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Abstract—In this paper an observer-controller structure for ~ behavioural and virtual structure.
attitude synchronization of a satellite formation is presented. In the leader-follower strategy, one spacecraft is defined
The design applies methods from mechanical synchronization o 45 the |eader of the formation while the rest are defined as
design a nonlinear qbserver and controller for satellites actuate_d followers. The control objective is to enable the followers
by means of reaction wheels and magnetic torquers. In this T . ; .
approach one satellite is defined as the leader of the formation, t0 keep a fixed relative attitude with respect to the leader
while the rest are defined as followers which synchronize their [1]-[4].
attitude with the leader. We apply the approach to the design  The behavioural strategy views each vehicle of the for-
of an coordinated attitude control scheme for a two-satellite | ,5tion as an agent and the control action for each agent is
formation. In addition we propose a momentm dumping defined by a weighted average of the controls corresponding
scheme for satellites with redundant reaction wheel assemblies. ; : .
to each desired behaviour for the agent. This approach
eases the implementation of conflicting or competing control
|. INTRODUCTION objectives, such as tracking versus avoidance. It is however
The purpose of this paper is to derive a control scheme tiifficult to enforce group behaviour, and to mathematically
synchronize the attitude of satellites orbiting in formation, irguarantee stability and formation convergence. In addition,
such a way that the satellites are able to keep their relativmforseen behaviour may occur when goals are conflicting.
attitude in the presence of disturbances. The coordinatddhis strategy is widely reported for use on mobile robots [5]—
control of multiple agents in a formation environment ig7], and was also applied to spacecraft formations in [8].
an area which has attracted much attention internationally In the virtual structure approach, the formation is defined
in later years. The increased activity in the field, comeas a virtual rigid body. In this approach the problem is
from a number of advantages; several small spacecraft mhgw to define the desired attitude and position for each
cooperate solving missions that would require one largmember of the formation such that the formation as a
spacecraft, functionality may be distributed to increase revhole moves as a rigid body. In this scheme it is easy to
dundancy, the vehicles may be launched in stages on sevepe¢scribe a coordinated group behaviour and to maintain the
launch vehicles, reducing the risk of total mission failureformation during maneuvers. It is however dependent on
The advantages do however come at the cost of a maitee performance of the individual control systems of each
complicated control system. Examples of current projectsiember. This approach was used on mobile robots in [9]
are Darwin, where six satellites will fly in tight formation and more recently on spacecraft formations in [10], [11].
to perform analysis of Earth-like planets, and MicroSAR, Stability analysis of both the observer and the synchroniz-
which are small low-cost SAR satellites capable of land anithg control scheme has been performed using an extension
sea observations. of a theorem due to Matrosov [12], given in [13]. This
Noticeable contributions on formation control may beheorem proves to be very useful in the case of a semi-
divided in to three separate approaches; leader-followeatefinite Lyapunov derivative when the analysed system is



time-varying, as for example in tracking control with a time-
varying reference. In such a case the theorem usually referred
to as LaSalle’s invariance principle is not applicable.

~ Orbit

A. Mechanical synchronization

The synchronization phenomenon describes the event
when dynamical systems in some sense exhibit a similar
behaviour in the time domain. In [14] some formal de-
finitions were developed to describe the synchronization
phenomenon, distinguishing between frequency and coordi-
nate synchronization. Frequency synchronization describEg- 1. lllustration of the reference frames for a satellite in equatorial orbit.

. . . The axes not shown are pointing out of the paper.
the situation when the frequency of motion conforms to

an integer multiple of a given frequency,, while coor-

dinate syng:lhronlfzanon oceurs W_hden t.hr? Eutputs or Sgh&ample is the tetrahedron composition. A regular tetrahe-
state-variables ot a system, coincide with the corresponding, ig 5 pyramid composed of four equilateral triangular

variables of some other _system for ek Qor gsymptotlcally . faces, three of which meets at each vertex. Each wheel-axis
ast — oo. In [4] coordinate synchronization was used in

the synchronization of robot manipulators and in [15]

) . ifq ramid.
was proposed to use the theory in the replenishment a gThe torque from a wheel to the body equals the torque
rendezvous of ships.

li he wheel f h h
In this paper we adopt the problem formulation of [4] applied to the wheel from a motor attached to the body, but

N . ~'with opposite sign.
referred to as external synchronization. In this formulation PP g

we define a leader system, which is the dominant system, II. MODELLING
and a bounded set of follower systems. The synchronizationI hi ) h gel of li db
problem consists of creating either physical interconnections n this section, the model of a satellite actuated by means

or control feedback loops, which forces the outputs of th8f reaction Wheels and electromagnetic torquers is derived.
follower system to conform with those of the leader. The notation is based on [17] and [18].

y; Earth center

is placed orthogonal to a face, and meet at the center of the

B. Electromagnetic actuators A. Reference frames

Electromagnetic actuators are often chosen due to theWhen modelling the satellite, the equation of motion will
independence of a limited fuel source, depending instead b§ expressed in three different reference frames, illustrated
power from solar arrays and batteries, thereby prolonginl§§ Fig- 1. A general reference frame will be denoted/as
the lifespan of the mission. Electromagnetic actuators, ofte#ith @ subscript corresponding to a given frame.
referred to as magnetic torquers, are based on two basicl) ECI - Earth-centered inertial frameThis reference
configurations. One is the coil based, where current is sefitme has its origin in the center of the Earth, theaxis
through a current loop which generates the magnetic momégtPointing in the vernal equinox directioh, This is in the
proportional to the area of the coil and the number offirection of the vector from the center of the Sun through the
windings. The other type is the magnetic rod, where a wirgenter of the Earth during vernal equinox. Theaxis points
is wound around a rod made of a high permeability materiaf0” east, spanning the equatorial plane together with:the
Both variations interact with the local geomagnetic field@xis. Thez;-axis points through the North Pole, completing
generating a torque vector in the direction perpendicular f@€ right-hand system. In the following this frame will be

the magnetic moment and local field vectors. denoted byF;
2) Orbit-fixed reference frameThis frame, denoted-,,
C. Wheel actuators has its origin in the satellite’s center of gravity. The-

A reaction wheel is essentially a torque providing moto@xis points in the nadir direction. The-axis points in the
with high rotor inertia. It is able to load and unload angulaglirection of the negative orbit normal. Thg-axis is chosen
momentum internally, and is thus often referred to as @s to complete a right-hand coordinate system.
momentum exchange device, as it does not change the overalB) Body-fixed reference frameAs the 7, frame, this
angular momentum of the satellite, but redistributes it téeference frame also has its origin in the satellite’s center of
different parts. The amount of torque provided is dependeg@tavity, with the axes pointing along the satellites principal
on the size of the rotor and motor, and is usually in the rang@xes of inertia. The frame is denot&g. In the control design
from 0.01 Nm to 1 Nm. we denote the body frame of the leader and follower satellites

A wheel complete with motor and drive electronics, isasF; and F; respectively.
usually referred to as a reaction wheel assembly (RWA).
Three wheels, one along each axis, is needed for full thre
axis control. For redundancy and performance a compositionWe describe the attitude kinematics in the form of Euler
of RWAs usually consists of more than three wheels. Aparametersy ande, which may be defined from the angle-

. Kinematics



C. Dynamics

A satellite actuated by means of reaction wheels, may be
modelled as a rigid body in combination with several rotors
or wheels, commonly referred to as a gyrostat [17].

We start by writing the total angular momentum of the
gyrostat in;, and the total axial angular momentum of the
wheels

h’ = Jwl, + ALw, (7a)
h, = LATWY + Iws, (7b)

where A € R3*4 is a matrix of wheel axes itF;, given by,

[16],

Fig. 2. The figure shows how the rotation between two frames can be A= % f\/g 0 0 , (8)
interpreted in form of Euler angles.
00 -2 3

axis parameterg8 andk as I, € R*** a diagonal matrix of wheel axial inertias, € R*
9 9 a vector of wheel velocities anfl € R3*2 the total moment
1] = cos bR € = ksin 9 of inertia.

Assuming that the body system coincides with the center
of mass, we may obtain an expression for the change of
R(n,€) = 1+ 2ne™ + 2™ €, (1)  angular momentum as

and which has the corresponding rotation matrix

where * denotes the vector cross product operator, and b b 11 b b
e* is skew-symmetric. The choice of Euler parameters is h = m)"J7 (" — Ah,) + 7, (9a)
motivated by their nonsingular properties. To describe a h, =1, (9b)
rotation between frameg&, and F,, we use the notation

nay and e,;. From the properties of the rotation matrix, itwhereJ € R?*3 is an inertia-like matrix defined as

can be shown that the kinematic differential equation is

R = (w}) Rl = —(wh) "R, )

wherew?; is the angular velocity of the body frans, with ~ and 72 is the resultant external torques due to magnetic
respect to the inertial framg;, andR? is the rotation matrix control and environmental disturbances
between frames.

J2£J - AL AT

Using (1) and (2) the kinematic differential equations =T+l + Ty, (10)
e, = —Lel' Wb . .
hb = . 2€ibWib , (32) where % is a vector of unknown disturbance torques, and
€ib = 5Nl + € ]wy, (3b) 7%, and 7! are magnetic control torques and gravitational

can be derived. Given the quaternion vector disturbance torques, respectively, given by

aip = [m:b} ; 4) Ty = 3w (203) Iz (11)
€ b = (m")*B(1), (12)

we may write the (3) in compact form
where wy is the orbital rotation ratez’, is the Earth

. 1 b
G = 3 Qdiv)wis, ®) pointing vectorm? is the magnetic moment generated by the
where . actuators and’(¢) is the local geomagnetic field vector. The
Qi) 2 [ —€i X] (6) gravitational torque model given assumes a circular orbit.
Mivlsxs + €, Equation (9) may also be expressed in terms of angular
velocities as

Euler angles, or roll-pitch-yaw angles, have been applied
in the visualization of results, since these are easier to relate byX, b X, b

Jw Jw? ) w + (Al;w — AT, + T 13a

to physical motion. Fig. 2 illustrates a rotation fraf, to = (Jwp)" wiy + (ALsws) ot (139)

-b
Fp in Euler angles. Lws =1, — L, Awy, (13b)



I1l. CONTROL DESIGN Remark 1. From this result it is possible to show asymptotic

A group of satellites are assumed synchronized when ti§@nvergence as in [19], by using Barbalat's lemma, and
relative attitude deviation and angular velocity between throve that convergence af,. leads to convergence ef..
leader and the follower(s) approaches zero asymptotically
ast — oo. In our design, the relative attitude deviation orSatisfying Assumption 2
synchronization error, is represented by the quaternion err8ince the origin is UGSy,., ws., y are bounded functions
of time. Fori = 1 we choose

Qse 2 quf = Qi @ dif = q);' @iy, (14)
while the angular velocity synchronization error is equal to Vi&vV (23)
the relative velocity, b 20 (24)
wee £ wf; = w!; - Rlw). (15) Vi £ —fllwsel| <0 (25)

Further we assume that the leader satellite is controlled

by a stable or asymptotically stable control law. The probY1 IS continuously differentiable and bounded, is
lem is then to design a controller for the follower whichcontinuous and bounded, and finally is continuous and
synchronizes the attitude. hence assumption 2 is satisfied foe 1.

Given the error-variables (14) and (15), the error-dynamicE

may be represented by or ; = 2, we choose

Jisse = (Jwl, + ALyw, p)*w!, — AT,y + 7y Vo 2 Wl Jestse (26)
— J(wse) R wl — JR] &), (16a) by 2 Wy @7)
dse = 3Q(qse)Wse, (16b) Yo 2 el Tese + neewIése + micwl Jee  (28)

where the subscripts on 7, and 7, ¢, is to clearly . ) ) . .
distinguish between leader and follower torques. SiNCe Wse, Weer Y, 1se AlE bounded_ funCtlan of tlm_é/,z,
The following proposition gives a model-dependant con®? @ndYz are bounded. Moreovev; is continuously differ-
troller for the external synchronization of the satellites entiable, andp. a}nd Yg'are C,O’?“”UQUS in their arguments.
Hence, Assumption 2 is satisfied fore 2.
Proposition 1. The error-dynamic¢16), with control input  gatisfying Assumption 3

given by Y; < 0 for all w,, € R3, satisfying Assumption 3 for
Tag = *AT{*(leff T AIsws,f)Xlewﬁl — Ty i = 1. Moreover,
+ J(w,e) R wly + TR & Vi =05 wel =0 Y2 = neegldese  (29)
_k wse+k S se 688}7 17 . .
d pSAMilsc) 7 Inserting for¢s andw,. = 0, gives
have a uniformly globally asymptotically stable origin
(wsevY) = (0,0), wherey £ COI(l - ‘7/se|a 636) Y, = —kpnsesgr(nse)ﬁzgese = _kp|77$e|€ze€se <0. (30)

Proof. We prove the proposition using Theorem 2, which . - ,
can be found in the Appendix. Thus, Assumption 3 has been satisfied for both{1, 2}.

Satisfying Assumption 4

Satisfying Assumption 1
It can now be seen that

Choosing the Lyapunov function

V= jwidwe +kpy"y, (18) (Vi =0,Y2=0} = we =0,€0 = 0= 1 — [15| = O,
the time-derivative along the trajectories of (16) can be found = . ) (31)
as satisfying Assumption 4 fot € {1, 2}.

T 1, T
V = woedae + kpSQNijac ) €scwse (19) Remark 2. This hold as long ag),. is different from zero.
= w? |kpSgNnse)€se — (Jwl + Alw,)*wl,  (20) Using UGS property of Assumption 1 and thgt = 0 is an
<o f 1 o unstable equilibrium point when using the given definition of
+ ATy ; — Tg 5 + J(wse) "Ry wiy + IR "-’u] (21)  signum, as shown in [19], the condition is met by requiring
Inserting for (17), results in 7nse 10 initially be different from O.
VA T
V= —kyw;ewse < 0. (22) The assumptions of Theorem 2 are satisfied, and we

Which guarantees UGS for the error-dynamics (16), satisfyjn@y concludeuniform global asymptotic stabilityf the
ing Assumption 1. synchronization error dynamics. O



IV. OBSERVER DESIGN To prove that the origin of (36a)-(36¢) is uniformly globally

Assuming only attitude is available for measurements,table (UGS), we propose the Lyapunov function candidate

an obser_ver is needed to estimate ang_ular velocities_ and Vips = %(fli)Tﬁi+2ka(ﬁ) (41)
accelerations. Both an extended Kalman filter and a nonlinear _ _ o

observer are possible choices. In this paper a nonline@® given in [19]. We find the derivative of (41) along the
observer is designed, but the interested reader is referredtgjectories as

[20] for a thorough review of the extended Kalman filter for . R dH () -
satellite application. Vobs = (h*)"h' + 2k, g 7 (42)
Rewriting the dynamics in the inertial frame R dH (7))
o , = — ()" (g1 (qip, ip) + kp— > (RET1)E
i Rim a2a) (0)" (g (s i) + by = (RT 1))
b __ % —1/1,% dH(f]) ~T ~
wi, = (RI) 7 (h" — ALw;) (32b) +kp i € g2(p, Qiv)- (43)
dip = 3Q(aip)w?y, (32¢) . o
Selecting the output injection terngs andg, as
we may define the observer as a copy of the dynamics dH (i)
including output injection terms as g1 (qip, Qip) = —kp dﬁ Rg.]*lé (44)
. n
vi i _ mif b - ) dH (1) _
== Ri(re+elam Gu))  (339) o(ati o) 2k, 00, (45)
@y, = (RYI) ' (h' — ALLw,) (33b) "
div = 3 Q@) (@h, + g2(qv, din)). 33¢c) "¢ obtain ,
. dH (7 T
whereg; andg. are to be defined. Given the error variables Vobs = —kpky ( déﬁ)) e'e<o. (46)
h' £ h' — b’ (34)  Thus we have fulfilled the requirements of Theorem 1, and
Aiv = Qip @ Qip, (35) we can conclude that the origin is uniformly globally stable,

UGS.
the resulting error-dynamics may be written as

Satisfying Assumption 2

}1 - _?{(qis’qi{)b ) (362)  gince the origin is UGS, h,é é and 7 are bounded
iy = —5€(wgp, — Wi, — B2(Qivs Aiv)) (36b)  functions of time. For = 1 we choose
2 ~ b ~b A
€ = 5(nlsxs + S(€))(wy, — @y, — g2(au, i) (36C) Vi AV, (47)
Proposition 2. The observer given k3a)(33c), with error " =0 (48)
dypamics(36a}(3_69) h~as~ an uniformly glopally asymp- Yi2 gle|? <o (49)
totically stableorigin (h,é€,7) = (0,0,%1) if the output
injection terms are chosen as: The functionV; is continuously differentiable and bounded,
dH (i) ¢1 is continuous and bounded and finally is continuous
g1 (i, i) = —Fk, df7 RiJ e (37) and hence assumption 2 is satisfied fot 1.
n
& (i, i) = — ko dzgn) é, (38) Fori =2 we choose
n .
. . L Vo 2 —ie"(RiJ)h (50)
where H(-) is scalar function satisfying a s 51
e H(:):[-1;1] — R4 (non-negative) é2 : c J e B (1)
e H(—1)=0orand H(1) =0 Y2 = —i€’ (RyJ)h —7je” (RyJ)h (52)
e H(-) is Lipschitz on[—1, 1]: — 7" (REDh — €7 (RLI)h (53)

[H (m) = Hm2)| < Liny — e (39 since B,ﬂ,é,é and 7 are bounded functions of timéj,

Several suggestions @f (77) were made in [19], and in this ¢2 and Y are bounded. Moreover}, is continuously
paper it is chosen to be differentiable and ¢, and Y, are continuous in their

arguments. Hence, assumption 2 is satisfied: fer2.
H(ij) £ sgn(7) (40)
Satisfying assumption 3

Proof. To prove proposition 2 the generalized Matrosovrpq functionY; < 0 for all € € R3. Hence assumption 3 is
theorem, given in this work as Theorem 2, will be app"ed'satisfied fori — 1. Moreover

Satisfying Assumption 1 Yi=0= || =0= Yy = —ij¢t (RiJ)h  (54)



Inserting for¢p, and —€ = 0, gives attitude control systems with more than 3 wheels, the matrix
Al in (62) has a null space. That i®I,w, is zero for

T
Y, = *ﬁ[%(ﬁ(RiJ)flh (RiJ)h (55)  other solutions than the triviab, = 0. In particular when
_ _%ﬁQBTﬁ (56) Ell/ wheels have equal inertia, the null space of (62) is given
o
=-3h"h <0, (57) wo=cl 1 1 1T, VeeR, (63)

where we have used that= 0 = 7} = +1. This shows that

) : . ) indicating that while we are able to render the total angular
Assumption 3 is satisfied far= 2.

momentum of the wheel system zero, the actual wheel speeds
converge to a state iV(AILg). To remedy this, we propose

a procedure where we first control one wheel to zero. When

this has been achieved we may use momentum dumping
{Y1=0,Y, =0} = ||f1H =0, €| =0,7=+1 (58) control laws proposed in the literature, for example in [23]:

Satisfying assumption 4
It is clear that

and thus assumption 4 is satisfied foe {1,2}. 0 = —Alw,. (64)

oWe are now ready to give our momentum dumping scheme

We have verified all the assumptions of Theorem ;
as the following procedure.

and we conclude that the origith, é,7) = (0,0,=£1) is

uniformly globally asymptotically stahle m Step 1:Drive the speed of wheel 1 to zero while control-

ling the attitude with the remaining wheels, using
V. MOMENTUM DUMPING SCHEME the control law
Due to disturbances on the spacecraft, which are non-

symmetrical over the orbit, angular momentum will build up Ta = —cBiw; + BaTy, (65)

in the reaction wheels. Thus their speed will incr_ease, and where B, = diag(1,0,0,0), B, = diag0,1,1,1)

eventually saturate as the maximum wheel speed is regched. and, is the normal control law.

When a wheel saturates, it cannot produce a torque in thegien 2-while retaining the modified control law (65), a

direction which requires an increase of speed. To desaturate torque is exerted by the magnetic torquers to dump

the wheels and dump the excess momentum, some form momentum:

of external torque must be applied. Typically either from

thrusters or magnetic torquers. In this paper we have used Tfmidew = —Alw; (66)

the latter, due to the independence of an expendable fuel L ) ) )

source. which is implemented in magnetic moment using

(61).

Step 3:When the wheel speed are sufficiently lowered,
resume normal contror, and turn off magnetic
torquers.

The magnetic torquers produce a torque vector given
by (12). This relation in non-invertable, due to the skew-
symmetric property ofB%)*, hence it is not possible to
specify the magnetic moment which results in a desired
torque. In fact the only feasible torques belongs to the spag&mark 3. Due to the redundancy of the wheels, stability
of vectors which is perpendicular to the geomagnetic fielgroperties are not changed under the influence of the above
vector, which is a 2-dimensional manifoldR¥. We therefor control law. The three remaining wheels are able to exert the

follow the approach of [21], and project the ideal torqueequired torque for three-axis stabilization about all axes.
vector onto the space of possible vectors and get the relation

3 b VI. SIMULATIONS
Tm = Tm,ideal — ATm, Tm € {TT)'L cR ‘TT)'L 1B } (59)

In this section we present simulations of the observer, syn-

where A, is given by chronizing controller and the momentum dumping scheme.
byX b The model used is based on realistic values for a cubic small-
(B ) Tm,ideal . . . .
AT, = HB”HQ, (60) size satellite, and a summary of model parameters is given
in Table I.

Following the approach in [22], we select the magnetic

moment according to TABLE |

MODEL PARAMETERS

1
b b X
HBb(t)H%( (£))" 7 e (61) Parameter I Value
Changing the angular momentum of the reaction wheels Inertia matrix diag{4,4,3} [kgm?]

involves forcing the vector Wheel inertia 81072 [kgm?]

Max magnetic momen 40 [Am?]

h, = Al;ws, (62) Max wheel torque 0.2 [Nm]

to zero. The wheels are slowed down by exerting wheel Max wheel speed 400 [rad/s]

torques in the opposite of speed direction. For reaction wheel



TABLE I
SIMULATION PARAMETERS

Parameter H Value
Observer gains kp = 400, k, = 50
Controller gains kp=1kq=05

Desired pointing accuracy
Orbit angular velocity
Initial attitude observer simulatio
Initial leader attitude
Initial follower attitude

0.1° in all axes
1.083 - 1073 [rad/s]
[50, 50, 50]T [Deg]
[0,0,0]T [Deg]
[20,20,0]T [Deg]

Angular velocity[rad/s]

Angle[°]

Fig. 4.

12 i
0 0.2

0.4 06 08 1 12
Time [sec]

Observer angular velocity error transient. Steady-state errors
obtained were in the range &f5 - 10~3rad/s

12 1.4

1
Time [sec]

Fig. 3. Observer attitude error transient. Steady-state errors obtained wi__
in the range oft£0.02°

The observer was simulated in the presence of unmodell:
torques and measurement noise, and a plot of the estima
attitude and velocity is presented in Fig. 3 and 4. The figure
show the transient asymptotic behaviour. The steady-ste
error was in the order of - 10~2 °, but actual performance

is dependent on the measurement equipment, actual unmc
elled torques, noise, tuning parameters and so on.

In Fig. 5 a plot of the transient synchronization error
is presented, clearly showing the asymptotic convergence.
Steady-state error was in the order of .

£ (3 00 2 10 150 180
Time [sec]

200

Fig. 5. Synchronization error transieqt., visualized in Euler angles.

The momentum dumping scheme was simulated on

satellite tracking a time-varying reference, where Step 1 w& I

initiated at t=500 sec, Step 2 at t=5000 sec and finally StepE0 ol
at t=18000sec. Fig. 7 and 8 show how using our momentu [

dumping scheme, we are able to reduce both the total angu

momentum of the wheel systeand the individual wheel

speeds. In addition Fig. 9 show that we are able to keep tlg
control error within specified bounds, also during momentur2 s
management.

VIl. CONCLUSION

A |—0id
- 4 ®il
===« .
Al==-%ir
S
I I I | | | | | |
20 40 60 80 100 120 140 160 180 200
Time [sec]
T T T
C o . _Zid
g bu
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Time [sec]
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---ir

We have in this paper presented the design of an synchr .
nizing controller-observer scheme, including a momenturZ

dumping procedure for the case of redundant wheels. TI
proposed controller was proved to be uniformly globally
asymptotically stable using an extension of Matrosov’s Therig. 6.

sitions, showing that the control system performs to speci-

I I i I
100 120 140 160

Time [sec]

Simulation plot showing the attitude of the leader and follower
orem. Simulations have been utilized to support the propdgrsus the desired atiitude.



Wheel velocity [rad/s]

Angle [°]

fications also when no velocity measurements are available
and environmental disturbances are included.

Ao ws,3

i Waid APPENDIX

A. Stability theorems

, In this section we give some theorems used in the proofs

L YA ! of our propositions. The theorems are given for the general
HEENY75 4 R S nonlinear non-autonomous system
ol H ] i = f(t,x) (67)

7 Theorem 1 (Uniform stability [24]) Let x = 0 be an

1 equilibrium point for (67) and D C R™ be a domain
containingz = 0. Let V' : R>¢ x D — R be a continuously

Time [sed 7 e differentiable function such that

Fig. 7. Wheel speeds during momentum management.

Wi(z) < V(t,z) < Wa(x) (68)
oV oV
= <
ot + ot (t,z) <0 (69)
Vt > 0 andva € D, wherelV; () andWs(x) are continuous

positive definite functions ob. Then,z = 0 is uniformly
stable. IfD = R"™, thenz = 0 is uniformly globally stable
(UGS).

Theorem 2 (Extension of Matrosov's Theorem, [12], [13])
Under the following assumptions, the origin of the system
(67) is UGAS.

Assumption 1. The origin of the syster(67) is UGS.

Assumption 2. There exist integerg,m > 0 and for each
A > 0 there exist
e anumbery >0
« locally Lipschitz continuous functiorig; : R x R"* —
R,ie{l,...,m}
Fig. 8. Two-norm of the total angular momentufih., 2. e a (continuous) functionp : R x R* — R™ § €
{1,...,m}
« continuous function¥ : R" xR™ — R, € {1,...,j}
such that, for almost al(t, z) € R x B(A)?,

— max{|V;(t, )|, |p(t, )|} < p, (70)
=a R e Vi(t,w) < Yi(x, ¢(t, ). (71)

, Assumption 3. For each integerk € {1,...,j} we have
, ] that

| ERTIRE s {(z4) € B(A) x B(n), Yi(z,4) = 0 (72)
. e ] Vie{l,....k=1}} = {Vi(z,9) <0} (73)
| | i Assumption 4. We have that
1 {(z,¢) € B(A) x B(p), Yi(z,¢) = 0 (74)
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Vie{l,...,j}} = {2 =0} (75)
Time [sec] x10*
Fig. 9. Attitude tracking error, during momentum management. Proof. See [13]. 0

B(A) = {z € R™||lz]| < A}
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