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Abstract
In this article, we integrate a recent net power optimal control
algorithm into an agile satellite as a motion planning strat-
egy where the calculations are performed in the ground seg-
ment. The net power optimal control strategy relies on solv-
ing a nonlinear program to produce an energy optimal atti-
tude trajectory, which balances energy harvesting with the
energy consumed when executing attitude control tasks. Opti-
mal trajectories are tracked using a standard on board attitude
controller. The main benefit of the net power optimal con-
trol algorithm is that it can yield a higher energy efficiency in
the satellite than a standard controller, which is particularly a
benefit in small and agile satellites. The optimal control prob-
lem is non-convex, and we present a strategy for producing
initial guesses for this control problem that aims to find a lo-
cal minimum that is better than the baseline solution. This
strategy increases the robustness of the control strategy with
respect to finding optimal trajectories for the net power op-
timal control problem. When the method is implemented on
a small satellite in orbit, extra constraints are included in the
problem formulation to ensure that the on board star tracker
does not move into attitudes where it may become blinded by
the Sun. In-orbit experiments show that the method produces
expected behavior for both attitude and power.

Introduction
Energy harvesting is one of the main aspects of controlling
a satellite. From a control perspective, the tasks of an Earth
observation satellite can be split into pointing the satellite to
a point on the ground, communicating with a ground station,
and harvesting energy by pointing the satellite towards the
Sun. Getting enough energy is important for any mission, so
the control algorithm that is used to perform the maneuver
can make a significant impact. Looking into optimal control
methods is reasonable as even gaining a small amount of en-
ergy can make a difference for missions that are constrained
by their energy budget. As was highlighted in Kristiansen,
Gravdahl, and Johansen (2021), energy optimal attitude con-
trol algorithms have previously been focused on minimizing
the norm of the control input (Wu and Han 2019) or power
models (Schaub and Lappas 2009). This is unlike the en-
ergy harvesting tasks for satellites, as it focuses on using the
actuators as little as possible, rather than ending up with as
much energy as possible. Alternative control formulations
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that use time-optimal maneuvers such as in Bilimoria and
Wie (1993) can be adapted to solve the problem, but they
do not consider the entire energy harvesting task. This is
done in Rigo et al. (2021) considering the model of solar
power, and in Kristiansen, Gravdahl, and Johansen (2021),
and Kristiansen et al. (2024), including the cost of the input.

It should be noted that solving optimal control problems
such as these to perform satellite maneuvers is a feasible
strategy, as NASA demonstrated on their Lunar Reconnais-
sance Orbiter in 2024 (Karpenko et al. 2024). In this article
we use the method in Kristiansen et al. (2024) for motion
planning for the HYPSO-1 satellite, where the novel con-
tributions are as follows: we show how the energy optimal
control scheme from Kristiansen et al. (2024) can be im-
plemented for planning satellite maneuvers, in this case by
integrating it into campaign planning software. The optimal
control problem is extended and adapted to the operational
setup of a small satellite mission, with the integration in a
campaign planner pipeline and adding an extra constraint to
enable safe satellite operations. The optimal control problem
is solved as a nonlinear program, and because of its formula-
tion, the problem is highly sensitive to initial guesses and the
selection of several internal variables. Owing to this, the op-
timization module is designed in such a way that the optimal
control problem will be rerun with a new configuration if it
fails to find a solution, or if it fails to find a solution better
than the proportional–derivative (PD) controller solution we
use as a baseline. In the end, we verify through experimen-
tal results on a small satellite that a plan based on the energy
optimal attitude control scheme yields the results which was
previously only shown in simulation.

The remainder of the article follows the following struc-
ture: In the Method section, we discuss the place of our so-
lution in the larger system structure known as the campaign
planner. We show how this structure can be envisioned us-
ing a level of abstraction that allows for modularization, and
where the energy optimal attitude planner module would fit
into the system. The optimal control problem that is solved
is then described. The description in this part is based on the
work found in Kristiansen, Gravdahl, and Johansen (2021)
and Kristiansen et al. (2024), but is included here to high-
light the changes that are made to make the system ready for
operations. The design of the optimization module, focusing
on solving the optimal control problem required to find the



energy optimal trajectory based on net power then follows in
its own section. The section also describes the measures we
take to make the system more robust due to the complexities
that come with non-convex optimization. Then, the planner
is tested in a maneuver as described in the Setup section.
The Results section shows how the method performs on the
small satellite HYPSO-1 (Grøtte et al. 2022). The Discus-
sion section contains a brief discussion, before the paper is
concluded in the Conclusion section. Additional information
from Kristiansen et al. (2024) that is required to reproduce
the results is included in the Appendix.

Method
The method that is implemented in this article is based on
the optimal control problem in Kristiansen, Gravdahl, and
Johansen (2021) and Kristiansen et al. (2024). More specif-
ically, the objective is to implement the method for the
method and complexity as presented in Kristiansen et al.
(2024), but for the satellite considered in Kristiansen, Grav-
dahl, and Johansen (2021). The main results from the sim-
ulation studies show that the method can improve the en-
ergy gained by the satellite over a maneuver by exploiting
the transient phases of the maneuver better than alternative
schemes. A consequence of this result is that the method
yields higher gains the more maneuvers the satellite per-
forms. We want to emphasize that the method can be just
as useful and needed for other attitude maneuvers, but we
choose to display it in a pure energy harvesting setting here
for clarity. The optimal control problem is singular, and the
main consequence of this is that the problem is difficult
to solve numerically. To smooth the implementation of the
method in the operations of the satellite, we present the opti-
mal control problem and how we try to mitigate some issues
with local minima and regions of infeasibility in this section.

The Campaign Planner
The campaign planning system is based on Berg et al.
(2023). The campaign planner considers cloud coverage,
communication constraints, and many other aspects that are
required for the satellite to function. For this article, we only
look at the attitude planning capabilities of the system. An
abstraction of the planner for our purposes can be seen in
Figure 1.

The information flows as follows: The campaign plan-
ner uses external data as input, such as weather forecasts to
detect cloud coverage. The campaign planner decides what
maneuvers should be performed in what order, and sends
the information to Mission Control Software (MCS), which
then sends the commands to the satellite. Telemetry is then
returned from the satellite to the MCS, which is displayed
in Grafana, and then fed back into the campaign planner.
Grafana is, for clarity, a piece of software for displaying
data.

The optimization module as designed in this article would
fit into the planner as shown in Figure 2. The optimization
module is only to be used for one type of reference gener-
ation, during solar energy harvesting, so the planner is still
to carry out the majority of attitude planning, as well as the
scheduling layer on top of this module.

GrafanaCampaign
planner

External data
input MCS

Ground segment

Figure 1: Simplification of the campaign planner in the
ground segment and its interaction with the satellite, inspired
by Berg et al. (2023).

GrafanaCampaign
planner

External data
input MCS

Optimization
module

Ground segment

Figure 2: The campaign planner integration of the optimiza-
tion module.



The tasks that each of the blocks performs when the opti-
mization module is included, in Figure 2, are shown in Ta-
ble 1.

Table 1: Functionality of each block

Block Functionality
Optimization module Calculate quaternion references
Campaign planner Schedule, plan
Mission Control Communicate with the satellite
Software (MCS) Store data
Satellite (on board) Track quaternion references

Collect and send telemetry
Grafana Store and display telemetry
External data Produce data for planning

Optimal control problem
As in Kristiansen et al. (2024), the optimal control problem
is defined by

min
x,u
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where the kinematics and kinetics are in (1b) and (1c),
respectively, and (1d) describe the dynamics of the re-
action wheels Kristiansen, Grøtte, and Gravdahl (2020).
The attitude is represented by the unit quaternion, qi

b =

[ηib,
(
ϵib
)⊺
]⊺, where ηib is its scalar and ϵib is its vector part.

The T(q) matrix is given by (Egeland and Gravdahl 2002)
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where I3x3 is the three-dimensional identity matrix and
S(·) is a skew-symmetric matrix equivalent to the vector
cross product in three dimensions. The norm of the unit
quaternion is not constrained by a normalization constraint
other than that the initial attitude should be a unit quater-
nion due to the necessity to maintain constraint qualifica-
tions, but it is rather preserved through the accuracy of the
numerical integrator and the Baumgarte stabilization term
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, where ωb

ib is the angular velocity
of the body frame {b} about the inertial frame {i} repre-
sented in the body frame.

bd
dt is the derivative with respect

to time in the body frame. ωw
RW is a vector in a wheel frame

{w}, meaning that it has one element for each of the four
reaction wheels, which torque is defined by τw

RW. τw
RW is

here the only decision variable, constrained by upper and
lower bounds, τw

RW,ub and τw
RW,lb. The translational motion

variables are calculated before the optimal control problem
is solved and used as parameters in the calculation of both
the magnetorquer torque τ b

mtq and the external disturbance
torques, τ b

ext (see the Appendix for details). The underlying
assumption for this choice is that the changes to the trans-
lational variables depending on the rotational motion will
be negligible over the optimization horizon. Due to the mo-
mentum storage capabilities of the reaction wheels, there are
three inertia matrices: Js, Jw, and J = Js + AJwA

⊺ rep-
resent the inertia of the spacecraft only, the reaction wheels
about their axis of rotation, and the total inertia of the com-
plete spacecraft, respectively. The torque distribution matrix
A gives the mapping between the wheel frame and the body
frame for the four reaction wheels in the following way,
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The constraint in (1e) was not included in Kristiansen
et al. (2024). The purpose of the constraint is to keep one
given vector p̂b

i away from another vector k̂b
i by some angle

θi for all i such constraints. In this article, one of these con-
straints is implemented for the star tracker, represented by
the directional vector p̂b

Star tracker to keep it out of view of the
Sun, represented by the sun vector ŝb. In equation form, this
becomes

(p̂b
Star tracker)

⊺ŝb ≤ cos θ. (4)
The hat operator (ˆ) indicates that it is a normalized vector.
The constraint aims to keep the Sun out of a cone around
the star tracker vector, defined by the sun exclusion half-
angle θ. This type of constraint has been investigated for
attitude problems in Garcia and How (2005) and Wu and
Han (2019).

The cost function in (1a), JF −
∫ T

0
P (x,u) dt, contains

two terms: JF, which contains the soft constraints for the at-
titude and the angular velocity reference, and the net energy
term, E =

∫ T

0
P (x,u) dt. The net energy is the integral

over time of the net power P (x,u),

P (x,u) = s(x)−m(x,u), (5)

where s(x) represents the solar power harvested and
m(x,u) is the power used for actuation. The solar power
function s(x), defined as the sum of the power supplied by
the solar panels, is given as

s(x) = ηinκ(q
i
b, rSun)δ(rSun, rEarth), (6)

where ηin is the efficiency of the batteries, κ(qi
b, rSun) is the

instantaneous solar power, and δ(·, ·) is a value between 0



and 1 depending on whether the satellite is in eclipse or not.
For this article, the experiment is performed entirely in the
Sun, so δ(·, ·) is set to 1. rEarth and rSun are vectors contain-
ing the distance from the satellite to the Earth’s and the Sun’s
center, respectively.

For a CubeSat such as HYPSO-1, κ(·, ·) is defined as
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where ns is the number of solar panels, n̂b
j is the normal

vector of each solar panel, cs,j is the product of the solar
panel efficiency and solar irradiance, and Aj is the area of
the solar panel. The max(·) function is implemented as

max (x1, x2) =
1

2

(
x1 + x2 +

√
(x1 − x2)

2
+ α

)
, (8)

where α is a small positive constant ensuring a smooth max
function.

The actuation power is given by the sum of the power
spent on reaction wheels, PRW(·), and the power spent on
magnetorquers, Pmtq(·) (Kristiansen et al. 2024),

m(x,u) = PRW(x,u) + Pmtq(u)
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where ηrw is the efficiency of the reaction wheels, mb

mtq,i
is the magnetic moment of a magnetorquer on one axis
with the upper bound mmtq, ub, and Pmtq, max is the maxi-
mum power value of the magnetorquers, where the output
efficiency of the batteries is included.

The soft constraint term, JF, in (1a) is chosen to penalize
the final states
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where k1 and k2 are constants, and Jpath,ref is a metric on
SO(3) (Huynh 2009) that denotes the cost of not reach-
ing the desired attitude. Jvelocity introduces a cost for not
reaching the desired final angular velocity. qref and ωb

ref
are the reference values for the attitude quaternion and the
angular velocity, respectively. Jpath,ref is implemented us-
ing the same smooth max function (8) as was used in the
solar power part of the cost function as |

(
qi
b

)⊺
qref| =

max
((
qi
b

)⊺
qref, -

(
qi
b

)⊺
qref

)
.

Design of the optimization module
A diagram describing the optimization module can be seen
in Figure 3. Note from the figure that the module takes in
certain information, such as the duration of the optimization
horizon, the pre-calculated positions and velocities, and the
Sun positions. The data gets downsampled so the data rate

is in a reasonable rate for the optimal control problem to
solve, and it is upsampled before any data is sent out of the
block. The output is a list of quaternions that can be used as
references for the onboard attitude tracking system.

The main challenge with the optimal control problem is
that it is hard to solve. For this reason, the optimization pro-
cedure executes three steps before the solution is uploaded
to the satellite:

1. An energy optimal attitude is found and a trajectory is
produced using the PD controller by the method de-
scribed in the appendix. The energy optimal attitude,
which is an attitude where the satellite points towards the
Sun, is used as the reference for the PD controller. The
PD controller trajectory is used as the initial guesses for
the optimal control problem.

2. Optimize the net power optimal control problem without
the star tracker constraint, (4).

3. Add the star tracker constraint (4) to the optimal con-
trol problem. Use the output of the previous optimization
as initial guesses to warm-start the solver, then solve the
problem.

The motivation for separating points two and three is that
the problem is difficult without the constraint keeping the
star tracker away from the Sun. Introducing this extra con-
straint after finding an energy optimal trajectory makes it
more likely that the solver will be able to solve the complete
problem. The list above does not guarantee that the solver
converges, that it finds an optimal solution, or that it finds a
solution that is better than the baseline PD controller finds in
the first point in the aforementioned list. Therefore, we may
reiterate on the list several times using different quaternions,
such as the start and end quaternion for the initial guesses,
and other options to attempt to get the solver to move into
other parts of the state space. A single iteration through the
diagram in Figure 3 may take 15-20 minutes on a laptop, in-
dicating how far in advance planning should take place. It is
noted that the problem is sensitive to some of the parameters
that require tuning, in particular k1, k2, ρ, and α.

Experimental setup
The method is being deployed as part of the campaign plan-
ner on the 6U CubeSat HYPSO-1. The satellite is currently
in low-Earth orbit and is designed for ocean observation.
The satellite itself is fully actuated through its four reaction
wheels and it has magnetorquers on all three axes. The com-
mands are calculated on ground before the reference trajec-
tory is uplinked to the satellite. The optimization horizon is
chosen to be between two separate images, covering the en-
ergy harvesting phase of the operations of the satellite. On
board the satellite, the references are tracked using a lin-
ear controller. The goal is to verify that the maneuver yields
the maximum amount of harvested energy, so the sampling
rate of the telemetry measurements from the batteries is set
higher than normal to capture the information from the ma-
neuver. The battery telemetry sampling rate of the electric
power system is set at 0.5 Hz for the experiment. Using a
similar argument, the attitude control system is run at 4 Hz,
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Figure 3: Inner workings of the optimization module. The module is adapted to the non-convex nature of the optimal control
problem by creating initial guesses the optimal control problem in two steps.

far exceeding the 0.5 Hz rate that the references are gener-
ated at.

The optimization is performed as part of the campaign
planner pipeline and thus performed in the ground segment.
The optimization is solved using a multiple shooting dis-
cretization scheme using IPOPT (Wächter and Biegler 2006)
and the automatic differentiation software package CasADi
(Andersson et al. 2019). The dynamics are integrated using
a fourth order Runge-Kutta method.

The constants used in the optimization problem are shown
in Table 2. Upsampling is in the experiment in this article
performed using zero-order hold, but there is not reason why
interpolating techniques cannot be used instead.

Results
The data produced as telemetry by the satellite during the
maneuver is shown in Figure 4 and Figure 5, while a com-
parative maneuver is shown in Figure 6. In Figure 4, the
quaternion sequence generated by the optimization module,
denoted as ”Target quaternion”, is shown relative to the esti-
mated quaternions, the ”knowledge quaternion”. The trajec-
tory from the optimization module starts when the reference
starts swaying. The controller does not perfectly track the
references in the beginning, as can be seen by comparing re-
sponse in the beginning of the top two plots. After this phase,
the knowledge quaternion plot follows the target quaternion
rather well until shortly after 11:50, where there is a jump in
the knowledge quaternion. This jump coincides with a spike
in the estimated quaternion from the star tracker, which has
been non-existent since the beginning of the maneuver. The
star tracker immediately stops producing estimates when the
maneuver starts and stays that way for the entire optimiza-

Table 2: Optimization constants

Variable Value Unit
Step size (h) 2 s
Solar irradiance 1366 W/m2

Solar panel efficiency 20 %
cs 272.2 W/m2

ηin 0.92 -
ηrw 0.85 -
α 10-5 -
kmax 1 W2

k1 T · 1.75 · 102 W
k2 T · 104 W · s2

ρ 1.1 · 10-2 -
τ b

RW,lb -3.2 · 10-3 N·m
τ b

RW,ub 3.2 · 10-3 N·m

tion horizon apart from two spikes at 11:51 and 11:54. Note
that the quaternion is given in the LVLH-frame relative to
the body frame instead of the inertial frame relative to the
body frame as it is in the optimization problem due to the
implementation of the on board system. In addition, note
that the satellite rotates significantly during the maneuver.
As can be seen in Figure 5, particularly in the solar panels’
current plot, the generated power increases at the beginning
of the maneuver and stays high the star tracker spike. Com-
paring this to Figure 6, which covers a maneuver of similar
length the pass before, shows that the method implemented
in this article produces higher solar current for the time the



energy optimal plan manages to keep the solar current at its
maximum.

Figure 4: The quaternion reference plotted as the ”tar-
get quaternion” and the estimated quaternion shown as the
”knowledge quaternion”. The estimated quaternion from the
star tracker is shown in the bottom plot - a flat line indicates
that there is no estimate from the star tracker.

Discussion
The significant rotation during the maneuver shown in the
quaternion history, Figure 4, is not an issue with respect to
getting the highest amount of solar power as the satellite is
not constrained in all three axes when pointing a solar panel
towards the Sun, and can thus rotate freely around the axis
perpendicular to the solar panel if that impedes no other cost
in the objective function. As can be seen in Figure 5, the
power input goes straight to its maximum value and is kept
there, which is the desired behavior.

The star tracker does not produce a quaternion estimate
for most of the estimation period, and there are several po-
tential reasons for this that may not be that it is blinded
by the Sun. The star tracker on HYPSO-1 can lose track
when the angular velocity is too high, for example. Some
causes are yet to be discovered. The behaviors that are ex-
hibited at 11:51 and 11:54 are easier to explain: The star
tracker has lost track of the attitude, and at 11:51 and 11:54
two single estimates are produced. These estimates are val-
ued higher than the IMU measurements by the onboard at-
titude estimation system, creating a discontinuous behavior
in the knowledge quaternion. Such a spike in the knowledge
quaternion results in a large deviation between the desired
orientation, the target quaternion, and the estimated orien-
tation, the knowledge quaternion, which in turn leads to the
satellite abruptly moving away from an attitude which yields
the largest amount of power.

Suboptimal tracking would be expected to lead to a small
loss in energy in the transient phases of the maneuvers.

The power produced in the optimal maneuver, Figure 5, is
higher than the alternative maneuver Figure 6. This is clearly
because the green line that plots the current in panel 1 does
not stay at the maximum value, just above 1A, as it does
in our optimal solutions. This phenomenon is the topic of
ongoing research.

Conclusion
The experimental data show that the method works as the
simulation studies in Kristiansen, Gravdahl, and Johansen
(2021) and Kristiansen et al. (2024) indicated, even if the
tracked maneuver gets somewhat interrupted in the pre-
sented results by a sensor issue. Further work includes look-
ing at the inclusion of more complex models for solar irra-
diance, including ways to incorporate the effect of albedo in
the model of the sun vectors, a potentially significant part
of the power radiated to the satellite (Vallado 2001). Fur-
thermore, both investigating how well the PD-based track-
ing controller is tuned relative to the expected optimal per-
formance and looking at alternative tracking controllers can
potentially improve the output of the implemented method.
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Appendix
Optimization and initial guesses
Solving non-convex optimization problems requires an in-
formed choice of initial guesses, meaning the starting point
for where the solver will look for solutions. This article uses
a PD controller to produce the initial guesses for the opti-
mal control problem in (1) by pointing the spacecraft toward
an optimal solar power reference, like in Kristiansen et al.
(2024). The PD controller formulation we use is given by
(Wen and Kreutz-Delgado 1991)

τ b
RW = Kpϵe −Kd

(
ωb

ib,ref − ωb
ib

)
, (11)

where Kd > 0, Kp > 0 are constant controller gain matri-
ces, ωb

ib,ref is the reference angular velocity. ϵe is the error
in the vector part of the quaternion, given as the final three
elements of qe = q-1

ref⊗q, where qref is the reference quater-
nion and ⊗ is the Hamilton product.

The quaternion references for the PD controller are set to
the attitude with the maximal incoming solar energy rela-
tive to the orientation given as input, then to the final ref-
erence quaternion towards the end. The maximal incoming
solar power attitude is found using the following problem,

min
q

− κ(q)2 + kmaxJpath(q) (12a)

s.t. q⊺q = 1, (12b)



Figure 5: Power response during the maneuver by maneuver created by the optimization module.

Figure 6: Power response of a similar maneuver by the alternative control scheme on board the satellite in the previous pass.



where kmax is a positive constant, and Jpath is a cost in-
troduced to ensure that only one attitude would be optimal.
Jpath is defined as (Huynh 2009)

Jpath(q) = 1− |q⊺qref|, (13)

where qref is the reference attitude quaternion. The absolute
value is implemented using the smooth max function (8), as
|q⊺qref| = max (q⊺qref, -q⊺qref). The choice of qref can vary
to let the solver explore different trajectories in the space.

Magnetorquers control
The magnetorquers are only used for momentum manage-
ment of the reaction wheels, with the control algorithm given
as (Markley and Crassidis 2014)

τmtq = S(mb)Bb = S

(
km

∥Bb∥2
(
S
(
hb
e

)
Bb

))
Bb, (14)

where mb is the magnetic moment produced by the mag-
netorquers and km is a positive constant. hb

e is the error in
angular momentum for the reaction wheels, given as

hb
e = AJw(ω

w
RW,ref − ωw

RW), (15)

where ωw
RW,ref is the angular velocity reference for the reac-

tion wheels.

Perturbing torques
The optimal control problem considers three types of pertur-
bations: Gravity gradient, magnetic torque, and eddy current
torque.

The gravity gradient torque is defined as (Hughes 1986)

τ b
grav = 3

µ

∥ri∥3
S

(
ri

∥ri∥

)
J

ri

∥ri∥
. (16)

where ri and vi are the position and velocity vectors given
in the Earth-centered inertial frame, respectively. µ is the
standard gravitational parameter of the Earth.

The magnetic torque is defined as

τ b
mag = S(mb

res)B
b, (17)

where Bb is the magnetic field of the Earth represented in
body frame coordinates, and mb

res is the residual magnetic
dipole vector.

The eddy current torque is given as (Hughes 1986)

τ b
eddy = −keddyS(B

b)S(ωb
ib)B

b, (18)

where keddy is a positive constant.
The total environmental torque τ b

ext is the sum of the pre-
viously defined torques. In equation form, this becomes

τ b
ext = τ b

grav + τ b
mag + τ b

eddy. (19a)
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