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Abstract: Cells are complex living organisms often described as the building blocks of life.
The mechanical properties of such cells have been shown to be effective for medical diagnosis.
Previous research in this area focus primarily on static methods by identifying local variations in
cell elasticity. Atomic force microscopy (AFM) has shown to be effective for such measurements.
In this paper we extend on this methodology by developing a dynamic viscoelastic model of the
cell, constructed to be well suited for parameter identification. A parameter estimator is then
designed for identifying the spatially resolved mechanical properties of the cell. The parameter
estimates are shown to converge exponentially fast to the real parameters by employing
the provided control input. A key property of this online estimation scheme is allowing for
mechanical changes in the cell to be detected over time. Furthermore, the approach can be
applied to the problem of identifying the mechanical properties of any elastic material that can
be scanned in AFM. A simulation study shows the effectiveness of the methodology.

Keywords: Mechanical properties; Parameter identification; Biomedical systems; Dynamic
models; Positioning systems

1. INTRODUCTION

Biological cell samples can interact with the external
environment by generating forces originating from their
mechanical properties. Such mechanical properties are
frequently linked to fundamental processes including cell
division, locomotion and invasion, differentiation, mechan-
otransduction, and apoptosis (Reichl et al., 2005; Kumar
and Weaver, 2009). It has also been implicated that a
change in the cell elasticity is noticed in the pathogenesis of
many progressive diseases including cancer (Parsons et al.,
2010) and cardiovascular diseases (Bao and Suresh, 2003),
diabetic complications, vascular diseases, kidney diseases,
Alzheimer’s and malaria. Among the above mentioned
diseases, and many more that can be described by the
same properties, carcinomas attracts the main interest of
the scientific community. A large effort has been devoted
to their diagnosis and treatment, and any possible research
in new diagnostic methods that could lead to earlier and
more accurate diagnosis attracts a huge interest in the
scientific community (Lekka et al., 2012b).

In practice, there is no need to highlight the importance of
studying the properties of carcinoid cells (Sokolov, 2007).
The current cancer diagnosis relies mostly on morphologi-
cal examination of exfoliated and aspirated cells or surgi-
cally removed tissue. Up to now, as far as the standard
diagnosis is concerned this classical approach seems to
be satisfactory (Lekka et al., 2012a; Ramis-Conde et al.,
2008). However, new tools are needed in order to offer
the patients an earlier diagnosis which has been shown to

be one of the most important factors in the prognostic
outcome.

In order for new diagnosis tools to become available, it is
important to gain a detailed knowledge of the mechanical
properties of live cells that are to be examined. Different
techniques have been proposed so far, including methods
like micro-pipette manipulation (Discher et al., 2008),
magnetic bead twisting (Bausch et al., 1998), and optical
tweezers (Guck et al., 2002). With these techniques, local
variations in the viscoelastic power law parameters have
been observed (Hecht et al., 2015).

Aside of the above mentioned ones, there is another
technique gaining more and more focus in the recent years
which utilize atomic force microscopy (AFM) (Weisenhorn
et al., 1993; Degertekin et al., 2001). AFM is one of the
major techniques responsible for the emergence of modern
nanotechnology. AFM works by having a tip located at the
end of a microcantilever. The cantilever can be controlled
in the vertical direction. As the cantilever is lowered
and the tip touches the sample, the cantilever will start
deflecting. This deflection can be measured. By keeping
the deflection constant in a feedback loop controlling the
cantilever position, the topography of the sample can be
recorded as the sample is moved in the lateral directions.

There are several variations to the control mechanism in
AFM, including dynamic modes (Garcia and Perez, 2002)
such as amplitude modulated control where the cantilever
is oscillated and the amplitude is estimated (Ragazzon



et al., 2016) and used as the feedback signal. Other
methods use a tip-sample force estimate directly as the
feedback signal (Jeong et al., 2006; Karvinen et al., 2014),
or invert the force to estimate the tip-sample distance itself
(Ragazzon et al., 2015).

AFM has a number of features that makes it extremely
valuable in biology (Sokolov, 2007). The main beneficial
feature is its ability to study biological objects directly in
their natural conditions (Benitez and Toca-Herrera, 2014).
In addition, it has the major feature of using the AFM
probe to indent a cell to study cell mechanics by recording
the cantilever deflection while deforming the cell (Guz
et al., 2014). Such approaches are often based on Hertz or
Sneddon model of contact mechanics to find measurements
of elasticity, experiments for which are usually performed
statically (Sokolov et al., 2013).

The amplitude and phase-shift in dynamic modes of AFM
have been shown to be correlated to the viscoelastic prop-
erties of the sample (Radmacher et al., 1993; Cartagena-
Rivera et al., 2015). Multiple harmonics can also be uti-
lized for mapping such properties in dynamic mode (Ra-
man et al., 2011). These approaches relate the cantilever
indentation into the surface to local elastic and viscous
properties. In this paper however, we take a unique ap-
proach for extracting similar properties from a sample.

In this paper we propose to model the sample as a dynamic
model with unknown parameters. By employing identifica-
tion techniques from the control literature, we allow these
parameters to be estimated directly and thereby making it
possible to observe changes over time. There is no need for
post-processing of the data or to explicitly find a mapping
from the deflection data to the viscoelastic parameters as
used in previous approaches. The estimated parameters
are guaranteed to converge to the real values exponentially
fast provided a suitable control input is chosen.

Additionally, this approach is easily extendable for future
work as the sample model can be modified to fit obser-
vational data. This allows possibly including phenomena
such as creep, hysteresis, plasticity, and nonlinear elastic
and damping effects. However, in this paper we restrict
ourselves to observing elastic (spring constants), and vis-
cous (damping constants) properties of the sample, as well
as topography. This is not a complete description of the
mechanics of the cell. However, since these properties have
already been shown to be effective in applications such as
medical diagnosis, it is proposed as a good starting point.

2. CANTILEVER-SAMPLE SYSTEM MODELING

The purpose of the system modeling is to provide a
dynamic model description of a cantilever interacting
with a general viscoelastic sample material, while allowing
for simple identification of the model parameters by use
of atomic force microscopy. Additionally, the presented
model can easily be extended and modified to suit the
characteristics of various materials.

The sample to be measured is modeled by lumped spring-
damper elements along the lateral xy-axes as illustrated in
Figure 1. The elements can be compressed in the vertical
z-direction. An attractive feature of this model is that
it allows for capturing spatial variations in stiffness and

damping properties. Moreover, the fidelity of the model
can be chosen to fit the task at hand, by selecting an
appropriate number of spring-damper elements. The only
measurable signal is the cantilever deflection D commonly
measured by a photo-detector setup as illustrated in Fig-
ure 2. The cantilever base position U can be controlled for
movement in the vertical direction. The vertical position
of the cantilever tip is given by Z with the relationship

Z = U −D. (1)

Additionally, the tip can be controlled in the xy-direction
(Eielsen et al., 2013). The resulting position of the center
of the tip is given by (X,Y, Z) in the coordinate system
(x, y, z) seen in Figure 1.

The cantilever-sample dynamics can be described by three
main components as seen in Figure 3. The cantilever
dynamics is subjected to external sample force which
generates a deflection along the vertical axis. The tip
geometry and position is then used to determine the
(possibly compressed) positions of each sample spring-
damper element. The compressed elements in turn creates
a restoration force acting on the cantilever tip. The details
of each of these components will be described in the
following.

2.1 Cantilever Dynamics

The cantilever dynamics can be approximated by its first
resonance mode, resulting in the spring-damper system

MZ̈ = KD + CḊ + Fsample (2)

= K(U − Z) + C(U̇ − Ż) + Fsample (3)

where M is the effective mass of the cantilever (Bhushan
and Marti, 2010), K,C are the cantilever spring and
damping constants respectively, and Fsample is the force
from the sample acting on the cantilever tip.

2.2 Tip Geometry

In addition to a description of the tip geometry, the
position of the cantilever tip can now be used to determine
the deflection and motion of each individual spring element
in the sample.

In this paper the tip is modeled by a spherical shape with
radius R. A dull spherical probe is generally advantageous
when scanning soft materials such as cells (Sokolov et al.,
2013). However, this choice can easily be extended for
additional geometrical shapes.

A spherical shape leads to the following relationship be-
tween the tip and the ith sample element’s position zi and
velocity żi,

zi = Z −
√
R2 − (X − xi)2 − (Y − yi)2 (4)

żi = Ż (5)

where (xi, yi) is the lateral position of the ith sample

element. It has been used that Ẋ, Ẏ are assumed to be
zero while the tip is in contact with the sample.

2.3 Sample Force

The ith spring-damper element in the sample has a rest-
position z0

i which represents the sample topography at
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Fig. 1. Biological cell modeled by spring-damper elements.
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Z
z̄

Ż
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Fig. 3. Block diagram of the cantilever-sample dynamics
and parameter estimator. The parameter estimates
are based solely on measurements of the deflection
output D and the vertical position control input U .

the given lateral position (xi, yi). When the cantilever tip
presses onto the sample the element will be compressed to
a new position zi provided in the previous section. This
generates a restoration force according to Hooke’s law

Fki = kiz̄i (6)

where ki is the spring constant and

z̄i , zi − z0
i (7)

is the deflection of the ith sample element, or equivalently
the indentation of the tip into the element. Additionally,
a damping force is added according to

Fci = ciżi (8)

where ci is the damping parameter. Note that other,
possibly nonlinear, models of springs and dampers can be
employed in order to capture more complex behavior.

The total force acting from the sample on the tip is given
by

Fsample =
∑
i∈W

Fki + Fci. (9)

whereW =W(X,Y, Z) is the active set of sample elements
the tip is in contact with, that is

W =
{
i : z̄i < 0 ∧ (X − xi)2 + (Y − yi)2 < R2

}
. (10)

The springs are thus modeled to solely provide repulsive
forces against tip. A more detailed model could allow for
attractive spring forces as the tip approaches the sample,
although this is outside the scope of this paper.

In the following, the vectors k, c, z0 are used to refer to
the family of elements, e.g. k = {k1, ..., kn} where n is the
number of spring-damper elements in the sample.

3. PARAMETER IDENTIFICATION

The modeled tip-sample system was described in the
previous section. The goal of this section is to show how
the unknown parameters of the system, k, c, z0, can be
estimated. As seen in Figure 3 the parameter estimator
is separated from the system and only the cantilever
deflection D and vertical control input signal U is assumed
available for measurement.

An online identification scheme will be developed for
this purpose. Having an online scheme allows us both to
view the estimates as the cantilever scans the surface.
Additionally, this allows us to view live changes in the
sample being scanned.

The strategy for identifying the topography and unknown
parameters involves tapping into every region of the sam-
ple. The cantilever tip is moved in a raster pattern over
the sample. At periodic intervals the lateral movement is
paused and the tip is lowered into the sample, a proper
excitation signal is applied on the input until the param-
eter estimates converge, before the tip is raised and the
tapping operation repeats at the next position.

At first the system equations will be written in a form
suitable for parameter identification, before the estimator
is presented.

3.1 System Equations

The Laplace-domain description of the cantilever-sample
dynamics can be found using (3)–(10), which gives



(
Ms2 + Cs+K

)
D+

∑
i∈W

(cis+ ki) z̄i = (Cs+K)U. (11)

The set W is dependent on the tip position, and thus
unique for each tap. By tapping into every region of the
sample, the unknown parameters ci, ki will contribute to
the known signals D,U and can in principle be discovered.
In addition to ci, ki being unknown, z̄i is also unknown
because of the dependency on the topography term, z̄i =
zi − z0

i . The topography term could be added to the
parameter estimator scheme, but we will treat it separately
and assume z̄i as known for now. Identification of the
topography will be discussed later.

Since the unknown terms in (11) appear linearly in the
signals, this is in principle a simple estimation task.
However, we have 2 |W| number of elements to estimate,
that is, one ci, ki for each element in the active setW. This
can be very demanding in terms of parameter convergence
and requires a carefully designed input signal to make
it persistently exciting. Additionally, it may require that
each z̄i is unique, that is, the topography must be unique
at each point i ∈ W for the parameters to converge.

To reduce the number of parameters to be estimated
simultaneously we approximate (11) by the estimation
model valid during a single tap,(

Ms2 + Cs+K
)
D + (cs+ k)z̄ = (Cs+K)U (12)

where c, k approximates the sum of ci, ki ∈ W and z̄
approximates an average of z̄i ∈ W. Thus, c, k and
z0 in z̄ are possibly unique at each tap position, but
constant during a single tap. By allowing the parameter
estimator to identify the parameters during each tap j ∈
{1, ...,m} where m is the total number of taps for the
complete scan, local variations in these parameters can be
stored, referred to as cj , kj , z

0
j . This model simplification

gives the parameter estimator two unknown parameters
to estimate during each tap (assuming z0

j known for
now), and effectively reduces the spatial resolution of
the identified parameters at the benefit of possibly faster
convergence time and lower demand for complexity in the
input signal design.

In reality the parameters will vary continuously over the
sample. Thus, discretizing the plant model more finely
than the parameter identification model makes sense from
a physical point of view. The estimated values of c, k, z0

from the parameter estimator are hereby referred to as

ĉ, k̂, ẑ0. The vectors k̂, ĉ, ẑ0 are used to refer to the family

of identified parameters, such that k̂ = {k̂1, ..., k̂m}.

3.2 Parametric System Model

We want our system on a linear-in-the-parameters form

w = θTφ (13)

where w is the signal scalar, θ = [c, k]T is the parameter
vector, and φ is the signal vector. This form is suitable
for implementation of various estimation techniques as
presented in Ioannou and Sun (1996). Rearranging (12)
we get

(Cs+K)U −
(
Ms2 + Cs+K

)
D = (cs+ k) z̄ (14)

w′ = csz̄ + kz̄ (15)

= [c, k][sz̄, z̄]T (16)

where w′ is defined by the left hand side of (14). As s2

appears directly in w′, we filter each side by a stable filter
of relative degree 2. This makes all signals proper and
avoids pure differentiation. The filter 1/Λ(s) = 1/(1+τs)2

is chosen where τ is a tunable positive constant, this gives

w′

Λ(s)
= [c, k]

[
sz̄

Λ(s)
,
z̄

Λ(s)

]T
(17)

The system is now on the form (13) with

w = 1
Λ(s)

(
(Cs+K)u−

(
Ms2 + Cs+K

)
d
)

(18)

φ =

[
sz̄

Λ(s)
,
z̄

Λ(s)

]T
(19)

θ = [c, k]T (20)

3.3 Parameter Estimator

The system (13),(18)-(20) is now suitable for implemen-
tation of a variety of estimation methods given in e.g.
Ioannou and Sun (1996). A least squares method with
forgetting factor was chosen for implementation. The for-
getting factor is useful as the parameters are assumed to
be non-homogeneous between each tap. The method is
restated here for convenience to the reader:

ŵ = θ̂Tφ (21)

ε = (w − ŵ)/m2 (22)

m2 = 1 + αφTφ (23)

˙̂
θ = Pεφ (24)

Ṗ =

{
βP−PφφT

m2 P, if ‖P‖ ≤ R0

0, otherwise
(25)

P(0) = P0 (26)

where θ̂ = [ĉ, k̂]T is the parameter estimate vector,
α, β,R0 are positive constants, and P ∈ R2×2 is the
covariance matrix. The method guarantees stability of ε

and boundedness of θ̂. Exponential convergence of θ̂ to θ
is guaranteed as long as the signal vector φ is persistently
exciting (PE). For more details and proofs, see Ioannou
and Sun (1996).

The next theorem gives conditions for φ being PE, and
the exponential convergence properties of the parameter

estimates θ̂.

Theorem 1. (Persistency of excitation). Apply the canti-
lever input signal U = u0 + a sin (ω0t) for any positive
constants a, ω0, and let the constant u0 be small enough
such that the cantilever tip is in contact with the surface,
i.e. z̄ < 0, ∀ t. Then φ is persistently exciting (PE) and

θ̂ → θ exponentially fast.

Proof. Expand the signal vector φ such that

φ = H(s)z̄, H(s) =

[ s
(1+τs)2

1
(1+τs)2

]
Define the matrix A such that

A(jω1,jω2),[ H(jω1) H(jω2) ]=

[
jω1

(1+τjω1)2
jω2

(1+τjω2)2
1

(1+τjω1)2
1

(1+τjω2)2

]
Taking the determinant of A gives



|A(jω1, jω2)| = 1

(1 + τjω1)2(1 + τjω2)2
(jω1 − jω2)

6= 0 ∀ {ω1, ω2 ∈ R : ω1 6= ω2}
Thus H(jω1),H(jω2) are linearly independent on C2

∀ {ω1, ω2 ∈ R : ω1 6= ω2}. By Theorem 5.2.1 in Ioannou
and Sun (1996) φ is then PE if and only if z̄ is sufficiently
rich of order 2.

By Definition 5.2.1 in Ioannou and Sun (1996) the signal
U = u0 + a sin(ω0t) is sufficiently rich of order 2. The
transformation from U to z̄ is seen to be linear and stable
considering (11) and the equations of Section 2, which
means that a sinusoidal input on U results in a sinusoidal
output on z̄ with amplitude

∣∣ z̄
U (jω0)

∣∣, phase ∠ z̄
U (jω0) and

frequency ω0. The signal z̄ is thus sufficiently rich of order
2. Thus, φ is PE. Additionally, φ is bounded since U̇ is
bounded and H(s), z̄U (s) are stable. Then, by Corollary
4.3.1 in Ioannou and Sun (1996) the parameter vector

θ̂ → θ exponentially fast. 2

3.4 Estimation of indentation depth and topography

Finally, the signal z̄ describing the indentation depth of
the cantilever tip into the sample during a tap needs to
be generated. As the tip enters the sample the cantilever
will start to deflect. This point is recorded and used as the
topography estimate ẑ0 at the current tip position, and
the indentation depth estimate ˆ̄z is then given by

ˆ̄z(t) = Z(t)− ẑ0. (27)

The topography estimate ẑ0 is stored after each tap j gen-
erating the estimate of the complete sample topography
ẑ0
j ∀ j. Additionally, a low-pass filter Glp for attenuation

of measurement noise and a hysteresis loop for avoiding
retriggering during sample penetration is used in the im-
plementation. The procedure is summarized as follows:

• Record the time t1 = t at rising edge of the boolean
signal GlpD < −δ, for some positive constant δ.
• Create a hysteresis loop for t1 by disabling retrigger-

ing until GlpD < −δ+ where δ+ > δ.
• Then ẑ0 = Z(t1) and ˆ̄z(t) = Z(t) − ẑ0, where as

previously Z(t) = U(t)−D(t).
• Store ẑ0

j = ẑ0 for the current tap j.

4. SIMULATION RESULTS

The tip-sample system as well as the parameter system as
described in the previous sections have been implemented
for simulations following the setup in Figure 3. The ob-
jective of the simulations is to identify the parameters of
the mechanical model of the cell, c,k, z0, using this setup.
The parameters were generated by using Gaussian filters
on normally distributed random numbers and weighted by
a spherical function to resemble a cell. The scanning area
was chosen to be 1 × 1µm discretized into 32 elements
along each axis. The simulation was setup to perform 10
taps along each axis for a total of 100 taps. This results
in a 10 × 10 spatial resolution for each parameter to be

identified k̂, ĉ, ẑ0.

The generated parameters are plotted against the identi-
fied parameters and mapped to the spatial dimensions in

Figure 4–6 for c,k, z0 respectively. The parameters along
a cross section of the map is plotted in Figure 7.

The exponential convergence properties of the parameter
estimator is demonstrated in Figure 8, where the estimates
of k, c are plotted against time during two taps. Addition-
ally, the input signal is plotted showing how the cantilever
is lowered into the sample and then starts oscillating
to ensure persistency of excitation during identification.
Although a single sinusoidal signal is necessary for PE, we
use two sinusoids for faster convergence.

Measurement noise has been added to the deflection out-
put by Gaussian distributed white noise with standard

deviation 1 nm. The values of ĉ, k̂ are scaled in the plots
by a constant ∼ 1/|W| during a typical tap in order to
be comparable to c,k as the estimates are sums and not
averages of the real parameters. There are many param-
eters that can be tuned in the simulations, and various
estimation methods to choose amongst. The effort in this
regard has been limited and considerable improvements
are expected in future work.
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5. DISCUSSION

There is a small bias that can be seen in the estimates.
This is expected in some situations. Consider a case where
the cantilever performs a tap at the highest point of the
sample. The described estimation method for z0 will then
identify the very tallest point. However, the surrounding
area is lower than this, thus the spring force from these
areas will also be lower. This will bias the spring constant
towards a lower value. Equivalently, tapping at the lowest
point of the sample will provide a spring constant bias
in the positive direction. A smaller tip radius and lower
topography gradients will improve this situation.

As remarked in the introduction, a large part of existing
literature is based on static contact theory for measuring
the elastic modulus of the sample, such has Hertz con-
tact models. This theory is based on several assumptions
such as small strains (indentations), homogenous sample
elasticity, and frictionless surfaces (Johnson, 1985; Sokolov

8.2 8.3 8.4 8.5
5

6

7

8
·10−7

N
s/

m

ĉ
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Fig. 8. Parameter identification estimates ĉ, k̂, and
the controlled cantilever position input U plot-
ted over time during two taps into the sample.
Operation procedure during tap: At t = 8.20 s the tip
is lowered, at t ≈ 8.22 s contact is established and
parameter identification starts. At t = 8.25 s lowering
stops and the cantilever is oscillated to provide a per-
sistently exciting signal. At t = 8.30 s the parameters

ĉ, k̂ are recorded for the current tap j producing ĉj , k̂j
at the current xy-position of the cantilever, before
the cantilever is raised. At t = 8.35 s the cantilever
has been raised and starts moving in xy-direction. At
t = 8.40 s the procedure is repeated for the next tap.



et al., 2013). The model presented in this paper however
is not restricted by these limitations, or easily extendable
to account for them.

• Longer indentation ranges can be accounted for by
introducing nonlinear springs.
• The presented model allows for local variations in

the elasticity at any spatial resolution. Identification
can possibly provide estimates for spatial resolutions
higher than that of the number of taps, as discussed
in Section 3.
• Friction can easily be added to the model by forces.

In static Hertzian contact mechanics identifying dynamic
phenomena such as damping is not possible or relevant.
Since our presented model is dynamic in nature, such phe-
nomena appear effortlessly in the model. Other dynamic
phenomena can also be included in the model such as
plasticity and hysteresis (Stakvik et al., 2015). However,
this will require some additional effort for identifying the
relevant parameters.

In contact models based on traditional Hertz theory the
elastic modulus E is correlated to the indentation depth
z̄ by E ∝ z̄1.5 for a spherical indenter, with experiments
reporting exponents typically between 1.5 and 2.0 depend-
ing on the bluntness of the tip (Carl and Schillers, 2008).
During an indentation in the simulations presented in this
paper, a model fit E = az̄b for a, b, gives the exponent
b = 1.59 as seen in Figure 9. Thus, the presented model
seems to fit well with previous experiments.

Some issues may arise during future experiments. In the
experiment, there may not be a clear point for which the
edge of the cell is located, i.e. z0 may not be clearly defined.
This issue may be reinforced by attractive and nonlinear
tip-sample forces complicating the procedure as the tip is
lowered onto the sample.

The probe tip is assumed to be completely submerged into
the cell during the tap. If the radius of the probe tip is very
large, this may induce large stresses in the sample and
the cell may permanently deform. The presented method
is expected to work with only partly submerged probe
tip, although the data may be skewed by the geometric
nonlinearity of the probe tip. The key here is to be
consistent in how the measurement is done throughout the
sample. Although this may lead to bias in the identified
parameters, it still allows the spatial variations of the
parameters to be resolved.
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Fig. 9. Spring force Fk plotted against indentation depth
z̄. Fitting the data to the model Ffit = az̄b results in
the exponent b = 1.59 which fits well with previous
experimental observations.

6. FUTURE WORK

Several future extensions to the model have been discussed
throughout the paper. By future experimental validations
the model can easily be extended to describe additional
phenomena and improved iteratively.

Additionally, in future work the topography estimate can
be included in the parameter estimation directly. This will
possibly reduce the estimation bias discussed earlier. How-
ever, a bilinear estimation method is then required which
will somewhat increase the complexity of the estimator.

The primary reason for doing one tap at a time is to avoid
frictional forces that may arise while scanning in the lateral
directions with the tip still in contact with the sample. If
these forces are small, the methodology presented here can
be extended to in-contact dynamic mode scanning such as
the approaches used in Radmacher et al. (1993); Raman
et al. (2011); Cartagena-Rivera et al. (2015).

7. CONCLUSIONS

With development of new and simple techniques for pa-
rameter identification of mechanical systems, employing
dynamic approaches revealing additional details of the
sample’s mechanical properties can become commonplace.
Such approaches hold great promise for use as part of
a medical diagnostic tool. This paper presents a novel
approach for identifying such properties.

A dynamic model for cell mechanics is presented based on
a laterally spaced grid of spring-damper elements coupled
with the AFM cantilever dynamics. The model is designed
to be suitable for parameter identification, and is generally
applicable for any viscoelastic sample suitable for use in
AFM. The parameter identification scheme is designed
to identify the elastic (spring) and viscous (damping)
parameters of the model. One such pair of parameters are
identified at each point the cantilever taps into the sample.
The parameters are guaranteed to converge exponentially
fast to the real parameters by using the vertical position
control signal provided in Theorem 1.
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