Explicit Model Predictive Control of a Satellite with Magnetic
Torquers

Thomas R. Krogstad Jan Tommy Gravdahl Pettendel

Department of Engineering Cybernetics,
Norwegian University of Science and Technology
7491 Trondheim, Norway
{thomakro, tommy.gravdahl, petter.tonfe®itk.ntnu.no

Abstract—In this paper we present the design of a linear The solution of this optimization problem is a series of
constrained MPC controller for magnetic actuated small satel-  control inputs for the whole horizon, giving an open loop
lites. The controller may be derived by formulating a linear  cqniroller. The control action computed for the first time-

constrained MPC problem as a multi-parametric quadratic - - . . .
program (mpQP). pThe solution will bg a piecevﬂse affine Ste€p is then applied to the plant, the horizon is shifted

(PWA) function, which may be evaluated at each sample to forward one time-step and the process is repeated, with the
obtain the optimal control law. We apply this approach to the  current state as initial values. In this manner MPC becomes

design of an explicit model predictive controller (eMPC) for 3 closed loop approach. Due to the shifting of the horizon
the Norwegian student satellite nCube. this is also referred to @@eceding Horizon Contrair RHC.
| INTRODUCTION In this paper we will consider the linearized system

The purpose of this paper is to derive an attitude con- Xp+1 = Axy + Bug
troller for a small satellite actuated by means of magnetic v = Cxp, @
coils. This is an area of research that has attracted much
attention internationally. Noticeable contributions are [2}vhen designing the controller. Whexg < R" are the state
and [11], where nonlinear controllers have been proposedariables,u;, € R™ are the input variablesA € R™*",
a recent survey can be found in [16]. B € R™*™ and(A,B) is a stabilizable pair. In addition
In order to handle the constraints on the available curremte may have hard constraints on both the states and inputs
and power, and limited computational power, we propose
in this paper to solve the problem using an explicit model xp € X (2
predictive control scheme. In [16] a MPC was proposed for u, €U, (3)
magnetically controlled spacecraft, but to the best knowl-
edge of the authors, the eMPC approach has not previousijhereX is a convex closed subset &f* andU is a convex
been applied to this problem. However, it has recently beafbmpact subset oR™, both containing the origin in the
used in [1] for a satellite actuated by means of thrusteiigterior. A terminal constraint may also be imposed for
and a reaction wheel. The eMPC approach retains MPC&ability reasons,
ability to handle constraints, and in addition requires a
small amount of online computational power. This property XN € Xp CX,| 4)
is obtained as the controller computation is solved off-
line, requiring only fixed-point arithmetics online, makingwhere N is the prediction horizon.
it possible to realize the controller i embedded hardware. If we now consider the regulator problem, that is, the
For comparison in the simulations, we have implementepgroblem of driving the state vector to the origin, the
two nonlinear controllers [2] based on feedback from thé&raditional MPC solves the following convex optimization
angular velocity and attitude measurements, along with @roblem for the currenk;
measurement of the local magnetic field.
An outline of a stability proof using piecewise quadratic ~ min [J(U,x(t)) + plls||Z,] (5a)
Lyapunov functions is proposed. This will however only ’

show stability for each linearized model. St ymin =8 < Yisklt < Ymaxts,k=1,... . N (5b)

The results in this paper are based on the work in [3], Unmin < Uetk < Umax bk =0,..., M —1 (5¢)
where further details may be found. Uy = Kxypp, M <kE<N -1 (5d)
A. Explicit Model Predictive Control X = X(t) (5€)

Xitht1)t = AXpyppp + Bugyp, k>0 (59

Model Predictive Control or MPC, involves solving a
finite horizon optimal control problem at every time step. Yirklt = CXppppe b 2 0, (59)



where J(U, x(t)) is the quadratic cost function prolonging the lifespan of the satellite. Electromagnetic
actuators, often referred to as magnetic torquers, are based
on two basic configurations. One is the coil based, where
T T current is sent through a current loop which generates the
+ Z Xp k)t QXephfe + Wi Rupyr,  (6) magnetic moment proportional to the area of the coil and
k=0 the number of windings. The other type is the magnetic
|Isl|z, is the Ly-norm of the slack variables, p is the rod, where wire is winded around a rod made of a high
penalty weight of the slack variable&] = [u(k)”,u(k + permeability material. Both variations interact with the
DT, ... ,u(k+ N —1)T]" is the vector of inputs at each local geomagnetic field, generating a torque vector in the
sample times = [sT(k),...,sT(k+ N —1)]T is the vector direction perpendicular to the magnetic moment vector and
of slack variablesK is the control gain matrix when the the local field direction.
input is unconstrainedx, .., is the prediction ofx;,; at
time t, and N and M artJar tlhe output and input coﬁwstraint Il. MODELLING
horizons respectivelyP € R™*", P = PT > 0, R € In this section, the model of a satellite actuated by means
R™m R =RT > 0,Q € R™**, Q = QT > 0. The of electromagnetic torquers will be derived. The notation is
final-state weight matrisP is typically computed using the based on [7] and [8].
algebraic Riccati equation. The solution to (5) is now giverA Kinematics
as:U* = [u* (k)T u*(k+1)7, ..., u* (k+N-1)T)T s* = ’ ) . ) . o
[s*(k)T,....s*(k+ N — 1)T)T We will describe the attitude klngmatlcs in the form of.
In order to compute the explicit MPC controller, we needEuler parameters, which may be defined from the angle-axis
to formulate the linear MPC problem as an mpQP problenParameters andk

J(U,x(t) = XtT+N\tPXt+N\t
N-1

The details of the derivation are given in [5], [6]. By some 0
algebraic manipulation the problem may be reformulated as N=cosy, €= ksin 9 (10)
which gives the corresponding rotation matrix
_ 1T
Va(x) = min 52 Hz ™ R(n,€) =1+ 2ne* + 2™ €, (11)
st Gz <W + Sx(¢), (8)

where* denotes the vector cross product operator, ahd

wherez £ U+H'FTx(t), x(t) is the current state, which iS skew-symmetric. The choice of Euler parameters is mo-

can be treated as a vector of parameters to the optimizatiiated by their properties as a nonsingular representation.

problem. Note thatl - 0 sinceR > 0. The number of From the properties of the rotation matrix, it can be

inequalities is denoted by g and the number of free variablé§iown that

iSn, =m-N. ThenzeR"Z,HGR"ZX"Z,GG.R.qX”.Z, Rb:(wg)XRb:_(wbb)XRb7 (12)

W ¢ R?X!1 ' § € R*" F ¢ R"X4, The optimization ° °r e © °

problem (7)-(8) in now considered to be an mpQP, meaninghere !, is the angular velocity of the body framg,

that we seek a solution on explicit form, as a function ofvith respect to the orbit framg,, andR?, is the rotation

the parametex(t). matrix between framesF, has its origin in the satellites
The task is now to find the explicit solution of this center of mass, its z-axis always pointing towards Earth

mpQP problemz* = z*(x(t)), so that we may use the (nadir direction), its y-axis is chosen in the direction of the

definition ofz to find the explicit controllelU* as a function negative orbit normal and finally the x-axis is chosen in

of the state vector. As shown in [6], this can be solve@rder to complete a right-handed system.

by applying the Karush-Kuhn-Tucker (KKT) conditions. Using (11) and (12) the kinematic differential equations

Where the KKT-conditions are necessary and sufficient for

an optimal solution for a convex quadratic problem [10].
The solution will then be a continuous PWA function, €= 3l + €XJwhy, (13b)

defi_ned over a polyhedral partition of the parameter SPaCan be derived.

Which may be evaluated at each sample to obtain the control

n= _%GTng (13a)

input B. Dynamics
uy, = Kixp, + ki, Vx3, € A, 9) Assuming that the satellite is a rigid body, with the body
whereK; is the gain-matrix for region, k; is a constant coordinate frame coinciding with the principal axes, we may
vector, x;, the current state and; is the i'th region. write the attitude dynamics as [9]
-,b b b _ b
B. Electromagnetic Actuators Lwj, + (wy,) “Lwj, = 7, (14)

Electromagnetic actuators are often chosen due to theherel = diag(iy., iy, 4-) iS the inertia matrixw?, is the
independence of a limited fuel source, depending instedmbdy frame’s angular velocity relative to the inertial frame
on power from solar arrays and batteries and thereh¥;, andr? is the external torque given if,.



Further, we assume that the only external torques a¥here
importance are the gravity gradie'nj and the torquer?, r

. 0 0 (1—Fk.)wo
supplied by the actuators:
pp y 0 0 0
(k:—Dw, 0 0
UL TACHIS (CY (152) Ae = 00 0
7, = (m")*B'(¢), (15b) > 00
0 3 0
.0 0 3
wherew, is the satellites angular velocity about the earth, 0 —8kyw? 0 0 ]
assuming a circular orbi%, is the earth pointing vector, 0 0 Cohw? 0
m" is the magnetic moment exerted by the actuators and 0 0 0” ’ _
BY(t) is the geomagnetic field. T
. . _ _ _ 0 0 0 0 (20a)
Since we are concerned with the satellite’s orientation 0 0 0 0
relative to F,, we would also like the model to represent
the angular velocity ofF;, relative to this frame. Using the 0 0 0 0
assumption of a circular orbit, we define the relationship 0 0 0 0 |
between the angular velocities as and ) i
0 0 0
0 0 0
W), = why + Rowy, and @y, = &y, + Riwy,,  (16) 0 0 0
0 0 0
B, = o | (20b)
wherew?, =0 —w, 0]T. 0 - .
b b
Inserting (15a), (15b) and (16) into (14), we may express —% 0 i:
the complete nonlinear dynamics as BY B 0
- izz iZZ -
wherek, = L”Z_’ ky = a=t= andk, = 7@%—1”_
wo, = I (why, + Rpws,) “T(why, + Rjws,) - N N
b 3w2T (2h) ¥ T(2hy) + (why) REw? I1l. CONTROL DESIGN
+I*f( b);’;b(t) o ob) oo a7 A. Explicit MPC controller
m .

In this section we will derive the eMPC controller for
the electromagnetic actuated satellite. Upon inspection of
the linear model, we see that the stagtés uncontrollable.

C. Linearizing However using the quaternion redundangy+ e’e = 1,
we see that we may contrglthroughe. We may therefore

In order to derive the eMPC controller we linearize theEXC|Ude77 frpm thg rest Qf the anglys!s and design. .
nonlinear model. Define a state vectol: [(wb,)7, 7, €7)7 Another issue is the time varying input mati.. This
. o s 'y

and an input vectom £ m'. The complete nonlinear ?ratrrr;XtPLS (rdnepder;defn:honmthen I?ica;i f&agvcetllfnfl\zﬁhfmt- thi
model can now be written a& = f(¢,x,u). Using Taylor 0 € do' e” 0 b etoagh elic neld, ;__ AO at this
expansion we linearize the model about the set-point varies periodically about & when measurecrii Assuming

- T small attitude deviations from the set-poitf, coincides
xp =10,0,0,1,0,0,0] " and with F,, and B® may be set equal td°. A problem
u, = [0,0,0]7, and obtain the linear model: or ~ y be q - A problem

that arises is when the field changes sign, resulting in a
positive feedback loop. One solution is to estimate the
absolute value of the field strength along each axis, make
8 input matrices for each combination of signs and create
one controller for each resulting model. Since the sign of
the local field is measured, we may switch between the
appropriate controllers.

Next, we define a proper scaling of the model. This is
important due to numerical sensitivity in the mpQP algo-
of of i i ;

s 97 and B, 2 | | (19) rithm, which may occur when there are large differences
X Ixp Ouly, in the order of magnitude between the matrix elements. To

A% = A.Ax + B.Au, (18)

where A, and B, are given by

A,



obtain the scaled model we first define the scaled variablesin [14] S - PWQ stable with relaxations, is presented as
and inputsx = N, 'x anda £ N 'u, where the scaling the least conservative criterion:
matrices are defined as

P, —-E'UE;, >0,VieT (26)
N, =diag([l 1 1 107% 107* 1073]) (21a) ATPA; P, + ETZ,E: <0,Y(i,j) €S, (27)
Nu = dmg([o'l 0.1 0'1])' (21b) whereZ is the set of indices denoting the regions of the
A scaled model may then be written state-space, and denotes the set of ordered paiis ;)
. . - . - of possible transitions between regions. If we can find
x=N, Al_\IxX+Nw BN,u a feasible solutiorP; = P7,U; and Z;; for this LMI,
= Ax + Bu. (22) the origin isexponentially stable oiX, with a degreey.
We may now refer to the system &PWQ stable with

Using the scaled model, we discretize the system with, o, o400

;éitr;:;stepﬂ of 0.5 seconds, using the first order hold The stability of the satellite system is currently being

investigated.
TABLE | V. SIMULATIONS
ALGORITHM PARAMETERS . . . . .
In this section we present simulations of the different
Parameter || Value controllers. The Norwegian student satellite is used as a
Q diag{10, 100, 100, 10, 10, 10} case. Further information on this project can be found in
R diag{100000, 100000, 100000} [12] and [13]. The simulation parameters are summarized
N (Horizon) 10 in Table II. _
o 1 In the remainder the controller parameters for the non-
Parameter space ~[10,10,10,1,1,1)T < linear controllers are
< T
. x < [10,10,10,1,1,1] h—2.95 x 10°
Actuator constraints| —1<wu; <1vie{1,2,3}
a = 450.

Using the parameters in Table I, we employ the mpQP

algorithm. The solution is a polyhedral partitioning of theThe controllers were tuned for best possible performance.

parameter spack, into 21 regions, where for each regionThe eMPC controller is derived using the parameters of
the optimal linear state-feedback control law is given by (9aple |.

The solution is thus 8 PWA controllers which are scheduled

according to the measured sign of the magnetic field. TABLE Il

SIMULATION PARAMETERS
B. Nonlinear controllers

Parameter H Value
To asses the performance of the eMPC controller, we — 7 (0.1013.0.1020.0.0031)
have implemented two nonlinear controllers (23) and (24), BT ST
. . [kgm?]
which based on feedback from the angular velocity and ) ) 2
. Maximal magnetic moment 0.1 [Am~]
attitude [2]: . T
Desired Euler angles [0 0 O]F [deg]
m’ = hw?, x B? (23) . :
0b Desired angular velocity 0 0o 0]T [rad/s]
m’ = hwgb % B — ae x Bb, (24) Pointing accuracy required +10° on roll and pitch
Orbit angular velocity w, 1.083 x 103 [rad/s]
whereh > 0 anda > 0 are constants. Orbit period 5801.6 [sec]
Initial attitude ® = [20,40,60]T [Deg]
IV. STABILITY Initial angular velocity wb, = [5,-3,3]T x 1072 [rad/s]

Stability of the linearized system with eMPC control can

be derived using a piecewise quadratic Lyapunov function, The model is simulated with the presence of noise on

as suggested by [14], by defining the closed-loop system @ inputs to simulate disturbance torques and on the
a PWA system: measurements of the magnetic field. The magnetic field
(25) values is generated using an orbit propagator and the IGRF

2000 model of the Earth’s magnetic field [15].

where A; € R**" a; € R™ and the state belongs to the As can be seen from fig. 1 and 2, both the eMPC

set of statesX C R™. The set of cells{X;}:_, represent controller and the nonlinear controller 2, manages to steer
a polyhedral partition ofX, i.e. each setX; is a (not the state to the required accuracy. However, the nonlinear
necessarily closed) convex polyhedron such that the origoontroller 1 points the satellite in the negative nadir direc-

belongs toX. tion.

Xp+1 = Axy + a;, Vx, € X;
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Fig. 1. The Euler angles

Fig. 4 and 3 shows that the energy consumption is clearly
decreased in the case of the eMPC controller, and shows
a lower peak in the power drawn from the power supply.
An attempt was made to tune the nonlinear controller 2,
through the variabled and «, in order to minimize the
energy consumption while keeping the desired accuracy.
The consumption was decreased to about 8 J for 10 orbits,
thus still higher than with eMPC control. On the other hand,
the control law (24) results in the fastest convergence of the
three controllers.

VI. DISCUSSION

It is clear that although the proposed controller achieves
the required accuracy in roll and pitch, the nonlinear con-
troller with attitude feedback does outperform it, at the cost
of higher energy consumption. In particular the transient
response is faster, and a greater accuracy is maintained at
steady-state.

Nonlinear model predictive control (NMPC) would prob-
ably outperform the proposed controller, but the compu-
tational requirements for NMPC makes this an infeasible
solution for satellite control.

VII. CONCLUSIONS

We have in this paper presented the design of an ex-
plicit model predictive controller and compared it to other
possible control schemes. The results show a decrease in
total energy consumption while still maintaining the desired
accuracy. Hence it has been shown to be a highly attractive
solution for satellite control, where energy consumption is
of the greatest importance.
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