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Abstract— The ability of the atomic force microscope (AFM)
to resolve highly accurate interaction forces, has made it
an increasingly popular tool for determining nanomechanical
properties of soft samples. In this short paper, a model-based
technique for resolving nanomechanical properties is presented.
Both the sample and cantilever are represented by dynamic
models. A recursive least squares method is then employed
to identify the unknown parameters of the sample model, thus
revealing its nanomechanical properties and simultaneously en-
abling identification of time- or space-varying parameters. The
approach naturally handles nonlinear sample models without
linearization, such as the Hertz contact model as demonstrated.
Experimental results performed on a commercial AFM are
presented.

I. INTRODUCTION

Atomic force microscopy (AFM) is a versatile tool capable
of imaging rigid and soft samples at nano- to micrometer
resolutions [1]. Due to its inherent cantilever-laser setup, the
microscope is capable of measuring tip-sample interaction
forces at the piconewton range, thus making it highly suitable
for studying nanomechanical properties of materials [2].

Traditionally, by measuring the static force response as
the cantilever tip indents a soft sample, elastic properties
of the sample can be revealed from the resulting force-
distance curves [3]. More recently, considerable efforts have
been placed toward revealing additional nanomechanical
properties through multifrequency approaches [4]–[6]. These
efforts typically involve relating the observables in either
single- or multifrequency dynamic modulation to mechan-
ical properties of the sample. However, these relations are
often quite complicated and are still under development [7].
Additionally, due to the nonlinear nature of the interaction
forces, it can be argued that frequency domain techniques
are not fully suitable, with the need to handle the resulting
higher harmonics and the wide use of linearization opera-
tions. Thus, existing approaches are limited in terms of the
sample properties that can be extracted, typically isolated
to viscoelastic properties and their gradient along the depth
axis.

In [8] – on which this short paper is based upon, by
the same authors – a unique approach is presented, where
both the sample and cantilever are represented by separate
dynamic models. By employing identification techniques
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Fig. 1: The cantilever tip is regularly indented into the
sample, pausing the lateral movement during each indenta-
tion. The cantilever is oscillated during the entire procedure,
enabling identification of dynamical properties such as vis-
cosity.

from the control literature, the parameters of the dynamic
sample model can be identified from the observable signals.
The observables are mapped to the sample parameters using
a recursive least squares method. The procedure is operated
entirely in the time-domain, thus, circumventing the need
for linearization or demodulation. The cantilever and sample
model separation makes it easy to substitue either one of
them to fit any given application. The mode as implemented
operates by regularly indenting into the sample as illustrated
in Fig. 1.

II. SYSTEM MODELING

In this section, the dynamics governing the AFM can-
tilever interacting with the sample are established. The
interaction between the various components of the system
is shown in Fig. 2. The cantilever dynamics are subject
to an external tip-sample interaction force Fts, as well as
a modulating input force Fmod. The resulting cantilever
deflection, as well as the z-actuator position, determines the
tip position Z. As the tip indents the sample at depth δ,
restoration and viscous forces from the sample are acting on
the tip.

The cantilever dynamics can be approximated by its first
resonance mode [9], resulting in the spring-damper system

MD̈ +KD + CḊ = Fmod + Fts (1)

where M is the effective mass of the cantilever [10], and
K,C are the cantilever spring constant and damping coeffi-
cient respectively.

Various contact models can be used to model the sample
in AFM, the most widely used being the Hertz model
describing the elasticity of soft samples [11], [12]. Here, a
modified version of the Hertz model is used by including an
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Fig. 2: Plant dynamics and corresponding inputs and outputs.
The sample properties – here k, c, h – are to be identified.

additional viscous term. The resulting viscoelastic tip-sample
interaction force is given by

FBts = E′δ
3
2 + cδ̇ (2)

E = 3
4R
− 1

2 (1− ν2)E′ (3)

where E is the elastic modulus of the sample, E′ is the vari-
able identified by the parameter estimator and proportional
to the elastic modulus, R is the cantilever tip radius, and ν
is the Poisson ratio of the sample.

III. PARAMETER IDENTIFICATION

In this section, an online estimation scheme for identi-
fication of the unknown sample parameters, c, E, is estab-
lished. The cantilever deflection D and indentation depth δ
are considered known signals during estimation, while the
cantilever dynamics from the previous section, represented
by the parameters M,K,C, are considered fixed during
experiments.

By applying the interaction force (3) to the cantilever
model (1), the equations can be rearranged and rewritten in
the complex s-domain as

Ms2D + CsD +KD − Fmod = csδ + E′δ1.5. (4)

Defining

w′ ,Ms2D + CsD +KD − Fmod (5)

the system (4) can be rewritten in parametric form as

w′ =

[
c
E′

]T [
sδ
δ1.5

]
(6)

= θTφ′ (7)

which gives the parametric formulation of the sample model.
Several estimation methods for the system (7) can be

employed with similar stability and convergence properties.
We have chosen the least squares method with forgetting
factor from [13], due to its greater ability to suppress
measurement noise over comparable techniques. In [8], it
is shown that the signal vector φ is persistently exciting,
thus exponential convergence of the estimated parameters
is guaranteed [13]. Furthermore, an expression was found
which determines how long the parameter estimator needs
to run during a given indentation, in order to guarantee
convergence to any specified error a priori.
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Fig. 3: Block diagram of the control logic and parameter
estimator.
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Fig. 4: AFM experiment for a two-component polymer
sample.

IV. EXPERIMENTAL RESULTS

The control logic and parameter estimator is implemented
according to the block diagram shown in Fig. 3. The state
machine controls the logic of the operation, commanding
the indentation of the cantilever into the sample as well
as the positioning of the sample in the lateral directions.
A demodulator is implemented exclusively for determining
point of contact, and does not take part in the parameter
estimation.

The method was implemented on a commercial AFM
(Park Systems XE-70) using a spherical carbon tip cantilever
with 40 nm tip radius (B40 CONTR). The system parameters
M,K,C need to be known before experiments, and were
determined using standard techniques [3], [8], [14]. The
indentation time necessary to guarantee convergence of the
parameters to 0.001% of the initial error was found to be
T = 1.13 s.

The first experiment was performed to demonstrate the
normal operating procedure of DIVE mode AFM, revealing
spatially varying viscoelastic properties of the sample. A total
of 30 × 30 indentations into a PS-LDPE-12M film sample
were performed. This two-component polymer sample has
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Fig. 5: Time-varying parameter estimates during indentation.
The estimated spring constant changes with the indentation
depth. Unmodeled adhesion effects give rise to unreliable
results at the start and end of the experiment.

specified elastic moduli of around 0.1GPa and 2GPa for the
two components. The results are shown in Fig. 4, where the
contrast in elasticity between the two polymer components
is clearly visible, and the resulting elastic moduli are close
to their reference values. The amplitude values from the
demodulator implemented is also shown for reference.

Since the approach presented in this article uses a recursive
parameter estimation scheme, the time-varying nature of
the parameters can be recorded. This is demonstrated by
performing a single indentation into a soft sample. If the
sample complies with the Hertz model, then the spring
constant in a linear spring-damper model should increase
with increasing indentation depth.

In this experiment the cantilever tip is lowered into the
sample and raised again, thereby resulting in time-varying
parameters. The experiment was performed on a soft gel
sample (PDMS-SOFT-1-12M) using a linear spring-damper
model with parameters k, c instead of the Hertz model in
(3). The results of the experiment are given in Fig. 5. The
parameter estimates demonstrate that the spring constant
generally increases with increasing indentation depth as
expected, and decreases as the tip is raised again. Addi-
tionally, several unmodeled effects attributable to adhesion
and deformation can be seen, resulting in unreliable results
near the start and end of the experiment. In order to mitigate
the unmodeled effects seen in this experiment, the sample
model can be modified to include adhesion, such as by
employing the Johnson-Kendall-Roberts (JKR) or Derjaguin-
Muller-Toporov (DMT) contact models [15].

V. CONCLUSIONS

A model-based identification technique is presented for
determining spatially resolved nanomechanical properties in
AFM. Both the cantilever and sample behavior is described
by dynamic models. The cantilever dynamics are assumed
known and identified before experiments, while the sam-
ple dynamics incorporate the unknown parameters to be
identified. A recursive least squares estimator is used for
identification of the sample parameters.

From the results, it is clear that the implementation of
a recursive estimator has several advantages over offline
techniques. (i) Allowing online identification and enabling

the operator to see real-time results, (ii) identifying time-
varying parameter changes, and (iii) revealing erroneous
conditions or unmodeled dynamics, as this can dramatically
affect the estimated parameters.

The modeling- and identification scheme presented is
favorable over comparable techniques in the sense that it
clearly separates the model of the cantilever and the sam-
ple, allowing modifications to either one separately. As an
example, in order to mitigate the unmodeled effects seen
in the last experiment, the sample model can be modified
to include adhesion. Furthermore, the presented approach
naturally handles nonlinear sample models as seen by the
implementation of the Hertz model. In addition, the measured
signals are used directly for identification instead of mea-
sured through demodulators, thus avoiding the time delay,
bandwidth limitations, and ultimately loss of information
introduced by demodulators.
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