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Abstract

In this paper two attitude determination methods are derived, implemented and compared. The QUater-
nion ESTimator (QUEST) algorithm is extended to include non-vectorized measurements, whereas the well
known Extended Kalman Filter has been implemented for performance comparison. The methods have
been developed for the Norwegian University Test Satellite (NUTS), as a part of the CubeSat project at
the Norwegian University of Science and Technology (NTNU). Due to the speci�cations of CubeSats, both
methods are customized for satellites with limited weight-, size- or �nancial budgets. The attitude estimation
is based on two vectorized measurements and data from a gyroscope. Both methods have been developed
and simulated in MATLAB. The code have been rewritten using C language. The methods are compared
both theoretically and experimentally with implementation and testing on an AVR microcontroller.

Testing indicates that the EKF provides a smoother estimation than the newly developed EQUEST. In
contrast to EQUEST, the EKF is able to estimate sensor biases. However, the EQUEST has signi�cantly
faster settling time and is less computational costly. Compared to the EKF, EQUEST runs more than 5
times faster. It also requires only 8% of the arithmetic operations of the EKF. Another disadvantage with
the EKF is tracking problems that occur when the two vectorized measurements are close to parallel. With
vectors close to parallel, the mathematical formulation of the EKF makes tracking of a rotation around the
parallel axis extremely di�cult. These di�culties are hardly observed in the EQUEST algorithm, which
makes it very attractive for attitude estimation.

For small satellites the magnetic �eld of the Earth is often used for attitude determination. A substantial
number of these satellites use magnetorquers for attitude control, a�ecting the local magnetic �eld. Hence,
control and estimation should not be done simultaneously, resulting in the estimation and control switching
on and o�. For this reason, the long settling time of the EKF makes the EQUEST even more attractive.

1. BACKGROUND

Attitude determination is an important subsystem in
satellites of all sizes. Knowledge of the satellites ori-
entation is crucial to perform space missions such as
nadir pointing control. Two common methods to esti-
mate the orientation are the Kalman Filter (KF) and
the Quaternion Estimator (QUEST) [1][2][3]. The
KF tries to fuse system dynamics, input data and

sensor measurements to estimate the best possible
attitude, whereas the QUEST calculates the attitude
by minimizing a cost function relating sensor mea-
surements with known references.

The equipment used for estimating the attitude
vary with price, power consumption and physical size.
The attitude estimation systems in this paper are
based on both the QUEST and the KF, designed
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especially for CubeSats [4]. A CubeSat is a cube
shaped picosatellite where the dimensions has been
standardized to 10×10×10 cm, with a weight limited
to 1.3 kg. NTNU takes part in a student CubeSat
project, designing a double cube - NUTS [5]. As
the name indicates, a double cube is 10×10×20 cm,
with a weight limited to 2.6 kg. The NUTS (NTNU
Test Satellite) project was started in September 2010.
The project is part of the Norwegian student satel-
lite program run by NAROM (Norwegian Centre for
Space-related Education). The projects goal is to de-
sign, manufacture and launch a double CubeSat by
2014. As main payload an IR-camera is planned, as
well as a short-range RF experiment. The satellite
will �y two transceivers in the amateur radio bands.
Ten students were involved in the project �rst half of
2011.

Two satellites have been developed at NTNU
earlier, each containing attitude estimation [6] .
Svartveit [7] estimated the attitude by using a dis-
crete Kalman �lter based on measurements from
magnetometer and sun sensor. The solar panels were
used as a crude sun sensor. The experiment Svartveit
did, indicated that the sun sensor seems to be inac-
curate mainly due to the Earths albedo e�ect. Ose
[8] made further work in order to implement the ex-
tended Kalman �lter (EKF) in MATLAB. Due to
the complexity of the EKF, only a linearized ver-
sion was implemented on a microcontroller. With
respect to all the challenges the previous NTNU stu-
dents unveiled, this paper base the attitude determi-
nation system on a di�erent approach. The estima-
tion is based on two vectorized measurements as well
as data from a gyroscope. Sabatini [9] developed an
extended Kalman �lter based on accelerometer, gy-
roscope and magnetometer, for use in biomedical en-
gineering. The extended Kalman �lter developed in
this project is adapted from the work done by Saba-
tini to �t the satellite.

Attitude can also be estimated using quaternion
estimation (QUEST). Markley [3] describes how two
vectorized measurements can be used to estimate ori-
entation. However, the method can only be used for
vectorized measurements, which makes the gyroscope
unsuited. Psiaki [1] has extended the QUEST in or-
der to handle an arbitrary dynamic model and to es-
timate errors such as rate-gyro biases. The extended
QUEST (EQUEST) developed in this paper, is based
on the work done by Psiaki and Markley, with focus
on integrating the nonvectorized gyroscope measure-
ments.

2. THEORY

2.1. Coordinate Frames

The following frames have been used to describe
the attitude of the satellite

BODY: This frame is attached to the satellite. In
the BODY frame the axes coincide with the principle
axes of inertia, and the positive z-axis is de�ned as
the vector pointing outwards from the quadratic side
of the satellite. The x- and y-axis are orthogonal to
the rectangular sides of the cube.

NED: North-East-Down (NED) is a local refer-
ence frame de�ned relative to Earth with the x-axis
pointing towards north, z-axis downwards perpen-
dicular to Earth's reference ellipsoid. The y-axis
completes a right handed orthogonal coordinate sys-
tem, with the positive y-axis pointing towards East.
Earth's reference ellipsoid is a mathematically de-
�ned surface �tted to approximate the shape of the
Earth.

2.2. Rotation Matrix

A rotation matrix R is used to describe a rotation
between two coordinate frames. It is common to de-
scribe the rotation from one frame to another as three
consecutive rotations. First a rotation ψ around the
z-axis, then a rotation θ around the rotated y-axis
and �nally a new rotation φ around the current x-
axis. The entire rotation from frame �a� to frame �b�,
is described as

R
a
b = Rz(ψ)Ry(θ)Rx(φ) [2.1]

The rotation matrix can be represented using quater-
nions [10][11]

R(q) = (q
2
4 − ‖q13‖

2
)I3×3 + 2q13q

>
13 − 2q4[q13×] [2.2]

A rotation matrix has the following properties

det(R) = 1 [2.3]

R
>

= R
−1 [2.4]

A vector in NED frame kn can be written in BODY
frame kb using rotation matrix as given below

k
b

= R
b
nk

n [2.5]
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2.3. Extended Kalman Filter (EKF)

The Kalman �lter is only applicable for linear sys-
tems. However, it is possible to extend the �lter to
also deal with nonlinear problems, but the �lter will
then lose some of its properties. The EKF is adapted
for nonlinear problems through a linearization of the
nonlinear equations for each iteration. Due to the
linearization, the EKF is not necessarily optimal and
can diverge if initial errors are too large or if the
system model is inaccurate. The EKF is an itera-
tive method where the estimates are based on several
measurements, as well as a process model.

De�ning the discrete nonlinear system as

xk = f(xk−1, uk−1) + wk−1 [2.6]

zk = h(xk) + vk [2.7]

where x is state vector, f(.) describes the system dy-
namics, u is control input, w is process noise, h is
the measurment model and v is measurement noise.
Both measurement and process noise are assumed to
be zero mean Gaussian. The subscript k denotes dis-
crete time. Using the system described above, the
equations for the extended Kalman �lter can be writ-
ten as [12]

Predict:

x̂
−
k = f(x̂k−1, uk−1) [2.8]

P
−
k = FkPkF

T
k +Qkal [2.9]

Update:

Kk = P
−
k H

>
k (HkP

−
k H

>
k + Rkal)

−1 [2.10]

x̂k = x̂
−
k +Kk(zk −Hkx̂−k ) [2.11]

Pk = (I −KkHk)P
−
k [2.12]

where x̂ denotes estimated state vector, P is error co-
variance matrix, K is calculated Kalman gain and

Fk =
∂f

∂x

∣∣∣∣
x̂k−1,u

[2.13]

is the derivative of the nonlinear system with respect
to the states, and

Hk =
∂h

∂x

∣∣∣∣
x̂k−1

[2.14]

is the derivative of the measurement equations with
respect to the states.

As these equations show, the nonlinear model is
still used in predicting the new states, whereas a lin-
earized model is used for comparing the measure-
ments with the current states in the update phase and
for computing the covariance matrix and the Kalman
gain. Rkal is the measurement covariance matrix, and
Qkal is the process covariance.

2.4. Quaternion Estimation

Another method for estimation of the rotation
matrix based on the sensor measurements is the
QUaternion ESTimator (QUEST) [1]. QUEST will
minimize the cost function de�ned as

J(q) =
1

2

n∑
j=1

1

σ2
j

(bj − Rib(q)rj)
>

(bj − Rib(q)rj)

=
1

2

n∑
j=1

1

σ2
j

(b
T
j bj − 2b

>
j R

i
b(q)rj + r

>
j rj) [2.15]

where rj are known unit vectors in the NED frame,
and bj are unit vectors of the measured observations
in the body-�xed frame. σj are the standard devia-
tion of the measurement error. However, both rj and
bj are unit vectors, and this reduces the equation to

J(q) =
n∑
j=1

1

σ2
j

(1− b>j R
i
b(q)rj) [2.16]

Minimizing J is equivalent to maximizing

JQUEST (q) =

n∑
j=1

1

σ2
j

b
>
j R

i
b(q)rj [2.17]

The QUEST does not depend on initial conditions,
which is a great advantage. Another advantage is
that the algorithm can be solved exactly by solving
an eigenvalue problem. However, the QUEST algo-
rithm can only estimate the attitude quaternions.
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2.5. Attitude Estimation Using EKF

The theory of the EKF was explained in Section
2.3. There are several ways to con�gure the EKF
for attitude estimation based on vectorized measure-
ments and a gyroscope. Here, the state vector was
chosen to consist of the quaternions q and the biases
from both vectorized measurements bv1 and bv2. The
state vector x is given below

x =
[
q bv1 bv2

]>
where

q =
[
q1 q2 q3 q4

]>

bv1 =
[
bv1,x bv1,y bv1,z

]>

bv2 =
[
bv2,x bv2,y bv2,z

]>
The great advantage of estimating the biases of the
two vectorized measurements is that the EKF will
subtract them from the measurements during the
next iteration. This will increase the precision of
the measurements and give a more accurate attitude
estimate. Since all the measurements are done in
the BODY frame and the reference model is given
in the NED frame, the sensor model includes a rota-
tion matrix R(q). The rotational matrix introduce a
non-linearity in the measurement matrix. The mea-
surement model z is given by the two vectorized mea-
surements as

z =
[
vb1 v

b
2

]> [2.18]

where

v
b
1 = R

b
n(q)v

n
1,real + b

b
v1 [2.19]

v
b
2 = R

b
n(q)v

n
2,real + b

b
v2 [2.20]

In order to include angular velocity as a state,
a dynamical model of the satellite can be used. An
alternative is to use the measurements from the gyro-
scope to estimate the dynamical model for the quater-
nions. The kinematic di�erential equation for unit
quaternions can be written as [9][10]

q̇ =
1

2

 ω× ω

−ω> 0

 q [2.21]

where

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 [2.22]

with

ω =
[
ω1 ω2 ω3

]>
being the angular velocity measured in the body
frame. Further, constant bias can be assumed from
the two vectorized measurements:

ḃv1 = 0 [2.23]

ḃv2 = 0 [2.24]

The di�erential equation for the entire system is
therefore [9]

ẋ =
[
q̇ ḃv1 ḃv2

]>

=


1
2

 ω× ω

−ω> 0

 0 0

0 0 0

0 0 0



q

bv1

bv2

 [2.25]

Note that the system equation is linear, making the
computation of the EKF less complicated. However,
an EKF is still necessary due to the nonlinearity in
the measurement model.

The system in Equation [2.25], is given in contin-
uous time. For computer implementation, discretiza-
tion is required. The system is discretized using zero-
order hold with sampling time Ts. The discrete sys-
tem will be given as

xk+1 =


z 0 0

0 I3x3 0

0 0 I3x3

 xk [2.26]

where

z = expm

 1

2

 ω× ω

−ω> 0

Ts
 [2.27]

with expm being the matrix exponential.
Note that the angular velocity is not a part of the

measurement vector, nor the state vector. As men-
tioned earlier, the measurements from the gyroscope
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will be indirectly integrated in the EKF through the
dynamical model of the quaternions.

The vectors explained above are used in the equa-
tions in Section 2.3 to iteratively compute the atti-
tude of the satellite.

2.6. Extended Quaternion Estimator

As mentioned in Section 2.4, the QUEST algo-
rithm is not able to utilize the measurements from
the gyroscope. However, it is possible to extend
the QUEST and implement an Extended QUaternion
ESTimator (EQUEST) in order to include the gy-
roscope measurements. The main idea behind the
EQUEST is to modify the cost function. This is
done by adding another term, containing the gyro-
scope measurements.

By tracking the rotation based on gyroscope mea-
surements, it is possible to penalize deviations from
the rotation matrix estimated by the gyroscope alone.

Jgyro(q) =
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.28]

here q̂gyro is the estimated attitude quaternion based
on gyroscope tracking, and D is a diagonal weighting
matrix. The main idea by using the term q − q̂gyro is
to minimize the cost function. Note that the term
q − q̂gyro is not an attitude quaternion.

The EQUEST can be expanded further by adding
a prediction term. The prediction is most suitable for
applications where it is possible to forecast upcoming
orientation based on previous behavior. It can also
be used to �lter out noise. The slow and predictable
change of attitude for the satellite makes it possible to
use previous attitude calculations to estimate future
orientation. For a short period of time, the attitude
change will be minimal. However, as several attitude
calculations are done in this period it is possible to
establish a linear relation between time and change
of attitude. This is illustrated in Figure 2.1. A de-
viation from the predicted term can be penalized in
the cost function by adding the following term

Jpre(q) =
1

2
(q − q̂pre)>S(q − q̂pre) [2.29]

where q vector contains attitude quaternions, q̂pre is
the predicted attitude based on previous observa-
tions, S is the state weight matrix.

Figure 2.1: Linear prediction based on past orientations. Note

that the motion is exaggerated for illustrational purposes.

Extending Equation [2.17] with the two terms de-
scribed in [2.28] and [2.29] gives

JEQUEST = JQUEST + Jgyro + Jpre

=
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)
>

(bj − Rib(q)rj)
}

+
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.30]

+
1

2
(q − q̂pre)>S(q − q̂pre)

subject to

q
>
q = 1 [2.31]

It is possible to rewrite both extensions to quadratic
terms. By writing the entire equation in quadratic
form, the cost function can be minimized using well-
known optimization techniques [13].

Note that the EQUEST is still not able to esti-
mate the biases. It is possible to estimate the biases
using other methods, and then subtract them from
the measurements used in EQUEST. Due to compu-
tational costs, this is not considered here.

2.7. Solving the Extended Quaternion Estimator

One option for solving the minimization problem
given in [2.30] and [2.31] is to use the Lagrangian
multiplier method. However, the cost function has to
be written on the special form

J(x) =
1

2
x
>
Gx+ x

>
c [2.32]

where G is a positive de�nite matrix and c is constant
with respect to x. The original QUEST criterion in
[2.15] can be posed in the quadratic form [3]

g(q) = −q>V q [2.33]
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where V is a symmetric matrix given by

V =

U − ϕI3×3 Z

Z> ϕ

 [2.34]

with

U = L+ L
> [2.35]

L =
n∑
j=1

1

σ2
j

(bjr
>
j ) [2.36]

Z =


L23 − L32

L31 − L13

L12 − L21

 [2.37]

ϕ = trace(L) [2.38]

The gyroscope tracking needs to be written in the
same quadratic form in order to solve EQUEST with
Lagrangian multipliers:

Jgyro(q) =
1

2
(q − q̂gyro)

>
D(q − q̂gyro) [2.39]

=
1

2
(q
>
Dq − q>Dq̂gyro

−q̂>gyroDq + q̂
>
gyroDq̂gyro). [2.40]

Since

(q̂
>
gyroDq)

>
= q̂
>
gyroDq = q

>
Dq̂gyro [2.41]

we can rewrite [2.39] as

Jgyro(q) =
1

2
(q
>
Dq − 2q

>
Dq̂gyro + q̂

>
gyroDq̂gyro) [2.42]

Further, the term q̂TgyroDq̂gyro will be constant with
respect to q. This term will not a�ect the minimiza-
tion problem, hence it can be removed. Now the gy-
roscope part of the cost function can be written in
quadratic form as

Jgyro(q) =
1

2
q
>
Dq − q>Dq̂gyro [2.43]

Exactly the same as above can be done to write the
prediction term in quadratic form

Jpre(q) =
1

2
q
>
Sq − q>Sq̂pre [2.44]

By adding [2.43] and [2.44] with [2.33], the entire
EQUEST can be written in quadratic form as:

JEQUEST (q) =
1

2
q
>

(D + S − V )q

+q
>

(−Dq̂gyro − Sq̂pre) [2.45]

Introducing new variables

κ = D + S − V [2.46]

ξ = −Dq̂gyro − Sq̂pre [2.47]

the problem will be to minimize

JEQUEST (q) =
1

2
q
>
κq + q

>
ξ [2.48]

subject to

q
>
q = 1 [2.49]

The Lagrangian equation is now given as

L =
1

2
q
>
κq + q

>
ξ +

λ

2
(q
>
q − 1) [2.50]

The q that minimizes [2.48] is found as

dL
dq

= κq + ξ + λIq = 0 [2.51]

q = −(κ+ λI)
−1
ξ. [2.52]

By combining [2.49] and [2.52], the constraint can be
written as

ξ
>

(κ+ λI)
−2
ξ = 1 [2.53]

The largest positive real λ will give the global mini-
mum for Equation [2.48][1]. Further κ is a symmetric
matrix, hence it can be factorized as

κ = M


−λ1 0 0 0

0 −λ2 0 0

0 0 −λ3 0

0 0 0 −λ4

M> [2.54]

where λi are the eigenvalues of κ, and M is an orthog-
onal eigenvector matrix. By introducing

c =


c1

c2

c3

c4

 = M
>
ξ ⇔ ξ

>
= c
>
M
>
, [2.55]

[2.53] can be written as

c
>
M
>


M


−λ1 0 0 0

0 −λ2 0 0

0 0 −λ3 0

0 0 0 −λ4

M>

+


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ





−2

Mc− 1 = 0 [2.56]
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Because the matrix is diagonal, and the inverse of an
orthogonal matrix is the transposed of the orthogonal
matrix, this can be simpli�ed to

c
>
M
>

Υ
−2
Mc− 1 = 0 [2.57]

where

Υ = M


λ− λ1 0 0 0

0 λ− λ2 0 0

0 0 λ− λ3 0

0 0 0 λ− λ4

M> [2.58]

Now since M is orthogonal, M>M = I. Further, the
inverse of a diagonal matrix can be computed element
by element. Equation [2.57] can now be written as

c
>



1
(λ−λ1)2

0 0 0

0 1
(λ−λ2)2

0 0

0 0 1
(λ−λ3)2

0

0 0 0 1
(λ−λ4)2

 c− 1 = 0 [2.59]

or

c21
(λ− λ1)2

+
c22

(λ− λ2)2
+

c23
(λ− λ3)2

+
c24

(λ− λ4)2
− 1 = 0 [2.60]

The optimal λ (λopt) will be larger than the smallest
eigenvalue[1]. After λopt is identi�ed, it can be sub-
stituted back into Equation [2.52] to �nd the q that
minimizes the cost function.

In contrast to EKF, EQUEST is not able to esti-
mate the sensor biases. The state vector is therefore
chosen to be the quaternion

x = q =


q1

q2

q3

q4

 [2.61]

Equation [2.21] is used to estimate the q̂gyro term
in EQUEST. We propose to calculate the q̂pre term by
using simple linear regression with a window size of
10 samples. The next quaternion vector is predicted
by using the 10 latest samples, and �tting them to
an equation for a line

y(t) = b0t+ b1 [2.62]

b0 will represent the slope of the line, while b1 is the
measured value at t = 0. With n observations, b0 and
b1 can be found by solving the following formulas [15]

b0 =

n
n∑
i=1

y(ti)ti −
n∑
i=1

ti
n∑
i=1

y(ti)

n
n∑
i=1

(t2i )−
(

n∑
i=1

ti

)2
[2.63]

b1 =

n∑
i=1

y(ti)
n∑
i=1

t2i −
n∑
i=1

ti
n∑
i=1

tiy(ti)

n
n∑
i=1

t2i −
(

n∑
i=1

ti

)2
[2.64]

The next q̂pre is estimated using the linear relation
found with the last 10 samples using the values b0

and b1 as slope parameters. Note that the prediction
term does not have to be linear. However, it is chosen
to be linear for this particular case. In case of less
strict restrictions on calculations power or time, the
prediction term might even be an EKF.

3. IMPLEMENTATION

3.1. Microcontroller

In order to test the estimation methods, both
EKF and EQUEST were implemented in MATLAB.
Both methods were later implemented on microcon-
trollers. During testing, an 8-bit microcontroller from
Atmel was used. In addition to the estimation meth-
ods, several important functions were con�gured. A
watchdog timer was implemented to reset the micro-
controller in case the software run into an endless
loop. Sleep mode for the microcontroller were also
con�gured. The satellite does not have to estimate
the attitude all the time. When no attitude data is
required, activating the sleep mode can save consid-
erable amount of power.

3.2. Implementing the Kalman Filter in C

In order to implement the extended Kalman �l-
ter on the microcontroller, it was written using C
language. This introduces some di�culties, as sev-
eral mathematical operations are not supported in
C. First of all, C does not support matrix multiplica-
tion which is an essential part of the Kalman �ltering.
Secondly the matrix inverse operation does not exist.
The third challenge is to �nd the transpose of a ma-
trix. Since the module should be used on-board a
satellite, the memory usage should be as optimal as
possible. Hence, it is not desirable to implement an
entire math library in order to perform the matrix op-
erations. Therefore only the necessary methods have
been implemented on the microcontroller.

C supports two-dimensional arrays which looks
very similar to a matrix. Using double arrays makes
the code more complex. Therefore, matrices were
transformed into one dimensional arrays before im-
plementation. An example is given below.


0 1 2

3 4 5

6 7 8

⇒ [
0 1 2 3 4 5 6 7 8

]
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Using 3 for-loops, matrix multiplication can be im-
plemented. For each iteration in the Kalman �lter,
two matrices must be transposed. These matrices
have dimensions 10 × 10 and 6 × 10, and can easily be
transposed using two for-loops.

Computing the inverse of a matrix is only possible
if the matrix is positive-de�nite. The matrix which
is to be inverted in the Kalman �lter has properties
making it always invertible. It is a 6×6 symmetric ma-
trix, meaning it is Hermetian, and since every eigen-
value in Hermetian matrices is positive, the matrix
is positive de�nite. An e�cient way to compute the
inverse of a matrix is by performing an LU decompo-
sition. The algorithm for inverse operation using LU
decomposition can be found in [16]. The code in this
book is optimized for personal computers implying
minor changes to adapt it for a microcontroller.

3.3. Implementing the EQUEST in C

The EQUEST was also written using C language.
Two challenges arise when the code is rewritten from
MATLAB to C: one matrix inversion and one eigen-
value problem. However, it is only a matrix inverse
of size 4-by-4. Since the matrix is so small, it is
more e�cient to invert it using the adjoint method
than the LU decomposition. For larger matrices, the
adjoint method tends to be computational costly as
the number of operations increase as O(n!). To solve
the EQUEST, it is necessary to identify the smallest
eigenvalue and all eigenvectors of a symmetric 4-by-
4 matrix. This is done by implementing the cyclic
Jacobi method which returns all eigenvalues and the
corresponding eigenvectors of the input matrix [17].

4. RESULTS AND SIMULATIONS

4.1. Extended Kalman Filter

The performance of the algorithms have been
evaluated both in expended run time and number
of arithmetic operations. The expended run time is
found by setting a �ag at the start of each cycle,
and then resetting the �ag after the execution. The
run time of the EKF is about 200 milliseconds. By
introducing a global counter in the algorithm, it is
possible to detect how many arithmetic operations
each cycle executes. The linearization contains quite
a large amount of numerical operations. On average
EKF required about 40 000 operations.

4.2. Extended Quaternion Estimation

Compared to the EKF, the EQUEST requires less
matrix multiplications, and only a 4-by-4 matrix in-
version. However, the eigenvalues and eigenvectors
of a 4-by-4 matrix must be found. The EQUEST

algorithm, does not require any linearization. The
number of arithmetic operations for the EQUEST
was found to be about 3200, which is only 8% of
the EKF's operations. The run time for EQUEST is
about 40ms. This means that EQUEST is approxi-
mately 5 times faster than the EKF. The linear pre-
diction term will have a low-pass �ltering e�ect, as
high frequent changes in position will be suppressed.
This is illustrated in Figure 4.1. The �gure clearly
indicates that the EQUEST with linear prediction is
much smoother than without prediction.
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Figure 4.1: EQUEST with and without linear prediction

4.3. Experimental Comparison of the Two Methods

Hardware con�guration

For testing purposes, a prototype was designed.
The prototype was based on an CHIMU Micro AHRS
IMU consisting of a three-axes accelerometer, magne-
tometer and gyroscope. The accelerometer can not
be used onboard the satellite. However, due to test
simplicity it was chosen as one of the vectorized mea-
surements for the prototype. Data from the IMU
is sent to an AVR ATMEGA2561 microcontroller,
where both attitude estimation methods are imple-
mented. A picture of the prototype is given in Figure
4.2.
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Figure 4.2: Designed prototype

The following experiments are done using the pro-
totype running both methods simultaniously. The
estimated attitude from the prototype were contin-
iously sent to the computer for plotting through serial
communication.

Tracking

To compare the performance of the newly de-
veloped EQUEST with the well-known EKF, both
methods were implemented on the same microcon-
troller. They had the same input data and ran simul-
taneously sending the estimated attitude to a com-
puter. Figure 4.3 indicates that both methods are
able to track arbitrary rotations. The �gure shows
that the estimated orientation is almost identical for
both EKF and EQUEST. However, it can be ob-
served that the EQUEST has faster tracking than the
EKF. EQUEST and EKF solve the attitude problem
in quite di�erent ways. Whereas EQUEST solves the
problem in one iteration, the EKF iteratively calcu-
lates the solution. Hence, the EQUEST provides a
faster estimation for quick orientational changes.
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Figure 4.3: EKF vs EQUEST.

Start-up

One of the greatest di�erences between EKF and
EQUEST is observed during the start-up phase. The
EKF uses many iterations to converge towards the
correct attitude. For each iteration, the EKF will
improve the estimated orientation. The number of
iterations used by the EKF will be dependent on its
tuning parameters. In addition the start-up phase of
the EKF will be greatly in�uenced by the dissipation
of the vectorized measurements. Perpendicular mea-
surement vectors will give the fastest start-up phase.
However, the EQUEST will solve an eigenvalue prob-
lem to achieve the correct attitude in one iteration.
An example of the initial start-up is showed in Figure
4.4. The �gure clearly indicates the start-up di�er-
ences of the methods.
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Figure 4.4: Start-up phase of the two algorithms.
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Parallel input vectors

The performance of both methods are strictly de-
pendent on the two directional vectors. For optimal
results, the vectors should be close to perpendicular.
However, in some cases the two vectorized measure-
ments may be close to parallel. This is observed in
Figure 4.5, where an accelerometer and a magnetome-
ter were used as vectorized measurements for testing.
The normalized acceleration measured in NED coor-
dinates is

g =


0

0

1

 [4.1]

and the normalized geomagnetic �eld vector in
Trondheim, Norway (N 63.24◦, E 010, 24◦) is

B =


0.2631

0.0086

0.9647

 [4.2]

with the Down-axis being the dominating value.
Both vectors are now close to parallel with the down
axis. Performing a rotation around this axis, will
cause problems for the EKF due to the mathemati-
cal formulation. The rotational matrix for rotations
around the down axis can be written as

Rdown =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 [4.3]

Remember that the state update in EKF is given as

xk+1 = xk +K

zk −
 Rg>
RB>

−
 bv1
bv2

 [4.4]

Here, the state update is a product of the Kalman
gain, K, and the deviation from the measurements
tracked by the rotational term. A rotation around
the down axis is described above. Since the gravi-
tational vector is close to parallel with the magnetic
�eld, the rotational term in Equation [4.4] will now
be described as

Rg
>

=


0

0

1

 [4.5]

RB
> ≈


0

0

−1

 [4.6]

clearly, the rotational term fails to identify the ro-
tational angle around the down-axis due to the mag-
netic �eld being almost parallel with the gravitational

vector. As the measurements are B and g, there will
be very small deviations from the measurements to
the rotated position.
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Figure 4.5: The two methods response to a rotation around

the down-axis in the NED frame.

5. CONCLUSION

In this paper, two methods were derived, tested
and compared. The QUEST algorithm has been
developed further to EQUEST, to include non-
vectorized measurements in the estimations. An Ex-
tended Kalman Filter was �tted for the CubeSat
project at NTNU, and implemented with a sensor fu-
sion model instead of a dynamical model of the satel-
lite.

Testing indicates that both methods are able to
estimate the orientation using a single microcon-
troller. The methods were compared theoretically
and experimently. In contrast to EKF, the EQUEST
is unable to estimate the sensor biases. However, the
EQUEST uses only 8% of the arithmetical operations
required by the EKF. The runtime of the EQUEST
was measured to be more than 5 times faster than
the EKF.

NUTS will most likely be designed with a magne-
tometer as one of the vectorized measurements. As
the satellite will be controlled by magnetourqers, the
local magnetic �eld will be greatly a�ected by the
attitude control. Hence, it is important to seper-
ate the attitude estimation and the attitude control.
This is done through a turn-based switching between
estimation and control. This implies that a short
start-up phase for the estimation is preferred. As
the EQUEST solves the attitude problem in one it-
eration, it is more attractive for satellites using this
technique than the iterative EKF.
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