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This paper addresses the boundedness property of the in-
ertia matrix and the skew-symmetric property of the Coriolis
matrix for vehicle-manipulator systems. These propertiesare
widely used in control theory and Lyapunov-based stability
proofs and thus important to identify. The skew-symmetric
property does not depend on the system at hand, but on the
parameterisation of the Coriolis matrix, which is not unique.
It is the authors’ experience that many researchers take this
assumption for granted without taking into account that sev-
eral parameterisations exist. In fact, most researchers re-
fer to references that do not show this property for vehicle-
manipulator systems, but for other systems such as single
rigid bodies or fixed-base manipulators. As a result, the oth-
erwise rigorous stability proofs fall apart. In this paper we
list some relevant references and give the correct proofs for
some commonly used parameterisations for future reference.

Depending on the choice of state variables, the bound-
edness of the inertia matrix will not necessarily hold. We
show that deriving the dynamics in terms of quasi-velocities
leads to an inertia matrix that is bounded in its variables.
To the authors’ best knowledge we derive for the first time
the dynamic equations of vehicle-manipulator systems with
non-Euclidean joints for which both properties are true.

1 Introduction
This paper is motivated by a general concern that some

frequently used properties of the inertia and Coriolis matri-
ces for vehicle-manipulator systems are assumed true based
on the proofs for other systems. We show that the proofs
of these properties for fixed-base robot manipulators or sin-
gle rigid bodies cannot be generalised to vehicle-manipulator
systems directly. In fact, we show that the most commonly
used equations for vehicle-manipulator systems do not pos-

sess both the boundedness and skew-symmetric properties.
There is thus a need to clarify to what extent these proper-
ties are true and find rigorous mathematical representations
of these systems for use in simulations and controller de-
sign. To this end we present a reformulation of the dynamic
equations for vehicle-manipulator systems for which both
the boundedness and the skew-symmetric properties are true.

Lyapunov based controllers are based on several as-
sumptions that make the controller design both more conve-
nient and physically meaningful. Unfortunately, these prop-
erties are almost universally taken for granted. As these as-
sumptions are not always true, the stability proofs fall apart.

The first property is concerned with the boundedness of
the inertia matrixM, i.e. the existence of lower and upper
bounds on its singular values. For a given robotic manip-
ulator there may exist one mathematical representation for
which the inertia matrix is bounded and another for which it
is not. For the most common mathematical representation of
vehicle-manipulator systems this property is not true.

The second problem that we are concerned with is to
find a parameterisation of the Coriolis matrixC so that the
matrix Ṁ−2C is skew-symmetric. Such a parameterisation
is easy to find for fixed-base robots or for single rigid bodies,
but not always for vehicle-manipulator systems. Particularly
we find that such a parameterisation is rather hard to find, es-
pecially together with the boundedness property. The skew-
symmetric property of the Coriolis matrix is in most cases
assumed true without any further proof. In the authors’ view,
this is a strong weakness because this property depends on
how we choose to represent the Coriolis matrix. It is thus not
sufficient to refer to an arbitrary proof of skew-symmetry:
one must refer to a proof for the specific parameterisation
of the Coriolis matrix chosen. Most papers on the topic of



vehicle-manipulator systems refer to Antonelli [1], Fossen
and Fjellstad [2], Canudas de Wit et al. [3] or Schjølberg
and Fossen [4] for this proof. However, none of these ref-
erences actually show the proof. Also references taken from
the fixed-base robotics literature such as Murray et al. [5] and
Sciavicco and Siciliano [6] are commonly and wrongly used
for vehicle-manipulator systems.

The proof can be found in Schjølberg [7], but only for
systems where the boundedness property does not hold. We
present this proof, and correct some mistakes made, so that
this proof is correctly presented for future reference. Forthe
formulation presented in Egeland and Pettersen [8] the dy-
namics possesses the skew-symmetric property and, based
on the proof in Schjølberg and Fossen [4], we show that this
property can be shown also when the dynamics are written
in terms of global state variables.

2 Properties of the dynamics
In this section we list some important properties of dy-

namical systems in matrix form that play important roles in
system analysis as well as controller design. Assume for now
that we can write the dynamic equations of a mechanical sys-
tem in the form

M(q)q̈+C(q, q̇)q̇= τ (1)

whereq is the state of the system,M(q) is the inertia matrix,
andC(q, q̇) is the Coriolis matrix. The following properties
can be associated with the inertia and Coriolis matrices [9]:

Property 1. (The boundedness property) The inertia ma-
trix M(q) is uniformly bounded in q, i.e. there exist constants
d1 and d2, such that0 < d1 ≤ ||M(q)|| ≤ d2 < ∞, ∀q ∈ Rn

where||·|| is the induced 2-norm for matrices (see [10]), i.e.
a max-bound on the maximum singular value and a min-
bound on the minimum singular value of the matrix.

Property 2. (The skew-symmetric property) The matrix
(Ṁ(q)−2C(q, q̇)) is skew-symmetric.

Property 1 is true when there are no singularities present.
Thus, if the Euler angles are used to represent the atti-
tude of the vehicle, as in Fossen [11], Schjølberg [7] and
Børhaug [9], this is not satisfied. The existence of the bound-
ariesd1 and d2 is the basis of gain controller design and
global Lyapunov stability, and is used in several manipula-
tor control laws such as robust control [6,10].

Property 2 is true for a certain parameterisation of the
Coriolis matrix. Such a representation is well known for
robotic manipulators on a fixed base [5, 6] and for vehicles
with no manipulator attached [11]. This property is fre-
quently used to cancel the non-linearities of the Coriolis ma-
trix from Lyapunov functions.

3 Vehicle-Manipulator Dynamics
In this section we review some commonly used ap-

proaches for modelling vehicle-manipulator systems.

3.1 The Model of Schjølberg [7]
In this section we present the dynamic equations as they

are normally presented in the underwater robotics literature.
The details can be found in Schjølberg [7]. The dynamics
can be written as

ξ̇ = J(ξ)ζ, (2)

M(q)ζ̇+C(q,ζ)ζ = τ (3)

where ξ =
[
ηT qT

]
T

denotes the position,ζ =
[
νT q̇T

]
T

the velocity,M(q) ∈ R(6+n)×(6+n) is the inertia matrix, and
C(q,ζ) ∈ R(6+n)×(6+n) is the Coriolis matrix. The velocity
transformation matrix is given by

J(ξ) =




R0b(Θ) 0 0
0 TΘ(Θ) 0
0 0 I


 ∈ R(6+n)×(6+n), (4)

where R0b(Θ) ∈ SO(3) is the rotation matrix andΘ =[
φ θ ψ

]
T

the Euler angles.TΘ(Θ) is given by (zyx-sequence)

TΘ(Θ) =




1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφ

cosθ
cosφ
cosθ


 . (5)

TΘ(Θ), and thus alsoJ(ξ), are not defined forθ =±π/2.
Let ν0

0i denote the linear and angular velocity of bodyi
represented in the inertial frame, andPi(q)∈R6×(6+n) be the
transformation matrix of linki, that gives the relationν0

0i =
Pi(q)ζ. The inertia matrix of the vehicle-manipulator system
can then be written as [8]

M(q) =
n

∑
i=b

PT

i (q)IiPi(q) (6)

whereIi ∈ R6×6 denotes the constant positive-definite diag-
onal inertia tensor of linki expressed inF i and we thus sum
from the baseb to the end of the chain, i.e., linkn. We note
that the inertia matrixM(q) depends only on the joint vari-
ablesq and is independent of the positionη of the vehicle.

The Coriolis matrix is given by [7]

C(q,ζ) =
n

∑
i=b

ṖT

i (q)IiPi(q)−PT

i (q)Wi(ζ)Pi(q) (7)

whereWi(ζ) is a skew-symmetric matrix [7]. We will use the
framework of Egeland and Pettersen [8] to find an expression
for Wi(ζ). This is shown in Section 3.2.

3.2 Multibody Dynamics in Terms of Quasi-Velocities
In this section we derive the dynamics of a robotic ma-

nipulator mounted on a free-floating base in terms of quasi-



velocities. The approach is based on Egeland and Pet-
tersen [8], but a few errors from this paper have been cor-
rected and we also provide some more details in the deriva-
tion. First, write the linear and angular velocitiesν0

0i of each
link i represented in the inertial frameF0 as

ν0
0i =

[
ν0

0i,v
ν0

0i,ω

]
=

∂ν0
0i

∂ζ
ζ. (8)

and the dynamics can be written as [8]

6

∑
i=b

{
∂ν0

0i

∂ζ

T
[

d
dt

∂K i

∂ν0
0i

T

+

[
ν̂0

0i,ω 0
ν̂0

0i,v ν̂0
0i,ω

]
∂K i

∂ν0
0i

T
]}

= τ. (9)

We now derive the dynamics in matrix form following
the approach in Egeland and Pettersen [8], but in addition we
show the explicit expressions for the matrices which were not
shown in Egeland and Pettersen [8] and we correct an error
is the expression of the Coriolis matrix. First write

d
dt

∂K i

∂ν0
0i

=
d
dt
(Iiν0

0i) = Ii ν̇0
0i = Ii

(
∂ν0

0i

∂ζ
ζ̇+

˙∂ν0
0i

∂ζ
ζ

)
, (10)

and

[
ν̂0

0i,ω 0
ν̂0

0i,v ν̂0
0i,ω

]


∂K i
∂ν0

0i,v
∂K i

∂ν0
0i,ω


=



− ∂K i

∂ν0
0i,v

×ν0
0i,ω 0

− ∂K i
∂ν0

0i,v
×ν0

0i,v − ∂K i
∂ν0

0i,ω
×ν0

0i,ω




=−




0 ∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,ω



[

ν0
0i,v

ν0
0i,ω

]
. (11)

Substituting (10) and (11) into (9) we get

6

∑
i=b

{
∂ν0

0i

∂ζ

T
[

d
dt

∂K i

∂ν0
0i

T

+

[
ν̂0

0i,ω 0
ν̂0

0i,v ν̂0
0i,ω

]
∂K i

∂ν0
0i

T
]}

= τ

6

∑
i=b

{
∂ν0

0i

∂ζ

T

Ii
∂ν0

0i

∂ζ
ζ̇+

∂ν0
0i

∂ζ

T

Ii
˙∂ν0
0i

∂ζ
ζ

−
∂ν0

0i

∂ζ

T




0 ∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,ω



[

ν0
0i,v

ν0
0i,ω

]




= τ

6

∑
i=b

[
∂ν0

0i

∂ζ

T

Ii
∂ν0

0i

∂ζ

]
ζ̇

+
6

∑
i=b




∂ν0
0i

∂ζ

T

Ii
˙∂ν0
0i

∂ζ
−

∂ν0
0i

∂ζ

T




0 ∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,ω




∂ν0
0i

∂ζ


ζ = τ

(12)

where we have used the relation in (8). The inertia matrix is

then given by (6) withPi(q) =
∂ν0

0i
∂ζ and the Coriolis matrix is

given by (7) with

Wi(ν0
0i) =




0 ∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,v

∂̂K i
∂ν0

0i,ω


 . (13)

3.3 General Multibody Dynamics
In this section we extend the formulation from the previ-

ous section to include more general structures and also mech-
anisms where the position of the vehicle needs to be included
in the dynamics. The approach is based on Duindam and
Stramigioli [12] and From et al. [13] where the dynamics of
vehicle-manipulator systems are derived and the bounded-
ness property holds.

Using standard notation [5], we can describe the pose of
each frameF i relative toF0 as a homogeneous transforma-
tion matrix g0i ∈ SE(3). This pose can also be described
using the vector of joint coordinatesq as g0i = g0bgbi =
g0bgbi(q). The base poseg0b and the joint positionsq thus
fully determine the configuration state of the robot. In a sim-
ilar way, the spatial velocity of each link can be expressed
using twists [5]:

ν0
0i =

[
ν0

0i,v
ν0

0i,ω

]
= ν0

0b+ν0
bi = Adg0b

(
νb

0b+Ji(q)q̇
)

(14)

whereν0
0i,v andν0

0i,ω are the linear and angular velocities, re-

spectively, of linki relative to the inertial frame,Ji(q)∈R6×n

is the geometric Jacobian of linki relative toFb and the ad-
joint is defined as Adg :=

[R p̂R
0 R

]
∈ R6×6. The velocity state

is thus fully determined given the twistνb
0b of the base and

the joint velocities ˙q. This illustrates how the kinematics of
the system can be naturally described in terms of the (global)
state variablesQ= {g0b,q} andv= {νb

0b, q̇}.
Given a mechanism with coordinates formulated in

this generalised form, we can write its kinetic energy as
K (Q,v) = 1

2vTM(Q)v with M(Q) the inertia matrix in co-
ordinatesQ. The dynamics of this system then satisfies

M(Q)v̇+C(Q,v)v= τ (15)

with τ the vector of gravitational forces, friction, and other
external forces (collocated withv).

From expression (14) for the twist of each link in the
mechanism, we can derive an expression for the total kinetic
energy. The kinetic energyK i of link i then follows as

K i =
1
2

(
νb

0b+Ji(q)q̇
)
T

AdT

gib
Ii Adgib

(
νb

0b+Ji(q)q̇
)

=
1
2

[(
νb

0b

)T
q̇T
]

Mi(q)

[
νb

0b
q̇

]
(16)



with

Mi(q) :=

[
AdT

gib
Ii Adgib AdT

gib
Ii Adgib Ji

JTi AdT

gib
Ii Adgib JTi AdT

gib
Ii Adgib Ji

]
(17)

whereJi(q) is the geometric Jacobian of linki. The total
kinetic energy of the mechanism is given by the sum of the
kinetic energies of the mechanism links and the non-inertial
base, that is,

K (q,v) =
1
2

vT
([

Ib 0
0 0

]
+

n

∑
i=1

Mi(q)

)

︸ ︷︷ ︸
inertia matrixM(q)

v (18)

with M(q) the inertia matrix of the total system.
We see that from (17) we can reformulate the expression

in Egeland and Pettersen [8] for the inertia matrix in (6) with

Pi(q) =
[
Adgib AdgibJi

]
∈ R6×(6+n). (19)

Similarly the Coriolis matrix can be found by (7) where
Wi is given by (13) andPi by (19). C(q,ζ) is thus also well-
defined.

3.4 The Boundedness Property
The dynamics as presented in Schjølberg [7] and Section

3.1 do not satisfy Property 1. Due to the singularity there ex-
ist isolated points in the configuration space where the inertia
matrix is singular. Even though this is the most common for-
mulation of vehicle-manipulator systems in the literaturethis
fact is normally not addressed in Lyapunov stability proofs.
The formulation in Egeland and Pettersen [8] and Section
3.2 is globally valid and the inertia matrix is bounded in the
whole configuration space. For systems where the config-
uration of non-Euclidean joints needs to be included in the
dynamics, there does not seem to be a straight forward way
to include the transformation between the local and global
state variables without introducing singularities to the for-
mulation.

This is, however, possible with the formulation pre-
sented in Section 3.3 where the inertia matrix is bounded for
the whole configuration space also for non-Eucliden joints
with a Lie group topology, such asSO(3) andSE(3). These
formulations allow us to use the matrix representationg0i ∈
SE(3) of the configuration space and the structure of the con-
figuration manifold is thus maintained.

3.5 The Skew-Symmetric Property
Schjølberg [7] shows that for the formulation presented

in Section 3.1 the skew-symmetric property holds in body-
fixed coordinates. Based on this proof we can show that this
property also holds for the approaches presented in Sections

3.2 and 3.3. First, for the Coriolis matrix given in (7) we can
write

(Ṁ−2C) =
d
dt

(
n

∑
i=b

PT

i (q)IiPi(q)

)

−2
n

∑
i=b

(
PT

i (q)IiṖi(q)−PT

i (q)WiPi(q)
)

=2
n

∑
i=b

PT

i (q)WiPi(q) (20)

and (Ṁ − 2C) is skew-symmetric, for skew-symmetricWi .
Thus, the formulations given in Sections 3.1, 3.2 and 3.3 all
satisfy the skew-symmetric property.

4 Conclusions
The boundedness property of the inertia matrix and the

skew-symmetric property of the Coriolis matrix both depend
on the choice of mathematical representation. The proofs of
such properties thus need to be based on the particular rep-
resentation chosen. In other words, a reference to a proof
for a different choice of state variables or a different pa-
rameterisation of the matrices is not valid. In this paper we
have shown that several widely used formulations of vehicle-
manipulator dynamics do not possess these properties. We
have also shown that some of the most commonly used refer-
ences used for example in stability proofs of Lyapunov-based
control laws in fact do not show these properties. As a result,
many of the control laws presented in the literature are not
valid.

For several formulations of vehicle-manipulator dy-
namics commonly found in the literature we have studied
whether the boundedness and skew-symmetric properties
hold. When we find the dynamic equations to satisfy these
properties we have also included the proofs for future refer-
ence. These proofs have not previously been presented cor-
rectly for vehicle-manipulator systems. Finally we propose a
modified version of the dynamic equations that satisfy both
properties for general multibody systems.
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