ωT = 2π · 550. The closed-loop uncertainties
used are shown in Fig. 11, and the evaluation of (15) is
shown in Fig. 12.

F. Tuning of T̃p
Due to the low-pass filter Q(s), perfect tracking is not

possible, since

L−1
[
(1−Q(s)e−T̃ps)r(s)

]
= r(t)− r̃(t− Tp) (25)

where r̃(t) = Q(t) ∗ r(t) 6= r(t). As noted previously, by
modifying the time-delay T̄p, the shift in the poles due to
Q(s) can be partially compensated for.

By filtering the intended reference signal by

Z̃(s) = 1−Q(s)e−T̃ps , (26)

the amount of suppression of frequency components of the
reference signal can be numerically evaluated. By adjusting
T̃p = Tp − δ by varying δ, an optimal δ that produces the
best tracking performance can be found, that is, minimizing

J(δ) =
∥∥∥L−1 [Z̃(s, δ)

]
∗ r(t)

∥∥∥
2
, t ∈ [Tpm,Tp(m+ 1)]

(27)
where δ ∈ (0, Tp), and m > 0 is an integer number used
to make Tpm large enough for the transient response of
Q(s) to have died out. Using, e.g., Tp = 1/fp = 1/50 s,
δ† = 3.075639 · 10−4 s. Results for other Tp are presented
in Table I.

TABLE I: Table of optimal δ at various reference frequencies
using Q(s) with ωQ = 2π · 2000 rad/s.

fp δ† fp δ†

20 Hz 3.074803 · 10−4 s 100 Hz 3.078570 · 10−4 s

25 Hz 3.074888 · 10−4 s 200 Hz 3.090099 · 10−4 s

50 Hz 3.075639 · 10−4 s 400 Hz 3.113085 · 10−4 s

IV. EXPERIMENTAL RESULTS
A. Description of the Experimental System

The experimental set-up consisted of a Dell Optiplex
GX280 computer equipped with a PCI-6221 data acqui-
sition board from National Instruments, running the xPC
Target real-time operating system for hardware-in-the-loop
simulations, a ADE 5130/5300 capacitive gauge and ADE
5501 capacitive probe from ADE Technologies, a PAD129
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Fig. 11: Closed-loop uncertainty weight wT (s), using exper-
imental data and as an overbounding transfer function.

high-power operational (voltage) amplifier from PowerAmp
Design, a custom-made long-range serial-kinematic nanopo-
sitioner, as well as two second-order low-pass Butterworth
filters implemented using Twin-T topology, with Burr-Brown
OPA2111 operational amplifiers and 10% tolerance com-
ponents, which are used as anti-aliasing and reconstruction
filters.

Due to the 10% tolerance components used in the anti-
aliasing and reconstruction filters, the frequency response of
each of these filters are recorded and fitted to a second-order
model, in order to obtain the best possible accuracy when
tuning the controllers, and generating the reference signal.

With the xPC Target, a minimum sampling time of Ts =
1 · 10−5 (fs = 100 kHz) is achieved and used for all the
experiments.

B. Results

The results from the experiments are presented in Fig. 13
for scanning at 200 Hz. The plots show the initial transient
response of the measured deflection ym(s) = Wa(s)y(s) and
error ε(s) = Wa(s)r(s)− ym(s), the steady-state measured
deflection and error, as well as the steady-state control input
u and a power spectral density estimate of the steady-state
error. A summary of all the experiments performed are
presented in Table II. The experiments are mostly identical
except for the fundamental frequency of the reference signal,
a modified triangle wave. For all the experiments 10% of the
reference signal is replaced with a interpolating polynomial
to make it sufficiently smooth.

V. DISCUSSION

The results of the experiments in Table II are rated using
both the maximum error (ME) and the root-mean-square
error (RMSE), both in absolute terms with respect to the
measured deflection, and relative to the maximum value of
the reference signal. The quiescent noise in the system is
measured to obtain an estimate of the noise floor of the
system. This would suggest that the smallest achievable
absolute ME would be 0.0168 µm, and the smallest absolute
RMSE would be 0.00155 µm.

As can be seen from Table II, the closed loop error using
references with low fundamental frequency yields errors
close to the measurement noise. Some of the error is likely
due to quantization noise. The ME appears to be lower than
the measured noise floor, but this could possibly be because
of changes in the noise environment.
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Fig. 12: Numeric evaluation of stability criteria (10) and (15).



TABLE II: Norms of the measured error ε in steady-state,
using various configurations and reference signals. fp and α
denotes the fundamental frequency and amplitude, respec-
tively, of the reference signal.

fp α ME
absolute

ME
relative

RMSE
absolute

RMSE
relative

When using PI controller and repetitive controller.

20 Hz 14.25 µm 0.013 µm 0.092% 0.002 µm 0.024%

25 Hz 14.25 µm 0.012 µm 0.085% 0.0023 µm 0.027%

50 Hz 14.25 µm 0.016 µm 0.11% 0.0041 µm 0.048%

100 Hz 14.25 µm 0.037 µm 0.27% 0.013 µm 0.15%

200 Hz 14.25 µm 0.12 µm 0.87% 0.053 µm 0.62%

200 Hz 1.425 µm 0.013 µm 0.95% 0.0056 µm 0.66%

400 Hz 7.600 µm 0.17 µm 2.7% 0.11 µm 2.5%

When using PI controller.

20 Hz 14.25 µm 1.3 µm 8.9% 0.83 µm 9.6%

200 Hz 14.25 µm 15 µm 110% 9.7 µm 110%

As the fundamental frequency increases, the error becomes
large, as would be expected, since the bandwidth of the RC is
mostly determined by the filter Q(s). This is demonstrated by
the PSD estimate for the error signal in Fig. 13c, which has
very prominent peaks at odd harmonics of the fundamental
frequency up to the bandwidth of Q(s). Inspecting Fig. 13a,
the transient response and convergence to steady state is
clearly visible. The initial error is large because the reference
signal fundamental frequency is above the bandwidth of the
PI controller, and the RC controller requires about 5 cycles to
converge. From Fig. 13d it can be seen that the the maximum
error occurs at the maxima and minima of the reference
signal, thus, increasing the linear proportion of the reference
signal will also increase the maximum error, which is to be
expected. The voltage range of the signal in Fig. 13e should
also be noted, as most of the full range of the amplifier,
±100 V, is used, and it provides a hard limit with regards
to the spectral content (i.e., the linear proportion) and the
range of the reference signal, as well as the bandwidth of
the controller. Increasing either one of these properties in
this case, would have resulted in saturation in the amplifier.

VI. CONCLUSIONS

It has been demonstrated through experiments that by
using a damping PI controller and a well configured plug-
in repetitive control scheme, it is possible to achieve a
maximum error of less than 1% relative to the reference
signal, at reference signal frequencies exceeding 25% of
the first resonance frequency of a nanopositioning stage.
The methods used are straight-forward to implement and
tune. Additionally, the control scheme is computationally
light, and is therefore well suited for implementation on
both micro-controllers and field-programmable-arrays. The
proposed scheme can also be implementable on existing
hardware configurations for nanopositioning, as it requires
very small, or no, modifications to a standard configuration.
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(a) Initial transient measured deflection ym and measured error ε.
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(c) Power spectral density estimate of error in steady-state.
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(d) Steady-state measured error ε.
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(e) Steady-state input voltage u.

Fig. 13: Reference at 200 Hz with 14.25-µm amplitude.


