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Abstract: In this paper, it is studied how a certain class of physical constraints can be
represented by a continuous set of orientations and how this representation is especially suitable
for representing the constraints imposed by revolute and spherical joints. Further, it is shown
how this can be used to represent the freedom of passive joints. The main contribution of the
paper is that it is recognised that in cooperative manipulation, the representation developed
can be used to show how the introduction of passive joints at the end of a kinematic chain gives
the same advantages as functional redundancy for single manipulators. This is used to improve
manipulability and performance. Similar to functional redundancy the freedom of the passive
joint is task dependent and the type of the passive joint must be chosen with the task in mind.
Due to this observation, this paper proposes to consider the last passive joint a part of the tool.
The manipulator can then be a standard industrial manipulator with functional redundancy in
the specifications of the orientation of the last joint. It is shown that by introducing a passive
joint at the end of the manipulator chain the dynamic load carrying capacity is maintained
or increased while each manipulator is given a freedom equal to functional redundancy. The
workspace of the manipulators is also increased.

1. INTRODUCTION

Passive joints are joints without actuation, so the joint
position cannot be controlled directly through the actuator
torque of the respective joint. For conventional manipula-
tors these joints are impossible or very hard to control. For
cooperative manipulators rigidly connected to a load the
positions of the passive joints can be controlled indirectly
due to the constraints imposed by the closed chain.

This paper proposes an approach where the passive joint
is looked upon as a freedom in the orientation of the link
previous to this joint. The joint positions that satisfy the
physical constraints imposed by the joint are represented
as a continuous set of allowed orientations and can hence
be treated similar to functional redundancy in the end-
effector specifications. Then, as a part of the path planning
algorithm, the optimal position of the passive joint is found
from the set of allowed positions of the joint. The optimal
joint position is then subject to some optimisation criteria,
such as to improve performance, collision avoidance or to
improve the workspace of the manipulator.

Functional redundancy is introduced to the system when
the dimension of the task space is lower than the dimension
of the operational space. For applications such as painting,
welding and high pressure steam cleaning, the orientation
about the tool axis does not affect the performance and
this can be set freely. When the last joint is set passive,
this freedom can be utilised in the same way to improve
performance. It is shown that for two or more manipulators
handling an object, this freedom can be used to improve
performance.

There are some examples in literature where passive joints
are used at the end of a manipulator chain. In Yeo et al.
[1999], a passive joint was introduced at the end of a
non-holonomic manipulator to increase the mobility of
two cooperating sawing-robots. Another example is the
Stewart platform, where only the prismatic joints are
actuated and the spherical joints are passive. To the best of
the authors’ knowledge, the introduction of passive joints
at the end of a conventional (industrial) manipulator has
not earlier been treated as functional redundancy.

There are several advantages in introducing passive joints
at the end of the manipulator chain:

• The weight and size of the manipulator is reduced.
This is especially advantageous since the weight is
reduced at the end of the manipulator chain.

• If the freedom of the passive joint is treated as func-
tional redundancy, an optimisation algorithm similar
to the one introduced in From and Gravdahl [2007b]
can be implemented for collision avoidance, increase
the workspace or other optimisation criteria. This is
possible due to the analytical representation of the
passive joint, given by the quaternion volume in From
and Gravdahl [2007a].

• Because the passive joint is at the end of the manip-
ulator chain it can be considered a part of the tool
so that the rest of the manipulator can be a standard
industrial manipulator.

• By considering the passive joint a part of the tool, the
axis/axes of the passive joint can be tool dependent
and then also task dependent.



• The understanding of passive joints is also important
when it comes to understanding and handling free-
swinging joint faults (FSJF), see Tinós et al. [2006].

2. REPRESENTING ROTATIONS

Most of the fundamental principles of rotation were pre-
sented in two papers by Leonhard Euler in 1775 (Alpern
et al. [1993]). The first paper shows that any rotation can
be accomplished by a sequence of three rotations about the
coordinate axes. In the second paper, Euler states that any
orientation can be represented by a rotation of some angle
φ about some fixed axis n.

2.1 The Unit Quaternion

The unit quaternion representation closely relates to the
results presented in Euler’s second paper. Any positive
rotation φ about a fixed unit vector n can be represented
by the four-tuple (Kuipers [2002])

Q =

[

q0
q

]

, (1)

where q0 ∈ R is known as the scalar part and q ∈ R
3 as

the vector part. Q(φ,n) is written in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n, (2)

Hence, Q and −Q represent the same rotation. This is
referred to as the dual covering. The quaternion identity

is given by QI = [1 0 0 0]
T
. A multiplication of two

quaternions is given by a quaternion product and is written
in vector algebra notations as

P ∗Q =

[

p0q0 − p · q
p0q + q0p + p × q

]

. (3)

Let P = [p0 p1 p2 p3]
T

and Q = [q0 q1 q2 q3]
T
. Then (3)

is written as

P ∗Q =







p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1






. (4)

A pure quaternion is a quaternion with zero scalar part.

Any vector, v̄ = [x y z]
T

can be represented by a pure

quaternion v =
[

0 v̄
T
]T

. The conjugate of a quaternion is

defined as Q∗ = [q0 −q1 −q2 −q3]
T
.

2.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion
v1. This vector is rotated φ radians around the axis n by

v2 = Q ∗ v1 ∗Q
∗. (5)

Every vector v̄ ∈ R
3 can be represented by a pure

quaternion. The resulting vector, v̄2, is then of the same
length as v̄1 if and only if Q is a unit quaternion. The
quaternion representation also leads to a useful formula
for finding the shortest rotation from one orientation to
another. Let P and Q be two orientations. Then, by taking

E = P ∗ ∗Q, (6)

E will rotate P into Q by the shortest rotation.

Note that equation (6) rotates one frame into another
frame. By a frame it is meant a coordinate system in
R

3 using Cartesian coordinates. One frame with respect
to another frame represents three degrees of freedom and
is referred to as an orientation. Equation (5) rotates one
vector into another vector and has two degrees of freedom
(e.g. longitude and latitude, see Ahuactzin and Gupka
[1999]). A unit vector with respect to a unit reference
vector is referred to as a direction. Henceforth, when
referred to direction, this is the direction of the z-axis of
the body frame with respect to the z-axis of the reference
frame. This is the axis pointing out of the end-effector and
is referred to as the central axis.

3. QUATERNION VOLUMES

3.1 Representation of physical constraints

A joint is a physical constraint that restricts the position
and orientation of one link with respect to another. For
a revolute joint, this constraint can be represented by
a continuous set of orientations where each orientation
corresponds to one position of the joint.

In From and Gravdahl [2007a] functional redundancy
was represented by a set of allowed orientations of the
end effector, represented by the quaternion volume. The
restrictions of the end effector were hence given by some
performance criteria and the task to be performed, such
as the pointing task, orientation error, etc. In this paper
a similar approach is used to represent the freedom of one
link with respect to another due to a physical constraints.

A systematic approach on how to represent sets of ori-
entations, as presented in From and Gravdahl [2007a], is
given.

Definition 3.1. (Quaternion Volume). A quaternion vol-
ume, Q⊗, is defined as

Q⊗ , {Q(φ1, . . . , φn,n1, . . . ,nn) | φ1,min ≤ φ1 ≤ φ1,max

... (7)

φn,min ≤ φn ≤ φn,max}

for n ≥ 1 and where

Q(φ1, . . . , φn,n1, . . . ,nn) = Q(φ1,n1) ∗ · · · ∗Q(φn,nn).
(8)

The shape of the quaternion volume is given by the choice
of the axes ni and the size is given by the restriction on
φi. If the axes ni are chosen as the unitary axes, this will
simplify the expressions considerably and a wide range of
physical constraints can be represented in this way. As
will be clear in the next section, the quaternion volume
is also well suited to represent the freedom of joints. The
definition given above with ni chosen to be the unitary
axes can then be used to represent, among others, revolute,
spherical and universal joints.

3.2 Quaternion Volumes by Rotations Sequences

A revolute joint can be represented simply by an arbi-
trary rotation about one axis. To represent the freedom
of joints where the rotations are not restricted to one
axis only, a more general representation of the set of al-
lowed orientations can be given by rotation sequences, see



Kuipers [2002] and From and Gravdahl [2007a]. A rotation
sequence describes a rotation about one coordinate axis
followed by a rotation about another of the coordinate axes
in the rotated coordinate system. A general framework on
how to construct easily visualisable quaternion volumes
by rotation sequences is presented. The rotation sequence
starts with two subsequent rotations about two coordinate
axes, represented by the quaternion Qs. This defines the
direction of the z-axis. The last degree of freedom is added
by a rotation about the direction vector (central axis), here
the z-axis, by Qz. In equation (5), let Qz represent the
vector to be rotated and Qs the quaternion describing the
direction of this vector. Then the rotation sequence

V = Qs ∗Qz ∗Q
∗

s (9)

represents the direction of the z-axis for a given rotation
Qs given by the direction of the vector part of V and
the rotation about the z-axis given by the scalar part or
length of the vector part of V by ψ = 2arcsin(‖v̄‖) =
2 arccos(v0)sgn(ψ). Henceforth, V is called a visualising
quaternion. Note that V does not represent a rotation. It
is used as a tool to visualise rotations and as a help to
define an appropriate set of frames for different applica-
tions. The visualising quaternion and the corresponding
quaternion should be viewed upon as a pair (Q,V), where
the visualising quaternion V, gives an intuitive description
of a rotation of a frame by Q.

Let the vector part of the visualising quaternion be plotted
as a point in the xyz-sphere. Then the direction of the
z-axis, rotated by the corresponding quaternion is given
by the vector from the origin to this point, and the
rotation about the z-axis itself is given by the length
of this vector. Hence, a continuous set of quaternions (a
quaternion volume) is represented by a “cloud” in the xyz-
sphere describing the corresponding set of orientations.

The quaternion that rotates the reference frame into the
orientation described by equation (9) is then given by

Q = Qs ∗Qz. (10)

Finally, the quaternion volume is given by restricting the
allowed rotations of each quaternion.

Given a visualising quaternion volume by the sequence

V⊗ = Q⊗

s ∗Q⊗

z ∗ (Q⊗

s )∗ (11)

and the restrictions on Q⊗
s and Q⊗

z . Then the corre-
sponding quaternion volume that results in the set of
orientations described by V⊗ is given by

Q⊗ = Q⊗

s ∗Q⊗

z (12)

with the same restrictions applied to Q⊗ as to V⊗.

3.3 Representation of the freedom of passive joints

The freedom introduced by the physical constraints of a
revolute or spherical passive joint can be represented by a
continuous set of frames. Typical physical constraints, i.e.
types of joints, are:

• Revolute joint - rotations about one axis only are
allowed (Figure 1).

• Cone-shaped spherical joint - rotations about all axes
are allowed, but within certain limits (Figure 2a).

• Pyramid-shaped spherical joint - rotations about two
axes allowed, but within certain limits (Figure 2b).

In this paper, the body-fixed x-axis of the end effector
is assumed to point in the direction of the gravity force
and the z-axis is assumed parallel to the gripper in a
right-handed coordinate frame. Only revolute, spherical
and universal passive joints are treated. When a joint is
considered as a physical constraint, all the joints listed
above are easily represented by the set of allowed positions
of the joint represented by the quaternion volume.

Example 1. (Passive revolute joint). A passive revolute
joint is assumed attached at the end of a manipulator
chain. The three cases illustrated in Figure 1 are con-
sidered. Assume that the passive joint can rotate about
the x-axis as in Figure 1b). If the freedom is restricted to
φmin < φ < φmax the freedom can be represented by

Q⊗

free =

[

cos (
φ

2
) sin (

φ

2
) 0 0

]T

, for φmin < φ < φmax.

(13)
Similarly for the y-axis and the z-axis.

Fig. 1. Passive joint about a) the z-axis, b) the x-axis and
c) the y-axis for a single manipulator.

Example 2. (Passive spherical joint). The approach pre-
sented in Section 3.2 is well suited for representing a
passive spherical joint. All the allowed directions that the
joint can take are given by

Q⊗

s (α, β) = Q⊗

z (α,z) ∗Q⊗

y (β,y), (14)

and is represented by

Q⊗

s (α, β) =



















cos (
α

2
) cos (

β

2
)

− sin (
α

2
) sin (

β

2
)

cos (
α

2
) sin (

β

2
)

sin (
α

2
) cos (

β

2
)



















, (15)

and some restriction on α and β. If, in addition a rotation
about the z-axis is considered, the set of allowed orienta-
tions can be visualised by the vector part of

V⊗(α, β, γ) =

















cos(
γ

2
)

sin(
γ

2
) sin(β) cos(α)

sin(
γ

2
) sin(α) sin(β)

sin(
γ

2
) cos(β)

















. (16)



This is illustrated in figure 2a). This set is given by all
quaternions that satisfy

Q⊗ = Q⊗

s ∗Q⊗

z =



















cos(
β

2
) cos(

γ

2
+
α

2
)

sin(
β

2
) sin(

γ

2
−
α

2
)

sin(
β

2
) cos(

γ

2
−
α

2
)

cos(
β

2
) sin(

γ

2
+
α

2
)



















(17)

and the restrictions

amin ≤ α ≤ amax (18)

0 ≤ β ≤ bmax (19)

cmin ≤ γ ≤ cmax (20)

If the joint allows rotations about the x-axis followed by
the y-axis, this can be given by a similar quaternion vol-
ume (see From and Gravdahl [2007a]). This is illustrated
in Figure 2b). The universal joint (U-joint), which consists
of two consecutive rotations with orthogonally intersecting
axes, is one example of such a joint.

Fig. 2. a) spherical passive joint, b) a passive joint about
two axes.

4. COOPERATIVE MANIPULATION

The passive joint can be added to the end of a holonomic
manipulator or it can replace the last joint of a holonomic
manipulator. In the first case the passive joint can be a
part of the tool and its type and axis/axes can be chosen
with respect to the tool and task. A standard industrial
manipulator can then be used for a wide variety of tasks
since the passive joint changes with the task.

In the second case, the last joint of a manipulator is
replaced by a passive joint to save weight, size or man-
ufacturing costs. A manipulator is said to be holonomic if
its controllable degrees of freedom are equal to or greater
than the dimension of the operational space. If one of
the actuated joints is replaced by a passive joint, the
manipulator may lose this property. It is then said to be

non-holonomic. If the last joint of a holonomic manipulator
is passive, the manipulator is task dependent and can only
be used for one type of tasks.

An important observation, however, is that, in both cases
described above, the ability for two or more cooperat-
ing manipulators to handle an object is not necessarily
reduced. The constraints themselves can introduce re-
dundancy to the system (Murray et al. [1994]), even if
each manipulator looked at separately is non-holonomic.
Hence, two rigidly connected manipulators with the non-
holonomic property due to passive joints can have the
holonomic property (Liu et al. [1999]). This makes the
introduction of passive joints in cooperative manipulation
especially appealing. As long as the number of actuated
joints is larger than the dimension of the task space and the
geometry of the manipulator is chosen with care, the mo-
bility of the object is not reduced. The constraints imposed
by the closed chain allow the object to be rigidly manipu-
lated by cooperative manipulators even if all manipulators
have passive joints at the end of the manipulator chain.

It is important that the passive joints are chosen with the
task in mind and in such a way that the joint position is
not affected by the gravity forces or the motion of the
load. Recall that the x-axis of the end effector points
in the direction of the gravity force and that the z-axis
is parallel to the gripper. Figure 3 shows how a choice
of passive joints together with the constraints imposed
by the closed chain does not reduce the ability of the
manipulators to handle an object. Note also that the
position and orientation of the object is not affected by
the position of the passive joint. This freedom can hence be
utilised for collision avoidance, to increase the workspace
or to improve performance in general.

Fig. 3. a) A single manipulator with a passive joint, b) two
manipulators rigidly connected, c) the passive joint
treated as functional redundancy. All passive joints
rotate about the x-axis.



Example 3. Two manipulators moving a beam
Assume two manipulators moving a beam, both connected
to the same side of the beam. Then, assume a gripper with
a passive joint that can rotate about the x- or z-axis. This
will not reduce the ability of the two manipulators to move
the beam. For the x-axis, this is illustrated in Figure 3c).

Example 4. If the passive joint rotates about the y-axis,
two manipulators can handle the beam if they are attached
one on each side. This is because in this case, the passive
joints don’t rotate about the same axis, but about two
parallel axes. Then the gravity force will not affect the
configuration of the object. This is a general result.

4.1 Dynamic Load Carrying Capacity

The dynamic load carrying capacity (DLCC) is a measure
of how much one or more manipulators can lift for a
specific trajectory (Wang and Ravani [1988]). It is a useful
tool to compare manipulators with different geometry. In
this paper, the DLCC is used to compare manipulators
with different passive joints with standard manipulators.

The DLCC algorithm finds the maximum possible weight
of the load for each point on a trajectory. The maximum
weight the manipulator(s) can handle is then given by the
minimum of these. This paper proposes a modification of
this algorithm. When the last joint is passive, this freedom
is exploited and for each point on the trajectory, the
position of the passive joint that results in the highest
weight of the load is found. In this way it is possible to
compare different types of passive joints with conventional
manipulators.

4.2 Grasping

For the manipulator to be able to grasp an object, some
kind of control of the passive joint is needed. One simple
approach is a locking mechanism which locks the joint
in a given position so that the object can be grasped.
If more mobility is needed, an actuator can be mounted
on the joint. If this is used only during the grasping and
not during manipulation of the object, this can be made
smaller and lighter than conventional actuators.

5. NUMERICAL RESULTS

5.1 Workspace

Two manipulators were to lift a beam, following the path
of a half-circle in the yz-plane. As a measurement of how
the workspace of the manipulators changes when passive
joints are introduced at the end of the kinematic chain
the maximum radius of the half circle which the beam
can follow is found. Table 5.1 shows how the maximum
radius of the circle changes for the task and different
types of joints described in Examples 2, 3 and 4. Two
types of spherical joints were considered, one which allows
an orientation of 20◦ with respect to the previous joint,
and one which allows 40◦. It is difficult to find a general
approach to how the workspace of the manipulator changes
with the introduction of a passive joint because the type
of passive joint is task-dependent. It also depends on the
tool and the type of the last actuated joint. The tool used

in this paper was a 20cm long gripper with an orientation
of 30 degrees about about the y-axis with respect to the
last joint. The position of the passive joint was found by a
simple geometric analysis based on the approach presented
in From and Gravdahl [2007b], and is not an optimal
solution to the problem. This approach is well suited for
real-time applications. The manipulator used in the all the
simulations is the ABB IRB-5400.

Passive Joint Increase in workspace [%]

Fixed 0
x-axis 4.5
y-axis 6.3
z-axis 10.8
Spherical 20◦ 6.9
Spherical 40◦ 12.3

Table 1. The workspace for different passive
joints

5.2 Performance

Two manipulators were set to take an object along a path
(the half-circle in the yz-plane). As a mean to measure the
performance, the torques needed to perform the task are
calculated.
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Fig. 4. Torques of joint 3 for different types of passive jonts.
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Fig. 5. Torques of joint 4 for different types of passive jonts.

When the passive joint is a revolute joint, the torques of
joins 3 and 4 are shown in Figures 6 and 7, respectively.



The torques for the other joints are approximately the
same for all the approaches. Note that a passive joint that
rotates about the z-axis gives the biggest workspace, but
also requires most torque to follow the given trajectory.

When the passive joint is a sperical joint with maximum
orientation of 20◦, the torques of joints 1 and 2 are found
in Figures 6 and 7. Joints 1 and 2 are shown because these
are the critical joints when it comes to the torque limits.
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Fig. 6. Torque of joint 1 with a spherical passive joint.
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Fig. 7. Torque of joint 2 with a spherical passive joint.

5.3 Dynamic Load Carrying Capacity

The dynamic load carrying capacity (DLCC) was found for
each of the five types of passive joints. The manipulators
were to follow a half circle in the yz-plane with an average
velocity of 1m/s. The maximum weight for each case is
found in table 5.3.

Passive Joints Maximum weight [kg]

Fixed 75
x-axis 91
y-axis 95
z-axis 89
Spherical 20◦ 80
Spherical 40◦ 87

Table 2. DLCC for different passive joints

6. CONCLUSION

By introducing a passive joint at the end of the manipula-
tor chain in cooperative manipulation, each manipulator

can be treated as if functional redundancy were present.
The freedom introduced by the passive joint can be ex-
ploited to improve performance in terms of lower torques
and joint velocities. It is also shown that the workspace of
the manipulators can be increased and that the dynamic
load carrying capacity in each case increases. Each appli-
cation must be considered separately and the passive joint
must be chosen with the task in mind. This is important to
ensure mobility of the object. What type of passive joint
to choose also depends on the performance criteria to be
improved.
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