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Abstract

This paper extends earlier results on (optimal) con-
trol of nominally stable models in computational fluid
dynamics by means of reduced-order models on state-
space form. We consider stabilization of a computa-
tional fluid dynamics model of an unstable system. A
stabilizing controller is found based on optimal control
design for the reduced-order model and then applied to
the full model, where it is shown through simulations to
stabilize the system.

1. Introduction

Over the last decade, control of fluid flow has
gained an increasing amount of interest from the control
community. Control-system designers have turned their
attention to both internal flow (flow inside bounded re-
gions, such as within engines or turbomachinery) and
external flow (flow around vehicles or bodies). A re-
view of advances made in the intersection between con-
trol theory and fluid mechanics can be found in [8].

Distributed systems such as flow dynamics are
modeled mathematically by a set of partial differential
equations (PDEs). In order to simulate such systems,
the PDEs are usually discretized using a set of tools
known as computational fluid dynamics (CFD) ([9], [2],
[17]). Although acceptable for simulation purposes, the
resulting discretized models are often of such high or-
der that it may be infeasible to use them in controller
design. For instance, numerical simulation of the full
three-dimensional Navier-Stokes equations is still too
costly for the purpose of optimization and control of
unsteady flows [16].

There is, however, a potential for using model-
order reduction techniques to reduce the complexity of
the models. Model reduction is a powerful tool, and
a comprehensive treatment of approximation of large-
scale dynamical systems can be found in the recent
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book [3]. Although many methods have been success-
fully applied in control system design, methods such as
Hankel model-order reduction and balanced truncation
are too computationally demanding for systems of such
high order as those encountered in many CFD applica-
tions.

Proper orthogonal decomposition (POD) has
emerged as a popular alternative that is still applica-
ble even for very high-order systems, using the method
of snapshots that will be further presented in sec-
tion 2. This approach has been considered for active
control purposes by numerous authors, among them
[12,5,16,7,6,1].

One open issue in model-order reduction method-
ology is the generation of reduced-order models that
are suitable for (optimal) control [19]. In [5] and [4]
it was shown that the reduced-order models of a CFD-
based model can have a state-space structure, which
is convenient for controller design. This was also ex-
ploited in [10] for optimal control of a 2D plate. While
the CFD models in these cases were nominally stable,
in this paper we extend the analysis to unstable mod-
els. This contribution demonstrates the possibility to
design stabilizing controllers for a class of systems that
would otherwise be very computationally demanding or
maybe even infeasible.

The paper is organized as follows. In section 2 the
proper orthogonal decomposition is presented. The full
CFD model of the unstable system is presented in sec-
tion 3.1, and the reduced-order model is derived in sec-
tion 3.2. A controller is designed in section 4 and vali-
dated in section 5, and concluding remarks can be found
in section 6.

Throughout this paper, we denote by p(4) the
spectral radius of a matrix A4, that is, the largest mod-
ulus of an eigenvalue.

2. POD Model-Order Reduction

First introduced independently by Karhunen [11]
and Loéve [13], POD is sometimes called the



Karhunen-Loéve expansion. When first applied in the
context of fluid mechanics in [14], it was used to study
turbulent flows. Applicable even for complex non-
linear problems, POD makes it possible to keep the es-
sential dynamics of the original model in order to per-
form controller design. Given the dynamical system to
be approximated

S (@), u())
gx(1),u(1)),

where x € R” denote the system states, u € R” are the
inputs to the system and y € R? are the system outputs.
It is assumed that the state x (¢) can be approximated as
a linear combination of r basis vectors

(1a)
(1b)

x ~ @F, @)

where £ € R” is the reduced state and ® € R is a
projection matrix containing as columns the r basis vec-
tors ¢, 9,,...,¢,. Substituting (2) into (1) and requir-
ing the resulting residual to be orthogonal to the space
spanned by ® gives the reduced-order model

(32)
(3b)

o= @Tf(@R(0),u()
o) = g(PR(0),u(r)),

where £ = ®7x € R” is the reduced state and y € R” is
the output of the reduced model. Several model reduc-
tion algorithms use the general projection framework
just described; however, they differ in the way the pro-
jection matrix @ is computed. The POD procedure pro-
ceeds as follows. Collect a finite number of samples
x(t;) of (1a) fort = #1,. ..t in a matrix of snapshots

2 =M = () x(8) - x ()], (@)

where the columns {2, j}ﬁ.ilcan be thought of as the
spatial coordinate vectors of the system at time step ¢;.
The rows {.2;, .}, describe the time trajectories of the
system evaluated at different locations in the spatial do-
main [12]. The snapshots may be taken from physical
experiments or from computer (CFD) simulations.

The reduced-order model will capture only the dy-
namics present in this data, and so the choice of snap-
shot data is critical. Suitable inputs should therefore be
used to excite the system, so that the desired character-
istics are present in the data.

For a given number of basis vectors 7, the POD ba-
sis is found by minimizing the error £ between the orig-
inal snapshots and their representation in the reduced
space, defined by
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where % () = ®®7x(t;). The minimizer @ is then
found as the set of left singular vectors of the snapshot
matrix 2", which is conveniently computed using the
singular value decomposition of 2",

2 =oxrv!, (6)
where the columns of ® = [¢,,...,¢,] form the opti-
mal orthogonal basis for the space spanned by Z°, @
and ¥ are unitary matrices (i.e. &' = ®7 ¥~ = p7)
and X is a diagonal matrix with the singular values o; of
Z on the diagonal. The » most significant basis func-
tions are associated with the r largest singular values
o, i=1,...r, of 2. If the singular values o; fall of
rapidly in magnitude, a reduced-order model may be
constructed that captures the most salient characteristics
of the snapshot data. A rigorous treatment of the con-
nection between SVD and POD can be found in [18].

3. Case Study: Heated Plate

3.1. CFD Model

To demonstrate how an unstable system can be sta-
bilized using POD and feedback control, we study heat
conduction in a plate. The plate is Im x 1 m, defin-
ing the two-dimensional computational domain Q =
[0,1] x [0,1] depicted in figure 1. The plate is insu-
lated along the boundaries, apart from the center of each
boundary, where four flux actuators are located. This
defines Neumann boundary conditions on all bound-
aries. The temperature T (¢,x,y) of the plate is governed
by the unsteady linear two-dimensional heat equation

o1
0y?

oT 22T

pcpy = W‘i’k

+8, @)
where p and c, are the density and specific heat capac-
ity of the plate, respectively, and k is the thermal con-
ductivity, that is assumed to be uniform over the compu-
tational domain and independent of temperature. Note
that x now and in the following denotes a spatial coor-
dinate and no longer the state variable. The source term
S£S.+Srisaterm containing heat sinks and sources.
In the present problem, convective heat transfer to the
surroundings gives rise to a sink term
Se=hA(T - T..) [W], (®)
where £ is the convective heat transfer coefficient, 4 is
the heat transfer area of the surface and T is the ambi-
ent temperature. Due to electric current, the plate is sub-
ject to an internal temperature-dependent heat source

ST =k1T [W/m3] y
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Figure 1. Sketch of plate with actuators on

boundaries (bold lines).

where k; > 0, at all points except from the boundary.
Intuitively, this positive feedback from the temperature
to the source may lead to a physically unstable system if
the convective heat loss to the surroundings is not large
enough. An increase in temperature will then lead to a
stronger source, which again increases the temperature,
and so on.

Discretizing the governing equation by the finite
volume method, (7) is integrated over each control vol-
ume CV and over the time interval from ¢ to ¢ + A¢, to
obtain [17]

aT

t+At
—dt | dV =
/CV </t P a1 )
t+At 92T
/t /C . (kaxz> dvd

t+At 2T t+At
+ / / <k2> dvdt+ / Sdvdr,
t cv 9y t cv

where the order of integration has been changed for the
first term. Using the numerically unconditionally stable
backward Euler (fully implicit) temporal discretization
and » grid points over the spatial domain Q, the system
(7) can be written as a system of n equations on the form

apTp = ay Ty +ap Tg +asTs+ay Ty +apTR +Su, (9)

where the a’s are coefficients and 7p is the temperature
at the grid point (point P) under consideration at time
step k+ 1. S, and Sp arise from discretizing the source
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T
293

k1
1000

p
1000

Cp k h
1000 | 1000 | 100

Table 1. Numerical values of parameters.

term S as

AV -8 =8, +SpTp, (10)

where Sp is included in ap. Using the convenient com-
pass notation, Ty, Tg, Ts and Ty are the temperatures
at the west, east, south and north adjacent grid points,
respectively, at time step k+ 1. T, 19 is the temperature at
grid point P at time step k. Collecting the temperature
at all grid points in a row vector T (k) € R” leads to a
discrete linear system of the form

ET (k+1)
(k)

where E € R"*" is a penta-diagonal matrix containing
the coefficients a,, aw, ag, as and ay and 4 € R"™" is
a diagonal matrix with a% on the main diagonal. B €
R ™ contains the contributions from the inputs, while
the constant source terms give rise to a constant term
vV eRr"

To validate that the plate model is unstable, we re-
arrange system (11) into regular state-space form by in-
verting £ and multiplying throughout (11) to obtain

AT (k) +Bu (k) + 7,

CT (k). an

T(k+1)
v (k)

where 4 € R™" B e R"™™ }V € R", y € R? and
C € RP*" The matrix E is indeed invertible in this
case, since it is strictly diagonally dominant, and conse-
quently non-singular. This is not necessarily possible in
general but it is often the case in simple 1D or 2D prob-
lems. It allows us to establish that the system matrix 4,
given the numerical parameter values in table 1, has an
unstable eigenvalue just outside the unit circle,

AT (k) + Bu (k) + V,

CT(K), (12)

p(A)>1. (13)

When the system matrices are of very high order, invert-
ing E, determining eigenvalues of the 4 and designing
a stabilizing controller are computationally demanding
tasks. This motivates the search for a reduced-order
model.

3.2. Reduced-Order Model

The PDE (7) is discretized using 50 grid points in
both the x- and y-direction. This gives in total 2500
states in the full model (12). To construct a model of re-
duced order, (12) is simulated for M = 600 time steps,



thus forming the matrix of snapshots Z". During this
simulation the inputs are varied randomly taking moder-
ate step changes over a suitable range to excite as much
of the system dynamics as possible. SVD of the snap-
shot matrix is performed, and the singular values are
considered in order to form the POD basis ®,, as de-
picted in figure 2. As can be seen from the figure the
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Figure 2. Singular values of the snapshot

matrix. The x’s indicate singular values cor-
responding to the extracted basis functions.
Note that the ordinate axis is logarithmic.

singular values fall off quite rapidly, and many of the
singular values are close to zero, indicating that the ba-
sis functions corresponding to those singular values can
be omitted without loss of information. There is no sys-
tematic approach to establish how many basis functions
that should be included in ®,. The heuristic criterion

2

p
i=1 Gi (14)

gives an indication on how much of the energy that is
conserved in the reduced-order model. If P ~ 1 most
of the energy is captured in the first » basis functions,
indicating a fairly accurate reduced-order model [5]. If
we choose » = 4 basis functions P = 99.99%. More-
over, if the reduced-order model has four states the
number of states in the reduced-order model is equal
to the number of inputs. Consequently, the reduced-
order model is fully actuated, which might be favorable
when tracking a reference profile for the complete state.
The reduced-order model is seen to be controllable and
hence also stabilizable. It should be noted that this does
not guarantee the existence of a controller designed for
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the reduced-order system that also stabilizes the full-
order model.

The basis @, defines the linear dimensionality-
reducing mapping H : R” — R, such that

A

T'=H(T)=o!T, (15)
and the expansion G : R” — R” such that
T=G(T)=o,T. (16)

By requiring that the residual is orthogonal to the space
spanned by the reduced basis and inserting 7 = ©,T
into (11) we get

OTED.T (k+1) = O 4D, T (k) + D Bu (k) + D V.
(17)

Defining E, £ ®! E®, allows us to write

E;'®TAD, T (k) + E, '@ Bu (k)
+E '@l (18)
where E, is invertible since £, T and ®, are all nonsin-

gular. This yields the reduced-order model on discrete
state-space form

T(k+1)

T(k+1)
v (k)

where T € R, u ¢ R", € R, A = E;'®T 4D,
R™>" B =E - '®IBc R, V = E '®I'V € R" and
C € RP*"_In this example, » = m = 4. To ensure track-
ing for the plate temperature, we set C to be the n x n
identity matrix. Consequently, C € R"*".

The reduced-order model (19) is unstable since

p(4)>1.

Note that the general POD procedure does not automat-
ically preserve stability properties during the reduction
process. Nominally stable models may result in unsta-
ble reduced-order models, and vice verca. In order to be
able to replace the analysis of the full model by analysis
of the reduced-order model it is important that the sta-
bility properties are well reflected in the reduced-order
model. This is the subject of on-going research. One
criterion for preserving stability properties in POD is
presented in [15]. The result is however not applicable
to models of very high order.

The reduced-order state 7" (k) is estimated online
through a linear observer of the form

(19)

(20)

T(k+1) = (A—LC)T(k)+Bu(k)+V +Ly(k),

where y (k) is the output from the high-order CFD
model and L is chosen such that p (4 — LC) < 1.



4. Controller Design

Feedback control is performed by use of heat flux
actuators on parts of the boundary of the domain, shown
as the bold lines in figure 1. The control objective is to
reach a constant temperature reference 7; while at the
same time rejecting disturbances. The reference tem-
perature Ty is set to be a uniform temperature of 300° K.

Since the full model is too large for controller de-
sign the reduced-order model is analyzed instead. The
reduced-order reference T, is found as Ty = CID,T 1.
Given the unstable reduced-order model (19), the con-
trol objective is to stabilize the system around the refer-
ence temperature. Defining the tracking error as

e(k) 2 Ty T(k), 1)
the control input is chosen as
u=Ke=K (T;—T(k)), (22)

where X is chosen such that p (4 — BK) < 1. The con-
troller gain K is taken to be the solution to the linear
quadratic regulator problem with infinite horizon, i.e.
the constant matrix K such that the state-feedback law

u(k) = —KT (k) (23)

minimizes the cost function

Jio= ¥ {TT 00T 0 +u®) Ru(k)},  @4)

k=ko
subject to the state dynamics

T(k+1) = AT (k)+Bu(k). (25)

The matrices Q and R are weighting matrices of suitable
dimensions.

Taking into consideration that the reduced-order
model is merely an approximation, the controller should
include integral action in order to minimize the steady-
state tracking error. To do this in a straightforward way,
we define the augmented state

7 A T(k) r+m
T(k){u(kl) e R™™, (206)
giving an augmented state-space model
T(k+1) = AT (k)+Bbu(k)+7, @7
y(k) = CT(k),
where
. 4 B ~
i e {OI}, ¢ 2 [,
(28)
~ A |B ~ A |V
3 - M e 1],

440

and Au (k) = u (k) —u(k—1). In this augmented state-
space model, integral action is built-in, and the input
increment Au (k) is found as

Au(k) =K (Ty— T (k)),

where K is the feedback gain matrix found above.

5. Numerical Simulation

Initially, the plate temperature is at rest at, and
equal to the ambient temperature at 293K. Atz =10
the inner source is switched on. Without control the
temperature of the plate is strictly increasing. The plate
temperature is shown for four different time instants in
figure 3. If the simulation is run for a longer period of

t= 24008 260008

3102,

1=12000s

00

y [m]

Figure 3. Plate temperature without control,
shown for ¢ = 2400, 6000, 9000 and 12000s.

time the temperature continues to increase, illustrating
the instability of the system.

Now, the full CFD-model is simulated with the
controller designed for the reduced-order model in
section 4. The weighting matrices Q and R in
(24) are set to Q = diag{50,50,50,50} and R
diag{0.0001,0.0001,0.0001,0.0001}. The system is
stabilized, and it is simulated until steady-state is
reached, after approximately ¢+ = 100 minutes. The
largest steady-state error is close to 3K, as shown in
figure 4.

It is seen that although the original CFD model is
symmetric, the controller based on the reduced-order
model does not manage to exploit this symmetry, since
the symmetry is not preserved in the model-order reduc-
tion scheme.

The simulation of the full closed-loop CFD model
illustrates that the plant has been stabilized.



t=6000s

304
302

& 300
b

=

G S
‘%{3,0 117, S
S SR
% /,"I/”/II//,,’,%”/// ‘ ‘:“\\“‘ S )

o e
298 | 06 g Rt
0y it
U

7
g

x[m]

Figure 4. Steady state temperature, shown
here for 1 = 6000s.

6. Concluding Remarks

In this paper we have demonstrated, using a case
study, that a CFD-model of an unstable system can be
stabilized through model-order reduction and a con-
troller designed for the reduced-order model. This
makes it possible to design stabilizing controllers for
systems that would otherwise be very computationally
demanding.

Further and on-going work include stability analy-
sis of reduced-order models of more general PDE-
models, and development of model-based reduction
methodology for control applications. The 2D plate
model analyzed here is viewed as a stepping stone in
this work.
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