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Abstract and attitude of the cooperating spacecratft is vital, de-
pending on accurate dynamical system models of the

In this paper, a model of a leader-follower spacecrafirmation.

formation in six degrees of freedom is derived and

presented. The nonlinear model describes the relati;/% Previous work

translational and rotational motion of the spacecratt;

and extends previous work by providing a more coffhe simplest model of relative motion between two
plete factorization, together with detailed informatiognpacecraﬂ is linear and multi-variable, and known as
about the matrices in the model. In addition, matkye Hill [1] or Clohessy-Wiltshire equations [2]. This
ematical models of orbital perturbations due to grayigdel originated from the equations of the two-body
itational variations, atmospheric drag, solar radiati?jpomem, based on the laws of Newton and Kepler,
and third-body effects are derived. Results from simynq pas inherently assumptions that the orbit is cir-
lations are presented to visualize the properties of {q9ar with no orbital perturbations, and that the dis-
model and to show the impact of the different distugance petween spacecraft is small relative to the dis-
bances on the flight path. tance from the formation to the center of the Earth.
An extension to elliptic Keplerian orbits, yet still as-
suming no orbital perturbations, is what is known as
the Lawden equations [3] or also Tschauner-Hempel
equations [4]. Both models were originally presented
for solutions of the problem of orbital rendezvous, but
The concept of flying spacecraft in formation is revdas been adopted later for the very similar and more
lutionizing our way of performing space-based opergeneral spacecraft formation flying control problem.
tions, and this new paradigm brings out several adv&eme years later, nonlinear models as presented in e.g.
tages in space mission accomplishment and extetfls5, 7] were derived for arbitrary orbital eccentricity
the possible application area for such systems. Eaatid with added terms for orbital perturbations.

and deep space surveillance are areas where spaceltadtels of both translational and rotational motion in
formations can be useful. These applications often mleader-follower spacecraft formation have been con-
volve data collection and processing over an apertsidered by few researchers, and most of the previ-
where the resolution of the observation is inversetyis work has focused on translational models only.
proportional to the baseline lengths. Further explblowever, notable exceptions are [8, 9], where mod-
ration of neighboring galaxies in space can only leds of coupled translational and rotational motion were
achieved by indirect observation of astronomical obderived. In [10], a 6DOF model based on orbit el-
jects, and space based interferometers with baseliaggent differences was derived, to develop an inte-
of up to ten kilometers have been proposed. Hograted control system for attitude and orbit control. A
ever, to successfully utilize spacecraft formations fooordinate-free model of translation and rotation for a
this purpose, accurate synchronization of both positisimgle spacecraft in a formation was presented in sev-

1 Introduction

1.1 Background



eral different forms in [11]. None of these results irthe frame is parallel to the vector pointing from the

cluded models of environmental disturbances. center of the Earth to the spacecraft, andghaxis is
parallel to the orbit momentum vector, which points in
1.3 Contribution the orbit normal direction. Theg axis completes the

right-handed orthogonal frame. The basis vectors of
This paper presents a detailed nonlinear mathematical

model in six degrees of freedom of relative translation \
and rotation of two spacecraft in a leader-follower for- \
mation, which is well suited for control. The model
of relative position is based on the two-body equations
derived from Newton’s inverse square law of gravity,
and extends previous work by providing a more com-
plete factorization, together with detailed information
about the matrices in the model. The position and
velocity vectors of the follower spacecraft are repre
sented in a coordinate reference frame located in the
center of mass of the leader spacecraft, known as the
Hill frame. The relative attitude model is based on /
Euler's momentum equations, and the attitude is rep- /
resented by unit quaternions and angular velocities. y
The model also includes the mathematical expres- /
sions for external disturbances originating from grav-
itational variations, atmospheric drag, solar radiation,
and perturbations due to other celestial bodies, known
as third body effects.

The rest of _the paper is organized as follows: S f frame can be defined as

tion 2 describes the reference coordinate frames used

in the paper, and matrices for vector rotation between _n =6 xe o — h
frames. In Section 3 the model of relative position and r h
velocity is derived, and the model of relative attitude

. : : ) Whereh = r| x 1 is the angular momentum vector of
and angular velocity is derived in Section 4. Expres- N 9
Eﬂe orbit, anch = |h|.

sions for orbital perturbations are given in Section % addition to the basis vectors of the frarfie two

Figure 1: Reference coordinate frames [12].

Simulation results for a spacecraft formation are pre- .. : :
. . ) uxiliary vectorse, ande, are defined, as shown in
sented in Section 6, and concluding remarks can be . : -
. . Igure 2. The first vectoe, is pointing along the
found in Section 7.

spacecraft velocity vector, whiks, is defined to be or-
thogonal tog, ande,, ase, = e, x e. If the spacecraft

2 Coordinate frames orbit is circular, there, = g ande, = &.
Follower orbit reference frame: This frame has its
2.1 Cartesian coordinate frames origin in the center of mass of the follower spacecraft,

nd is denotedf;. The vector pointing from the center

The coordinate reference frames used throughout &he Earth to the center of the follower orbit frame

paper are given in Figure 1 and defined as follows: is denoted ;. Its origin is specified by a relative or-

Earth Centered Inertial (ECI) frame: This frame bit position vectom — [ijT expressed irf; frame

is denoted¥;, and has its origin located in the center o .

. ._components, as shown in Figure 1, and the frame unit
of the Earth. Itsz axis is directed along the rotatlonvectors align with the basis vectors@f Accordingl
axis of the Earth towards the celestial north pole xhe 9 ' gy

axis is directed towards the vernal equinox, and finally P=Trf—Tr =X& +Yes+2en (1)
the direction of they axis completes a right handed
orthogonal frame. Body reference frames: For both the leader and the

Leader orbit reference frame: The leader orbit follower spacecraft, body reference frames are defined
frame, denotedf, has its origin located in the cenand denotedf, and Fys, respectively. These frames
ter of mass of the leader spacecraft. Tdpeaxis in have, similar to the orbit frame, the origin located in



wherep is the geocentric gravitational constant of the
Earth,h is the magnitude of angular momentueis
the eccentricity angh = h?/pis the semi-latus rectum
of the spacecraft orbit. Therefore, singgs pointing
along the velocity vector,

v h . p
== (esmver + Fee) 3)

Moreover, since, is defined normal t@, andey,
=g X —£<E —esinv ) (4)
€h =8/ X €= oV rer €
The transformation between the orbit plane accelera-

/
Elliptic tion vector components can now be found from (2),
orbit

(3) and (4) as

a | £ esinv an
Figure 2: Auxiliary vectors for the leader orbit refer- g pv| —esinv P ay
ence frame [12].

so that
the center of mass of the respective spacecraft, but the h $ esinv O
basis vectors are fixed in the spacecraft body and co- C'a =— | —esinv $ 0 (5)
incide with its principal axis of inertia. bV 0 0 %’
2 2 Coordinate frame transformations Note thatCl, is not a proper rotation matrix since
2.2.1 Rotation from ECI to leader orbit frame detCl = 1+ €+ 2ecosv (6)

The rotation from the ECI frame to the leader orbit _
frame is dependent on the parameters of the leader-3 Body frame rotation

spacecraft orbit, and can be expressed by three consggs rotation matrix describing rotations from an orbit
utive rotations. The total rotation matrix can be Writteipame to a body frame can be described by

I ,
Ri =ReunRxiRz0 RO = (c1 G2 Ca) = I+20S(e) +25%(e) (V)
whereQ is the right ascension of the ascending node o )
of the orbit,i is the inclination of the orbity is the true Where the elements are directional cosines, and
anomaly of the leader orbit, andis the argument of T 9T
. qg=[n e’ | (8)
perigee of the same. The sumwfand w represents

the location of the spacecraft relative to the ascendigg, e gyler parameters. The inverse rotation is given
node. by the complex conjugate ofas

2.2.2 Orbit frame transformation a=[n —gl }T

Using both the original and the auxiliary vectors in the

orbit frame, as shown in Figure 2, spacecraft accele®- Translational motion
tion can be written as

3.1 The N-body problem
a=ar€ 1 g€y + anen = aner +ae +anen  (2)

. Consider a system dfl bodies with massesy, | =
The spacecraft velocity vector can be expressed as [}?i ..N. The position and velocity vectors of tfith

V=TI = H (eSinva n P e9> mass re_latlve to the ECI _frame_ are qef'”edimﬁ‘r‘_’i
h r respectively, where; = xjix + yiiy + zi; andv; = .



The distance between any two particles with mass forces of the leader and follower spacecraft, respec-
andm; is denoted by tively. The second order derivative of the relative po-

sition vector can now be expressed as
rij = [rj —ril
_ _ p=i—T
and the magnitude of the force of attraction between u fgr  Ur fa Ul
the masses i6m mj/rﬁ whereG is the universal con- iUl ol phe g 1 [ el
stant of gravity [13]. The direction of the forces are f £ m.m
expressed in terms of unit vectors, and the force actiggthat
onm due tom; has the directiorfrj —r;) /rij, while
the force onm; due tom has the opposite direction. mep = —mep [ — P n
The forcef; acting on masey due to all the otheX — 1 n+p?® rf
masses can be expressed as Fup—fgr— mg (Ul —fq) (11)
2 mm; o o " N .
fi=GY 3 (=1, 1j=12..N, i#] Onthe other hand, from (1), the inertial position equa-
J=1 ] tion for the follower spacecraft can be expressed as

and application of Newton’s second law of motion _ _
yieldsN vector differential equations fr=r+p={M+X)8&+ye+2z

& . Differentiation of this equation twice with respect to
WZI:GZ fs_l(ri_ri)v i £ (9) time leaves
I=17] - o L .
. N N . Fr=(f+X)e+2(h+X)& +(n+x)&
quether with appropriate |n|t|a_l condltloqs,_thls con- Ve + 2y + Yég + Zen + 278+ 28 (12)
stitutes a complete mathematical description of the
motion of a system oN bodies. From this relation,By using the true anomaly of the leader spacecraft,
the fundamental differential equation of the two-bodye relationships

problem can be found as [13]

& =Veg € = —Ve& (13)
‘;tg Moo (10) & =Veg— V2% & =-Vg -Vl  (14)
p
h B is the relati i ¢ can be found. Insertion of (13)-(14) into (12), while
w_e(rser =rz2—r1istherelative position of masses anpecognizing that no out-of-plane motion exists, and
=G (my+mp). henceg, = &, = 0, gives
3.2 Formation dynamics Pr=(f+X—2y0 —V2(r +x) —W) & (15)

The general orbit equation (10) is the equation describ- T (Y429 (P +%) +V (r +X) —yv*) eg + Zen

ing the orbit dynamics for a spacecraft under idegoreover, the position of the leader spacecraft can be

conditions, i.e. with no external disturbances. Thigpressed as

equation can be generalized to include force terms due

to aerodynamic disturbances, gravitational forces from rN=re (16)

other b_qd|es_, solar radiation, magneyo fields and So.g?fferentiating (16) twice with respect to time and in-

In addition, it can be augmented to include control in-_ . .
. rting (13)-(14), results in

put vectors from onboard actuators. Accordingly, (1 ?

can be expressed for the leader and follower spacecraft | =fe +2He +1né

as =(H—rv?) e+ (2rv+ri)es  (17)
iy far U
N =- r%rl “m + m Subtracting (17) from (15) results in one other formu-
! lation for the position vector acceleration:
e =— Er — fdif ﬂ
f I’? f ms ms p =f¢—T

= (X— 20y —Vv>X—V
wherefq;, fqr € RS2 are the disturbance terms due ( y y) &

.e .. . - 2 .
to external effects and;, us € R3 are the actuator + (J+H2ux+Ux—Vy)eg+ 280 (18)



Substituting (18) into (11) leaves the nonlinear po## Rotational motion
tion dynamics on the form

; N . 4.1 Attitude kinematics
miPp+C(V)p+D(V,V,r)p+n(r,ri) =U—Fq

The time derivative of a matriRf as in (7) can ac-

similar to the one derived in [7], where cording to [14] be written as

0 -1 0

CW)=2my|1 0 0 RE = S(?y) g:Rgs(wg_,b) (22)
0 0 0

wherew?

is the skew-symmetric Coriolis-like matrix, whict} ap IS the angulgr velocity of framb relative
: ) . o framea represented in frameandS(-) is the cross
thus is a member of the special symmetrical group

$93), and hence product operator given by
0 - wy ]

C(W)+CT(v)=0 S(w)wx{ws 0 -w

Furthermore,

- w0

B v v o0 : : . . . .

& whenwis an arbitrary vector in three dimensions given
D(V,9,r) = m; y r‘% vZ 0 (19) by w=[w; wp w3]". The kinematic differential equa-
0 u tions for a spacecraft in its orbit frame can be found
1 from (22) together with (8) as
and ; 1 o
- S ~Cs sb
%_ r]lé s = [ €s ] - 2 [ nsl +S<€s) :| “ssb (23)

n(r,re)=mip| 0
0 wherewgf,’sb is the angular velocity of the spacecraft
body frame relative to the orbit frame, referenced in
the body frame. The superscript/subschjz used in
Fq="fqs— ﬁfdl general to denote the spacecraft in questiors,=sd, f
m for the leader and follower spacecraft, respectively.

The composite disturbance forEg is given by

and the relative control fordd is given by

U=us— %UI 4.2 Attitude dynamics

With the assumptions of rigid body movement, the

Moreover, the eigenvalues of the matBxv,V,n) in - g4ynamical model of a spacecraft can be found from

(19) are Euler's momentum equation as [15]
oo o2
AM=—=+V—V .
' r? JsGf%y=—S (‘*%%2&3) oY+ TP+ T (24)
A2 :rﬂg V-2 W32 = F2p + WoC2 (25)
f
_ K wherels is the spacecraft inertia matrix ansi®, is the
A3=— (20) : S :
ry angular velocity of the spacecraft body frame relative

to the inertial frame, expressed in the body frame. The
parameteiwy, is the orbit angular velocityrgb is the
as (1- e2)3 total disturbance torquesP is the actuator torque, and
(21) Cy is the directional cosine vector from (7).

so it can be shown th& (v,V,r;) > 0when

rP< ———
(1+eco)
wherea is the semimajor axis of the leader orbit. If . .
the orbit of the leader spacecraft is circular, tleen 0 4.3 Relative attitude

and (21) reduces to; < a, soD(v,V,r;) > 0 when By expressing the relations in (23) and (24)-(25) for
the follower is located within the circle with origin inboth the leader and the follower spacecraft, and utiliz-
the center of the Earth and radiasAt the other end, ing the quaternion product defined in [14] as

when the leader orbit tends towards an parabolic or- T

bit, thene — 1 and (21) reduces to; < 0, which is q=qreq 2 N +€¢ &

practically infeasible. e —Mier — S(er) &



the relative attitude kinematics and dynamics can bel Perturbing forces

expressed as [16
P [16] 5.1.1 Atmospheric drag

: T
q= [ n ] - 1 [ —¢& ] ) At altitudes lower than approximate§00 km Earth

& 2| nl+S(e) atmosphere is so dense that the resulting aerodynamic
drag has a considerable impact on spacecraft orbits

where [17]. The aerodynamic force can be written as
fb fb_ b
W= 03 ¢~ Ryjp Wijp (26) 0
. . . fom=C3 | 3PV°CaA (28)
is the relative angular velocity between the leader 0

body reference frame and the follower body reference
frame. Moreover, from (26) the relative attitude dywherep is the atmospheric density,is the spacecraft

namics can be expressed as velocity in the direction of thes, vector depicted in
_ . b 1b _— Figure 2,C4 is the drag coefficientA is the equiva-
Jrw=Jr0y ¢, — IRy Wy — IRy lent spacecraft surface in the direction of motion of

the spacecraft an@3 denotes the orbit frame transfor-
mation matrix, as described in (5). The supersgipt

used for generality to indicate the orbit frame for the
where (22) and the facts thafbt?fb =wandS(a)b = inflicted spacecraft.

—S(b)a has been used. Insertion of (24), evaluated
for both the leader and follower, into (27) results in

=316~ 31S (‘*fﬁ;) w-JiRp ey  (27)

5.1.2 Solar radiation and solar wind

Jreo=— S<w+ lebbuﬂﬁb) Jt (oo+ let)b(q'ﬁb) Radiation and particles expelled from the Sun will af-
b fect the spacecraft orbit independent of the spacecraft
+JIiRpJ, 's (“*lblb) ‘]"*ﬁlﬁb altitude [17]. The disturbance force from solar radia-
_JfS<R|fbbw=?b) Wt Yy + Y tion is_ dependent on the reflectaqce of the spacecraft
’ material, and consists of absorption, specular reflec-
tion and diffuse reflection. The surfaces of a spacecraft
is usually non-diffuse, and the reflection is a combina-
tion of absorption and specular reflection. The diffuse
reflection is hence neglected in the further analysis. A
visualization of resulting forces on a surfagelue to
absorption and specular reflection is shown in Figure
3. The normal vecton in the figure gives the orienta-
tion of the surfaced, and it is inclined an angliy to
] ] ] the vectoresyn which points in the direction of the Sun.
are the relative dlstgrbance torques and relative actpg; 5 absorbing surface, the impulse transferred is in
tor torques, respectively. the opposite direction as,n For a reflecting surface
on the other hand, the impulse transferred is not gen-
erally in the opposite direction &s,, and the impulse
is also twice as large, due to the reflective rays. For

a body that reflects a fractignof the incoming radia-

Spacecraftflying in a Keplerian orbit will be subject t,, \hile it absorbs the remaining fraction of energy
accelerations caused by minor disturbances. Some pf y), the total combined force is given as

the sources for these disturbances are gravitational at-

where
fb fbq—1-Ib
and

fb fby—1_Ib
Ya:Ta _\]fRIb\]I Ta

5 Orbital perturbations

tractions from celestial bodies, non-spherical shapes of Foun . .
planets, atmospheric drag, or solar radiation pressurdsun= ——¢ COSsurA[(1—Y)Esun+ 2yCOSisur]
[12]. The resulting expressions for these perturbations (29)

are in the following derived generally for a spacecraft
in Earth orbit, without relating to leader or followewhereFs,,= 1367 W/m2 is the solar constant ards
spacecratft. the speed of light.



Sm are tesseral harmonic coefficients foe£ m and
sectoral harmonic coefficients far= m[17]. Spesifi-
cally, it should be noted that = C,o. The associated
Legendre polynomidaP,, is defined as [18]

Pam(u) = (1-u?)? ddum

It is seen from equation (30) that zonal harmonics de-
pend only on latitude, not on longitude, and these co-
efficients are due to the oblateness of the Earth. The
tesseral harmonics in (30) represents longitudinal vari-
ations in the Earth shape, and are generally smaller
than zonal terms. A set of values for theconstants
are given in Table 1 [19]. If the assumption of axial

Pa (U)

n Jn
Figure 3: Disturbance forces due to solar radiation 2 10826'10::
pressure for absorbing and reflecting surfaces. 3| -251.10
4| —1.60-10°°
5.1.3 The mass distribution of the Earth Table 1: Zonal harmonic coefficients

If the Earth was a single point mass, the gravitational
potential due to the conservative gravitational foregmmetry of the Earth is introduced, only zonal har-
could be derived from a gradient or scalar potentigonics is needed. In addition, from Table 1 of zonal
functionU (r) = —p/r. However, the Earth is not aharmonics coefficients, it is seen thhtis consider-
single point mass, but an oblate body with a nonhably larger than the othel, coefficients. IfJ; is the
mogeneous mass distribution. Therefore, correctionly zonal harmonic considered, the gravitational po-
factors must be added based on the geographical ggditial function can be approximated as [18]
sition of the spacecraft, and the corrected potential of )

—1+ }Jz (Rre) (3sirfo— 1)]

the Earth can be expressed as [17] U@\ = H
) p) 2

u (r»(P>)\) = —p/r—l—B(r,(p,)\)

whereB(r,@,A) is a spherical harmonic expansiap,

In the inertial reference frame,

. r r
is the geocentric latitude ads the geographical lon- sinp= ﬁ =2
gitude of the spacecraft position. DenotiRg as the \IE+rg+r2

mean equatorial radius of the Earth, the expansion ca}r11 is th N inting f th ter of th
be expressed as wherer is the vector pointing from the center of the

Earth to the spacecraft. The gravitational fo@act-
uf e ing on the spacecraft is obtained from the gradient of
B(r7 (p7)\) = F ;
n=
where 5+ 3R ( 3%)

n
Hi+ ) Hz] } (30) the scalar potential as
m=1
R\ G=p| —%+1uR2 (15ryr -3%) (31)
Hi = () JnPn (Sing) 1
. s+ 3R (15% 9%

n
Hz = <r> (ComCOSTA + SimSinMA) Pam(SiN@) - 5 theJ, gravity perturbation forcé),, for the Earth

is the latter terms in (31), i.e.
which is the infinite series of the geopotential function ,
at any pointP outside of the Earth sphere wharep 5':# — 5
andA are its spherical coordinates [15]. In (30),are £ 3 R2RS e ooy
. - grav HJZ | 5 7 T 5
zonal harmonic coefficient®,,, are Legendre polyno- r

mials of degreen and ordem, B, = Pyg, andCyr, and




5.1.4 Third-body perturbing forces 6 Simulations

The gravitational potential of other bodies in the vicinF jllustrate the impact of the perturbing forces and
ity of the spacecraft can create perturbing forces agfiques, simulation results for two spacecraft in a
torques. For an Earth-orbiting spacecraft, the Sun geglder-follower formation are presented. It should be
the Moon causes perturbing forces that can changfied that only the effects of the gravity force and at-
the orbit parameters considerably. The Keplerian oribspheric drag are included in the simulations. The
models are derived from the two-body problem equgrason for this is that solar radiation and the third-body
tion in (10), after a simplification of the general equaffects are dependent on the location of the Sun and
tion (9) due to the assumption the spacecraft and #fer celestial bodies. The effect of these perturbations
orbited planet are the only elements present. If an gl therefore vary, depending on the orbit parameters
traction of the masses of the spacecraft and the Earthigl time of the year.

performed on (9), the resulting accelerations are [13{or simplicity of simulation, both spacecraft have

massm = 1 kg and their moments of inertia ade=

d?r mp " m . _
dt21 _ GT(fz—l’l)JrGZTJ(rj 1) (32) dlag(_[0.06, 0.06, 0.003) kgn?. The_lead(_ar space-
ri, =181 craft is assumed perfectly controlled in a circular orbit
2 n m. with inclination 22.5° and altitude250 km and with
d r2 m]_ m] . .
ge = GrT (ri—r2)+G ;rT (rj—r2) (33) a constant attitude relative to the ECI frame. The fol-
21 =313j

lower spacecraft is locatetD mbehind the leader in
the along-track direction, with the same initial orbit
neIOC|ty and attitude. For atmospheric drag, the space-
raft surface in the direction of motion of the space-
craft is chosen a.01 n?, and the drag coefficient
asCy = 1. The simulations were performed using a
Runge-Kutta ODE solver of order six and seven.

Subtraction of (32) from (33) results in the equati
for the two-body problem in (10) with an additiona
perturbing acceleration due to the— 2 perturbing
bodies,

72 n —r G ij % _ r% The position and velocity of the follower relative to the
dt o I1] leader are shown in Figure 4. Similarly, the relative

where, as before,=r, —r1 is the relative position of
the two primary masses, amgj =r; —ry andrpj =
rj —ro. Hence, the perturbing acceleration is

nbody R Upj

wherep; = Gm; is the gravity constant for théth
perturbing body.

Relative position and velocity
T T
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J
-1500
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5.2 Perturbing torques

Velocity [m/s]

The resulting torqueﬁ’ on a spacecraft due to a per
turbing forcef? can be found from the relation [14]

-0.6

6000 8000 10000

Time [s]

0 2000 4000 12000

b__.b b
T'—rchJ’

J (35)

Figure 4: Relative position and velocity between
wherer? is the vector from the spacecraft center @hacecraft in formation.
mass to the line of action of the force. Hence, perturb-
ing torques due to atmospheric drag, solar radiati@ititude and angular velocity are presented in Figure
gravity variations and third body effects can be fourid If no orbital perturbations were present, the rela-
by combining (35) with (28), (29), (31) and (34), retive position and attitude would be constant. Hence,
spectively. the disturbance forces and torques can be seen from



Relative attitude and angular velocity The relative attitude was also seen to oscillate. All

‘ ‘ ‘ ‘ three body axes were influenced by the perturbations,
they had the largest effect on thgaxis. This is due to
the gravity force, which constantly tries to turn the fol-
lower towards the Earth, in accordance with the prin-
ciple axis of inertia. In addition, gravity perturbations
originating from oblateness of the Earth results in non-
smooth attitude changes, as shown in the simulation
results.

Regarding the perturbations due to solar radiation and
third-body effects, these are not included in the sim-
ulations. It is however possible to get a notion of the
impact of these perturbations. Since the orbital time
is short, the location of other celestial bodies like the
o 200 400 000 @00 1000 12000 Sun and the Moon can be considered constant over one
Time IS orbit period. If these bodies are located in the orbital
plane, they will result in a change in orbit eccentric-
Figure 5: Relative attitude and angular velocity bgy f'or'the fqllower. The perturbing force glue to solar
tween spacecraft in formation. radiation will decelerate the fo_llowe_r as it moves to-
wards the Sun, and accelerate it as it moves away from
the Sun. If the Sun is located out of the orbit plane, the

follower will experience a constant force away from

the figures to have a large impact on the system staigg. sun. The third-body effects, which is the gravi-
From the results presented in Figure 4, it can be sqgfional pull from other celestial bodies, will have the
that the disturbance forces causes oscillations in rejaposite effect on the follower compared to the solar

tive position. This is due to the gravity force workingagiation. Accordingly, the spacecraft will experience
on the follower. The force pulls the spacecraft dowg-py|| towards these other celestial bodies.
wards towards the Earth. However, as the follower

moves below the leader, it has an orbital velocity cor-
responding to a higher orbit, and accordingly, the a}
titude increases. When it reaches the same altitude as

the leader orbit, it is again drawn down towards the

Earth, and the cycle repeats. Similar, the oscillatiolfs thiS Paper, a nonlinear mathematical model of a
in the cross-track direction is due to gravity. Sinégader-follower spacecraft formation in six degrees of

the Earth is not a single point of mass, the foIIowé'ieed(_)m has been_derlved an_d presented. The model
will be drawn to the side with the largest gravitationéﬁescnbes the relative translational and rotational mo-
pull. However, the main gravitational component WiHons_ O_f the spacecraft, and exte_nds' previous Work_ by
be towards the center of the Earth, so as the spaced?4f'!ding @ more complete factorization, together with
moves to one side in cross-track direction. the gra\%(_atalled information about the matrices in the model.
tational force component in the opposite direction wifft 2ddition, mathematical models of orbital perturba-

pull it back again, and increased cross-track veIocH?ns due.to'gravitatioqal variations, atmospheric drag,
will move it over to the other side. As with the altitudeS°!2" radiation and third-body effects have been de-
this is also a cyclic behavior, however, the cross-tra@}(ed' Results frqm simulations of a Ieader-fqllower
motion seems to be more unstable. The along-tra?tf??cecraﬂ formatlo_n have been_presented to illustrate
distance between the spacecraft was however not tglg_effect of the orbital perturbations.
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