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Abstract: This paper treats the problem of adjusting the macroscopic shape of an articulated
robotic system following a path, such that the shape fits the path curve as closely as possible.
We propose a way of quantifying the fit of the robot’s shape to the path through the errors of the
individual links, and investigate a kinematic MPC solution to the problem. The MPC generates
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1. INTRODUCTION

Snake robots present a promising new alternative in a
variety of industrial and inspection applications (Kelasidi
et al. 2016). Featuring an elongated articulated design,
they merge features from energy efficient Autonomous
Underwater Vehicles (AUVs) and versatile robotic manip-
ulators. When equipped with thrusters, they are usually
called Articulated Intervention Autonomous Underwater
Vehicles (AIAUVs) Borlaug et al. (2019). It is this partic-
ular combination of articulation and actuation redundancy
that makes AIAUVs promising for operations in tight con-
fined spaces. Inspection operations at subsea installations
or historic shipwrecks demand robots which can thread
tight obstacle ridden environments, an application where
the articulation of the AIAUV gives it an advantage, see
Figure 1.

Moving the robot from A to B is a crucial part of an
inspection procedure. Planning algorithms can generate
a curve which has been deemed safe from obstacles,
and motion along that curve can be achieved through
various control strategies, e.g. path-following or trajectory
tracking (LaValle 2006). In this work we will consider path-
following, where no explicit timing requirements are placed
on the motion along the curve.

Path-following has been an active research topic within
vehicle control for decades. The case of a straight-line
path following with and without constant irrotational
currents has well established solutions via the Line-of-
sight (LOS) and Integral Line-of-sight (ILOS) methods
Xu et al. (2020); Fossen and Pettersen (2014); Kohl et al.
(2016). Vector field path-following approaches on the other
hand explicitly design a guiding field, see Yao and Cao
(2020); Kapitanyuk et al. (2018); Goncalves et al. (2010),
obtaining similar stability guarantees as the LOS family
of guiding laws. The vector field literature usually treats
the path as the 0-level set of a so-called potential function
of the variables where the path is defined, avoiding the

use of parametrization and treating the path in its purely
geometrical form.

A limitation of the standard path-following formulations
is that they usually consider a single output of interest, i.e.
the position of the center of mass or another point on the
vehicle, while other parts of a robot’s body do not follow
the path, and might thus collide with obstacles in the
environment. One way to work around this is at the plan-
ning level, where the path is chosen with sufficiently large
safety region around it, so that no part of the robot can
collide with the environment, so long as the path-following
objective is realized. This approach, however, seems overly
conservative when working with an articulated robot, as
it can adjust its overall, or macroscopic, shape to fit the
curve and thus be safe from obstacles. This gives rise to
the problem treated in this paper, namely path-following
control with macroscopic shape adjustment, or more con-
cisely, snake-on-path following.

Adjusting the macroscopic shape of a snake robot to
fit a curve has been investigated in the 2D case in Lil-
jebäck et al. (2014a) and the 3D case in Liljebäck et al.
(2014b). Said references proposed an algorithmic solution,
where the configuration was recovered through an iter-
ative procedure. This approach has the benefit of being
computationally efficient, but it does not work with an
explicit mathematical formulation of the problem, and
its properties are thus difficult to verify. It is desirable
to express the deviation of the robot’s shape from the
curve in a mathematical way, so as to hopefully treat
the problem more generally and robustly. Moreover the
motivation for shape control in Liljebäck et al. (2014a,b)
was gait synthesis and generation of propulsive motion,
as they considered terrestrial snake robots that were not
equipped with thrusters.

In order to achieve snake-on-path following, while respect-
ing the kinematic structure of the snake robot, we will
introduce state constraints to the path-following prob-
lem. To this end we will use Model Predictive Control
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(2014b). Said references proposed an algorithmic solution,
where the configuration was recovered through an iter-
ative procedure. This approach has the benefit of being
computationally efficient, but it does not work with an
explicit mathematical formulation of the problem, and
its properties are thus difficult to verify. It is desirable
to express the deviation of the robot’s shape from the
curve in a mathematical way, so as to hopefully treat
the problem more generally and robustly. Moreover the
motivation for shape control in Liljebäck et al. (2014a,b)
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control with macroscopic shape adjustment, or more con-
cisely, snake-on-path following.

Adjusting the macroscopic shape of a snake robot to
fit a curve has been investigated in the 2D case in Lil-
jebäck et al. (2014a) and the 3D case in Liljebäck et al.
(2014b). Said references proposed an algorithmic solution,
where the configuration was recovered through an iter-
ative procedure. This approach has the benefit of being
computationally efficient, but it does not work with an
explicit mathematical formulation of the problem, and
its properties are thus difficult to verify. It is desirable
to express the deviation of the robot’s shape from the
curve in a mathematical way, so as to hopefully treat
the problem more generally and robustly. Moreover the
motivation for shape control in Liljebäck et al. (2014a,b)
was gait synthesis and generation of propulsive motion,
as they considered terrestrial snake robots that were not
equipped with thrusters.

In order to achieve snake-on-path following, while respect-
ing the kinematic structure of the snake robot, we will
introduce state constraints to the path-following prob-
lem. To this end we will use Model Predictive Control
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1. INTRODUCTION

Snake robots present a promising new alternative in a
variety of industrial and inspection applications (Kelasidi
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called Articulated Intervention Autonomous Underwater
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the path as the 0-level set of a so-called potential function
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vehicle, while other parts of a robot’s body do not follow
the path, and might thus collide with obstacles in the
environment. One way to work around this is at the plan-
ning level, where the path is chosen with sufficiently large
safety region around it, so that no part of the robot can
collide with the environment, so long as the path-following
objective is realized. This approach, however, seems overly
conservative when working with an articulated robot, as
it can adjust its overall, or macroscopic, shape to fit the
curve and thus be safe from obstacles. This gives rise to
the problem treated in this paper, namely path-following
control with macroscopic shape adjustment, or more con-
cisely, snake-on-path following.

Adjusting the macroscopic shape of a snake robot to
fit a curve has been investigated in the 2D case in Lil-
jebäck et al. (2014a) and the 3D case in Liljebäck et al.
(2014b). Said references proposed an algorithmic solution,
where the configuration was recovered through an iter-
ative procedure. This approach has the benefit of being
computationally efficient, but it does not work with an
explicit mathematical formulation of the problem, and
its properties are thus difficult to verify. It is desirable
to express the deviation of the robot’s shape from the
curve in a mathematical way, so as to hopefully treat
the problem more generally and robustly. Moreover the
motivation for shape control in Liljebäck et al. (2014a,b)
was gait synthesis and generation of propulsive motion,
as they considered terrestrial snake robots that were not
equipped with thrusters.

In order to achieve snake-on-path following, while respect-
ing the kinematic structure of the snake robot, we will
introduce state constraints to the path-following prob-
lem. To this end we will use Model Predictive Control
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Fig. 1. An example of how the snake-on-path problem can
be useful in a cluttered environment.

(MPC), as this allows for systematic treatment of sys-
tem constraints. Use of MPC for the purposes of path-
following has been investigated in, among others, Böck and
Kugi (2014); Yu et al. (2012); Faulwasser and Findeisen
(2015). In Böck and Kugi (2014) the real time viability
of a sub-optimal non-linear MPC formulation for path-
following was demonstrated in experiments with a crane
system. In Yu et al. (2012) the problem is formulated as
path-following in the state space of a system, while in
Faulwasser and Findeisen (2015) a quite general frame-
work for output path-following is presented. The main
benefit of MPC is that state- and input constraints can
be treated in a systematic manner. Safety with respect
to objects is readily encoded into the MPC problem for-
mulation. Moreover, cost function design provides great
freedom in encoding high level specifications, such as
macroscopic shape control.

In this paper we will thus use an MPC approach towards
achieving path-following control with macroscopic shape
adjustment. We note that Sæbø et al. (2024) also presents
a method for snake-on-path following. Their method com-
bines a waypoint line-of-sight approach with a closed loop
inverse kinematics task priority framework to set desired
velocities of each link of the vehicle relative to the path.
While our method has the advantage of treating system
constraints like joint angle saturation through the MPC
framework, the method in Sæbø et al. (2024) is decidedly
computationally simpler and the waypoint scheme allows
for a flexible definition of path-following scenarios. We
will consider a class of paths which can be treated under
the framework of vector field guidance. The vector field
literature treats paths without the need for parametriza-
tion, which offers a particularly convenient expression of
the error and guidance law in terms of the system’s state
variables, making the design of the MPC simpler. In the
proposed kinematic level MPC algorithm, motion along
the path is only prescribed to the head link, while the
rest of the body is tasked to fit its shape to the path.
Specifically, the errors of the individual links are used as
proxy for the robot’s shape fit to the path. A simulation
study is conducted to evaluate the viability of the scheme.
Finally, limitations are discussed and future improvements
proposed.

The rest of the paper is organized as follows. Section 2
presents the working assumptions, choice of coordinates
and the mathematical model used in the MPC scheme.
Next, section 3 details the design of the kinematic MPC al-
gorithm we propose for the snake-on-path following prob-
lem. Section 4 presents a simulation study and discussion
of the method, and in Section 5 we present conclusions
and future work.

Thruster

Link i Link i+1

Motorized
Joint

Fig. 2. An example actuator configuration for two generic
AIAUV links. The vehicle is equiped with thrusters,
which produce linear forces and motorized joints,
which can apply torques.

2. ASSUMPTIONS, COORDINATES AND MODEL

2.1 Notation and useful mappings

In this section we introduce notation and matrices which
are common in the snake robotics literature. We denote
the snake robot’s position in the plane p = (px, py) ∈ R2,
and the angles of its links w.r.t. the global x-axis by the
vector θ ∈ RN . The links are indexed from 1 (tail link)
to N (head link). The relative link angles, also called
joint angles, are the differences between subsequent link
angles, denoted ϕ ∈ RN−1 where ϕi := θi − θi+1. The
mapping sin(θ)/cos(θ) is defined as the RN vector of
sines/cosines of the link angles θ. We define the matrices
S(θ)/C(θ) = diag(sin(θ))/diag(cos(θ)), where diag(·) is
a diagonal matrix. The vector e ∈ RN is a vector of
ones. The matrix R(α) ∈ SO(2) denotes the 2D rotation
matrix with angle α. The matrices A,D ∈ R(N−1)×N are
called the addition and difference matrices, respectively,
and when multiplied by an N -dimensional vector produce
a vector of sums/differences between its adjacent elements,
i.e.

A =



1 1

· ·
· ·

1 1


D =



1 −1

· ·
· ·

1 −1


 . (1)

2.2 Assumptions on the snake robot

We consider snake robots moving in a horizontal plane, i.e.
Assumption 1 (Planar snake robot). We assume that
the snake robot is passively and/or actively stabilized to a
virtual horizontal plane, i.e. its pitch and roll angles are
zero and its depth is held constant.

As we work with AIAUVs, the robot can be considered to
have a fully actuated configuration space. Figure 2 shows a
diagram of a possible actuator configuration on two generic
links of an AIAUV.
Assumption 2 (AIAUV). We assume that the configu-
ration space of the robot is fully actutated.

The path-following problem can thus be treated on the
kinematic level, with the goal being generation of desired
configuration and velocity trajectories for a low-level con-
troller. Under these considerations we will model the robot
on kinematic level in the next section.

2.3 Model and choice of coordinates

The choice of configuration coordinates is important for
practical purposes. Since the model we present in this
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rest of the body is tasked to fit its shape to the path.
Specifically, the errors of the individual links are used as
proxy for the robot’s shape fit to the path. A simulation
study is conducted to evaluate the viability of the scheme.
Finally, limitations are discussed and future improvements
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and the mathematical model used in the MPC scheme.
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gorithm we propose for the snake-on-path following prob-
lem. Section 4 presents a simulation study and discussion
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2.1 Notation and useful mappings

In this section we introduce notation and matrices which
are common in the snake robotics literature. We denote
the snake robot’s position in the plane p = (px, py) ∈ R2,
and the angles of its links w.r.t. the global x-axis by the
vector θ ∈ RN . The links are indexed from 1 (tail link)
to N (head link). The relative link angles, also called
joint angles, are the differences between subsequent link
angles, denoted ϕ ∈ RN−1 where ϕi := θi − θi+1. The
mapping sin(θ)/cos(θ) is defined as the RN vector of
sines/cosines of the link angles θ. We define the matrices
S(θ)/C(θ) = diag(sin(θ))/diag(cos(θ)), where diag(·) is
a diagonal matrix. The vector e ∈ RN is a vector of
ones. The matrix R(α) ∈ SO(2) denotes the 2D rotation
matrix with angle α. The matrices A,D ∈ R(N−1)×N are
called the addition and difference matrices, respectively,
and when multiplied by an N -dimensional vector produce
a vector of sums/differences between its adjacent elements,
i.e.
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2.2 Assumptions on the snake robot

We consider snake robots moving in a horizontal plane, i.e.
Assumption 1 (Planar snake robot). We assume that
the snake robot is passively and/or actively stabilized to a
virtual horizontal plane, i.e. its pitch and roll angles are
zero and its depth is held constant.

As we work with AIAUVs, the robot can be considered to
have a fully actuated configuration space. Figure 2 shows a
diagram of a possible actuator configuration on two generic
links of an AIAUV.
Assumption 2 (AIAUV). We assume that the configu-
ration space of the robot is fully actutated.

The path-following problem can thus be treated on the
kinematic level, with the goal being generation of desired
configuration and velocity trajectories for a low-level con-
troller. Under these considerations we will model the robot
on kinematic level in the next section.

2.3 Model and choice of coordinates

The choice of configuration coordinates is important for
practical purposes. Since the model we present in this
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section will be used to formulate an open-loop MPC opti-
mization problem, we can utilize the freedom that lies in
choosing coordinates to achieve a more opportune formu-
lation of the MPC problem. A common set of configuration
coordinates for the snake robot is the relative link angles
and the pose, i.e. position and orientation, of the tail or
head link. The tail and head frame are also referred to as
the base and end effector frames, respectively, in the snake
robotics literature. This set of coordinates is meaningful
when the control problem is formulated at the force/torque
level, as the inputs from the motors of the joints enter
directly the dynamics of the relative joint angles, and thus
they constitute a subspace of the configuration space which
is directly and fully actuated by the joint torques. How-
ever, we conjecture that for the purposes of macroscopic
shape control the following set of coordinates makes the
problem more interpretable and tractable:

q = (px, py, θ1, · · ·, θN ) ∈ RN+2, (2)

where (px, py) ∈ R2 is the position of the center of mass
of the snake and θ = (θ1, · · ·, θN ) ∈ RN are the angles of
the links with respect to the global x-axis. As we will later
see, this choice of coordinates results in a very compact
model, and can be related to objectives concerning the
macroscopic shape of the snake robot.

In the kinematic controller we will consider the relative
velocities of the configuration as input, i.e. u := q̇r, which
when ocean currents are added results in the following
kinematic model:

q̇ = u+ V c,gen. (3)

Here V c,gen denotes the generalized ocean currents given
in the global frame. We will consider the case of constant
irrotational currents, i.e. V c,gen = (Vc,x, Vc,y, 0, · · ·, 0) ∈
RN+2. Note that for the path-following objective we will
define later, we want to also recover the positions and
velocities of the links in the world frame. These are solved
for via forward kinematics (Liljebäck et al. 2013):

X = −lKT cos(θ) + epx (4a)

Y = −lKT sin(θ) + epy. (4b)

Where K = AT (DDT )−1D. Differentiation of (4) w.r.t.
time gives the linear velocities of the links

Ẋ = lKTS(θ)θ̇ + eṗx (5a)

Ẏ = −lKTC(θ)θ̇ + eṗy. (5b)

3. PATH-FOLLOWING MPC FORMULATION

In this section we propose and design an MPC controller
on the kinematic level to solve the problem of macroscopic
shape path-following. Section 3.1 gives an overview of how
the modules in the algorithm fit together. Section 3.2
deals with the design of a guidance law for the path-
following. We note that the guidance scheme is not the
main contribution of the paper, as we simply need a
working guidance law for the path-following. Section 3.3
contains the main contribution of the paper, namely the
MPC design. The proposed solution is not unique, in the
sense that macroscopic shape fit to the path is a high level
concept and can be quantified in many ways. MPC is a
natural fit for this problem, as the cost function can be
engineered to encode a high level specification, and the
generated trajectories will respect the system’s kinematic
constraints.

Force/Torque
actuated AIAUV

Kinematic MPC
Controller

Head Link
Guidance
Scheme

 

Fig. 3. A block diagram giving overview of the modules
in the scheme. Here ep is the vector of path-following
errors of the individual links, while pN is the position
of the head link and vg,N is the desired velocity of the
head link.

3.1 Overview of the algorithm

Here we present an overview of the different modules
of the algorithm and how they fit together. A block
diagram of the scheme is given in Figure 3. The MPC
receives as inputs the path-following error signals of the
different links, as well as a desired velocity reference for the
head link only. The desired velocity reference is generated
by a guidance module. Often, the guidance law is used
to generate heading or course references. However, we
will treat the guidance law as a direct velocity vector
command, which will fit neatly into the formulation of the
MPC problem in section 3.3. Note that from the MPC’s
perspective, the choice of guidance scheme is arbitrary, so
long as a desired reference velocity vector is provided. The
outputs of the MPC module are reference configuration
and configuration velocity trajectories, which can be given
to an arbitrary force and torque level controller for the
AIAUV.

3.2 Guidance design

For the guidance we will consider a vector field guidance
law similar to the ones in Yao and Cao (2020) and Gushkov
et al. (2023). We introduce the generic R2 variable ξ =
(x, y). Note that this should not be confused with the
position of the snake robot’s Center of Mass (CoM) p,
as the path-following objective will not be defined for
the CoM. The path in this guidance paradigm is defined
as the sub-level set of a C2 so-called potential function
Φ : R2 → R:

P = {ξ ∈ R2 |Φ(x, y) = 0}. (6)

The function Φ essentially encodes the path, and can be
chosen as Φ = y − ax for straight lines, Φ = y − A sin(x)
for sinusoids, Φ = y2 + x2 − R2 for circles etc. The goal
of vector field path-following is to engineer a guidance
field whose integral curves converge to the path, i.e.
limt→∞ dist(ξ,P) → 0, and once on the path they traverse
the path for all future time, i.e. ξ(t0) ∈ P ⇒ ξ(t) ∈ P ∀t ≥
t0. Note that the function Φ can be interpreted as a signed
distance from the path under some technical conditions.
These are omitted in this paper for the sake of brevity
and readability, but are somewhat trivially fulfilled for the
paths we will consider, see assumptions 1-3 in Yao and
Cao (2020) for details. The gradient of Φ is given as

∇Φ =

[
∂Φ

∂x
,
∂Φ

∂y

]T
, (7)

and we consider the path-following error function to be
given by Φ itself

e := Φ(ξ) (8a)

ė = ∇ΦT ξ̇. (8b)

As shown in Gushkov et al. (2023) and Yao and Cao
(2020), under these considerations, a vector field given by

χ(ξ) = hR(π2 )∇Φ(ξ)− ke(ξ)∇Φ(ξ) (9)

solves the path-following problem kinematically. Here h is
either 1 or −1 and determines the direction the path is to
be traversed in, and k is a gain giving how aggressive the
guidance scheme is. We will now show a simple Lyapunov
argument for the stability of the path-following error
when a generic position output ξ evolves according to the
guidance field, i.e. ξ̇ = χ. For a complete formal proof
which also considers the saturation of the vehicle’s velocity,
see Gushkov et al. (2023). Choosing the Lyapunov function
candidate V = 1

2e
2 and finding its derivative along the

solutions of (8b) with ξ̇ = χ given by (9), we obtain

V̇ = eė = e∇ΦTχ (10a)

= −k∥∇Φ∥2e2. (10b)

The derivative of V is negative definite so long as∇Φ does
not vanish anywhere in R2, and the origin of (8b) is thus
Globally Uniformly Asymptotically Stable (GUAS). The
non-vanishing of∇Φ is essentially a condition on the path,
and is fulfilled for straight lines and sinusoidal paths. The
guidance vector in (9) will be used to generate a desired
reference trajectory for the head link’s position output.
The scheme’s immediate benefit is that (9) constitutes an
expression only dependent on the position of the head link,
which in turn can be related to the states of the system
through (4) and thus easily encoded into the MPC.

3.3 MPC design

In this section we design the open loop optimization
problem, which makes use of the model in (3) and uses
the guidance vector in (9) in order to solve the snake-on-
path following problem for the path in (6).

We design the cost function to include the errors of the
links, and encode a velocity prescription for the head
link. We define ep(X,Y ) ∈ RN a vector containing the
path-following errors of the links of the snake robot.
Here we will use error-like functions defined as in (8a),
i.e. potential functions, instead of the real distance to
the path. The reason for this is that these functions
are less computationally demanding to evaluate online
than the actual distances, and are moreover a closed-
form expression of the states, meaning they can be readily
included into the MPC problem. Further, define ṗn =

(ẊN , ẎN ) as the velocity of the head link, i.e. the last
components of the vectors defined in (5). Lastly, define
vg,N = χ|ξ=pn

as the guidance vector (9) evaluated at
the head link’s position. We are now ready to present the
design of the MPC problem

min
q,u

∫ tk+T

tk

L(q(τ),u(τ))dτ + E(q(tk + T )) (11a)

s.t. q̇ = u+ V̂ c,gen(t) (11b)

ϕmin ≤ |Dθ| ≤ ϕmax (11c)

umin ≤ |u| ≤ umax (11d)

q(tk) = q(t). (11e)

The problem minimizes the cost functional composed of
the integral of the stage cost L over the prediction horizon,
and the terminal cost E, which take the following forms

L(q,u) = eTp Qep + uTRu+ wN∥ṗN − vg,N∥ (12a)

E(q) = eTp Qep. (12b)

The Q and R matrices are diagonal weight matrices for
the link errors and inputs, respectively, and wN is a weight
for the deviation of the head link’s velocity vector from the
guidance vecotor (9). The last term in the cost function,
E, is a terminal cost on the errors. In practice, snake
robots always have saturation on the joint angles and their
velocities which have to be respected, something which
is readily accommodated for by constraints in the MPC
framework. Specifically, the (linear) constraint in (11c) en-
sures that the relative angle constraints are satisfied, while
the constraint on the input (11d) encodes a saturation
on the system’s velocities. The kinematic model from (3)
is encoded in the MPC’s dynamic constraint (11b), and
initial condition for the optimization problem are encoded
in (11e). It is assumed that an estimate of the initial
condition can be recovered from a measurement or a filter
at each time step. Note that in the dynamic constraint
(11b), the term V̂ c,gen represents an estimate of the ocean
currents, which are assumed constant for the length of the
prediction horizon.

Let us now interpret the cost function and how the MPC is
intended to solve the problem. The term wN∥ṗN −vg,N∥2
in the stage cost penalizes the deviation of the velocity
of the head from the guidance vector vg,N . The guidance
vector is thus interpreted as a desired velocity vector of the
head. The head thus leads the way, and drags the rest of
the snake robot with it. The other term in the stage cost
is a quadratic form in the path-following errors of the rest
of the links, minimization of which implies that the body
fits to the path.
Remark 1. Note that here we have used the path-following
error as a proxy for the fit of the snake robot to the path.
This is clearly not the only metric we could have used.
Another representation of the fit could be to minimize the
errors at both ends of each link, or to minimize the absolute
value of the area between the link and the path. These
would, however, clearly, result in more complicated MPC
problem formulations, with higher computational demands.

4. SIMULATION STUDY SETUP AND RESULTS

The simulation study is performed in Python, where the
kinematic model (3) is integrated with a RK4 scheme. The
MPC problem is implemented with CasADi’s Opti class
(Andersson et al. 2019), where the equality constraints
of the model (11b) are discretized with a RK4 scheme
and the ipopt solver is used to solve the open loop
optimization problem 1 . We have considered the case of
a sinusoidal path with Φ(x, y) = y − sin(x) which we
recently investigated as an applications of snake robots, see
Gushkov et al. (2023), where the snake robot is tasked to
converge to a path between vortices in the wake of a bluff
body. The linear components of the ocean currents were
set to V c = (−0.2, 0.1) m/s, and the controller was tested

1 The reader is invited to run our code, which can be found at
(http://tinyurl.com/pkp6nxcx), in order to retrieve the simulation
parameters or reproduce the results.
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e := Φ(ξ) (8a)

ė = ∇ΦT ξ̇. (8b)

As shown in Gushkov et al. (2023) and Yao and Cao
(2020), under these considerations, a vector field given by

χ(ξ) = hR(π2 )∇Φ(ξ)− ke(ξ)∇Φ(ξ) (9)

solves the path-following problem kinematically. Here h is
either 1 or −1 and determines the direction the path is to
be traversed in, and k is a gain giving how aggressive the
guidance scheme is. We will now show a simple Lyapunov
argument for the stability of the path-following error
when a generic position output ξ evolves according to the
guidance field, i.e. ξ̇ = χ. For a complete formal proof
which also considers the saturation of the vehicle’s velocity,
see Gushkov et al. (2023). Choosing the Lyapunov function
candidate V = 1

2e
2 and finding its derivative along the

solutions of (8b) with ξ̇ = χ given by (9), we obtain

V̇ = eė = e∇ΦTχ (10a)

= −k∥∇Φ∥2e2. (10b)

The derivative of V is negative definite so long as∇Φ does
not vanish anywhere in R2, and the origin of (8b) is thus
Globally Uniformly Asymptotically Stable (GUAS). The
non-vanishing of∇Φ is essentially a condition on the path,
and is fulfilled for straight lines and sinusoidal paths. The
guidance vector in (9) will be used to generate a desired
reference trajectory for the head link’s position output.
The scheme’s immediate benefit is that (9) constitutes an
expression only dependent on the position of the head link,
which in turn can be related to the states of the system
through (4) and thus easily encoded into the MPC.

3.3 MPC design

In this section we design the open loop optimization
problem, which makes use of the model in (3) and uses
the guidance vector in (9) in order to solve the snake-on-
path following problem for the path in (6).

We design the cost function to include the errors of the
links, and encode a velocity prescription for the head
link. We define ep(X,Y ) ∈ RN a vector containing the
path-following errors of the links of the snake robot.
Here we will use error-like functions defined as in (8a),
i.e. potential functions, instead of the real distance to
the path. The reason for this is that these functions
are less computationally demanding to evaluate online
than the actual distances, and are moreover a closed-
form expression of the states, meaning they can be readily
included into the MPC problem. Further, define ṗn =

(ẊN , ẎN ) as the velocity of the head link, i.e. the last
components of the vectors defined in (5). Lastly, define
vg,N = χ|ξ=pn

as the guidance vector (9) evaluated at
the head link’s position. We are now ready to present the
design of the MPC problem

min
q,u

∫ tk+T

tk

L(q(τ),u(τ))dτ + E(q(tk + T )) (11a)

s.t. q̇ = u+ V̂ c,gen(t) (11b)

ϕmin ≤ |Dθ| ≤ ϕmax (11c)

umin ≤ |u| ≤ umax (11d)

q(tk) = q(t). (11e)

The problem minimizes the cost functional composed of
the integral of the stage cost L over the prediction horizon,
and the terminal cost E, which take the following forms

L(q,u) = eTp Qep + uTRu+ wN∥ṗN − vg,N∥ (12a)

E(q) = eTp Qep. (12b)

The Q and R matrices are diagonal weight matrices for
the link errors and inputs, respectively, and wN is a weight
for the deviation of the head link’s velocity vector from the
guidance vecotor (9). The last term in the cost function,
E, is a terminal cost on the errors. In practice, snake
robots always have saturation on the joint angles and their
velocities which have to be respected, something which
is readily accommodated for by constraints in the MPC
framework. Specifically, the (linear) constraint in (11c) en-
sures that the relative angle constraints are satisfied, while
the constraint on the input (11d) encodes a saturation
on the system’s velocities. The kinematic model from (3)
is encoded in the MPC’s dynamic constraint (11b), and
initial condition for the optimization problem are encoded
in (11e). It is assumed that an estimate of the initial
condition can be recovered from a measurement or a filter
at each time step. Note that in the dynamic constraint
(11b), the term V̂ c,gen represents an estimate of the ocean
currents, which are assumed constant for the length of the
prediction horizon.

Let us now interpret the cost function and how the MPC is
intended to solve the problem. The term wN∥ṗN −vg,N∥2
in the stage cost penalizes the deviation of the velocity
of the head from the guidance vector vg,N . The guidance
vector is thus interpreted as a desired velocity vector of the
head. The head thus leads the way, and drags the rest of
the snake robot with it. The other term in the stage cost
is a quadratic form in the path-following errors of the rest
of the links, minimization of which implies that the body
fits to the path.
Remark 1. Note that here we have used the path-following
error as a proxy for the fit of the snake robot to the path.
This is clearly not the only metric we could have used.
Another representation of the fit could be to minimize the
errors at both ends of each link, or to minimize the absolute
value of the area between the link and the path. These
would, however, clearly, result in more complicated MPC
problem formulations, with higher computational demands.

4. SIMULATION STUDY SETUP AND RESULTS

The simulation study is performed in Python, where the
kinematic model (3) is integrated with a RK4 scheme. The
MPC problem is implemented with CasADi’s Opti class
(Andersson et al. 2019), where the equality constraints
of the model (11b) are discretized with a RK4 scheme
and the ipopt solver is used to solve the open loop
optimization problem 1 . We have considered the case of
a sinusoidal path with Φ(x, y) = y − sin(x) which we
recently investigated as an applications of snake robots, see
Gushkov et al. (2023), where the snake robot is tasked to
converge to a path between vortices in the wake of a bluff
body. The linear components of the ocean currents were
set to V c = (−0.2, 0.1) m/s, and the controller was tested

1 The reader is invited to run our code, which can be found at
(http://tinyurl.com/pkp6nxcx), in order to retrieve the simulation
parameters or reproduce the results.
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with ideal knowledge of the ocean currents, i.e. V̂ c = V c.
The position was initialized at (−1,−1) m and all the link
angles at zero. For the main simulation results the MPC
prediction horizon in (11a) was set to Tmpc = 2 s with
discretization δmpc = 0.1 s. The guidance gain was set to
k = 2.7 and the tuning parameters for the MPC were
chosen as:

Q = diag(1, 1, 1, 1, 1, 15), wN = 1 (13a)

F = diag(1, 1, 1, 1, 1, 15) (13b)

R = diag(0.01 · I2,
30π

180
I4). (13c)

The constraints for the link angles were set to 25 ◦, and
the constraints of the link angle velocities to 40 ◦/s. The
linear velocities were constrained to 1 m/s each. Figure 4
shows the relative angles and the state velocities generated
by the scheme, while Figure 5 shows the individual link
errors. Note that there are several instances where both
the position and velocity constraints are active, but not
violated. Figure 6 shows a visualization of the scheme
in action, where it can be seen that the shape of the
robot fits to the path over the simulation. This validates
the design of the MPC cost function, showing that the
link errors are a good choice of metric for shape fit.
Moreover the choice of coordinates in (2) results in the
non-linearities showing up in the cost function, rather than
in the constraints. With Tmpc = 2 s and δmpc = 0.1 s,
the average solution time was around 0.28 s. While this
is slower than what a force/torque level controller usually
runs at, it should be noted that the MPC outputs desired
trajectories over a horizon, and in a practical setting
one can use several steps of the MPC solution while
one waits for a new solution, or employ a sub-optimal
scheme, as in Böck and Kugi (2014). Alternatively the
horizon can be reduced for a quicker solution. Table 1
compares the solution times and errors for different horizon
lengths, and it can be seen that the solution speed can
be increased by an order of magnitude, while the error
remains reasonable. Interestingly, the benefit of increasing
the horizon diminishes quite quickly after 0.5 s. On the
other hand the benefit of a longer horizon is seen in the
number of active constraints over the simulation.

In the simulation above we assumed ideal knowledge of
the ocean currents. In order to investigate the scheme’s
robustness w.r.t. the quality of the current estimate, two
more cases were investigated: stochastic sampling of the
current estimate and the case of no knowledge of the ocean
currents. For the stochastic case, the estimate was drawn
from a normal distribution with mean equal to the real
currents, i.e. V̂ c ∼ N (V c, 0.04

2 · I2). The estimate was
drawn at each step and held constant for the length of
the MPC horizon. No knowledge of the ocean currents
corresponds to the case where V̂ c = 0. Table 1 shows
statistical data from the various cases. Unsurprisingly, the
performance of the scheme deteriorates with the quality of
the current estimate, but the stochastic case is still quite
close to the case of a perfect estimate, indicating a level
of robustness towards uncertainty in the kinematics, and
that including an estimator in the loop is a viable strategy.

5. CONCLUSIONS AND FUTURE WORK

This paper has proposed an MPC framework for generat-
ing trajectories for an AIAUV performing path-following

Table 1. Statistical data for some cases of
interest. In the first part of the table the ocean
current is assumed known. In the second part

the horizon length used is Tmpc = 2 s.

Case Avg. link
error

Avg. solution
time [s]

Nr. active rel.
angle constraints

Tmpc = 0.2 0.00703 0.0193 51
Tmpc = 0.5 0.00336 0.0536 35
Tmpc = 1 0.00294 0.1237 20
Tmpc = 1.5 0.00296 0.1872 14
Tmpc = 2.5 0.00302 0.3489 12

Known current 0.00299 0.2779 12
Stochastic current est. 0.00359 0.2516 13

Unknown current 0.01928 0.2754 14

while adjusting its shape to the path, what we call the
snake-on-path following problem. The simulations indicate
a) that the individual link errors are a viable metric for
representing the snake robot’s shape fit to a path b) that
the generated closed loop trajectories of the MPC indeed
offer a viable solution to the problem, even in the case of
limited knowledge of the ocean currents. The simulations
also highlighted some interesting features of the scheme,
namely that increasing the horizon beyond a certain point
has diminishing returns in the sense that it results in
higher computational times with no tangible benefit to
error reduction. We conjecture that for this problem, the
relevant part of the solution does not lie very far off into
the future, and so predicting on a shorter absolute time
horizon with finer discretization should be investigated. In
future work the scheme should also be tested in exper-
iments or simulation studies where the dynamics of the
robot are considered. Extension beyond kinematics can
be done either by giving the generated MPC trajectories
as references to low level controllers, or by reformulating
the MPC directly at the force/torque level, including a
dynamic model in the optimization problem. Computing
suitable terminal ingredients such that stability of the
closed loop is guaranteed should also be investigated.
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Liljebäck, P., Pettersen, K.Y., Stavdahl, , and Gravdahl,
J.T. (2014b). A 3d motion planning framework for
snake robots. In Proc. 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Chicago,
USA.

Sæbø, B.K., Pettersen, K.Y., and Gravdahl, J.T. (2024).
Kinematic task-priority path following for articulated
marine vehicles. In Proc. 2024 IFAC Conf. Control
Applications in Marine Systems, Robotics and Vehicles.

Xu, H., Fossen, T.I., and Guedes Soares, C. (2020). Uni-
formly semiglobally exponential stability of vector field
guidance law and autopilot for path-following. European
Journal of Control, 53, 88–97.

Yao, W. and Cao, M. (2020). Path following control in 3D
using a vector field. Automatica, 117, 108957.

Yu, S., Li, X., Chen, H., and Allgöwer, F. (2012). Nonlin-
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ṗx
ṗy
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Kelasidi, E., Liljebäck, P., Pettersen, K.Y., and Gravdahl,
J.T. (2016). Innovation in underwater robots: Biologi-
cally inspired swimming snake robots. IEEE Robotics &
Automation Magazine, 23(1), 44–62.

Kohl, A.M., Pettersen, K.Y., Kelasidi, E., and Gravdahl,
J.T. (2016). Planar path following of underwater snake
robots in the presence of ocean currents. IEEE Robotics
and Automation Letters, 1(1), 383–390.

LaValle, S.M. (2006). Planning Algorithms. Cambridge
University Press.
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