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A Real-Time Algorithm for Determining the Optimal
Paint Gun Orientation in Spray Paint Applications
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Abstract—In this paper, we present a method for increasing the
speed at which a standard industrial manipulator can paint a sur-
face. The approach is based on the observation that a small error
in the orientation of the end effector does not affect the quality of
the paint job. It is far more important to maintain constant velocity
throughout the trajectory. We consider the freedom in the end-ef-
fector orientation as functional redundancy and represent the re-
striction on the orientation error as barrier functions or linear ma-
trix inequalities. In doing this, we cast the problem of finding the
optimal orientation at every time step into a convex optimization
problem that can be solved very efficiently and in real time. We
show that the approach allows the end effector to maintain a higher
constant velocity throughout the trajectory guaranteeing uniform
paint coating and substantially reducing the time needed to paint
the object.

Note to Practitioners—This paper is motivated by the observa-
tion that uniform paint coating cannot be achieved in steep turns.
Even if the manipulator possesses the necessary actuator torques to
maintain constant speed for a straight line trajectory the torques
needed to maintain constant velocity during turn are far higher.
Thus, the operator has to lower the trajectory speed, also in the
straight line segments where this would normally not be necessary,
or accept a thicker layer of paint in the turns. The method proposed
in this paper is to implement a slightly different planning algo-
rithm in turns allowing the paint gun to follow the trajectory with a
higher constant velocity. This will allow the paint gun to follow the
trajectory, including both straight line segments and turns, with
constant velocity and thus achieve uniform paint coating. We show
how to choose the desired orientation of the paint gun at every
time step and present the explicit expressions for solving and im-
plementing the algorithms.

The approach can also be used for other applications where in-
troducing a freedom in the end-effector orientation improves per-
formance, such as welding and high-pressure water steaming.

Index Terms—Assembly-line manufacturing, convex optimiza-
tion, functional redundancy, modeling, robotics, spray painting.

I. INTRODUCTION

O NE OF THE most important benefits of introducing in-
dustrial manipulators to the assembly line in automo-

tive manufacturing in the 1980s was the removal of all human
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workers from the spray paint area, relieving them from a toxic
working environment. It is crucial for the flow of the automo-
tive assembly line that spray painting is performed both with
high quality and in an efficient manner. In this paper, we ad-
dress the problem of reducing the time needed to paint a surface
without compromising the quality of the coating. This is based
on the observation that the velocity at which the end effector fol-
lows the path is far more important to guarantee uniform paint
coating than the orientation of the end effector.

We assume that the tool center point trajectory, i.e., the trajec-
tory at the surface that the paint gun is to follow, is known. Sev-
eral approaches for finding the optimal path in terms of speed,
coverage, and paint waste have been presented in literature. An
automatic trajectory planning system is presented by Suh et al.
[1]. Both the painting mechanics and the robot dynamics are
used to find the optimal trajectory with respect to paint uni-
formity and cycle time given a CAD model. Ramabhadran and
Antonio [2], [3] present a computationally efficient formulation
of the trajectory tracking problem in spray paint application,
while Kim and Sarma [4] find the optimal sweeping paths by
minimizing the cycle time subject to actuator speed limits and
coating thickness.

Some work has also been done on modeling the paint com-
position on a surface. Hertling et al. [5] present a mathematical
model of the paint coating for a tilted gun and Conner et al. [6]
develop computationally tractable analytic deposition models
that allow us to include the paint model, including the orien-
tation with respect to the surface, when considering the paint
coating. Smith et al. [7] discuss the problem of minimizing the
orientation error when following curved surfaces and Atkar et
al. [8] include the paint model in their framework for optimizing
cycle time and coating quality.

In [9], the idea of introducing the paint quality as a constraint
and minimize some additional cost function was presented. This
opens for the possibility of allowing a small error in the orien-
tation of the end effector in order to increase the velocity of the
paint gun, reduce torques and so on. It was shown by From and
Gravdahl [10] that by allowing an orientation error, the speed
and quality of the job was improved. However, the optimal ori-
entation error was chosen intuitively and the approach presented
was not suitable for implementation in an optimization algo-
rithm.

In [11], the problem of friction force limit constraints was
transformed into a problem of testing for positive definiteness
of a certain matrix. In [12], the same ideas were used to convert
the problem of orientation error constraints into a test of posi-
tive definiteness of a matrix. For different types of orientation
errors, a suitable matrix was found and it was shown that pos-
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itive definiteness of this matrix is equivalent to an orientation
satisfying the given restrictions.

By transforming the nonlinear orientation constraints into
positive definiteness constraints imposed on certain symmetric
matrices, we transform the problem of finding the optimal ori-
entation into an optimization problem on the smooth manifold
of linearly constrained positive definite matrices. For the special
case of positive definite symmetric matrices, the constraints can
be written on the form of linear matrix inequalities (LMIs). We
also show how to write the constraints as barrier functions and
how to solve these. Convex optimization problems involving
LMIs or barrier functions have been extensively studied in
literature, and reliable and efficient solutions are known (see
Boyd et al. [13]–[15]).

II. PROBLEM STATEMENT

There are two main factors that play important roles in ob-
taining uniform paint coating in automotive manufacturing. The
first is to move the paint gun with constant velocity throughout
the trajectory. This is, in general, an easy task in following
straight lines but can be a challenge in turns where high accel-
erations are required. The second factor is the orientation of the
paint gun with respect to the surface, which should be orthog-
onal. It can be shown that the velocity of the paint gun is far
more important than the orientation when it comes to uniform
paint coating. A small orientation error ( ) in the paint
gun does not affect the quality of the coating to the same ex-
tent as changes in the velocity. Based on these observations, we
represent the orientation not as one frame, but as a constrained
continuous set of frames. The problem treated in this paper is
then formulated as follows:

Given a maximum allowed orientation error of the paint gun
and a trajectory on the surface that the paint gun is to follow
with constant velocity and with a fixed distance from the paint
gun to the trajectory. Then, the problem is to find the orientation
of the paint gun at every point on the trajectory that allows it to
follow the trajectory with the highest possible constant velocity.

We note that in this paper, we do not require the orientation
to be optimal. The optimal solution to this problem, considering
both kinematics and dynamics, is extremely complex. However,
we formulate the problem as an optimization problem based on
a simple and intuitive cost function and show that the solution
to this problem substantially improves performance. In the fol-
lowing, we will denote the solution to this optimization problem
the “optimal orientation” although strictly speaking there might
exist other orientations that improve performance even further.

We consider a standard industrial manipulator, in our case
the ABB IRB-5400 series which is illustrated in Fig. 1. The
first three joints are referred to as the main axes, or the main
joints. These are the strongest joints and also the ones that re-
quire the most torque. While the main axes are mainly used for
positioning the paint gun, the last three joints, referred to as the
wrist joints, determine the orientation of the paint gun. We fix
the inertial reference frame to the base of the manipulator. We
also attach a frame to the end effector of the manipulator, in our
case the paint gun. This is attached so that the end-effector

Fig. 1. The ABB IRB spray paint robot with the definitions of the reference
and tool frames. Picture courtesy of ABB Robotics.

axis is aligned with the direction of the paint flow. This axis is
referred to as the central axis of the end effector.

To find the optimal orientation, we first need to define a set
of allowed orientations from which we can choose the optimal
one. This set of orientations is defined using the unit quaternion
which allows us to rewrite the constraints using very simple ex-
pressions. Sections III and IV give a brief background on repre-
senting orientations and continuous sets of orientations of rigid
bodies. We also show how we can rewrite restrictions on the
direction of the central axis as a simple constraint on the unit
quaternion. In Section V, we present the theoretical background
on how to write constraints on the orientation in a convex op-
timization setting and in Section VI, we provide the equations
needed for implementing the algorithms such that a solution can
be found in real time.

In Section VII, we show how we can increase the speed at
which the manipulator can paint a given surface without com-
promising the paint quality. The solution in itself is very simple.
It basically allows us to distribute the workload more evenly on
the different joints. In our case, we find that for the main joints
the actuator torques are very close to the torque limits, while
the wrist joints use only a fraction of the torque available. We
thus choose the orientations in a way that will make the main
joints move less, and thus require less torque. One easy way to
do this is to force the position of the wrist towards the center
of the surface reducing the length of its trajectory. Keeping in
mind that the main joints are mainly used for displacement, this
will reduce the required torques of these joints. Section VII also
includes several simulations to verify the efficiency of the ap-
proach presented.

III. REPRESENTING ROTATIONS

A. The Unit Quaternion

The unit quaternion is well suited for representing orienta-
tions or continuous sets of orientations of rigid bodies. A good
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introduction to quaternions is found in [16]. Any positive ro-
tation about a fixed unit vector can be represented by the
four-tuple

(1)

where is known as the scalar part and as the
vector part. is written in terms of and by

(2)

is a quaternion of unit length and denoted a unit quaternion.
Henceforth, all quaternions have unit length unless otherwise
stated. Let . The quaternion product of a ro-
tation followed by a rotation is written in vector algebra
notations as

(3)

The cross product implies that quaternion multiplication is not
commutative, as expected. Let
and . Then, the quaternion product is
written as

(4)

The quaternion product of two unit quaternions is a unit quater-
nion. From the definition of the quaternion, we see that the
quaternions and produce the same rotation. This dual
covering allows every rotation to be described twice. In this
paper all angles are assumed to be in the interval so
every orientation corresponds to one specific quaternion. It is
also assumed that all angles of inverse trigonometric functions
are in this interval with the correct sign. For , this is de-
noted . The quaternion identity representing the inertial
frame is given by .

A pure quaternion is a quaternion with zero scalar part. Any
vector, can be represented by a pure quater-
nion . Finally, the conjugate of a quaternion is
defined as .

B. Vector Rotations

Let a vector be represented by the pure quaternion . This
vector can be rotated radians around the axis by

(5)

Every vector can be represented by a pure quaternion,
hence is not necessarily of unit length. The quaternion , how-
ever, is unitary. This represents the angle and the axis that the
vector is rotated about. The resulting vector is then of the
same length as if and only if is a unit quaternion.

Note that (3) rotates one frame into another frame. By a
frame, it is meant a coordinate system in using Cartesian
coordinates. One frame with respect to another frame represents
three degrees of freedom and is referred to as orientation. The

reference frame is the inertial frame denoted and the frame
that corresponds to the inertial frame by a rotation is denoted

. Equation (5), however, rotates one vector into another
vector and represents two degrees of freedom, i.e., a point on a
sphere. A unit vector with respect to a unit reference vector is
referred to as direction. Henceforth, the main concern is with
the direction of the central axis, which is assumed to be the
body frame axis of the end effector. We refer to Ha et al. [17]
for a good reference on vectors and attitudes. The following
lemmas will also be used.

Lemma 3.1: (Sylvester’s criterion) A matrix is positive
definite if and only if all the leading principal minors are posi-
tive. is positive semi-definite if all the leading principal mi-
nors are non-negative.

Lemma 3.2: A block diagonal matrix
is symmetric positive

definite if and only if each block is symmetric
positive definite. is positive semi definite if each block is
positive semi-definite.

IV. QUATERNION VOLUMES

We start by representing a continuous set of orientations de-
fined by a set of constraints in Euler angles and a sequence of
rotations. This allows us to find the corresponding constraints
on the quaternion entries , , , and . We denote this con-
tinuous set of quaternions a quaternion volume. We then use this
intuitive and well defined tool in the next sections to represent
these constraints as LMIs or barrier functions.

A. General Definition

A set of frames corresponding to a reference frame by a rota-
tion about a fixed axis can be represented as

(6)

When the rotations are not limited to one axis only, a more gen-
eral description of all allowed orientations can be represented
by a sequence of rotations given by the quaternion product of
two or more quaternions and their restrictions.

Definition 4.1 (Quaternion Volume): A quaternion volume
is defined as

...

(7)

for and where

(8)

In this paper, only sets of frames that can be described by a
sequence of rotations about the coordinate axes are treated. We
refer to [18] and [19] for a detailed discussion on quaternion
volumes.

B. Reorientation of Quaternion Volumes

The quaternion product of two quaternion volumes, or a
quaternion volume and a quaternion, is itself a quaternion
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volume. We can use this observation to transform quaternion
volumes and to represent them in a rotated coordinate system.

Let be a quaternion volume and the quaternion rep-
resent some transformation on . Then, the transformation

rotates the entire set of frames by a rotation .
Similarly, the transformation allows the set of
frames represented by the quaternion volume to be represented
with respect to a new reference frame . The transformation in-
duced by changing from one reference frame to another is called
reorientation [20].

Proposition 4.1 (Transformation of Quaternion Volumes):
Any quaternion volume represented with respect to the
reference frame can be transformed into another quaternion
volume by

(9)

where the orientations represented by relate to in the same
way as relates to the reference frame.

Proof: The quaternion product can be viewed
upon as a rotation followed by a rotation with respect to the
new frame. Hence, relates to in the same way as relates to
the reference frame. By the same argumentation, the quaternion
volume relates to in the same way as relates to the
reference frame.

In Proposition 4.1, the reference frame is kept constant and
the quaternion volume is rotated by . Reorientation, however,
is a rotation of the reference frame (change of observer), while
the quaternion volume is kept constant. The proof of the reori-
entation is constructed in the same way as the
proof of Proposition 4.1.

C. The Pointing Task

We now show how to represent the freedom of the pointing
task as a quaternion volume. First, assume that the axis of the
end effector must be aligned with the axis of . This gives the
end effector one degree of rotational freedom about the axis.
The pointing task can be represented by an arbitrary rotation
about the axis as the quaternion volume

(10)

The quaternion volume is thus given with respect to the refer-
ence frame. Assume the desired quaternion volume instead is
to be rotated by from the refer-
ence frame. The quaternion volume that describes all orienta-
tions where the axis points in the same direction as the axis
of is given by so that

(11)

1) Example 1: If the desired orientation is chosen so that
the axis of the end effector always points in the opposite

direction of the axis of by a rotation about the axis
, (11) simplifies to

(12)
All quaternions that satisfy this restriction result in an end

effector pointing in the opposite direction of the axis of .
We see this by rotating the vector by .
Then, for , we have

(13)

(14)

D. Cone Shaped Quaternion Volumes by Rotations Sequences

A rotation sequence describes a rotation about one coordi-
nate axis followed by a rotation about another coordinate axis in
the rotated coordinate system. A general framework on how to
construct easily visualizable quaternion volumes by rotation se-
quences is presented. We show how to construct different types
of quaternion volumes and how these relate to the different ro-
tation sequences. This will allow the programmer to choose the
quaternion volume most appropriate for the task in hand or to
define volumes using other rotation sequences to obtain a new
shape well suited for a specific task. The rotation sequence starts
with two subsequent rotations about two coordinate axes, rep-
resented by the quaternion . This defines the direction of
the central axis, which is our main concern. The last degree of
freedom is added by a rotation about the central axis itself, here
the axis, by . Then, the orientation of the end effector is
described by

(15)

We will look into two different rotation sequences, the -se-
quence and the -sequence. For the -sequence, the
direction of the central axis is determined by a rotation about
the axis followed by a rotation about the new axis. Thus,
the difference in the direction between the new and the old cen-
tral axis is given by the rotation about the axis only. For the

-sequence, however, this difference is given by the first
two rotations. For both sequences, the last degree-of-freedom
is given by a rotation about the central axis itself and does not
change its direction. Finally, the quaternion volume is given by
restricting the allowed rotations of each quaternion.

We use norms in to define the directions of the central
axis. We consider the three cones given in Fig. 2. The cones are
defined by the degree of the norm, representing the shape of the
cone, and by a parameter representing the size of the cone by

(16)
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Fig. 2. Different convex cones in . The cone defined by the 2-norm is self
dual (setting � � �). The cone defined by the�-norm is the dual of the cone
defined by the 1-norm. The illustrations of the �- and 1-norms are good ap-
proximations for small rotations.

We are mainly concerned with the axis, so in , we write

(17)

1) Example 2: Given a -cone with the parameter re-
stricting the direction of the axis, i.e.,

(18)

Then, the maximum rotation allowed by this cone is
around any axis in the -plane. This is obtained by

the -sequence and can be visualized in Fig. 2(a).
2) Example 3: Given a -cone with the parameter re-

stricting the direction of the axis, i.e.,

(19)

Then, the maximum rotation allowed by this cone is
around the coordinate axes ( and axes) and

around the axes . This is obtained by the
-sequence and can be visualized in Fig. 2(b) for small ro-

tations.
3) Example 4: Given a -cone with the parameter re-

stricting the direction of the axis, i.e.,

(20)

Then, the maximum rotation allowed by this cone is
around the coordinate axes ( and axes) and

around the axes . This is the dual of the
-cone and is visualized in Fig. 2(c) for small rotations.

We note that the results are valid for rotations around globally
defined and axes, while the -sequence rotates about
the rotated coordinate axes. For the - and 1-norms this is thus
an approximation and only valid for small rotations.

We will represent the desired orientations as the continuous
set of directions of the central axis as described by the cones
and a free rotation about the central axis itself. This set can be
composed by a rotation sequence of quaternion volumes. Two
rotation sequences are discussed in detail, the -sequence,
also considered in [20] and [18], and the -sequence.

4) 2-Cone: The -sequence allows the desired ori-
entation to be defined as a set of vectors that span a

-cone about the reference axis and all orientations
about these vectors. Let
where and

so that

(21)

represents the allowed orientations about the axis of the first
rotation, while is the allowed orientation about the new axis.
If has no restrictions, defines the size of a cone with the
axis at the center, illustrated in Fig. 2(a). We let restrict the
orientation about the axis itself and the corresponding quater-
nion volume is then given by

(22)

and the restrictions

(23)

(24)

(25)

5) Example 5: Assume that the central axis is to point in the
opposite direction of the axis of . Further assume that a
small error in the direction is allowed and no restrictions
on the rotation about the axis. The set of frames describing
these orientations is given by (22) and the restrictions

(26)

(27)

(28)

We can also substitute and into (22)

(29)
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and restrictions (23)–(25). Note that (29) can also be ob-
tained by rotating the quaternion volume in (22) by radians
about the axis, i.e., by (9) with
and as in (22) so that

, which is the same as (29).
6) -Cone: The -sequence defines the -cone, or

a square cone of allowed directions where the allowed orienta-
tions about the axis and the (new) axis are restricted. This is
a good estimation of restricting the orientation about the glob-
ally defined - and axes whenever the angles are kept small.

is then given by

(30)

The orientation is given by the quaternion volume

(31)

and the restrictions

(32)

(33)

(34)

E. Quaternion Volume Test

We now derive a test to verify if a quaternion lies inside the
desired quaternion volume. We will in turn use this to transform
these restrictions into constraints that can be handled directly in
convex optimization problems. Consider a quaternion volume
defined by the -sequence. We show how to use the analytic
expression of the quaternion volume to find a test to verify if a
query quaternion is an element of
the quaternion volume. Equation (22) gives

(35)

Then, from the Appendix , we get

(36)

(37)

(38)

which gives

(39)

An alternative formulation is given by [19]

(40)

(41)

(42)

F. Transformed Quaternion Volumes

The easiest way to verify if a query quaternion lies inside a
quaternion volume transformed by (9) is to transform the query
quaternion by the opposite transformation so that both the
quaternion volume and the query quaternion are presented in the
reference frame. Hence, the two problems below are identical.

(43)

(44)

This operation is computationally demanding. In the special
case when an analytical expression of the transformed quater-
nion volume is given, as in (9), the orientation should be found
by a set of parameters similar to the ones found in (40)–(42).
We can obtain this when the quaternion volume is on a simple
form, for example, as in (29), where the quaternion volume is
rotated 180 around the axis. Then, the query quaternion may
be tested against the restrictions in (23)–(25) directly. By fol-
lowing the mathematics of (35)–(42), , and are found with
respect to the coordinate system of by

(45)

(46)

(47)

Hence, as expected, we get , and .

V. RESTRICTIONS ON ORIENTATION ERROR IN A

CONVEX OPTIMIZATION SETTING

In this section, we show how the formalism of quaternion vol-
umes naturally leads to formulating restrictions on the orienta-
tion as LMIs and barrier functions.

A. 2-Norm

Assume that we would like to restrict the axis of to point
in approximately the same direction as the axis of the refer-
ence frame . This can be visualized by a cone of directions
restricted by where . The orientation
error can be found from and by (37), i.e.,

(48)

A test to verify if the axis of does not deviate from the
axis of by more than is given in the following.
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Proposition 5.1: Given a maximum allowed deviation in the
direction of the axis, represented by the rotation . Then,
the axis of rotated by from the
reference frame lies within the -cone defined by if
and only if

(49)

where , , and means positive
semi-definiteness of the symmetric matrix .

Proof: As and , from Lemma 3.1, we have
that if . The determinant of is given by

(50)

Note that so that can be
written as

(51)

As , we have

(52)

Then, (48) concludes the proof as

(53)

Note that the restrictions in Proposition 5.1 are on the direc-
tions of the axis only and that rotations about the axis itself
are not restricted (the pointing task). Note also that is sym-
metric and affine in . This is an important property as it allows
us to represent the constraints as LMIs. The following follows
directly from Proposition 5.1 and allows us to formulate the re-
strictions as a barrier function.

Corollary 5.1: Given a maximum allowed deviation in the
direction of the axis, represented by the rotation and let

. Then, the barrier function [14]

(54)

increases exponentially to infinity as the orientation approaches
the orientation limit forcing the axis of rotated by

from the reference frame to lie within
the restrictions given by .

The proof of Corollary 5.1 follows directly from the proof of
Proposition 5.1.

B. -Norm

Assume instead that we would like to restrict the allowed ro-
tation differently around different axes. For example, if the set
of allowed orientations is given by restrictions on the rotation
about the axis followed by a rotation about the axis, this

will result in a pyramid-shaped set of allowed directions. The
following observations are important in this section.

Rotating the vector by about the axis
of the reference frame followed by a rotation about the axis,
also of the reference frame, gives the new vector

(55)

For a rotation about the axis of the reference frame followed
by a rotation about the axis of the rotated coordinate system,
the rotated vector is given by

(56)

This can also be written as a quaternion . Let the vector be
rotated by into . Then, is written as

(57)

Proposition 5.2: Given a restriction in the orientation
error about the axis of the reference frame and in the
orientation error about the axis of the rotated coordinate
frame. Then, the axis of rotated by the quaternion

with respect to the reference frame
lies within the restrictions given by , where ,

if and only if

(58)

where and means positive semi-definiteness
for the nonsymmetric matrix .

Proof: The determinant of is given by

(59)

Assume

(60)

As , comparing (56) and (57) gives

(61)

and the initial requirement is obtained by

(62)

where is the angle between the new axis and the -plane.
A similar restriction can be found for the lower bound.

Proposition 5.3: Given a restriction in the orientation
error about the axis and in the orientation error about the

axis, both in the reference frame. Then, the axis of frame
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rotated by the quaternion with respect
to the reference frame lies within the restrictions given by

if

(63)

where .
Proof: We start with the principal minors and see that we

need to add the constraint

(64)

The determinant of is given by

(65)

Then, becomes

(66)

As , comparing (57) and (55) gives

(67)

and the initial requirement is obtained by

(68)

Note that in Proposition 5.2 the second rotation is with re-
spect to the rotated coordinate frame and the constraints restrict
only the rotations about the axis, while in Proposition 5.3 the
second rotation is with respect to the rotated coordinate frame
and the constraints restrict the allowed rotations about the
axis only. This simplifies the computations substantially and is
a good approximation to rotating around the and axes of .
We also note that the matrices given in Propositions 5.2 and 5.3
are not symmetric and that in (63) is not affine. Hence, the
constraints cannot be represented as LMIs. They can, however,
be represented as barrier functions given as the negative loga-
rithm of the determinant for which we also omit the additional
constraint (64).

1) Example 6: Given a restriction in the orientation
error about the axis and in the orientation error about the

axis. Then, the axis of frame rotated by the quaternion
with respect to the reference frame

lies within the restrictions given by and if

(69)

where and are given as in Propositions 5.2 and 5.3,
respectively.

Alternatively, an accurate solution can be found by restricting
the orientation about the axis followed by the orientation about

the axis, also in . This can be achieved by writing
and substituting

(70)

for in (58).

C. Restriction on the Orientation About the Central Axis

We now turn to the pointing task problem, i.e., to determine
the rotation about the central axis itself. This will not change
the direction of the central axis and thus not influence the ori-
entation error. Assume we want the axis to point in one given
direction in order to improve performance. This direction may
be different at every time step. Also, for the axis, we may
allow a small error from the desired direction. For the -se-
quence the direction of the axis is given by both , and .
We assume the error of the direction of the axis is restricted as
in Section V-A. When this is constrained to be relatively small,
the error in the direction of the axis can be approximated by
the error in the orientation about the central axis. This error is
given by (39) as

(71)

Proposition 5.4: Assume that the error in the direction of
the axis is small. Given a restriction in the orientation error

around the central axis, the axis of rotated by
from the reference frame lies within the

restrictions given by if and only if

(72)

where .
Proof: The determinant of is given by

(73)

As is positive, we have for
and can be written as

(74)

Then, (39) concludes that

(75)

Also, for Proposition 5.4, we can reformulate the result and
obtain a barrier function.

Corollary 5.2: Assume that the orientation error of the di-
rection of the axis is small and the orientation error about the
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central axis is restricted to and let . Then,
the barrier function

(76)

increases exponentially to infinity as the orientation approaches
the orientation limit, forcing the axis of rotated by

from the reference frame to lie within
the restrictions given by .

D. Direction of the Axis

Alternatively, one might want to restrict the direction of the
axis directly. Note that the matrix given in the previous section
is not affine and cannot be written as an LMI. Hence, another
matrix that is both symmetric and affine is proposed in the fol-
lowing. Assume that the direction of the axis is to be restricted.
Similarly to (49), the requirement that the body frame axis is
to point in the direction of the reference frame axis is given by

(77)

where . This will restrict the axis of to lie
within a cone with the axis of at the center.

This quaternion volume can also be transformed by (9). As-
sume that the direction of the body frame axis is to point
in the direction given by the direction of the axis of

. In order to apply the restriction given by
(77), but to the direction of the axis of and not that of

, is transformed back into the reference frame and the test
is performed on the transformed quaternion

(78)

Note that when is substituted into (77), is still symmetric
and affine in .

VI. SPRAY PAINTING

We now present an example where the direction of the axis
is determined by two cone-shaped sets of orientations. The di-
rection given by the two sets at each time step is in general con-
flicting and the solution is the minimum of a cost function given
by the sum of the two orientation errors. There are two main cri-
teria that will guarantee uniform paint coating, the orientation of
the spray gun with respect to the surface and its velocity. The
first restriction is ensured by the constraint

(79)

where and is the maximum allowed ori-
entation error for which the quality of the paint job is satisfying.
The paint gun should always be orthogonal to the surface, but
in general an orientation error of about 20 guarantees uniform
paint coating. We will assume a manipulator that is to paint a

Fig. 3. The path of the tool center point (TCP) in the ��-plane. The direction of
the central axis is determined from � by the quaternion � ��� and the rotation
around the central axis itself is determined from �.

surface in the -plane following the path in Fig. 3. The restric-
tions on the orientation is visualized by a cone. The cross section
of this cone is given by the circle in Fig. 3.

The second restriction is on the velocity of the paint gun and
can be improved by a similar constraint. The general idea is to
reduce the displacement of the paint gun by choosing a desired
orientation at each time step which forces the position of the
paint gun to remain at the center of the surface. This will reduce
the torques in the main axes as these are mainly used for posi-
tioning the end effector. Assume we want to paint the surface in
the -plane with a constant distance between the tool and
the surface. Let be the vector from the center of the surface,
at height , denoted , to the current position on the
surface

(80)

This is the direction of the central axis for which the main axes
do not need to move at all, i.e., pure rotation of the wrist. We
choose this as the desired direction of the central axis when the
orientation error is not considered, represented by . We now
introduce the same freedom in this constraint as we did with the
orientation error, forcing the orientation to lie inside a quater-
nion volume with the axis of at the center.

First, we transform the quaternion back into the reference
frame and perform the test on the transformed quaternion in the
reference frame. The transformed quaternion is given by

(81)

The constraint that forces the end effector to point in the direc-
tion of with a maximum orientation error is given by
Proposition 5.1 as

(82)
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where . Thus, we use the same constraint as for
the reference frame, but on the transformed quaternion .

We now turn to the problem of spray painting the surface in
the -plane in Fig. 3, also addressed in [10]. The surface is to
be painted from above, so the set representing the orientation
error needs to be rotated 180 so that it points downwards. This
can be done by (9) with or the approach
that we will take here, instead of the restriction ,
which we used in Proposition 5.1, we write

(83)

and replace in . This will
guarantee that the set of orientations points in exactly the oppo-
site direction of the set of (82). The barrier function is then the
sum of the two constraints representing the orientation error and
the velocity and is given by

(84)

where guarantees that the orientation error lies within the
limits and allows the end effector to follow the path with
a higher velocity. The weights and weighs the impor-
tance of the two restrictions and should be chosen so that the
end-effector velocity is constant and as high as possible.

A. The Gradient Method and Implementation

In this section, we show how to solve the optimization
problem by the gradient method. The partial derivatives are
given by

(85)

(86)

and

The gradient is then given by

(87)

The problem is solved by the gradient method

(88)

For a feasible initial condition and for a relatively small and
constant step size the stability and convergence of the method
is good. Due to the low computational burden of this approach,
a constant step is used instead of a search. This requires that is
chosen conservatively which may lead to slower convergence.

B. The Pointing Task

By the approach described in the previous section, the orien-
tation about the central axis ( axis) is not determined. In this
section, we show how to utilize the last degree of freedom to
improve performance further. We will present three different
approaches for implementing the solution to the pointing task
problem. The orientations found do not differ very much, but
the implementations are quite different.

1) From and Gravdahl [10]: The first approach presented is
the intuitive approach given in [10]. The orientation about the
central axis at point is set as

(89)

for and where and give the position of the
end effector at time in the -plane and is the center of
the surface in the -direction. is shown in Fig. 3. It was
shown by From and Gravdahl [10] that this will reduce the dis-
placement of the main axes.

2) Direction of the Axis (Section V-D): A similar approach
is to force the end effector axis to point in the direction of the
base of the manipulator. By projecting the end-effector axis
into the -plane and force this to point in the direction of the
base will have approximately the same effect as the approach in
the previous section, but this constraint can easily be written on
the form of (78) as

(90)

where is time varying and takes the end-effector axis
into the desired direction. Further, we want the end-effector
axis to point in the opposite direction of the global axis, so we
let and write the corresponding cost function
as

(91)
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where and is the maximum error allowed
in the direction of the axis. The partial derivatives are given
by

Thus, the search direction for every time step is given by

(92)

Applying the gradient method will find the minimum of a
cost function given by the sum of three in general conflicting
objectives. guarantees that the orientation error is within
its limits, increases the velocity of the paint gun and
exploits the pointing task to increase the velocity further.

3) Restrictions of the Rotation About the Central Axis
(Section V-C): By Proposition 5.4, we get that the rotation
about the axis can be forced to zero by the cost function

(93)

The partial derivatives are given by

We would like the axis to point in the direction of the
base, which we obtain by a rotation about the axis by

. Again, we use and

(94)

where

(95)

The partial derivatives are then given by

(96)

Then, by choosing such that the axis points in the direc-
tion of the base by a rotation about the axis, we obtain the
desired motion characteristics. Note that in (94) the central axis
is assumed to be orthogonal to the surface. Hence, the results
are only valid when a small orientation error in the direction of
the axis is allowed.

C. LMIs

We now turn to the problem of how to formulate the con-
straints on the orientation as LMIs and how to solve this when
several constraints are present. The problem

(97)

where

(98)

is known as the analytic centering problem. This formulation
allows us to formulate the restrictions on the and axes in
one big block diagonal matrix and solve this very efficiently. If
the feasible set is nonempty and bounded,
the matrices are linearly independent and the
objective function is strictly convex on [13]. In this case, it
can be guaranteed that the optimality condition ,
for an optimal solution , can be reached.

In our case, the constraints on the axis are written as

(99)

where is given by (49) and can be written as

(100)

where

(101)

and do not affect the solution and can be eliminated from
the equations.
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To apply the time varying constraints on the transformed
axis, substitute (78) into (77), denote the resulting matrix ,
and write it on the form of (100) so that

(102)

(103)

To combine the restrictions of the and axes, we use Lemma
3.2 and formulate the problem as

(104)

for which the solution is the orientation which minimizes the
error both of the axis and the axis with a “metric” that in-
creases exponentially with the angular distance from the desired
directions of the and axes. Also note that for two conflicting
constraints on the direction of the axis, the constraints given
by (82) can be written similarly by substituting (81) into (49).

D. Normalization

The optimization algorithms described optimize freely over
all quaternions, and it is thus not guaranteed, nor likely, that the
resulting quaternion is of unit length. One simple and very ef-
fective, though not very mathematically sound solution, is to op-
timize freely over all quaternions and then normalize the result
afterwards. This turns out to work very well in practice. Another
option is to add the constraint in the optimization algo-
rithm which guarantees that the search space is only the set of
quaternions of unit length.

E. Optimality and Existence of the Solutions

We note that the quaternion volumes must be chosen so that a
solution exists. The quaternion volume representing the orienta-
tion error should be chosen according to the maximum allowed
error. For the quaternion volume constructed to increase ve-
locity, we have more freedom in choosing the size of the volume.
This should thus be chosen big enough so that a solution always
exists. This can then be compensated for by increasing in
(84) or (87).

The optimal orientation at every time step can be found in
real time given the velocity of the paint gun. However, the op-
timal velocity is not found in real time. This is achieved by in-
creasing the velocity until the simulations show that the joint
torques reach the limits. Thus, to find the optimal velocity, we

need to perform several simulations or test runs to find this. In
this sense, the solution is not found in real time. On the other
hand, if the manipulator is to follow a trajectory for which the
maximum velocity is not found by test runs, we can use infor-
mation about the curvature of the path and the maximum orien-
tation error to choose a velocity that is far higher than for the
conventional approach. In this sense, the solution is optimal for
the chosen velocity. The main strength of this method lies in
its simplicity. The low computation time allows us to run the
problem several times to find a solution very close to the op-
timal one. There are many alternative approaches well suited
to find an optimal or closer to optimal solution. A learning ap-
proach may find a more optimal solution, but this would require
far more computational effort. One might also construct an op-
timization problem that optimizes the torques given a freedom
in the orientation, but to find an optimal global solution to this
problem is extremely complicated. The short computation time
for the proposed algorithm makes it a good alternative to the
computationally more demanding approaches.

F. Curved Surfaces

The approach presented is not limited to planar surfaces. For
curved surfaces such as the hood of a car, we can use the exact
same approach. The desired direction of the end effector used
in (81) can be chosen as the same as the planar case. However,
the quaternion volume representing the orientation error must
be transformed similarly to (81) so that the center of the volume
is orthogonal to the surface at every point on the trajectory. For
curved surfaces, we expect the performance to improve more
than for a plane as the orientation of the paint gun does not have
to follow the optimal orientation (orthogonal to the surface) as
tightly and can sweep over the surface more smoothly and with
less variation in the orientation.

VII. NUMERICAL EXAMPLES

A. Convergence

Table I shows the computational efficiency of the algorithms
presented. The convergence is in general very good and a so-
lution is found in 10–20 iterations. In some cases, a few more
iterations are needed, but for all the tests performed, about 50
iterations is sufficient, as a worst-case measure. No information
from the previous solution is used in choosing the initial con-
ditions. The simulations were performed on an Intel T7200 2
GHz processor. We can see that the time needed for each iter-
ation is very low. Even for the worst case of 50 iterations, the
time needed to find a solution is less than one millisecond. This
makes all the algorithms presented suitable for online imple-
mentation.

The three algorithms presented were compared in terms
of computational efficiency. The algorithms tested were: i)
axis cone restrictions as presented in Section VI-A; ii) axis
cone restrictions as presented in Section VI-A with additional
cone restriction on the direction of the axis as presented in
Section VI-B2; and iii) axis cone restrictions as presented in
Section VI-A with additional restriction on the rotation about
the axis, as presented in Section VI-B3.
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TABLE I
SPEED FOR ONE ITERATION, NUMBER OF ITERATIONS NEEDED TO

“GUARANTEE” AN OPTIMAL SOLUTION (WORST CASE), AND

TIME NEEDED TO OBTAIN OPTIMAL SOLUTION

Fig. 4. Torques for joint 1 and 2 for the four different approaches presented.

B. Trajectory Speed

The same algorithms were tested for trajectory following. The
manipulator was to follow the path given in Fig. 3 with a con-
stant speed of 1 m/s. The torques of joints 1 and 2 for each case is
shown in Fig. 4 together with the torque limits of each joint. We
can see that all the approaches improve performance substan-
tially. The approach that only adds constraints on the direction
of the axis performs very well and is very easy to implement.
For large allowed orientation errors of the axis, the axis cone
will reduce the orientation error not only of the axis but also
the axis. This may be considered a side-effect of this cone con-
straint as the main motivation behind this restriction is to change
the direction of the axis and not the axis. This side-effect is
not present for the last approach which determines the direction
of the axis by restricting the rotation around the end-effector

axis. This approach will thus perform better in some cases as
the orientation error of the axis, which is our main concern,
is not reduced. This approach does, however, have a numerical
singularity when approaches zero. This must be handled in
the implementation.

Table II shows the maximum speed for which the manipulator
can follow the path for each algorithm. The speed increases for
all the approaches presented. Table II also shows the maximum
orientation error of the axis in each case. The maximum al-
lowed orientation error is set to 20 for all approaches. We see
that the maximum orientation error when both the and axes
are restricted by a cone is lower than for the two other cases.
This is because, as described above, the restriction on the axis
cone will also affect direction of the axis. As the direction

TABLE II
THE MAXIMUM SPEED THE MANIPULATOR CAN FOLLOW THE

PATH FOR THE FOUR DIFFERENT APPROACHES AND

THE CORRESPONDING ORIENTATION ERRORS

of the axis is our main tool to improve performance, this ap-
proach does not perform as well as the other two when large
orientation errors are allowed.

VIII. CONCLUSION

In this paper, we have shown how to transform a constraint
on a continuous set of orientations into a convex constraint. By
representing the constraints as LMIs or barrier functions the op-
timal solution for a given cost function can be found in real time
at every time step. For spray paint applications this allows us
to exploit the fact that a small orientation error can be utilized
to increase the velocity of the paint gun during turn, guaran-
teeing uniform paint coating and substantially decreasing the
time needed to paint a surface.

APPENDIX

The quaternion volume is given by (22), i.e.,

(109)

By substituting (II) into (III), (III) becomes

(110)

and is positive by definition. and
are found by dividing (II) by (III) and (IV) by (I)

(111)

We write

(112)

so that , , and are given by (36)–(38).
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