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ABSTRACT

In this paper, attitude control of a spacecraft using thrusters and reaction wheels as actuators is studied. Linearization and
Lyapunov theory is used to derive two linear and four nonlinear controllers. Three of the nonlinear controllers rely on
cancellation of system nonlinearities, while the fourth is a sliding mode controller. By restricting the spacecraft inertia,
simpler controllers can be found. Several controllers are compared in simulations. The simulations are based on data from
the micro-satellite, European Student Earth Orbiter (ESEO).

1 INTRODUCTION underwater vehicles. A nonlinear sliding mode controller
is proposed by [6]. Vibration suppression during attitude
1.1 Background control for flexible spacecraft is studied in [7], where

various methods of transforming a continuous input
The micro-satellite ESEQ is part of the Student Space Ex- torque to thruster torque pulses are presented.
ploration and Technology Initiative (SSETI), which is a
project supported by the Education Office of the European At the Norwegian University of Science and Tech-
Space Agency (ESA). Students from twelve different Eu- nology, [8], [9] and others have studied attitude control
ropean countries participate in SSETI. More information of satellites with magnetic coils and reaction wheels as
on SSETI can be found in [1]. SSETI is also planning a actuators. Their results are part of the foundation of the
satellite which will orbit the moon, the European Student NCUBE projects, where pico-satellites are launched into
Moon Orbiter (ESMO). Work on this satellite is about Earth orbit. For more information on NCUBE, see [10]
to begin, and the first student team to be recruited was and [11].
the ESMO Attitude Determination and Control System
(ADCS) team. This Norwegian team is based at the Nor-
wegian University of Science and Technology (NTNU)
in Trondheim and Narvik University College (HiN) in
Narvik. The first task of the ESMO ADCS teamwas todo 2.1 Reference frames
a case study of ESEO. The work presented in this article
is part of this study, and its contents is based on [2].

2 MODELING

To analyze the motion of a satellite, it is necessary to de-
fine reference frames, which this motion is relative to.
These frames are the same as those used by [12] and [9].
1.2 Previous work The Earth Centered Inertial (ECI) franie denotedfF;,

and has its origin at the center of the earth. Its unit vectors
A standard reference on spacecraft dynamics is [3]. arex;, y; andz;, wherez; is directed along the Earth’s ro-
In [4] nonlinear attitude control of a spacecraft with tation axis. This frame is non-accelerated, that is inertial,
thrusters and an arbitrary number of reaction wheels is which means that the laws of Newton apply.
studied, where the modified Rodrigues parameters are The Earth Centered Earth Fixed (ECEF) fransede-
used to describe the attitude of the spacecraft. The use ofnoted 7., and has the same origin &. HoweverF,
Euler parameters or unit quaternions in attitude control rotates relative taF; with a constant angular velocity
problems, is studied by [5], but the results are applied to w. = 7.2921 - 10~° rad/s. This is the same as the an-
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gular velocity of the Earth about its rotation axis. The
unit vectors ofF, arez., y. andz., wherez, is directed
along the Earth'’s rotation axis.
The Orbit (O) framedenotedF,, is located at the cen-
ter of mass of the satellite, with the unit vectats y, and
Zo. Zo IS pointing towards the center of the Earth, while
x, IS pointing in the traveling direction of the satellite,
tangent to the orbity, is found using the right hand rule.
The Body (B) framedenoted#;, has its origin at the
center of mass of the satellite. This frame is fixed to the
satellite body. Its unit vectors,, y, and z, are usually

chosen to coincide with the spacecraft’s principal axes of

inertia. This simplifies the spacecraft’'s equations of mo-
tion. Rotations about;, y;, and z, are calledroll, pitch
andyawrespectively.

2.2 Kinematics
This section is largely based on [3] and [13].

Definition 1 A rotation matrixis a matrixR € SO(3),
defined by

SO(3) = {RIReR¥? RTR=1,det R=1}, (1)

where1 is the identity matrix andSO(3) is the spe-
cial orthogonal group of order three. The rotation matrix

transforms a coordinate vector from one reference frame

to another, for instance the matrR? transformsv® into
vii v = Rbve.

The rotation matrix can be parameterized as

Ry = cosf 1 + k*sinf + kk” (1 — cosf), 2)
wherek is an arbitrary unit vector in an arbitrary refer-
ence frame, and the andlerepresents the rotation about
k. The parameterk andf are known asngle-axis pa-
rameters Such a rotation is called simple rotation
The elements of a rotation matiX are called directional
cosines, and can be arranged into column vectors:

R 3)

In fact, these vectors are unit vectors, heeog¢e; =
1. A composite rotation is represented by the product of
two rotation matrices. The rotation frof; to 7, can be
expressed aR? = RERY.

[c1, c2, c3]

Definition 2 The angular velocity vector of, relative
to F, written in 7, is denotedv?,, and is defined by the
corresponding rotation matrix and its time derivative:

R, (RY)"

b
—Wob

(who)”

b
Who

(4a)
(4b)

The cross product operator is defined by:
Wy

0 —Ww,
wxlwz 0 —wwl,wl ] (5)

—Wwy Wy 0
It can be shown that a similar relation exists for the di-
rectional cosines:

We
Wy
Wy

(6)

The Euler parameters, also called unit quaternions, give
a representation of the rotation matrix without singulari-
ties. These parameters will be used in this paper.

¢ = (c;)*wl,

Definition 3 The Euler parameters are defined in terms
of the angle-axis parameters, and are given by the scalar
n and the vectok. In coordinate form this is written

@)
®)

COS —

2

=
Il

0

[61, €2, 63}T =ksin —

2

wherek is a unit vector. The Euler parameters satisfy
the following property:

" +ele=1 9)
The rotation matrixRy ¢ from (2) can now be ex-
pressed in Euler parameters as:

Rio = Ry = 1+ 2" +2 () (10)

As shown in [13], the kinematic differential equations
in Euler parameters, written i, in reference tar,, are
given as:

1

n= —§€ngb (11a)
1

é=> 1+ €e*]wb, (11b)

The actual attitude of a spacecraft is given by the ro-
tation matrixR = R?. Let F, be a desired orientation,
represented bR, = R¢. This means that we watf;, to
coincide withF,, thatisR = R,. In [5] the attitude error
R is defined as

R=R;'R=RIR (12)

When the attitude error is zero, thBr= 1. When us-
ing unit quaternions, [5] has shown that the attitude error
differential equations become
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In this paper we will assume that the origin 6§ co-
incides with the origin ofF,, and thatF, is oriented

;‘7 — ,lgT@ (13a) along the principal axes of inertia of the rigid body, which
% implies that the inertia matrix is diagonal, thatlis=
e=—;m+eo 13p)  diag{ia, 1y, iz}

where® is the error in angular velocity. Note that (13) 2.4 Error dynamics
has the same form as (11). The error in angular velocity
w is given in reference to a desired reference frafe
The error is zero wherf;, and F; have the same angular
velocity. The angular velocity error is:

A mathematical model of the error dynamics as a function
of the error in angular velocity can be derived from equa-
tions (14) to (19). This results in the following model
where the control objective is to makg, coincide with

For
w= ng = Wﬁ')b - Rl:iw;ld (14)
This definition is used in [4] and [9]. h’ =1 (& +R%wS) + ALws (20a)
_ _ h? = LAT (& + Rhw?)) + Lw, (20b)
2.3 Satellite dynamics BY = (h")* (& + REw) + 7. (200)
In this paper we will use the model of a rigid satellite with B — - (20d)
N reaction wheels as found in [4]. The dynamics can be a™ ‘e
written as J=T1-AIAT (20e)
o ) . X We will assume a circular orbit where the angular ve-
h® = (W")*J '(h® - ARh’) +7. (15a) locity of F, is given byw?, = [0, —wp, 0]. Itis shown in
1,'12 = 7, (15b) [2] that:

whereh? is the system angular momentum, which in B e e -
Fy is given by Y ’ Jo = wod(c2) @ — 0" I0 + wow *Tey
— (I)XAISU.)S + WO(CQ)XI(:) — OJS(CQ)XICQ (21)

h® = 1w), + ALw,, (16) + wo(c2)“ALw, + 7. — AT,

andh), is the N dimensional vector of axial angular 2 5 Disturbance torques
momenta of the rotors:
There are several external disturbance torques affecting
, - a spacecraft. In [3] the gravitational torque, the aerody-
h, = LA W), + Liws (17) namic torque, radiation torques and the magnetic torque
) are studied. The aerodynamic torque is only applicable
The vectorw, € RY represents the axial angular ve- gt |ow altitudes. In this paper, we will suppose that all
locities of the rotors relative to the body, white € R® disturbance torques can be neglected, except for the grav-
is the vector of external torques (e.g. thrusters and grav- jtational torque. Assuming circular orbit, [3] has shown
itation), 7, € R is the vector of internal axial torques  that the gravity gradient written in the body frare is
applied by the rigid body to the rotorsA < R3*¥
is the matrix containing the axial vectors of tié ro-
tors, andl € R3*3 is the angular momentum, or inertia 7y = 3wi(cs)*Ics (22)
matrix, of the system, including the rotors. The matrix '
I, = diag {is1,...,isn} € RV*N is a diagonal matrix wherecs is defined in (3). The vectar; transforms the
containing the axial moments of inertia of the rotors. The ;,-axis to thez,-axis. The constant, is defined byw2 =
matrix J € R3*3 is an inertia-like matrix defined as u/r2 wherer, is the orbit radiusy = Gm, = 3.986 -

10*Nm?/kg, G is the universal gravitational constant

J=1_ ALAT (18) andm,, is the mass of the Earth.

and can be interpreted as the inertia matrix of an equiv- 2.6  Thruster modeling and control
alent system where all the rotors have zero axial moment . )
of inertia. The angular velocity;fb € R3 of the body ESEO will use one reaction wheel and thrusters for at-
frame in reference to an inertial frame, can be written as titude control. The thrusters are on or off by nature.
A reaction wheel on the other hand can give a continu-
ous torque. This means that a continuous signal of com-
wh =J 1(h" — An%) (19) manded torques must be translated to pulses which decide



55th International Astronautical Congress 2004 - Vancouver, Canada

whether a thruster should be on or off. We will choose  makes the equilibrium of20) globally asymptotically
a bang-bang controller with dead-zone, presented in [7], stable ifi, > i, > i,, wherek, > 0 is a sufficiently large
where the thrusters are fired if the commanded torque is constant, andC > 0 and E > 0 are constant matrices.
greater than a certain threshold value, as illustrated in fig- An obvious choice i€ = k,1 > 0 andE = k,1 > 0
ure 1. Tuning the size of the dead-zone, it is possible to wherek,, andk, are constants.

emphasize fuel consumption by choosing it large, or place

emphasis on accuracy by having a small dead-zone. PerOf. We choose the fO“OWing LyapUnOV function can-
didate (LFC)V:

1 I — .
o 1 1 Al | |
| L - Thruster Systam V= 5 [WTv WZ] [ISAT I :| |:Ws:|
) 26)
, (
— — iwgchcz + ko (ng +[0 = 1]2)

3 1 , .
+ 5w§c§103 + §w§ (iy — 312)

Figure 1: Bang-bang controller with dead-zone 1 1
= §®TI& + ws I, ATG + ngISwS

1 )
3 CONTROLLER DESIGN — SwiezTes + 2k (1 17) 27)

3 . ,
We will now derive controllers for ESEO, using Lya- + §W3C§IC3 + 5“3 (iy — 3iz)
punov’s direct method and Krasovskii-LaSalle’s theorem,
which can be found in [14]. A linear controller basedona  The state vector is
linearized system is presented first. We assume that the o7 I
only external torques affecting the satellite are thruster X = [w y Wsy 1, €, C12, €32, C13, €23
torquesr, and gravitational torques,, thust, = 7. + 7.

]T

wherec; s, ¢392, ¢13 andceys are the respective components
of the vectorse; andcg defined in (3). The desired state
3.1 Local PD controller vector is

The control law below is based on the linearized model of * 3 oN 3 T
ESEO. If the parametets andk,, satisfy " =[0% 0%, 1,0%0,0,0,0]" .
The first three termsl{,) and the fourth term iV repre-
b > (23a) sents the kinetic energy of the satellite, although it is not
€ s equal to its total kinetic energy. The fifth term comes from
ko, >0 (23b) the attitude error wherk, is a positive constant. The sixth
2 2 (. i . . . .2 term represents the potential energy of the satellite. The
ki, > w (Zz [2iy = 2ie = 1] = [iy — ia] ) (23¢) last term is constant in order to makea true Lyapunov
function, that isV > 0 andV(x*) = 0. In fact,V meets
these requirements only wheép > i, > 4., which is
shown in [9]. It is shown in [2] that the time derivative of

Te = —kJé — k@ (24a) V, is given by:
Ta =0 (24b)

the control law

o _ ~T T 2~T X
makes the system (20) locally asymptotically stable. Vo =07 Te +w; 7o —ww” (e2)"Iey (28)

The details of the derivation is found in [2]. The time derivative o/ along the trajectories of (20)
thus becomes:
3.2 Global linear controller

We will now analyze how a linear controller can stabilize V=1 _ 1, TLéo — ki 3 5 Tye 29
ESEO globally. To do this, we will use Lyapunov analy- @ T Wt 0l + 5wocsIés(29)
sis. =077+ wi o — Wi (c2) Ty
Proposition 4 The linear controller + 3w (e3)*Ies — wict I(cy) @ (30)
+ ko é + 3wiciI(cs) @
Te = —koé — Cw (253) Since all the terms are scalars, they can be freely trans-
To = —Ews (25b) posed. Exploiting the fact th&a*)? = —&> we obtain:
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V=0T +wlre + kow"e (31)

Combining (25) with (31), we get:

V =-0TCo — wl'Ew, (32)

SinceC > 0andE > 0,V < 0. Thus® — 0 = & —
0 andws — 0 = w, — 0. Hence (21) becomes:

0 = —wg(c2)*Ica + 3wi(cs) *Ies — koé (33)

The terms to the right are bounded becadsés a

unit vector and|é|| < 1. Hence there should be a large

enough choice ok, which makes = 0 the only solu-

tion, as proposed by [8]. In [2] it is shown that choosing

ko > 5.5432 wi (i, —i,) = € — 0. Thus the equi-

librium point will be globally asymptotically stable by

Krasovskii-LaSalle’s theoremm

3.3 Lyapunov controller 1

In section 3.2 there were restrictions on the inertia matrix
of the satellite. In case such restrictions are not met by a
satellite, we will derive a nonlinear controller which does

not have these restrictions.

Proposition 5 The nonlinear controller

Te = —klg - Cw
+ u)g(Cg)XICQ — 3w§(C3)X103

To = —Ewg

(34a)

(34b)
makes the equilibrium of20) globally asymptotically

stable, whereC > 0 andE > 0 are constant matrices. A

possible choice i€ = k,1 > 0 andE = k,1 > 0 where
k. andk, are constants.

Proof. Consider the following LFC:

V=V, +2k (1-7) (35)

wherek; is a positive constant. The time derivative of

V" along the trajectories of (20) is given by:

V=&"r + whr, — wchT(cQ) *Tcq (36)
+ 3wiT (c3)*Tes + kioTe
Inserting (34) into (36), we get:
V =—-0"Co — wl'Ew, (37)

SinceC > 0andE > 0, V < 0. Thus® — 0 = & —
0 andws — 0 = w, — 0. Hence (21) becomdgé =

0 = € — 0. Thus the system is globally asymptotically
stable according to the theorem of Krasovskii-LaSaiie.

3.4 Lyapunov controller 2

The preceding controllers do not use the reaction wheels
directly as actuators for attitude control. It would be de-
sirable to use the reaction wheels as actuators in the same
way as the thrusters. This motivates an LFC where we
omit w, from the state vector, and treat it as an external
signal.

Proposition 6 The nonlinear control laws
Te = _ke,lg - Cw (38a)
A7, = k26 + Do

38b
+ wo(c2)* AL (AT® + wy) (38b)

make the equilibrium of the systef20) globally
asymptotically stable if, > i, > ., wherek, ; andk. »
are constants satisfyinfe 1 + ke2) > 0, (ke1 + ke 2)
is sufficiently large, andC and D are constant matrices
satisfying(C + D) > 0. Obvious choices which ensure
this areC = k, 11 andD = k,, »1 wherek,, ; andk, o
are constants andk,, 1 + k.2) > 0.

Proof. Consider the LFC
1

1
V=3 T I — §w§c2TIcz + 2Ky (1 — 7))

3 1 (39)
+ §w§c3TICS + iwg (1y — 3iz)

wherek; is a positive constant. The state vector is
~T ~ T T
X = [W » T, €5 C12, €32, C13, 623}

)

and the desired state vector is
x*=[0%1,0%0,0,0,0]".

The first and second term Inrepresent the kinetic energy
of the satellite. The other terms are the same as in the
LFC (26). This means that is a Lyapunov function if

iy > iy > 1,. TO calculatel, we will use (21):

V=uTJo— %w%cg Iy — 2kof) + gwgchcg (40)
= woalTJ(Cg) XC:) + woz,DT(C2) x I
— WSQT(CQ)XICQ + wO(I)T (CQ)XAISLUS
+ &JTTg + ol —aTAr,

—wiclI(co) @ + ko e+ 3wiciI(e3) @

(41)

Note that several terms have disappeared since
@To* = 0. Transposing some terms, we get:

V = wodT (co)* (I — IO + Alw,) + @77,
— T A7y + ko€
= wow® (cz) X AL, (AT(ZJ + ws) +oTr,

— T A7y + ko€

(42)

(43)
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Inserting (38) into (43), we obtain:

V=(ky —ker —keg)dTe—aT (C+ D)o (44)
Note that the control law for, in (38) cancels the

nonlinearities inV. This is only possible if the reaction

wheels are able to give torques about all three axes of
rotation. If this is not the case, the thrusters should be

used. We will get the same result fof, if we choose
to cancel the nonlinearities with. instead. Choosing
ko = keq + k2, We get:

V=-20oT(C+D)o (45)

Since(C+D) > 0, V < 0. Thus, we have proved

thato — 0 = & — 0. We will now apply Krasovskii-
LaSalle’s theorem. Wheh = & = 0, (21) becomes:

0 = —wj(c2)*Ica + 3wi(cs) *Ieg — ko (46)
The constank, must be chosen large enough to make
€ = 0 the only possible solution to this equation.
Since this is the same equation as (33), choosing-
5.5432 w2 (i, — i) yields a globally asymptotically sta-
ble system according to Krasovskii-LaSalle’s theoram.

3.5 Lyapunov controller 3

In section 3.4 there are restrictions on the inertia matrix
of the satellite. The next controller will not have such
restrictions.

Proposition 7 The nonlinear control laws

Te = —ke 16 — CO (47a)

A7, = ke €+ Do + wp(ce) * AL (AT&) + ws)

) y ) (47b)
— wj(e2)*Ieg + 3wi(c3) * Ics

make the equilibrium of the syste(20) globally
asymptotically stable, where. ; and k. » are constants
satisfying(ke .1 + ke2) > 0, andC and D are constant
matrices satisfyingC + D) > 0. Obvious choices which
ensure this areC = k, ;1 andD = k, 21 wherek,, ;
andk,, » are constants antk,, 1 + k., 2) > 0.

Proof. We will consider the following LFQ” whereks
is a positive constant:

1
V= ?DTJ@ + 2k3 (1 — %) (48a)

This LFC is almost the same as (39), but two terms are

removed.V becomes:

V =&TJo — 2ksi (49)
= (UOCDTJ(CQ) @ + W()(:)T(CQ) o 1%
2~T X ~T X
—wiw" (c2)" Icg + wow” (o) Al ws,
0w (€2) Iea + wow” (c2) (50)

+ 3w30T (c3)*Tes + @77

— 0T AT, + ksoTe

Transposing the first term, and using the definitiod of
in (20), we obtain:

V= wowT (cg)* AT (AT(ZJ + ws)

— w2 (ca)*Tcg + 3wi@™ (c3)*Tcs (51)
+oTr, — T A7, + ks0Te
Inserting (47) into (51), we get:
V= (ks —kes —keo)0Té-aT (C+D)o  (52)

The control law forr, in (47) cancels the nonlinearities
in V. We choosés = k¢ 1 + k. 2, thus:

V=-0"'(C+D)& (53)
Since(C+D) >0,V <0. Thuso — 0= & — 0,

and the system is globally asymptotically stable according

to the theorem of Krasovskii-LaSalla

3.6 Sliding mode controller

According to [14], sliding mode controllers are robust to
system parameter uncertainties. Such uncertainties are of-
ten encountered in practice. A good example is change of
a satellite’s inertia when thruster fuel is consumed. We
will define the error of a parameterto beAa = a — &

where the values denoted with a I@t are the best esti-
mates, or nominal values, of the system parameters.

Proposition 8 The sliding mode controller

(54a)

Te = —Tsgn
~ 3 -
A1, = (h*)* [@ 4 Qoca] + §az§c3TIC3
~ 14
+God(e2) @+ SIP [l + ()] @ (54b)
+ ngn,a

Besgn (s,) Ba,z5g0 (5z)
6y3gn (Sy)] y Tsgn,a [ﬁa,ySgn (Sy)] (54¢)
B.sgn (s2) Ba,zSgn (s2)

Tsgn —

makes the equilibrium of the syste(@0) globally
asymptotically stable, where

Bi + Bayi > 0; + Bo.is
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Bo,i > 0'is a constant and the vectér= [d,, d,, 6Z]T is
given by:

0= (Ahb)xd — (A(hwa))XCQ
+ gch(wgl)c;g + A(wod)(co)* @ (55)
+ %AJP [+ (&)@

The sign functiongn (-) is defined by:

]., S; > 0
sgn (s;) = (1), §; = 8 (56)
=1, s; <

Proof. The first step in sliding mode control is to design

a sliding manifold

T
5 = [Sam Sy Sz] s

and [15] suggest the following manifold whese= 0 im-
plies thate and@ tend to zero. Define

s=o+Pé¢ (57)

whereP > 0. We must now design a control law for

4 SIMULATION

4.1 Numerical values

The inertia matrix of ESEO is given by =
diag {4.3500, 4.3370, 3.6640}. ESEO has one reaction

wheel about itg,-axis, hence = [0, 1, 0]”. The wheel
inertia is given byi, = 4 - 1075 kgm?, and the max-
imum angular velocity of the reaction wheel is given by
(Ws)maz = 5035 rpm. Table 1 shows the nominal torques
of the thrusters. The simulation altitude is 250 km above
the surface of the Earth.

Tp-axis | 0.0484 Nm
yp-axis | 0.0484 Nm
zp-axis | 0.0398 Nm

Table 1: Nominal thruster torques

4.2 Implementation of controllers

Since ESEO only has one reaction wheel, the cancella-
tion of system nonlinearities cannot be done with the re-
action wheel alone. Thus, the control laws are modified

the system states to reach the sliding manifold. Considerjn order to let the thrusters cancel nonlinearities about the

the LFC

V =sTJs (58)

Its time derivative along the trajectories of (20) is given

as:

V =s" (J& + JPE) (59)
=sT ((hb)X [© — woca] + %wgch%
+Te — ATy + wod(c2) @ (60)
1
+5IP (71 + (8)%] w)
Inserting (54) into (60), we get:
VvV =sT ((Ah*)*@ — (A(h’wg))*c2
3 .
+ ich(w(Q)I)% + A(wed)(e2) @ 61)
1
+§AJP |:’f~]1 + (g)x] w— Tsgn — ngn,a)

=57 (0 — Togn — Tegn.a) (62)
Sincef; + Bq.s > 6 + Bo,i, we have:

V- (Bo,z |82] + Boy syl + Bo,z [s=1) (63)

Fors # 0,V < 0 = s — 0. Hence, we reach our man-
ifold s in finite time, and the system is globally asymptot-

ically stable.m

T, andz,-axis, while the reaction wheel takes care of the
yp-axis nonlinearities. Regarding the sliding mode con-
troller, it is discussed in [14] that such controllers suffer
from chattering. This problem can be solved by replacing
the sign function with a saturation function, which leads
to decreased accuracy:

1, S; >y
sat (si,7) = 0, |[sil <~ (64)

In the implementation of the sliding mode controller,
the saturation function is used instead of the sign function,
and the gaing; andg, ; are chosen constant, that is:

Bi 4 Ba,i = Bos > 0

4.3 Simulations and results

A simple step simulation is performed, where the satel-
lite has an initial spin. First with ideal conditions, that
is no measurement noise and perfect estimates of system
parameters (figure 2 to 5). Then with a 20 % uncertainty
on the system inertial parameters, and finally with added
white noise and perfect parameter estimates (figure 6 to
9). The second simulation results in approximately the
same results as the first, so these plots are not included.
The only difference is a slighlty slower rate of conver-
gence to the desired attitude. The attitude is presented in
Euler angles, where the three angle¥ and: give the
rotation of a reference frame relative to another about the
x, y and z-axis respectively. In the plots, these angles
represent the rotation of;, relative toF, . The desired
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accuracy ist1°. All Euler angles have the same desired
value.

5 CONCLUSION

In this paper, a variety of nonlinear controllers are
developed to control the attitude of a spacecraft using [8]
thrusters and reaction wheels as actuators. Note that sim-

pler controllers are obtained if the diagonal inertia ma-

trix of the spacecraft satisfieg > i, > .. Simulations
show that all controllers obtain a desired accuracydf

in Euler angles. Some of the controllers do not use the

reaction wheel actively to control the satellite’s attitude,

but they perform just as well as the others. Whether or
not the reaction wheel is used actively, the Euler angle
0 converges faster than the other Euler angles and it has
a higher degree of accuracy. This is due to the presence,
of the reaction wheel. Note that when using the reaction
wheel actively to control the spacecraft’s attitude, the re-
action wheel reaches saturation quickly. It is observed that

(7]

&

[10]

added noise to the measured states yields more thruster fir-
ings. This work will be part of a basis for the next SSETI
project, ESMO.
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Figure 2. Simulation of local PD controller with ideal
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Figure 3: Simulation of Lyapunov controller 1 with ideal

Euler angle (°)
w
(=]

LN
o

= N
=)

0

-10

Time (s)

0100 200 300 400 500 600 700 80D 900 1000

(a) Euler angles with reference

-0.01
-0.02
-0.03
-0.04
-0.05

0

0.03

Time (s)

(b) Control torques

100 200 300 400 500 600 700 800 900 1000

0.02

-0.01

-0.02

-0. 030

conditions

Time (s)

100 200 300 400 500 600 700 800 900 1000

(c) Reaction wheel velocity




55th International Astronautical Congress 2004 - Vancouver, Canada

70 70
— ¢ — ¢
60 —— 0 60 —— 0
50 50
2 40 2 40
o o
2 30 2 30
© [0}
é 20 é 20
10 10
0 of-—
1% 100 200 300 400 500 600 700 800 900 1000 1% 400 200 300 400 500 600 700 840 S00 1000
Time (s) Time (s)
(a) Euler angles with reference (a) Euler angles with reference
0.08
T T T T
0.06 . .
{1 Tcy Tcy M
— o004 1 | cz —_— T cz
€ | £
: ol i £ i
2 002l =
| £
g ot g
S om | g
C C
o} | o}
O 004 \ o |
\
-0.06 ‘ |
-0.08 L L L L L L L L L -0.08 L L L L L L L L L
0 100 200 300 400 500 600 700 800 2900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)
(b) Control torques (b) Control torques
4 4
35X 10 4% 10
- ®
225 =2
2 2
| g
> 2 >
3 g0
< 15 e
g 1 kel
3 B -2
] 3
x 05 X 3
O 100 200 300 400 500 600 700 800 900 1000 “40 100 200 300 400 500 600 700 00 900 1000
Time (s) Time (s)
(c) Reaction wheel velocity (c) Reaction wheel velocity

Figure 4: Simulation of Lyapunov controller 3 with ideal Figure 5: Simulation of sliding mode controller with ideal
conditions conditions

10



55th International Astronautical Congress 2004 - Vancouver, Canada

70
— ¢
60 6
WY
- 9 -~ Ref
2 2 aof)
Qo Q@ |
2 2 301!
hd it !
& & 20 \\
L [T} \
10 |\
.
0 S
1% 160 200 300 400 500 600 700 80O 900 1000 10100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)
(a) Euler angles with reference (a) Euler angles with reference
0.05= :
0.04 } } T 0.1 T T
| | - 5 K
003/l | i 0.08
£ \ °z £ 006
g 0.02 | o g 004
® 001 | T o 0
z 0 il l g 0.02
2 £ o
g o0 £ 002
§-0.02 8 004}
0.03 0.06
-0.04 0.08
0.05 : 0.1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)
(b) Control torques (b) Control torques

Figure 6: Simulation of local PD controller with added Figure 8: Simulation of Lyapunov controller 3 with added
white noise white noise

Euler angle (°)
Euler angle (°)

_100 100 200 300 400 500 600 700 800 900 1000 -100 100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)

(a) Euler angles with reference (a) Euler angles with reference

Control torque (Nm)
o
Control torque (Nm)

0 100 200 300 400 500 600 700 80O 900 1000 “""0 100 200 300 400 500 600 700 800 900 1000
Time (s) Time (s)
(b) Control torques (b) Control torques

Figure 7: Simulation of Lyapunov controller 1 with added Figure 9: Simulation of sliding mode controller with
white noise added white noise

11



