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ABSTRACT

In this paper, attitude control of a spacecraft using thrusters and reaction wheels as actuators is studied. Linearization and
Lyapunov theory is used to derive two linear and four nonlinear controllers. Three of the nonlinear controllers rely on
cancellation of system nonlinearities, while the fourth is a sliding mode controller. By restricting the spacecraft inertia,
simpler controllers can be found. Several controllers are compared in simulations. The simulations are based on data from
the micro-satellite, European Student Earth Orbiter (ESEO).

1 INTRODUCTION

1.1 Background

The micro-satellite ESEO is part of the Student Space Ex-
ploration and Technology Initiative (SSETI), which is a
project supported by the Education Office of the European
Space Agency (ESA). Students from twelve different Eu-
ropean countries participate in SSETI. More information
on SSETI can be found in [1]. SSETI is also planning a
satellite which will orbit the moon, the European Student
Moon Orbiter (ESMO). Work on this satellite is about
to begin, and the first student team to be recruited was
the ESMO Attitude Determination and Control System
(ADCS) team. This Norwegian team is based at the Nor-
wegian University of Science and Technology (NTNU)
in Trondheim and Narvik University College (HiN) in
Narvik. The first task of the ESMO ADCS team was to do
a case study of ESEO. The work presented in this article
is part of this study, and its contents is based on [2].

1.2 Previous work

A standard reference on spacecraft dynamics is [3].
In [4] nonlinear attitude control of a spacecraft with
thrusters and an arbitrary number of reaction wheels is
studied, where the modified Rodrigues parameters are
used to describe the attitude of the spacecraft. The use of
Euler parameters or unit quaternions in attitude control
problems, is studied by [5], but the results are applied to

underwater vehicles. A nonlinear sliding mode controller
is proposed by [6]. Vibration suppression during attitude
control for flexible spacecraft is studied in [7], where
various methods of transforming a continuous input
torque to thruster torque pulses are presented.

At the Norwegian University of Science and Tech-
nology, [8], [9] and others have studied attitude control
of satellites with magnetic coils and reaction wheels as
actuators. Their results are part of the foundation of the
NCUBE projects, where pico-satellites are launched into
Earth orbit. For more information on NCUBE, see [10]
and [11].

2 MODELING

2.1 Reference frames

To analyze the motion of a satellite, it is necessary to de-
fine reference frames, which this motion is relative to.
These frames are the same as those used by [12] and [9].

The Earth Centered Inertial (ECI) frameis denotedFi,
and has its origin at the center of the earth. Its unit vectors
arexi, yi andzi, wherezi is directed along the Earth’s ro-
tation axis. This frame is non-accelerated, that is inertial,
which means that the laws of Newton apply.

The Earth Centered Earth Fixed (ECEF) frameis de-
notedFe, and has the same origin asFi. HoweverFe

rotates relative toFi with a constant angular velocity
ωe = 7.2921 · 10−5 rad/s. This is the same as the an-
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gular velocity of the Earth about its rotation axis. The
unit vectors ofFe arexe, ye andze, whereze is directed
along the Earth’s rotation axis.

The Orbit (O) frame, denotedFo, is located at the cen-
ter of mass of the satellite, with the unit vectorsxo, yo and
zo. zo is pointing towards the center of the Earth, while
xo is pointing in the traveling direction of the satellite,
tangent to the orbit.yo is found using the right hand rule.

The Body (B) frame, denotedFb, has its origin at the
center of mass of the satellite. This frame is fixed to the
satellite body. Its unit vectorsxb, yb andzb are usually
chosen to coincide with the spacecraft’s principal axes of
inertia. This simplifies the spacecraft’s equations of mo-
tion. Rotations aboutxb, yb andzb are calledroll , pitch
andyawrespectively.

2.2 Kinematics

This section is largely based on [3] and [13].

Definition 1 A rotation matrixis a matrixR ∈ SO(3),
defined by

SO(3) =
{
R|R ∈ R3×3,RT R = 1, det R = 1

}
, (1)

where1 is the identity matrix andSO(3) is the spe-
cial orthogonal group of order three. The rotation matrix
transforms a coordinate vector from one reference frame
to another, for instance the matrixRb

o transformsvo into
vb: vb = Rb

ov
o.

The rotation matrix can be parameterized as

Rk,θ = cosθ 1 + k×sinθ + kkT (1− cosθ), (2)

wherek is an arbitrary unit vector in an arbitrary refer-
ence frame, and the angleθ represents the rotation about
k. The parametersk andθ are known asangle-axis pa-
rameters. Such a rotation is called asimple rotation.
The elements of a rotation matrixR are called directional
cosines, and can be arranged into column vectors:

R = [c1, c2, c3] (3)

In fact, these vectors are unit vectors, hencecT
i ci =

1. A composite rotation is represented by the product of
two rotation matrices. The rotation fromFi to Fb can be
expressed asRb

i = Rb
oR

o
i .

Definition 2 The angular velocity vector ofFo relative
toFb, written inFb, is denotedωb

ob, and is defined by the
corresponding rotation matrix and its time derivative:

(
ωb

bo

)×
= Ṙb

o

(
Rb

o

)T
(4a)

ωb
bo = −ωb

ob (4b)

The cross product operator is defined by:

ω× =

[ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
, ω =

[
ωx

ωy

ωz

]
(5)

It can be shown that a similar relation exists for the di-
rectional cosines:

ċi = (ci)×ωb
ob (6)

The Euler parameters, also called unit quaternions, give
a representation of the rotation matrix without singulari-
ties. These parameters will be used in this paper.

Definition 3 The Euler parameters are defined in terms
of the angle-axis parameters, and are given by the scalar
η and the vectorε. In coordinate form this is written

η = cos
θ

2
(7)

ε = [ε1, ε2, ε3]
T = k sin

θ

2
(8)

wherek is a unit vector. The Euler parameters satisfy
the following property:

η2 + εT ε = 1 (9)

The rotation matrixRk,θ from (2) can now be ex-
pressed in Euler parameters as:

Rk,θ = Rη,ε = 1 + 2ηε× + 2
(
ε×

)2
(10)

As shown in [13], the kinematic differential equations
in Euler parameters, written inFb in reference toFo, are
given as:

η̇ = −1
2
εTωb

ob (11a)

ε̇ =
1
2

[
η1 + ε×

]
ωb

ob (11b)

The actual attitude of a spacecraft is given by the ro-
tation matrixR = Rb

i . Let Fo be a desired orientation,
represented byRd = Ro

i . This means that we wantFb to
coincide withFo, that isR = Rd. In [5] the attitude error
R̃ is defined as

R̃ = R−1
d R = RT

d R (12)

When the attitude error is zero, theñR = 1. When us-
ing unit quaternions, [5] has shown that the attitude error
differential equations become
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˙̃η = −1
2
ε̃T ω̃ (13a)

˙̃ε = −1
2

[
η̃1 + ε̃×

]
ω̃ (13b)

whereω̃ is the error in angular velocity. Note that (13)
has the same form as (11). The error in angular velocity
ω̃ is given in reference to a desired reference frameFd.
The error is zero whenFb andFd have the same angular
velocity. The angular velocity error is:

ω̃ = ωb
db = ωb

ib −Rb
dω

d
id (14)

This definition is used in [4] and [9].

2.3 Satellite dynamics

In this paper we will use the model of a rigid satellite with
N reaction wheels as found in [4]. The dynamics can be
written as

ḣb = (hb)×J−1(hb −Ahb
a) + τe (15a)

ḣb
a = τa (15b)

wherehb is the system angular momentum, which in
Fb is given by

hb = Iωb
ib + AIsωs, (16)

andhb
a is theN dimensional vector of axial angular

momenta of the rotors:

hb
a = IsATωb

ib + Isωs (17)

The vectorωs ∈ RN represents the axial angular ve-
locities of the rotors relative to the body, whileτe ∈ R3

is the vector of external torques (e.g. thrusters and grav-
itation), τa ∈ RN is the vector of internal axial torques
applied by the rigid body to the rotors,A ∈ R3×N

is the matrix containing the axial vectors of theN ro-
tors, andI ∈ R3×3 is the angular momentum, or inertia
matrix, of the system, including the rotors. The matrix
Is = diag {is1, . . . , isN} ∈ RN×N is a diagonal matrix
containing the axial moments of inertia of the rotors. The
matrixJ ∈ R3×3 is an inertia-like matrix defined as

J = I−AIsAT (18)

and can be interpreted as the inertia matrix of an equiv-
alent system where all the rotors have zero axial moment
of inertia. The angular velocityωb

ib ∈ R3 of the body
frame in reference to an inertial frame, can be written as

ωb
ib = J−1(hb −Ahb

a) (19)

In this paper we will assume that the origin ofFb co-
incides with the origin ofFo, and thatFb is oriented
along the principal axes of inertia of the rigid body, which
implies that the inertia matrix is diagonal, that isI =
diag {ix, iy, iz}.

2.4 Error dynamics

A mathematical model of the error dynamics as a function
of the error in angular velocity can be derived from equa-
tions (14) to (19). This results in the following model
where the control objective is to makeFb coincide with
Fo:

hb = I
(
ω̃ + Rb

oω
o
io

)
+ AIsωs (20a)

hb
a = IsAT

(
ω̃ + Rb

oω
o
io

)
+ Isωs (20b)

ḣb = (hb)×
(
ω̃ + Rb

oω
o
io

)
+ τe (20c)

ḣb
a = τa (20d)

J = I−AIsAT (20e)

We will assume a circular orbit where the angular ve-
locity of Fo is given byωo

io = [0, −ω0, 0]. It is shown in
[2] that:

J ˙̃ω = ω0J(c2)×ω̃ − ω̃×Iω̃ + ω0ω̃
×Ic2

− ω̃×AIsωs + ω0(c2)×Iω̃ − ω2
0(c2)×Ic2

+ ω0(c2)×AIsωs + τe −Aτa

(21)

2.5 Disturbance torques

There are several external disturbance torques affecting
a spacecraft. In [3] the gravitational torque, the aerody-
namic torque, radiation torques and the magnetic torque
are studied. The aerodynamic torque is only applicable
at low altitudes. In this paper, we will suppose that all
disturbance torques can be neglected, except for the grav-
itational torque. Assuming circular orbit, [3] has shown
that the gravity gradient written in the body frameFb is

τg = 3ω2
0(c3)×Ic3 (22)

wherec3 is defined in (3). The vectorc3 transforms the
zb-axis to thezo-axis. The constantω0 is defined byω2

0 =
µ/r3c whererc is the orbit radius,µ = Gmp = 3.986 ·
1014Nm2/kg, G is the universal gravitational constant
andmp is the mass of the Earth.

2.6 Thruster modeling and control

ESEO will use one reaction wheel and thrusters for at-
titude control. The thrusters are on or off by nature.
A reaction wheel on the other hand can give a continu-
ous torque. This means that a continuous signal of com-
manded torques must be translated to pulses which decide
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whether a thruster should be on or off. We will choose
a bang-bang controller with dead-zone, presented in [7],
where the thrusters are fired if the commanded torque is
greater than a certain threshold value, as illustrated in fig-
ure 1. Tuning the size of the dead-zone, it is possible to
emphasize fuel consumption by choosing it large, or place
emphasis on accuracy by having a small dead-zone.

Figure 1: Bang-bang controller with dead-zone

3 CONTROLLER DESIGN

We will now derive controllers for ESEO, using Lya-
punov’s direct method and Krasovskii-LaSalle’s theorem,
which can be found in [14]. A linear controller based on a
linearized system is presented first. We assume that the
only external torques affecting the satellite are thruster
torquesτc and gravitational torquesτg, thusτe = τc + τg.

3.1 Local PD controller

The control law below is based on the linearized model of
ESEO. If the parameterskε andkω satisfy

kε >> is (23a)
kω > 0 (23b)

k2
ω > ω2

0

(
iz [2iy − 2ix − iz]− [iy − ix]2

)
(23c)

the control law

τc = −kεIε̃− kωω̃ (24a)
τa = 0 (24b)

makes the system (20) locally asymptotically stable.
The details of the derivation is found in [2].

3.2 Global linear controller

We will now analyze how a linear controller can stabilize
ESEO globally. To do this, we will use Lyapunov analy-
sis.

Proposition 4 The linear controller

τc = −k0ε̃−Cω̃ (25a)
τa = −Eωs (25b)

makes the equilibrium of(20) globally asymptotically
stable ifiy > ix > iz, wherek0 > 0 is a sufficiently large
constant, andC > 0 andE > 0 are constant matrices.
An obvious choice isC = kω1 > 0 andE = ks1 > 0
wherekω andks are constants.

Proof. We choose the following Lyapunov function can-
didate (LFC)V :

V =

Va︷ ︸︸ ︷
1
2

[
ω̃T , ωT

s

] [
I AIs

IsAT Is

] [
ω̃
ωs

]
− 1

2
ω2

0c
T
2 Ic2 + k0

(
ε̃T ε̃+ [η̃ − 1]2

)
+

3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)

(26)

=
1
2
ω̃T Iω̃ + ωsIsAT ω̃ +

1
2
ωT

s Isωs

− 1
2
ω2

0c
T
2 Ic2 + 2k0 (1− η̃)

+
3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)

(27)

The state vector is

x =
[
ω̃T , ωs, η̃, ε̃

T , c12, c32, c13, c23
]T

wherec12, c32, c13 andc23 are the respective components
of the vectorsc2 andc3 defined in (3). The desired state
vector is

x∗ =
[
03, 0N , 1, 03, 0, 0, 0, 0

]T
.

The first three terms (Va) and the fourth term inV repre-
sents the kinetic energy of the satellite, although it is not
equal to its total kinetic energy. The fifth term comes from
the attitude error wherek0 is a positive constant. The sixth
term represents the potential energy of the satellite. The
last term is constant in order to makeV a true Lyapunov
function, that isV > 0 andV (x∗) = 0. In fact,V meets
these requirements only wheniy > ix > iz, which is
shown in [9]. It is shown in [2] that the time derivative of
Va is given by:

V̇a = ω̃T τe + ωT
s τa − ω2

0ω̃
T (c2)×Ic2 (28)

The time derivative ofV along the trajectories of (20)
thus becomes:

V̇ = V̇a −
1
2
ω2

0c
T
2 Iċ2 − 2k0

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (29)

= ω̃T τc + ωT
s τa − ω2

0ω̃
T (c2)×Ic2

+ 3ω2
0ω̃

T (c3)×Ic3 − ω2
0c

T
2 I(c2)×ω̃

+ k0ω̃
T ε̃+ 3ω2

0c
T
3 I(c3)×ω̃

(30)

Since all the terms are scalars, they can be freely trans-
posed. Exploiting the fact that(ω̃×)T = −ω̃× we obtain:
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V̇ = ω̃T τc + ωT
s τa + k0ω̃

T ε̃ (31)

Combining (25) with (31), we get:

V̇ = −ω̃T Cω̃ − ωT
s Eωs (32)

SinceC > 0 andE > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω →
0 andωs → 0 ⇒ ω̇s → 0. Hence (21) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k0ε̃ (33)

The terms to the right are bounded becauseci is a
unit vector and‖ε̃‖ ≤ 1. Hence there should be a large
enough choice ofk0 which makes̃ε = 0 the only solu-
tion, as proposed by [8]. In [2] it is shown that choosing
k0 > 5.5432 ω2

0 (iy − iz) ⇒ ε̃ → 0. Thus the equi-
librium point will be globally asymptotically stable by
Krasovskii-LaSalle’s theorem.

3.3 Lyapunov controller 1

In section 3.2 there were restrictions on the inertia matrix
of the satellite. In case such restrictions are not met by a
satellite, we will derive a nonlinear controller which does
not have these restrictions.

Proposition 5 The nonlinear controller

τc = −k1ε̃−Cω̃

+ ω2
0(c2)×Ic2 − 3ω2

0(c3)×Ic3

(34a)

τa = −Eωs (34b)

makes the equilibrium of(20) globally asymptotically
stable, whereC > 0 andE > 0 are constant matrices. A
possible choice isC = kω1 > 0 andE = ks1 > 0 where
kω andks are constants.

Proof. Consider the following LFC:

V = Va + 2k1 (1− η̃) (35)

wherek1 is a positive constant. The time derivative of
V along the trajectories of (20) is given by:

V̇ = ω̃T τc + ωT
s τa − ω2

0ω̃
T (c2)×Ic2

+ 3ω2
0ω̃

T (c3)×Ic3 + k1ω̃
T ε̃

(36)

Inserting (34) into (36), we get:

V̇ = −ω̃T Cω̃ − ωT
s Eωs (37)

SinceC > 0 andE > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω →
0 andωs → 0 ⇒ ω̇s → 0. Hence (21) becomesk0ε̃ =
0 ⇒ ε̃ → 0. Thus the system is globally asymptotically
stable according to the theorem of Krasovskii-LaSalle.

3.4 Lyapunov controller 2

The preceding controllers do not use the reaction wheels
directly as actuators for attitude control. It would be de-
sirable to use the reaction wheels as actuators in the same
way as the thrusters. This motivates an LFC where we
omit ωs from the state vector, and treat it as an external
signal.

Proposition 6 The nonlinear control laws

τc = −kε,1ε̃−Cω̃ (38a)

Aτa = kε,2ε̃+ Dω̃

+ ω0(c2)×AIs

(
AT ω̃ + ωs

) (38b)

make the equilibrium of the system(20) globally
asymptotically stable ifiy > ix > iz, wherekε,1 andkε,2

are constants satisfying(kε,1 + kε,2) > 0, (kε,1 + kε,2)
is sufficiently large, andC andD are constant matrices
satisfying(C + D) > 0. Obvious choices which ensure
this areC = kω,11 andD = kω,21 wherekω,1 andkω,2

are constants and(kω,1 + kω,2) > 0.

Proof. Consider the LFC

V =
1
2
ω̃T Jω̃ − 1

2
ω2

0c
T
2 Ic2 + 2k2 (1− η̃)

+
3
2
ω2

0c
T
3 Ic3 +

1
2
ω2

0 (iy − 3iz)
(39)

wherek2 is a positive constant. The state vector is

x =
[
ω̃T , η̃, ε̃T , c12, c32, c13, c23

]T
,

and the desired state vector is

x∗ =
[
03, 1, 03 0, 0, 0, 0

]T
.

The first and second term inV represent the kinetic energy
of the satellite. The other terms are the same as in the
LFC (26). This means thatV is a Lyapunov function if
iy > ix > iz. To calculateV̇ , we will use (21):

V̇ = ω̃T J ˙̃ω − 1
2
ω2

0c
T
2 Iċ2 − 2k2

˙̃η +
3
2
ω2

0c
T
3 Iċ3 (40)

= ω0ω̃
T J(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃

− ω2
0ω̃

T (c2)×Ic2 + ω0ω̃
T (c2)×AIsωs

+ ω̃T τg + ω̃T τc − ω̃T Aτa
− ω2

0c
T
2 I(c2)×ω̃ + k2ω̃

T ε̃+ 3ω2
0c

T
3 I(c3)×ω̃

(41)

Note that several terms have disappeared since
ω̃T ω̃× = 0. Transposing some terms, we get:

V̇ = ω0ω̃
T (c2)× (Iω̃ − Jω̃ + AIsωs) + ω̃T τc

− ω̃T Aτa + k2ω̃
T ε̃

(42)

= ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
+ ω̃T τc

− ω̃T Aτa + k2ω̃
T ε̃

(43)

5
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Inserting (38) into (43), we obtain:

V̇ = (k2 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (44)

Note that the control law forτa in (38) cancels the
nonlinearities inV̇ . This is only possible if the reaction
wheels are able to give torques about all three axes of
rotation. If this is not the case, the thrusters should be
used. We will get the same result forV̇ , if we choose
to cancel the nonlinearities withτc instead. Choosing
k2 = kε,1 + kε,2, we get:

V̇ = −ω̃T (C + D) ω̃ (45)

Since(C + D) > 0, V̇ ≤ 0. Thus, we have proved
that ω̃ → 0 ⇒ ˙̃ω → 0. We will now apply Krasovskii-
LaSalle’s theorem. Wheñ̇ω = ω̃ = 0, (21) becomes:

0 = −ω2
0(c2)×Ic2 + 3ω2

0(c3)×Ic3 − k2ε̃ (46)

The constantk2 must be chosen large enough to make
ε̃ = 0 the only possible solution to this equation.
Since this is the same equation as (33), choosingk2 >
5.5432 ω2

0 (iy − iz) yields a globally asymptotically sta-
ble system according to Krasovskii-LaSalle’s theorem.

3.5 Lyapunov controller 3

In section 3.4 there are restrictions on the inertia matrix
of the satellite. The next controller will not have such
restrictions.

Proposition 7 The nonlinear control laws

τc = −kε,1ε̃−Cω̃ (47a)

Aτa = kε,2ε̃+ Dω̃ + ω0(c2)×AIs

(
AT ω̃ + ωs

)
− ω2

0(c2)×Ic2 + 3ω2
0(c3)×Ic3

(47b)

make the equilibrium of the system(20) globally
asymptotically stable, wherekε,1 and kε,2 are constants
satisfying(kε,1 + kε,2) > 0, andC andD are constant
matrices satisfying(C + D) > 0. Obvious choices which
ensure this areC = kω,11 and D = kω,21 wherekω,1

andkω,2 are constants and(kω,1 + kω,2) > 0.

Proof. We will consider the following LFCV wherek3

is a positive constant:

V =
1
2
ω̃T Jω̃ + 2k3 (1− η̃) (48a)

This LFC is almost the same as (39), but two terms are
removed.V̇ becomes:

V̇ = ω̃T J ˙̃ω − 2k3
˙̃η (49)

= ω0ω̃
T J(c2)×ω̃ + ω0ω̃

T (c2)×Iω̃

− ω2
0ω̃

T (c2)×Ic2 + ω0ω̃
T (c2)×AIsωs

+ 3ω2
0ω̃

T (c3)×Ic3 + ω̃T τc

− ω̃T Aτa + k3ω̃
T ε̃

(50)

Transposing the first term, and using the definition ofJ
in (20), we obtain:

V̇ = ω0ω̃
T (c2)×AIs

(
AT ω̃ + ωs

)
− ω2

0ω̃
T (c2)×Ic2 + 3ω2

0ω̃
T (c3)×Ic3

+ ω̃T τc − ω̃T Aτa + k3ω̃
T ε̃

(51)

Inserting (47) into (51), we get:

V̇ = (k3 − kε,1 − kε,2) ω̃T ε̃− ω̃T (C + D) ω̃ (52)

The control law forτa in (47) cancels the nonlinearities
in V̇ . We choosek3 = kε,1 + kε,2, thus:

V̇ = −ω̃T (C + D) ω̃ (53)

Since(C + D) > 0, V̇ ≤ 0. Thusω̃ → 0 ⇒ ˙̃ω → 0,
and the system is globally asymptotically stable according
to the theorem of Krasovskii-LaSalle.

3.6 Sliding mode controller

According to [14], sliding mode controllers are robust to
system parameter uncertainties. Such uncertainties are of-
ten encountered in practice. A good example is change of
a satellite’s inertia when thruster fuel is consumed. We
will define the error of a parameterα to be∆α = α − α̂

where the values denoted with a hat(̂·) are the best esti-
mates, or nominal values, of the system parameters.

Proposition 8 The sliding mode controller

τc = −τsgn (54a)

Aτa = (ĥb)× [ω̃ + ω̂0c2] +
3
2
ω̂2

0c
T
3 Îc3

+ ω̂0Ĵ(c2)×ω̃ +
1
2
ĴP

[
η̃1 + (ε̃)×

]
ω̃

+ τsgn,a

(54b)

τsgn =

[
βxsgn (sx)
βysgn (sy)
βzsgn (sz)

]
, τsgn,a =

[
βa,xsgn (sx)
βa,ysgn (sy)
βa,zsgn (sz)

]
(54c)

makes the equilibrium of the system(20) globally
asymptotically stable, where

βi + βa,i ≥ δi + β0,i,
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β0,i > 0 is a constant and the vectorδ = [δx, δy, δz]
T is

given by:

δ = (∆hb)×ω̃ − (∆(hbω0))×c2

+
3
2
cT
3 ∆(ω2

0I)c3 + ∆(ω0J)(c2)×ω̃

+
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃

(55)

The sign functionsgn (·) is defined by:

sgn (si) =

{ 1, si > 0
0, si = 0

−1, si < 0
(56)

Proof. The first step in sliding mode control is to design
a sliding manifold

s = [sx, sy, sz]
T
,

and [15] suggest the following manifold wheres = 0 im-
plies that̃ε andω̃ tend to zero. Define

s = ω̃ + Pε̃ (57)

whereP > 0. We must now design a control law for
the system states to reach the sliding manifold. Consider
the LFC

V = sT Js (58)

Its time derivative along the trajectories of (20) is given
as:

V̇ = sT
(
J ˙̃ω + JP ˙̃ε

)
(59)

= sT

(
(hb)× [ω̃ − ω0c2] +

3
2
ω2

0c
T
3 Ic3

+ τc −Aτa + ω0J(c2)×ω̃

+
1
2
JP

[
η̃1 + (ε̃)×

]
ω̃

) (60)

Inserting (54) into (60), we get:

V̇ = sT
(
(∆hb)×ω̃ − (∆(hbω0))×c2

+
3
2
cT
3 ∆(ω2

0I)c3 + ∆(ω0J)(c2)×ω̃

+
1
2
∆JP

[
η̃1 + (ε̃)×

]
ω̃ − τsgn − τsgn,a

) (61)

= sT (δ − τsgn − τsgn,a) (62)

Sinceβi + βa,i ≥ δi + β0,i, we have:

V̇ ≤ − (β0,x |sx|+ β0,y |sy|+ β0,z |sz|) (63)

Fors 6= 0, V̇ < 0 ⇒ s→ 0. Hence, we reach our man-
ifold s in finite time, and the system is globally asymptot-
ically stable.

4 SIMULATION

4.1 Numerical values

The inertia matrix of ESEO is given byI =
diag {4.3500, 4.3370, 3.6640}. ESEO has one reaction
wheel about itsyb-axis, henceA = [0, 1, 0]T . The wheel
inertia is given byis = 4 · 10−5 kgm2, and the max-
imum angular velocity of the reaction wheel is given by
(ωs)max = 5035 rpm. Table 1 shows the nominal torques
of the thrusters. The simulation altitude is 250 km above
the surface of the Earth.

xb-axis 0.0484 Nm
yb-axis 0.0484 Nm
zb-axis 0.0398 Nm

Table 1: Nominal thruster torques

4.2 Implementation of controllers

Since ESEO only has one reaction wheel, the cancella-
tion of system nonlinearities cannot be done with the re-
action wheel alone. Thus, the control laws are modified
in order to let the thrusters cancel nonlinearities about the
xb andzb-axis, while the reaction wheel takes care of the
yb-axis nonlinearities. Regarding the sliding mode con-
troller, it is discussed in [14] that such controllers suffer
from chattering. This problem can be solved by replacing
the sign function with a saturation function, which leads
to decreased accuracy:

sat (si, γ) =

{ 1, si > γ
0, |si| < γ

−1, si < −γ
(64)

In the implementation of the sliding mode controller,
the saturation function is used instead of the sign function,
and the gainsβi andβa,i are chosen constant, that is:

βi + βa,i = β0,i > δi

4.3 Simulations and results

A simple step simulation is performed, where the satel-
lite has an initial spin. First with ideal conditions, that
is no measurement noise and perfect estimates of system
parameters (figure 2 to 5). Then with a 20 % uncertainty
on the system inertial parameters, and finally with added
white noise and perfect parameter estimates (figure 6 to
9). The second simulation results in approximately the
same results as the first, so these plots are not included.
The only difference is a slighlty slower rate of conver-
gence to the desired attitude. The attitude is presented in
Euler angles, where the three anglesφ, θ andψ give the
rotation of a reference frame relative to another about the
x, y and z-axis respectively. In the plots, these angles
represent the rotation ofFb relative toFo . The desired
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accuracy is±1◦. All Euler angles have the same desired
value.

5 CONCLUSION

In this paper, a variety of nonlinear controllers are
developed to control the attitude of a spacecraft using
thrusters and reaction wheels as actuators. Note that sim-
pler controllers are obtained if the diagonal inertia ma-
trix of the spacecraft satisfiesiy > ix > iz. Simulations
show that all controllers obtain a desired accuracy of±1◦
in Euler angles. Some of the controllers do not use the
reaction wheel actively to control the satellite’s attitude,
but they perform just as well as the others. Whether or
not the reaction wheel is used actively, the Euler angle
θ converges faster than the other Euler angles and it has
a higher degree of accuracy. This is due to the presence
of the reaction wheel. Note that when using the reaction
wheel actively to control the spacecraft’s attitude, the re-
action wheel reaches saturation quickly. It is observed that
added noise to the measured states yields more thruster fir-
ings. This work will be part of a basis for the next SSETI
project, ESMO.
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(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 2: Simulation of local PD controller with ideal
conditions

(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 3: Simulation of Lyapunov controller 1 with ideal
conditions
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(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 4: Simulation of Lyapunov controller 3 with ideal
conditions

(a) Euler angles with reference

(b) Control torques

(c) Reaction wheel velocity

Figure 5: Simulation of sliding mode controller with ideal
conditions
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(a) Euler angles with reference

(b) Control torques

Figure 6: Simulation of local PD controller with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 7: Simulation of Lyapunov controller 1 with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 8: Simulation of Lyapunov controller 3 with added
white noise

(a) Euler angles with reference

(b) Control torques

Figure 9: Simulation of sliding mode controller with
added white noise
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