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Stabilizing a CFD model of an unstable system through model
reduction†
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We demonstate stabilization of a computational fluid dynamics model of an unstable
system. The unstable heating of a two-dimensional plate is used as a case study.
Active control is introduced by cooling parts of the boundaries of the plate. The high
order of the original model is reduced by proper orthogonal decomposition, giving an
unstable reduced order model with a state space structure convenient for controller
design. A stabilizing controller based on pole placement is designed for the reduced
order model and integral action is included to enhance performance. The controller
is then applied to the full model, where it is shown through simulations to stabilize
the system. The demonstrated procedure makes it possible to analyze stability
properties and design control systems for a class of systems that would otherwise be
very computationally demanding.

1. Introduction

Control of fluid flow is a research area that has gained an increasing amount of
interest over the last decade, with a recent contribution in Aamo & Krstić (2002). Both
internal flow (flow inside bounded regions, such as within engines or turbomachinery)
and external flow (flow around vehicles or bodies) have recently been subject to an
increasing amount of interest from the control community. A nice review of advances
made in the intersection between control theory and fluid mechanics can be found in
Bewley (2001).

Distributed systems such as flow dynamics are modeled mathematically by a set of
partial differential equations (PDEs). In order to simulate such systems on a computer,
the PDEs are usually discretized using a set of tools known as computational fluid
dynamics (CFD) (Ferziger & Peric (2002), Anderson (1995), Versteeg & Malalasekera
(1995)). Although often acceptable for simulation purposes, the resulting discretized
models are often of such high order that it may be infeasible to use them in controller
design. For instance, numerical simulation of the full three-dimensional Navier-Stokes
equations is still too costly for the purpose of optimization and control of unsteady flows
Ravindran (2000).

There is, however, a potential for using model order reduction tools to reduce the
complexity of the models. Model reduction is a powerful tool, and a recent survey of
different techniques may be found in Antoulas et al. (2001). Although many of them
have been successfully used within the control community, methods such as Hankel
model reduction and balanced truncation are too computationally demanding for systems
of such high order as those encountered in many CFD applications.

Proper orthogonal decomposition (POD) is a popular technique that is still applicable
even for very high-order systems, using the method of snapshots that will be further
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presented in section 2. Nice examples of this approach have been shown e.g. in
Ravindran (2000) and Ravindran (2002), in active control of fluid flow over a backward-
facing step and forward-facing step, respectively, using finite element discretization of
the Navier-Stokes equations. In Astrid et al. (2002) and Astrid (2004) it was shown that
the reduced order models can have a state space structure, which is convenient for
controller design. In this paper we extend the analysis of the unsteady two-dimensional
heat equation studied in Astrid (2004) to also include a heat source that renders the plate
model unstable.

The paper is organized as follows. In section 2 the model order reduction technique
is presented. The full CFD model of the unstable system is derived in section 3.1, and
the reduced order model is found in section 3.2. A controller is designed in section 4 and
validated in section 5, before concluding remarks are offered in section 6.

2. POD model order reduction

First introduced independently by Karhunen (1946) and Loève (1946), POD is
sometimes called the Karhunen-Loève expansion. When first introduced in the context
of fluid mechanics in Lumley (1967), it was used to study turbulent flows. Applicable
even for complex non-linear problems, POD makes it possible to keep the essential
dynamics of the original model in order to perform the controller design. We will now
outline the procedure.

Consider the general transient model of a physical system

�x

�t
� D (x), (1)

where x �Rn is the state, � is a spatial coordinate and D (x) is some nonlinear partial
differential operator in the spatial variables Kirby (2001). By assuming that the state x
can be represented as a linear combination of r basis functions,

xr � �r� � �r

i � 1
	i�i, (2)

where xr �Rn is an approximation of the state, a reduced order model of (1) can be
derived. The matrix �r �Rn � r is an orthogonal projection matrix (i.e. �T

r�r � I ) whose
columns are orthonormal basis vectors 	i that span the ‘space’ of spatial dynamics of the
state, and the �i’s are time varying expansion coefficients (also called modal amplitudes).

The POD offers a way to find a reduced set of basis functions 	i, based on an
ensemble of data of the state trajectories x(t), using the method of snapshots Sirovich
(1987). The snapshots may be taken from physical experiments or from computer (CFD)
simulations. Since the procedure is purely data-driven, i.e. the basis functions are found
without considering the governing equations, finding the snapshot data is critical, since
the reduced-order model will capture only the dynamics present in the data. A suitable
input should therefore be used to excite the system, so that the desired characteristics are
present in the data. How to best choose suitable inputs is discussed in Astrid (2004).

The snapshots are collected in a matrix X,

X � [x1, x2 … , xN ] � [x(t1), x(t2), … , x(tN)], (3)

where the columns {X., j}
N
j � 1 can be thought of as the spatial coordinate vectors of the

system at time step tj. The rows {Xi, .}n
i � 1 describe the time trajectories of the system

evaluated at different locations in the spatial domain Kunisch & Volkwein (1999).
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The POD basis vectors 	 can be found by choosing the orthonormal set that
maximizes the cost Berkooz et al. (1993)

max



� | (x, 
) | 2	
(
, 
)

�
� | (x, 	) | 2	

(	, 	)
,

where (·, ·) is the scalar product operator and �·	 is a time averaging operator.
Equivalently, the basis functions can be found by performing singular value decompo-
sition (SVD) of the snapshot matrix X, which is the procedure followed in this paper. A
rigorous treatment of the connection between SVD and POD can be found in Volkwein
(1999). By SVD, the snapshot matrix is decomposed as

X � � � �T, (4)

where the columns of � � [�1,… �n] form the optimal orthogonal basis for the space
spanned by X, � and � are unitary matrices (i.e. �� 1 � �T, �� 1 � �T) and 
 is a
diagonal matrix with the singular values � of X on the diagonal. The r most significant
basis functions are associated with the r largest singular values of X. If the singular
values fall of rapidly, a reduced order model may be constructed that captures the most
salient characteristics of the original system.

The time varying expansion coefficients �i in equation (2) are determined through
Galerkin projection, a well-known method for generating a system of ordinary differen-
tial equations from a system of partial differential equations Canuto et al. (1988),
Constantin et al. (1989). To ensure that the original model is approximated as accurately
as possible, �i are found by requiring that the projection of the truncated solutions onto
the basis is zero,

�	i,
�xr

�t
� D(xr)�� 0, i � {1, … r}. (5)

By posing this constraint on �i(t) for a given set of basis functions 	i, the expansion
coefficients �i can be found by inserting (2) into (5) to yield r initial value problems
for �:

�̇(t) ��D ��r

i � 1
	i�i�, 	i�. (6)

If the initial values of equation (1) are given as x(0, �) � f(�), where � is a spatial
variable, the initial value for � is found from

�i(0) � (	i, f ). (7)

Thus the problem of solving a possibly complex PDE is reduced to that of solving a set
of ordinary differential equations.

Eventually, pursuing a reduced order system on the regular linear state space form,
the model reduction objective is to find a model

x̂(k � 1) � Âx̂(k) � B̂u(k),
(8)

ŷ(k) � Ĉx̂(k),

where x̂ �Rr, Â �Rr � r, u �Rm, B̂ �Rr � m, y �Rs and Ĉ �Rs � r where r �� n, that
approximates the system (1).
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3. Case study: Heated plate

3.1. Full CFD model

To demonstrate how an unstable system can be stabilized using POD and feedback
control, we study heat conduction in a plate. The plate is 1 m � 1 m, 1 cm thick, defining
the two-dimensional1 computational domain � � [0, 1] � [0, 1] depicted in Figure 1. The
plate is insulated along the boundaries, apart from the center of each boundary, where
four flux actuators are located. This defines Neumann boundary conditions on all
boundaries. The temperature T (t, x, y) on the plate is governed by the unsteady linear
two-dimensional heat equation

�cp
�T

�t
� k

�2T

�x2 � k
�2T

�y2 � S, (9)

where � and cp are the density and specific heat capacity of the plate, respectively, and
k is the thermal conductivity, that is assumed to be uniform over the computational
domain and independent of the temperature. Note that x now and in the following
denotes a spatial coordinate and no longer the state variable. The term S �

� Sc � ST

describes heat sinks and sources. In the present problem, convective heat transfer to the
surroundings gives rise to a term

Sc � hA(T � T	) [W], (10)

where h is the convective heat transfer coefficient, A is the heat transfer area of the
surface and T	 is the ambient temperature. Expression (10) is a source term whenever

Figure 1. Sketch of plate with actuators on boundaries (bold lines).

1A two-dimensional analysis is valid since the plate is so thin.
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T � T	 , and a sink term whenever T � T	 . Due to electric current, the plate is subject
to an internal temperature-dependent heat source

ST � k1T [W/m3],

where k1 � 0, at all points except from the boundary. Intuitively, this positive feedback
from the temperature to the source may lead to a physically unstable system if the
convective heat loss to the surroundings is not large enough. An increase in temperature
will then lead to a stronger source, which again increases the temperature, and so on.
Discretizing the governing equation by the finite volume method, (9) is integrated over
each control volume CV and over the time interval from t to t � �t, to obtain Versteeg
& Malalasekera (1995)

�
CV
��t � �t

t
�cp

�T

�t
dt� dV ��t � �t

t
�

CV
�k

�2T

�x2 � dV dt ��t � �t

t
�

CV
�k

�2T

�y2 � dV dt

��t � �t

t
�

CV
S dV dt,

where the order of integration has been changed for the rate of change term. Using the
unconditionally (numerically) stable backward Euler (fully implicit) temporal discretiza-
tion and M grid points over the spatial domain �, the system (9) can be written as a
system of M equations on the form

aPTP � aWTW � aETE � aSTS � aNTN � a0
PT 0

P � Su, (11)

where the a’s are coefficients and TP is the temperature at the grid point (point P) under
consideration at time step k � 1. Su and SP arise from discretizing the source term S as
�V · S � Su � SPTP. Using the convenient compass notation, TW, TE, TS and TN are the
temperatures at the west, east, south and north neighbor grid points, respectively, at time
step k � 1. T 0

P is the temperature at grid point P at time step k. Collecting the temperature
at all grid points in a row vector T(k) �RM leads to a discrete linear system on descriptor
form

ET(k � 1) � ĀT(k) � B̄u(k) � V̄,
(12)

y(k) � C̄T(k),

where E �RM � M is a penta-diagonal matrix containing the coefficients ap, aW, aE , aS and
aN and Ā �RM � M is a diagonal matrix with a0

P on the main diagonal. B̄ �RM � m contains
the contributions from the inputs, while the constant source terms give rise to a constant
term V̄ �RM.

Linear systems such as (12) can be solved either by direct methods, such as matrix
inversion or Gauss elimination, or by iterative methods, such as successive over-
relaxation or more sophisticated solvers. In the case of non-linear systems, for instance
when the thermal conductivity k is dependent on the temperature or the source term is
non-linear, iteration is required. In the CFD community, iterative methods are often
preferred rather than direct methods even when the equation system is linear, mainly due
to signifiantly smaller storage requirements. In a domain comprising M grid points, a
direct method will require the simultaneous storage of M2 coefficients, while an iterative
solver will only require the storage of the non-zero coefficients. Given the sparsity of the
coefficient matrices, the profit is considerable.
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To validate that the plate model is unstable, we rearrange system (12) into regular
linear state space form by inverting E and multiplying throughout (12) to obtain

T(k � 1) � AT (k) � Bu(k) � V,
(13)

y(k) � CT (k),

where A �RM � M, B �RM � m, RM, y �Rp and C �Rp � M. The matrix E is indeed
invertible in this case, since it is strictly diagonally dominant, and consequently
non-singular. This is not necessarily possible in general, but it allows us to establish that
the system matrix A has an unstable eigenvalue outside the unit circle,

��(A) �max � 1.00001 � 1. (14)

3.2. Reduced order model

The PDE (9) is discretized using 50 grid points in both the x- and y-direction. This
gives in total 2500 states in the full model (13). To construct a model of reduced order,
(13) is simulated for 600 time steps, thus forming the matrix of snapshots X. During this
simulation the inputs are varied to excite as much of the dynamics of the system as
possible. SVD of the snapshot matrix is performed, and the first four columns of �,
corresponding to the four largest singular values are extracted to form the POD basis �r,
as depicted in Figure 2. As can be seen from the figure the singular values fall off quite

Figure 2. Singular values of the snapshot matrix. The *’s indicate singular values corresponding
to the extracted basis functions. Note that the ordinate axis is logarithmic. From singular value 10–600,

every tenth singular value is plotted, for clarity.
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rapidly, and many of the singular values are zero, indicating that the basis functions
corresponding to those singular values can be omitted without loss of information.With
the first four basis functions, the heuristic criterion

P �

�r

i � 1
�2

i

�M
i � 1

�2
i

� 1, (15)

indicating a fairly accurate reduced order model Astrid et al. (2002). The criterion gives
an indication of the part of the energy that is conserved in the reduced order model.
Moreover, if the reduced order state has dimension four, then the number of states in the
reduced order model is equal to the number of inputs. Consequently, the reduced order
model is fully actuated, which might be favorable when tracking a reference profile for
the complete state. The basis �r defines the linear dimensionality-reducing mapping
H�RM �Rr, such that � � H(T ) � �T

r T, and the expansion G�Rr �RM such that
T � G(�) � �r�. To obtain the reduced order model on the form (8), the procedure
presented in Astrid et al. (2002) is followed. By applying the inner product criterion (6)
and inserting T � �� into (12), the reduced order model can be obtained:

�TE�r�(k � 1) � �TA�r�(k) � �TBu(k) � �TV (16)

Defining Er �
� �TE�r allows us to write

�(k � 1) � E� 1
r �TA�r�(k) � E� 1

r �TBu(k) � E� 1
r �TV, (17)

where Er is invertible since E, �T and �r are all nonsingular. This yields the reduced-
order model on discrete state space form

�(k � 1) � Â�(k) � B̂u(k) � V̂,
(18)

y(k) � Ĉ�(k),

where � �Rr, u �Rm, y �Rp, Â � E� 1
r �TA�r �Rr � r, B̂ � E� 1

r �TB �Rr � m,
V̂ � E� 1

r �TV �Rr and Ĉ �Rp � r. In this example, r � m � p � 4, and Ĉ is chosen to be
I4 � 4. In an actual implementation, �i should be reconstructed from measurements on the
real state T (t, x, y) through an observer, rather than measuring the whole reduced state,
as done in Astrid et al. (2002). Here we merely assume that all states �i are available
for feedback.

The reduced order model is unstable, since

��(Â) �max � 1.002 � 1, (19)

that is, outside the unit circle. In fact, the unstable eigenvalue of the reduced-order model
is larger than the unstable eigenvalue of the full model. Note that the general POD
procedure does not automatically preserve stability properties during the model reduction
process. Criteria for preserving stability properties are derived in Prajna (2003).

4. Controller design

Feedback control is performed by use of heat flux actuators on parts of the boundary
of the domain. The actuators are placed at the bold lines in Figure 1. The control
objective is to reach a constant temperature reference Td while at the same time rejecting
disturbances. The reference temperature is set to be a uniform temperature of 300°K.
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Since the full model is too large for controller design the reduced order model is
analyzed instead. The reduced order state reference �d is found as �d � �TTd. Given the
unstable reduced order model (18), the control objective is to stabilize the system around
the reference temperature. Defining the tracking error e(k) �

� �d � y(k), and recalling that
y(k) � Ĉ�(k) � �(k), the control input is chosen as

u � Ke � � Ky(k) � K�d, (20)

� � K�(k) � K�d, (21)

where K is chosen such that the eigenvalues of the closed-loop system matrix (Â � B̂K)
have magnitude less than one.

Taking into consideration that the reduced-order model is merely an approximation,
the controller should include integral action in order to minimize the steady-state error.
To do this in a straightforward way, we define the augmented state

�̃(k) �
� � �(k)

u(k � 1)
��Rr � m, (22)

giving an augmented state space model

�̃(k � 1) � Ã�̃(k) � B̃�u(k) � Ṽ,
(23)

ỹ(k) � C̃�̃(k),

where

Ã �
� �A

0

B

I
�, C̃ �

� [C 0],

(24)

B̃ �
� �B

I
�, Ṽ �

� �V

0
�,

and �u(k) � u(k) � u(k � 1). In this augmented state space, integral action is built-in, and
the input increment �u(k) is found as

�u(k) � K(�d � y(k)),

where K is the feedback gain matrix found above.

5. Numerical Simulation

Without control the temperature of the plate is strictly increasing. After 20 minutes
the highest plate temperature is 368°K. If the simulation is run for a longer period of
time the temperature continues to increase, illustrating the instability of the system. Now,
the full CFD-model is simulated with the controller designed for the reduced order
model in section 4. Initially, the plate temperature is equal to the ambient temperature
at 293°K. At t � 0 the inner source and controller are switched on, and the system is
simulated until steady-state occurs, after approximately 20 minutes. The largest steady-
state error is approximately 4°K, as shown in Figure 3.

It is seen that although the original CFD model is symmetric, the controller based on
the reduced-order model does not manage to exploit this symmetry, since the symmetry
is not preserved in the model reduction scheme.

The simulation of the full closed-loop CFD model illustrates that the plant has been
stabilized. The temperature distribution at steady-state is shown in Figure 4.
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Figure 3. Steady-state error, after 20 minutes.

Figure 4. Steady-state temperature, after 20 minutes.
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6. Concluding Remarks

In this paper we have demonstrated, using a case study, that a CFD-model of an
unstable system can be stabilized through model reduction and a controller designed for
the reduced order model. This makes it possible to study stability properties of systems
that would otherwise be very computationally demanding.

Further and ongoing work include stability analysis of reduced-order models of more
general PDE-models, and development of model reduction methodology. The 2D-plate
model of the current work is viewed as a step on the way in this work.
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