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Abstract

We demonstate stabilization of a computational
�uid dynamics model of an unstable system. The
unstable heating of a two-dimensional plate is used
as a case study. Active control is introduced by
cooling parts of the boundaries of the plate. The
high order of the original model is reduced by
proper orthogonal decomposition, giving an unsta-
ble reduced order model with a state space struc-
ture convenient for controller design. A stabilizing
controller based on pole placement is designed for
the reduced order model and integral action is in-
cluded to enhance performance. The controller is
then applied to the full model, where it is shown
through simulations to stabilize the system. The
demonstrated procedure makes it possible to an-
alyze stability properties and design control sys-
tems for a class of systems that would otherwise
be very computationally demanding.

1 Introduction

Control of �uid �ow is a research area that has
gained an increasing amount of interest over the
last decade, with a recent contribution in [1]. Both
internal �ow (�ow inside bounded regions, such as
within engines or turbomachinery) and external
�ow (�ow around vehicles or bodies) have recently
been subject to an increasing amount of interest
from the control community. A nice review of ad-
vances made in the intersection between control
theory and �uid mechanics can be found in [2].
Distributed systems such as �ow dynamics are
modeled mathematically by a set of partial dif-
ferential equations (PDEs). In order to simulate
such systems on a computer, the PDEs are usually
discretized using a set of tools known as compu-
tational �uid dynamics (CFD) ([3], [4], [5]). Al-
though often acceptable for simulation purposes,
the resulting discretized models are often of such

high order that it may be infeasible to use them
in controller design. For instance, numerical simu-
lation of the full three-dimensional Navier-Stokes
equations is still too costly for the purpose of op-
timization and control of unsteady �ows [6].

There is, however, a potential for using model or-
der reduction tools to reduce the complexity of the
models. Model reduction is a powerful tool, and a
recent survey of di¤erent techniques may be found
in [7]. Although many of them have been success-
fully used within the control community, meth-
ods such as Hankel model reduction and balanced
truncation are too computationally demanding for
systems of such high order as those encountered in
many CFD applications.

Proper orthogonal decomposition (POD) is a pop-
ular technique that is still applicable even for very
high-order systems, using the method of snapshots
that will be further presented in section 2. Nice
examples of this approach have been shown e.g.
in [6] and [8], in active control of �uid �ow over
a backward-facing step and forward-facing step,
respectively, using �nite element discretization of
the Navier-Stokes equations. In [9] and [10] it was
shown that the reduced order models can have a
state space structure, which is convenient for con-
troller design. In this paper we extend the analy-
sis of the unsteady two-dimensional heat equation
studied in [10] to also include a heat source that
renders the plate model unstable.

The paper is organized as follows. In section 2
the model order reduction technique is presented.
The full CFD model of the unstable system is de-
rived in section 3.1, and the reduced order model
is found in section 3.2. A controller is designed in
section 4 and validated in section 5, before con-
cluding remarks are o¤ered in section 6.



2 POD model order reduction

First introduced independently by Karhunen [11]
and Loève [12], POD is sometimes called the
Karhunen-Loève expansion. When �rst intro-
duced in the context of �uid mechanics in [13],
it was used to study turbulent �ows. Applicable
even for complex non-linear problems, PODmakes
it possible to keep the essential dynamics of the
original model in order to perform the controller
design. We will now outline the procedure.
Consider the general transient model of a physical
system

@x

@t
= D (x) ; (1)

where x 2 Rn is the state, � is a spatial coordinate
and D (x) is some nonlinear partial di¤erential op-
erator in the spatial variables [14]. By assuming
that the state x can be represented as a linear
combination of r basis functions,

xr = �r� =

rX
i=1

�i�i; (2)

where xr 2 Rr is an approximation of the state, a
reduced order model of (1) can be derived. The
matrix �r 2 Rn�r is an orthogonal projection ma-
trix (i.e. �Tr �r = I) whose columns are orthonor-
mal basis vectors �i that span the �space�of spa-
tial dynamics of the state, and the �i�s are time
varying expansion coe¢ cients (also called modal
amplitudes).
The POD o¤ers a way to �nd a reduced set of basis
functions �i, based on an ensemble of data of the
state trajectories x (t), using the method of snap-
shots [15]. The snapshots may be taken from phys-
ical experiments or from computer (CFD) simula-
tions. Since the procedure is purely data-driven,
i.e. the basis functions are found without consider-
ing the governing equations, �nding the snapshot
data is critical, since the reduced-order model will
capture only the dynamics present in the data. A
suitable input should therefore be used to excite
the system, so that the desired characteristics are
present in the data. How to best choose suitable
inputs is discussed in [10].
The snapshots are collected in a matrix X ,

X =
�
x1; x2 : : : ; xN

�
= [x (t1) ; x (t2) ; : : : ; x (tN )] ;

(3)
where the columns fX�; jgNj=1can be thought of
as the spatial coordinate vectors of the system at

time step tj . The rows fXi; �gni=1 describe the time
trajectories of the system evaluated at di¤erent lo-
cations in the spatial domain [16].
The POD basis vectors � can be found by choosing
the orthonormal set that maximizes the cost [17]

max
'
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�
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;

where (�; �) is the scalar product operator and h�i
is a time averaging operator. Equivalently, the
basis functions can be found by performing sin-
gular value decomposition (SVD) of the snapshot
matrix X , which is the procedure followed in this
paper. A rigorous treatment of the connection be-
tween SVD and POD can be found in [18]. By
SVD, the snapshot matrix is decomposed as

X = �
X

	T ; (4)

where the columns of � = [�1; : : :�n] form the
optimal orthogonal basis for the space spanned by
X , � and 	 are unitary matrices (i.e. ��1 =
�T ;	�1 = 	T ) and

P
is a diagonal matrix with

the singular values � of X on the diagonal. The
r most signi�cant basis functions are associated
with the r largest singular values of X . If the sin-
gular values fall of rapidly, a reduced order model
may be constructed that captures the most salient
characteristics of the original system.
The time varying expansion coe¢ cients �i in equa-
tion (2) are determined through Galerkin projec-
tion, a well-known method for generating a system
of ordinary di¤erential equations from a system of
partial di¤erential equations [19], [20]. To ensure
that the original model is approximated as accu-
rately as possible, �i are found by requiring that
the projection of the truncated solutions onto the
basis is zero,�

�i;
@xr
@t

�D (xr)
�
= 0; i = f1; : : : rg : (5)

By posing this constraint on �i (t) for a given set
of basis functions �i, the expansion coe¢ cients �i
can be found by inserting (2) into (5) to yield r
initial value problems for �:

_� (t) =

 
D
 

rX
i=1

�i�i

!
; �i

!
: (6)

If the initial values of equation (1) are given as
x (0; �) = f (�), where � is a spatial variable, the
initial value for � is found from

�i (0) = (�i; f) : (7)



Thus the problem of solving a possibly complex
PDE is reduced to that of solving a set of ordinary
di¤erential equations.
Eventually, pursuing a reduced order system on
the regular linear state space form, the model re-
duction objective is to �nd a model

x̂ (k + 1) = Âx̂ (k) + B̂u (k) ;

ŷ (k) = Ĉx̂ (k) ;
(8)

where x̂ 2 Rr, Â 2 Rr�r, u 2 Rm, B̂ 2 Rr�m, y 2
Rs and Ĉ 2 Rs�r where r � n, that approximates
the system (1).

3 Case study: Heated plate

3.1 Full CFD model

To demonstrate how an unstable system can
be stabilized using POD and feedback control,
we study heat conduction in a plate. The
plate is 1m � 1m, 1 cm thick, de�ning the two-
dimensional1 computational domain 
 = [0; 1] �
[0; 1] depicted in �gure 1. The plate is insulated
along the boundaries, apart from the center of
each boundary, where four �ux actuators are lo-
cated. This de�nes Neumann boundary conditions
on all boundaries. The temperature T (t; x; y) on
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Figure 1: Sketch of plate with actuators on bound-
aries (bold lines).

1A two-dimensional analysis is valid since the plate is so
thin.

the plate is governed by the unsteady linear two-
dimensional heat equation

�cp
@T

@t
= k

@2T

@x2
+ k

@2T

@y2
+ S; (9)

where � and cp are the density and speci�c heat
capacity of the plate, respectively, and k is the
thermal conductivity, that is assumed to be uni-
form over the computational domain and indepen-
dent of the temperature. Note that x now and in
the following denotes a spatial coordinate and no
longer the state variable. The term S , Sc + ST
describes heat sinks and sources. In the present
problem, convective heat transfer to the surround-
ings gives rise to a term

Sc = hA (T � T1) [W] ; (10)

where h is the convective heat transfer coe¢ cient,
A is the heat transfer area of the surface and
T1 is the ambient temperature. Expression (10)
is a source term whenever T > T1, and a sink
term whenever T < T1. Due to electric current,
the plate is subject to an internal temperature-
dependent heat source

ST = k1T
�
W=m3

�
;

where k1 > 0, at all points except from the bound-
ary. Intuitively, this positive feedback from the
temperature to the source may lead to a physically
unstable system if the convective heat loss to the
surroundings is not large enough. An increase in
temperature will then lead to a stronger source,
which again increases the temperature, and so on.
Discretizing the governing equation by the �nite
volume method, (9) is integrated over each control
volume CV and over the time interval from t to
t+�t, to obtain [5]Z

CV

�Z t+�t

t
�cp
@T

@t
dt

�
dV =Z t+�t

t

Z
CV

�
k
@2T

@x2

�
dV dt

+

Z t+�t

t

Z
CV

�
k
@2T

@y2

�
dV dt

+

Z t+�t

t

Z
CV
S dV dt;

where the order of integration has been changed
for the rate of change term. Using the un-
conditionally (numerically) stable backward Euler



(fully implicit) temporal discretization andM grid
points over the spatial domain 
, the system (9)
can be written as a system of M equations on the
form

aPTP = aWTW+aETE+aSTS+aNTN+a
0
PT

0
P+Su;
(11)

where the a�s are coe¢ cients and TP is the temper-
ature at the grid point (point P ) under considera-
tion at time step k+1. Su and SP arise from dis-
cretizing the source term S as�V �S = Su+SPTP .
Using the convenient compass notation, TW , TE ,
TS and TN are the temperatures at the west, east,
south and north neighbor grid points, respectively,
at time step k + 1. T 0P is the temperature at grid
point P at time step k. Collecting the tempera-
ture at all grid points in a row vector T (k) 2 RM
leads to a discrete linear system on descriptor form

ET (k + 1) = �AT (k) + �Bu (k) + �V ;
y (k) = �CT (k) ;

(12)

where E 2 RM�M is a penta-diagonal matrix con-
taining the coe¢ cients ap, aW , aE , aS and aN and
�A 2 RM�M is a diagonal matrix with a0P on the
main diagonal. �B 2 RM�m contains the contribu-
tions from the inputs, while the constant source
terms give rise to a constant term �V 2 RM .
Linear systems such as (12) can be solved either
by direct methods, such as matrix inversion or
Gauss elimination, or by iterative methods, such
as successive over-relaxation or more sophisticated
solvers. In the case of non-linear systems, for in-
stance when the thermal conductivity k is depen-
dent on the temperature or the source term is non-
linear, iteration is required. In the CFD commu-
nity, iterative methods are often preferred rather
than direct methods even when the equation sys-
tem is linear, mainly due to signi�cantly smaller
storage requirements. In a domain comprising M
grid points, a direct method will require the si-
multaneous storage of M2 coe¢ cients, while an
iterative solver will only require the storage of the
non-zero coe¢ cients. Given the sparsity of the co-
e¢ cient matrices, the pro�t is considerable.
To validate that the plate model is unstable, we re-
arrange system (12) into regular linear state space
form by inverting E and multiplying throughout
(12) to obtain

T (k + 1) = AT (k) +Bu (k) + V;
y (k) = CT (k) ;

(13)

where A 2 RM�M , B 2 RM�m, RM , y 2 Rp and
C 2 Rp�M . The matrix E is indeed invertible in
this case, since it is strictly diagonally dominant,
and consequently non-singular. This is not neces-
sarily possible in general, but it allows us to es-
tablish that the system matrix A has an unstable
eigenvalue outside the unit circle,

j� (A) jmax = 1:00001 > 1: (14)

3.2 Reduced order model

The PDE (9) is discretized using 50 grid points in
both the x- and y-direction. This gives in total
2500 states in the full model (13). To construct
a model of reduced order, (13) is simulated for
600 time steps, thus forming the matrix of snap-
shots X . During this simulation the inputs are
varied to excite as much of the dynamics of the
system as possible. SVD of the snapshot matrix
is performed, and the �rst four columns of �, cor-
responding to the four largest singular values are
extracted to form the POD basis �r, as depicted
in �gure 2. As can be seen from the �gure the sin-
gular values fall o¤ quite rapidly, and many of the
singular values are zero, indicating that the basis
functions corresponding to those singular values
can be omitted without loss of information.With
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Figure 2: Singular values of the snapshot matrix.
The ��s indicate singular values corresponding to
the extracted basis functions. Note that the or-
dinate axis is logarithmic. From singular value
10-600, every tenth singular value is plotted, for
clarity.

the �rst four basis functions, the heuristic crite-



rion

P =

Pr
i=1 �

2
iPM

i=1 �
2
i

� 1; (15)

indicating a fairly accurate reduced order model
[9]. The criterion gives an indication of the part of
the energy that is conserved in the reduced order
model. Moreover, if the reduced order state has
dimension four, then the number of states in the
reduced order model is equal to the number of
inputs. Consequently, the reduced order model
is fully actuated, which might be favorable when
tracking a reference pro�le for the complete state.
The basis �r de�nes the linear dimensionality-
reducing mapping H : RM 7! Rr, such that � =
H (T ) = �Tr T , and the expansion G : Rr 7! RM
such that T = G (�) = �r�. To obtain the re-
duced order model on the form (8), the procedure
presented in [9] is followed. By applying the inner
product criterion (6) and inserting T = �� into
(12), the reduced order model can be obtained:

�TE�r� (k + 1) = �
TA�r� (k)+�

TBu (k)+�TV
(16)

De�ning Er , �TE�r allows us to write
� (k + 1) = E�1r �TA�r� (k) + E

�1
r �TBu (k)

+E�1r �TV; (17)

where Er is invertible since E, �T and �r are all
nonsingular. This yields the reduced-order model
on discrete state space form

� (k + 1) = Â� (k) + B̂u (k) + V̂ ;

y (k) = Ĉ� (k) ;
(18)

where � 2 Rr, u 2 Rm, y 2 Rp, Â = E�1r �TA�r 2
Rr�r, B̂ = E�1r �TB 2 Rr�m, V̂ = E�1r �TV 2 Rr
and Ĉ 2 Rp�r. In this example, r = m = p = 4,
and Ĉ is chosen to be I4�4. In an actual implemen-
tation, �i should be reconstructed from measure-
ments on the real state T (t; x; y) through an ob-
server, rather than measuring the whole reduced
state, as done in [9]. Here we merely assume that
all states �i are available for feedback.
The reduced order model is unstable, since

j�
�
Â
�
jmax = 1:002 > 1; (19)

that is, outside the unit circle. In fact, the unsta-
ble eigenvalue of the reduced-order model is larger
than the unstable eigenvalue of the full model.
Note that the general POD procedure does not
automatically preserve stability properties during
the model reduction process. Criteria for preserv-
ing stability properties are derived in [21].

4 Controller design

Feedback control is performed by use of heat �ux
actuators on parts of the boundary of the domain.
The actuators are placed at the bold lines in �g-
ure 1. The control objective is to reach a con-
stant temperature reference Td while at the same
time rejecting disturbances. The reference tem-
perature is set to be a uniform temperature of
300 �K. Since the full model is too large for con-
troller design the reduced order model is analyzed
instead. The reduced order state reference �d is
found as �d = �TTd. Given the unstable reduced
order model (18), the control objective is to stabi-
lize the system around the reference temperature.
De�ning the tracking error e (k) , �d� y (k), and
recalling that y (k) = Ĉ� (k) = � (k), the control
input is chosen as

u = Ke = �Ky (k) +K�d; (20)

= �K� (k) +K�d; (21)

where K is chosen such that the eigenvalues of the

closed-loop system matrix
�
Â� B̂K

�
have mag-

nitude less than one.
Taking into consideration that the reduced-order
model is merely an approximation, the controller
should include integral action in order to minimize
the steady-state error. To do this in a straightfor-
ward way, we de�ne the augmented state

~� (k) ,
�
� (k)

u (k � 1)

�
2 Rr+m; (22)

giving an augmented state space model

~� (k + 1) = ~A~� (k) + ~B�u (k) + ~V ;

~y (k) = ~C~� (k) ;
(23)

where

~A ,
�
A B
0 I

�
; ~C ,

�
C 0

�
;

~B ,
�
B
I

�
; ~V ,

�
V
0

�
;

(24)

and �u (k) = u (k)�u (k � 1). In this augmented
state space, integral action is built-in, and the in-
put increment �u (k) is found as

�u (k) = K (�d � y (k)) ;

where K is the feedback gain matrix found above.



5 Numerical Simulation

Without control the temperature of the plate is
strictly increasing. After 20 minutes the highest
plate temperature is 368 �K. If the simulation
is run for a longer period of time the tempera-
ture continues to increase, illustrating the insta-
bility of the system. Now, the full CFD-model
is simulated with the controller designed for the
reduced order model in section 4. Initially, the
plate temperature is equal to the ambient tem-
perature at 293 �K. At t = 0 the inner source
and controller are switched on, and the system is
simulated until steady-state occurs, after approxi-
mately 20 minutes. The largest steady-state error
is approximately 4 �K, as shown in �gure 3.
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Figure 3: Steady-state error, after 20 minutes.

It is seen that although the original CFD model
is symmetric, the controller based on the reduced-
order model does not manage to exploit this sym-
metry, since the symmetry is not preserved in the
model reduction scheme.
The simulation of the full closed-loop CFD model
illustrates that the plant has been stabilized. The
temperature distribution at steady-state is shown
in �gure 4.

6 Concluding Remarks

In this paper we have demonstrated, using a case
study, that a CFD-model of an unstable system
can be stabilized through model reduction and a
controller designed for the reduced order model.
This makes it possible to study stability proper-
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Figure 4: Steady-state temperature, after 20
minutes.

ties of systems that would otherwise be very com-
putationally demanding.
Further and ongoing work include stability analy-
sis of reduced-order models of more general PDE-
models, and development of model reduction
methodology. The 2D-plate model of the current
work is viewed as a step on the way in this work.
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