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Abstract: In this paper, we propose a guidance scheme for underactuated marine vehicles
with collision-avoidance guarantees. The guidance scheme is based on a line-of-sight approach
and ensures path-following when safety allows it, but deviates from the desired path if safety
mandates it. We provide formal safety guarantees by proving forward invariance of the collision-
free safe set using a barrier function. However, while barrier-function-based control schemes
provide formal safety guarantees, the real-life performance is often lacking due to the challenge
of manually tuning such controllers. We demonstrate that the performance of the control law
can be improved by replacing a part of the control law by a neural network, while retaining the
same formal safety guarantees.
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1. INTRODUCTION

Collision avoidance is a critical design aspect when im-
plementing safe autonomous systems. Autonomous sys-
tems are increasingly being used in diverse applications
such as transportation, robotics, and manufacturing. As
the complexity of these systems grows, ensuring safety and
reliability becomes more challenging. Methods for colli-
sion avoidance have traditionally relied on rule-based al-
gorithms or trajectory optimization techniques. However,
these approaches often suffer from limitations such as lack
of adaptability to dynamic environments, and difficulty in
handling constraints on system inputs and states.

Control barrier functions (CBFs) (Ames et al., 2019) offer
a solution that provides a rigorous mathematical frame-
work for ensuring the safety of autonomous systems. CBFs
are Lyapunov-like functions that can be employed to con-
struct control laws that guarantee safety, such as ensuring
that system states remains within a desired safe set at all
times. CBF designs for collision avoidance for fully actu-
ated marine surface vehicles were proposed in Thyri et al.
(2020) and Basso et al. (2020). The former assumes that
the dynamics are fully known, while the latter includes un-
known ocean currents in the dynamics. To overcome this
unknown disturbance, the path following problem is solved
by utilizing integral action in the nominal controller, while
the robust CBF formulation of Emam et al. (2019) is em-
ployed to ensure collision avoidance. However, since inte-
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gral action is included at the same level as the CBFs, inte-
gral wind-up leads to large transient tracking errors follow-
ing an evasive maneuver. To mitigate this issue, a CBF de-
sign for collision avoidance for underactuated marine sur-
face vehicles was proposed in Marley et al. (2021). In that
paper, CBFs are employed at the guidance level as opposed
to the actuator level, which enables us to add integral ac-
tion at the actuator level controllers without encountering
integral wind-up complications. CBFs are also employed
for collision avoidance of underactuated marine vehicles in
Haraldsen et al. (2023), in which the safety criteria are de-
rived from the so-called velocity obstacle principle.

Other algorithms for collision avoidance for marine vehi-
cles include model predictive control approaches such as
Johansen et al. (2016), Eriksen et al. (2019) and Tenges-
dal et al. (2022). However, none of these approaches have
provable safety guarantees.

The main contributions of this paper are twofold. First,
we introduce a novel barrier-function-based line-of-sight
(LOS) guidance scheme with strict safety guarantees in
terms of collision avoidance for underactuated marine sur-
face vehicles. As opposed to most CBF-based methods, we
do not synthesize the control law by solving a quadratic
program online. Instead, we provide a closed-form expres-
sion of the safeguarding control law, and prove forward in-
variance of the resulting closed-loop system using a barrier
function. Second, we demonstrate that the performance of
the control law can be improved by replacing a part of the
control law by a neural network, while retaining the same
strict safety guarantees. Specifically, the proposed control
law includes a saturation function, where the shape of the
function is a design choice influencing the closed-loop be-
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havior/performance. The choice of saturation function has
a major impact on the aggressiveness of the evasive ma-
neuver. Moreover, it is not trivial to select the saturation
function to obtain a satisfactory trade-off between mini-
mizing the tracking error while avoiding overly aggressive
turning maneuvers. To overcome this problem, we propose
a neural-network-based saturation function and demon-
strate how this improves performance compared to an ap-
proach based on manual selection.

This paper is organized as follows. Section 2 presents a
unicycle model that we use to model a marine surface ve-
hicle in transit, as well as a uniformly globally asymptot-
ically stabilizing LOS guidance law for this model. Then,
Section 3 proposes a novel barrier-function-based control
law which ensures safety by guaranteeing forward invari-
ance of the safe set. In Section 4, we present a learning-
based extension of the safeguarding control law by em-
ploying neural networks, differentiable programming and
gradient-based optimization to improve the performance
while still satisfying the same strict safety guarantees. Sec-
tion 5 presents our results from a simulation study where
we compare the performance of the closed-loop system us-
ing the learning-based method to the nominal control law.
Finally, Section 6 presents our conclusions.

Notation

The Euclidean norm is denoted |x| = (xTx)1/2. The
standard basis vectors in Rn are denoted e1, . . . , en. We
denote the boundary of a set K ⊂ Rn by ∂K. The unit
circle is defined by S := {x ∈ R2 : |x| = 1}, and the
group of planar rotations by SO(2) := {R ∈ R2×2 :
RTR = I,detR = 1}. A unit vector z ∈ S maps to a
rotation matrix through the map R : S → SO(2) defined
by R(z) := (z Sz), where S :=

(
0 −1
1 0

)
. We denote the

signum function by sgn : R → {−1, 1}, where sgn(0) = 1.
Furthermore, atan2 : R2 \ {0} → (−π, π] denotes the four-
quadrant inverse of tan, such that atan2(y, x) gives the
angle between the x-axis and the ray from the origin to
the point (x, y).

2. PROBLEM FORMULATION

For a marine surface vehicle in transit, we approximate
the kinematics by the unicycle model

ṗ = vz, (1)

where p ∈ R2 denotes the position, v > 0 is the speed-
over-ground, and z ∈ S is the course, which is considered
a control input.

The reference path is a continuously differentiable map-
ping pr : R → R2 parameterized by the path parameter
θ ∈ R. We additionally assume that the path is regular,
that is |p′r(θ)| ̸= 0 for all θ ∈ R, such that we can define a
unit tangent vector field τ : R → S by

τ(θ) :=
p′r(θ)

|p′r(θ)|
. (2)

We formulate the nominal control objective as a maneu-
vering problem

Maneuvering problem (Skjetne et al., 2004)

• Geometric Task: Force the position of the ship to
converge to the desired path,

lim
t→∞

|p(t)− pr(θ(t))| = 0. (3)

• Dynamic Task: Force the path speed to converge to
the desired speed assignment:

lim
t→∞

|θ̇(t)− vs(θ)| = 0. (4)

The nominal control problem is solved by employing a line-
of-sight guidance law together with an appropriate update
law for θ. To this end, we define the along-track and cross-
track errors according to the first and second components
of the vector

ε(p, θ) := R(τ(θ))T(p− pr(θ)), (5)

respectively. The LOS guidance law will ensure that the
cross-track error ε2 tends to zero, while the update law for
θ will ensure that the along-track error ε1 tends to zero.
The LOS guidance law is defined by (Marley et al., 2021)

κ̄(p, θ) := R(z∆(p, θ))τ(θ) (6)

where

z∆(p, θ) =
1√

∆2 + ε2(p, θ)2

(
∆

−ε2(p, θ)

)
, (7)

denotes the line-of-sight vector and ∆ > 0 is the
lookahead-distance (Fossen, 2020). Note that the course
angle representing κ̄ on the interval (−π, π] is equivalent
to the sum of the angles corresponding to the unit vectors
z∆ and τ , mapped to the interval (−π, π].

The speed assignment

vs(θ) :=
v

|p′r(θ)|
, (8)

ensures that |p′r(θ)|vs(θ) = v, implying that |ṗr(θ(t))| → v

if |θ̇(t)| → vs(θ(t)). The update law for θ is defined as

θ̇ := eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ), (9)

where µ > 0. The first term represents the along-track
velocity, while the latter term is a so-called “gradient
feedback” term (Skjetne et al., 2011), ensuring that the
along-track error tends to zero.

Theorem 1. (Skjetne et al. (2011)). The control law de-
fined by (6) and (9) renders the set

A := {(p, θ) ∈ R3 : p = pr(θ)}, (10)

uniformly globally asymptotically stable for the closed-
loop system

ṗ = vR(z∆(p, θ))τ(θ)

θ̇ = eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ).

(11)

Problem statement: Modify the guidance law (6) such
that the marine vehicle deviates from the desired path pr
whenever a safety objective demands it. We express this
problem through the following two objectives:

(1) Safety objective: Given some unsafe domain Ku ⊂
R2, render Ks := R2\Ku forward invariant.

(2) Nominal objective: The maneuvering problem.

3. SAFE GUIDANCE LAW

Define the barrier function candidate B : R2 → R by

B(p) := r − |p− po|, (12)
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havior/performance. The choice of saturation function has
a major impact on the aggressiveness of the evasive ma-
neuver. Moreover, it is not trivial to select the saturation
function to obtain a satisfactory trade-off between mini-
mizing the tracking error while avoiding overly aggressive
turning maneuvers. To overcome this problem, we propose
a neural-network-based saturation function and demon-
strate how this improves performance compared to an ap-
proach based on manual selection.

This paper is organized as follows. Section 2 presents a
unicycle model that we use to model a marine surface ve-
hicle in transit, as well as a uniformly globally asymptot-
ically stabilizing LOS guidance law for this model. Then,
Section 3 proposes a novel barrier-function-based control
law which ensures safety by guaranteeing forward invari-
ance of the safe set. In Section 4, we present a learning-
based extension of the safeguarding control law by em-
ploying neural networks, differentiable programming and
gradient-based optimization to improve the performance
while still satisfying the same strict safety guarantees. Sec-
tion 5 presents our results from a simulation study where
we compare the performance of the closed-loop system us-
ing the learning-based method to the nominal control law.
Finally, Section 6 presents our conclusions.

Notation
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(
0 −1
1 0

)
. We denote the

signum function by sgn : R → {−1, 1}, where sgn(0) = 1.
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2. PROBLEM FORMULATION
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θ ∈ R. We additionally assume that the path is regular,
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τ(θ) :=
p′r(θ)

|p′r(θ)|
. (2)
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Maneuvering problem (Skjetne et al., 2004)
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lim
t→∞
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lim
t→∞
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θ will ensure that the along-track error ε1 tends to zero.
The LOS guidance law is defined by (Marley et al., 2021)

κ̄(p, θ) := R(z∆(p, θ))τ(θ) (6)

where
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denotes the line-of-sight vector and ∆ > 0 is the
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angle representing κ̄ on the interval (−π, π] is equivalent
to the sum of the angles corresponding to the unit vectors
z∆ and τ , mapped to the interval (−π, π].

The speed assignment
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ensures that |p′r(θ)|vs(θ) = v, implying that |ṗr(θ(t))| → v

if |θ̇(t)| → vs(θ(t)). The update law for θ is defined as

θ̇ := eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ), (9)

where µ > 0. The first term represents the along-track
velocity, while the latter term is a so-called “gradient
feedback” term (Skjetne et al., 2011), ensuring that the
along-track error tends to zero.

Theorem 1. (Skjetne et al. (2011)). The control law de-
fined by (6) and (9) renders the set

A := {(p, θ) ∈ R3 : p = pr(θ)}, (10)

uniformly globally asymptotically stable for the closed-
loop system

ṗ = vR(z∆(p, θ))τ(θ)

θ̇ = eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ).

(11)

Problem statement: Modify the guidance law (6) such
that the marine vehicle deviates from the desired path pr
whenever a safety objective demands it. We express this
problem through the following two objectives:

(1) Safety objective: Given some unsafe domain Ku ⊂
R2, render Ks := R2\Ku forward invariant.

(2) Nominal objective: The maneuvering problem.

3. SAFE GUIDANCE LAW

Define the barrier function candidate B : R2 → R by

B(p) := r − |p− po|, (12)
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where r > 0 is the radius of the obstacle and po is the
center of the obstacle. Our goal is to design a safeguarding
control law ensuring forward invariance of the safe set
Ks ⊂ R2 defined by

Ks := {p ∈ R2 : B(p) ≤ 0}, (13)

for the system (1). To this end, consider the mapping κ :
S× S× [−1, 1] → S defined by

κ(z, ζ, s) :=

{
z zTζ ≥ s,

sζ + sgn(zTSζ)
√
1− s2Sζ zTζ < s.

(14)

The mapping κ is continuous at all points in the set
{(z, ζ, s) ∈ S× S× [−1, 1] : zTζ ̸= −1}. We prove this fact
in Lemma 3, which can be found in the appendix.

Now, let σ : R → [−1, 1] be a continuous function
satisfying xσ(x) > 0 for all x ∈ R \ {0}. The resulting
guidance law

θ̇ = eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ)

z = κ(κ̄(p, θ), zo(p), σ(B(p))),
(15)

where κ is given by (14), and

zo(p) :=
p− po
|p− po|

, (16)

leads to the closed-loop system

ṗ = vκ(R(z∆(p, θ))τ(θ), zo(p), σ(B(p)))

θ̇ = eT1 z∆(p, θ)vs(θ) + µ(p− pr(θ))
Tp′r(θ)

}
(p, θ) ∈ C,

(17)

where the flow set is defined by

C :=
{
(p, θ) ∈ R3 : p ̸= po

}
. (18)

The guidance law (15) is similar to (Marley et al., 2020,
Eq. (14)) modulo the saturation function σ and the state
θ. The guidance scheme (15) is identical to the nominal
guidance law given by (6) and (9) when safety permits it,
that is, when (p, θ) is in the set

N := {(p, θ) ∈ R3 : zo(p)
Tκ̄(p, θ) ≥ σ(B(p))}. (19)

However, when the nominal guidance law is not safe, that
is, when (p, θ) /∈ N , then evasive action is being taken
until (p, θ) is again in N .

Membership in the set N at a point (p, θ) depends on
the nominal course of the vehicle relative to the obstacle,
zo(p)

Tκ̄(p, θ), and the distance of the vehicle to the obsta-
cle B(p). The quantity zo(p)

Tκ̄(p, θ) can be understood as
the cosine of the course relative to the obstacle. Moreover,
the function σ controls how large the set of allowable nom-
inal courses N is, as seen in (19) and visualized in Fig-
ure 1 by the solid green circle segments. The function σ
can therefore be considered a tuning function.

Fig. 1. Safe courses for the vehicle at two positions p1 and
p2 shown in green. Unsafe courses are shown in red.
The figure is inspired by (Marley et al., 2020, Fig. 4).

Theorem 2. The safe set K := Ks × R is forward
invariant for the system (17).

Proof. Let U be a neighborhood of ∂K. The derivative of
B along the solutions of (17) for (p, θ) ∈ U\K is given by

Ḃ(p, θ) = −vzo(p)
T
(
σ(B(p))zo(p)

+ sgn(−zTo SR(z∆(p, θ)τ(θ)))
√
1− σ(B(p))2Szo(p)

)

= −vσ(B(p))

≤ 0,

where the last inequality follows from the fact that (p, θ) ∈
U\K implies B(p) > 0 and hence σ(B(p)) > 0. It follows
that K is forward invariant for the system (17). �

4. LEARNING SATURATION FUNCTIONS

The saturation function σ is a design parameter since there
are many functions that satisfy the required properties.
Different saturation functions impact the behaviour of the
closed-loop system in different ways. For our application it
mainly impacts the turning radius of the vehicle and how
close the system gets to the barrier. Therefore, the choice
of saturation function depends on the desired behaviour of
the closed-loop system.

Instead of manually selecting the saturation function, we
propose a neural-network-based saturation function satis-
fying the required properties. We then use differentiable
programming and gradient-based optimization to find an
optimal saturation function.

4.1 Neural-network-based saturation function

One valid choice of saturation function is

σ(x) := tanh
(x
a

)
(20)

where a is a parameter adjusting the slope of the function,
as shown in Figure 2.

Fig. 2. Saturation function (20) for different values of a.

We propose the saturation function σϕ : R×Rl → (−1, 1)

σϕ(x, y) := tanh

(
x

aϕ(x, y)

)
, (21)

where aϕ : R × Rl → (0, amax) now is a neural network
model with parameters ϕ controlling the overall shape of
the saturation function. We have here let aϕ depend on an

additional input y ∈ Rl, which can be selected on a case-
by-case basis. This allows a much richer set of avoidance
behaviors to be learned by the network. We remark that
since aϕ maps to (0, amax) and tanh is strictly increasing,
it follows that

σϕ(x, y)x > tanh


x

amax


x > 0, (22)

for all (x, y) ∈ (R \ {0})× Rl. The design parameter amax

therefore provides convenient control of the “minimal ag-
gressiveness” of the learned saturation function. Further-
more, aϕ is continuous as long as the activation functions
employed in the neural network are chosen to be con-
tinuous. This is because aϕ then becomes a composition
of a large but finite number of continuous functions. As
aϕ(x, y) ̸= 0, it follows that σϕ is also continuous in this
case. Since the bound (22) holds uniformly in y and σϕ is
continuous, the conclusions of Theorem 2 hold, no matter
how the additional input y is chosen.

4.2 Vehicle simulation model

In order to obtain more realistic results, we opt to use
a higher-fidelity six degree-of-freedom model for training
and evaluation. Specifically, the mathematical model of
the marine surface vehicle is the Otter from Maritime
Robotics and is available in the MSS toolbox (Fossen and
Perez, 2004). Let η := (p, pz, q) ∈ R2 × R × S3 denote
the configuration of the marine vehicle, where pz denotes
the z or down position, and q ∈ S3 is a unit quaternion
representing the orientation. Moreover, let ν ∈ R6 denote
the linear and angular velocities of the marine vehicle.
For readability, we let ω = ν6, that is, the yaw rate of
the vehicle. The equations of motion are given by (Fossen,
2020, Chapter 6)

η̇ = J(η)ν,

Mν̇ + C(ν)ν + d(ν) + g(η) = u,
(23)

where M ∈ R6×6 is the inertia matrix consisting of
rigid-body and hydrodynamic inertia, C(ν) ∈ R6×6 is
the matrix of Coriolis and centripetal forces, d(ν) ∈ R6

contains dissipative hydrodynamic forces, and g(η) ∈ R6

contains gravitational and buoyancy forces. Finally, u =
(u1, 0, 0, 0, 0, u6) ∈ R6 represents control forces.

4.3 Training of the neural network

We want the marine vehicle to avoid the obstacle while
minimizing the tracking error as much as as possible.
Näıvely, this would lead to aggressive turning in some
cases, so additionally we want to maintain a turning rate
below a certain threshold value.

For the neural network (x, y) → aϕ(x, y), we use a
dense neural network with inputs x = B(p) and y =
(zo(p), ν1, ν2) ∈ R4 and three hidden layers. The first hid-
den layer has 30 outputs and we use the swish activation
function introduced in Ramachandran et al. (2017), which
is defined by swish(x) := xς(x), where ς is the logistic
function

ς(x) :=
1

1 + e−x
. (24)

Moreover, the second and third hidden layers have a width
30 and 10 with swish and log(cosh(·)) activation functions,

respectively. For the output layer we use a scaled logistic
activation function x → amaxς(x) to ensure that the
network maps from R× R4 to (0, amax).

We implement the differential equations (23) in conjunc-
tion with the control system in Julia (Bezanson et al.,
2017), where they are solved using a differentiable ordi-
nary differential equation (ODE) solver provided by Differ-
entialEquations.jl and DiffEqFlux.jl (Rackauckas and Nie,
2017; Rackauckas et al., 2019).

The loss function measures the performance of the closed-
loop system for several different scenarios where we simu-
late the system starting in different initial conditions x0 =
(η0, ν0, θ0). Every simulation produces a numerical approx-
imation of a solution to (23) on the domain [0, T ] repre-
sented by its values at N evenly spaced points in the do-
main. The final simulation time T > 0 and the number of
points N > 1 in the discrete time domain are parameters
chosen by the designer. We denote such a discretized so-
lution by x̄ = (η̄, ν̄, θ̄) = (ηk, νk, θk)

N−1
k=0 . The loss incurred

over the course of a simulation, for one choice of initial
conditions, is now defined by

L(x̄) :=
N−1
k=1

l1(pk, θk) +

N−1
k=1

l2(pk, θk, ωk), (25)

with the constituent functions

l1(p, θ) :=


0 (p, θ) ∈ N ,

c1ε2(p, θ)
2 (p, θ) /∈ N ,

(26)

l2(p, θ, ω) :=



0 (p, θ) ∈ N ,

0 (p, θ) /∈ N , |ω| < c3,

c2(|ω| − c3)
2 (p, θ) /∈ N , |ω| ≥ c3,

(27)

where N denotes the set where the nominal controller
is active, as defined in (19). The parameter c1 > 0
controls the penalization of deviations from the reference
path when the vehicle is avoiding an obstacle, while the
parameter c2 > 0 controls the penalization of the turning
rate when its magnitude exceeds c3 ≥ 0.

The total loss function over the set of initial conditions I
is given by

L(ϕ) :=

x0∈I

L(p̄(x0, ϕ), θ̄(x0, ϕ), ω̄(x0, ϕ)). (28)

Since we employ a differentiable ODE solver (Rackauckas
and Nie, 2017), we are able to calculate the derivative of
the loss function (28) with respect to the parameters ϕ of
the neural network as a function of the entire solution of
the ODE. We can then apply gradient-based optimization
to search for optimal parameters ϕ used in the saturation
function σϕ.

For training, we used 9 initial positions located at 1m
North equally spaced between ±8m East. Each initial
position was given a unique straight line reference path
going in the North-direction starting at the initial position.
The initial positions and reference paths are shown in
Figure 3.

During training, the surge force u1 is set to eight values
from 100N to 300N with increments of 25N. The yaw mo-
ment u6 is computed by a PID controller in order to track
the desired course as output by the LOS guidance algo-
rithm (15) together with the neural-network-based satura-
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additional input y ∈ Rl, which can be selected on a case-
by-case basis. This allows a much richer set of avoidance
behaviors to be learned by the network. We remark that
since aϕ maps to (0, amax) and tanh is strictly increasing,
it follows that

σϕ(x, y)x > tanh


x

amax


x > 0, (22)

for all (x, y) ∈ (R \ {0})× Rl. The design parameter amax

therefore provides convenient control of the “minimal ag-
gressiveness” of the learned saturation function. Further-
more, aϕ is continuous as long as the activation functions
employed in the neural network are chosen to be con-
tinuous. This is because aϕ then becomes a composition
of a large but finite number of continuous functions. As
aϕ(x, y) ̸= 0, it follows that σϕ is also continuous in this
case. Since the bound (22) holds uniformly in y and σϕ is
continuous, the conclusions of Theorem 2 hold, no matter
how the additional input y is chosen.

4.2 Vehicle simulation model

In order to obtain more realistic results, we opt to use
a higher-fidelity six degree-of-freedom model for training
and evaluation. Specifically, the mathematical model of
the marine surface vehicle is the Otter from Maritime
Robotics and is available in the MSS toolbox (Fossen and
Perez, 2004). Let η := (p, pz, q) ∈ R2 × R × S3 denote
the configuration of the marine vehicle, where pz denotes
the z or down position, and q ∈ S3 is a unit quaternion
representing the orientation. Moreover, let ν ∈ R6 denote
the linear and angular velocities of the marine vehicle.
For readability, we let ω = ν6, that is, the yaw rate of
the vehicle. The equations of motion are given by (Fossen,
2020, Chapter 6)

η̇ = J(η)ν,

Mν̇ + C(ν)ν + d(ν) + g(η) = u,
(23)

where M ∈ R6×6 is the inertia matrix consisting of
rigid-body and hydrodynamic inertia, C(ν) ∈ R6×6 is
the matrix of Coriolis and centripetal forces, d(ν) ∈ R6

contains dissipative hydrodynamic forces, and g(η) ∈ R6

contains gravitational and buoyancy forces. Finally, u =
(u1, 0, 0, 0, 0, u6) ∈ R6 represents control forces.

4.3 Training of the neural network

We want the marine vehicle to avoid the obstacle while
minimizing the tracking error as much as as possible.
Näıvely, this would lead to aggressive turning in some
cases, so additionally we want to maintain a turning rate
below a certain threshold value.

For the neural network (x, y) → aϕ(x, y), we use a
dense neural network with inputs x = B(p) and y =
(zo(p), ν1, ν2) ∈ R4 and three hidden layers. The first hid-
den layer has 30 outputs and we use the swish activation
function introduced in Ramachandran et al. (2017), which
is defined by swish(x) := xς(x), where ς is the logistic
function

ς(x) :=
1

1 + e−x
. (24)

Moreover, the second and third hidden layers have a width
30 and 10 with swish and log(cosh(·)) activation functions,

respectively. For the output layer we use a scaled logistic
activation function x → amaxς(x) to ensure that the
network maps from R× R4 to (0, amax).

We implement the differential equations (23) in conjunc-
tion with the control system in Julia (Bezanson et al.,
2017), where they are solved using a differentiable ordi-
nary differential equation (ODE) solver provided by Differ-
entialEquations.jl and DiffEqFlux.jl (Rackauckas and Nie,
2017; Rackauckas et al., 2019).

The loss function measures the performance of the closed-
loop system for several different scenarios where we simu-
late the system starting in different initial conditions x0 =
(η0, ν0, θ0). Every simulation produces a numerical approx-
imation of a solution to (23) on the domain [0, T ] repre-
sented by its values at N evenly spaced points in the do-
main. The final simulation time T > 0 and the number of
points N > 1 in the discrete time domain are parameters
chosen by the designer. We denote such a discretized so-
lution by x̄ = (η̄, ν̄, θ̄) = (ηk, νk, θk)

N−1
k=0 . The loss incurred

over the course of a simulation, for one choice of initial
conditions, is now defined by

L(x̄) :=
N−1
k=1

l1(pk, θk) +

N−1
k=1

l2(pk, θk, ωk), (25)

with the constituent functions

l1(p, θ) :=


0 (p, θ) ∈ N ,

c1ε2(p, θ)
2 (p, θ) /∈ N ,

(26)

l2(p, θ, ω) :=



0 (p, θ) ∈ N ,

0 (p, θ) /∈ N , |ω| < c3,

c2(|ω| − c3)
2 (p, θ) /∈ N , |ω| ≥ c3,

(27)

where N denotes the set where the nominal controller
is active, as defined in (19). The parameter c1 > 0
controls the penalization of deviations from the reference
path when the vehicle is avoiding an obstacle, while the
parameter c2 > 0 controls the penalization of the turning
rate when its magnitude exceeds c3 ≥ 0.

The total loss function over the set of initial conditions I
is given by

L(ϕ) :=

x0∈I

L(p̄(x0, ϕ), θ̄(x0, ϕ), ω̄(x0, ϕ)). (28)

Since we employ a differentiable ODE solver (Rackauckas
and Nie, 2017), we are able to calculate the derivative of
the loss function (28) with respect to the parameters ϕ of
the neural network as a function of the entire solution of
the ODE. We can then apply gradient-based optimization
to search for optimal parameters ϕ used in the saturation
function σϕ.

For training, we used 9 initial positions located at 1m
North equally spaced between ±8m East. Each initial
position was given a unique straight line reference path
going in the North-direction starting at the initial position.
The initial positions and reference paths are shown in
Figure 3.

During training, the surge force u1 is set to eight values
from 100N to 300N with increments of 25N. The yaw mo-
ment u6 is computed by a PID controller in order to track
the desired course as output by the LOS guidance algo-
rithm (15) together with the neural-network-based satura-
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Fig. 3. Initial positions and reference trajectories used for
training.

tion function. Moreover, the obstacle has a radius of 8.5m
and is centered at (20m, 0m). Finally, the parameters of
the loss function were chosen as c1 = 1, c2 = 1000 and
c3 = 100.

The training was done by using the Adam optimizer
(Kingma and Ba, 2015) for 30 iterations with a learning
rate of 0.05. We then continued the optimization for 100
iterations using a learning rate of 0.01.

Fig. 4. The learned saturation function for a range of values
of B and ∠zobs := atan2(eT2 zobs, e

T
1 zobs) with ν1 =

3.2m s−1 and ν2 = 0.

A surface plot of the learned saturation function as a func-
tion of B and zobs for a constant horizontal speed of ν1 =
3.2m s−1 and ν2 = 0ms−1 can be seen in Figure 4. From
Figure 4, it is clear that when the angle representation
of zobs approaches π, the saturation function σϕ is more
aggressive. This is expected since a relative orientation of
π radians represents a head-on collision scenario. On the
other extreme, a relative orientation of 0 radians repre-
sents moving away from the obstacle. This added informa-
tion about the relative orientation allows for less conserva-
tive collision avoidance. For instance, the ship can poten-
tially pass closer to the obstacle while following the nom-
inal course, as the value of the saturation function can be
kept close to −1 at certain relative orientations. This is in
contrast to the nominal saturation function (20) which has

no information about how the ship is approaching the ob-
stacle, relying only on the value of the barrier function B.

5. EVALUATION RESULTS

Figure 5 and Figure 6 show trajectories of the system at
speeds of 3.5m s−1 and 2.2m s−1, respectively, comparing
the learned saturation function and the nominal saturation
function (20) for different values of the tuning parameter
a. Each plot shows the nominal trajectories for 10 values
of a, where the lowest value is chosen such that the vehicle
is very close to the obstacle region while not entering it.

The trajectories resulting from use of the learned satura-
tion function have a very distinctive shape. While the ini-
tial avoiding action for the learned cases is undertaken in a
similar manner as the nominal cases, the second turn back
towards the nominal path is initiated much earlier. This
leads to a tidier and more efficient avoiding maneuver, al-
lowing the vehicle to return to the path in a more timely
manner. Due to the turn rate penalty defined in (27), the
learned trajectory can attain a larger curvature at lower
speeds, as is seen by comparing Figure 5 and Figure 6.
Since it is easier to accommodate the turn rate constraint
at lower speeds, we observe in Figure 6 that the learned
trajectory comes much closer to the obstacle.

Fig. 5. Trajectories when the ship has a surge speed of
3.5m s−1.

6. CONCLUSION

In this paper, we have proposed a novel barrier-function-
based control law which ensures safety by guaranteeing for-
ward invariance of a collision-free safe set. We also present
a learning-based extension of the safeguarding control law,
employing neural networks, differentiable programming
and gradient-based optimization, that improves the per-
formance while still satisfying the same strict safety guar-
antees. We present results from a simulation study where
we validate the performance of the closed-loop system us-
ing the learning-based method, and show that it improves
the performance of the nominal control law.

Appendix A. CONTINUITY OF SAFEGUARDING
CONTROL LAW

Lemma 3. The control law (14) restricted to the set
{(z, ζ, s) ∈ S× S× [−1, 1] : zTζ ̸= −1} is continuous.

Fig. 6. Trajectories when the ship has a surge speed of
2.2m s−1.

Proof. To prove continuity of κ, we first show continuity
of ξ : (−π, π)× [−1, 1] → (−π, π) defined by

ξ(φ, s) :=

{
φ cos(φ) ≥ s

sgn(φ) acos(s) cos(φ) < s
(A.1)

It is clear that ξ is continuous at all (φ, s) such that
cos(φ) > s and at all (φ, s) such that cos(φ) < s (note
that φ ̸= 0 in this region). We want to show that ξ is
continuous also at all (φ, s) such that cos(φ) = s. Consider
fixed (φ0, s0) satisfying cos(φ0) = s0 and φ0 ̸= 0. From
continuity of acos, it follows that for every ϵ > 0, there
exists δa > 0 such that s ∈ [−1, 1] and |s − s0| ≤ δa
implies |acos(s) − acos(s0)| ≤ ϵ. Let δ := min{ϵ, δa, |φ0|

2 },
which ensures that sgn(φ) = sgn(φ0). Then, for all (φ, s) ∈
(−π, π)× [−1, 1] such that |(φ, s)− (φ0, s0)| ≤ δ, we have
that

|ξ(φ, s)− ξ(φ0, s0)| = |φ− φ0| ≤ ϵ

when cos(φ) ≥ s, and

|ξ(φ, s)− ξ(φ0, s0)| = |sgn(φ) acos(s)− φ0|
= |sgn(φ) acos(s)− sgn(φ0) acos(s0)|
= |acos(s)− acos(s0)| ≤ ϵ

when cos(φ) < s. For the case φ0 = 0, it suffices to pick
δ := min{ϵ, δa}. It now holds that

|ξ(φ, s)− ξ(φ0, s0)| = |φ| ≤ ϵ

when cos(φ) ≥ s, and

|ξ(φ, s)− ξ(φ0, s0)| = |acos(s)| ≤ ϵ.

when cos(φ) < s. This establishes continuity of ξ. Conti-
nuity of κ now follows by noting that

κ(z, ζ, s) = cos(ξ(f(z, ζ), s))ζ + sin(ξ(f(z, ζ), s))Sζ (A.2)

where f(z, ζ) := atan2(zTSζ, zTζ) is continuous since
zTζ ̸= −1 in the domain in question. �
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