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Abstract— In this paper we present a controller-observer
scheme for relative spacecraft attitude control. The system of
interest is a leader-follower formation, where we assume the
leader is controlled by some stable controller and we want the
follower to track the attitude of the leader. Furthermore we
assume that only the relative attitude is available for control
purposes, and to estimate the relative angular velocity we
introduce an error observer. The resulting closed-loop system
is proved to be uniformly practically asymptotically stable to a
ball centered at the origin.

I. INTRODUCTION

Coordinated control of autonomous vehicles, e.g. au-
tonomous underwater vehicles, unmanned aerial vehicles,
mobile robots and spacecraft is an active area of research
[1]–[3], and an enabling technology for a number of relevant
applications.

The focus of this paper is the control of relative spacecraft
attitude. For a general introduction to attitude control of
spacecraft the reader is referred to [4] and [5]. Autonomous
control of relative spacecraft motion has received much
interest [6]–[9], due in part to several inherent advantages
the distributed design adds to a mission. By distributing
payload on several spacecraft, redundancy is added to the
system, minimizing the risk of total mission failure, several
cooperating spacecraft can solve assignments which are more
difficult and expensive, or even impossible with a single
spacecraft, and the launch costs may be reduced since the
spacecraft can be distributed on more inexpensive launch
vehicles. A condition for formation flight is however a
fully autonomous vehicle, as controlling spacecraft in close
formation is only possible using automatic control. This
results in stringent requirements on control algorithms and
measurement systems.

Examples of planned applications include synthetic aper-
ture radar imaging [10], where the use of a formation
can increase the resolution of the gathered data, and space
based telescopes where it will be necessary to distribute the
functions of the telescope on several vehicles [11].

The contribution of this paper is the design of an observer-
controller output feedback scheme for relative spacecraft
attitude. The scheme is developed for a leader-follower
spacecraft formation, where the leader is assumed to be
controlled by an asymptotically stable tracking controller.
Furthermore we assume that the follower has knowledge
about its own attitude and angular velocity in addition to
the relative attitude with respect to the leader. Since we do

not know the angular velocity and acceleration of the leader,
we design an error observer in spirit of the work presented
in [12].

The paper is organized as follows: In section II we present
the system model and some preliminary notation, section
III briefly discusses the concept of practical stability, the
controller-observer scheme is designed and proved in section
IV, while we provide a simulation of a spacecraft formation
under autonomous closed-loop control in section V.

II. SYSTEM MODEL

The relative attitude motion of the leader-follower for-
mation is modeled using Euler’s momentum equation and
the quaternion attitude parameterization of SO(3), using the
notation of [13].

A. Kinematics

1) Coordinate frames: To represent the attitude of a
rotating rigid body we first introduce the concept of coordi-
nate frames. Coordinate frames are given by a set of three
orthonormal basis vectors that obey the right hand rule, and
which can be considered as a linear operator. In this paper
we will consider three such coordinate frames. The ECI
or Earth Centered Inertial frame, which is a inertial frame,
centered in the earth with a fixed axis toward the sun, and
the leader and follower body frames which are fixed in the
respective vehicle’s center of gravity and coinciding with the
principle axis of inertia. In the following we use indexes i, l
and f to denote ECI, leader body and follower body frames
respectively.

2) Rotation matrix: To give the orientation of one co-
ordinate frame relative to another or to transform a vector
between frames, we introduce the rotation matrix. Rotation
matrices are linear transformations which form the manifold
SO(3) defined as

SO(3) = {R ∈ R3×3s.t.detR = 1,RT R = I3×3}. (1)

To transform a vector v ∈ R3 between frames a and b we
use the notation

vb = Rb
av

a. (2)

3) Attitude parametrization: In this paper we parameter-
ize the rotation matrix using the non-minimal, 4-parameter
representation known as unit quaternions or Euler param-
eters. The quaternion corresponding to a rotation between



frames i and j, is given by

qij =
[
η
ε

]
(3)

where η ∈ R and ε ∈ R3, and is constrained by η2+εT ε = 1.
As any rotation can be represented as a rotation φ about an
axis e known as the Euler axis, we may define the quaternion
as

η = cos φ
2 ε = e sin φ

2 , (4)

with corresponding rotation matrix

R(qij) = Ri
j = (η2 − εT ε)I3×3 + 2εεT − 2ηS (ε) . (5)

4) Quaternion operations: Quaternion multiplication is
denoted ⊗ and for two unit quaternions qj = [ηj , ε

T
j ]T ,

j ∈ {1, 2}, it is defined as:

q1 ⊗ q2 =
[
η1

ε1

]
⊗

[
η2

ε2

]
=

[
η1η2 − εT

1 ε2

η1ε2 + η2ε1 + S (ε1) ε2

]
, (6)

where S (·) is the cross-product operator on a row-vector
defined as

S (x) ,




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (7)

The quaternion multiplication defined in (6) can also be used
to represent composite rotations Ra

c = Ra
bR

b
c as

qac = qab ⊗ qbc (8)

Furthermore we have that the inverse quaternion

q−1
ab =

[
η
−ε

]
(9)

corresponds to the reverse rotation of −φ about e.
5) Differential kinematics: The differential kinematics de-

scribes how the attitude of the rigid body evolves on SO(3)
and in terms of a rotation matrix it is given by

Ṙi
j = S

(
ωi

ij

)
Ri

j = Ri
jS

(
ωj

ij

)
. (10)

where ωj
ij is the angular velocity of frame j relative to the

inertial frame i, given in frame j. When parameterized with
the quaternion, the differential kinematics is given by

q̇ij =
1
2
Q(qij)ω

j
ij , Q(qij) =

[ −εT

ηI3×3 + S (ε)

]
. (11)

In the following, j = {l, f}, is used to denote the body
frames of the leader and follower spacecraft.

B. Kinetics
The kinetic equations, relates the change of angular ve-

locity to angular velocity, disturbances and control torques.
In the leader and follower body frame the angular velocity
of the vehicle with respect to the inertial coordinates is
given by ωl

il and ωf
if respectively. The differential equations

according to Euler’s momentum equation are given as

ω̇j
ij = S

(
Jjω

j
ij

)
ωj

ij + τj , (12)

where j ∈ {l, f}, i denotes the inertial frame, Jj is the
respective vehicle’s moment of inertia matrix and τj is the
control input.

III. PRACTICAL STABILITY

In this section we give a short introduction to the concept
of practical stability [1], [14], [15]. This a concept which is of
interest in systems with boundedness properties, where we in
addition have an attractive domain that depends on system
parameters. Similar to the semi-global property where one
may arbitrarily increase the region of attraction by increasing
the controller gains, one may define a practical stability
property, which allows for arbitrarily diminishing the size
of the non-attractive domain by arbitrarily increasing the
parameters in the system.

We denote by ‖·‖ the Euclidean norm of a vector and the
induced L2-norm of matrix. We denote by Bδ the closed
ball in Rn of radius δ, i.e. Bδ , {x ∈ Rn|‖x‖ ≤ δ}. A
continuous function α : R≥0 → R≥ is said to be of class
K (α ∈ K) if it is strictly increasing and α(0) = 0. A
continuous function σ : R≥0 → R≥ is of class L (σ ∈ L) if
it is strictly decreasing and σ(s) → 0 as s →∞.

Definition 1 (Uniform practical asymptotic stability [1]):
Consider the parameterized nonlinear system

ẋ = f(t,x,θ), (13)

where f(t,x,θ) : R≥0 × Rn × Rm → Rn is locally
Lipschitz in x and piecewise continuous in t for all θ under
consideration, the following stability consideration is used:

Let Θ ⊂ Rm be a set of parameters. The system in (13) is
said to be uniformly practically asymptotically stable (UPAS)
on Θ if, given any ∆ > δ > 0 such that B∆ ⊆ D ⊂ Rn,
there exits θ∗ ∈ Θ s.t. for ẋ = f(t,x,θ∗) the ball Bδ is
uniformly asymptotically stable on B∆.

The following corollary was given in [1], and applies to
the practical stability analysis of systems with a Lyapunov
function that can be upper and lower bounded by a polyno-
mial function.

Corollary 1: Let σi : Rm → R≥0, i ∈ {1, . . . , N}, be
continuous functions, positive over Θ, and let a, ā, q and
∆ be positive constants. Assume that, for any θ ∈ Θ, there
exists a continuously differentiable Lyapunov function V :
R≥0 × D→ R≥0 satisfying, for all x ∈ D and all t ≥ 0,

amin {σi(θ)}‖x‖q ≤ V (t,x) ≤ āmax {σi(θ)}‖x‖q. (14)

Assume also that for any δ ∈ (0, ∆), there exists a parameter
θ∗(δ) ∈ Θ and a class K function αδ such that, for all
‖x‖ ∈ [δ,∆] and all t ≥ 0,

∂V

∂t
(t,x) +

∂V

∂x
(t,x)f(t,x, θ∗) ≤ −αδ(‖x‖). (15)

Assume also that for all i ∈ {1, . . . , N},

lim
δ→0

σi(θ∗(δ))δq = 0 lim
δ→0

σi(θ∗(δ)) 6= 0. (16)

Then, the system ẋ = f(t,x, θ) is UPAS on the parameter
set Θ. Moreover, when δ = 0 and the parameter θ∗ is
independent of δ, the conditions in (16) are no longer
required, and the system ẋ = f(t,x, θ) is UAS.

Note that the domain defined by Bδ in the above corollary,
can be arbitrarily diminished.



IV. CONTROL AND OBSERVER DESIGN

In this paper we have assumed that the available mea-
surements are the orientation and angular velocity of the
follower and the relative orientation with respect to the
leader. Furthermore we assume that the angular acceleration
and angular velocity of the leader vehicle are bounded.

The control objective is for the follower to track the
attitude motion of the leader, expressed as

lim
t→∞

ωe = 0 (17)

lim
t→∞

qe = [1, 0, 0, 0]T , (18)

where ωe and qe are relative angular velocity and orientation
respectively, defined by

ωe , ωf
if − (Rl

f )T ωl
il, (19)

qe , q−1
il ⊗ qif . (20)

where ωl
il and ωf

if are leader and follower angular velocities
respectively, and Rl

f is the rotation matrix corresponding to
the relative attitude error qe as defined in (5).

We define a synchronization measure

s , ωe + λεe. (21)

Moreover, we define a virtual reference trajectory for the
follower spacecraft as

ωr = (Rl
f )T ωl

il − λεe, (22)

enabling us to rewrite the synchronization measure as

s = ωf
if − ωr. (23)

We can now write the system dynamics as

Jf ṡ = S
(
Jfωf

if

)
ωf

if + τ − Jf ω̇r (24a)

q̇e = 1
2Q(qe)(s− λεe) (24b)

Proposition 1: The system (24a)-(24b), with the control
input defined as

τf = −kds− kpεe + Jf ω̇r − S
(
Jfωf

if

)
ωf

if , (25)

where kd ∈ R>0 and kp ∈ R>0 are constants, has a locally
uniformly exponentially stable (ULES) origin (s, εe) =
(0, 0). From (21) which we can conclude exponential con-
vergence of the relative attitude and orientation errors as
defined in (17) and (18).

Proof: The proof can be carried out using the radially
unbounded, positive definite Lyapunov function

V = 1
2s

T Jfs− 2kp(1− ηe), (26)

which has time-derivative along the trajectories

V̇ = −kdsT s− kpλεT
e εe < 0, (27)

which is negative definite. Hence we can conclude ULES of
the system origin.

Remark 1: It was shown in [16] that it is not possible to
achieve a global attitude control using continuous feedback.
And one may experience the unwinding phenomenon, ie. due

to dual equilibrium points in the dynamics, corresponding
to the same physical attitude, one of which is unstable,
the vehicle which initialized at the correct may, after an
perturbation, rotate 2π about some axis.

As the relative angular velocity is not available, the con-
troller in Proposition 1 cannot be implemented. Inspired by
[12], [17], we therefore design an error-observer to estimate
the synchronization measure using the measured relative
attitude.

We define the error-variables

s̃ , s− ŝ (28)

q̃e , q−1
e ⊗ q̂e, (29)

where ŝ is the estimate of the synchronization measure and
q̂e is the estimate of the relative attitude. The observer is
implemented as

Jf
˙̂s = S

(
Jfωf

if

)
ωf

if + τf − l2ε̃e (30)

˙̂qe = 1
2Q(q̂e)(R̃T

e (ŝ− λε)− l1ε̃e), (31)

which imply that the observer error dynamics can be written
as

J ˙̃s = −Jω̇r + l2ε̃e (32a)
˙̃q = 1

2Q(q̃e)(−R̃T
e s̃− l1ε̃e). (32b)

Proposition 2: The system dynamics obtained by com-
bining (24) and (32), and defining the control input of the
follower as

τ = −S
(
Jfωf

if

)
ωf

if − kpεe − kdŝ, (33)

is UPAS. In addition since s = 0 and εe = 0 corresponds to
ωe = 0, we can conclude UPAS of the relative attitude and
angular velocity.

Proof: The stability proof is conducted using the
Lyapunov function

V = 1
2s

T Jfs + 1
2 s̃

T Jf s̃− csT Jf s̃ (34)
+ 2kp(1− ηe) + 2l1(1− η̃e),

which is positive definite and radially unbounded for 0 < c <
1. Taking the time derivative along the system trajectories we
obtain

V̇ = −χT Qχ + ∆ω, (35)

where

Q =




kdI 0 − 1
2kdcI 1

2cl2I
0 kpλI 1

2ckpI 0
− 1

2kdcI 1
2ckpI ckdI 1

2 (l1R̃e − l2I)
1
2cl2I 0 1

2 (l1R̃T
e − l2I) l21




(36)
and

χ ,




s
εe

s̃
ε̃e


 . (37)



We reorganize the terms in V̇ to be able to see which gains
result in a positive definite Q

V̇ = − 1
2

[
s
s̃

]T [
kdI −kdcI
−kdcI 2

3kdcI

]

︸ ︷︷ ︸
Q1

[
s
s̃

]

− 1
2

[
εe

ε̃e

]T [
kpλI 0
0 2

3 l21I

]

︸ ︷︷ ︸
Q2

[
εe

ε̃e

]

− 1
2

[
s
ε̃e

]T [
kdI cl2I
cl2I 2

3 l21I

]

︸ ︷︷ ︸
Q3

[
s
ε̃e

]

− 1
2

[
s̃
εe

]T [
2
3ckdI ckpI
ckpI kpλI

]

︸ ︷︷ ︸
Q4

[
s̃
εe

]

− 1
2

[
s̃
ε̃e

]T [
2
6ckdI −l2I
−l2I 2

6 l21I

]

︸ ︷︷ ︸
Q5

[
s̃
ε̃e

]

− 1
2

[
s̃
ε̃e

]T [
2
6ckdI l1R̃e

l1R̃T
e

2
6 l21I

]

︸ ︷︷ ︸
Q5

[
s̃
ε̃e

]
+ ∆ω. (38)

By examining the determinant of the matrices Qi find the
following conditions on the controller and observer gains,
and the Lyapunov function parameters

c <
2
3

(39)

kd > max
{

9l22
cl21

, 9c,
3ckp

2λ

}
(40)

for which V is positive definite and radially unbounded, and
Q is a positive definite matrix.

Furthermore, using bounds on ∆ω derived in (46) in the
Appendix, we rewrite the Lyapunov function derivative as

V̇ ≤ −qm‖χ‖2 + c1‖χ‖2 + c2‖χ‖, (41)

where qm is the smallest eigenvalue of Q. Note that qm

can be adjusted by appropriately selecting the controller and
observer gains. By restricting the norm of the system state
to ‖χ‖ ≥ δ, we obtain

V̇ ≤ − 1
2qm‖χ‖2 − (1

2qm − c1
δ − c2)‖χ‖2. (42)

Which, when constricting the controller observer gains such
that

1
2qm ≥ c1

δ + c2 (43)

we obtain
V̇ ≤ − 1

2qm‖χ‖2, (44)

for all ‖χ‖ ∈ D s.t. ‖χ‖ ≥ δ. And we can conclude UPAS of
the closed loop system as defined in definition 1, according
to Corollary 1.

V. SIMULATION

In this section a leader-follower spacecraft formation is
simulated using the proposed observer-controller structure.
The model properties, along with controller and observer
gains can be found in table I.

TABLE I
MODEL PARAMETERS

Parameter Value

Inertia matrix leader diag{1, 3, 4} [kgm2]
Inertia matrix follower diag{10, 3, 4} [kgm2]

Initial angular velocity leader [0.1, 0, 0]T [raq/s]
Initial angular velocity follower [0, 0, 0]T [rad/s]

Initial orientation [−1, 0, 0, 0]T

Initial orientation [0.5, 0.5, 0.5, 0.5]T

[kp, kd, l1, l2, λ] [700, 4000, 0.5, 120, 1000]

The leader is controlled by an exponentially stable tracking
controller, and commanded to do a slew maneuver. After the
initialization of the simulation, the leader is perturbed by
torque inputs of 10[mN ] every 35 seconds.

A. Results

As on can see from fig. 1 and 2, both the synchronization
measure and the observer error approach a ball about the
origin, which corresponds well with the theoretical findings.
Moreover, fig. 3. and 4. show that we also have UPAS for the
observer error dynamics. While fig. 5 show that the relative
angular velocity also convergers.
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Fig. 1. Synchronization measure s.

VI. CONCLUSION

In this paper we have considered the problem of con-
trolling the relative attitude in a leader-follower spacecraft
formation. A controller-observer output feedback approach
has been proposed, which guarantees that the relative attitude
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Fig. 2. Attitude synchronization error qe.
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Fig. 3. Observer error s̃.

converge to a ball about the origin, and that the closed-loop
system is uniformly practically asymptotically stable. The
performance of the proposed scheme has been investigated
through numerical simulations in MATLAB SIMULINK.

APPENDIX

A. Bound on ∆ω

In this appendix we give the calculation of the bound on
∆ω

∆ω = χT




−Jω̇r

0
−Jω̇r

0


 (45)

and
‖∆ω‖ ≤ 2‖χ‖‖Jω̇r‖ (46)
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Fig. 4. Observer attitude error q̃.
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Fig. 5. Angular velocity synchronization error.

where

Jf ω̇r = Jf (Ṙl
f )T ωl

il + Jf (Rl
f )T ω̇l

il − λJf ε̇e (47)

= −JfS (s− λεe) (Rl
f )T

e ωl
il + Jf (Rl

f )T
e ω̇l

il (48)

+ λ2ηeJfεe − λJf (ηeI + S (εe))s (49)

Using the bounds on the leader angular velocities and
angular acceleration, we obtain

‖Jf ω̇r‖ ≤ c1‖χ‖+ c2 (50)

where the constants c1 and c2 are given by

c1 = 6
√

3jmβl + 3λjm + λ2jm (51)

c2 = 3
√

3jmβal (52)



0 10 20 30 40 50 60 70 80 90 100
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Time [s]

Fig. 6. Zoom in of the synchronization measure plot in fig. 1. Here one
can see that the error converges and stays within a δ-ball centered at the
origin.

and we have used ‖ωl
il‖ ≤ βl, ‖ω̇l

il‖ ≤ βal, ‖Jf‖ ≤ jm,
‖(Rl

f )T ‖ ≤ 3
√

3, ‖ηeI + S (εe)‖ ≤ 3.
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