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Abstract: In this paper we propose to use model reduction techniques to make explicit model
predictive control possible and more attractive for a larger number of applications and for longer
control horizons. The main drawback of explicit model predictive control is the large increase in
controller complexity as the problem size increases. For this reason, the procedure is limited to
applications with low-order models, a small number of constraints and/or short control horizons.
The proposed use of model reduction techniques is demonstrated for several applications, among
others for control of fuel cell breathing. In all applications, a significant reduction in controller
complexity is achieved.

1. INTRODUCTION

Model predictive control (MPC) is a control strategy that
has been widely adopted in the industrial process control
community and implemented successfully in many appli-
cations. The greatest strength of MPC is the intuitive way
in which constraints can be incorporated in a multivari-
able control problem formulation. Fast implementation of
model predictive control based e.g. on online optimization
in real-time systems has been considered among others by
Bleris and Kothare [2005]. However, the traditional MPC
strategy demands a great amount of online computation,
limiting the use of this kind of controllers to processes with
relatively slow dynamics, since an optimization problem
(often a constrained quadratic program) is solved at each
sampling time.

It has recently been shown that a great deal of the com-
putational effort in traditional MPC can be done offline.
In Bemporad et al. [2002], the authors proposed solving
multiparametric quadratic programs (mpQPs) that are
used to obtain explicit solutions to the MPC problem,
such that the control input can be computed by evaluating
a piecewise affine function of the system state. Thus, the
explicit model predictive controller (eMPC) accomplishes
online MPC functionality without solving an optimization
problem at each time step. This has several advantages:
Firstly, the online computational time can be reduced
to the microsecond-millisecond range, and secondly, MPC
functionality is achieved with low complexity, easily verifi-
able real-time code. Further, execution is deterministic,
and there is no need for floating point arithmetics (no
recursive numerical computations). All these advantages
justify the employment of eMPC in embedded and safety-
critical systems.

The main drawback of eMPC is the large increase in
both offline and online complexity as the size of the
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system models grow larger and the control horizon and
the number of constraints are increased. For this reason,
the procedure is limited to models of relatively low order,
typically with less than 10 states. This has motivated
the use of complexity reduction techniques, such as input
parametrization, as discussed in Tøndel and Johansen
[2002].

The main contribution of this paper is the joint use of
eMPC and rigorous model reduction techniques with up-
per bounds on the approximation error, thereby reducing
the complexity of eMPC. This makes the control scheme
attractive for a number of systems that would otherwise
be excluded due to the high complexity of the resulting
controllers.

Throughout the paper, positive (semi-) definiteness of
matrices is indicated by ≻ 0(� 0), G (s) denotes the
transfer function of a linear time-invariant system, while
‖·‖∞ and ‖·‖

2
denote the H∞ norm of a system and the

L2 norm of a signal, respectively. The identity matrix
is denoted by In, where subscript n denotes the matrix
dimension.

The paper is organized as follows: In Section 2 we briefly
introduce model reduction by balanced truncation. Section
3 describes model predictive control, and in particular
the explicit solution in 3.3. In Section 4 we discuss issues
regarding reduced-order MPC, before we demonstrate the
proposed methodology in examples in Section 5. Conclud-
ing remarks are made in Section 6.

2. MODEL REDUCTION BY BALANCED
TRUNCATION

The goal of model reduction is to derive a model of low
order that approximates the input-output behavior of the
original model in an appropriate manner. In this work we
use the balanced truncation introduced by Moore [1981]
to get models of reduced order, although other model
reduction techniques such as optimal Hankel model re-
duction or LQG balanced truncation could also be used.
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Balanced truncation is known to preserve stability; given
that the original model is asymptotically stable, balanced
truncation produces asymptotically stable reduced mod-
els. Controllability and observability are also preserved in
the model reduction process [Moore, 1981].

We consider stable, linear time invariant (LTI) systems
G (s) of the standard form

ẋ = Ax + Bu (1a)

y = Cx, (1b)

where x ∈ R
n, u ∈ R

m and y ∈ R
p denote the state,

input and output, respectively, and the matrices A, B
and C are of appropriate dimensions. Loosely speaking,
balanced truncation is done by truncating states that
give the least contribution to the input-output behavior.
This motivates considering the controllable and observable
subspaces of the state space. The controllable subspace
contains the set of states that can be reached with zero
initial state and a given input u(t), while the observable
subspace comprises those states that, as initial conditions,
can produce a non-zero output y(t) without external input.
The controllability and observability grammians P and Q
are n×n matrices whose eigenvectors span the controllable
and observable subspaces, respectively. The grammians
can be found by solving the Lyapunov equations

AP + PAT + BBT = 0, (2)

ATQ + QA + CT C = 0. (3)

A system is said to be balanced when the states that are
excited most by input are at the same time the states that
produce the most output energy. In such a realization, the
grammians are both equal to a diagonal matrix, say Σ,
with the elements σi on the diagonal in descending order,

P = Q = Σ. (4)

The diagonal elements σi are called the system’s Hankel
singular values. A balancing transformation T that brings
the system (1) on this form can be found as follows
[Obinata and Anderson, 2001]: Assuming that (1) is a
minimal realization (controllable and observable), P and
Q can be decomposed as

P = UcScU
T
c (5)

Q = UoSoU
T
o , (6)

where Uc and Uo are orthogonal transformations and Sc

and So are diagonal matrices. The matrix

H = S1/2
o UT

o UcS
1/2
c (7)

is constructed, and its singular value decomposition is
found as

H = UHSHV T
H . (8)

The balancing transformation is then given by

T = UoS
−1/2
o UHS

1/2

H , (9)

and the balanced realization is given by

Ā = T−1AT, B̄ = T−1B, C̄ = CT. (10)

Finally, the balanced system matrices can be partitioned
conformally as

Ā =

[

A11 A12

A21 A22

]

, B̄ =

[

B1

B2

]

, C̄ = [C1 C2] , (11)

and a truncated rth order model Gr (s) can be found as

ẋr = Arxr + Bru (12a)

yr = Crxr, (12b)

where xr ∈ R
r, y ∈ R

p and Ar , A11 ∈ R
r×r,

Br , B1 ∈ R
r×m and Cr , C1 ∈ R

p×r correspond
to the states with large Hankel singular values (σi, i =
1, . . . , r). Provided that the truncated σis are small, the
corresponding truncated states are minimally excited by
input, and at the same time contribute only slightly to
the output. The error introduced by balanced truncation
is upper bounded by

‖G (s) − Gr (s)‖∞ ≤ 2

n
∑

k=r+1

σk. (13)

This means that the error is equal to twice the sum of the
truncated Hankel singular values. The error can also be
represented in terms of a time-domain output error,

‖y (t) − yr (t)‖
2
≤ 2

n
∑

k=r+1

σk ‖u (t)‖
2
. (14)

3. MPC AND MULTIPARAMETRIC QUADRATIC
PROGRAMMING

A brief outline of the standard MPC formulation will be
given before we address the explicit solution.

3.1 A standard MPC formulation

The plant under consideration is modeled by the dis-
cretized state space model

xk+1 = Adxk + Bduk, (15a)

yk = Cdxk, (15b)

where k ∈ Z, and xk ∈ R
n, uk ∈ R

m and yk ∈ R
p denote

the state, input and output, respectively, at step k. The
matrices Ad, Bd and Cd are of appropriate dimensions.
For the regulator problem, the model predictive controller
solves at time step k the optimization problem

min
Uk

{

J (Uk, xk) = xT
k+N|kPxk+N|k (16a)

+

N−1
∑

i=0

(

xT
k+i|kQxk+i|k + uT

k+iRuk+i

)

}

subject to:

umin ≤ uk+i ≤ umax, i = 0, . . . ,M− 1 (16b)

ymin ≤ yk+i ≤ ymax, i = 1, . . . ,N (16c)

uk+1 = Kxk+i|k , M ≤ i ≤ N − 1 (16d)

xk|k = xk (16e)

xk+i+1|k = Adxk+i|k + Bduk+i, i ≥ 0 (16f)

yk+i|k = Cdxk+i|k, k ≥ 0, (16g)

where P , Q and R are weighting matrices of appropriate
dimensions. P and Q penalize deviation from zero of the
states xk+i at the end of the prediction horizon and over
the entire horizon, respectively, and R penalizes use of
control action u. In this work, the final cost matrix P and
gain K are calculated from the algebraic Riccati equation,
under the assumption that the constraints are not active

for k ≥ N . The sequence Uk =
[

uT
k uT

k+1 . . . uT
k+M−1

]T

contains the future control inputs that yield the best
predicted output with respect to the performance criterion
on the prediction horizon N , while M denotes the control
horizon. Throughout this paper, we let M = N , for
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simplicity. Once the set Uk has been found, the first
control input uk is applied to the process, before the
whole optimization is repeated at the next time step.
The optimization problem is then slightly different, having
been updated by a new process measurement, a new
starting point and an additional time slice at the end of
the horizon. It is assumed that the weighting matrices in
(16a) are such that P � 0, R ≻ 0 and Q � 0, and that
(Ad, Bd) form a stabilizable pair.

3.2 Computing the control input

Sensitivity analysis is a technique used to describe how
the solution to a mathematical program changes with
small changes in the problem parameters. Closely related
is parametric programming, where the solution is found
explicitly for a range of parameter values. Mathematical
programs that contain more than a single parameter
are commonly referred to as multiparametric programs
[Tøndel, 2003].

It is well established that implementing a model predictive
controller requires solving a quadratic program in Uk at
each time step [Maciejowski, 2001]. With some manipula-
tions, the problem in (16) can be written

min
Uk

{

1

2
UT

k HUk + xT
k FUk

}

(17a)

subject to: GUk ≤ W + Exk, (17b)

where the matrices H , F , G, W and E are functions of the
weighting matrices P , Q, R and the bounds umin, umax,
ymin and ymax. Further, since H ≻ 0 the problem is strictly
convex, and the Karush-Kuhn-Tucker conditions (KKT)
are sufficient conditions for optimality, giving a unique
solution Uk [Nocedal and Wright, 1999]. The problem (17)
can be viewed as a multiparametric quadratic program
(mpQP) in Uk, where xk is a vector of parameters.

3.3 MPC via multiparametric quadratic programming

By defining
z , Uk + H−1FT xk, (18)

the problem in (17) can be transformed into

min
z

{

1

2
zT Hz

}

(19a)

subject to: Gz ≤ W + Sxk, (19b)

which is a mpQP in z, parameterized by xk. The matrix
S is found as S = E + GH−1FT . Note that when the
control horizon is increased, the number of elements in Uk

increases, and consequently the number of free variables in
the problem (19) increases. Also, a higher number of states
leads to more parameters in the problem. By considering
the KKT conditions for (19), the solution z∗ can be shown
to remain optimal in a neighborhood of xk where the
active set remains optimal. The region in which this active
set remains optimal can be shown to be a polyhedron in
the parameter space (that is, the state space) [Bemporad
et al., 2002]. Then, (19) can be solved offline for the state
space area of interest. Computing the control input at a
time step k then becomes a straightforward task: Given
the system state xk, the optimal control inputs Uk are
obtained through an affine mapping,

Uk = Kixk + ki, (20)

where the subscript i denotes the ith affine function. Ki

and ki are constant within each polyhedral region in the
parameter space. The online effort is thus reduced from
solving a potentially large optimization problem at each
time step for traditional MPC, to evaluating a piecewise
affine function of the current state. By implementing
the piecewise affine function as a binary search tree, the
online computational time is logarithmic in the number
of polyhedral in the state space [Tøndel et al., 2003]. The
online memory and processing requirements increase with
the number of regions in the partition. This is therefore
used in the following as a measure of complexity of the
explicit model predictive controller, and a reduction in
the number of regions is considered to be a reduction in
controller complexity.

4. REDUCED-ORDER MPC

Reduced-order models will be used to design output-
feedback controllers for the systems. The eMPC control
input is computed based on the reduced state vector xr (k)
at every iteration, and xr must therefore be estimated by
an observer, based on measurements from the plant (or the
output of the original model). When we are dealing with
output constraints, it is particularly important that the
output of the reduced-order model is a good estimate of
the plant output, in order to satisfy the output constraints
for the plant. The observer(s) should therefore account for
the approximation error in the reduced model.

A basic linear observer such as the Luenberger observer,
does not account explicitly for uncertainties, that are am-
plified by the observer gain matrices. Consequently, the
state estimate may not be accurate enough in the pres-
ence of model perturbation. We therefore follow common
practice in the literature[Astrid et al., 2002, Muske and
Rawlings, 1993], and use a Kalman filter, which is known
to have desirable properties for systems with noise in
outputs and state equations. The Kalman filter is here
defined in terms of the discretized reduced model with
added noise,

xr (k + 1) = Arxr (k) + Bru (k) + Γw (k) (21a)

yr (k) = Crxr (k) + v (k) , (21b)

where v (k) and w (k) are assumed to be zero mean white
noise processes with covariance matrices Rk = RT

k ≻ 0
and Qk = QT

k ≻ 0, respectively, and where Γ defines the
mapping between w and the different states. In this setup,
the noise processes are expected to account for uncertainty
in the state equations through Γw (k), and the uncertainty
in the output through v (k).

4.1 Stability, Feasibility and Constraint Fulfillment

A number of questions regarding robust stability, feasi-
bility and robust constraint fulfillment arises when the
reduced model is used to control the high-order model.

Since the explicit MPC solution is equivalent to the stan-
dard MPC solution, many methods for robust stability
analysis techniques developed for standard MPC [Bempo-
rad and Morari, 1999] can be used to conclude stability for
the reduced-order eMPC in the presence of the uncertainty
introduced through the model reduction process. Some
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recent results on MPC stability in the presence of model
uncertainty have been developed [Heath et al., 2005b,
Heath and Wills, 2005, Heath et al., 2005a]. Also, tests for
robust MPC stability of input-constrained systems with
unstructured uncertainty have recently been established
by Løvaas et al. [2007]. The applicability of these meth-
ods to establish robustness in the context of MPC with
reduced-order models remains a challenging open research
question, and it is outside the scope of the current paper.
Instead we use the nominal model (the reduced model)
for controller design, and address certain robustness issues
during the design stage. While we do not explicitly analyze
the robustness of the reduced model predictive controller,
good performance is achieved by ad hoc tuning based on
exhaustive simulations for ranges of operating conditions.
In many cases this approach leads to better performance
than using robust MPC techniques. Choosing the right
robust MPC technique is an art, and much experience is
necessary to make it work [Bemporad and Morari, 1999].

Given the uncertainty introduced through the model re-
duction process, one cannot guarantee that feasibility of
the underlying optimization problem is maintained and
that the constraints on the states/outputs are fulfilled.
This problem can be handled through the use of soft
constraints. Constraints on the states/outputs often rep-
resent operational desirables rather than fundamental op-
erational constraints. In addition, from a practical point
of view it does not make sense to use tight state con-
straints because of the presence of noise, disturbances and
numerical errors. Relaxing the state constraints in effect
removes the feasibility problem, at least for stable systems
[Bemporad and Morari, 1999]. Exact penalty functions can
be used to allow constraint violation only when absolutely
necessary [Kerrigan and Maciejowski, 2000].

5. EXAMPLES

The proposed procedure will be demonstrated using 6
different random systems to illustrate the great potential
for complexity reduction, and two specific examples to
show performance when using reduced-order eMPC.

5.1 Example 1

Without considering approximation quality and closed-
loop performance, 6 different random systems of order
n = 6, with two inputs and two outputs have been
considered. For all six systems, the inputs and outputs
are constrained such that

|ui| ≤ 1, i = 1, 2 (22)

|yi| ≤ 1, i = 1, 2 (23)

and the control horizon is fixed at M = 4. The resulting
controller complexity is tabulated in Table 1.

The table shows that eMPC for the original system is very
demanding, with O

(

105
)

polyhedral in the state space
partition. But by truncating only one state, the controller
complexity is reduced to a manageable level, as the number
of regions is reduced by two orders of magnitude.

5.2 Example 2

For a random stable LTI system of order n = 15, the
input is constrained such that |u| ≤ 5 and the output

System/r 3 4 5 6

1 603 1447 1487 117573

2 625 1549 1589 122675

3 519 1095 1145 109656

4 539 1125 1136 95896

5 537 1033 1755 116438

6 513 1461 2145 109711

Table 1. Example 1: Controller complexity
(in terms of number of regions in the state)
for 6 random systems with two inputs and
two outputs, with upper and lower bounds on

inputs and outputs.

is constrained such that |y| ≤ 1. Figure 1 compares the
complexity of the eMPC solution for different model orders
r and different control horizons M for this example. For all
r and M, we set Q = 1×103 ·CT

r Cr and R = 1×10−3. The

5 6 7 8 9

3
4

5
6

7
8

9
10

11
12

13
14

15
0

2

4

6

x 10
4

r

R
eg

io
ns

?

M

Fig. 1. Example 2: Complexity in terms of number of
regions in the eMPC solution, for different model
orders r and different control horizons M. For r = 13,
14 and 15, no solutions have been found with control
horizon M = 9, indicated by the dotted line and the
question mark. The system order should be reduced
to r = 7 or even r = 6 to obtain a significant reduction
in complexity.

figure illustrates that the controller complexity increases
by over an order of magnitude as we include more states
in the reduced model and increase the control horizon
M. For r = 3, the number of regions ranges from 155
for M = 5 to 1287 for M = 10. For the original 15th
order model, we are unable to compute the state space
partition for M > 8, due to the formidable computational
requirement. The state space partition comprises 27442
regions for M = 8. For r = 12, the number of regions in
the state space partition is 55139 for M = 9.

The model reduction error bound (13) is shown in Table
2, and illustrates the trade-off that must be made between
controller complexity and quality of the reduced model,
and consequently the quality of the resulting controller.

From Figure 1 it can be seen that by reducing the number
of states down to 6, the controller complexity remains
relatively low for the control horizons considered. We
therefore generate our explicit model predictive controller
using 6 states in the reduced model. For r = 6, the
error bound is ‖G (s) − Gr (s)‖∞ ≤ 6.7 × 10−3. Still, the
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r Error bound

3 1.4 × 10−1

4 7.4 × 10−2

5 3.3 × 10−2

6 6.7 × 10−3

7 3.1 × 10−3

8 1.5 × 10−4

9 2.0 × 10−6

10 3.5 × 10−7

11 2.7 × 10−8

12 4.5 × 10−10

13 5.5 × 10−14

14 4.3 × 10−17

Table 2. Bound on model reduction error for
Example 2.

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

t[s]

 

 

FOM

0 1 2 3 4 5
−5

0

5

t[s]

 

 

FOM

y
u

r6

r6

Fig. 2. Top: Output y of Example 2 with eMPC based on
full order model (FOM) with M = 8 and reduced-
order model with r = 6 and M = 9. The output
is constrained between ±1. Bottom: Control input,
constrained between ±5.

eMPC controller based on the 6th order reduced model
is sufficient for control, as illustrated in Figure 2, where
it can be seen that both the input and the output are
kept within their bounds, when the plant is initialized
with a representative non-zero state vector. The horizon
length is M = 9 and the explicit MPC solution based on
the reduced-order model consists of 7625 polyhedral. The
figure shows the performance with eMPC based on the
full-order model, with a control horizon M = 8, for which
the controller consists of 27442 regions.

Although the error bound merely establishes a bound
on the error between the two transfer functions in open
loop, it does not guarantee performance, degree of sub-
optimality and constraint satisfaction for the closed loop
system, as discussed in Section 4.1. It is nevertheless an
indication that a great reduction in complexity might be
achieved without compromising the performance.

5.3 Example 3

This example is a linearized model for control of fuel
cell breathing, as described in Pukrushpan et al. [2004].

r/M 1 2 3 4 5

3 7 19 41 69 105

4 7 51 237 740 1813

5 7 55 333 1472 5020

6 7 55 331 1575 6068

7 7 57 393 2186 9964

8 7 61 445 2695 14999

Table 3. Controller complexity for Example
3. r = 8 corresponds to no model truncation

(r = n).

r Error bound

3 1.6 × 10−3

4 1.3 × 10−4

5 4.9 × 10−5

6 4.4 × 10−6

7 2.6 × 10−7

Table 4. Bound on model reduction error for
Example 3.

The model is a stable LTI with one input (compressor
voltage), two outputs (system net power and oxygen excess
ratio) and 8 states. Focusing on the methodology presented
above, we use a slightly simplified version of the model in
Pukrushpan et al. [2004], where we ignore disturbances
and assume that the performance variables are measured.
We discretize the model with sampling time Ts = 1 ms, and
derive reduced-order models with r = 3 to r = 7 states. For
these reduced models, we solve the eMPC offline problem
for eMPC horizons 1-5, with bounds on the input and
outputs:

|u| ≤ 5, |y1| ≤ 0.03, |y2| ≤ 0.2. (24)

We set the weight matrices to be Q = 1000 × CT
r Cr and

R = 1, where Cr is the output matrix corresponding
to the reduced model used for controller design. The
complexity of different eMPC controllers for this example
is shown in Table 3, while the model reduction error bound
(13) is shown in Table 4. It can be seen from Table 3
that the complexity of the controller increases rapidly for
the original model (r = 8), while the increase is less
pronounced for r = 3 and r = 4. The tables also show
that by truncating 4 states, the controller complexity is
reduced by an order of magnitude for M = 5, at the cost
of introducing an approximation error ‖G (s) − Gr (s)‖∞ ≤
1.3 × 10−4. If we reduce the number of states down to
r = 3, the number of regions in the state space partition is
reduced by over two orders of magnitude compared to the
original model, for M = 5. By truncating only one state,
the controller complexity is reduced by 34% for M = 5.

The simulation in Figure 3 shows the difference in closed
loop behavior when using the full-order model with 8
states, and reduced-order models with 3 and 7 states.

In this simulation, the eMPC horizon is M = N = 5,
which gives 105 regions in the controller for r = 3, 9964
regions for r = 7 and 14999 regions for the full-order
model with 8 states. Moreover, it can be seen that both
outputs remain within their bounds. The sub-optimality
of the reduced-order controllers is clearly illustrated in the
plot.
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Fig. 3. Example 3: Closed-loop response to a disturbance
at t = 0.05 s. The figure compares the performance
for the full-order model (FOM), and reduced models
with r = 3 (r3) and r = 7 (r7), all with M = 5.

6. CONCLUSIONS

It has been demonstrated that the performance of eMPC
based on reduced-order models is of comparable quality to
that of eMPC for the original systems. It is possible to use
longer control horizons, while at the same time keeping
the controller complexity low, at the cost of some con-
troller sub-optimality. The degree of complexity reduction
depends on the application, but is shown to be signifi-
cant in all our examples. For input-constrained and soft-
constrained systems, the approach is especially attractive,
since the requirements to satisfy the output constraints
need not be met. However, further work focuses on devel-
oping guarantees for satisfaction of output constraints.
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