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Abstract—In this paper we present the design of a linear
constrained MPC controller for magnetic actuated small satel-
lites. The controller may be derived by formulating a linear
constrained MPC problem as a multi-parametric quadratic
program (mpQP). The solution will be a piecewise affine
(PWA) function, which may be evaluated at each sample to
obtain the optimal control law. We apply this approach to the
design of an explicit model predictive controller (eMPC) for
the Norwegian student satellite nCube.

. INTRODUCTION

The purpose of this paper is to derive an attitude con-
troller for a small satellite actuated by means of magnetic
coils. This is an area of research that has attracted much
attention internationally. Noticeable contributions are [2]
and [11], where nonlinear controllers have been proposed,
a recent survey can be found in [16].

In order to handle the constraints on the available CU”eﬁIg. 1. The Norwegian student satellite Ncube. Foto: NTNU Info/Nina
and power, and limited computational power, we propose. Tveter
in this paper to solve the problem using an explicit model
predictive control scheme. In [16] a MPC was proposed for
magnetically controlled spacecraft, but to the best knowIhe solution of this optimization problem is a series of
edge of the authors, the eMPC approach has not previougi9ntrol inputs for the whole horizon, giving an open loop
been applied to this problem. However, it has recently beggpntroller. The control action computed for the first time-
used in [1] for a satellite actuated by means of thruste€p is then applied to the plant, the horizon is shifted
and a reaction wheel. The eMPC approach retains MPcfgrward one time-step and the process is repeated, with the
ability to handle constraints, and in addition requires &urrent state as initial values. In this manner MPC becomes
small amount of online computational power. This propertf closed loop approach. Due to the shifting of the horizon
is obtained as the controller computation is solved offthis is also referred to &eceding Horizon Contralr RHC.
line, requiring only fixed-point arithmetics online, making!n this paper we will consider the linearized system
it possible to realize the controller i embedded hardware. .

. . . . . Xk4+1 = Ax; + Bug

For comparison in the simulations, we have implemented (1)

two nonlinear controllers [2] based on feedback from the yi = Cxy;,

angular velocity and attitude measurements, along with g designing the controller. Whesg ¢ R™ are the state
measurement of the local magnetic field. variables,u; € R™ are the input variablesA € R™*"
An outline of a stability proof using piecewise quadraticg € R™*™ and(A,B) is a stabilizable pair. In addition

Lyapunov functions is proposed. This will however only, e may have hard constraints on both the states and inputs
show stability for each linearized model.

The results in this paper are based on the work in [3], x; € X (2)
where further details may be found. u, €U A3)

A. Explicit Model Predictive Control whereX is a convex closed subset Bf andU is a convex

Model Predictive Control or MPC, involves solving acompact subset oR™, both containing the origin in the
finite horizon optimal control problem at every time stepinterior. A terminal constraint may also be imposed for
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stability reasons, The task is now to find the explicit solution of this

mpQP problemz* = z*(x(t)), so that we may use the

definition ofz to find the explicit controllelU* as a function

of the state vector. As shown in [6], this can be solved
If we now consider the regulator problem, that is, th y applying the Kar_u_sh-Kuhn-Tucker (KKT) con_dif[ions.

problem of driving the state vector to the origin, the here the KKT-conditions are necessary and sufficient for

traditional MPC solves the following convex optimizationan %ptlma}I s_olut|o.r|1| fzr a ct:)onvex qugdratlc problefm [1.0]'
problem for the currenk;, The solution will then be a continuous PWA function,

defined over a polyhedral partition of the parameter space.

Xk+NEXfCX, (4)

where N is the prediction horizon.

min [J(U,x(t)) + pl|s[|Z,] (5a) Which may be evaluated at each sample to obtain the control
U,s .
' input
St Ymin =8 < Yitkt < Ymax+8,k=1,..., N (Sh) u, = Kixp + ki, Vx; € A, 9)
Umin < Wap < Umax k=0,... , M —1 (5¢) ) ) ) _ )
mn _ I?k ?\ZX< < N —1 (5d) whereK; is the gain-matrix for region, k; is a constant
Witk = BXpppl, M S F SN = vector, x;, the current state and; is the i'th region.
X¢|e = X(t) (Se) )
Xerki1jt = AXy gyt + B, k>0 (5f) B. EIectromagne-tlc Actuators
Veskie = CXyyppir k>0, (50) Electromagnetic actuators are often chosen .due. to the
independence of a limited fuel source, depending instead
where J(U, x(¢)) is the quadratic cost function on power from solar arrays and batteries and thereby

prolonging the lifespan of the satellite. Electromagnetic

_ T
J(U.x(t)) = Xpy NP X4 e actuators, often referred to as magnetic torquers, are based

N-1 on two basic configurations. One is the coil based, where
+ § xI . Qx +ul ,Ru (6) i i

k|t Xtk t+k WUtk current is sent through a current loop which generates the

k=0 magnetic moment proportional to the area of the coil and

Is|lz, is the £Lyo-norm of the slack variables, p is the the number of windings. The other type is the magnetic
penalty weight of the slack variable&] £ [u(k)”,u(k 4+ rod, where wire is winded around a rod made of a high
DT, u(k+ N —1)T]T is the vector of inputs at each permeability material. Both variations interact with the
sample times £ [sT (k),...,s”(k+ N —1)]T is the vector local geomagnetic field, generating a torque vector in the
of slack variablesK is the control gain matrix when the direction perpendicular to the magnetic moment vector and
input is unconstraineds; |, is the prediction ofx, ) at the local field direction.
time t, and N and M are the output and input constraint
horizons respectivelyP € R™*", P = PT > 0, R € Il. MODELLING
R™*m R = RT > 0,Q € R, Q = QT > 0. The In this section, the model of a satellite actuated by means
final-state weight matriP is typically computed using the of electromagnetic torquers is derived. The notation is based
algebraic Riccati equation. The solution to (5) is now giveron [7] and [8].
as:U* = [u* (k)T u*(k+1)7T, ... ju*(k+N-1)T]T s* =
s (K)T,....s*(k + N — )77 A. Reference frames
In order to compute the explicit MPC controller, we need When modelling the satellite, the equation of motion will
to formulate the linear MPC problem as an mpQP probleniie expressed in three different reference frames, illustrated
The details of the derivation are given in [5], [6]. By somein Fig. 2. A general reference frame will be denoted’as
algebraic manipulation the problem may be reformulated agith a subscript corresponding to a given frame.
1) ECI - Earth-centered inertial frameThis reference
frame has its origin in the center of the Earth, theaxis
Va(x) = mzin %ZTHZ 7 s pointing in the vernal equinox directidf, This is in the
st Gz < W +Sx(t), (8) direction of the vector from the center of the Sun through
the center of the Earth during vernal equinox. Theaxis
wherez £ U+H'FTx(t), x(¢) is the current state, which points 90 east, spanning the equatorial plane together with
can be treated as a vector of parameters to the optimizatitire x;-axis. The z;-axis points through the North Pole,
problem. Note thai - 0 since R = 0. The number of completing the right-hand system. In the following this
inequalities is denoted by q and the number of free variablésame will be denoted byF;
isn, =m-N. Thenz € R", H € R"=*"=, G € R7*"=, 2) Orbit-fixed reference frameThis frame, denotecF,,
W c R, § ¢ R*" F ¢ R"¥9, The optimization has its origin in the satellite’s center of gravity. Thg-
problem (7)-(8) in now considered to be an mpQP, meaninaxis points in the nadir direction. Thg-axis points in the
that we seek a solution on explicit form, as a function oflirection of the negative orbit normal. The-axis is chosen
the parametex(t). as to complete a right-hand coordinate system.



Further, we assume that the only external torques of
importance are the gravity gradie'nj and the torquer?,
supplied by the actuators:

" Orbit

7y = 3w} (203)  In(203) (15a)
7, = (m’)*B(t), (15b)

yi Earth center

Fig. 2. lllustration of the reference frames for a satellite in equatoriajyvherew, is the satellites angular velocity about the earth,
orbit. The axes not shown are pointing out of the paper. assuming a circular orbit?, is the earth pointing vector,
m" is the magnetic moment exerted by the actuators and

N .
3) Body-fixed reference frameAs the F, frame, this BY(t) is the geomagnetic field.

reference frame also has its origin in the satellite’s center of Since we are concerned with the satellite’s orientation
gravity, with the axes pointing along the satellites principalelative to 7,, we would also like the model to represent

axes of inertia. The frame is denoté&q. the angular velocity ofF;, relative to this frame. Using the
assumption of a circular orbit, we define the relationship
B. Kinematics between the angular velocities as

We will describe the attitude kinematics in the form of

Euler parameters, which may be defined from the angle-axis . ) b o o i .
parameter# andk wi, = wg, + Rowy,  and wj, = wg, + Rjwi,,  (16)

0 0
n=cos—, €=ksin—, (10)
2 2 wherew?, =0 —w, O0]T.

which gives the corresponding rotation matrix Inserting (15a), (15b) and (16) into (14), we may express

R(1, €) = I3y3 + 2n€* + 2€* €, (1) the complete nonlinear dynamics as

where* denotes the vector cross product operator, &hd
is skew-symmetric. The choice of Euler parameters is mo- b, — I, ' (Wl + Rpws)) “Ty (W), + Rw3,)
tivated by their properties as a nonsingular representation. _

A by + 82T () “Ty(2hy) + () “REWY,

From the properties of the rotation matrix, it can be L e
shown that + I, (m”)*B°(1). a7)

R, = (w},) Ry = —(why) "R, (12)
where w! is the angular velocity of the body framg, D. Linearizing
with respect to the orbit framé&,, andR? is the rotation
matrix between frames.

Using (11) and (12) the kinematic differential equations

In order to derive the eMPC controller we linearize the
nonlinear model. Define a state vecto# [(w?,)T, n, €77

. 1T, b and an input vectom £ m’. The complete nonlinear
n=—5€ wy (13a) ) . X
. ‘1 b b model can now be written a& = f(¢,x,u). Using Taylor
€= 3[nlsxs + € Jwey, (13b) expansion we linearize the model about the set-pojnt
T _ T i i
can be derived. E)],o(()j,eol,.l,(),o,()] andu, = [0,0,0]", and obtain the linear

C. Dynamics

Assuming that the satellite is a rigid body, with the body Ax = A Ax + B.Au, (18)
coordinate frame coinciding with the principal axes, we may
write the attitude dynamics as [9]

. where A, andB, are given b
Lurg, + (W) Lwj, = 72, (14) J y

wherel, = diag(iy.,iyy,i..) is the inertia matrixw?, is

the body frame’s angular velocity relative to the inertial A 2 of and B, 2 of

frame F;, and . is the external torque given if;. X Ixp U lu,



where obtain the scaled model we first define the scaled variables
and inputsx = N 'x anda £ N 'u, where the scaling

O O (1—]{:,«,)&)0 . .
matrices are defined as
0 0 0
(ko—1)wy 0 0 N, =diag([l 1 1 1073 107* 1073]) (21a)
A, = 0 0 0 N, = diag([0.1 0.1 0.1}). (21b)
1
2 (1) 0 A scaled model may then be written
0 = 0
o 0 1 x = N;'AN,x + N;'BN,u
0 _skoe? 0 0 = Ax + Bu. (22)
0 0 —6kyw? 0 Using the scaled model, we discretize the system with
0 0 0 —ok.w? a time-stepT; of 0.5 seconds, using the first order hold
0 0 0 0 TABLE |
0 0 0 0 ALGORITHM PARAMETERS
0 0 0 0 - Parameter H Value
and _ - Q diag{10, 100, 100, 10, 10, 10}
0 0 0 R diag{100000, 100000, 100000}
0 0 0 N (Horizon) 10
0 0 0 P 1
0 0 0 Parameter space —[10,10,10,1,1,1]7 <
B. = B Ik (20b) x < [10,10,10,1,1,1]7
0 e T Actuator constraints| —1 < u; < 1Vi € {1,2,3}
B B®
B g Using the parameters in Table |, we employ the mpQP
| T 0 ] algorithm. The solution is a polyhedral partitioning of the
_yy—iae C imn—ia. iy —ies parameter spack, into 21 regions, where for each region
wherek, = 2575, by = iyy andk, = == the optimal linear state-feedback control law is given by (9)
I1l. CONTROL DESIGN The solution is thus 8 PWA controllers which are scheduled
A. Explicit MPC controller according to the measured sign of the magnetic field.

In this section we will derive the eMPC controller for B. Nonlinear controllers
the electromagnetic actuated satellite. Upon inspection of
the linear model, we see that the stagtés uncontrollable.
However using the quaternion redundangy+ e’e = 1,
we see that we may contrglthroughe. We may therefore

To asses the performance of the eMPC controller, we
have implemented two nonlinear controllers (23) and (24),
which based on feedback from the angular velocity and
attitude [2]:

excluden from the rest of the analysis and design. b b\ X1b
Another issue is the time varying input mati.. This EUCZ (23)
matrix is dependent on the local magnetic field /. m® = h(w?)*B’ — ae*B?, (24)

From the model of the magnetic field, we know that this
varies periodically about 0 when measuredin Assuming Whereh >0 anda > 0 are constants.
small attitude deviations from the set-poitff, coincides
with F,, and B® may be set equal t@°. A problem
that arises is when the field changes sign, resulting in a Stability of the linearized system with eMPC control can
positive feedback loop. One solution is to estimate thB€ derived using a piecewise quadratic Lyapunov function,
absolute value of the field strength along each axis, mal@s suggested by [14], by defining the closed-loop system as
8 input matrices for each combination of signs and creafé PWA system:
one controller for each resulting model. Since the sign of
the local field is measured, we may switch between the
appropriate controllers. where A, € R"*™ a, € R" and the state belongs to the
Next, we define a proper scaling of the model. This iset of statesX C R". The set of cells{X;};_, represent
important due to numerical sensitivity in the mpQP algoa polyhedral partition ofX, i.e. each setX; is a (not
rithm, which may occur when there are large differencesecessarily closed) convex polyhedron such that the origin
in the order of magnitude between the matrix elements. Toelongs toX.

IV. STABILITY

Xpy1 = Aixp +a, VX, € X (25)



In [14] S - PWQ stable with relaxations, is presented as
the least conservative criterion:

A?sz&] — ’YP] + E?Zz]Ez < O,V(Z,]) € Sa

(26)
(27)

Euler angles [Deg]

whereZ is the set of indices denoting the regions of the ~

state-space, and denotes the set of ordered paiis ;)
of possible transitions between regions. If we can find
a feasible solutionP; = P7,U; and Z,; for this LMI,
the origin isexponentially stable oiX, with a degreey.
We may now refer to the system &PWQ stable with
relaxations

The stability of the satellite system is currently being
investigated.

Euler angles [Deg]

V. SIMULATIONS _
In this section we present simulations of the different

Roll, pitch and yaw for eMPC controller
200 T T T T T T T

100

/
-100H*
1

-200

200

100

controllers. The Norwegian student satellite is used as% °l
case. Further information on this project can be found ié ~100[]

[12] and [13]. The simulation parameters are summarized

in Table II.
In the remainder the controller parameters for the non-
linear controllers are

Orbits

Fig. 3. The Euler angles

h =2.25x 10°
o = 450.

Fig. 6 and 5 shows that the energy consumption is clearly
decreased in the case of the eMPC controller, and shows
a lower peak in the power drawn from the power supply.

The controllers were tuned for best possible performancan attempt was made to tune the nonlinear controller 2,
The eMPC controller is derived using the parameters gfrough the variables and «, in order to minimize the

Table I.

TABLE I
SIMULATION PARAMETERS

Parameter H Value
Inertia matrix diag{0.1043,0.1020,0.0031}
[kgm?]
Maximal magnetic moment 0.1 [Am?]
Desired Euler angles [0 0 0]T [deg]

Desired angular velocity
Pointing accuracy required
Orbit angular velocity w,

Orbit period
Initial attitude
Initial angular velocity

0 0o 0]T [rad/s]
+10° on roll and pitch
1.083 x 103 [rad/s]
5801.6 [sec]
® = [20,40,60]T [Deg]
wb, = [5,-3,3]T x 1072 [rad/s]

energy consumption while keeping the desired accuracy.
The consumption was decreased to about 8 J for 10 orbits,
thus still higher than with eMPC control. On the other hand,
the control law (24) results in the fastest convergence of the
three controllers.

VI. DISCUSSION

It is clear that although the proposed controller achieves
the required accuracy in roll and pitch, the nonlinear con-
troller with attitude feedback does outperform it, at the cost
of higher energy consumption. In particular the transient
response is faster, and a greater accuracy is maintained at
steady-state.

Nonlinear model predictive control (NMPC) would prob-
ably outperform the proposed controller, but the compu-
tational requirements for NMPC makes this an infeasible

The model is simulated with the presence of noise 08olution for satellite control.

the inputs to simulate disturbance torques and on the
measurements of the magnetic field. The magnetic field

VII. CONCLUSIONS

values is generated using an orbit propagator and the IGRF\ye have in this paper presented the design of an ex-

2000 model of the Earth’s magnetic field [15].
As can be seen from fig. 3 and 4, both the eMP

licit model predictive controller and compared it to other
ossible control schemes. The results show a decrease in

controller and the nonlinear controller 2, manages t0 stegfia| energy consumption while still maintaining the desired
the state to the required accuracy. However, the nonlineggcracy. Hence it has been shown to be a highly attractive
controller 1 points the satellite in the negative nadir direczq),tion for satellite control, where energy consumption is

tion.

of the greatest importance.
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