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Abstract: In this paper we present a PID+ backstepping controller, as a solution to the
problem of coordinated attitude control in spacecraft formations. The control scheme
is based on quaternions and modified Rodriguez parameters as attitude representation
of the relative attitude error. Utilizing the invertibility of the modified Rodriguez
parameter kinematic differential equation, a globally exponentially stable control law
for the relative attitude error dynamics is obtained through the use of integrator
augmentation and backstepping. Finally, simulation results are presented to show
controller performance.
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1. INTRODUCTION

Formation flying missions and missions involving
coordinated control of several autonomous vehi-
cles have been areas of increased interest in later
years. This is due to the many inherent advantages
the distributed design adds to the mission. By
distributing payload on several spacecraft, redun-
dancy is added to the system, minimizing the
risk of total mission failure, several cooperating
spacecraft can solve assignments which are more
difficult and expensive, or even impossible with
a single spacecraft, and the launch costs may be
reduced since the spacecraft can be distributed
on more inexpensive launch vehicles. A condition
for formation flight is however a fully autonomous
vehicle, as controlling spacecraft in close forma-
tion is only possible using automatic control. This
results in stringent requirements on control algo-
rithms and measurement systems.

Several control objectives can be defined depend-
ing on the specific mission of the formation. Mis-
sions may be divided into Earth observation and

Space observation. Earth observation missions in-
clude missions such as Synthetic Aperture Radar
(SAR) missions, where the use of a formation
increases the achievable resolution of the data. In
SAR missions the control objective is usually to
point the payload at the same location on Earth,
involving keeping the relative attitude either con-
stant or tracking a time-varying signal depend-
ing on formation configuration and satellite orbit.
Examples of planned missions are TanDEM-X
and SAR-LupeSpace observation missions focus
on astronomical and astrophysical. The control
objective usually involves keeping a constant ab-
solute attitude in an inertial stellar system and to
keep relative attitudes fixed. Examples of planned
missions are XEUS and DARWIN.

Noticeable contributions on formation control
may be divided in to three separate approaches:
leader-follower, behavioral and virtual structure.

In the leader-follower strategy, one spacecraft is
defined as leader of the formation while the rest
are defined as followers. The control objective is



to enable the followers to keep a fixed relative
attitude with respect to the leader (Pan and
Kapila, 2001; Kang and Yeh, 2002; Nijmeijer and
Rodriguez-Angeles, 2003).

The behavioral strategy views each vehicle of the
formation as an agent and the control action for
each agent is defined by a weighted average of
the controls corresponding to the desired behav-
iors for the agent. This approach eases the im-
plementation of conflicting or competing control
objectives, such as tracking versus avoidance. It
is however difficult to enforce group behavior, and
to mathematically guarantee stability and forma-
tion convergence. In addition, unforseen behavior
may occur when goals are conflicting. This strat-
egy is widely reported for use on mobile robots
(Balch and Arkin, 1998) and (Mali, 2002), and was
also applied to spacecraft formations in Lawton
(2000).

In the virtual structure approach, the formation
is defined as a virtual rigid body. In this approach
the problem is how to define the desired attitude
and position for each member of the formation
such that the formation as a whole moves as a
rigid body. In this scheme it is easy to prescribe a
coordinated group behavior and to maintain the
formation during maneuvers. But the actual per-
formance is however dependent on the individual
member’s control system’s ability to track the de-
sired trajectories. Virtual structures were applied
to mobile robots in (Lewis and Tan, 1997) and
more recently to spacecraft formations in Beard
et al. (2001) and Ren and Beard (2004).

In this paper, we present a PID+ tracking con-
troller for relative attitude in a spacecraft for-
mation. In the design, we utilize the advantages
of the modified Rodriguez parameter kinematic
to obtain a globally exponentially stable relative
attitude error dynamics. The use of the MRP for
control of attitude has previously been reported
in Tsiotras (1996), and this work extends this
approach to case of spacecraft formation coordi-
nation and by including integral action to counter
constant perturbations, along the lines of what
was reported in Fossen (2002).

The paper is organized as follows: Section 2 gives
a general introduction to modeling and equations
of motion, in Section 3 we propose and prove our
main idea, then we include a simulation of a 2
satellite formation in Section 4 and conclusions
are made in 5.

2. MODELING

In this section we give the equations of motion for
a spacecraft actuated by means of thrusters, using

the notation of Egeland and Gravdahl (2002) and
Hughes (1986).

2.1 Cartesian Coordinate Frames

The coordinate reference frames used throughout
the paper are shown in Fig. 1 and defined as
follows:

2.1.1. Earth Centered Inertial (ECI) Frame
This frame is denoted Fi, and has its origin lo-
cated in the center of the Earth. Its z axis is di-
rected along the rotation axis of the Earth towards
the celestial north pole, the x axis is directed to-
wards the vernal equinox, and finally the direction
of the y axis completes a right handed orthogonal
frame.

2.1.2. Leader Orbit Reference Frame The leader
orbit frame, denoted Fl, has its origin located
in the center of mass of the leader spacecraft.
The er axis in the frame is parallel to the vector
rl pointing from the center of the Earth to the
spacecraft, and the eh axis is parallel to the
orbit momentum vector, which points in the orbit
normal direction. The eθ axis completes the right-
handed orthogonal frame. The basis vectors of the
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Fig. 1. Reference coordinate frames (Schaub and
Junkins, 2003).

frame can be defined as

er =
rl

rl

, eθ = eh × er and eh =
h

h
,

(1)

where h = rl× ṙl is the angular momentum vector
of the orbit, and h = |h|.

2.1.3. Follower Orbit Reference Frame This
frame has its origin in the center of mass of the
follower spacecraft, and is denoted Ff . The vector
pointing from the center of the Earth to the center
of the follower orbit frame is denoted rf . Its origin
is specified by a relative orbit position vector
p = [x y z]

⊤
expressed in Fl frame components,



as shown in Fig. 1, and the frame unit vectors
align with the basis vectors of Fl. Accordingly,

p = rf − rl = xer + yeθ + zeh . (2)

2.1.4. Body Reference Frames For both the
leader and the follower spacecraft, body reference
frames are defined and denoted Flb and Ffb, re-
spectively. These frames have, similar to the orbit
frame, the origin located in the center of mass of
the respective spacecraft, but the basis vectors are
fixed in the spacecraft body and coincide with its
principal axis of inertia.

2.2 Coordinate Frame Transformations

2.2.1. Rotation from ECI to Leader Orbit Frame
The rotation from the ECI frame to the leader
orbit frame is dependent on the parameters of
the leader spacecraft orbit, and can be expressed
by three consecutive rotations. The total rotation
matrix can be written ((Sidi, 1997))

Rl
i = Rz,ω+νRx,iRz,Ω, (3)

where Ω is the right ascension of the ascending
node of the orbit, i is the inclination of the
orbit, ν is the true anomaly of the leader orbit,
and ω is the argument of perigee of the same.
The sum of ν and ω represents the location of
the spacecraft relative to the ascending node.
For the definitions of orbital parameters, consult
testbooks on astrodynamics, such as Schaub and
Junkins (2003).

2.2.2. Body Frame Rotation The rotation ma-
trix describing rotations from an orbit frame to a
body frame can be described by

Rsb
s = [c1 c2 c3] = I+2ηsS (ǫs) + 2S2 (ǫs) (4)

where the elements ci are directional cosines, and

qs =
[

ηs ǫ
⊤

s

]⊤

(5)

are the Euler parameters, which satisfy the con-
straint

η2
s + ǫ

⊤

s ǫs = 1 . (6)

The superscript/subscript s ∈ {l, f} will be used
in general to denot the spacecraft in question. The
matrix S (·) is the cross product operator given by

S (ǫ) =





0 −ǫz ǫy

ǫz 0 −ǫx

−ǫy ǫx 0



 (7)

when ǫ = [ǫx ǫy ǫz]
⊤

. The inverse rotation is given
by the complex conjugate of q as

q̄ =
[

η −ǫ
⊤

]⊤

(8)

and the quaternion product is defined as (Egeland
and Gravdahl, 2002)

q1 ⊗ q2 ,

[

η1η2 − ǫ
⊤

1 ǫ2

η1ǫ2 + η2ǫ1 + S (ǫ1) ǫ2

]

(9)

2.3 Modified Rodriguez parameters

For control purposes we have chosen to also model
the attitude using the modified Rodriguez pa-
rameters (MRP) (Shuster, 1993). This attitude
representation can be defined in terms of the
quaternion as

σs ,
ǫs

1 + ηs

. (10)

The MRP representation is a minimal parameter
representation, and therefore contains a singular-
ity, which can easily be identified from (10) as
the point ηs = −1. The advantage when com-
pared to other minimal representations is that the
singularity is moved as far from the equilibrium
as possible, that is the singularity is at ±360◦.
This parametrization was chosen due to the in-
vertibility of the kinematic equation, which will
be defined in the next section. A property which
is crucial for our control design.

2.4 Relative Rotational Motion

The time derivative of a matrix Ra
b as in (4) can

according to (Egeland and Gravdahl, 2002) be
written as

Ṙa
b = S

(

ω
a
a,b

)

Ra
b = Ra

bS
(

ω
b
a,b

)

(11)

where ω
b
a,b is the angular velocity of frame b

relative to frame a represented in frame b and S (·)
is the cross product operator described in (7). The
kinematic differential equations for a spacecraft in
its orbit frame can be found from (11) together
with (5) as

q̇s = T (qs)ω
sb
s,sb,T (qs) =

1

2

[

−ǫ
T
s

ηsI + S (ǫs)

]

(12)

where ω
sb
s,sb is the angular velocity of the space-

craft body frame relative to the orbit frame, ref-
erenced in the body frame.

In a similar manner the kinematic differential
equation can be expressed in terms of the modified
Rodriguez parameters as

σ̇s = G(σs)ω
sb
s,sb (13)

where

G(σs) ,
1

4
((1−σ

T
s σs)I+ 2S(σs)−σsσ

T
s ) (14)

Moreover, with the assumptions of rigid body
movement, the dynamical model of a spacecraft



can be found from Euler’s momentum equation
as

Jsω̇
sb
i,sb = − S

(

ω
sb
i,sb

)

Jsω
sb
i,sb + τ

sb
ds + τ

sb
as (15)

ω
sb
s,sb = ω

sb
i,sb + ωoc2 (16)

where Js is the spacecraft inertia matrix and ω
sb
i,sb

is the angular velocity of the spacecraft body
frame relative to the inertial frame, expressed in
the body frame. The parameter ωo is the orbit
angular velocity, τ sb

d is the disturbance torque, τ
sb
a

is the actuator torque, and c2 is the directional
cosine vector from (4).

Further, by expressing the relations in (12) and
(15)-(16) for both the leader and the follower
spacecraft, and defining the quaternion describing
the relative rotation as

q , q̄l ⊗ ql,f ⊗ qf , (17)

where ql,f is describes the rotation between the
leader and follower body frames, the relative at-
titude kinematics can be expressed as (Fjellstad
and Fossen, 1994)

q̇ =

[

η̇

ǫ̇

]

= T (q) ω (18)

where

ω = ω
fb
i,fb − R

fb
lb ω

lb
i,lb (19)

is the relative angular velocity between the leader
body reference frame and the follower body ref-
erence frame. Moreover, from (19) the relative
attitude dynamics can be expressed as

Jf ω̇ =Jf ω̇
fb
i,fb − Jf Ṙ

fb
lb ω

lb
i,lb − JfR

fb
lb ω̇

lb
i,lb

=Jf ω̇
fb
i,fb − JfS

(

ω
fb
i,lb

)

ω − JfR
fb
lb ω̇

lb
i,lb

(20)

where (11) and the facts that ω
fb
lb,fb = ω and

S (a)b = −S (b)a, ∀a,b ∈ R3 have been used.
Insertion of (15), evaluated for both the leader
and follower, into (20) results in (Kristiansen et
al., 2006)

Jf ω̇ + Cr (ω)ω + nr (ω) = Υd + Υa (21)

where

Cr (ω) = JfS
(

R
fb
lb ω

lb
i,lb

)

+ S
(

R
fb
lb ω

lb
i,lb

)

Jf

− S
(

Jf

(

ω + R
fb
lb ω

lb
i,lb

))

(22)

is a skew-symmetric matrix, Cr (ω) ∈ SS (3),

nr (ω) = S
(

R
fb
lb ω

lb
i,lb

)

JfR
fb
lb ω

lb
i,lb

− JfR
fb
lb J−1

l S
(

ω
lb
i,lb

)

Jlω
lb
i,lb (23)

is a nonlinear term, and

Υd = τ
fb
df − JfR

fb
lb J−1

l τ
lb
dl, (24)

Υa = τ
fb
af − JfR

fb
lb J−1

l τ
lb
al (25)

are the relative disturbance torques and relative
actuator torques, respectively.

3. CONTROL DESIGN

In this paper we consider coordinated control
of a two-satellite formation, where the control
objective is to have the relative attitude track a
desired time-varying smooth trajectory.

We define the error between the relative attitude
and the desired relative attitude in quaternion
notation as

qe = q−1

d ⊗ q, (26)

which has a corresponding modified rodriguez
parameter

σe ,
ǫe

1 + ηe

, (27)

with kinematic differential equation

σ̇e = G(σe)ωe, (28)

where ωe , ω − R(qe)ωdand G(σe) is given by
(14).

For controller design we use the backstepping
procedure. The first step is to augment our system
with a state equal to the integral of our selected
error variable, to implement integral action and
resistance to unknown constant perturbations. We
select this state as the first backstepping variable,

z0 ,

∫ t

t0

σedτ, (29)

with the trivial dynamics

ż0 = σe. (30)

We select σe as the virtual input, defined as

σe , α0 + z1, (31)

where α0 is a stabilizing control for the z0-
dynamics to be defined, and z1 is the next back-
stepping variable. Moreover we define the first
Lyapunov function candidate

V0 = 1

2
zT
0 z0, (32)

with derivative along the system trajectories

V̇0 = zT
0 z0 = zT

0 (α0 + z1). (33)

Taking the stabilizing function as

α0 = −K0z0, (34)

where K0 = KT
0 > 0, we obtain

V̇0 = −zT
0 K0z0 + zT

1 z0. (35)

We proceed to define the z1-dynamics, using (31),
as

ż1 = σ̇e − α̇0 = Gωe − α̇0, (36)

and select ωe as the virtual input. The virtual
input is defined



ωe = α1 + z2. (37)

As in the preceding step we define a Lyapunov
function candidate

V1 = V0 +
1

2
zT
1 z1, (38)

with derivative along the system trajectories

V̇1 = −zT
0 K1z0 + zT

1 (z0 − α̇0 + Gωe). (39)

The stabilizing function for the second backstep-
ping subsystem is selected as

α1 , G−1(−K1z1 + α̇0 − z0), (40)

where K1 = KT
1 > 0, and obtain

V̇1 = −zT
0 K0z0 − z1K1z1 + zT

1 Gz2 (41)

Remark 1. In this step we take advantage of the
crucial property that G−1(σe) is well defined for
all σe.

The dynamics governing the z2-dynamics is ob-
tained through differentiation of (37) and inser-
tion of (20)

Jfz2 = Jf ω̇e − Jf α̇1

= Jf ω̇ − Jf

d

dt
(R(qe)ωd) − Jf α̇1

= −Cr(ω)ω − nr(ω) + Υa

− Jf

d

dt
(R(qe)ωd) − Jf α̇1. (42)

We continue to define a Lyapunov function can-
didate

V2 = V1 +
1

2
z2Jz2, (43)

with derivative along the system trajectories

V̇2 = −z0K0z0 − z1K1z1 + zT
2

{

GT z1

− Cr(ω)ω − nr(ω) + Υa

− Jf

d

dt
(R(qe)ωd) − Jf α̇1

}

(44)

Assuming that the leader is perfectly controlled,
we design the control input to the follower as

τf , −GT z1 + Cr(ω)ω + nr(ω)

+ Jf

d

dt
(R(qe)ωd − K2z2 (45)

which results in

V2 = −z0K0z0 − z1K1z1 − z2Kz2. (46)

Proposition 1. The closed-loop error dynamics

ż0 = −K0z0 + z1 (47)

ż1 = −K1z1 − z0 + z2 (48)

ż2 = −K2z2 − z1 (49)

obtained through the backstepping procedure, is
globally exponentially stable (GES), resulting in

exponential convergence of the relative attitude
tracking error (σe, ωe) → (0, 0).

Proof. The GES property of the closed loop dy-
namics (47)-(49), follows from the the final Lya-
punov function candidate (43) and its derivative
(46). It is clearly positive definite and decresent,
and V2 = zT Pz with z = [zT

0 , zT
1 , zT

2 ]T and
P = diag(I, I,Jf ). From (46) it is clear that V̇2

is negative definite, and V̇2 = −zT Qz with Q =
diag(K0,K1,K2). It is now straightforward to in-
voke standard Lyapunov theorems (Khalil, 2002),
concluding global exponential stability of the ob-
tained error dynamics. That is [zT

0 , zT
1 , zT

2 ]T ap-
proaches zero exponentially. Moreover we have
that z0 ≡ 0 and z1 ≡ 0 ⇒ σe ≡ α0 ≡ −K0z0 ≡ 0,
and z2 ≡ 0 ⇒ ωe ≡ α1 ≡ 0.

Remark 2. Our result is global in the sense that
for any initial condition, (σe, ωe) → (0, 0) expo-
nentially. However since we are using a minimal
attitude representation, a singularity will be in-
troduced at some level. In this case, the singular-
ity is moved to the translation from quaternion
error to modified rodriguez parameters, since the
quaternion [−1,0T ]T does not have a well defined
MRP vector.

4. SIMULATIONS

We here present the simulation of a two-satellite
formation. The leader satellite is controlled by a
exponentially stable tracking controller, while the
follower is controlled by the proposed controller
to track a desired relative orientation.

The moment of inertia of both spacecraft are
J = diag(4, 3.9, 0.3) and the initial orientation are
qf = [0.21260.67440.6744− 0.2126] for follower.

For simplicity the desired relative orientation is
given as a sinusoidal signal in euler angles, given
by

Ψd = [25π
180

sin ( 2π
500

), 60π
180

sin ( 2π
400

), −60π
180

sin ( 2π
400

)]T .

(50)

4.1 Results

The simulations results for relative orientation
tracking is presented in Fig. 3, with the corre-
sponding transient error plot in Fig. 2.

As determined by the theoretical results, the rel-
ative orientation converge exponentially to the
desired reference trajectory.
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5. CONCLUSION

In this paper we have presented controller for
the relative spacecraft attitude, including inte-
gral action to counter unmodeled constant and
slowly varying disturbances. The error-dynamics
has been proven to be globally exponentially sta-
ble.
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