
RBF Network Pruning Techniques for Adaptive Learning Controllers

Serge Gale∗, Siri Vestheim∗, Jan Tommy Gravdahl∗, Sigurd Fjerdingen∗∗ and Ingrid Schjølberg∗∗

Abstract— This paper presents two simple and efficient
methods for pruning a Radial Basis Network (RBF) used in
an adaptive controller architecture for a robotic manipulator.
The methods presented in this paper are Weight Magnitude
Pruning (WMP) and Node Output Pruning (NOP). The above
pruning methods are simulated on a trajectory tracking task
of a three degree of freedom robotic manipulator arm. The
RBF based inverse dynamics controller is presented with a
task of learning the inverse dynamics of the plant in a closed
loop control. Simulation study shows that implementation of
an inverse dynamics control law in such manner makes the
controller more robust towards uncertainties and disturbances.
Pruning RBF network improves controller performance in the
case of modelling errors and reduces computational costs, thus
making such controller more suitable for implementation.

I. INTRODUCTION

Over the last decade robotic manipulators have become an
integral part of any industry where safety, quality, precision
and efficiency are key factors. As manipulators became more
common the subject of control of robotic systems became an
active research field. Previous research in control highlighted
the importance of model based controllers [1]. Performance
of such regulators has been found to be superior to non-
model based controllers [5]; however the precision of model
based controllers highly dependent on the accuracy of the
model at hand. It is not always possible however to accurately
model a dynamic system and to determine values of all of
the parameters involved due to the mechanics of a robotic
manipulator itself and surrounding environment containing
a great deal of uncertainties and disturbances. In order to
address these issues it is necessary to look further than
standard controllers. This paper presents adaptive neural
controller as a solution to the problem above.

Adaptive neural controllers are able to cope well with
uncertainties and modelling errors [16], [8], [5]. Out of
various computational intelligence tools currently available
Artificial Neural Networks (ANN) have proven to be well
suited for adaptive control of mathematically ill-defined
systems exposed to structured and unstructured uncertainties
[10]. There are many different types of ANNs available;
however the focus of this paper is on a feed forward
type of network; Radial Basis Function (RFB) networks.
Specifically RBF type network is linear in the parameters and
is therefore relatively easy to analyse using available stability
analysis tools. Secondly, an interesting and useful feature for
control engineering application of RBF networks is stated
in universal approximation theorem, which states that given
sufficient number of processing nodes such a network is

∗Department of Engineering Cybernetics, NTNU, NORWAY
∗∗SINTEF ICT Applied Cybernetics, NORWAY

able to approximate any continuous real function to any
degree of accuracy [8]. It has also been reported that RBF
based networks are more computationally efficient compared
to multilayer perceptron (MLP) networks in a number of
control applications [13]. However, the chase for greater
accuracy leads to one of the major problems with all ANN,
specifically known as curse of dimensionality [3]. Thus for
a given problem most ANNs are redundant i.e. contain more
computational nodes than necessary for reconstruction of a
final function, however redundancy nodes are helpful during
training. Therefore the dilemma is clear, having too larger
network will lead to a greater accuracy but poor overall per-
formance due to computational costs and over-fitting issues.
When used in control application of robotic manipulators it
is vital to have minimal size network for a given problem.
However, solution to the described problem presents itself
in the form of dynamically growing and shrinking network
structures. This paper focuses on pruning method for a given
artificial neural network controller.

There are in general two ways to create a network of
appropriate size, 1) growing and 2) pruning. Growing starts
with a small or empty neural network and adds neurons
until some threshold for the approximation error is met. The
second method starts with an oversized network and removes
the weights and/or neurones that not are necessary for the
network. Concept of pruning for artificial neural networks is
based on what naturally happens in a biological brain when
connections between neurones are destroyed. Specifically
for human beings some synapses are naturally removed to
increase brains ability to generalise around the age of 20.
The remaining connections in the brain have their strength
increased [7].

The focus of this paper is to investigate and develop
a simple and efficient pruning methods for an RBF type
network. The application case study is a ABB IRB140
manipulator arm with a task of trajectory tracking control.

Most of the developed pruning algorithms have been con-
cerned with finding optimal network size with best possible
approximation and generalisation criterion. However, many
pruning schemes are very time consuming as every attempt
is made to avoid removing most contributing nodes. An
example would be a pruning method proposed in [18] which
is based on complexity.

Some pruning schemes utilise two different networks in
a performance check called Cross Validation in order to
identify each nodes contribution [9]. Both sets are pruned
and the performance is analysed for each set before and after
pruning. In [14] this performance check is used for a pruning
scheme based on local sensitivity for the parameters in the

network.

Sensitivity or saliency based pruning schemes are perhaps
the most common group of pruning schemes. In this group a
well known method of Optimal Brain Surgeon (OBS) [7] can
be found. The Optimal Brain Damage (OBD) proposed in [4]
states that the weight with the smallest saliency will generate
the smallest error variation when removed. Both OBD and
OBS start with a network that has already been trained to
converge to a local minimum and then try to minimise a cost
function by setting one of the weights to zero. OBD makes an
assumption that the associated Hessian is diagonally domi-
nant. However in [7] it was found that Hessian in fact was far
from diagonally dominant which resulted in OBD for some
cases removing the wrong weights. Hence this assumption
is not made in OBS and the saliency is found by solving
the minimisation problem with a Lagrangian multiplier. The
weight with the lowest saliency then is removed. From the
same minimisation problem the optimal weight change is
also found and this is used to update all the remaining
weights. However, the challenge is that it is necessary to
calculate the inverse Hessian for each weight that is pruned
adding extra computational stress. Pruning continues until
there are no more weights that can be removed without
causing a large increase in the cost function.

None of the described pruning schemes, which are con-
cerned with finding the optimal network are concerned
with computational cost of the pruning algorithm or how
computationally demanding the final network will be. In the
case of real time control of a robotic manipulator it is crucial
that pruning happens fast and with minimal computational
cost since this will be done online while controlling a
manipulator. In this case it is probably better to start with
a rather small network that perhaps will not give the best
possible estimations but can give a satisfying approximation
fast enough to be used in the controller.

This paper presents two simple pruning methods that
are aimed at fast removal of multiple units and offers a
network with satisfying approximation and generalisation
performance. The first pruning method is based on Weight
Powers Method [6] but greatly enhances it into a WMP
scheme. The second proposed pruning technique is based
on a definition from [2]. This is now put into a new setting
in a NOP scheme.

In the next section the two proposed pruning methods
WMP and NOP are described in detail. Section 3 focuses on
the design of a controller for ABB IRB140 manipulator. The
proposed regulator is a hybrid combination of an adaptive
learning technique with inverse dynamics controller similar
to [5] and [12]. The learning part of the controller is achieved
through utilisation of an RBF network that is assigned the
task of learning system dynamics.

The designed learning controller with the proposed prun-
ing methods is simulated on trajectory tracking control task
for the first three joints of the manipulator in Section 4.

II. PRUNING METHODS

Both of the pruning methods presented in this paper
are developed for RBF type networks. The unique features
of such networks are unity input weights and a single
hidden layer, where adjustable weights are associated with
the connection between hidden and output neurons. An
interesting feature of an RBF type network presented in light
of this paper is that due to its unique structure and features,
removing a node is equivalent to removing a weight between
hidden and output layer neuron, however this is not the case
for a RBF network with multiple outputs. A single output
network can be presented in a more familiar way as

fnn(x) =
N

∑
i=1

wiai(‖x−µi‖), (1)

where wi is the weight associated with the ith connection
between the nodes in hidden and output layers, ai(‖x−µi‖)
is activation function (2) output of ith node in hidden layer
in response to an excitation provided by input x and || · || is
the L2 norm.

The activation function is the Gaussian function given for
node i as

ai(||x−µi||) = kge
||x−µi||

σ2 , (2)

where kg is a positive constant, x is the input to the network,
σ is the width of the function and µi is the centre of the
function. The width is fixed the whole time and set to be the
distance to the next unit.

It is possible to see from (1) that output of the network
is a linear combination of all of the nodes output in the
hidden layer. The output depends on two factors 1) weight
magnitude |w| and 2) activation function output magnitude
|a(x)|. It is therefore clear to see that if either of the
above factors are {(|w|, |a(x)|) ∈ R| 0 < (|w|, |a(x)|)<< 1}
then the contribution of the node to the overall output of the
network is rather small and can thus be removed.

A. Weight Magnitude Pruning (WMP)

This pruning method is based on a scheme presented in
[6], which relies on the fact that small magnitude weights
can be successfully removed from the network without
negatively affecting overall performance. The novelty of
the presented method is in threshold selection mechanism
for network optimisation and based on selecting a certain
percentage of ||w|| vector norm. The norm of the weights
vector is a measurement of the total strength of the networks
weights. As the weights of the network converge to their
close to optimal values during training the value of the 2-
norm converges to its steady state value w̄. Pruning some
of the nodes results in remaining ones having their weights
increased in magnitude as to match the weight that were
deleted.

Pw,th =
||w||
100

Pw,%, (3)

where ||w|| is the norm of the weights vector and Pw,% is
the pruning threshold. The pruning threshold is the only
value that has to be chosen and is given as a percentage

of the weights norm. Weights with magnitude lower than
set threshold are then removed. The individual value of
weights change mostly at the start of the training and slows
down gradually toward the end. Hence the norm of the
weights vector grows fast at the start of the training and
slowly converges to w̄. The weights do not have to converge
to their final values before the pruning can begin. While
some weights are being removed in certain neighbourhoods
it is possible that some key neuron weights become more
and more important to the output of the network while
previously their presence did not constitute much due to
surrounding weights being removed. Since the remaining
weights have their magnitude strengthened after pruning a
growing threshold has been introduced to overcome such
issue. Therefore modifying equation (3) to the following:

Pw,th =
||w||
100

(NPw,%), (4)

where N is incremented every iteration. Due to localisation
principle [8] weights belonging to neurons in the area far
from the input space will have little change in magnitude.
Hence such weights are most suitable for WMP method. In
addition if the network has densely populated input space
with nodes such method will assist in improving network
generalisation performance.

B. Node Output Pruning (NOP)

The second contributing factor which affects final network
output is the magnitude of the response of the hidden layer
nodes activation function to a given input pattern. Since the
choice of the activation function is Gaussian, the magnitude
of the response depends on the distance from the centre of
the function (2). Thus input coinciding with the centres of
the activation function will give the strongest response, while
nodes in the remote areas will have little or no effect on the
network output. Therefore remote nodes can be pruned. This
paper proposes a pruning method based on the activation
function output ratio [2] given as:

o j
i = |

ai(|| j−µi||)
amax

|, (5)

where j is the input pattern, ai(|| j− µi||) is the activation
function for the ith neuron, µi is the centre of the activation
function of the ith node and amax is the maximum activation
function output for a given input. Activation function output
ratio is here referred to as node/neuron output to shorten
the writing. The novelty of this method is to sum up all the
node output ratios for each neuron and remove those with
the smallest value. The activation function output ratio sum
is defined as:

osi =
T

∑
j=1

o j
i , (6)

where T is the number of previous inputs and o j
i is given

in (5). By specifying a threshold as a percentage, the actual
threshold value Po,th is given as:

Po,th =
osmax

100
Po,%, (7)

where osmax is the highest output ratio sum and Po,th is the
pruning threshold to be specified. Under this method, nodes
in remote areas from the input are removed, giving a smaller
network.

C. Mixed Method Pruning (MMP)

The implementation of a learning adaptive controller in
this paper is constructed in such way that each element of
inertia, centrifugal, gravity and friction forces matrices are
presented with a standalone RBF network, similar to [5].
This results in a number of smaller networks with lower
input dimensionality, which makes it more suitable for real
time implementation on actual systems. The MMP consists
of combination of WMP and NOP as well as application of
different threshold on the same network.

III. CONTROL DESIGN

The controller is designed for ABB IRB140 manipulator,
model of which will later be used in simulation. However
only the first three joints are considered for trajectory track-
ing purpose. Tracking error is found by using the Sum of
Squared Error (SSE) function for all three joints while the
network approximation error is found by the Root Mean
Square Error (RMSE) function.

A. Manipulator Model

Consider a well knows dynamic equation of a robotic
manipulator with friction and disturbance terms included:

M(q)q̈+C(q, q̇)q̇+G(q)+F(q̇)+d = τ, (8)

where M(q) is inertia matrix, C(q, q̇) is centrifugal matrix,
G(q) is gravitation matrix, F(q̇) is friction matrix and d is a
constant disturbance term. q, q̇, q̈ are joint position, velocity
and acceleration respectively.

B. Controller and Desired Trajectory

An inverse dynamics controller is used as in [12]. Rep-
resenting each matrix component via RBFNN the above
equation can be rewritten as:

τ = M̂(q)(q̈d +Kd(q̇d− q̇)+Kp(qd−q))+Ĉ(q, q̇)q̇+ Ĝ(q).
(9)

Stability proof of such regulator based on multiple RBF is
given in [15].

C. RBF Model of a Manipulator

Mathematical representation of an RBFNN is given in (1).
Using vector notation w is defined as:

wT = [w1 . . . wN]T , (10)

where wi is a weight connecting a hidden node i to the output
neuron. Initially all of the coefficients are set to zero. In the
same way it is possible to represent hidden layer activation
functions in a vector form, with each element defined in (1).

Similar to [5] each of the elements in dynamic matrices are
represented by a separate RBFNN. This will result in input
dimension reduction, which is essential in order to prevent
curse of dimensionality.

The estimated inertia matrix M̂ is defined as:

M̂ =W T
M •AM(x), (11)

where WM matrix defined as:

W T
M ,

 wT
m11 · · · wT

m1N
...

. . .
...

wT
mN1 · · · wT

mNN

 (12)

each element of the matrix in (12) is a column vector defined
in (10). Similarly AM(x) matrix is a matrix of activation
functions of constructed RBFNN for an input pattern x and
is defined similar to (12). Correspondingly matrices C and
G can be represented using matrices constructed of elements
based on RBFNN.

Elements of the dynamic equation of a manipulator have
some unique properties which can be utilised in order to
construct optimal neural network based controller structure.
Manipulator inertia matrix (M(q)) is three by three elements
and is symmetric (i.e. m12 = m21, m13 = m31, m23 = m32),
thus only six elements out of nine for a three degree of free-
dom manipulator are necessary to be approximated, which
dramatically reduces computational load on the system.
Similarly elements c33 of the C(q, q̇) matrix and element g1
of the G(q) matrix are zero and do not need to be estimated
using an RBFNN.

IV. SIMULATION RESULTS AND DISCUSSION
Three simulations with inverse dynamics controller are

carried out. First simulation assumes frictionless and distur-
bance free manipulator. The second simulation has friction
and disturbance terms included in the manipulator dynamic
equation. Inverse dynamics controller requires an accurate
model of a plant under control even small inaccuracies in
model can lead to instability [17]. Table I shows initial
networks configuration and size. Further, Resource Allo-
cation Networks Extended Kalman Filter (RANEKF) [11]
simulation with growing RBFNN carried out in order to
compare the performance from growing networks to pruned
networks.

Initial RBF Networks
Network Network Size Input Config

m̂11 81 q2,q3
m̂12 81 q2,q3
m̂13 81 q2,q3
m̂22 9 q3
m̂23 9 q3
ĉ11 729 q2,q3,(q̇2 + q̇3)
ĉ12 729 q2,q3,(q̇2 + q̇2 + q̇3)
ĉ13 729 q2,q3,(q̇2 + q̇2 + q̇3)
ĉ21 729 q̇1,q2,q3
ĉ22 81 q3, q̇3
ĉ23 81 q3,(q̇2 + q̇3)
ĉ31 81 (q̇1 +λq2),q3
ĉ32 81 q̇2,q3
ĝ1 81 q2,q3
ĝ2 81 q2,q3

Sum 3663 -

Friction and disturbance terms are implemented as F =
[1.2q̇1 1.4q̇2 0.8q̇3]

T and d = [3 5 4]T .

Derivative and Proportional gain values are set to: Kp =
diag(350,450,450) and Kd = diag(2.5,4,2.5)

The desired trajectory is specified for each joint as:

q1d(t) = 0.5sin(t) q2d(t) = 0.7sin(t) q3d(t) = 0.3sin(t).
(13)

A. Pruning of Networks

Before the networks may be pruned it is crucial that they
have experienced enough training. With WMP all of the
weights have to be updated to avoid removing wrong ones.
The manipulator must have completed one half period of the
first sine wave before the networks can be pruned. For NOP
it is necessary that the different areas of the input space all
are visited since the pruning is done based on the distance
from the units to the inputs. Therefore it is necessary for
the manipulator to complete one whole period of a sine
wave, that is 2π simulation seconds and approximately 4400
iterations in Simulink. In addition to the simulation time
criteria the RMS estimation error over a moving window
of 400 Simulink iterations is used. The requirement is that it
has to be smaller than 0.01 before a network may be pruned.
The exception to this is the network g2 which can be pruned
when the approximation error is less than 0.05 over the last
400 iterations.

All the networks are initially created as shown in Table I
and then pruned with different methods. For WMP method
a starting threshold of 5% has been used which can grow
up to 5 times. Threshold for NOP has been taken as 30%.
Due to the threshold being specified as a percentage the same
threshold is used for all of the networks even if they are quite
different. Looking at the networks more separately however
will make it possible to obtain better result. Thus in MMP
different pruning techniques are used to estimate dynamic
matrices of the manipulator under study. Networks belonging
to M̂ are pruned with 7% weight based pruning threshold,
while a 30% threshold for NOP method for the Ĉ is used
and 5% for the WMP for the two networks belonging to Ĝ.

B. Obtained Networks After Pruning

Table II presents data on pruned networks using methods
presented earlier. The approximation error shown in the table
is given for the last 300 iterations of the simulation for each
of the network, thus indicating performance of the networks
after pruning. From the data it is clear that presented pruning
methods significantly reduce the number of hidden neuron in
each of the networks. WMP method produced final network
with least amount of neurons in the hidden layer, while MMP
and NOP produce almost the same result.

C. Results for the Case Without Friction and Disturbance

Table III presents implementation results of the inverse
dynamics controller based on suggested methodologies. Here
method, total number of hidden units for all the networks,
the tracking error for the whole simulation and the approxi-
mation error for all of the networks over last 300 iterations
are presented. The latter is shown for both simulation times
of 6π and 20π seconds.

Resulting Networks After Pruning
Weight Magn. Node Output Mixed Method

NN NN Approx. NN Approx. NN Approx.
Size Error Size Error Size Error

[RMSE] [RMSE] [RMSE]
m̂11 6 0.0067127 5 0.0061364 4 0.0054748
m̂12 6 0.0005721 5 0.00050466 4 0.00034923
m̂13 2 0.001048 5 0.00075247 2 0.0010479
m̂22 3 0.004117 2 0.0065574 3 0.0041168
m̂23 3 0.001939 2 0.0028382 3 0.0019389
ĉ11 3 0.0083142 17 0.0016613 17 0.0016601
ĉ12 13 0.0023642 22 0.0037684 22 0.0037649
ĉ13 8 0.0072465 22 0.00073191 22 0.00073047
ĉ21 3 0.0072956 11 0.00084954 11 0.00084958
ĉ22 2 0.0061949 4 0.0012086 4 0.0012063
ĉ23 3 0.0006785 7 0.0010091 7 0.0010054
ĉ31 2 0.0069534 6 0.0043594 6 0.0043596
ĉ32 2 0.0014019 6 0.0011061 6 0.0011059
ĝ1 10 0.23334 5 0.23923 10 0.23334
ĝ2 6 0.0021934 5 0.0095059 6 0.002195

Sum 74 0.29037 126 0.28021 129 0.26314

As can be seen from Table III implementing the ideal
model of the manipulator in the inverse dynamics controller
gives the best tracking result as expected. It can also be seen
that an unpruned network gives better tracking result com-
pare to pruned one. Out of the proposed pruning techniques
mixed pruning method gives the smallest tracking error.
RANEKFs have the largest tracking error which probably
is due to the poorer approximation ability at the beginning
of the simulation when not enough neurons has been added.

The unpruned network also gives smaller approximation
error in total. Again the MMP gives the best result in
comparison to other pruning techniques. Here RANEKFs are
far superior compared to the other RBF networks with a
much smaller estimation error. However the approximation
error increases when the simulation length is increased for
the RANEKFs. Also the networks did not stop to add neurons
and after 20π simulation time at which point the total number
of hidden neurons in the RANEKFs was 147. Thus it seems
like the RANEKFs keeps growing and starts to over fit the
simulation data as the time goes. All of the other networks
had the same sizes after the longer simulation and their
estimations all improved.

The actual time it took to complete the simulation was
much longer when RANEKFs were implemented. It then
took 7.20 minutes while the simulation with weight based
pruning took 4.10 minutes to complete. The simulation hard-
ware is Intel Core 2 Duo CPU with 2GB RAM. Both NOP
and MMP used 4.20 minutes for the whole simulation. Not
pruning the networks gave an actual time of 4.50 minutes.

Trajectory Tracking and Network Approximation Errors

Method Sum of Tracking
Hidden Error
Units [SSE]

Correct Model - 0.031897
Unpruned 3672 0.032

Weight Magnitude 74 0.03201
Neuron Output 126 0.032002
Mixed Methods 129 0.032001

RANEKF 96 0.032094

Fig. 1. Joints Error Evolution

Figure 1 shows desired and actual trajectories for each
of the joints under inverse dynamics controller with 5%
threshold with WMP. It can be seen from the figure that
actual trajectory is closely following the desired one.

By looking at the results presented in Table III it is
possible to conclude that using RMSE as a measure of per-
formance for such a system is not suitable. While RANKEF
network shows best RMSE results it fails to perform as well
in actual tracking control task.

D. Results for the Case With Friction and Disturbance

For more realistic simulation it is necessary to include
friction and disturbance terms in to the manipulator dynamic
equation. These terms are not added to the model of the
manipulator used for training of RBFNN, this is aimed at
testing networks ability to generalise.

Results from simulations that lasted 6π seconds and in-
cludes friction and disturbance are shown in Table IV. This
table shows the method that is used to implement the system
dynamics in the controller, the total number of hidden units
in the final networks, the tracking error for all three joints
for the whole simulation and also the tracking error for only
the last 2π simulation time. During the whole simulation the
manipulator completes 3 full sine wave periods, the tracking
error of only the last period is analysed to see how the
networks performs in tracking control after being pruned.

The final networks obtained from the NOP and MMP
techniques produces networks with different sizes compared
to the frictionless and disturbance free model. For example
the two networks ĉ12 and ĉ13 has one less neuron in the
hidden layer. This is due to the change of inputs and thus
the activation function ratios are no longer the same as in
the previous situation.

Best tracking performance for both the whole simulation
and the last part only is obtained using adaptive neural
controller with MMP pruned RBF networks. All of the
pruned networks give more accurate tracking than the other
methods. Worst tracking for the whole simulation come from
RANKEFs implemented network. In the final period of the
trajectory they do however obtain better tracking then the
now incorrect model. RANEKFs are much smaller than

for the case without friction and disturbance. A plot of
the desired joint trajectories together with the actual joint
trajectories for the case with friction and disturbance can be
seen in Figure 2. Here mixed pruning method of the RBF
networks in the learning inverse dynamics controller has been
used, in this case the tracking result is very good.

Disturbance and Friction
Trajectory Tracking and Network Approximation Errors

Method Sum of Tracking Error Track. Error
Hidden Whole Sim. Last 2π

Units [SSE] Time [SSE]
Incorrect Model - 0.052887 0.0072445

Unpruned Networks 3672 0.052977 0.0072385
Weight Magnitude 74 0.052898 0.0072129

Neuron Output 124 0.052975 0.0072379
Mixed Methods 127 0.052563 0.0071018

RANEKF 78 0.053116 0.007243

V. CONCLUDING REMARKS

A. Conclusion

Application of suggested novel pruning methods accord-
ing to the results have dramatically reduced the size of
each network while maintaining good level of controller
performance. The reduction in network size results in re-
duced computational costs of the controller which makes
them attractive for a real time controller implementation.
The tracking performance may not be ideal case however
the results presented in this paper indicate success of the
suggested pruning methods, which is the main focus of this
paper.

B. Future Work

Future work includes the study of the effects of input
signal combination on network performance and complexity.
Further work will be focused on study of regularisation of
pruned RBF networks to treat ill posed mathematical system,
as it was highlighted earlier in this paper. To further extend
the case study the suggested control technique will be tested
on tracking control of a Universal Robot with 6DOF.

ACKNOWLEDGMENT

This work is performed in Next Generation Robotics for
Norwegian Industry. The project is funded by the Research
Council of Norway, Statoil AS, Hydro AS, Tronrud Engi-
neering AS, SbSeating AS, Glen Dimplex Nordic AS and
RobotNorge AS. SINTEF and the Norwegian University of
Science and Technology are research partners.

REFERENCES

[1] C. H. An, C. G. Atkeson, and J. M. Hollerbach. Model-based control
of a direct drive arm, part 2: Control. IEEE Int. Conf. on Robotics
and Automation, 3:1386–1391, April 1988.

[2] S. Arisariyawong and S. Charoenseang. Dynamic self-organized
learning for optimizing the complexity growth of radial basis function
neural networks. IEEE Int. Conf. on Industrial Technology, 1:655–660,
2002.

[3] V.S. Cherkassky, J.H. Friedman, H. Wechsler, and North Atlantic
Treaty Organization. Scientific Affairs Division. From statistics to neu-
ral networks: theory and pattern recognition applications, chapter An
Overview of Computational Learning and Function Approximation.
NATO ASI series: Computer and systems sciences. Springer-Verlag,
1994.

[4] Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. Proc.
of the Neural Information Processing Systems, pages 598–605, 1990.

[5] S.S. Ge, T.H. Lee, and C.J. Harris. Adaptive Neural Network Control
of Robotic Manipulators. World Scientific Publishing Co, Singapore,
1998.

[6] M. Hagiwara. Removal of hidden units and weights for back
propagation network. Proc. of Int. Joint Conf. on Neural Networks,
1:351–354, October 1993.

[7] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and
general network pruning. IEEE Int. Conf. on Neural Networks, pages
293–299, April 1993.

[8] S. Haykin. Neural Networks – A Comprehensive Foundation. Pearson
- Prentice Hall, ninth reprint 2005 edition, 1999.

[9] T. Q. Huynh and R. Setiono. Effective nn pruning using cross-
validation. Proc. IEEE Int. Joint Conf. on Neural Networks, 2:972–
977, August 2005.

[10] L. C. Jain and Clarence W. De Silva. Intelligent adaptive control :
industrial applications / edited by Lakhmi C. Jain, Clarence W. de
Silva. CRC Press, Boca Raton, Fla. :, 1999.

[11] V. Kadirkamanathan and M. Niranjan. A function estimation approach
to sequential learning with neural networks. Neural Computation,
5:954–975, 1993.

[12] M. Vidyasagar M. W. Spong, S. Hutchinson. Robot Modeling and
Control. John Wiley and Sons, INC., first edition.

[13] J. Park, R.G. Harley, and G.K. Venayagamoorthy. Comparison of
mlp and rbf neural networks using deviation signals for on-line
identification of a synchronous generator. IEEE Power Engineering
Society Winter Meeting, 1:274–279, 2002.

[14] D. Sabo and X. Yu. A new pruning algorithm for neural network
dimension analysis. IEEE In. Joint Conf. on Neural Networks, pages
3313–3318, June 2008.

[15] S. Vestheim. Pruning of rbf networks in robot manipulator learning
control. Master’s thesis, Department of Technical Cybernetics, Nor-
wegian University of Science and Technology, 2012.

[16] C. Wang and D. J. Hill. Learning from neural control. IEEE
Transactions on Neural Networks, 17(1):130–146, January 2006.

[17] R. Ortega & T. Yu. Theoretical results on robustness of direct adaptive
controllers: a survey. In 10th IFAC World Congress, pages 26–31,
Munich, 1987.

[18] Z. Zhang and J. Qiao. A novel pruning algorithm for feedforward
neural network based on neural complexity. Int. Conf. on Intelligent
Control and Information Processing, pages 406–410, August 2010.

