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Abstract: The adoption of fractional calculus in control systems has enabled the synthesis
of new controllers with fractional-order derivatives and integrals. Several optimization-based
methods for tuning of linear fractional-order controllers have been explored. However, few have
considered the stability of the closed-loop system during optimization. This paper presents a
model-driven method for tuning of fractional-order controllers based on a heuristic optimization
technique and the experimental use of Nyquist’s stability criterion to enforce closed-loop stability
of fractional-order systems. The proposed frequency domain tuning method enables tuning of
linear fractional-order controllers with few to medium number of parameters. The method can
handle both fractional-order linear and integer-order linear plant models and controllers. To
assist the experimental use of Nyquist’s stability criterion, a function for drawing a Logarithmic
amplitude polar diagram has been developed. Simulation results of the method applied to a
nanopositioning system in atomic force microscopy suggest that the proposed method can be
used for optimization of fractional-order controllers while enforcing closed-loop stability. Given
that the system can be stabilized with the given controller. Matlab code building on the FOTF
toolbox and global optimization toolbox is provided.
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1. INTRODUCTION

The topic of fractional-order calculus for control has re-
ceived increased attention in recent years, however, the
mathematical foundation of fractional-order calculus was
laid out in the nineteenth century (David et al., 2011).
Fractional-order or irrational-order differentiation is a gen-
eralization of integer-order differentiation from the set of
natural to the set of real numbers.
Several papers on fractional-order control reports on in-
creased performance. However, most of these results show
only minor improvements when compared to well estab-
lished integer-order controllers. Dastjerdi et al. (2018)
proposed rules of thumb for tuning of fractional-order PID
controllers. Dabiri et al. (2018) tuned a set of variable-
order fractional PID controllers using the particle swarm
optimization (PSO) algorithm. Mandić et al. (2017) used
dominant pole placement and the D-decomposition ap-
proach in tuning a fractional-order PID controller. Sun
et al. (2018) proposed a fractional-order sliding mode
controller for tracking control of a linear motor. Kumar
et al. (2018) tuned a fractional-order PID controller using
an evolutionary multi-objective optimization algorithm.
Guefrachi et al. (2017) proposed a fractional-complex-
order PID controller. Altintas and Aydin (2017) compared
the use of the Big Bang Big Crunch optimization algorithm
and the genetic algorithm in tuning fractional-order and
integer-order PID controllers for a MAGLEV system.

Stability analysis and stability of closed-loop systems are
important when designing and tuning feedback controllers.
In the literature, Matignon’s stability theorem is domi-
nating (Matignon, 1996). However, this stability analysis
method quickly turns infeasible for large fractional-order
transfer functions or low commensurate-orders because of
high computational complexity of calculating the roots. A
few other stability analysis techniques for fractional-order
systems are mentioned in (Sabatier et al., 2013).
Nyquist’s stability criterion has been used extensively for
stability analysis of closed-loop systems in the case of
integer-order linear time-invariant (LTI) systems and is
usually taught in basic control theory courses on frequency
domain techniques. However, the use of this criterion for
fractional-order systems has not been studied extensively
in the literature. Trigeassou and Maamri (2009) consid-
ered the use of Nyquist criterion for stability analysis of
fractional differential equations and included systems with
time delays in the study. Similarly, Zhou (2017) considered
a Nyquist-like criterion for fractional-order linear time-
invariant differential equations and examined necessary
and sufficient conditions in addition to the choice of inte-
gral contour for applying the argument principle. Trächtler
(2016) considered BIBO stability of a class of irrational
transfer functions and proposed a generalization of the
Nyquist criterion, focusing on poles, zeros and Riemann
surface branch points. Xue (2017) also comments that: “In
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1. INTRODUCTION

The topic of fractional-order calculus for control has re-
ceived increased attention in recent years, however, the
mathematical foundation of fractional-order calculus was
laid out in the nineteenth century (David et al., 2011).
Fractional-order or irrational-order differentiation is a gen-
eralization of integer-order differentiation from the set of
natural to the set of real numbers.
Several papers on fractional-order control reports on in-
creased performance. However, most of these results show
only minor improvements when compared to well estab-
lished integer-order controllers. Dastjerdi et al. (2018)
proposed rules of thumb for tuning of fractional-order PID
controllers. Dabiri et al. (2018) tuned a set of variable-
order fractional PID controllers using the particle swarm
optimization (PSO) algorithm. Mandić et al. (2017) used
dominant pole placement and the D-decomposition ap-
proach in tuning a fractional-order PID controller. Sun
et al. (2018) proposed a fractional-order sliding mode
controller for tracking control of a linear motor. Kumar
et al. (2018) tuned a fractional-order PID controller using
an evolutionary multi-objective optimization algorithm.
Guefrachi et al. (2017) proposed a fractional-complex-
order PID controller. Altintas and Aydin (2017) compared
the use of the Big Bang Big Crunch optimization algorithm
and the genetic algorithm in tuning fractional-order and
integer-order PID controllers for a MAGLEV system.

Stability analysis and stability of closed-loop systems are
important when designing and tuning feedback controllers.
In the literature, Matignon’s stability theorem is domi-
nating (Matignon, 1996). However, this stability analysis
method quickly turns infeasible for large fractional-order
transfer functions or low commensurate-orders because of
high computational complexity of calculating the roots. A
few other stability analysis techniques for fractional-order
systems are mentioned in (Sabatier et al., 2013).
Nyquist’s stability criterion has been used extensively for
stability analysis of closed-loop systems in the case of
integer-order linear time-invariant (LTI) systems and is
usually taught in basic control theory courses on frequency
domain techniques. However, the use of this criterion for
fractional-order systems has not been studied extensively
in the literature. Trigeassou and Maamri (2009) consid-
ered the use of Nyquist criterion for stability analysis of
fractional differential equations and included systems with
time delays in the study. Similarly, Zhou (2017) considered
a Nyquist-like criterion for fractional-order linear time-
invariant differential equations and examined necessary
and sufficient conditions in addition to the choice of inte-
gral contour for applying the argument principle. Trächtler
(2016) considered BIBO stability of a class of irrational
transfer functions and proposed a generalization of the
Nyquist criterion, focusing on poles, zeros and Riemann
surface branch points. Xue (2017) also comments that: “In
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the original Nyquist theorem, there was no assumption
that G(s) is a rational integer-order transfer function.
Therefore, the theorem should be valid for fractional-order,
or even, irrational systems.”
In this paper, a method for tuning of fractional-order
controllers is presented. The method uses the genetic al-
gorithm for controller parameter tuning, a heuristic opti-
mization technique. To enforce stability of the optimized
solution, a constraint that automatically evaluates the
Nyquist stability criterion has been added to the op-
timization problem. A custom adaptive frequency step-
ping algorithm for fast frequency response calculation has
been developed to make the evaluation of the Nyquist
criterion effective. Simulations reveal that the presented
tuning method enables tuning of a wide set of fractional-
order linear controllers with arbitrary structure as op-
posed to many of the fractional-order controller tuning
methods proposed in the literature, of which most focus
on the fractional-order PID controller. Simulations with
Simulink and the FOTF toolbox (Xue, 2017), building
on the Oustaloup fractional-order realization technique
(Oustaloup et al., 2000), reveal that the calculated gain
margins reported from the automatic stability assessment
are correct.
To the authors’ best knowledge, the Nyquist criterion has
never been used as a constraint in optimization-based
tuning in the proposed way and in particular not in the
context of fractional-order control systems. Matlab code is
provided (Moltumyr, 2019a).

2. PRELIMINARIES

2.1 Fractional-order systems

Fractional-order control systems build on fractional cal-
culus which generalizes integer-order derivatives and in-
tegrals to arbitrary order derivatives and integrals. There
exist many different definitions of fractional derivatives
and integrals. One of the most used definitions is the
Riemann-Liouville definition (Podlubny, 1999).
The Riemann-Liouville definition for a fractional deriva-
tive (Podlubny, 1999), given α > 0 and n = ⌈α⌉, is

x0
Dα

xf(x) =
1

Γ(n− α)

dn

dxn

∫ x0

x

f(τ)

(x− τ)1+α−n
dτ, (1)

where Γ(·) is the gamma function. The Riemann-Liouville
definition of a fractional integral (Xue, 2017) is

x0
D−α

x f(x) =
1

Γ(α)

∫ x0

x

f(τ)

(x− τ)1−α
dτ. (2)

The Laplace transformation of a Riemann-Liouville frac-
tional derivative (1) is

L{Dα
t f(t)} (s) = sαF (s)−

(⌈α⌉−1)∑
k=0

sk D(α−k−1)
t f(t)

∣∣∣
t=0

. (3)

This motivates the use of Laplace domain and frequency
domain methods and expressions when designing linear
fractional-order control systems.

Based on (3), a general fractional-order transfer function
with input u(s) and output y(s) can be expressed as

y(s)

u(s)
=

bmsγm + bm−1s
γm−1 + . . .+ b1s

γ1 + b0s
γ0

ansηn + an−1sηn−1 + . . .+ a1sη1 + a0sη0
, (4)

where m and n are the numbers of different fractional-
order parts in numerator and denominator, respectively.
γl and bl are the corresponding fractional orders and
coefficients of the numerator, while ηi and ai are the
corresponding fractional orders and coefficients of the
denominator. Without loss of generality we assume that
0 ≤ ηi < ηi+1 and 0 ≤ γl < γl+1.
In the following, we will use C(s) to denote a controller
transfer function, G(s) to denote a plant transfer function,

L(s) = C(s)G(s), (5)

for an open-loop system, and

T (s) =
L(s)

1 + L(s)
, (6)

for a closed-loop system (complementary sensitivity func-
tion).

S(s) =
1

1 + L(s)
, (7)

is the sensitivity function.

2.2 Oustaloup Filter Approximation

Fractional-order integrals and derivatives, as opposed to
integer-order integrals and derivatives, are problematic
to realize with digital computers because of the infinite
memory effect (Dorćák et al., 2002). However, several ap-
proximation techniques have been developed (Xue, 2017).
One of the most prominent approximation techniques is
the Oustaloup filter approximation technique (Oustaloup
et al., 2000), where a fractional-order derivative sα is
approximated in the frequency domain by several integer-
order pole-zero pairs. This realization technique is used
for simulation purposes in this paper through the usage of
Simulink and the FOTF toolbox (Xue, 2017).
The integer-order filter approximation is formulated as:

sα ≈ K

N∏
k=1

s+ ω′
k

s+ ωk
, (8)

ω′
k = ωb ω

(2k−1−α)/N
u , K = ωα

h , (9)

ωk = ωb ω
(2k−1+α)/N
u , ωu =

√
ωh

ωb
. (10)

where α is the fractional-order, ωb and ωh is the lower and
upper bound of the frequency area of interest where the
approximation is valid, and N is the number of pole-zero
pairs, also called the order of the filter.

2.3 Nyquist’s stability criterion

Nyquist’s stability criterion (Nyquist, 1932) is extensively
used for analysing stability of closed-loop integer-order
linear systems. In the proposed method, we use this
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that G(s) is a rational integer-order transfer function.
Therefore, the theorem should be valid for fractional-order,
or even, irrational systems.”
In this paper, a method for tuning of fractional-order
controllers is presented. The method uses the genetic al-
gorithm for controller parameter tuning, a heuristic opti-
mization technique. To enforce stability of the optimized
solution, a constraint that automatically evaluates the
Nyquist stability criterion has been added to the op-
timization problem. A custom adaptive frequency step-
ping algorithm for fast frequency response calculation has
been developed to make the evaluation of the Nyquist
criterion effective. Simulations reveal that the presented
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order linear controllers with arbitrary structure as op-
posed to many of the fractional-order controller tuning
methods proposed in the literature, of which most focus
on the fractional-order PID controller. Simulations with
Simulink and the FOTF toolbox (Xue, 2017), building
on the Oustaloup fractional-order realization technique
(Oustaloup et al., 2000), reveal that the calculated gain
margins reported from the automatic stability assessment
are correct.
To the authors’ best knowledge, the Nyquist criterion has
never been used as a constraint in optimization-based
tuning in the proposed way and in particular not in the
context of fractional-order control systems. Matlab code is
provided (Moltumyr, 2019a).
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culus which generalizes integer-order derivatives and in-
tegrals to arbitrary order derivatives and integrals. There
exist many different definitions of fractional derivatives
and integrals. One of the most used definitions is the
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(⌈α⌉−1)∑
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t f(t)

∣∣∣
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. (3)

This motivates the use of Laplace domain and frequency
domain methods and expressions when designing linear
fractional-order control systems.

Based on (3), a general fractional-order transfer function
with input u(s) and output y(s) can be expressed as
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=
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γm−1 + . . .+ b1s
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, (4)

where m and n are the numbers of different fractional-
order parts in numerator and denominator, respectively.
γl and bl are the corresponding fractional orders and
coefficients of the numerator, while ηi and ai are the
corresponding fractional orders and coefficients of the
denominator. Without loss of generality we assume that
0 ≤ ηi < ηi+1 and 0 ≤ γl < γl+1.
In the following, we will use C(s) to denote a controller
transfer function, G(s) to denote a plant transfer function,

L(s) = C(s)G(s), (5)

for an open-loop system, and

T (s) =
L(s)

1 + L(s)
, (6)

for a closed-loop system (complementary sensitivity func-
tion).

S(s) =
1

1 + L(s)
, (7)

is the sensitivity function.

2.2 Oustaloup Filter Approximation

Fractional-order integrals and derivatives, as opposed to
integer-order integrals and derivatives, are problematic
to realize with digital computers because of the infinite
memory effect (Dorćák et al., 2002). However, several ap-
proximation techniques have been developed (Xue, 2017).
One of the most prominent approximation techniques is
the Oustaloup filter approximation technique (Oustaloup
et al., 2000), where a fractional-order derivative sα is
approximated in the frequency domain by several integer-
order pole-zero pairs. This realization technique is used
for simulation purposes in this paper through the usage of
Simulink and the FOTF toolbox (Xue, 2017).
The integer-order filter approximation is formulated as:

sα ≈ K

N∏
k=1

s+ ω′
k

s+ ωk
, (8)

ω′
k = ωb ω

(2k−1−α)/N
u , K = ωα

h , (9)

ωk = ωb ω
(2k−1+α)/N
u , ωu =

√
ωh

ωb
. (10)

where α is the fractional-order, ωb and ωh is the lower and
upper bound of the frequency area of interest where the
approximation is valid, and N is the number of pole-zero
pairs, also called the order of the filter.

2.3 Nyquist’s stability criterion

Nyquist’s stability criterion (Nyquist, 1932) is extensively
used for analysing stability of closed-loop integer-order
linear systems. In the proposed method, we use this

criterion to ensure closed-loop stability of the solution, as
proposed for fractional-order systems by Xue (2017).
Nyquist’s stability criterion states that an open-loop sys-
tem L(s) will be closed-loop stable iff

∆∠ (1 + L(s)) = −2π (Nn −Np) , (11)

where ∆∠(1+L(s)) is the sum of the argument of 1+L(s)
when integrated along a closed-loop path enclosing the
whole of the right half complex plane, and Nn and Np

are the number of right half plane zeros and right half
plane poles in the transfer function 1 + L(s), respectively.
A stable closed-loop system is usually desired. This is
equivalent to setting Nn = 0. This leads to the simpler
form ∆∠(1 + L(s)) = 2πNp, with the following inter-
pretation: The number of counter-clockwise rotations of
∠(1 + L(s)) must equal the number of right half plane
poles for the open-loop system Np, in order for the closed-
loop system to be stable.

3. PROPOSED TUNING METHOD

A method for tuning fractional-order controllers with few
parameters has been developed. The method is based on
constrained optimization in the frequency domain, where
the genetic algorithm (GA) (Holland, 1992) is combined
with an algorithm developed in this work for the automatic
calculation of Nyquist’s stability criterion. The genetic
algorithm implementation from the global optimization
toolbox (MathWorks, 2019) has been used. See Moltumyr
(2019a) for GA implementation choices. In this paper, the
letter j will be used for the imaginary unit.

3.1 Optimization Problem

The method heuristically solves the following non-linear
constrained and linearly bounded minimization problem:

min
x

f(x) s.t.




c1(x) ≤ 0,

c2(x) ≤ 0,

xlower ≤ x ≤ xupper,

(12)

where f(x) is the objectivity function to be minimized, x
are the controller parameters and the constraint functions
used to ensure stability are

c1(x) = ∆k − GMhigh ≤ 0, (13)
c2(x) = GMlow +∆k ≤ 0. (14)

GMhigh and GMlow are the gain margins, in decibel, that
would place the system at the upper and lower stability
boundaries of the closest stable area if such an area exists.
Furthermore, ∆k is a gain margin parameter that can be
set in order to ensure that the system will have a minimum
gain margin ∆k dB, if possible.
In order for the closed loop response to be fast and
not show excessive oscillations, f(x) has been chosen to
maximize system bandwidth ωbw, while keeping |T (jω)|
close to 0 dB for ω < ωbw and |S(jω)| close to 0 dB for
ω > ωbw (Skogestad and Postlethwaite, 2001). Building
on (Eielsen et al., 2014), f(x) was defined as

f(x) = γ1f1(x) + γ2f2(x) + γ3f3(x), (15)

f1(x) =
1

Nbw

(
Nbw∑
i=0

(1− |T (jωi;x)| )
2

) 1
2

, (16)

f2(x) =
1

N −Nbw

(
N∑

i=Nbw

(1− |S(jωi;x)| )
2

) 1
2

, (17)

f3(x) = −ωbw = −ωNbw(x), (18)

Here, γ1, γ2, γ3 > 0 are used to weigh the different objec-
tives. ωi for i = 0, 1, · · · , Nbw, · · · , N are logarithmically
spaced frequencies in the area where the objective should
be calculated. N is the total number of frequency values
and Nbw(x) is the index of the frequency vector where the
bandwidth is found.
The objectives can be summarized as follows:
f1 Flatness of complementary sensitivity function T (s)

up to the defined bandwidth (How well T (s) follows
the 0-dB line).

f2 Flatness of sensitivity function S(s) after the defined
bandwidth (How well S(s) follows the 0-dB line).

f3 High bandwidth, ωbw (defined as the minimum of the
first time T (s) drops below −6dB and the first time
S(s) rises above −6dB).

The proposed objectivity function and the minimization
problem is non-convex. Therefore, several local minima
exist and a set of globally optimal controller parameters
can not be guaranteed. However, the use of a random
seeded population-based optimization method like the
genetic algorithm enables the optimization to escape local
minima if an individual of the population has found a
better set of controller parameters.

3.2 Automatic calculation of Nyquist stability criterion

Using Nyquist’s stability criterion in optimization to en-
sure stability requires an automatic evaluation of the crite-
rion. For the presented fractional-order controller tuning
method the Nyquist criterion is automatically evaluated
through Algorithm 1, which builds on Algorithm 2 and
Algorithm 3. The method is here presented in a top-down
approach. An illustration of the algorithm can be seen in
Figure 1. Some details have been deliberately left out to
avoid obfuscation of the main steps of the method. For
details, see (Moltumyr, 2019a).

3.3 Fast Frequency Response Calculation

Fast evaluation of stability properties is desirable when
tuning controllers through optimization in the proposed
way. This makes a fast and reliable evaluation of the
frequency response of the open-loop transfer function a
necessity. Naive approaches like linear or logarithmic fixed-
step sampling, over some frequency interval, may easily
fail to capture rapidly changing dynamics in parts of the
response while oversampling other areas of the response.
Leading to both loss of information and unnecessary
calculations. Therefore, a method for fast calculation of
the frequency response, built on the notion of adaptive
stepping, has been developed. The method is presented in
Algorithm 3.
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Algorithm 1 Automatic calculation of Nyquist Criterion
Input: G(s), C(s;x), Np

Output: GMlow, GMhigh
1: Find L(s) = G(s)C(s;x) and calculate L(jω) for

ω ∈ [0,∞] with Algorithm 3.
2: Make a list P of {Re{L(jωi)}, ωi} and real-axis

crossing direction (up or down) for all ωi where
Im{L(jω)} == 0. In case two proceeding values ωi and
ωi+1 satisfy sign(Im{L(jωi)}) ̸= sign(Im{L(jωi+1)}),
use linear interpolation to estimate Re{L(jωi)} and
ωi. N is the length of list P.

3: Divide the real axis from −∞ to ∞ into N+1 segments
S by cutting the real axis at the N points in list P.

4: Calculate E , number of encirclements around each
segment in S, with Algorithm 2.

5: Using (11) where Nn = 0, if ei ∈ E satisfies ei == Np

the system is stable when the corresponding segment
si ∈ S contains the critical point (−1, 0). Add si to a
list Sstable.

6: If Sstable is not empty, calculate and return lower
and upper gain margins, GMlow and GMhigh for all
s ∈ Sstable.

L(s) is a fractional-order transfer function, with the same
form as the right hand side of (4), whose frequency
response is to be found. ωsp is an input parameter that
specifies the start point for the adaptive stepping. If the
returned frequency response is not adequately continuous,
ωsp can usually be changed to improve continuity. The
step-change constant β > 1 is a multiplicative factor used
when changing step length ωsp. The stepping frequency
ωstep is initialized with a low value in order for the
algorithm to avoid taking too great steps at the start.

Algorithm 2 Segment encirclement calculation
Input: P, N
Output: E

1: E = zeros(N + 1)

2: A(1:2, 1:N) =

[
Re{L(jω1)} · · · Re{L(jωN )}

ω1 · · · ωN

]

3: Sort A w.r.t. 1st row
4: A(3, 1:N) = 1:N
5: Sort A w.r.t. 2nd row
6: for i = 1:N − 1 do
7: v = (A(3, i) + 1):A(3, i+ 1)
8: if Length(v) == 0 then
9: v = (A(3, i+ 1) + 1):A(3, i)

10: dir = 1 (up) or − 1 (down)
11: d = Re{L(jωi)} − Re{L(jωi+1)}
12: if (dir == −1 and d > 0) or
13: (dir == 1 and d < 0) then
14: E(v) = E(v)− ones(Length(v))
15: else if (dir == 1 and d > 0) or
16: (dir == −1 and d < 0) then
17: E(v) = E(v) + ones(Length(v))

When calculating frequency response values at ω = 0, all
bls

γl and ais
ηi terms with l > 0 and i > 0 are dominated

by the terms with l = 0 and i = 0. Similarly, for ω = ∞,
the terms with l < m and i < n are dominated by the
terms with l = m and i = n. Therefore,

lim
ω→0

L(jω) =
b0
a0

ω(γ0−η0)ej
π
2 (γ0−η0)

∣∣
ω=0

, (19)

lim
ω→∞

L(jω) =
bm
an

ω(γm−ηn)ej
π
2 (γm−ηn)

∣∣
ω=∞. (20)

1. 2.

4. 5.

3.

6.

(-2)(0) (-2) (-1)(0) (-2)(0) (-2) (-1)(0)

(-1,0) ω=∞

ω=-∞ ω=0

|L(jω)|=∞
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GM

high

low

GMhigh

GMlow

Fig. 1. Illustration showing the steps of the automatic calculation of Nyquist’s stability criterion. The Nyquist curve is
a logarithmic-polar plot of the fractional-order transfer function (25).
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Fig. 1. Illustration showing the steps of the automatic calculation of Nyquist’s stability criterion. The Nyquist curve is
a logarithmic-polar plot of the fractional-order transfer function (25).

Algorithm 3 Fast frequency response calculation
Input: L(s) (FOTF object), ωsp, β
Output: {L(jω) for ω ∈ [0,∞]}

1: Extract bl, ai, γl and ηi for l = 1, 2, . . . ,m and
i = 1, 2, . . . , n from FOTF object L(s).

2: Calculate limω→0 L(jω) and limω→∞ L(jω) from (19)
and (20), respectively.

3: Calculate {L(jω) for ω ∈ [ωsp,∞⟩} according to flow
diagram in Figure 2 and Equation (23) and (24) with
positive ωstep value.

4: Calculate {L(jω) for ω ∈ ⟨0, ωsp]} in the same way as
in step 3, but with negative ωstep value.

5: Combine and return {L(jω) for ω ∈ [0,∞]}.

Frequency response values can be calculated with

L(jωk)=zk=

∑m
l=0 blω

γl

k

(
cos

(
π
2 γl

)
+j sin

(
π
2 γl

))
∑n

i=0 aiω
ηi

k

(
cos

(
π
2 ηi

)
+j sin

(
π
2 ηi

)) . (21)

This is obtained by letting s = jωk in L(s) and using
Euler’s formula

k := 0, ω0 := ωsp,
ωstep := 10−6

(a low value)

Calculate frequency
response value zk
at ωk from (21)

Does zk satisfy
(23) and (24)?

k := k + 1

ωstep := βωstep

ωk := ωk−1 + ωstep

ωstep :=
1

β
ωstep

ωk := ωk−1 + ωstep

Check if done
using Algorithm 4

Return L(jωi) = zi
and ωi for

i = 0, 1, . . . , k

YesNo

Yes

No

Fig. 2. Flow diagram showing the adaptive calculation of
the frequency response in step 3-4 of Algorithm 3.

Algorithm 4 Adaptive stepping end criterion
Input: L(s = jω), k, zk−1, zk−2, ωstep

Output: done
1: done = false
2: if ωstep > 0 then
3: M = limω→∞ |L(jω)|, A = limω→∞ arg(L(jω))
4: R = limω→∞ Re{L(jω)}, I = limω→∞ Im{L(jω)}
5: else if ωstep < 0 then
6: M = limω→0 |L(jω)|, A = limω→0 arg(L(jω))
7: R = limω→0 Re{L(jω)}, I = limω→0 Im{L(jω)}
8: ∆M = 0
9: if M == 0 or M == ∞ then

10: if A− cA ≤ arg(zk−1) ≤ A+ cA then
11: ∆M = ∆M + 20 (log10 |zk−1| − log10 |zk−2|)
12: if (M == ∞ and ∆M ≥ cM ) or
13: (M == 0 and ∆M ≤ −cM ) then
14: done = true
15: else
16: ∆M = 0
17: else
18: if (|Re{zk−1} −R| < δR and |Im{zk−1} − I| < δI
19: and |arg(zk−1)−A| < δA then
20: done = true

jα = ej
π
2 α = cos

(π
2
α
)
+ j sin

(π
2
α
)
, (22)

to calculate jα for any power α ∈ R.
In order for the calculated frequency response to be
sufficiently smooth, straight lines between the subsequent
response values should not have a difference in slope of
more than c1. That is

|arg (zk − zk−1)− arg (zk−1 − zk−2)| < c1. (23)
In addition to the slope difference criterion, the change in
magnitude between subsequent response values should not
be too great with respect to the magnitude of the current
response value. This is checked by assessing

|zk − zk−1|
|zk|

< c2. (24)

For the calculated frequency response to look smooth in
a logarithmic Nyquist diagram and contain information of
all real-axis crossings of L(jω), which will be used later
for assessing stability, c1 and c2 should not be chosen too
big. On the other hand, the calculation of the frequency
response should be fast in order for the repeated use
of Nyquist criterion to be a feasible approach during
optimization. So, ωstep should not be too small, which
means that c1 and c2 should not be too big. Hence, a
trade-off between precision and speed must be made when
choosing these parameters. A value c1 = 5◦ and c2 = 0.1
were used in this work.
A dynamic end criterion described in Algorithm 4 was
added to the frequency response calculation shown in Fig-
ure 2 in order to stop calculation when all the interesting
dynamics have been captured. The end criterion detects
and stops further calculations in two different ways de-
pending on the values limω→0 |L(jω)| and limω→∞ |L(jω)|
are 0 or ∞, or finite values between 0 and ∞:
(1) In case the magnitude at the limits are 0 or ∞, the end

criterion stops further calculations if arg(L(jω)) has
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stayed sufficiently close to arg(L(j∞)) or arg(L(j0))
while |L(jω)| has increased or decreased towards
|L(j∞)| or |L(j0)| with a total sum of cM decibel.
With ‘sufficiently close’, we here mean an interval of
cA degrees on either side of arg(L(j∞)) or arg(L(j0)).

(2) In case a limit magnitude value is finite, the end crite-
rion stops further calculations if L(jωi) is sufficiently
close to the finite value at the limit. What is consid-
ered ‘sufficiently close’ is determined by parameters
δR, δI and δA.

Table 1. Parameters used in Algorithm 4: adaptive step-
ping criterion.

cA cM δR δI δA

5◦ 30 dB 10−6 10−6 0.1◦

The frequency response calculation method in Algorithm
3 may stop early for some systems because of the way
the end criterion in Algorithm 4 is formulated. Algorithm
4 checks the frequency response for a phase-magnitude
pattern that is consistent with the phase and magnitude
values at ω = 0 and ω = ∞. For some systems this
phase-magnitude pattern may be detected at some earlier
point, terminating the calculation too early. The likelihood
of this happening depends on the specific system and
the parameter cM . In the event that this should happen,
increasing cM should stop early termination at the cost of
an increase in computation time.
Stability calculation with Algorithm 1 may therefore be
incorrect if one or more points where Im(L(jω)) = 0 has
been dropped, or the linear interpolation approximation
done in Algorithm 1 to find points on the real axis is not
precise enough because the neighbouring points are too
far apart. Therefore, no guarantee for correctness can be
given for the method.

4. FRACTIONAL-ORDER LOGARITHMIC NYQUIST
DIAGRAM

To visualize the stability of fractional-order systems ex-
pressed in Laplace-domain and to support the stability
calculations in the proposed tuning method, a logarithmic
Nyquist diagram supporting fractional-order systems was
developed. With this diagram and the knowledge about
the number of fractional unstable poles in the open-
loop fractional system, the stability of the closed-loop
fractional-order system can be established. The advantage
of this diagram over a regular Nyquist diagram is that no
zooming is necessary to get a good understanding of how
many times the graph circles around the critical z = −1+
j0 point. The inspiration for the diagram comes from
Andresen (2001), which presents the diagram for integer
order systems, under the name “Logarithmic-Amplitude
Polar diagram”.

Example 1. A logarithmic Nyquist diagram of the fractional-
order transfer function

L1(s) =
200(1+3s)(1+2s)

s0.8(1 + 22s1.3 + (22s1.3)2)(10+s)(20+s)
, (25)

is shown in Figure 3. The critical −1 + j0 point is shown
as a black circle. Counting encirclements around −1 + j0

Logarithmic Nyquist Diagram
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Fig. 3. Logarithmic Nyquist Diagram of L1(s), represented
as a FOTF object, plotted with Matlab.

we see that the Nyquist curve does not encircle this point
(∠(1+L(jω)) = 0). Knowing that L(s) is open-loop stable
(Np = 0), in addition to the number of encirclements, we
conclude that Nn must be equal to zero, which tells us
that the closed-loop system will also be stable.

5. SIMULATION RESULTS

To demonstrate the usefulness of the proposed tuning
method, an example showing the results from tuning a
regular PID and a fractional-order PID controller with
this method to an identified integer-order plant model of a
nanopositioning stage along the lateral axes in an atomic
force microscope (AFM) is presented (Moltumyr, 2019b).
The nanopositioning model is open-loop stable and the
controller parameters x are bounded by xlower and xupper

to ensure open-loop controller stability. Therefore Np = 0
and ∆∠(1 + L(jω)) should equal zero for the closed-loop
system to be stable. The controllers have the following
structure, where xi are the controller parameters to be
optimized,

CPID(s) = x1 +
x2

s
+

x3s

1 + x4s
, (26)

CFO−PID(s) = x1 +
x2

sx5
+

x3s
x6

1 + x4sx6
. (27)

Simulation results from the tuning can be seen in Figure
4, 5 and 6. Controller parameters can be found in Table 2.
The identified AFM model G(s) is of 15th order and has
relative degree one. Due to the size of G(s) the transfer
function is not given here. However, the frequency response
of G(s) can be seen in Figure 5, together with the PID
and FO-PID controlled closed-loop responses TPID(s) and
TFO−PID(s). From Figure 6 we observe that ∆∠(1 +
L(jω)) = 0 for both the controllers and conclude that
both the systems are stable. Which is supported by the
step response plots in Figure 4.
A minimum gain margin of ∆k = 6 dB was used during
the controller parameter optimizations. When complete,
both of the systems did show a gain margin of about
6 dB. Adding different open-loop gains around 6 dB to
the systems and simulating with Simulink and the FOTF
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of this diagram over a regular Nyquist diagram is that no
zooming is necessary to get a good understanding of how
many times the graph circles around the critical z = −1+
j0 point. The inspiration for the diagram comes from
Andresen (2001), which presents the diagram for integer
order systems, under the name “Logarithmic-Amplitude
Polar diagram”.
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order transfer function

L1(s) =
200(1+3s)(1+2s)

s0.8(1 + 22s1.3 + (22s1.3)2)(10+s)(20+s)
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is shown in Figure 3. The critical −1 + j0 point is shown
as a black circle. Counting encirclements around −1 + j0
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as a FOTF object, plotted with Matlab.

we see that the Nyquist curve does not encircle this point
(∠(1+L(jω)) = 0). Knowing that L(s) is open-loop stable
(Np = 0), in addition to the number of encirclements, we
conclude that Nn must be equal to zero, which tells us
that the closed-loop system will also be stable.

5. SIMULATION RESULTS

To demonstrate the usefulness of the proposed tuning
method, an example showing the results from tuning a
regular PID and a fractional-order PID controller with
this method to an identified integer-order plant model of a
nanopositioning stage along the lateral axes in an atomic
force microscope (AFM) is presented (Moltumyr, 2019b).
The nanopositioning model is open-loop stable and the
controller parameters x are bounded by xlower and xupper

to ensure open-loop controller stability. Therefore Np = 0
and ∆∠(1 + L(jω)) should equal zero for the closed-loop
system to be stable. The controllers have the following
structure, where xi are the controller parameters to be
optimized,

CPID(s) = x1 +
x2

s
+

x3s

1 + x4s
, (26)

CFO−PID(s) = x1 +
x2

sx5
+

x3s
x6

1 + x4sx6
. (27)

Simulation results from the tuning can be seen in Figure
4, 5 and 6. Controller parameters can be found in Table 2.
The identified AFM model G(s) is of 15th order and has
relative degree one. Due to the size of G(s) the transfer
function is not given here. However, the frequency response
of G(s) can be seen in Figure 5, together with the PID
and FO-PID controlled closed-loop responses TPID(s) and
TFO−PID(s). From Figure 6 we observe that ∆∠(1 +
L(jω)) = 0 for both the controllers and conclude that
both the systems are stable. Which is supported by the
step response plots in Figure 4.
A minimum gain margin of ∆k = 6 dB was used during
the controller parameter optimizations. When complete,
both of the systems did show a gain margin of about
6 dB. Adding different open-loop gains around 6 dB to
the systems and simulating with Simulink and the FOTF

Table 2. Controller parameters for controller (26) and (27)
found with the proposed tuning method.

Type x1 x2 x3 x4 x5 x6

PID 1.98 · 10−2 3.89 · 103 7.04 · 10−2 1.48 1 1
FO-PID 1.37 1.07 · 105 1.57 · 101 1.00 · 102 1.419 1.367

toolbox shows a good correspondence between when the
step responses show stable behavior and when the systems
are stable according to Nyquist’s criterion.
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Fig. 4. Closed-loop step response of AFM model with two
different controllers. Simulated with Simulink and the
FOTF toolbox (Xue, 2017).
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Fig. 6. Logarithmic amplitude polar diagrams of the AFM
model with two different controllers.

6. DISCUSSION

Although the proposed optimization tuning method man-
ages to find stable solutions, the optimal solution in terms
of the presented objectivity function and optimization
method does not give satisfactory results when looking at
the step responses in Figure 4. From the step response, we
see that the tuned fractional-order PID controller has a
significant peak as opposed to the regular PID controller.
This is likely a result of not including time-domain infor-
mation into the objectivity function (15).
Adding a time-domain objective to (15) like the integral
of squared error (ISE) of the difference between step
and step response was considered. However, making a
normalized measure of the step-response error that could
handle variable time frames, had a reliable and stable
simulation method and where the step response shape
could be easily compared from iteration to iteration, while
still being fast to evaluate, proved somewhat challenging.
Hence, no further attempt was made at adding a time-
domain objective to (15, and is, therefore, a topic for
further work.
Only simultaneous tuning of all controller parameters was
attempted in this work. Presetting some of the parameters
while tuning others could help reduce the search space
and improve on the results. Besides, tuning of the filter
coefficient x4 is most likely unnecessary since the filter’s
main purpose is to make the controller transfer function
proper. Testing different controllers and selective tuning
of parameters are therefore areas of further inquiry.
In this work, the genetic algorithm was chosen for non-
linear optimization early on because of the GAs good
ability to escape local minima. However, no in-depth
study or comparison of different non-linear optimization
methods were made. Therefore, it cannot be concluded
whether GA is the best approach in this case or if there
exist other more suitable methods.

7. CONCLUSION

A heuristic optimization-based method using the genetic
algorithm and Nyquist’s stability criterion for controller
tuning supporting arbitrary integer-order and fractional-
order systems have been presented. Controller tuning with
the proposed method and simulation results with Matlab
and Simulink shows the validity of the method. Also,
the use of logarithmic Nyquist diagrams for visualizing
closed-loop stability of fractional-order systems have been
proposed.
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