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This paper addresses the boundedness property of the sess both the boundedness and skew-symmetric properties.
ertia matrix and the skew-symmetric property of the CasioliThere is thus a need to clarify to what extent these proper-
matrix for vehicle-manipulator systems. These propedies ties are true and find rigorous mathematical representation
widely used in control theory and Lyapunov-based stabiliyf these systems for use in simulations and controller de-
proofs and thus important to identify. The skew-symmetrsign. To this end we present a reformulation of the dynamic
property does not depend on the system at hand, but on #rgiations for vehicle-manipulator systems for which both
parameterisation of the Coriolis matrix, which is not ungqu the boundedness and the skew-symmetric properties are true
It is the guthors’ experien_ce that many researchers take thi Lyapunov based controllers are based on several as-
assumption for granted without taking into account that Se¥mptions that make the controller design both more conve-
eral parameterisations exist. In fact_, most researcher; "Bient and physically meaningful. Unfortunately, theseppro

fer to references that do not show this property for vehiClgyties are almost universally taken for granted. As these as
manipulator systems, but for other systems such as singleyhtions are not always true, the stability proofs fallrapa
rigid bodies or fixed-base manipulators. As a result, the oth ] ] ]
erwise rigorous stability proofs fall apart. In this papeew | n€ first property is concerned with the boundedness of
list some relevant references and give the correct proafs fi'€ inertia matrixv, i.e. the existence of lower and upper

some commonly used parameterisations for future referen@UNds on its singular values. For a given robotic manip-
Depending on the choice of state variables, the bounHlator there may exist one mathematical representation for

edness of the inertia matrix will not necessarilg/ hold. wwhich the inertia matrix is bounded and another for which it

ds not. For the most common mathematical representation of

show that deriving the dynamics in terms of quasi-velogiti - ) ¢ ’
ehicle-manipulator systems this property is not true.

leads to an inertia matrix that is bounded in its variables"’
To the authors’ best knowledge we derive for the first time The second problem that we are concerned with is to
the dynamic equations of vehicle-manipulator systems wiihd a parameterisation of the Coriolis matfixso that the
non-Euclidean joints for which both properties are true.  matrix M — 2C is skew-symmetric. Such a parameterisation

is easy to find for fixed-base robots or for single rigid bodies

but not always for vehicle-manipulator systems. Partidyla
1 Introduction we find that such a parameterisation is rather hard to find, es-

This paper is motivated by a general concern that sorpecially together with the boundedness property. The skew-

frequently used properties of the inertia and Coriolis matrsymmetric property of the Coriolis matrix is in most cases
ces for vehicle-manipulator systems are assumed true baasdumed true without any further proof. In the authors’ yiew
on the proofs for other systems. We show that the prodtfsis is a strong weakness because this property depends on
of these properties for fixed-base robot manipulators or sinow we choose to represent the Coriolis matrix. It is thus not
gle rigid bodies cannot be generalised to vehicle-manipula sufficient to refer to an arbitrary proof of skew-symmetry:
systems directly. In fact, we show that the most commonltyne must refer to a proof for the specific parameterisation
used equations for vehicle-manipulator systems do not pag-the Coriolis matrix chosen. Most papers on the topic of



vehicle-manipulator systems refer to Antonelli [1], Fasse3.1 The Model of Schjaglberg [7]

and Fjellstad [2], Canudas de Wit et al. [3] or Schjglberg In this section we present the dynamic equations as they
and Fossen [4] for this proof. However, none of these refre normally presented in the underwater robotics liteeatu
erences actually show the proof. Also references taken frorhe details can be found in Schjglberg [7]. The dynamics
the fixed-base robotics literature such as Murray et al.iifl] acan be written as

Sciavicco and Siciliano [6] are commonly and wrongly used

for vehicle-manipulator systems. E — J(E)C @)
The proof can be found in Schjglberg [7], but only for : '
systems where the boundedness property does not hold. We M(a)l+C(q,Q){ =T 3)

present this proof, and correct some mistakes made, so that

this proof is correctly presented for future reference. ther T 7T - T AT1T

formulation presented in Egeland and Pettersen [8] the here & . [ﬂ g } dantes th? p03|.t|onZ._ [V _q }
velocity,M(q) € R(6+W*(6+1) js the inertia matrix, and

namics possesses the skew-symmetric property and, ba . o . .
on the proof in Schjglberg and Fossen [4], we show that th 9.0) € R(EX(®1 is the Coriolis matrix. The velocity

property can be shown also when the dynamics are Writtgﬁmsformatlon matrix is given by
in terms of global state variables.

R(©) 0 0
JE=| 0 To(@) 0| cREM*EM (4
2 Properties of the dynamics 0 o |

In this section we list some important properties of dy-
namical systems in matrix form that play important roles iu/here Rop
system analysis as well as controller design. Assume for n
that we can write the dynamic equations of a mechanical s
tem in the form

vh (©) € SQ73) is the rotation matrix andd =
;Iép_e LIJ]T the Euler anglesTe(©) is given by gyxsequence)

1 singtand cosptand
M(a)d+C(a,4)q =T (1) To(@)= |0 coxp —sing |. (5)
0 sin@ Ccosp
cosB cosB

whereq is the state of the systerkl(q) is the inertia matrix,
andC(q,q) is the Coriolis matrix. The following properties To (@), and thus alsd(&), are not defined fod = +11/2.
can be associated with the inertia and Coriolis matrices [9]  Let V8i denote the linear and angular velocity of bddy

Property 1. (The boundedness property) The inertia ma-SPresented inthe iqertia:_frl?mﬁ , aRda) eff 6X(6|+n-) be the
trix M (q) is uniformly bounded in q, i.e. there exist constanttaranSformat',On matrlx O_f InK, that gives the re ationg =

dh and &, such thatd < dy < |[M(q)|| < d» < ©,Vq € R" P (g)¢. The inertia matrix of the vehicle-manipulator system
where||-|| is the induced 2-norm for matrices (see [10]), i.eC2n then be written as [8]
a max-bound on the maximum singular value and a min-

bound on the minimum singular value of the matrix. 0
J M(@ =3 RT @R (6)
=

Property 2. (The skew-symmetric property) The matrix
(M(q) — 2C(q,q)) is skew-symmetric.

. . . wherel; € R6*6 denotes the constant positive-definite diag-
Property 1 is true when there are no singularities present. _; . . . .

. ral inertia tensor of link expressed irF; and we thus sum
Thus, if the Euler angles are used to represent the al

. . . Fom the basé to the end of the chain, i.e., link We note
tude of the vehicle, as in Fossen [11], Schjglberg [7] aNfat the inertia matriM(q) depends only on the joint vari-

Bgzrhaug [3], th'§ Is not satl_sfled. The existence of th_e beun blesqg and is independent of the positigrof the vehicle.
ariesd; andd, is the basis of gain controller design an - L
The Coriolis matrix is given by [7]

global Lyapunov stability, and is used in several manipula-
tor control laws such as robust control [6, 10]. .
Property 2 is true for a certain parameterisation of the BT _pT

Coriolis matrix. Such a representation is well known for C@d)= i;)P' (@R (@ -R(@QW@R@ )
robotic manipulators on a fixed base [5, 6] and for vehicles

with no manipulator attached [11]. This property is fre
guently used to cancel the non-linearities of the Coriolis m
trix from Lyapunov functions.

whereW () is a skew-symmetric matrix [7]. We will use the
framework of Egeland and Pettersen [8] to find an expression
for Wi({). This is shown in Section 3.2.

3 Vehicle-Manipulator Dynamics 3.2 Multibody Dynamics in Terms of Quasi-Velocities
In this section we review some commonly used ap- In this section we derive the dynamics of a robotic ma-
proaches for modelling vehicle-manipulator systems. nipulator mounted on a free-floating base in terms of quasi-



velocities.

The approach is based on Egeland and Petiere we have used the relation in (8). The inertia matrix is

tersen [8], but a few errors from this paper have been cqfien given by (6) witfR, (q) = %6 and the Coriolis matrix is

rected and we also provide some more details in the deri

tion. First, write the linear and angular velocitie of each
link i represented in the inertial frary as

(8)

vl vl

Oi,w.

and the dynamics can be written as [8]

o [ovg T 0% "I | _
Zb{az a]}_ ©

dox ' [Ogi,w 0 }
dt ovg, \78i,v Ogi,w

We now derive the dynamics in matrix form following
the approach in Egeland and Pettersen [8], but in addition we
show the explicit expressions for the matrices which wete ng

. ac
shown in Egeland and Pettersen [8] and we correct an erfor

is the expression of the Coriolis matrix. First write

doagxi  d, o .o . Al
— = (V) =g =1 | =24+ =3 10
dta\)gi dt(l O|) 1VOi | a( Z+ az Z ’ ( )
and

. 0% _ 0% 0
|: %i,w (? :| a(\;gi.v _ aggi.v XVOI’w 2 0
<0 50 V= o 0 . 0
VOl,v VOl,oo av(é:w _ﬁ X VOi,v _ﬁ X VOi.w

0 9% 0

B I % 2 BT
0K 0% vgm
avgiﬁv avgiﬁm

Substituting (10) and (11) into (9) we get

o fovg' dox’ [Ogi,oo 0 }

iZ{, o dt ani Ogi,v Ogi.w
T T L

ovy  avS . avs Ilavgi Z

6 .
Eb{ a7 gt e

T
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vy 1}

0 2%

avgi ! NGy Vgi v
_ 2700 . ; a, 1

aC 0% _0%; Vi

aVgi‘v aVgi‘m '

T
2@ "w

. 6 | av§ I.aLgi_avgi ag, | V5 (-1
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- a\’8i,v avgiw

\§ven by (7) with

=

0 9%
Wl = | — Yoy (13)
Oi 0% %,
ovgi.v ovgi.m

3.3 General Multibody Dynamics

In this section we extend the formulation from the previ-
ous section to include more general structures and also-mech
anisms where the position of the vehicle needs to be included
in the dynamics. The approach is based on Duindam and
Stramigioli [12] and From et al. [13] where the dynamics of
vehicle-manipulator systems are derived and the bounded-
ness property holds.
Using standard notation [5], we can describe the pose of
h framer; relative to 7o as a homogeneous transforma-
Ion matrix goi € SE(3). This pose can also be described
using the vector of joint coordinates as goi = QobObi =
OobOhi(4). The base posgy, and the joint positions| thus
fully determine the configuration state of the robot. In a-sim
ilar way, the spatial velocity of each link can be expressed
using twists [5]:

vo )
Vo = {Vg"v} = Vg + Vi = Adgy, (ng +J (Q)Q) (14)

0i, 0

wherev§ , andvy;  are the linear and angular velocities, re-
spectively, of linki relative to the inertial frameJ; (q) € R®*"

is the geometric Jacobian of linkelative to#, and the ad-
joint is defined as Agl:= [} %] € R®*6. The velocity state

is thus fully determined given the twisg}, of the base and
the joint velocitiesq. This illustrates how the kinematics of
the system can be naturally described in terms of the (globall
state variable® = {gop,q} andv = {v5,,q}.

Given a mechanism with coordinates formulated in
this generalised form, we can write its kinetic energy as
% (Q,v) = 2vTM(Q)v with M(Q) the inertia matrix in co-
ordinatesQ. The dynamics of this system then satisfies

M(QV+C(Q,vIv=T (15)

with T the vector of gravitational forces, friction, and other
external forces (collocated with).

From expression (14) for the twist of each link in the
mechanism, we can derive an expression for the total kinetic
energy. The kinetic energy; of link i then follows as

(v8o+3(c)a) " Ad, 1iAdg, (V8 + 3 (@)a)

[(V&))T tﬂ Mi(q) {ngb}

X =

NI NI

(16)



with 3.2 and 3.3. First, for the Coriolis matrix given in (7) we can

write
Ad! 1iAdg, Adl I;Adg, J
M@= | 3T adt | Ay, aTAT LAdyg| D) d/d
i gip ' 1dib Vi Gip |1 Gip ¥ ’ _ T
M—-2C) =~ (Zf’i (q)IiP.(q)>
i=
where Ji(q) is the geometric Jacobian of link The total LT T
kinetic energy of the mechanism is given by the sum of the _zizb(Pi CILICIR (q)WEP.(q))
kinetic energies of the mechanism links and the non-irlertia n
base, that is, =2 EbpiT(q)v\/;H(q) (20)
i=

1 Ip O d .
X (9,v) = QVT ([8 0] +'Z‘Mi(Q)> v (18) and(M —2C) is skew-symmetric, for skew-symmetit.
= Thus, the formulations given in Sections 3.1, 3.2 and 3.3 all
inertia matrixM(q) satisfy the skew-symmetric property.

with M(q) the inertia matrix of the total system. .
We see that from (17) we can reformulate the ex ressig'n Conclusions
P The boundedness property of the inertia matrix and the

in Egeland and Pettersen [8] for the inertia matrix in wmltskew—symmetric oroperty of the Coriolis matrix both depend
on the choice of mathematical representation. The proofs of
P(q) = [Adg, AdgJ] € RE* &+, (19) such properties thus need to be based on the particular rep-
resentation chosen. In other words, a reference to a proof
o o ) for a different choice of state variables or a different pa-
_ Similarly the Coriolis matrix can be found by (7) whereameterisation of the matrices is not valid. In this paper we
W is given by (13) and? by (19). C(q,) is thus also well- haye shown that several widely used formulations of vehicle
defined. manipulator dynamics do not possess these properties. We
have also shown that some of the most commonly used refer-
3.4 The Boundedness Property ences used f_or example in stability proofs of Lyapunov-base
Sﬂntrol laws in fact do not show these properties. As a result

Th nami resented in Schjglberg [7] an i : .
e dynamics as presented in Schiglberg [7] and SeCt;pany of the control laws presented in the literature are not

3.1 do not satisfy Property 1. Due to the singularity there eX .
istisolated points in the configuration space where theimerva“d' . . .

matrix is singular. Even though this is the most common for- I_:or several formulatpns of.veh|cle—man|pulator dy-
mulation of vehicle-manipulator systems in the literattinie hamics commonly found in the literature we hgve studle.d
fact is normally not addressed in Lyapunov stability proof hether the boundedness and skew-symmetric properties

The formulation in Egeland and Pettersen [8] and Secti ld. When we find the _dynamic equations to satisfy these
3.2 is globally valid and the inertia matrix is bounded in thgroperties we have also included the proofs for future fefer

whole configuration space. For systems where the com;%—me' These proofs have not previously been presented cor-

uration of non-Euclidean joints needs to be included in t ctly'forvehu;le—mampulator systems. .Flnally We propas
dynamics, there does not seem to be a straight forward dified version of the dynamic equations that satisfy both

to include the transformation between the local and globBfoPerties for general multibody systems.
state variables without introducing singularities to tloe- f
mulation.
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